
Brookhouse, James and Otero, Fernando E.B. (2016) Monotonicity in Ant
Colony Classification Algorithms. In: Swarm Intelligence: Proceedings
of 10th International Conference, ANTS 2016. 10th International Conference
on Swarm Intelligence (ANTS 2016). Lecture Notes in Computer Science
. pp. 137-148. Springer, Cham, Switzerland ISBN 978-3-319-44426-0. E-ISBN
978-3-319-44426-0.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/55662/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-319-44427-7_12

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/55662/
https://doi.org/10.1007/978-3-319-44427-7_12
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Monotonicity in Ant Colony Classification

Algorithms

James Brookhouse and Fernando E. B. Otero

School of Computing, University of Kent
Chatham Maritime, UK

{jb765,F.E.B.Otero}@kent.ac.uk

Abstract. Classification algorithms generally do not use existing do-
main knowledge during model construction. The creation of models that
conflict with existing knowledge can reduce model acceptance, as users
have to trust the models they use. Domain knowledge can be integrated
into algorithms using semantic constraints to guide model construction.
This paper proposes an extension to an existing ACO-based classification
rule learner to create lists of monotonic classification rules. The proposed
algorithm was compared to a majority classifier and the Ordinal Learning
Model (OLM) monotonic learner. Our results show that the proposed al-
gorithm successfully outperformed OLM’s predictive accuracy while still
producing monotonic models.

Keywords: ant colony optimization, semantic constraints, monotonic,
data mining, classification rules, sequential covering

1 Introduction

Data mining is a research area focused on automating the search for useful
patterns in data [6], where classification is one of the most studied tasks. A
classification problem involves a set of examples, where each example is de-
scribed by predictor attribute values and associated with a target class value.
The goal of a classification algorithm is to find the best model that accurately
represents the relationships between predictor and class attribute values, and
therefore classification problems can be viewed as optimisation problems. Many
algorithms concentrate on producing accurate models, however while accuracy
is an important feature other properties of a model are also important, includ-
ing a model’s comprehensibility and its ability to preserve pre-existing domain
knowledge. Both of these features can aid the acceptance of a model amongst
its users who are normally experts in the domain being investigated.

Existing domain knowledge can be captured by semantic constraints, which
can then be used to guide the construction of models. Algorithms that build
models able to break these relationships can lead to increased model rejection
by domain experts due to their counter intuitiveness [9]. One form of semantic
constraints are monotonic constraints, which concern the sign of a relation be-
tween the predictor and target attributes. A problem that illustrates monotonic

2 James Brookhouse and Fernando E. B. Otero

properties is house rental prices as it is expected that as the size of a house
increases so will its rental price—i.e., there is an increasing monotonic relation
between size and rental price within the same location.

We investigate a strategy to add domain knowledge to the learning process
of an Ant Colony Optimization (ACO) [4] classification rule learner to produce
models that are both accurate and enforce monotonic constraints. We evaluate
the impact of the proposed strategy on predictive accuracy and compare the
results against an existing monotonic learner using publicly available data sets.

The rest of the paper is structured as follows. Firstly, Section 2 presents
work from the literature that has been completed in related areas. Section 3
discusses the changes to cAnt-MinerPB allowing the enforcement of constraints.
Next, Section 4 presents our computational results including a comparison with
another monotonic learner, followed up by our conclusions and suggestions on
possible future directions in Section 5.

2 Background

There are two main areas of related work, ACO-based classification rule learn-
ers and semantic constraints. First we will discuss existing sequential covering
classification rule learners including the ACO-based Ant-Miner and its exten-
sions. This will be followed by a summary of the literature surround semantic
constraints, including monotonic constraints—the focus of this paper. Finally,
we will discuss AntMiner+ in more detail, since it is an ACO-based classification
rule learner that incorporates monotonic constraints.

2.1 Ant Colony Classification Algorithms

One of the most popular strategies for creating a list of classification rules from a
given dataset is called sequential covering (or separate-and-conquer) [8]. It con-
sists in transforming the problem of creating a list of rules into smaller problems
of creating a single rule: (1) a single rule is created from the data (conquer step);
(2) data instances that are covered by the rule are removed from the training
data (separate step); these steps are repeated until the training data is empty
or the number of uncovered data instances falls below a pre-defined threshold.
Many rule induction algorithms follow the same separate-and-conquer strategy,
their main difference is the way that individual rules are learn. In this context,
ACO has been successfully applied to create classification rules.

