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Abstract
Interactive Narrative is a form of digital entertainment based on AI techniques which support narrative
generation and user interaction. Despite recent progress in the field, there is still a lack of unified models
integrating narrative generation, user response and interaction.

This paper addresses this issue by revisiting existing Interactive Narrative paradigms, granting explicit
status to users’ disposition towards story characters. We introduce a novel Brain-Computer Interface
(BCI) design, which attempts to capture empathy for the main character in a way that is compatible with
filmic theories of emotion.

Results from two experimental studies with a fully-implemented system demonstrate the effectiveness
of a neurofeedback-based approach, showing that subjects can successfully modulate their emotional
support for a character who is confronted with challenging situations. A preliminary fMRI analysis also
shows activation during user interaction, in regions of the brain associated with emotional control.
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1 Introduction

One of the major challenges for Interactive Narrative technologies is to improve the conceptual
integration between their various components: narrative generation, user interaction and user exper-
ience. After a decade spent developing Interactive Narrative prototypes, it appears to us that such
an integration is more than a theoretical endeavour, and would also benefit the engineering aspects
of the discipline. One promising direction is to take advantage of recent developments in affective
computing to unify user interaction and the narrative experience. In previous work [9], we have in-
vestigated the use of peripheral physiological signals (galvanic skin response (GSR) and facial elec-
tromyography (EMG)) as a continuous input modality to an Interactive Narrative. This approach has
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been implemented in a prototype in which passive signals captured from the user drove the evolution
of a real-time narrative with a duration of up to 8min. However, in addition to the imperfect correl-
ation between peripheral physiological signals and affective dimensions, the conceptual integration
between the affective computing model, the user response, and the filmic strategy adopted by the
narrative generation process still left room for improvement.

Recent research in media psychology has emphasised the central role of characters in both the
affective response of users and the overall entertainment experience [8, 30]. This suggests that direct
interventions on the bond between user and character could not only provide a powerful interaction
mechanism, but one that would be better aligned with the user response. This bond between users
and story characters has generally been characterised as empathy [30], despite different interpreta-
tions of the concept.

We were thus in search of a physiological mechanism that could more directly relate to empathy,
attachment or disposition, and that would also be accessible to real-time measurement, so as to be
usable as an input mechanism. Numerous studies correlating affective responses with EEG signals
in the alpha band (8–12Hz), have led to the development of a prefrontal asymmetry metric [13] to
characterise modulation of affective response [5, 6]. Some of these studies have included the use of
short films to induce emotion [35], making this approach even more relevant to us. Frontal asym-
metry is considered a marker of approach/withdrawal [6], which is a high-level affective dimension
independent from valence. Several authors have established a connection between alpha asymmetry
and positive thinking [1], as well as empathy [32]. More specifically, Light et al. [16] have related
an increase of frontal alpha asymmetry (indicative of approach) to empathic cheerfulness, which
consists of a positive response towards an agent which is perceived to be in distress.

This has led us to consider alpha frontal asymmetry as a measure of disposition towards story
characters which could serve as a basis for user input, provided it could be captured in real-time
as part of an Interactive Narrative. This was suggested by the finding that frontal asymmetry can
be controlled through Neurofeedback (NF) using EEG signals [27]. Although most applications
of frontal asymmetry NF have been developed in the clinical domain, it has also been identified
as a potential BCI technology [4]. Furthermore, a NF approach is well suited to an Interactive
Storytelling application, since its voluntary nature is adapted to user intervention, and feedback
mechanisms can be embedded into the visual presentation of the narrative itself.

In this paper, we lay the foundations for a unified approach which brings together an affective
filmic theory (Tan’s character empathy [30]), a character-based narrative generation technique [22],
and a BCI mechanism compatible with empathy (pre-frontal alpha wave asymmetry as proposed by
Henriques and Davidson [13]).

We have created a baseline Interactive Narrative based on a medical drama (an extension of the
narrative presented in [9]), which features a junior female doctor facing all sorts of challenges in her
work, personal and professional ones. The story would spontaneously evolve towards the character’s
demise, in the absence of successful user intervention through the BCI. In the next sections, after
reviewing related work, we introduce our BCI-based interactive storytelling system, which operates
inside an MRI scanner so that explorations can be conducted using functional MRI (fMRI). We then
describe the planning techniques used in narrative generation, how they control the level of difficulty
faced by the feature character, and how they respond to user empathic support. After a presentation
of the BCI implementation (frontal alpha asymmetry), we discuss results from our first proof-of-
concept experiments which include fMRI results. We then report a larger-scale usability experiment,
outside the MRI scanner, which takes advantage of the above results to refine the implementation of
the BCI technique. We conclude by analysing subjects performance and identifying directions for
further improvements.
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Figure 1 Integration of a BCI in an Interactive Narrative: (1) the user watches the narrative generated in
real-time from inside an MRI scanner; (2) BCI input is mapped directly into the planning domain representation;
(3) re-planning is triggered with successful levels of user support derived from neurofeedback; (4) visualisation
continues with actions from the modified narrative.

