University of

"1l Kent Academic Repository

Seijas, Pablo Lamela, Thompson, Simon and Francisco, Miguel Angel (2016)
Model extraction and test generation from JUnit test suites. In: Proceedings
of the 11th International Workshop on Automation of Software Test. ICSE
International Conference on Software Engineering . ACM, New York, USA,
pp. 8-14. ISBN 978-1-4503-4151-6.

Downloaded from
https://kar.kent.ac.uk/55751/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2896921.2896927

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/55751/
https://doi.org/10.1145/2896921.2896927
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

2016 11th IEEE/ACM International Workshop in Automation of Software Test

Model extraction and test generation
from JUnit test suites

Pablo Lamela Seijas
University of Kent
United Kingdom

pl240@kent.ac.uk

ABSTRACT

In this paper we describe how to infer state machine models of
systems from legacy unit test suites, and how to generate new tests
from those models. The novelty of our approach is to combine
control dependencies and data dependencies in the same model,
in contrast to most other work in this area. Combining both
kinds of dependency helps us to build more expressive models,
which in turn allows us to produce smarter tests. We illustrate
those techniques with examples from our implementation, the
James tool, designed to apply these techniques in practice to Java
code and tests.

1. INTRODUCTION

Testing is the most commonly used approach to validating
systems, both when they are constructed and as they evolve.
Testing is a costly process, and at the same time necessarily
partial, exploring the system only at the points specified in the
test suite. In this paper we show how existing unit tests can be
leveraged to provide more testing value through inferring a model
for the system from the tests. We make four specific contributions.
1. We define a new approach to inferring a state machine model for

a system from an existing test suite and an implementation of

the system. The state machine is inferred using a combination

of data flow and control flow information: existing approaches
have tended to use just one of these.

2. We show how to automatically derive potential new test cases
for the system under test from this model. The new tests are
generated from the model using the QuickCheck [1] property-
based testing (PBT) tool, which exercises the model and prints
examples of sequences of calls and postconditions.

3. We give a mechanism by which approximate QuickCheck
models for Java systems can be inferred automatically thus
allowing the rapid development of PBT models from existing
test suites.

4. We present a pilot study in which we apply our approach to
generate new tests for an existing industrial system.

Our work aims to extract models that represent both successful

and failing behaviour of a target Web Service. The behaviour

described by the model aims to be more general than the original
unit tests. This generalisation allows us to generate new tests

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

AST’16, May 14-15 2016, Austin, TX, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4151-6/16/05. .. $15.00

DOI: http://dx.doi.org/10.1145/2896921.2896927

Simon Thompson
University of Kent
United Kingdom

sjt@kent.ac.uk

Miguel Angel Francisco
Interoud Innovation S.L.
Spain
miguel.francisco@interoud.com

simply by randomly traversing the model. In doing this we follow
earlier work [2] for Erlang in which finite-state machine models
and properties were extracted from EUnit test suites.

However, as with any automatic generalisation, some aspects
of the models generated and, as a consequence, some of the tests
generated, may not correspond to the intended behaviour of the
system. Tests generated may need to be manually reviewed before
they are added to a test suite, and models generated may need to
be manually corrected before being used in practice. Nevertheless,
adapting approximate models and tests is, in general, less costly
than writing them from scratch, and they may explore scenarios
that humans did not consider when doing the work manually.

The techniques described here have been implemented in a tool
called James. The source code of James is available'; and more
technical details can also be found?.

The work described here and the implementation of James are
both targeted on Web Services, since they identify the interface
by looking for HT'TP requests (see Sect. 4.3). Thus, it is a
requirement that the target system is a Web Service. However,
the main ideas presented here should be straightforward to apply
them to other types of API, (e.g. of a dynamic library), as long
as the system under test (SUT) is tested like a black-box and has
a clear interface.

The paper is structured as follows: after introducing property-
based testing (Sect. 2) and related work (Sect. 3), we motivate
the approach taken (Sect. 4). We then explain the architecture of
our solution (Sect. 5), the model generation (Sect. 6), the test
generation (Sect. 8), and the pilot study (Sect. 9). We discuss
future work and conclude in Sect. 10.