The first ACO classification algorithm, called Ant-Miner, was proposed in
[15]. Ant-Miner follows a sequential covering strategy, where individual rules are
created by an ACO procedure. The main idea is to search for the best classi-
fication rule given the current training data at each iteration of the sequential
covering. Ants traverse a construction graph selecting terms to create a rule in
the form IF term1 AND ... AND termn THEN class, where the IF-part repre-
sents the antecedent and the THEN-part is the class prediction. Each ant starts
with an empty rule and iteratively selects terms to add to its partial rule based

Monotonicity in Ant Colony Classification Algorithms 3

on their values of the amount of pheromone τ and a problem-dependent heuris-
tic information η, similarly to Ant System (AS) [3]. Following on Ant-Miner’s
success, many extensions have been proposed in the literature [13]: they involve
different rule pruning and pheromone update procedures, new rule quality mea-
sures and heuristic information. There are two Ant-Miner extensions relevant to
this work: AntMiner+ [12] and cAnt-MinerPB [14].

AntMiner+ extends Ant-Miner in several aspects: (1) the complexity of the
construction graph is reduced, in term of the number of edges connecting vertices,
by defining it as a direct acyclic graph (DAG); (2) it makes a distinction between
nominal attributes with categorical and ordered values, where ordinal attributes
are used to create interval conditions; (3) the class value to be predicted and
weight parameters used to control the influence of the pheromone and heuristic
information are incorporated in the construction graph as vertices.

One potential drawback of using a sequential covering to create a list of rules
is that there is no guarantee that the best list of rules is created. Ant-Miner (and
the majority of its extensions) perform a greedy search for the list of best rules,
using an ACO procedure to search for the best rule given a set of examples, and
it is highly dependant on the order that rules are created. Therefore, they are
limited to creating the list of best rules, which does not necessarily corresponds
to the best list of rules. cAnt-MinerPB is an ACO classification algorithm that
employs an improved sequential covering strategy to search for the best list
of classification rules [14]. While Ant-Miner uses an ACO procedure to create
individual rules in a one-at-a-time (sequential covering) fashion, cAnt-MinerPB

employs an ACO procedure to create a complete list of rules. Therefore, it can
search and optimise the quality of a complete list of rules instead of individual
rules—i.e., it is not concerned by the quality of the individual rules as long as
the quality of the entire list of rules is improving.

2.2 Semantic Constraints

When existing domain knowledge is available, semantic constraints can incor-
porate this knowledge into the construction of new models. For example, if you
consider house rent the price can/will depend on the location and floor area.
Table 1 shows a simple hypothetical rental dataset. One relationship in this
data set is that houses in better locations (lower values of attribute Location)
increases its rental price. This is the case for all possible pairs in the data set.

Model rejection by domain experts is a possibility if a model does not pre-
serve existing patterns as it would seem counter intuitive. Hoover and Perez [9]
state that the economic field scepticism towards data mining as a technique to
search for models is due to the discovery of accidental correlations: “Data mining

is considered reprehensible largely because the world is full of accidental correla-

tions, so that what a search turns up is thought to be more a reflection of what we

want to find than what is true about the world.” [9, p. 197]. Semantic constraints
allow model construction to be guided by providing information on real corre-
lations present within the data. While there are a number of different semantic

4 James Brookhouse and Fernando E. B. Otero

Table 1. Simple house rental data set.

Target Attribute Predictor Attributes

Rental Value Floor Area Location

Medium 45 2

High 80 1

Low 33 3

Medium 65 2

constraint types, we explore the implementation of monotonic constraints in the
discovery of classification rules.

2.3 Monotonicity

Monotonicity is found in many different fields including house/rental prices,
medicine, finance and law. Looking at the first example of rental prices, it can
be expected that as the location of a property becomes better (lower value of
Location) its rental value will also increase—this can be seen in the example data
shown in Table 1. The majority of data mining algorithm are not monotonically
aware and do not enforce this relationship during model construction, yet still
produce good models. However, if models violate these constraints they may
not be accepted by experts as valid, and therefore, conforming to monotonicity
constraints may help improve model acceptance [5,7].