2 Previous and Related Work

There has been previous interest in the neuroscience of film and computer games, some of which
has informed the design of BCI systems. Morrison and Ziemke [36] have studied empathy towards
characters in computer games from a neuroscience perspective. Recent work in neuroimaging has
provided evidence for specific activation pathways that correspond to a range of empathic responses
when viewing films with high emotional content [25], and Tikka et al. [31] have proposed a similar
approach using BCI, while not reporting an implementation of their system. BCIs have, from their
inception, been used in conjunction with interactive media (i.e. video games), mostly from the
perspective of an interface technology either in an entertainment setting [19] or in a therapeutic
one, with little exploration of the relationship to the media content itself. A critical analysis of the
performance of existing BCIs [17] has led to both the emphasis on user training and the increasing
relevance of NF as an implementation paradigm. This was demonstrated in a commercially available
game environment in AlphaWoW [21], which used a version of World of Warcraft. However, this
only went as far as addressing a single control variable (switching between two character forms)
with a relaxation-based BCI using alpha waves. The development of BCIs for computer games has
been recently reviewed by Marshall et al. [18]. In conjunction with game environments, NF has
also been used for ADHD therapy. More specifically, frontal asymmetry has been identified as an
element of a model of intrinsic affect evident while playing games [26].

3 System Overview

We have developed ENFASIS (Empathic Narrative using Frontal ASymmetry for Interactive Story-
telling), a fully implemented system based on our proposed BCI approach and configured for proof-
of-concept experiments using simultaneous fMRI analysis. The overall architecture of the system
is shown on Figure 1: narrative actions are generated using constraint-based planning [9] and are
visualised as real-time animations within the Unreal® 3D game engine (Unreal Development Kit).
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Figure 2 Examples of actions during which the feature character becomes in-difficulty are highlighted in
grey.

The interactive narrative is an extended version of our previous implementation based on a
medical drama [9], featuring a junior female doctor who faces adversity as the narrative unfolds.
Characters’ expressions, combined with the use of filmic conventions in shot selection and camera
placement, facilitate the induction of appropriate feelings towards the feature character.

Narrative generation is parameterised so that the narrative evolves spontaneously towards the
character’s demise unless she receives support from the user. Such support takes place through a
short (30s) NF session, which is triggered dynamically when the character’s situation deteriorates
beyond a certain threshold. The NF signal is based on pre-frontal EEG alpha asymmetry, as a
measure of approach/withdrawal towards the character. Since NF implies volitional control rather
than passive measurement, subjects require a cognitive strategy to control the NF signal. In order to
develop such a strategy they receive minimal instructions which consist of “supporting the character
by expressing positive thoughts”.

From an implementation perspective, NF input is mapped to fluent values in the planning domain
(see section 4), while on the graphics side, the NF backchannel is incorporated within the same
visualisation mechanism as the narrative.

4 Narrative Generation

As the objective of the system is to test user support for a feature character, the system is required
to generate narratives that contain negative situations for the feature character in the early stages of
the narrative in order to show the character in challenging situations and hence provide opportunities
for the user to support them. When users are able to successfully support the feature character, the
narrative is required to be dynamically regenerated to reflect this success, with the narrative evolving
towards positive outcomes for the feature character. However, if user support is unsuccessful then
the original narrative continues to evolve with the overall trajectory skewed towards endings with
negative outcomes. Thus narrative generation to test user support was implemented with a plan-
based generator extended to use the following: landmarks to control early skewing of the trajectory
towards negative situations and subsequent resolution towards negative or positive outcomes de-
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(:constraints (and
(sometime-before

(patient-outcome Jones)
(humiliated DrMacnair))

(sometime-before
(doctor-outcome DrMacnair)
(harassed-by DrMacnair DrHathaway))

(at-end (and
(doctor-outcome DrMacnair)
(patient-outcome Jones))) ... )

Figure 3 Example Landmarks: the left-hand side contains a selection of landmark facts represented using
the PDDL3 modal operators sometime-before and at-end; on the right-hand side the order specified over the
landmarks is represented graphically. The ordered landmarks are used in a decomposition-based planning
approach to narrative generation: first, if the landmarks are partially ordered they are linearised to form a total
order (the figure shows the consistent total orders, one of which is non-deterministically selected by the system);
then each landmark in turn is used as a sub-goal and the narrative is built up incrementally from the sequence
of sub-narratives (see text for more detail).

pending on NF success (section 4.1); representational mechanisms for the classification of actions
depending on their valence (section 4.2); and triggering of user support opportunities (section 4.3).

4.1 Planning Trajectory Control

Landmarks, as introduced by Porteous et al. [22], are used in the system to provide a general mech-
anism to control the trajectory by ensuring the inclusion of actions with negative outcomes in the
early phases of the narrative and actions with negative or positive outcomes towards the end of the
narrative depending on user support success. Landmark facts represent narrative situations of in-
terest that are used as intermediate goals around which the narrative is constructed. Examples in the
medical drama genre could include such things as tense clinical situations, strained relationships,
confrontations and deceptions. The landmarks and partial orders over them are specified as part of
a PDDL3.0 planning domain model, as shown in Figure 3. The model is used in a decomposition
based planning approach which starts by linearising the landmarks to form a total order. For Figure
3 this might be:

(1) (harassed-by DrMacnair DrHathaway)
(2) (humiliated DrMacnair)
(3) (and (patient-outcome Jones) (doctor-outcome DrMacnair))

Then the narrative is generated as a sequence of sub-narratives with each of the ordered landmarks
as the next sub-goal. The output narrative is produced by concatenation of the sub-narratives.