2. PROPERTY-BASED TESTING

Property-based testing (PBT) was first developed for Haskell [7],
and has been transferred to a range of other programming lan-
guages. Quvig QuickCheck [1] (hereafter QuickCheck) supports
random testing of Erlang (and C via a foreign function interface).

Properties of programs are stated in a subset of first-order logic,
embedded in Erlang syntax. QuickCheck verifies these properties
for collections of Erlang data values generated randomly, with
user guidance in defining the generators where necessary. When a
counterexample is found, QuickCheck tries to generate a simpler,
more comprehensible, counterexample in a constructive manner;
this process is called shrinking.

When testing state-based systems it makes sense to build an
abstract model of the system, and to use this model to drive the
testing of the real system. The abstract state machine can be
implemented as a client module of the pre-defined QuickCheck
behaviour eqc_fsm. eqc_fsm state machines consist of a finite set

"https://github.com/palas/james
http: //www.prowessproject.eu/wp-content/uploads/2012/10/
Prowess D2-3.pdf

of (“control”) states, together with state data which is modified
by the transitions of the machine. These models are variants of
extended finite state machines (EFSMs), and so more expressive
than FSMs.

3. RELATED WORK

Previous approaches [13], [8], and [12], model the expected
use of interfaces by focusing on the order in which commands
are usually executed. One limitation of these approaches is that
they do not usually infer how to create the parameters that the
commands require.

In some cases invariants for parameters are inferred [11], and
then used to disambiguate commands in Finite State Machines.
This has limited effectiveness when inferring complex properties,
or arbitrary semi-structured data.

These approaches have the advantage of being suitable for
black-box interfaces. But they do not take advantage of the
dependency information provided by legacy unit tests.

On the other hand, [3] shows similar data inference to the one
used in this paper. However, control dependencies are inferred
directly from data dependencies, since examples are not used as
input for the algorithm.

In addition, the merging algorithm used in this work is strongly
influenced by previous regular inference algorithms, in particular
K-tails [4] and QSM [9].

We have also used QSM as the core algorithm for our previous
work in test generation [2], but the work presented in this paper
differs from it in that we are now combining data dependencies
on the model. This addition allows it to convey aspects of the
system under test that go beyond the ones learnable by the pure
regular inference.

There is also been more recent work on software reverse-
engineering using regular inference [5] and even EFSM inference
with help of machine learning [14].

4. EXTRACTION OF DEPENDENCIES

We now give a rationale for the approach we have taken for
extracting dependency information from the existing artefacts.

4.1 Taking advantage of data reuse

Existing JUnit tests provide concrete examples of how data
can be reused, and how it can be generated. By modifying or
generalising these procedures, it is likely that we will find new valid
input examples that have not been generated before. Moreover,
even if generated inputs are invalid, they may be appropriate for
negative test cases. Because invalid input generated this way will
be structurally similar to the valid input, it is foreseeable that it
will help us detect ‘corner case’ errors.

For example, if when serialising a request the unit tests manually
add quotes surrounding a value, then the generalisation of the
request may add quotes in places were they should not occur.
This kind of test case would help us detect problems like SQL
injection, which can enforce security.

4.2 Approaches to instrumentation

Most research that presents techniques to extract information
from existing software falls into one or both of two categories,
namely static and dynamic. In this section we assess the advan-
tages and disadvantages of these approaches for our work, and
explain our preferred approach.

Static approaches An approach is considered to be static if
it analyses the software without executing it. Static approaches,
do not require the code to be run and usually work directly on
source code but may analyse bytecode or even machine code.

In the particular case of source code analysis, a static approach
can potentially analyse the artefacts used by the developer, which
may indicate high level intentions.

Unfortunately, the number of mature libraries that are available
for Java source manipulation and support the whole language is
small, the most popular ones focus on bytecode, which already
omits some of the abstraction.

Dynamic approaches Dynamic approaches analyse the way
in which a working piece of software executes by instrumenting
it prior to its execution. This has the advantage of acquiring
real values that are known to work, and to produce complete
traces of actual valid executions. In the case of unit tests, which
are usually deterministic, a single execution will reveal all the
scenarios that are being tested.