Monotonicity can be defined formally in the following manner. Let X =
X1 × X2 × · · · × Xi be the instance space of i attributes, Y be the target space,
and function f : X → Y. It is also assumed that both the instance space and
target space have an ordering. A function can then be considered monotone if:

∀x,x′ ∈ X : x ≤ x′ =⇒ f(x) ≤ f(x′) , (1)

where x and x′ are two vectors in instance space, x = (x1, x2, · · · , xi) [16]. In
other words, f(x) is monotonic if and only if all the pairs of examples x, x′ are
monotonic with respect to each other.

Monotonicity can be enforced in a number of different stages in the data min-
ing process. The first is in the pre-processing stage, training data is manipulated
so that the required attributes are monotonic with respect to the dependent at-
tribute. Since this method is unable to enforce constraints in the model, it will
be discussed no further. In the model construction stage the model construction
algorithm creates monotonic models, possibly constraining the search. Finally,
constraints can be enforced in a post-processing stage via the modification of
constructed models to enforce monotonic constraints.

Constraints also appear in two different forms hard or soft. Hard constraints
are enforced rigidly and will reject any new model or change to an existing
model that would cause a violation. Good models can be rejected due to small

Monotonicity in Ant Colony Classification Algorithms 5

violations in their monotonicity when this method is used. The second method,
soft constraints, balances the monotonicity of a model against the models quality,
allowing small violations to exist if they sufficiently increase the quality.

Model Construction Soft constraints have been implemented in the model
construction stage by Ben-David [1]. Ben-David assigns a non-monotonicity in-
dex to each tree produced. This index is the ratio between the number of non-
monotonic leaf node pairs and the maximum number of pairs that could have
been non-monotonic. First a non-monotonicity matrix m is constructed which
has dimensions k (the number of branches in the tree). This matrix is used to
find the number of violations in the current tree, given by:

W =
k

∑

i=1

k
∑

j=1

mij , where mij =

{

1 , if ij is non-monotonic
0 , otherwise

, (2)

where i and j denote the current cell being referenced in the matrix. W can then
be used to find a tree’s non-monotonicity index, given by:

Ia1...av
=

Wa1...av

k2a1...av

− ka1...av

, (3)

where a1...av are the constrained attributes with v being the total number of
constrained attributes, the Ia1...av

index can be converted to an ambiguity score
A and then incorporated with a tree accuracy score T , given by:

Aa1...av
=

{

0 , if Ia1..av
= 0

−(log2(Ia1...av
))−1 , otherwise

, (4)

Ta1...av
= Ea1...av

+RAa1...av
, (5)

where R is the importance given to the monotonicity of trees produced and
E is an error based measure, usually the accuracy. The accuracy of the mod-
els produced were not significantly degraded compared to the original algorithm,
however the combined metric did produce fewer models that breached the mono-
tonicity constraints [1].

Ben-David has also investigated monotonic ordinal classifiers, proposing the
hypothesis that adding monotonicity constraints to learning algorithms will im-
pair their accuracy against those that do not. Ordinal classifiers are classifiers
that allow discrete categories to have an order, for example credit rating has
an obvious order if the categories are poor, acceptable and good. There were
two unexpected results. It was found that ordinal classifiers did not significantly
improve their accuracy over non-ordinal classifiers. Secondly, the monotonic al-
gorithms were not able to significantly outperform a simple majority-based clas-
sifier. It is theorised that these results were due to noisy data sets: the monotonic
classifiers enforced hard constraints, in the presence of noisy data a softer ap-
proach may lead to better results [2]. The algorithms also enforce constraints on

6 James Brookhouse and Fernando E. B. Otero

all attributes, which may be unrealistic for real data sets as monotonically noisy
attributes or those with no trend may masque the true monotonic attributes.

Qian et al. [17] have explored the possibility of fusing monotonic decision
trees to improve the accuracy of the final model. This is achieved by reducing
the original data set to create sets that maintain the monotonicity of the orig-
inal. From these new reduced data sets, monotonic trees can be constructed.
Each leaf node of a reduced tree then contain probabilities of the correctness
of the prediction based on the training set. When a prediction is required, the
probabilities at each tree’s leaf nodes is averaged with the highest average being
the class predicted by the model.

Post-Processing Feelders [7] has suggested that using non-monotonic criteria
in tree construction is not beneficial as splits later in the construction process
can transform a tree from a state of non-monotonicity to one that is. Therefore,
Feelders has suggested several pruning methods to make the minimal number of
changes to make a tree monotonic in a post-processing phase [7].