The use of landmarks in this way ensures the generation of narratives containing suitable dra-
matic content in the desired relative position in the narrative. To ensure that there is variation between
generated (and re-generated) narratives, planning problem instances are automatically created at run-
time using non-deterministic selection of initial state facts and landmarks from sets of candidates.
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4.2 Valence of Actions and Landmark Selection

Narrative actions in the domain model and the facts they achieve are categorised on the basis of their
valence, that is, whether they are positive or negative for the feature character: whether they create or
alleviate difficult situations as characterised by the landmark facts the actions achieve. The system
uses this valence information and the current level of user NF support to determine the choice of
landmarks for narrative generation (or re-generation). Whether a particular landmark will lead to
the generation of a narrative with appropriate dramatic content depends on its valence, for example,
actions that achieve landmarks which are adverse to the feature character are suitable for phases
of the narrative showing their demise, whereas actions which are supportive towards them provide
appropriate content for the evolution of the narrative towards a positive ending.

As an illustration consider the actions shown in Figure 4 in which receive-reprimand-from-boss
and receive-professional-praise have been categorised as adverse and supportive respectively: re-
ceiving a reprimand from the boss is clearly adverse for the feature character as it creates a difficult
situation for them (as shown by the level of in-difficulty) and leaves them feeling humiliated, whereas
an action such as receiving professional praise can be seen as supportive since it engenders positive
feelings and alleviates the difficulty of their situation. The actions patient-come-round and patient-
die-despite-emergency-treatment are illustrative of actions that acquire their significance in context.

For our domain model, amongst a baseline set of 50 narrative actions, 5% can be categorised as
adverse to the feature character, 20% as supportive and the remainder are neutral but acquire their
significance in context. With this representational approach, the combinatoric nature of narrative
generation is preserved, since the configuration of states considered at run-time comes from the
entire set of actions, rather than just those specifically tagged as adverse or supportive.

4.3 Invoking User Intervention

Due to the demanding nature of NF, during which the user is required to concentrate in a manner
that is difficult to successfully maintain for long periods of time, user interaction with the system
can be limited to a single support opportunity1. The point in the narrative at which this occurs is
dynamically determined based on the difficulty of the feature characters’ situation, with user support
opportunities being provided when this deteriorates beyond a threshold, and not on the basis of
fixed story points. As the narrative unfolds and actions are visualised to the user, the situation of
the character is monitored by the system and when the difficulty of their situation has deteriorated
beyond a threshold value (assessed via the fluent in-difficulty), a user support opportunity is triggered
and signalled to the user (via de-saturation of the characters’ appearance as discussed in section 5).
This is immediately followed by the display of a custom scene featuring the character of interest
which serves as a visual channel for NF whilst preserving visual consistency. Figure 2 illustrates the
process of dynamic positioning of the user support opportunities for different narratives.

Following user interaction the level of user support detected through NF is communicated to
the narrative generator, via the fluent level-of-support, whose value is directly updated with the NF
results: 0 for no support; 1 for partial support; and 2 for fully successful user support. The response
of the system depends on whether the user has been successful at supporting the character:

If the user is successful, either fully or partially, then the remainder of the narrative is imme-
diately regenerated by re-planning using a planning problem instance revised to include both

1In our proof-of-concept experiments, unsuccessful users were offered a second support opportunity. In our more
recent usability experiments, user support was limited to a single opportunity. Here, we restrict discussion to the
dynamic triggering of this single request although the same principles apply in the case of an additional request.
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(:init
(= (in-difficulty) 0) (= (level-of-support) 0) (= (full-support) 2) (= (partial-support) 1) (= (no-support) 0)... )

A
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se

(:action receive-reprimand-from-boss

Si
gn

ifi
ca

nc
e

fr
om

co
nt

ex
t

(:action patient-come-round
:parameters (?d - doctor ?b - boss) :parameters (?d - doctor ?p - patient)
:precondition (and :precondition (and

(missed-work-deadline ?d) ... ) (= (level-of-support) (full-support))...)
:effect (and :effect (and

(increase (in-difficulty) 1) (patient-ok ?p) (patient-outcome ?p)
(humiliated ?d) ... )) (when (>= (in-difficulty) 1)

Su
pp

or
tiv

e

(:action receive-professional-praise (decrease (in-difficulty) 1)) ...))
:parameters (?d1 ?d2 - doctor ?p - patient) (:action patient-die
:precondition (and :parameters (?d - doctor ?p - patient)

(= (level-of-support) (full-support)) :precondition (and
(emergency-treatment ?d1 ?p) (= (level-of-support) (no-support))
(patient-ok ?p) ... ) (not (patient-ok ?p)) ... )

:effect (and :effect (and
(when (>= (in-difficulty) 1) (deceased ?p)

(decrease (in-difficulty) 1)) (patient-outcome ?p)
(flattered ?d1) ...)) (increase (in-difficulty) 1) ... ))

Figure 4 Narrative Action Valence Examples. Action receive-reprimand-from-boss can be seen as adverse
for the feature character since it engenders feelings of humiliation (represented using the fact humiliated) and
results in difficult situations for the character (represented via the increase in the fluent in-difficulty). In con-
trast, the action receive-professional-praise is supportive: it results in positive feelings for the feature character
(represented via the fact flattered), and improves the characters situation (represented via the decrease in in-
difficulty). The actions patient-come-round and patient-die, which lead to states in which the patient treatment
is resolved (via the fact patient-outcome), gain significance from the context of the actions.

supportive landmarks or those which depend on context, and the current state of the narrative
world which now includes the updated level-of-support. This will redress the course of action
to favour the feature character. For example, the action patient-come-round shown in Figure 4
includes a pre-condition which ensures that this action can only appear in narratives when user
support has been fully successful (represented via the equality test between level-of-support and
full-support).
If the user support attempt is unsuccessful, the original narrative resumes its execution leading
to a negative ending for the feature character.

