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Geometric stability of topological lattice phases
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1Department of Physics and Astronomy, University of California at Los Angeles,
475 Portola Plaza, Los Angeles, California 90095, USA

2TCM Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, UK
(Dated: July 15, 2015)

The fractional quantum Hall (FQH) effect illustrates the range of novel phenomena which can arise in a
topologically ordered state in the presence of strong interactions. The possibility of realizing FQH-like phases
in models with strong lattice effects has attracted intense interest as a more experimentally accessible venue
for FQH phenomena which calls for more theoretical attention. Here we investigate the physical relevance of
previously derived geometric conditions which quantify deviations from the Landau level physics of the FQHE.
We conduct extensive numerical many-body simulations on several lattice models, obtaining new theoretical
results in the process, and find remarkable correlation between these conditions and the many-body gap. These
results indicate which physical factors are most relevant for the stability of FQH-like phases, a paradigm we
refer to as the geometric stability hypothesis, and provide easily implementable guidelines for obtaining robust
FQH-like phases in numerical or real-world experiments.
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The fractional quantum Hall effect (FQHE) provides a spec-
tacular manifestation of the breakdown of the spin-statistics
relation in two dimensions: one obtains quantum number
fractionalization1–5 and, potentially, non-Abelian statistics6

which can form the substrate for topologically robust quantum
computing.7 Progress has been hampered by the considerable
experimental difficulties involved in realizing the FQHE in the
usual setting of a semiconductor heterostructure, but a flurry
of interest in the field was set off by the recent insight8–10 that
these exotic phases of matter may also arise in topologically
nontrivial insulators with partially filled flat bands, or fractional
Chern insulators11 (FCIs). The attractiveness of FCIs stems
from the fact that the bandgap ∆ may be set without the use
of a large external magnetic field, the strength of which is one
of the limiting factors in the semiconductor FQHE. There are
currently a range of experimental proposals for realizing FCIs
in cold atom systems,12–16 transition metal oxides17–19 and else-
where; a successful experimental implementation in ultracold
fermions was recently announced in ref. 20.

Moreover, FCIs raise theoretical questions independent of
their experimental interest. The majority of theoretical work
on the FQHE over its thirty-year history has focused on the in-
fluence of interactions on the Landau level Hamiltonian, which
occupies a unique, highly symmetric point in the space of
single-particle Hamiltonians. FCI phenomena constitute a non-
trivial and poorly-understood generalization of the FQHE in
which lattice effects are non-negligible; a generic FCI does
not have the FQHE as a continuum limit, and examples of lat-
tice effects without any continuum analog have already been
noted.21,22 A generalization of our theoretical understanding of
the FQHE to cover the case of FCIs is hence both nontrivial and
experimentally relevant.

One possible approach to the stability of FCIs is via the
single-mode approximation used by Girvin, MacDonald and
Platzman23,24 (GMP), who made the ansatz that the most rel-
evant excitations which destabilize an FQH ground state are
neutral magnetoroton modes generated by the action of electron
density operators projected to the lowest Landau level. These
operators do not commute with each other, due to the projec-
tion, but GMP found that the set of operators remains a closed
algebra under commutation. Intuitively, one expects that the
form of this algebra plays a crucial role in the stability of the
FQHE phases by limiting the set of possible destabilizing inter-
actions. In a generic FCI, however, the analogous set of band-
projected density operators is not a closed algebra, nor do the
projected densities span the space of single-particle operators:25

there is no canonical mapping between a general lattice FCI and
the continuum FQHE.

In previous work, one of us26 derived sufficient conditions
for the band-projected density operators in an FCI to satisfy a
closed algebra isomorphic to that present in the FQHE, which
justified and elaborated upon a heuristic criterion used in pre-
vious FCI literature. Quantities describing the geometry of the
Chern band (its embedding in Hilbert space) enter this analysis
in a natural way as coefficients of terms which must necessar-
ily vanish in order to obtain a closed algebra; remarkably, only
three conditions need to be placed on the band’s geometry for
the isomorphism to be present to all orders in a long-wavelength
expansion. Heuristically, one might expect that reproducing the
density operator algebra would then suffice to reproduce the

full physics of the FQHE, but this argument has not been fully
tested in the literature.

In the present work, we report the results of extensive nu-
merical simulations which demonstrate that quantitative mea-
sures based on the band-geometric conditions of ref. 26 are
robustly correlated with the many-body gap in realizations of
FQH-type phases in different FCI lattice models. In addition
to numerical data, we obtain several theoretical results, such
as a scaling relation between the gap of an FQH-like state and
the number of bands in an FCI model, which is essential for
comparing different models. We find that the Berry curvature
was computed incorrectly in a number of prior references; in
Supplementary Note 1, we discuss why this quantity is de-
fined unambiguously. The remarkably high degree of corre-
lation we find between band geometry and the many-body gap
leads us to propose a geometric stability hypothesis: that the
algebra of band-projected density operators governs FQH-type
phenomena in FCIs, even when the isomorphism doesn’t hold
exactly, and that the single-particle conditions investigated here
are accurate qualitative estimators of the stability of an FQH-
like state. This frames the theoretical problem of generalizing
results on the FQHE to cover FCI physics by distilling the ef-
fects of the lattice into a small number of quantities measuring
the relevant deviations of an FCI from lowest Landau level be-
havior. Our results are also of use in experimental design, as
they provide a computationally inexpensive means to estimate
which choices of FCI model parameters are most likely to yield
a FQH-like state with the largest possible gap; a naive analysis
of the scales involved has suggested this may be on the order
of room temperature.8 From the opposite point of view, our re-
sults also indicate which areas of parameter space should be
searched to find possible FCI states which do not correspond to
FQH universality classes.

RESULTS

Geometry of Chern bands

We begin by introducing the quantities studied below. A nec-
essary ingredient in engineering a fractional Chern insulator is
a flat, topologically non-trivial band, defined as follows. Let
|R, b⟩ be a tight-binding orbital localized at position R + db;
the Fourier transform of the bth basis orbital (where b ranges
from 1 to N ) is

|k, b⟩ = 1√
Nc

∑

R

eik·(R+db)|R, b⟩, (1)

where k is a crystal momentum restricted to the first Brillouin
zone (BZ) and Nc is the number of unit cells in the system,
which are indexed by lattice vectors R. Eigenstates of the tight-
binding Hamiltonian are Bloch functions

|k,α⟩ =
N
∑

b=1

uα
b (k)|k, b⟩, (2)
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where α indexes the bands. At a fixed k, the tight-binding
Hamiltonian is an N ×N matrix with entries

Hbc(k) =
N
∑

α=1

Eα(k)u
α∗
b (k)uα

c (k) (3)

and band energies Eα(k). In general, for N > 1, neither
Hbc(k) nor uα

b (k) will have the periodicity of the reciprocal
lattice, and this property is not needed to define the Berry cur-
vature via eq. (5) below. Imposing this periodicity by hand has
led to demonstrably incorrect calculations in previous litera-
ture. We clarify this point with a discussion in Supplementary
Note 1 and illustrate the consequences of incorrect computa-
tions in Supplementary Figs. 1, 2.