One disadvantage of this approach is that it requires a work-
ing implementation, which limits its applicability to test-driven
development.

Java Virtual Machine Tool Interface For this work we have
chosen a mainly dynamic approach through using the JVM Tool
Interface, (or JVMTT?). JVMTT is a standard interface that allows
external tools to analyse and control the state of applications that
run in a JVM (Java Virtual Machine).

This is done through the creation of a dynamic library or
JVMTI agent that can be passed as a parameter to the JVM, or
by setting the environment variable _JAVA_OPTIONS

JVMTI agents can request to be notified whenever a set of
events occur during the execution of a Java program, such as
when a method is entered or exited, or when the garbage collector
is called. The Java Native Interface (JNI) can be used to call
arbitrary Java methods from within the JVMTT callbacks, which
allows the use of reflection, and could also be used to alter the
behaviour of the target program.

The agent acts as a debugger, and should not modify the results
of the tests and work seamlessly regardless of the framework,
configuration, or JVM used for executing them (assuming that
there are no bugs in the implementation of James and the JVM,
and that the tests do not rely on timing or other unusual kinds
of context information).

4.3 Data and control dependencies

James extracts and combines into a single model both data
and control dependency flow information.

Extraction of data dependencies Data dependencies repre-
sent the flow of information in the tests. In our experiments
we register data dependencies by tracking all the objects in the
system, and registering the methods or functions that take them
as parameters or produce them as a result. This way we obtain
information about the way in which requests are constructed.

Most of the time, requests are composed out of small pieces of
information, like numeric values or dates, which are composed
into bigger structures and then serialised, or appended inside of a
string template.

In the same way, responses to requests may be unmarshalled,
and the small pieces that compose them are usually checked for
correctness through the xUnit assert functions.

Extraction of control dependencies In addition to data flow,
we track and model the control flow of methods that produce
HTTP requests. Nodes that represent these methods are linked
in execution order, and the links are preserved during the merging
process.

James records the order in which these particular methods are
executed because they are the ones that may cause the state of

3http://docs.oracle.com//javase/7/docs/platform /jvmti/jvmti html

| TARGET WEB SERVICE

&

GraphViz

JAMES
JWMTI el
\ FSM
JUNIT VM VML et u TEST
AGENT SERVER [MODEL
l Erlang
JNI «/ﬂ source

QuickCheck

Figure 1: The architecture of James

the server to change. We explain how these methods are identified
in Sect. 5.3 below.

S. ARCHITECTURE OF THE SOLUTION

In Fig. 1 we show the architecture of the tool that we have
designed and implemented.

The JVM is instrumented by a JVMTI agent in C++ that
instruments every method entry and method exit event, and
reports it to an Erlang server through a socket. In practice,
method entries correspond to method calls, and method exits
allow us to track the result of the method executions.

This process produces a long list of method calls, most of which
do not belong to the tests themselves, but to frameworks (such
as the Apache Ant library), or to the JVM itself.

The Erlang server filters most of the calls that do not belong
to the tests. We do this by checking for annotations using Java’s
reflection API. But we store in a cache the classes that are found to
not contain JUnit tests (otherwise this introduces a big overhead).

This procedure is also used to distinguish the set-up and clean-
up procedures and the actual test body, since they have different
annotations, (i.e: @Before, @After, @Test).

Calls that produce objects that are used within the tests, even
when these are not part of the tests themselves, must be tracked
too, otherwise James will not know how to create those objects
when the new tests are generated.

5.1 Technical limitations

There are some limitations to our approach. James can track
objects, but not every variable in Java is an object. Some variables
have primitive types, (e.g: int, char, boolean), which cannot
be tracked by JVMTTI directly. Some operators like + or && are
also treated differently from methods.

Our current implementation tracks primitives by identifying
repeated values; but this produces inaccuracies when dealing with
frequently used primitives like false and 0.

Both these issues could be circumvented by using dynamic
bytecode modification to replace the primitives and operators
with objects and functions respectively, or by using static analysis
to detect the data flow of primitive values. But because James
was built as a prototype we bypassed the problem by replacing
primitives manually.