5 Frontal Asymmetry Neurofeedback

As our BCI paradigm is based on pre-frontal alpha EEG asymmetry, we have adapted the asymmetry
score A2, derived from work conducted by Henriques and Davidson [13] and further refined and
implemented by Hammond and Baehre [11].

As α rhythm (8–12Hz) reflects cortical hypoactivity, an increase in left frontal activity corres-
ponds to a positive A2 score (which we measure as (F4−F3)/(F4 +F3) with F4(R) & F3(L) elec-
trodes with a reference electrode at position FCz, using the 10–20 electrode placement standard).
The NF mechanism involves the user modulating this activity using an appropriate cognitive strategy,
attempting to achieve the highest ratio of left vs. right cortical activity they can (i.e., a positive A2
score tending towards 1). Since A2 is a measure of approach [29], an appropriate cognitive strategy
would reach out to the character (“support”). Although A2 is considered valence-independent [12],
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“positive thoughts” are often empirically successful, probably because they involve a dimension of
approach as well. The backchannel for NF is purely visual and expressed as the colour saturation
of the feature character, normalised from 0.0 (de-saturated) to 1.0 (rich saturation), as illustrated in
Figure 2.

NF itself takes place over a 30s window, during which a static scene is displayed, with the main
character in mid-shot (Figure 1). During NF, if the character’s appearance remains de-saturated, this
indicates the viewer has not successfully communicated their positive thoughts (i.e., has a minimum
or below-threshold asymmetry score). Saturation is increased as the asymmetry score increases,
mapped through a sigmoid function, to avoid over-saturation. When the character is fully saturated
with colour and the viewer is able to maintain this (by successful modulation of a higher asymmetry
score), this is recognised as successful support and generates the corresponding modification of the
level-of-support fluent in the planning domain, thereby triggering re-planning to produce a happier
narrative progression and ending.

6 Experimental Study

We designed this proof-of-concept study as a simultaneous fMRI/EEG experiment for which the
information on activated loci gathered from fMRI scans serves to validate the areas (cortical and sub-
cortical) involved during the support window. fMRI measures brain activity by detecting associated
changes in blood flow, through a contrasting technique known as BOLD. This dual approach was
necessary due to the low spatial resolution of the EEG signal. MRI has higher spatial resolution, but
is integrated over longer time periods. We hypothesized that successful prefrontal neurofeedback
would activate mainly frontal areas that were previously identified as related to emotion regulation.
We also expected no significant extra activity in motor-related cortical areas, which could otherwise
indicate non-specific affective function.

Fifteen healthy volunteers (3 female, 3 left-handed) with a mean age of 29.38 years (S.D. 7.6) and
with either perfect or corrected eyesight took part in the experiment. Of these, two were discarded
due to technical issues, and 1 was rejected subsequently because of severe EEG movement artifacts.

EEG data was acquired using a 32-electrode MRI-compatible BrainAmp MR system2. Data
was recorded at a sampling rate of 5000Hz and collected on a PC running RecView software2 for
gradient and cardioballistic artifact removal. Alpha band (8–12Hz) power was extracted online from
electrodes F3 and F4 as mentioned in Section 5, sampled in 500ms windows. The mean A2 asym-
metry score was calculated for each window, and this was used to drive NF visuals. Simultaneous to
EEG recording, subjects underwent fMRI measurement with a 3T GE scanner. fMRI scanning was
based on the echo-planar imaging (EPI) sequence of functional T ∗

2 -weighted images (TR/TE/flip
angle: 3,000/35/90; FOV: 20 × 20cm2; matrix size: 128 × 128) divided into 39 axial slices (thick-
ness: 3mm; gap: 0mm) covering the whole cerebrum. A T1-weighted anatomical scan was used for
alignment.

As narrative evolution for each subject is driven by neural activity during support opportunities,
the length of experimental runs was somewhat variable. A typical run consisted of a NF training
session (∼4 min.), a narrative training session (∼8 min., running through an example narrative out-
side of the MRI), an active session (∼8 min.), and a replay session (∼8 min.). Additional MRI scans
of around 20min were needed to measure brain anatomy. To determine the controllable asymmetry
range for each subject, we used the distribution of asymmetry scores from the training session, thus
accounting for individual differences in baseline EEG trait asymmetry score. The active session

2Brain Product Co.
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began with 60s of blank screen followed by the Interactive Narrative that contained up to two op-
portunities of support through NF (30s each), dynamically generated by the system as a function of
narrative evolution. The replay session consisted of the visualisation of the narrative generated by
the same subject during an active session, with the interaction mechanism disabled, thus serving as
a control baseline for fMRI. This could only be determined after the fact due to the variability in
storyline.