Nontrivial topological order in a band α is indicated by a
non-vanishing value of the (first) Chern number

c1 =
ABZ

2π
⟨Bα⟩, (4)

where ABZ is the area of the momentum-space Brillouin zone,
⟨· · · ⟩ denotes the average over the BZ, normalized so ⟨1⟩ = 1,
and the Berry curvature27,28 of the band α is defined as

Bα(k) = −i
N
∑

b=1

(

∂uα∗
b

∂kx

∂uα
b

∂ky
−

∂uα∗
b

∂ky

∂uα
b

∂kx

)

. (5)

The leading-order condition (in terms of a long-wavelength
expansion) for the existence of an isomorphism between the
band-projected density operators and the GMP algebra found
in ref. 26 is that the Berry curvature should be constant as a
function of k. In the results we report here, we quantify fluctu-
ations of Berry curvature over the BZ by their root-mean-square
(RMS) value,

σB ≡

√

A2
BZ

4π2
⟨B2⟩ − c21. (6)

We normalize σB in the same way as the Chern number, so that
(6) is dimensionless as well as insensitive to the scales over
which deviations from the mean curvature occur.

The higher-order conditions obtained ref. 26 involve the pull-
back of the Fubini-Study metric on Hilbert space,29 which we
refer to below as the quantum metric. In terms of Bloch func-
tions, it is given by

gαµν(k) =
1

2

N
∑

b=1

[(

∂uα∗
b

∂kµ

∂uα
b

∂kν
+

∂uα∗
b

∂kν

∂uα
b

∂kµ

)

(7)

−
N
∑

c=1

(

∂uα∗
b

∂kµ
uα
b u

α∗
c

∂uα
c

∂kν
+

∂uα∗
b

∂kν
uα
b u

α∗
c

∂uα
c

∂kµ

)]

.

The next-to-leading order condition of ref. 26 is that the quan-
tum metric also be constant over the BZ. We adopt

σg ≡

√

1

2

∑

µ,ν

⟨gµνgνµ⟩ − ⟨gµν⟩⟨gνµ⟩ (8)

as the appropriate generalization of RMS fluctuation to tensor

quantities. The final constraint on the band geometry is that

D(k) ≡ det gα(k)−
Bα(k)2

4
= 0. (9)

It was shown in ref. 26 that the left-hand side of (9) is always
nonnegative; the condition that it vanishes is equivalent to the
condition that gα and Fα =

(

0 Bα

−Bα 0

)

are the real and imag-

inary components of a Kähler metric hα = gα + iFα/2. This
means that, unlike the first two conditions, the metric deter-
minant inequality D(k) ≥ 0 measures deviations from lowest
Landau level physics, specifically. Analogous conditions may
be derived for higher Landau levels.

A stronger condition can be obtained by considering the trace
of the quantum metric instead. It was additionally shown in
ref. 26 that

T (k) ≡ tr gα(k)− |Bα(k)| ≥ 0. (10)

In Supplementary Note 2 we show that if this inequality is sat-
urated, the quantum metric is isotropic and D(k) must vanish.
Hence the condition T (k) = 0 is equivalent to requiring that
the algebra of band-projected density operators be identical to
the GMP algebra, while D(k) = 0 merely requires that they be
isomorphic.

Band geometry hypothesis

The purpose of the present work is to investigate the degree
to which the above criteria are satisfied in several FCI mod-
els known to exhibit FQH-like phases.30–32 In this section, we
outline procedures common to all models studied.

The stability of an FCI phase is trivially influenced by the
dispersion of the occupied band. Fortunately, the dispersion
of a band is independent of its Berry curvature and quantum
metric: the former only depends on the Hamiltonian’s spectrum
while the latter depend only on its eigenvectors. This allows
us to eliminate any dispersion-related confounding effects by
energetically flattening the bands of each lattice model, which
is equivalent to smearing nearest-neighbor hopping terms over
an exponentially-localized area.9,11

Differences between Chern bands and Landau levels also en-
ter in the form of the Hamiltonian’s interaction term. Unlike
the energetic considerations, this dependence is still poorly un-
derstood, so we have limited the scope of the present paper to
on-site repulsive interactions only (which necessitates bosonic
statistics), since this is the lattice interaction which most closely
matches the isotropy present in the continuum. For each lattice
model considered, we therefore investigate the bosonic Laugh-
lin state at filling fraction ν = 1/2 (stabilized by a two-body
delta-function interaction) and the bosonic Moore-Read state
at ν = 1 (stabilized by a three-body delta-function interaction).
These states have completely different topological orders; fur-
thermore the Laughlin state is known to be more robust in gen-
eral than the Moore-Read state, so examining both provides a
useful probe of the sensitivity of band-geometric arguments.

The band geometry hypothesis predicts that the most impor-
tant factor will be Berry curvature fluctuations. Low curvature
fluctuations were heuristically identified as a desirable criterion
in the earliest FCI literature,8,10 which has been well established
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by subsequent work (see in particular refs. 33 and 34). In the
present work we therefore focus on the sub-leading conditions,
namely the influence the quantum metric has on the gap.

Fluctuations of the quantum metric are predicted to be the
next most relevant quantity, but in the models examined this
was found to have a high degree of linear correlation with the
Berry curvature fluctuations (see Supplementary Fig. 3). There
is no a priori reason this should be the case: other metric-
derived quantities were found to be largely independent of
Berry curvature. In addition, we found that the trace inequal-
ity (10) was far more correlated with the gap than the deter-
minant inequality (9) for all models examined, despite corre-
sponding to a stronger condition on the algebra of density oper-
ators. These findings go beyond the scheme laid out in ref. 26.
Due to space constraints, we present data on the dependence of
the gap on the determinant condition for low values of σB in
Supplementary Fig. 4 for the kagomé lattice model and Sup-
plementary Fig. 5 for the ruby lattice model.