In addition, some artefacts used in Java code are translated into
compiler-generated methods, and some methods are implemented
natively. The JVMTI does not always provide information like
local variables for these methods.

Even for normal methods, the amount of information that
can be retrieved by JVMTI depends on whether the code was
compiled with debug information. In our aim to get a more usable

10

system, we chose to use ways of extracting information that rely
on JVMTTI methods that also work on Java code that was not
compiled with debug information.

5.2 Conceptual limitations

One conceptual limitation is that, in our approach, control
dependencies are only tracked for methods that issue HTTP
requests (see Sect. 4.3). This means that the model will not
consider the consequences of side-effects that are produced by the
rest of methods. In future this approach could be extended to
cover other methods too.

A generic problem with dynamic approaches — already reported
in previous research [10] — is the large number of traces produced
by the instrumentation of Java programs, which causes the analysis
of relatively small test suites to require a substantial amount of
memory and slows down the process considerably. This problem
is mitigated by a careful early filtering of the traces collected, as
described earlier.

5.3 Control tracking workaround

The task of identifying methods that issue HT'TP requests could
be carried out by ensuring that all traffic goes through a proxy,
and connecting the proxy to the JVMTI agent. Nevertheless, this
approach would require a context change between the JVMTI
agent and the proxy for each method call, and this would introduce
a delay that would slow down the whole process and increase its
complexity.

Instead, we track the Java methods that produce HTTP re-
quests. In our case the methods used were openConnection and
setRequestMethod from the class HttpURLConnection. Other
programs could use different methods but James could be adjusted
easily to detect those instead.

6. MODEL GENERATION

Once we have retrieved the dependency information we may
use it to generate a model. When displayed as diagrams, models
can highlight issues in our test suite, and could ultimately be
used as documentation. In Sect. 7 we study an example of one of
these diagrams in detail.

6.1 Common dependency graph

Initially, James generates a graph where every call to a method
executed directly from the tests is represented as a square-boxed
node (see Fig. 2).

Because we are mainly interested in the level of abstraction
expressed by the tests, we only incorporate in the model the calls
that are executed directly from the tests. But we still include calls
necessary to satisfy the data dependencies of other calls already
included.

For data dependencies, gray arrows connect the methods that
produce a result with those that take that result as a parameter,
or those that use the result as a base object, i.e: those methods
that are called “on the object returned”. The latter are represented
with dashed arrows.

For control dependencies, brown arrows connect methods that
issued HTTP requests, in order of execution.

6.2 Merging process

A graph generated as described so far would generally be too
dense to understand, i.e: it would have too many nodes and
arrows. The merging process tries to generalise and simplify the
graph while keeping the important information by joining paths
with the same topology, similarly to the K-Tails algorithm [4].

James searches every subtree in the graph, alternately following
the arrows directly, and in reverse. Then it merges subtrees that
contain pairs of methods with the same name and signature, and

Negative instance classes

Calls with keywords like “error” or “fail”, and
their dependencies are considered negative
tests, and marked in pink.

Methods @Test, @Before, and @After
The outline represents the places where the
command was found, see Table 2.

Arrows

Data dependencies are represented with grey
arrows. Arrows connect the methods that
produce an object as result, with methods
that take it as a parameter.

Dashed arrows

When an object produced as the result of a
method is used as target of another method,
(i.e: the this object of the method), the de-
pendency relationship is represented with a
dashed grey arrow.

Brown arrows

Control dependencies are represented through
brown arrows. These are created following the
order in which the methods were originally
executed in the unit tests.

Loop highlighting

Loops in control dependencies are represented
with thicker arrows.

one0f diamonds

We depict only as many continuous grey ar-
rows ending in each node as parameters it
takes. To achieve this, James groups arrows
by using the one0f diamond nodes.
HTTP request grouping (subgraphs)
Methods that are inferred to be related to a
HTTP request to the same URL are grouped
in subgraphs surrounded by a black rectangle.
The tuple in the rectangle denotes the method
and URL used.

Double outline

Static methods are denoted with double out-
line. Methods double outline must not have
an incoming dashed arrow.

checkNotRunningError

PP

{post,"/frdq_server/Sto
—

Table 1: Diagram symbol legend

that are connected with the same topology of dependencies both
in data and in control.