The first proposed pruner is the Most Non-monotone Parent (MNP) method,
which aims to prune the node that gives the most number of monotone pairs. This
method has the disadvantage of possibly creating more non-monotonic pairs than
it removes leading to a net increase in non-monotonicity. The second method
proposed is the best fix method, which prunes the node that gives the biggest
reduction in non-monotonicity. While it solves the problem with the first pruner,
it is more computationally expensive. The authors have also combined these
pruning methods with existing complexity pruning methods and found that the
monotonic trees produced no significant difference in performance compared to
trees produced without monotonic pruning. However, it was observed that the
trees produced were smaller, which aids the comprehensibility of the models
produced further [7].

2.4 AntMiner+ with monotonicity constraints

As far as we are aware, the only implementation of an ACO that discovers
monotonic classification rules was proposed by Martens et al. [11], who modified
AntMiner+ to enforce hard and soft monotonic constraints. The basic idea is
to limit the solution space by either removing nodes in the construction graph
or manipulating the heuristic values of vertices. In the first approach, authors
modified the construction graph by removing nodes, and subsequently closing
off those areas of the search space, that could be used to create non-monotonic
rules (hard constraints). This algorithm was applied to the binary classification
problem of classifying customers as good or bad credit risks, where the algorithm
could only create rules that predicted bad customers. For example, if there is
a monotonic constraint on income, nodes corresponding to income > x are
removed leaving only those that express income < x, which will always produce
monotonic rules when discovering the (negative) bad credit class. In the second
approach, the heuristic value of a node that is monotonically related to the

Monotonicity in Ant Colony Classification Algorithms 7

predicted class is adjusted to incorporate this preference, although they did not
include experiments verifying how effective this would be.

It was found that AntMiner+ with hard constraints consistently produced
rule lists that contained less rules and less terms per rule, when compared to the
original algorithm without impacting the accuracy of the model produced. The
comprehensibility of the models produced would be increased by the reduced
model size [11]. While their results were positive overall, their approach seem
to be limited to binary classification problems: the algorithm creates rules for
the minority (bad credit) class, while a default rule predicts the majority (good
credit) class; removal of conditions is based on a particular class value to be
predicted and it is not clear how the removal of nodes can be used to enforce
constraints in multi-class problems. Additionally, it has the side effect of limiting
the search space of solutions, not taking into account that monotonicity is a
global property [22] and a partial non-monotone rule might become monotone
after additional conditions.

3 Discovering Monotonic Classification Rules

In this section we will provide an overview of cAnt-MinerPB and the modi-
fications to the pruning strategies present in the proposed cAnt-MinerPB+MC

(Pittsburgh-based cAnt-Miner with monotonicity constraints).

3.1 cAntMinerPB with monotonicity constraints

As we discussed in Section 2.1, cAnt-MinerPB is an ACO classification algorithm
that employs an improved sequential covering strategy to search for the best list
of classification rules. In summary, cAnt-MinerPB works as follows (Figure 1).
Each ant starts with an empty list of rules and iteratively adds a new rule to this
list (for loop). In order to create a rule, an ant adds one term at a time to the
rule antecedent by choosing terms to be added to the current partial rule based
on the amount of pheromone (τ) and a problem-dependent heuristic information
(η). Once a rule is created, it undergoes a pruning procedure. Pruning aims at
removing irrelevant terms that might be added to a rule due to the stochastic
nature of the construction process: it starts by removing the last term that was
added to the rule and the removal process is repeated until the rule quality
decreases when the last term is removed or the rule has only one term left.
Finally, the rule it is added to current list of rules and the training examples
covered by the rule are removed.1 An ant creates rules until the number of
uncovered examples is below a pre-defined threshold (inner while loop).

At the end of an iteration, when all ants have created a list of rules, the
best list of rules (determined by an error-based list quality function) is used to
update pheromone values, providing a positive feedback on the terms present

1 An example is covered by a rule when it satisfies all terms (attribute-value conditions)
in the antecedent of the rule.