Haldane model

The first Chern insulator model was introduced by
Haldane,35 who considered a tight-binding model on the hon-
eycomb lattice with nearest- and next-nearest-neighbor hop-
pings (Fig. 1a) and a Peierls phase due to non-uniform thread-
ing of magnetic flux through each hexagon. The single-particle

Hamiltonian for the Haldane model is

HH(k) = t1σ1

3
∑

i=1

cos 1
3 (ki + 2ki+1)

− t1σ2

3
∑

i=1

sin 1
3 (ki + 2ki+1)

+ σ3

(

M − 2t2 sinφ
3

∑

i=1

sin ki
)

. (11)

where the Pauli sigma matrices act on the band index, ki ≡
k · ai, a3 = −a1 − a2 and i = 1, 2, 3 is interpreted cyclically
mod 3. The lower band has a nonzero Chern number when
|M/t2| ≤ 3

√
3| sinφ|. This model has been extensively stud-

ied numerically, and the addition of short-ranged repulsive in-
teractions has been shown to yield both the bosonic30,31 and
fermionic32 Laughlin states at appropriate filling fractions.

For purposes of comparison with refs. 32 and 33, we consider
the model at t1 = t2 = 1. The energy spectrum has band
crossings for these parameters, meaning that the bands cannot
be flattened by local operators and the model analyzed in those
references is not adiabatically connected to (11). In practice,
however, one is most interested in the M = 0 subspace; the
Hamiltonian then depends only on the combination t2 sinφ/t1,
and an increase in t2/t1 which removes the crossing may then
be compensated by a shift in φ which leaves the Hamiltonian
(11) unchanged up to a scale.

➁

➀
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Figure 1 | Band geometry and gap data for the Haldane model. (a) Honeycomb lattice used to define the Haldane model. Basis vectors a1,a2 are shown in

red; basis elements are shown by differently colored/numbered sites. Hopping elements are shown with black and blue edges; arrowheads indicate the chirality

convention for complex hoppings. (b) Band geometry over the reciprocal lattice unit cell spanned by b1,b2, for parameter values maximizing the gap and

minimizing σB . Axes of ellipses are proportional to the eigenvectors of the quantum metric gα(k), and ellipse color is given by the relative deviation of Berry

curvature Bα(k) from its Brillouin zone-averaged value. (c) Gap ∆ as a function of (φ,M) for N = 8 bosons at ν = 1/2 with an on-site repulsion. (d) Gap as a

function of (φ,M) for N = 8 fermions at ν = 1/3 with nearest-neighbor repulsion. Note that this plot differs from Fig. 8 of ref. 32 because we exclude (light

gray) parameters failing to meet energetic and entanglement-based criteria for Laughlin-type order. (e) Berry curvature fluctuations σB (left scale) and metric

fluctuations σg and average trace inequality ⟨T ⟩ (right scale) as functions of φ at M = 0. (f) Reproduction of the gap data from panels (c), (d) along M = 0.
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The momentum dependence of the Berry curvature and
quantum metric is shown in Fig. 1b for parameters which min-
imize σB and maximize the gaps for the Laughlin state of
bosons and fermions; these values are listed in Supplementary
Table 1. We see that the distribution of Berry curvature mini-
mizing σB interpolates between that which maximizes the gap
for the bosonic and fermionic Laughlin states, and likewise the
value of φ minimizing σB lies between the values minimizing
the gaps (Fig. 1e, f). The band geometry argument doesn’t dis-
tinguish the statistics of the underlying particles, due to the fact
that the projected density operators are bilinear in particle op-
erators and bosonic in either case. The (φ,M) parameter space
may be sampled exhaustively; many-body gaps for the bosonic
and fermionic Laughlin states are shown over the full topologi-
cally non-trivial region of parameter space in Figs. 1c, 1d. The
largest gaps and most uniform band geometry both occur for
M = 0.

The other band-geometric criteria are highly correlated with
the curvature fluctuation σB and yield little new information
for this model (Fig. 1e), beyond being close to the location
of the maximum gaps (Fig. 1f). We prove in Supplementary
Note 3 that the remaining band-geometric criterion, the deter-
minant condition (9), is necessarily saturated for any two-band
model, but the trace condition (10) remains nontrivial here.

Augmented Haldane model

Although the Haldane model at fractional filling exhibits
a robust Laughlin state, its Berry curvature remains highly
nonuniform even in the best case (Fig. 1b). We would like to be
able to compare this model with the kagomé and ruby lattice
models, in which more uniform curvature may be achieved.
In addition, since we’re interested in the sub-leading effects
the quantum metric has on the gap, we want to examine band
configurations for which the metric is more independent of the
Berry curvature than in Fig. 1e.

This may be accomplished by adding a third-nearest-
neighbor hopping term, with independent coupling t3, to the
Haldane model Hamiltonian (11). In the previous section, we
saw that a sub-lattice chemical potential M always reduces the
gap of an FCI phase, so we set M = 0 below. The remain-
ing couplings in the new Hamiltonian may be parameterized
by t2 sinφ/t1 and t3/t1, so the interesting region of parameter
space is still two-dimensional.

The momentum dependence of the Berry curvature and
quantum metric is shown in Fig. 2a for parameters which min-
imize σB and maximize the gaps for the Laughlin and Moore-
Read states; these values are given in Supplementary Table 2.
Comparison with Fig. 1b shows that curvature fluctuations have
been reduced; furthermore, the minimum of σB (shown in
Fig. 2b) occurs at different parameter values than the minimum
of the trace condition (shown in Fig. 2c). Gaps for the Laughlin
and Moore-Read states are shown in Figs. 2d and 2e, respec-
tively; the maximum gaps in both cases occur at lower values
of t2 than the minimum value of σB , which one may attribute
to the influence of ⟨T ⟩.
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Figure 2 | Band geometry and gap data for the augmented Haldane

model. (a) Band geometry over the reciprocal lattice unit cell spanned by

b1,b2, for parameter values maximizing the gaps and minimizing σB . Axes

of ellipses are proportional to the eigenvectors of the quantum metric gα(k).

Ellipse color is given by the relative deviation of Berry curvature Bα(k) from

its Brillouin zone-averaged value. (b) Berry curvature fluctuations σB and (c)

Brillouin zone-averaged trace inequality ⟨T ⟩ as a function of couplings t2, t3,

where we set t1 = 1 and φ = π/2 in this and remaining panels without loss

of generality. (d) Gap ∆ as a function of couplings for the bosonic Laughlin

state of N = 8 bosons at ν = 1/2. (e) Gap as a function of couplings for the

bosonic Moore-Read state of N = 10 bosons at ν = 1.