Longest subtrees are merged first, down to a minimum length
K. All tails of the graph (leaf and root nodes) are allowed a lower
K; because if a pair of longest matching subtrees is delimited by
the end of the graph (has leaf or root nodes), it may be that the
lack of commonalities between both matching subtrees is due to
their small sizes, not to their differences.

Methods that issue HTTP requests are classified into “normal
and “erroneous” (see Table 1) according to whether they have
dependent nodes that represent method calls whose name contains
the keywords error or fail.

In addition to these rules, “normal” nodes are never merged
with “erroneous” nodes, and data arrows are never merged with
control arrows or with arrows that provide dependencies for a
different parameter.

When two executions of a method get merged, we may get
new alternative paths for satisfying data dependencies of methods.
Alternatives for the same parameter are grouped together with a
diamond node oneOf.

Since we merge only subtrees of a minimum depth, it is likely

”

11

| @Before | @Test | @After | Outline colour |

No No No Grey [l |
Yes No No Green |l

No Yes No Bhuelf |
No No Yes Red [l

Yes Yes No Teal i

No Yes Yes Purple [l
Yes No Yes Yellow [l |
Yes Yes Yes Black |l

Table 2: Outline colour legend for methods

that all the sequences merged have the same or a similar semantics.
This way we get new connections and loops both in the dependency
and control flow. To make the diagram clearer we group methods
that issue the same kind of HTTP request, (i.e: a request to the
same URL and with the same HTTP method), into the same
subgraph.

Nodes that hang from these nodes and are not a dependency
for other nodes that produce a different HTTP request are also
included in the same subgraph. We add these nodes to the
subgraphs too because, in our experience, they tend to be related
to the HTTP request (they are the ones that unmarshall the
result or check that the results are correct).

7. DETAILED EXAMPLE

In this section we discuss in detail the result of applying our
model extraction methodology by running our James tool on
a frequency server example, as also used in our original work
on model extraction for Erlang/EUnit [2]. The fully extracted
machine is presented in Fig. 2.

7.1 Frequency Server example

Frequency Server is a Web Service written using Java that is
inspired by the example in the book “Erlang Programming” [6].
It simulates a “spectrum management” system that allows clients
to allocate and deallocate frequencies while ensuring that each
frequency is allocated by at most one client at a time. In [2], we
already used the original version of this example for illustrating
the tool for transforming EUnit tests into PBT models.

The API provides four commands: startServer, stopServer,
allocateFrequency, and deallocateFrequency.

Fig. 2 illustrates the behaviour of the Frequency Server as
inferred by the James tool from a set of unit tests.

7.2 Testing the Frequency Server

A test suite has been provided by an independent party and is
available?, the implementation of the SUT used is also accessible
in the same link. By using the models generated by James we
can generate new relevant tests that explore possibilities that
were missing in the original tests. For example, in our particular
implementation there is a limit on the number of frequencies that
can be allocated, but this limit was not explored by the existing
unit tests.

Nevertheless, a random test generator (see Sect. 8) that would
randomly traverse the control flow of our model (see Fig. 2) could
try to allocate enough frequencies to do so, since there is a control
loop around the allocation command. At some point the server
will return an error.

Even though in this case the limit in the number of frequencies
is an expected functionality, in a bigger example it could be due
to a bug, not revealed by legacy unit tests.

“https://github.com/palas/freq_server_test_ma

{post," /freq_server/AllocatcFrequency” }

{post,"/freq_server/StartServer")

new java.util. ArrayList

17T~)
2

checkNoErrors

new java.util. ArrayList
T

getResult

checkNotRunningError

v

getFrequencyAllocated

\ \
s

/

> assertNotNull

7 ~—
— 7/ ~

/ \ \\ N

1) 7
[/ 0\
/ \

\ / \
checkNotAlreadyStartedError |

{post,"/freq_server/Sid pServer

<mpSer er

assertTrue

checkNotRunningEiror

Java Interactions

Figure 2: Diagram extracted by James from the Frequency Server

- allocateFrequency

,/

[v
getFrequencyAllocated

///

new javalang Integer

Figure 3: Detail displaying exceptional behaviour

7.3 Interaction of the different features

Looking simultaneously at both control and data flow, we
can get a better picture of what the system is expected to do.
For example, if we look at the piece of diagram highlighted
on Fig. 3, we can see that it is possible to extract the result
of the call allocateFrequency, and reuse it later when calling
deallocateFrequency. The first call to deallocateFrequency
should be valid.