6.1 Data Analysis

We operated under the assumption that the A2 at baseline is a stable trait metric that can be shifted
due to affective mental process during the active NF session. To characterise the relative change
in the asymmetry during the active support window, we calculated for each subject the distance
between baseline A2 calculated from the rest period at the beginning of the active session, and both
NF windows using a repeated measures ANOVA.

When comparing this EEG measure against successful ability using the NF approach to alter the
course of the narrative, five subjects had “successful” narrative outcomes combined with significant
up-modulation in A2 scores (p < 0.1, 4 with p < 0.05). This is shown in Table 1. With these
subjects we can be confident that the successful use of the BCI was due to actual modulation of
EEG. An additional subject had borderline significant up-modulation (subject 12). Three additional
subjects had successful outcomes from the Interactive Narrative, but no significant up-modulation of
A2 scores, indicating some possible over-sensitivity in the calibration for those subjects (10,13,14).
Three subjects showed significant negative relative A2 scores, so were unsuccessful in the use of the
BCI († in Table 1).

What we aim to show is that, while BCI input is determined through the relative A2 scores,
brain imaging could not detect activity in areas associated with affective control, contradicting those
EEG scores. While the BCI itself still appears to possibly benefit from further tuning with regard to
sensitivity, it provided the correct outcomes for significant changes in EEG.

Analysis of fMRI data was performed with the SPM53 MATLAB tool. This includes prepro-
cessing of fMRI data: (a) slice timing correction to the middle slice, (b) correction for head move-
ment by realignment of all images to the mean image of the scan using rigid body transformation
with six degrees of freedom, (c) normalisation of the images to Montreal Neurological Institute
(MNI) space by co-registration to the EPI MNI template via affine transformation, and (d) spatial
smoothing of the data to 6mm full-width at half-maximum (FWHM). Finally, the first six images
of each scan were discarded to allow for T ∗

2 equilibration effects. Statistical analysis was based
on individual maps of activation obtained from a general linear model (GLM). The GLM included
regressors that model epochs of active support during the live narrative session and epochs during
replay of the support sessions within the replay of the previously generated movie. All regressors
were convolved with a canonical hemodynamic response function (see model response in Figure 5
B). To reduce the effect of physiological artifacts and nuisance variables, six motion parameters were
introduced as covariates in the model. T-statistical maps were obtained by contrasting hemodynamic
responses during epochs of active support versus replay of these epochs.

3http://www.fil.ion.ucl.ac.uk/spm
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Sub F df P Sub F df P
1∗∗ 99.65 242 .00 13 1.56 242 .21
2∗∗ 16.11 244 .00 14 0.6 244 .438
7∗∗ 7.06 242 .00 10 0.02 240 .89
8∗∗ 3.32 242 .04 6† 0.84 244 .36
9∗ 3.00 244 .08 5† 5.57 242 .01
12� 1.94 244 .16 4† 15.48 244 .00

Table 1 EEG NF relative change index. ∗∗, ∗ - significant positive change (p < 0.1, p < 0.05).
� - borderline success. † - negative change, no effect on narrative.

6.2 Results

For further analysis we compared two groups: successful – those who significantly increased the A2
score during the support period, and unsuccessful – those who did not modulate it significantly or
in fact, reduced it. Since the BCI principle is a priori focused on changing the narrative positively,
for validation of the method, we concentrated on the six individuals who were successful in up-
modulating their A2 score as well as having a positive narrative outcome.

6.2.1 Behavioural Analysis: User Debriefing

We inspected the reported subjective state of all subjects: the consensus emotion in the unsuccess-
ful group was frustration (4 out of 6), while the successful group reported approach-type behaviour
(i.e., empathy and positive emotions). Subjects quite clearly identified the protagonist of the story as
“kind” and the antagonist as “vicious”, the only dissenting opinion being two subjects who character-
ised the feature character as “neutral” rather than “kind”. Personal perception of the extent to which
the viewer was helpful or able to make a difference in the story was split, with successful subjects
agreeing that they were helpful to the main character and had an impact on the story. These results,
along with informal feedback, indicate that subjects did understand the dynamics of the narratives
and that subjective perception of their effectiveness was aligned with successfulness of response as
measured through NF input and corresponding fMRI data.

6.2.2 fMRI Analysis of the Interactive Experience

Whole-brain General Linear Model (GLM) analysis of the fMRI data on the 6 individuals who were
successful in A2 up-modulation revealed enhanced activation during the periods of user support
via NF, relative to the same periods during passive replay, in a cluster of regions in the pre-frontal
cortex (PFC). These prefrontal loci include anterior and medial aspects of Brodman Areas 10 and
11 (BA10, BA11), known to be involved in cognitive and emotional control processes. Figure 5
shows the significant increased activation obtained in these PFC loci, confirming that successful
up-modulation of EEG alpha asymmetry resulted in relevant regional recruitment. The whole-brain
GLM analysis also provided additional indications of successful support-related regional activation
in the middle temporal gyrus and the anterior insula. Only three of the successful supporters activated
these regions at a threshold of p < 0.001 (uncorrected), but none of the unsuccessful supporters did
so.