Kagomé lattice model

A Chern insulator defined on the kagomé lattice was intro-
duced by Tang, Mei and Wen8 (Fig. 3a). This model is attrac-
tive for our purposes since it has three bands, while remaining
structurally similar to the Haldane model.

Defining a complex hopping matrix element for the relative
embedding of the sublattices in the unit cell as

hbc(k) ≡ eik·(db−dc)êb,c, (12)

where êb,c is the unit matrix whose (b, c)th entry is equal to 1,
the momentum space Hamiltonian for the kagomé lattice model
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is

HK(k) = −
3

∑

j=1

[
(t1 − iλ1)(1 + eik·aj )hj,j+1(k)

+ (t2 − iλ2)(e
ik·aj + eik·aj+1)hj,j+2(k)

]

+ h.c. (13)

where h.c. is an abbreviation for the hermitian conjugate, a3 =
−a1 − a2, and j is interpreted cyclically mod 3. The relative
offsets db are as depicted by the numbered sites in Fig. 3a. The
momentum dependence of the Berry curvature and quantum
metric is shown in Fig. 3b for parameters minimizing σB and
maximizing the gaps for the Laughlin and Moore-Read states;
these values are listed in Supplementary Table 3.
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Figure 3 | Definition of couplings and band geometry for the kagomé lattice model. (a) Lattice and chirality conventions for hopping terms in the kagomé

lattice model Hamiltonian. Basis vectors a1,a2 are shown in red; basis elements are shown by differently colored/numbered sites. Hopping elements are shown

with black and blue edges; arrowheads indicate the chirality convention for complex hoppings. (b) Band geometry over the reciprocal lattice unit cell spanned by

b1,b2, for parameter values minimizing σB and maximizing gaps, respectively. Axes of ellipses are proportional to the eigenvectors of the quantum metric

gα(k). Ellipse color is given by the relative deviation of Berry curvature Bα(k) from its Brillouin zone-averaged value.
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Figure 5 | Gap vs. trace condition for the kagomé lattice model subject to constraints on σB . (a) Gaps for the bosonic Laughlin state of N = 8 bosons at

ν = 1/2, as a function of the Brillouin zone average of the trace condition ⟨T ⟩. We only plot gaps for parameter values which have Berry curvature fluctuations

σB less than twice its minimum value. (b) Gap of the bosonic Laughlin state vs. ⟨T ⟩ for parameter values randomly chosen on isosurfaces of constant σB in the

space of couplings. The parameter space sampling procedure used to obtain these sets of points is described in the Methods. (c), (d) The same, for the bosonic

Moore-Read state of N = 10 bosons at ν = 1. Note that the same sets of model parameters are used in each column.

We first consider the model with nearest-neighbor hoppings
only (Figs. 4a, b). Because band geometry is determined by
single-particle quantities, the values of (σB , ⟨T ⟩) for a given
value of the effective nearest-neighbor (NN) coupling λ1/t1
are identical for the Laughlin and Moore-Read states. Despite
having different topological orders, gaps for both states decline
monotonically as one proceeds from the region of minimum σB

and ⟨T ⟩, and this trend holds over the entire phase (i.e., up to
the closure of the gap.)

To establish that the above trends were not coincidental, we
studied the entire c1 = −1 phase containing the NN-only point
t1 = λ1; t2 = λ2 = 0 for the bosonic Laughlin (Fig. 4c) and
Moore-Read (Fig. 4d) states. The gap’s sensitivity to band ge-
ometry is most apparent for the more fragile Moore-Read state:
the state is only stable in a small region, with the largest gaps
(white points) attained at parameters with the lowest values of
σB and ⟨T ⟩ found. The fact that the region of stability is an arc,
rather than a vertical line, demonstrates that ⟨T ⟩ describes inde-
pendent, non-negligible factors influencing the stability of this
state. These phenomena are less evident in the Laughlin state
(Fig. 4c), which remains stable over a wide range of parameter
values.

Because quantum metric-dependent quantities enter at a
higher order than Berry curvature fluctuations in the band ge-
ometry analysis, they should have a subdominant effect on the
gap. In Fig. 5 we control for the effects of large curvature fluc-
tuations by restricting attention to parameter values giving near-
minimal values of σB . Including all such parameters yields a
one-way relationship for the Laughlin and Moore-Read states
(Figs. 5a, c), in the sense that large gaps are obtained only at
low values of ⟨T ⟩, but small gaps can be obtained at any value
of ⟨T ⟩. Further detail is evident if we take parameter values
chosen to give the same value of σB (see the Methods for a de-
scription of the sampling procedure used.) Results for sets of

points chosen to have four different values of σB are shown in
Figs. 5b, d for the Laughlin and Moore-Read states. Removing
the variation in σB reveals a full-fledged negative correlation
between ⟨T ⟩ and the gaps: the trend is approximately linear for
models having curvature fluctuations near the minimum and be-
comes less so as curvature fluctuations are allowed to increase.

Ruby lattice model

Hu, Kargarian and Fiete36 described a Chern insulator model
on the ruby lattice (Fig. 6a). In the limit of total spin polar-
ization, they showed that hopping parameters could be chosen
such that the lowest band had c1 = 1 and a bandgap to band-
width ratio of ∼ 70. The Hamiltonian for this model is

HR(k) = −t
3

∑

j=1

(

e−ik·ajh2j+1,2j−1(k) + h2j+2,2j(k)
)

− t1

3
∑

j=1

(

h2j,2j−1(k) + eik·aj+1h2j+1,2j(k)
)

− t4

3
∑

j=1

(

h2j+3,2j(k) + e−ik·aj+2h2j,2j−3(k)
)

+ h.c. (14)

where hb,c(k) is defined in eq. (12). Here a3 = −a1 − a2 and
the index on a is interpreted cyclically mod 3, but the indices on
hb,c(k) are interpreted cyclically mod 6. The relative offsets db

are as depicted by the numbered sites in Fig. 6a. We considered
the c1 = 1 phase containing the flat-band point found in ref. 36,
with t = 1.0+1.2i, t1 = −1.2+2.6i, and t4 = −1.2. Momen-
tum dependence of the Berry curvature and quantum metric is
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shown in Fig. 6b for parameters which minimize σB and max-
imize the gaps for the Laughlin and Moore-Read states; these
values are listed in Supplementary Table 4. Remarkably, the
complexity of this Hamiltonian works in our favor: one can find

parameter values which greatly reduce the fluctuations in band
geometry relative to the kagomé lattice model, which means
that the ruby lattice model may be tuned to produce a much
closer approximation to lowest Landau level physics.