But if, after doing this, we call deallocateFrequency a sec-
ond time, as shown in the same diagram (Fig. 3), we will produce
an error, as indicated by the pink background in the left deal-
locateFrequency node. We could also obtain an error result
by using the integer 0 as argument, instead of the result of
allocateFrequency, (we know this is true because the imple-
mentation of the Frequency Server used in our experiments starts
allocating the frequencies from 10).

8. GENERATING NEW TESTS

Using the approach presented in Sect. 6 we are able to build
a comprehensive overview of a system from a set of JUnit tests.
Assuming that the tests make a sensible exploration of the SUT,
then it is possible, not only to construct a graphical model of the
system (as shown), but also to construct a QuickCheck Finite

12

State Machine model for the SUT that will generate new tests
when executed. We outline how this is done here, building on the
approach first presented in [2].

8.1 Building a state machine

A state machine (namely, a QuickCheck state machine) can be
built by translating the different elements of the diagram.

1. State transitions can be defined to match the control flow,
(including looping behaviour), given by the brown links in
the visualisations. This proceeds according to the mechanism
outlined in [2].

. The data flow dependencies for parameters give an indication of
how generators for parameters must call each other recursively
and how the values produced by these generators can satisfy
the data dependencies for each call in the control flow.

. The combination of data flow and control flow gives an indica-
tion of the values that need to be stored as part of the state
data of the Extended Finite State Machine (EFSM). Fig. 3
shows how the result of allocateFrequency must be stored in
order to be used as a parameter for deallocateFrequency.

. Similarly to the way data flow dependencies are satisfied, we
include generators for inverse data dependencies within each
subgraph. These will produce the postconditions in terms of
the result of the method execution.

. In order to guarantee termination of the generators, we must
bind their recursion with a strictly decreasing number. This
can be done by computing for each node, the minimum depth
(distance to the top of the graph), and ensuring that we
eventually force the dependency resolution to follow a path
with a strictly decreasing depth. In methods with several
parameters the depth must include the minimum depths for
all parameters.

8.2 Generation of new tests

The QuickCheck models generated as described in Sect. 8.1 are
analogous to the diagrams that we can visualise. In Fig. 5 we
can see the representation of part of the internal structure used
to generate a QuickCheck FSM model for the Frequency Server,
and overlayed in black we see the traversal QuickCheck did to
generate the test in Fig. 4.

Roughly the following steps are followed:

{post,"/freq_server/StartSeryfr"}

| 2

v

{post,"/freq_server/StopServer*]

37 - stopServer
v

{postMeq_server/AllocateFrequency”'}

/Step 2

12Y) - allocateFrequency

’ 180 - allocateFrequency

’ 40 - stopServer 281 - new javi

’ 13 - checkNotAlreadyStartedError

a.lang.Integer

43 - checkNotRunningError

128 - getFrequencyAllocated
A i
H 130 - assertNotNull

’ 140 - equals

] wfr/ allod

252 - deallocateFrequency

ﬁ;{4

Step 3 |

314 - checkNotRunningError ’ 256 - checkNotAllocatedError

A

\’ 217 - checkNoErrors

A
Java Interactions

Figure 5: Test generated by James in the diagram

this.startServer ();
this.allocateFrequency ();

FreqServerResponse varl
FreqServerResponse var2
// Postcondition: 1
this.checkNoErrors (var2);

// Postcondition: 2

Result var4 = var2.getResult ();

java.lang.Integer varb5 = var4.getFrequencyAllocated();
Result var6 = var2.getResult ();

java.lang.Integer var7 = var6.getFrequencyAllocated ();
boolean var8 = varS.equals(var?);

// Postcondition: 3

Result var9 = var2.getResult ();

java.lang.Integer varl0 = var9.getFrequencyAllocated ();
junit.framework.Assert.assertNotNull (vari0);