8 James Brookhouse and Fernando E. B. Otero

Input: training instances
Output: best discovered list of rules
1. InitialisePheromones();
2. listgb ← {};
3. t← 0;
4. while t < maximum iterations and not stagnation do
5. listib ← {};
6. for n ← 1 to colony size do
7. instances← all training instances;
8. listn ← {};
9. while |instances| > maximum uncovered do
10. ComputeHeuristicInformation(instances);
11. rule ← CreateRule(instances);
12. SoftPruner(rule, listn);
13. examples← instances − Covered(rule, instances);
14. listn ← listn + rule;
15. end while
16. if Quality(listn) > Quality(listib) then
17. listib ← listn;
18. end if
19. end for
20. UpdatePheromones(listib);
21. if Quality(listib) > Quality(listgb) then
22. listgb ← listib;
23. end if
24. t← t+ 1;
25. end while
26. HardPruner(listgb);
27. return listgb;

Fig. 1. High-level pseudocode of the cAnt-MinerPB+MC algorithm. The main differ-
ences compared to cAnt-MinerPB [14] are found on lines 12, 16 and 26.

in the rules—the higher the pheromone value of a term, the more likely it will
be chosen to create a rule. This iterative process is repeated until a maximum
number of iterations is reached or until the search stagnates (outer while loop).

One of the main differences in cAnt-MinerPB, when compared to other ACO
classification algorithms, is that an ant creates a list of rules. Therefore, the ACO
search is guided by and optimises the quality of a complete solution. Additionally,
there is also the possibility of applying local search operators to the complete
solution—e.g., a pruning procedure is an example of a local search operator. This
is currently not explored in cAnt-MinerPB, since pruning is applied to individual
rules and not to the entire list of rules.

cAnt-MinerPB+MC is modified in three key places compared to the original
cAnt-MinerPB. The first change is a modification to the pruning method (line
12 of Figure 1): this pruner is a soft pruner that balances monotonicity against
accuracy. This modified quality is then used to update the pheromone levels

Monotonicity in Ant Colony Classification Algorithms 9

ready for the next iteration. The second modification is the addition of a hard
prune that rigidly enforces the monotonic constraints, this occurs immediately
before the rule list is returned (line 26). Both pruners are explained in more
detailing in the following section. The final modification is to the list quality
function (line 16), this quality now uses both accuracy and NMI combined with
a weighting term when assigning a quality measure to the list and comparing it
to the best so far. This is the same function that is used in the soft pruner and
shown by equations 6 and 7.

3.2 Rule Pruning

There are two pruners used by cAnt-MinerPB+MC: soft pruner that may allow
constraint violations and a hard pruning that guarantees constraints are satisfied.
In ACO terms, a pruner is a local search operator.

Soft pruning A soft monotonic prune allows violations in the monotonic con-
straint if the consequent improvement in accuracy is large enough. The pruner
operates on an individual rule and iteratively removes the last term until no im-
provement in the rule quality is observed. Applying a soft pruner during model
creation allows the search to be guided towards monotonic models while still
allowing exploration of the search space.

As monotonicity is a global property of the model, the rule being pruned is
temporarily added to the current list of rules, its non-monotonicity index (NMI)
can then be used as a metric to assess the rules monotonicity and is given by:

NMI =

∑k

i=1

∑k

j=1
mij

k2 − k
, (6)

where mij is 1 if the pair of rules rulei and rulej violate the constraint and
0 otherwise. k is the number of rules in the model. The NMI of a model is
constrained between zero and one: it calculates the ratio of monotonic violating
pairs over the total possible number of prediction pairs present in the model
being tested, the lower a NMI is the better a model is considered. If this is the
first rule in the partial model it will be automatically designated monotonic and
be assigned a non-monotonicity Index of zero. The NMI is then incorporated
into the quality metric by:

Q = (1 − ω) ·Accuracy + ω · (1 −NMI) , (7)

where Q is the quality of a model and ω is an adjustable weighting that sets
the importance of monotonicity and accuracy to the overall rule quality. Note
that Equation 7 can be used to calculate the quality of either a single rule (used
during the soft pruner) or a complete list of rules (line 16 of Figure 1).

10 James Brookhouse and Fernando E. B. Otero

Hard Pruning The hard monotonic pruner enforces the monotonic constraints
rigidly. It operates on a list of rules as follows: (1) the NMI of a list is first
calculated (Equation 6); (2) if it is non zero, the last term of the final rule is
removed or, if the rule contains no terms, the rule is removed; (3) the NMI is
then recalculated for the modified list of rules. This is repeated until the NMI
of the rule list is zero. Finally the default rule is added to the end of the list if
it has been removed and the new monotonic rule list is returned.