➀
➁

➂
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Figure 6 | Definition of couplings, band geometry and gaps for the ruby lattice model. (a) Lattice and chirality conventions for hopping terms in the ruby

lattice model Hamiltonian. All nearest-neighbor (arrowed) bonds are the same length. Basis vectors a1,a2 are shown in red; basis elements are shown by

differently colored/numbered sites. Hopping elements are shown with black (t), blue (t1) and brown (t4) edges; arrowheads indicate the chirality convention for

complex hoppings. (b) Band geometry over the reciprocal lattice unit cell spanned by b1,b2, for parameter values minimizing σB and maximizing gaps,

respectively. Axes of ellipses are proportional to the eigenvectors of the quantum metric gα(k). Ellipse color is given by the relative deviation of Berry curvature

Bα(k) from its Brillouin zone-averaged value. (c) Gap ∆ as a function of the average Berry curvature fluctuation σB and averaged trace condition ⟨T ⟩ for the

Laughlin state of N = 8 bosons at ν = 1/2. (d) Gap as a function of (σB , ⟨T ⟩) for the Moore-Read state of N = 10 bosons at ν = 1.
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As a consequence, trends identified in the kagomé lattice
model are manifest here with a much higher degree of correla-
tion. Figs. 6c, d show that the gaps of the Laughlin and Moore-
Read states are strongly correlated with band geometry as mea-
sured by both σB and ⟨T ⟩. In both cases the gap can be seen to
decrease with increasing ⟨T ⟩, even for the same values of σB ;
in particular, the Moore-Read state is only stable in the lower
right half of the plot area. Restricting our attention to parame-
ters yielding small fluctuations in Berry curvature, in Fig. 7 we
display data analogous to that presented for the kagomé lattice
model in Fig. 5. Again, if we only impose an upper bound on
σB we see that it’s not possible to have a large gap for large val-
ues of ⟨T ⟩ (Figs. 7a, c), while upon restricting to specific values
of σB (Figs. 7b, d) we see that the negative correlation between
⟨T ⟩ and the gaps is even tighter, becoming nearly linear for low
σB and gaining more scatter as σB is increased.

Significance of correlations

In this section we describe two approaches to quantifying
the degree of correlation between the band geometry and the
many-body gaps described above. In particular, the fact that
FQH-type states are destabilized by fluctuations in Berry cur-
vature is readily apparent and was anticipated in the first work
on FCIs; in the present work we are interested in possible ad-
ditional dependence on conditions derived from the quantum
metric, so we seek to measure correlation between the gap and
the trace condition ⟨T ⟩. This is not fully straightforward, due
to correlation of ⟨T ⟩ and σB with each other, as evidenced by
the fact that parameter values are not uniformly distributed in
Figs. 4c and 6c.

One approach is to compare data for parameters yielding the
same value of σB , some of which is shown in Figs. 5b, d and
7b, d (see the Methods for the procedure used to sample from
isosurfaces of constant σB). We do not have quantitative pre-
dictions for the functional dependence of the gap on any band-
geometric quantity, so to avoid introducing assumptions we
use Spearman’s ρ as a nonparametric measure of correlation.
This is defined as the linear (Pearson) correlation coefficient
between the rankings of the data points when rank-ordered by
∆ and by ⟨T ⟩, and takes values ranging from +1 for any mono-
tonically increasing function to −1 for any monotonically de-
creasing function.

In Fig. 8 we plot the results of this test for the Laughlin and
Moore-Read data in the kagomé and ruby lattice models. This
score was found to be within ∼ 10% of the linear correlation
between ⟨T ⟩ and ∆ for each isosurface, which indicates the
robustness of our conclusion and implies that all values of σB

considered lie in a weak-fluctuation regime. The general trend
evident in Fig. 8 is that ∆ is highly negatively correlated with
⟨T ⟩ when curvature fluctuations are constrained to be near their
minimum value. As curvature fluctuations are allowed to in-
crease, this relationship becomes less exact, but converges to
an asymptotic value well above 0 for both the Laughlin and
Moore-Read states. This confirms the qualitative picture evi-
dent in Figs. 5b, d and 7b, d.

Alternatively, we can analyze the larger set of data having un-
restricted values of σB , at the cost of assuming linear relation-
ships between all variables; the similarity between the results

a b
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Figure 8 | Correlation between gaps and the trace condition when the

magnitude of Berry curvature fluctuations is held constant. Each data

point shows (the negative of) Spearman’s ρ for the correlation between gap

and averaged trace condition ⟨T ⟩ on separate samples of n = 200 points

sampled from isosurfaces of constant root-mean-square Berry curvature

fluctuation σB . A value of ρ = −1 corresponds to perfectly monotonic

anti-correlation. We show results for Laughlin (dark blue) and Moore-Read

(light blue) states in (a) the kagomé lattice model and (b) the ruby lattice

model. Error bars show the bootstrapped standard error.

for Spearman’s and Pearson’s ρ mentioned above suggest that
this is justified. One can then compute the partial correlation,
denoted here by ρB , as the degree of linear correlation between
the residuals of ∆ and ⟨T ⟩, after first subtracting the best-fit
linear dependence of each on σB ; similarly, this score ranges
from +1 to −1. For the augmented Haldane, kagomé and ruby
lattice models, respectively, we find ρB = −0.91,−0.42 and
−0.62 for the Laughlin state and ρB = −0.77,−0.44 and
−0.46 for the Moore-Read state. Sample sizes were, respec-
tively, n = 1900, 2100 and 1800. The fact that these values are
lower than those obtained by the isosurface method describes
the non-negligible correlation between σB and ⟨T ⟩.

All correlation scores quoted above and shown in Fig. 8 are
statistically significant at the 1% level (at most). This is the
main result of this section: gaps for both states are indepen-
dently sensitive to variations in the trace condition, beyond
the correlations induced in the latter via curvature fluctuations.
This confirms that band geometry plays a significant role in re-
alistic FCI models.

Cross-model comparisons

The band geometry hypothesis claims that the most stable
FQH-like phases are obtained when the band geometry is tuned
to be as close to that of a Landau level as possible. We have
shown above that this holds for several different lattice mod-
els as their couplings are varied, but comparison of the models
shows an apparent contradiction: the gaps reported above are
smallest for the ruby lattice model, despite the fact that this
model can be made to approximate Landau level physics more
closely than the other models studied here.