Intriguingly, signals obtained from the peak of activation within the PFC in each of the successful
participants suggests that they not only increased their activity during the active user support, but also
decreased it during the same period of the replay session (see Figure 5 B). To test the anatomical
specificity of this regional effect we calculated time courses of activation during the active support
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Figure 5 Brain validation of BCI for Interactive Narrative. A. Slice views (coronal and horizontal as
indicated in top-right) of fMRI activation maps overlaid on a template anatomical scan (SPM5). Slices are
shown for 6 out of 12 participants who were highly successful in modulating their EEG alpha asymmetry index
during active support periods. The parametric activation maps were obtained by whole brain contrasts of active
and replay sessions (p < .001, p∗ < .05). B. Time course of averaged estimated effect (n = 6) obtained from
the contrast of active vs. replay from peak activation in a selected ROI in the right medial prefrontal cortex (see
3D location, top-right). C. Comparisons between successful and unsuccessful participants (green and red plots,
respectively) in % signal change during the support period obtained from a relevant region of interest localized
at the vmPFC, and from a non-relevant region in the premotor cortex. There is a significant difference in BOLD
response between the groups for the vmPFC, with the successful group showing greater change (yellow squares
indicate a sliding window of 24s in variable significance 0.006 < p < 0.0324), while in the premotor, there is
little difference.

window for each group in two distant loci: one in a task-relevant area in the anterior aspect of
the PFC (BA10, MNI: 26, 58, 6, selected based on the overlap of successful activation maps at p
< 0.05), the other in a non-task-relevant area in the right pre-motor cortex (BA 6, MNI: 56,6,48,
selected based on the overlap of unsuccessful activation maps, at p < 0.3) (see Figure 5 C). A
direct comparison between these traces showed that only activation changes in the PFC loci clearly
distinguished between successful and unsuccessful individuals (sliding-window independent t −
test 0.008 < p < 0.0222 FDR corrected).

6.2.3 Discussion

Considering the preliminary nature of the experiment and the limited size of our subjects’ sample,
we should naturally exercise caution in the interpretation of the above results.

In this experiment, we have endeavoured to provide generic instructions to our subjects, such as
“mentally supporting” the main character, to avoid influencing their cognitive NF strategies. As a
consequence, subjects did report variable strategies for producing such mental support, but the fMRI
component of our experiments confirmed the selective activation of the BA10 area, known to be
involved in mentalisation (i.e., reflection on one’s own emotion and mental states, or those of other
agents), a process also related to empathy [20]. Furthermore, our results suggest that the modulation
of the A2 EEG signal is not derived from premotor areas (Figure 5), a commonly used marker in
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Figure 6 Usability experiment setup of our Interactive Narrative BCI prototype: (1) the user watches the
narrative generated in real-time; (2) during NF, MA2(t) is mapped to the colour saturation of the character in
need of support (see text).

BCI [10, 24] (notwithstanding potential limitations introduced by the left-handed fraction of our
subjects’ sample). Taking into account the complexity and variability of empathic processes and the
multiple regions involved, it is difficult at this stage to draw further conclusions on the most relevant
sub-regions of the PFC (e.g. dorso-lateral or ventro-medial, corresponding to different processes of
cognitive and affective control) whose activation would constitute a further validation.

Another well-described difficulty of this type of simultaneous EEG/fMRI experiment derives
from the difference in response times between EEG-based A2 input and the BOLD signal. This
is why we have presented results through a 60s window spanning 15s before and 15s after the NF
window. The fact that activity in the mPFC would peak after 20s during fMRI recording (Figure 5
B) actually places it early in the NF phase and is consistent with many temporal patterns observed
for A2 variations during NF across our various experiments.

Overall, we can reasonably conclude that our fMRI findings are not incompatible, both from
a spatial and temporal perspective, with the affective modulation mechanisms generally associated
with A2 asymmetry.

7 Usability Experiment

Following our proof-of-concept study, we staged a new experiment to assess the usability of the BCI
for Interactive Storytelling, using a desktop implementation in a normal laboratory setting (outside
of the MRI scanner). This experiment comprised a number of objectives: (1) to measure overall
success scores and compare them to those of the proof-of-concept experiment; (2) to gain a better
understanding of user cognitive strategies during NF; (3) to acquire data on the dynamics of NF; and
(4) to explore the determinants of “BCI illiteracy” in this specific implementation of frontal alpha
asymmetry NF [33].

We modified our previous prototype to improve the NF mechanisms, taking into account various
observations of the baseline A2 values, their variation across subjects and their typical variations
during NF. Our first decision was to apply some form of filtering to the raw A2 value to compensate
for its variation: we opted for a 4-point moving average calculation (henceforth MA2) as a simple
form of low-pass filter and a compromise between filtering and delaying the averaged A2 response.
A second modification was to determine more accurately the variation range to improve NF map-
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ping. We defined the threshold (NF feedback at 0% saturation) as the average A2 value obtained
for each subject during calibration at rest and, having observed empirically the maximum values
reached for A2 across multiple subjects, we defined a point corresponding to the maximum NF
signal (100% colour saturation). This maximum was defined as: min(max(MA2), threshold +
average_variation)4. To implement NF visual feedback we defined a linear mapping [0-100%]
between the threshold and the above maximum. Finally, we revised the calculation of a success
score for NF: it can be approximated by the integral of MA2(t) above threshold, over the 30s NF
epoch. In order to normalise the score across subjects we used a block addition of the saturation
value, resulting in a score between 0 and 100. We defined success (narrative support = 2) as a score
> 20, which is equivalent to sustaining 100% saturation over 6s. Moderate success (narrative support
= 1) corresponds to a value between 5 and 20.