4 Results

cAnt-MinerPB+MC has been compared to a majority classifier (ZeroR [18]), the
original cAnt-MinerPB and a modified OLM [2]. The original OLM algorithm
constrained all attributes, however our modified OLM constrains a single at-
tribute to allow a fair comparison between the algorithms. The decision to only
constrain a single attribute is more realistic to real world applications as it is
unlikely that a monotonic relationship is present for every attribute. Forcing a
relationship upon an algorithm is likely to negatively impact its performance.

In all experiments cAnt-Miner variations were configured with a colony size
of 5 ants, 500 iterations, minimum cases covered by an individual rule of 10,
uncovered instance ratio of 0.01, and constraint weighting (ω) of 0.5 (only used
by cAnt-MinerPB+MC). The four chosen algorithms were tested on five data
sets taken from the UCI Machine Learning Repository [10]. Table 2 present the
details of the chosen data sets, including a summary of the constraints used.
All independent attributes had their NMI calculated to discover good mono-
tonic relationships—the NMI results guided the choice of constrained attribute
reported in the table.

Table 3 shows the predictive accuracy of all algorithms on the 5 data sets,
with standard deviation shown in brackets. All results are the average of tenfold
cross-validation, with the stochastic ACO-based algorithms running 5 times2 on
each fold to average out random differences.

The results show that cAnt-MinerPB+MC outperformed the majority classifier
in every data set. OLM and the original cAnt-MinerPB implementation were
beaten by cAnt-MinerPB+MC in four of the five data sets. The good performance
of cAnt-MinerPB+MC compared to cAnt-MinerPB is very positive: it shows that
using a pruning mechanism to enforce monotonic constraints does not affect the
search process and the algorithm is able to create monotonic classification rules
with good predictive accuracy

We further analysed the results of OLM and cAnt-MinerPB+MC—both al-
gorithms that enforce monotonic constraints—for statistical significance: cAnt-
MinerPB+MC achieved statistically significantly better results than OLM in 3 out
of 5 datasets, according to the Wilcoxon test with a significance level of 0.05.
cAntMinerPB+MC enforces monotonic constraints on the entire list of rules, al-
lowing global optimisation of monotonicity. OLM performs a local optimisation

2 ACO-based algorithms therefore run a total of 50 times before the average is taken.

Monotonicity in Ant Colony Classification Algorithms 11

Table 2. The five UCI [10] data sets used in experiments including attribute and con-
straint information. The constraints information contain the attribute name, direction
of constraint either ↑ (increasing) or ↓ (decreasing) and its corresponding NMI.

Attributes Constraint

Name Size Nominal Continuous Constrained Attribute Direction NMI

Cancer 698 0 10 Uniformity of Cell Size ↑ 0.0059

Car 1727 6 0 Safety ↑ 0.0460

Haberman 305 0 3 Positive Axillary Nodes ↑ 0.0861

MPG 397 0 7 Horsepower ↓ 0.0566

Pima 767 0 8 Plasma Glucose Conc. ↑ 0.0947

Table 3. Accuracy results for the four algorithms being tested, the accuracy is based on
the average of 10 cross-validation runs with the standard deviation shown in brackets.
The datasets where cAnt-MinerPB+MC’s performance is statistically significantly better
than OLM (according to the Wilcoxon test with a significance level of 0.05) are marked
with the symbol N; if no symbol is shown, no significant difference was observed. The
best results are shown in boldface.

Data set ZeroR cAnt-MinerPB OLM cAnt-MinerPB+MC

Cancer 0.6552 [0.0156] 0.9566 [0.0181] 0.8355 [0.0149] 0.9554 [0.0178] N

Car 0.7002 [0.0201] 0.8929 [0.0151] 0.9055 [0.0187] 0.8954 [0.0154] N

Haberman 0.7353 [0.0985] 0.7405 [0.0790] 0.6993 [0.0781] 0.7552 [0.0664] N

MPG 0.7286 [0.0542] 0.9200 [0.0293] 0.7663 [0.0367] 0.9240 [0.0353] N

Pima 0.6510 [0.0420] 0.7493 [0.0564] 0.7161 [0.0589] 0.7599 [0.0640] N

as a rule cannot be added to the current list if it was to break the monotonicity
of existing rules. This observation, together with the use of an ACO search strat-
egy that aims at optimising both the accuracy and monotonicity of a model, are
likely to account for the increased performance of cAnt-MinerPB+MC over OLM.