The resolution of this apparent contradiction lies in the fact
that the models considered have different numbers of tight-
binding sites per unit cell. This factor enters into the interac-
tion term of the Hamiltonian, and hence the gap: because we
have flattened the dispersion of the kinetic term, the interaction
strength is the only energy scale in the problem. In Supple-
mentary Note 4 we give a scaling argument that the strength of
a delta-function interaction in the continuum should be multi-
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plied by a factor of N when discretized to an on-site repulsion
in a model with N bands. This means that, when comparing
the gaps of bosonic Laughlin states in different models, the ap-
propriate quantity to compare is N∆. For the three-body delta-
function interaction which stabilizes the bosonic Moore-Read
state, the same considerations yield a scaling factor of N 2.

In Fig. 9 we compare the gaps for the Laughlin state for
the augmented Haldane, kagomé and ruby lattice models when
scaled by this factor, as a function of the band-geometric pa-

rameters (σB , ⟨T ⟩). The domain of each plot is restricted to
be the common overlap of the three models in (σB , ⟨T ⟩) space.
Because of this restriction, we were unable to perform a mean-
ingful analysis for the Moore-Read state, as it is unstable in
most of this region (compare Figs. 4d, 6d). Despite the fact
that the scaling argument is exact only in the large-N limit and
the models we compare have N = 2, 3 and 6, we find roughly
similar behavior across all three models, both in terms of the
magnitude of the scaled gap and of its dependence on σB and
⟨T ⟩.
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Figure 9 | Cross-model comparison of scaled gaps as a function of band geometry. Panels show interpolated energy gaps of the bosonic Laughlin state, scaled

by the number of bands of each model, for the (a) augmented Haldane, (b) kagomé lattice and (c) ruby lattice models described above. Scaled gaps are plotted as a

function of band geometry as measured by Berry curvature fluctuations σB and the average value of the trace condition ⟨T ⟩. Data are only plotted in the region of

common overlap of the three models in (σB , ⟨T ⟩) space (polygonal outline). The color scale and contours used are identical for all three panels.

DISCUSSION

In this work we have presented numerical results which sys-
tematically map out the robustness of topologically ordered
FQH-like phases in FCI systems with realistic, short-ranged
Hamiltonians and band geometry which is less than perfectly
uniform. We presented quantitative evidence that the band-
geometric quantities identified in ref. 26 remain strongly cor-
related with the size of the gap even when its conditions on
band geometry are not met exactly. This leads us to propose
a geometric stability hypothesis for FQH-like phenomena in
FCIs: in spite of the fact that the GMP algebra is not perfectly
reproduced, we conjecture that an approximate version of the
single-mode approximation correctly describes the low-energy
physics of these FCI models. As a practical corollary, we pre-
dict that single-particle Hamiltonians with more uniform band
geometry — specifically, as measured by the hierarchy of three
criteria — will produce more stable FQH-like states.

The validity of the single-mode approximation in FCIs has
been investigated by a number of other authors using ap-
proaches complementary to that taken here.25,26,33,37 Within the
context of their Hamiltonian approach to the FQHE, Murthy
and Shankar showed that composite fermion degrees of free-
dom could be chosen which reproduce an exact version of the
GMP algebra.38,39 More directly, in ref. 40, the lowest-lying
neutral excitation of the kagomé and ruby lattice models was
found to be well described by the magnetoroton mode of the
corresponding FQH state on a torus, using a phenomenological
mapping between the FQH and FCI Hilbert spaces described in

ref. 41. A related mapping was originally proposed by Qi,42 but
the image of FQH pseudopotential interactions under this map-
ping is not well localized and strongly anisotropic,42–46 making
the relationship to physical FCI Hamiltonians unclear.

Comparing the results from the kagomé and ruby lattice
models, it appears easier to engineer uniform geometry in more
complicated Hamiltonians, both in the sense of having more
tunable couplings and in the sense of having more bands. The
latter property is expected to hold on general grounds, as noted
in refs. 13 and 47. Increasing the size of the unit cell reduces
the effectiveness of a fixed-strength repulsion, however, so an
optimal choice would balance these two factors. This has im-
mediate relevance to experimental design: laboratory Hamil-
tonians are necessarily more complicated than those in ideal-
ized theoretical models (e.g., the proposal in ref. 16 involves an
eight-dimensional parameterization of the applied electric field
used to obtain a synthetic gauge potential.) Performing many-
body simulations on a representative set of parameters in such
a large space is prohibitively time-consuming; the geometric
stability hypothesis can be used to reduce this to a manage-
able subspace. In addition, band geometry may, by definition,
be tuned independently of energetic considerations such as the
bandwidth.

A pressing direction for future work is to further develop
the band geometry hypothesis by investigating its validity in
less straightforward scenarios: stable FCI states where the
Berry curvature is not particularly uniform have also been pro-
posed; furthermore, the stability of the state may also depend
on the filling fraction and the particular state sought to be
stabilized.48,49 Among other aspects which would be interest-
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ing to clarify are the role of bosonic versus fermionic parti-
cle statistics, NN- and longer-ranged inter-particle interactions,
anisotropic interactions induced by the lattice structure, etc. In
particular, the distribution of geometric quantities differs from
band to band; this can be selected by fully filling a number of
bands in a fermionic system, which could lead to new phenom-
ena. One could also consider the wide range of more elabo-
rate FCI models in the literature, possessing, e.g., Chern num-
bers |c1| > 1, non-Abelian Berry curvature arising from mul-
tiple degenerate bands, etc. We direct the reader to the recent
reviews50,51 for a more extensive discussion and bibliography.

METHODS

Parameter space sampling

We study the dependence of the many-body gap on band-
geometric quantities in the Haldane model35 and models pro-
posed for the kagomé8 and ruby36 lattices. The parameter space
for the Haldane model Hamiltonian is small enough that the
vector of parameters t∆ which maximize the gap ∆ may be
found from exhaustive sampling. The parameter spaces for the
other two models are higher-dimensional and non-compact, so
this strategy will not work.

According to the geometric stability hypothesis, the Berry
curvature fluctuations σB should be inversely correlated with
the gap, meaning that it may be employed as a proxy for the lat-
ter which requires far less effort to compute. In Supplementary
Note 5 we derive an expression for the derivative of σB with re-
spect to any parameter appearing in the single-particle Hamil-
tonian, allowing steepest-descent methods to be employed. Of
course, we do not expect the vector of parameters t0 minimiz-
ing σB to precisely coincide with those maximizing the gap,
but if the single mode approximation is applicable, t0 will be
a viable initial guess for t∆, to be refined as described below.
Indeed, a state with a robust topological gap in the presence of
large curvature fluctuations would be of immediate interest as
an FCI phase not describable in terms of an FQH universality
class.