In terms of data acquisition, EEG data was acquired using an 8-channel Brain Products V-Amp
system. Data was recorded at a sampling rate of 250Hz and collected on a PC running RecView
software5. Alpha band (8–12Hz) power was extracted online from electrodes F3 and F4, sampled at
(∼1 Hz) with a reference electrode at FCz . The mean A2 asymmetry score was calculated for each
1s window, and this was used to drive NF visuals. The pre-processing algorithm was compiled from
Matlab R2013b to Microsoft .NET, so that it could be executed within the Brain Vision RecView
EEG Recorder system. Raw EEG data was collected by Brain Vision RecView at a sampling rate
of 250Hz. Data was then restructured to fit EEG offline data structure, packaged into MATLAB
data types and marshaled to the MATLAB.NET compiled DLL. The MATLAB.NET compiled DLL
calculated the A2 momentary value once filtered through the calculation of a moving-average A2
which was calculated over 4s, and passed this MA2(t) value back to the NF system, which in turn
produced the appropriate feedback to the subject.

We recruited 36 subjects (17 male, 19 female); average age was 30.4 years (S.D. = 9.25; range:
20-52). Experiments were approved by our local ethics committee, and subjects were issued detailed
consent forms. All data were anonymised, both questionnaire and EEG-related measures. For this
experiment, subjects were located in a quiet room with dimmed lighting and sat in a comfortable
armchair. They were given instructions on how to relax to minimise muscular artefacts as well as
to avoid blinking as much as possible. Each subject went through a short calibration and training
session prior to the Interactive Narrative experiment. This consisted of a 2min recording of A2
scores to determine the individual subject baseline. This duration has been previously shown as the
minimum duration that can provide reliable data [2]. During this baseline measurement, subjects
alternated between eyes closed and open following a randomly selected COCO / OCOC pattern.
Subjects subsequently went through a short training session, which gave them the opportunity to
familiarise themselves with the NF system. The training system exactly reproduced the setting of
the in-story input, except that it was not preceded by any narrative sequence (hence subjects can
be considered to enter a training block in an affective neutral state, in particular since each training
block was preceded by a short resting period). Each training block consisted of a 30s NF session,
preceded by a 15s resting period during which subjects were instructed to relax and remain staring at
a blue screen. Each subject went through 12 successive training blocks for a total duration of 10min:
all subjects completed the training session.

The principle behind the BCI approach was explained to the subjects, as well as the use of NF as
an interaction mechanism. They were told that they could support the story character by “expressing
positive thoughts” that would be captured by the system. They were introduced to the concept of a

4Only “threshold” is related to the individual subject: other values have been obtained through a calibration study
involving multiple subjects, different from the evaluation sample.

5http://www.brainproducts.com/

http://www.brainproducts.com/
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NF loop in simple terms, with grey levels introduced as a visual indicator of the intensity/magnitude
of mental support. Throughout training and evaluation, instructions were deliberately generic, in or-
der to avoid influencing users’ cognitive strategies towards any implicit or explicit one. In particular,
we conspicuously avoided the use of terms such as empathy, sympathy, or other vocabulary likely to
influence strategies (e.g. “talk to the character”).

After the training session, each subject participated in one session of the BCI-enabled Interactive
Narrative. Each subject saw a dynamically-generated variant of our medical drama, in which one
NF session appeared as soon as the situation of the feature character deteriorated (although this is
determined dynamically for each generated story variant, rather than pre-defined). Unlike with our
proof-of-concept study, users only had a single opportunity to influence the course of action through
a 30s NF session.

As described in section 4, we defined two levels of support: 1 for scores between 5 and 10, and
2 for scores above 10. Out of 36 subjects, 17 were unsuccessful, 7 were successful to a level of sup-
port of 1 and 12 were successful to a level of support of 2. The average score for successful subjects
was 20 (S.D.: 25.98); this was essentially due to the contribution of two high-performing subjects:
excluding them from this statistic, the average score is 12 (S.D.: 10.74). The overall success rate of
52.7% is modest for a usability experiment, but certainly above average when considering perform-
ance of previous frontal alpha asymmetry NF systems, in particular in clinical applications, and the
very limited training undergone by subjects. It should also be noted that we have adopted a relatively
demanding criterion for success, if compared to previous reports of frontal alpha asymmetry NF and
even our proof-of-concept study.

Previous (clinical) work reported hours of training over multiple sessions: here subjects had a
single 10min training session6. We used limited training in this instance for practical as well as
more fundamental reasons: frontal alpha asymmetry training is known to alter mood, and potential
long-term effects were not covered by our ethical approval. This raises the possibility that if users
had been subjected to the same type and level of training as in previous work, performance could
have been much higher.

It is also worth investigating whether the concept of BCI illiteracy has any specific application
to the case of frontal alpha asymmetry NF. BCI illiteracy was originally introduced to account for
intrinsic non-performance of a stable fraction of the population, in the range of 15-30% [33] and is
also recognised to be specific to the chosen BCI methodology [34].