// End of postconditions
java.lang.Integer varl2 =
FreqServerResponse varl3 =
// Postcondition: 1
this.checkNoErrors (var13);
// End of postconditions
int varilb5 = 0;
java.lang.Integer varl6 = new java.lang.Integer (varil5);
FreqServerResponse varl7 = this.deallocateFrequency(vari16);
// Postcondition: 1

this.checkNotAllocatedError (varl7);

// Postcondition: 2

this.checkNotRunningError(var17);

// End of postconditions

var6.getFrequencyAllocated ();
this.deallocateFrequency (varil2);

Figure 4: Example of test generated by James after
manually removing some package qualifiers

1. The graph is traversed randomly through the control path
(from the entry star through the brown arrows), with optional
looping behaviour. Each node in this path (hereafter step)
represents a call to the API.

2. For each step, we generate the parameters required by follow-
ing data dependencies upwards (possibly reusing values from
previous steps), as shown by the green arrows.

. Optionally, for each step, we generate the postconditions by
traversing the data dependencies downwards within the sub-

13

graph.

Given the nature of Web Services, the tests are not supposed to
raise any (intended) exceptions. Instead, the results returned by
the Web Service can be classified as positive or negative depending
on whether they represent an error or a normal result

Once the new test is suitably classified then it is possible to
rerun the extraction process and, thus, potentially generate a
refined model of the system.

Generated state machines, when run, print new JUnit test
cases that can, after manual inspection, be added to the original
suite.

Unfortunately, tests generated may not necessarily be correct.
That is also the case of the example provided in Fig. 4. Some of
the postconditions, e.g:

this.checkNotRunningError (varl7);

will fail, and this issue needs to be solved manually.

9. PILOT STUDY

We have made a pilot study using VoDKATV, which is
IPTV/OTT middleware that provides end-users with multimedia
services through different devices such as a TV (through a set-
top-box), a PC, a tablet etc. The system is composed of several
components that are integrated using web services.

Using the approach explained here, we were able to generate
a model from the execution of the JUnit test suite. New test
cases were generated automatically from that model, and these
new tests allowed developers of the platform to find a previously
unknown bug in the implementation.

We now summarise the results of the pilot study; a more
detailed report can be found®.

Shttp://www.prowessproject.eu/wp-content,/uploads/2012/10/D6.
5_final.pdf

Number of tests needed by the automatic extraction
mechanism. It was a concern that the number of tests needed
for James to work could be infeasibly big. But during the pilot,
James was able to generate new tests even from a single one, even
if the tests generated are not very diverse in that case.

For example, from a test that created and deleted a room, James
was able to generate a negative test that deleted a non-existent
room.

Number of additional tests cases needed for the extrac-
tion of useful models. The initial set of 28 tests available was
enough to produce a useful model for the 20 target operations
tested, and so no tests needed to be added. Nevertheless, it was
necessary to adapt the exiting JUnit suite in order for James to
produce a clear model. In particular:

e Some functions were encapsulated, i.e: making the tests more
high level.

e Some methods were rewritten to avoid side effects, i.e: rewriting
some parts to use a pure functional style.

e One aspect of the set-up was unfolded into the tests so that
generated tests were more accurate.

Number of new test cases generated. During the pilot,
James was able to generate thousands of JUnit test cases. Some
of these tests where replicated, but this problem can be solved
by modifying the generated model to use the QuickCheck macro
?0NCEONLY.

Some tests were generated that where not considered in the
original JUnit test suite, for example:

e Deleting existing and non-existing rooms in the same call to
deleteRooms.

e Deleting duplicated rooms in the same call.

e Trying to create a device in a room that does not exist.

e Trying to create two devices with the same MAC.

Number of bugs revealed by means of the extracted
models. James helped developers find one wrong behaviour.
When the operation that deletes a device was invoked with an
empty device identifier it produced a NullPointerException
instead of returning a “required field” error as expected.

Time and computational resources. The original suite took
to execute between 2.8 and 3.5 seconds, whereas the instrumented
test suite took between 70 and 100 seconds. The generation of
the model took James an additional 20 to 25 seconds to complete.