In the neighborhood of t0, a surface of constant σB in pa-
rameter space will be approximated by an ellipsoid given by
the Hessian of σB(t) at t0, which may be calculated by the
method in Supplementary Note 5. We sample points uniformly
from the surface of the ellipsoid defined by the Hessian by the
well-known method of projecting vectors of parameters t sam-
pled from the corresponding multinormal distribution. We then
perturb this ellipsoid by shifting the vectors t radially along the
rays connecting each with t0 until we find parameters t′ such
that σB(t′) is equal to the target value. These isosurfaces of
different parameters with the same value of σB permit us to
study the sub-leading effects of the quantum metric on the gap
predicted by the geometric stability hypothesis: in Fig. 10 we
depict the isosurfaces found for the kagomé lattice model which
were used to generate the data shown in Figs. 5b, d.

Finally, we locate the parameters giving the maximum gap
by fitting a quadratic form

∆(t) = ∆∗ −
1

2

∑

i,j

Σ−1
ij (ti − t∗i )(tj − t∗j ) (15)
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Figure 10 | Isosurfaces of constant Berry curvature fluctuations in the

parameter space of the kagomé lattice model. Parameter values which

minimize the root-mean-square Berry curvature fluctuation σB of the kagomé

lattice model are marked by the large, central black dot. The large red dot

identifies parameter values which yielded the maximum gap for the Laughlin

state of N = 8 bosons at ν = 1/2. Concentric shaded surfaces are

isosurfaces upon which σB takes a constant value equal to 1.05, 1.1, 1.25 and

1.5 times its minimum value (respectively). Blue contours on the walls of the

box are sections through these surfaces at the minimum σB point. Small grey

points identify random samples taken from the σB = 1.25minσB

isosurface, to illustrate uniformity.

to the gaps from the isosurface data and sampling new param-
eters from a Gaussian distribution centered on t∗ with covari-
ance matrix Σ. We have verified that deviations of the actual
t∆ found from this data from the fitted value t∗ are negligi-
ble compared to the scales set by Σ, hence this search does not
need to be iterated further.

Numerical exact diagonalization

Unless explicitly identified otherwise, all data were obtained
from exact diagonalization of the many-body Hamiltonian for
N = 8 bosons interacting with a two-body on-site repulsion at
a filling fraction (ratio of the number of particles to the number
of unit cells) of ν = 1/2 on a periodic lattice of 4 × 4 unit
cells (for the Laughlin-like FCI state) or N = 10 bosons at a
filling fraction of ν = 1 on a lattice of 5 × 2 unit cells, inter-
acting with a three-body on-site repulsion only (for the Moore-
Read-like FCI state). In the main text we also presented ad-
ditional data obtained for the fermionic Laughlin-like state in
the Haldane model with N = 8 particles at ν = 1/3 on a
6 × 4 lattice with two-body nearest-neighbor repulsion. The
fact that the bosonic Moore-Read state is realized in a filled
Landau level means that, relative to the Laughlin state, we are
able to simulate more particles with a many-body Hilbert space
of roughly the same size. Flattening the spectrum of the single-
particle Hamiltonian removes the only other energy scale from
the problem, so the strength of the repulsive interaction sets the
units of the many-body gap ∆.
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Because we do simulations for thousands of parameter val-
ues, a detailed finite-size scaling analysis of each is beyond the
scope of this paper. We have, however, made spot checks by
doing simulations of N = 6 to N = 12 particles at select pa-
rameter values. Representative data is shown in Supplementary
Figure 6. From this analysis, we have concluded that the sys-
tem sizes described above strike an acceptable balance between
accurately approximating the thermodynamic (N → ∞) limit
and making the volume of simulations manageable on the com-
putational resources available to us.

We employ several criteria to identify topological order in the
results of numerical simulations, employing information from
both the many-body energy spectrum and the many-body wave-
functions themselves. We first require that the spectrum has
the correct number of degenerate ground states in the proper
momentum sectors (two states at (kx, ky) = (0, 0) for bosonic
Laughlin-type order, and three states at (kx, ky) = (0, 0), (0, 0)
and (0, 1) for bosonic Moore-Read-type order). In a finite-size
simulation these ground states will only be approximately de-
generate; we require that the gap to the lowest-energy excited
state (out of all momentum sectors; i.e. the indirect gap) be at

least as large as the spread in ground state energies.
We ascertain whether a ground state wavefunction has the

topological order of the Laughlin or Moore-Read state through
properties of its entanglement spectrum:52 we first verify that
the spectrum of the reduced density matrix obtained by tracing
out four bosons is gapped. There is no current quantitative theo-
retical interpretation of the magnitude of the entanglement gap;
instead, the discriminative power of this criterion comes from
requiring that the number of eigenvalues below the gap in each
momentum sector obeys counting rules dictated by the topolog-
ical order of continuum FQH state.11,41 For the lattice geometry
used in our studies, Laughlin-type order in a system of N = 8
bosons at ν = 1/2 is identified by the (1, 2) counting rule (in
the terminology of the previous references), which requires 48
states below the gap at (kx, ky) = (0, 0), 44 states below the
gap in sectors (kx, ky) = (0, 2), (2, 0), and (2, 2), and 40 states
below the gap in all other momentum sectors. Similarly, the
counting rule for Moore-Read-type order in N = 10 bosons at
ν = 1 requires 76 states below the gap at (kx, ky) = (0, 0) and
(0, 1), and 75 states below the gap in all other momentum sec-
tors. Simulations that fail any of the above tests are assigned an
energy gap of zero.
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Supplementary Figure 1 | Effect of Hamiltonian transformation on momentum space distribution

of Berry curvature. We plot the deviations from uniform Berry curvature (neutral grey color) over a unit

cell of the reciprocal lattice spanned by b1,b2, for models treated in the main text. Plots in each column

use the same color scale and set of contours, as indicated. (a) – (c) Berry curvature distribution for the

Haldane, kagomé lattice and ruby lattice models, respectively, at parameter values which minimize the

root-mean-square curvature fluctuation σB over the unit cell. Curvature fluctuations of the ruby lattice

model at its min σB point (c) are too small to be visible on the common scale. (d) – (f) Berry curvature

distribution for the transformed versions of these models used in Supplementary Ref. 1, evaluated the

parameter values minimizing the values of σB as computed with the transformed Hamiltonians.
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Supplementary Figure 2 | Effect of Hamiltonian transformation on Berry curvature-gap

correlations. Representative plot of the correlation between the many-body gap ∆ and root-mean-square