Although BCI illiteracy is unlikely to constitute the sole explanation for the observed results,
we have investigated, as a possibly specific determinant of illiteracy, the A2 baseline of individual
subjects, which we used in defining the NF threshold. The rationale is to estimate the maximum
variation of A2 during NF, in conjunction with the maximum values that can be empirically reached
by A2. This would suggest that individuals with a high A2 baseline would be at a disadvantage
to further increase their A2 score as part of the NF process, making them less successful at using
the BCI. This could also be related to the limited contribution of state variations to the total A2
variation, estimated to be 10-20% [5]. To explore this phenomenon, we measured the correla-
tion between in-story success and the A2 baseline/NF threshold and observed a significant negative
correlation (the point-biserial correlation between narrative support (collapsed) and threshold was
rpb = −.371, p = .026;Biserial : rb = .47, p = .026), compatible with our initial hypothesis.
We also investigated the cognitive strategies adopted by users for NF, in particular considering the
non-prescriptive nature of instructions. We recorded free debriefing sections following each ex-
periment and using their transcripts we categorised the users’ declared cognitive strategies. We
observed that no subject used implicit strategies, possibly as a consequence of our instructions men-

6Rosenfeld [3] reports that some frontal alpha asymmetry EEG NF protocols require 40 days.
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Figure 7 (left) Mapping of MA2(t) to the value of the virtual character’s skin colour saturation in real-time
and (right) overall success score in our sample (with limited NF training).

tioning “positive thought” (rather than letting thoughts wander whilst monitoring feedback). Explicit
strategies were subsequently categorised as empathic vs. generic. The former directly target the vir-
tual character such as inner speech or mental imagery (such as hugging or patting on the back).
The latter express positive thoughts of a generic nature, such as recollections of pleasant moments
in the subject’s personal life, a strategy already reported in [15]. We found that support strategy
during narrative and narrative success (merging levels of support 1 and 2) were not significantly
related, χ2(1) = 1.00, p = .51, V = .17 (results were not altered when considering levels of support
as separate categories). However, when revisiting the above correlation between A2 baseline/NF
threshold and NF success for each group, we found that narrative success was negatively correlated
with threshold in the generic strategy group (r = −.56, p = .016), but not in the empathic strategy
group (r = −.08, p = .767). At the same time, threshold was not significantly different between
the empathic and generic conditions (t(34) = 1.21, p = .233). These findings have to be interpreted
in light of the variability of empathic responses, with only empathic cheerfulness strongly related
to an increase in frontal alpha asymmetry [16]. This may actually limit the success of empathic
strategies based on empathic concern [32]. Indeed, we found no correlation between empathic con-
cern (part of the Interpersonal Reactivity Index (IRI) questionnaire[7]) and in-story success. On the
other hand, positive personal experiences have proven efficient in previous NF studies [14] and were
even reported as part of our proof-of-concept study.

8 Conclusions

Affective BCI is a promising technique for Interactive Narrative, but its usability may be limited by
the difficulty of all forms of emotional regulation. Our neuroimaging study has provided preliminary
evidence for the importance of recruiting medial prefrontal regions that have been implicated in
affective control as well as empathy-related processes for successful modulation of frontal alpha
asymmetry. Although overall in-story success scores appear similar for both our proof-of-concept
experiment and our usability study, the latter used slightly more stringent success criteria. Our
overall score of 52.7% is certainly encouraging, even if not sufficient to guarantee usability: it is
however important to analyse its significance, as well as any potential for improvement. Subjects
tend to be distributed in two groups, successful and not, with very few intermediate values: this
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pattern could be construed as one of high-efficacy combined with high-illiteracy. The average score
of successful subjects is 20, which corresponds to 100% saturation over 6s, equivalent to an increase
in A2 of over 0.2. This compares favourably with success criteria reported by Rosenfeld et al. [28]
(number of “hits” per trial) or more recently Zotev et al. [37] (increases in A2 up to 0.2, although in
the high beta band).

In addition, there exists a real possibility that A2 baselines have been overestimated due to the
closed eyes recording epochs. Offline analysis of A2 baselines values only considering open eyes
epochs revealed an average difference of 0.10 (t(35) = 6.61, p < .001), which could have significant
impact on performance, although this can only be validated through additional NF experiments. It
should also be noted that although left-handed subjects are often excluded from alpha-asymmetry
this was not the case in the present study. As left-handedness might bias frontal asymmetry measures
by lowering the baseline level [23], possibly partially due to motor activity, left-handed subjects may
perform the task of increasing the asymmetry more easily. Handedness-related difference could be
statistically examined in the future, subject to the sample size being increased.

Users have reported a mix of empathic and generic NF cognitive strategies. This source of
variance – the type of empathic engagement entertained by the user during the feedback – should
be better controlled for in future studies, as it is likely that users have adopted a mix of empathic
strategies not all based on empathic cheerfulness. In this context, it is worth noting that Light and
colleagues [16] reported that the direction of frontal EEG laterality may vary with the empathic
strategy adopted by the person who feels empathy. They found that children who express cheerful
empathy, when trying to encourage a suffering person, increased their right dorsolateral asymmetry,
while the empathic happiness they shared with the individual once their suffering was relieved,
was associated with left dorsolateral asymmetry. A focused debriefing on these aspects of empathy
(possibly correlated to questionnaires such as IRI) will allow for a higher-resolution account for EEG
and fMRI effects during the neurofeedback. However, some debriefing comments cast doubts on the
extent to which some subjects actually engaged in NF, i.e. took full advantage of the visual feedback
channel, as opposed to concentrating on providing an input signal. This can only be clarified through
a detailed examination of temporal patterns, but the intrinsically noisy nature of EEG input may
render this analysis challenging.
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