5 Conclusions

This paper presented an extension to cAnt-MinerPB that enforces monotonic
constraints, called cAnt-MinerPB+MC. This is achieved by modifying the pruning
strategies used during solution construction: soft constraints are used to modify
the quality of rules and this their pheromone levels; hard constraints were then
enforced by a global pruner operating on the entire list of rules. Monotonicity is a
global property of a data set, therefore the creation of complete list of rules rather
than individual rules allows cAnt-MinerPB+MC to optimise the monotonicity of
a model. cAnt-MinerPB+MC has been shown to outperform a majority classifier
and an existing monotonic algorithm, while not losing predictive accuracy when
compared to the original implementation.

12 James Brookhouse and Fernando E. B. Otero

Currently the global pruner is näıve in its approach, as it simply removes the
last term in a rule list. Further work is required to optimise the pruning strategy,
one approach is to remove the term that improves the monotonicity of the list
by the greatest amount.

References

1. Ben-David, A.: Monotonicity maintenancs in information-theoretic machine learn-
ing algorithms. Machine Learning 19, 29–43 (1995)

2. Ben-David, A., Sterling, L., Tran, T.: Adding monoticity to learning algorithms
may impair their accuracy. Expert Systems with Applications 36, 6627–6634 (2009)

3. Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics – Part
B 26, 29–41 (1996)

4. Dorigo, M., Stutzle, T.: Ant Colony Optimization. A Bradford Book (2004)
5. Duivesteijn, W., Feelders, A.: Nearest neighbour classification with monotonicity

constraints. In: Machine Learning and Knowledge Discovery in Databases, vol.
5211 5211, pp. 301–316. Springer Berlin Heidelberg (2008)

6. Fayyad, U., Piatetsky-Shapiro, G., Smith, P.: From data mining to knowledge
discovery: an overview. In: Advances in Knowledge Discovery & Data Mining. pp.
1–34. MIT Press (1996)

7. Feelders, A., Pardoel, M.: Pruning for monotone classification trees. In: Advances
in intelligent data analysis V, pp. 1–12. Springer (2003)

8. Fürnkranz, J.: Separate-and-conquer rule learning. Artificial Intelligence Review
13(1), 3–54 (1999)

9. Hoover, K., Perez, S.: Three attitudes towards data mining. Journal of Economic
Methodology 7(2), 195–210 (2000)

10. Lichman, M.: UCI machine learning repository (2013),
http://archive.ics.uci.edu/ml

11. Martens, D., Backer, M.D., Haesen, R., Baesens, B., Mues, C., Vanthienen, J.: Ant-
based approach to the knowledge fusion problem. In: Ant Colony Optimization and
Swarm Intelligence, pp. 84–95. Springer (2006)

12. Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.:
Classification with ant colony optimization. IEEE Transactions on Evolutionary
Computation 11(5), 651–665 (2007)

13. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data
mining. Machine Learning 82(1), 1–42 (2011)

14. Otero, F., Freitas, A., Johnson, C.: A New Sequential Covering Strategy for In-
ducing Classification Rules With Ant Colony Algorithms. IEEE Transactions on
Evolutionary Computation 17(1), 64–76 (2013)

15. Parpinelli, R., Lopes, H., Freitas, A.: Data mining with an ant colony optimiza-
tion algorithm. IEEE Transactions on Evolutionary Computation 6(4), 321–332
(August 2002)

16. Potharst, R., Ben-David, A., van Wezel, M.: Two algorithms for generating struc-
tured and unstructured monotone ordinal data sets. Engineering Applications of
Artificial Intelligence 22(4), 491–496 (2009)

17. Qian, Y., Xu, H., Liang, J., Liu, B., Wang, J.: Fusing monotonic decision trees.
Knowledge and Data Engineering, IEEE Transactions on 27(10), 2717–2728 (2015)

18. Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, 2nd edn. (2005)

http://archive.ics.uci.edu/ml

	Monotonicity in Ant Colony Classification Algorithms
	Introduction
	Background
	Ant Colony Classification Algorithms
	Semantic Constraints
	Monotonicity
	Model Construction
	Post-Processing

	AntMiner+ with monotonicity constraints

	Discovering Monotonic Classification Rules
	cAntMinerPB with monotonicity constraints
	Rule Pruning
	Soft pruning
	Hard Pruning

	Results
	Conclusions