Developers’ rating. The developer of the tests was asked to
comment, and rate James on a scale from 0 to 10 for accuracy,
quality, and usefulness. In summary, their assessment was:

e Accuracy: 4 “James generates thousands of new JUnit test
cases, some of them test aspects that are not taken into account
in the original JUnit test suite. However, there are many other
test cases that are wrong because they try to test something in
a wrong way (they make no sense and they fail even though
the implementation of the SUT behaves as expected for the test
scenario),”

e Quality: 7 “The new test cases generated by James follow the
same style and guidelines used in the original Java code ...
hence we consider that the quality of the new test cases in terms
of source code quality is similar to the original ... wvariable
names used in the new test cases ... makes the new test cases
harder to read.”

e Usefulness: 8 “Using James ... helped to identify some sit-
uations that had not been tested ... structure of the original
JUnit test suite had to be modified slightly”

14

10. CONCLUSION

This paper presents a set of techniques to generate models
that combine information from both data and control flow, and
for using this model to generate new tests. These techniques
have been tested and illustrated with examples extracted from
executions of the James tool, and it has been tested in a pilot
study involving an industrial Web Service.

We have shown how to extract both control-flow and data-flow
information from a JUnit test suite, and implemented that extrac-
tion, visualisation of the results, and automatic test generation in
the James tool.

For the future, another line of research would be to build on
another aspect of [2] and to construct a model from a JUnit test
suite without the need of an implementation of the system. Future
work could also aim to improve the accuracy and expressiveness
of generated models by applying existing techniques like active
learning and invariant inference.

Acknowledgment

The authors would like to thank the European Commission
for their support of this work through the project PROWESS,
http://www.prowess-project.eu/, grant number 317820.

11. REFERENCES

[1] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing
telecoms software with Quviq QuickCheck. In Proceedings of
the 2006 ACM SIGPLAN workshop on Erlang. ACM, 2006.

[2] T. Arts, P. L. Seijas, and S. Thompson. Extracting
QuickCheck Specifications from EUnit Test Cases. In Procs.
10th ACM SIGPLAN Workshop on Erlang. ACM, 2011.

[3] A. Bertolino et al. Automatic synthesis of behavior
protocols for composable web-services. In Symposium on
The foundations of software engineering. ACM, 2009.

[4] A. W. Biermann and J. A. Feldman. On the Synthesis of
Finite-State Machines from Samples of their Behavior.
IEEE Transaction on Computers, 21, 1972.

[5] K. Bogdanov, N. Walkinshaw, and R. Taylor. StateChum.
http://statechum.sourceforge.net/ [last accessed 25-01-2016].

[6] F. Cesarini and S. Thompson. ERLANG Programming.
O’Reilly Media, Inc., 1st edition, 2009.

[7] K. Claessen and J. Hughes. QuickCheck: a lightweight tool
for random testing of Haskell programs. In ICFP ’00, pages
268-279. ACM, 2000.

[8] V. Dallmeier et al. Mining object behavior with ADABU. In
Proceedings of the 2006 international workshop on Dynamic
systems analysis. ACM, 2006.

[9] P. Dupont, B. Lambeau, C. Damas, and A. V. Lamsweerde.
The QSM algorithm and its application to software behavior
model induction. Applied Artificial Intelligence, 22, 2008.
D. Lo, S.-C. Khoo, J. Han, and C. Liu. Mining Software
Specifications: Methodologies and Applications. CRC, 2011.
D. Lorenzoli, L. Mariani, and M. Pezzé. Automatic
generation of software behavioral models. In Proceedings of
ICSE 2008. ACM, 2008.

A. Marchetto, P. Tonella, and F. Ricca. State-Based Testing
of Ajax Web Applications. In Software Testing, Verification,
and Validation, 2008 1st International Conference on, April
2008.

M. Pradel and T. R. Gross. Automatic generation of object
usage specifications from large method traces. In Automated
Software Engineering, 2009. ASE’09. IEEE, 2009.

N. Walkinshaw, R. Taylor, and J. Derrick. Inferring
extended finite state machine models from software
executions. In WCRE. IEEE, 2013.

[10]

[11]

[12]

[13]

[14]