Berry curvature fluctuation σB. Data shown are for the Laughlin state of N = 8 fermions in the kagomé

lattice model with nearest-neighbor repulsion on a 6× 4 lattice. The single-particle parameters used are

t2 = λ2 = 0 and t1 = 1, with the color scale corresponding to λ1. This model and parameters are chosen

to match those used in Supplementary Ref. 1 (compare Fig. 26 of that reference); the thick black line

corresponds to values of σB computed using the transformed Hamiltonian of that reference, while colored

circles denote values of σB computed using the Hamiltonian in the main text. The two sets of data have

the same gaps; only the computed values of σB differ.
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Supplementary Figure 3 | Correlation between fluctuations of Berry curvature and of the quantum

metric. The root-mean-square (RMS) fluctuation of the quantum metric over the Brillouin zone (σg) is

plotted against the RMS fluctuation of the Berry curvature σB, for all parameter values used in the text

for the (a) the kagomé lattice model and (b) the ruby lattice model. Despite sampling a large volume of

the parameter space of both models, the fluctuations in both quantities show a large degree of linear

correlation.
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Supplementary Figure 4 | Gap vs. determinant condition for the kagomé lattice model subject to

constraints on σB. (a) Gaps for the bosonic Laughlin state of N = 8 bosons at ν = 1/2, as a function of

the Brillouin zone average of the determinant condition ⟨D⟩. We only plot gaps for parameter values

which have Berry curvature fluctuations σB less than twice its minimum value. (b) Gap of the bosonic

Laughlin state vs. ⟨D⟩ for coupling values randomly chosen on isosurfaces of constant σB in the space of

couplings. The parameter space sampling procedure used to obtain these sets of points is described in the

main text (see Methods). (c), (d) The same, for the bosonic Moore-Read state of N = 10 bosons at

ν = 1. Note that the same sets of couplings are used in each column.
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Supplementary Figure 5 | Gap vs. determinant condition for the ruby lattice model subject to

constraints on σB. (a) Gaps for the bosonic Laughlin state of N = 8 bosons at ν = 1/2, as a function of

the Brillouin zone average of the determinant condition ⟨D⟩. We only plot gaps for parameter values

which have Berry curvature fluctuations σB less than twice its minimum value. (b) Gap of the bosonic

Laughlin state vs. ⟨D⟩ for coupling values randomly chosen on isosurfaces of constant σB in the space of

couplings. The parameter space sampling procedure used to obtain these sets of points is described in the

main text (see Methods). (c), (d) The same, for the bosonic Moore-Read state of N = 10 bosons at

ν = 1. Note that the same sets of couplings are used in each column.
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Supplementary Figure 6 | Finite-size scaling of the many-body gap in the kagomé lattice model

with nearest-neighbor hoppings. The many-body gap data presented in the main text were obtained for

systems of N = 8 particles, which represents a compromise between the need to accurately estimate the

gap in thermodynamic limit and the need to exhaustively sample the parameter space of single-particle

Hamiltonians using the computational resources available to us. Here we plot the many-body gap ∆ for

the bosonic Laughlin state in the kagomé lattice model with nearest-neighbor hopping t1 = 1, variable

λ1, and next-nearest-neighbor hopping t2 = λ2 = 0. Red, black, green and blue points denote data for

systems with N = 6, 8, 10 and 12 particles, respectively: the behavior changes significantly between

system sizes N = 6 and N = 8, but the gap data for N = 10 and N = 12 closely mirrors that of N = 8,

especially near the maximum of the gap. Inset: finite size scaling of the gap as a function of 1/N for

selected values of λ1. Near the maximal gap, the thermodynamic extrapolation (N → ∞) for the gap

differs from the finite size value at N = 8 by about 10%.
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SUPPLEMENTARY TABLES

Supplementary Table 1 | Parameter values, band-geometric quantities and gaps for the Haldane
model.

minσB max∆L, Fermions max∆L, Bosons

φ 0.225 0.131 0.354

M 0.0 0.0 0.0

σB 0.99326 1.24755 1.12760

σg 2.85734 3.97585 3.25586

⟨D⟩ 0 0 0

⟨T ⟩ 0.46705 0.84597 0.99358

∆ 0.02554 0.17243

As in the main text, we take the hopping amplitudes to be t1 = t2 = 1, with the remaining couplings φ, M as

free variables. Columns list information for the following values of (φ,M) of interest: those which minimize Berry

curvature fluctuations σB (obtained using the steepest-descent procedure described in Supplementary Note 5) and

those maximizing the many-body gap ∆ for the Laughlin state for N = 8 fermions at ν = 1/3 and N = 8 bosons at

ν = 1/2. The latter two parameter values were found using our parameter space sampling procedure (see Methods).

For these parameters, we compute the root-mean-square average over the Brillouin zone of fluctuations in the Berry

curvature (σB) and quantum metric (σg), as well as the Brillouin zone averages of the determinant (⟨D⟩) and trace

(⟨T ⟩) conditions.
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Supplementary Table 2 | Parameter values, band-geometric quantities and gaps for the augmented
Haldane model with third-nearest neighbor hopping.

minσB max∆L max∆MR

t2 1.0 0.55 0.75

t3 −1.0 −0.65 −0.65

σB 0.14699 0.43579 0.34909

σg 3.00134 1.70829 2.29776

⟨D⟩ 0 0 0

⟨T ⟩ 3.44154 0.75821 1.46273

∆ 0.19153 0.12614

As in the main text, we fix t1 = 1, φ = π/2, and M = 0, allowing t2, t3 to vary. Columns list information for

the following values of (t2, t3) of interest: those which minimize Berry curvature fluctuations σB (obtained using

the steepest-descent procedure described in Supplementary Note 5) and those maximizing the many-body gap ∆ for

the Laughlin state of N = 8 bosons at ν = 1/2 and for the Moore-Read state of of N = 10 bosons at ν = 1.

The latter two parameter values were found using our parameter space sampling procedure (see Methods). For these

parameters, we compute the root-mean-square average over the Brillouin zone of fluctuations in the Berry curvature

(σB) and quantum metric (σg), as well as the Brillouin zone averages of the determinant (⟨D⟩) and trace (⟨T ⟩)

conditions.
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Supplementary Table 3 | Parameter values, band-geometric quantities and gaps for the kagomé
lattice model.

minσB max∆L max∆MR

λ1 0.745 0.725 0.934

t2 −0.361 −0.361 −0.168

λ2 0.078 0.055 −0.129

σB 0.22178 0.23231 0.34967

σg 1.31746 1.25972 1.25434

⟨D⟩ 0.09608 0.09857 0.41665

⟨T ⟩ 0.79612 0.70181 0.42712

∆ 0.17614 0.08246

We fix an energy scale by setting t1 = 1 and letting the remaining model parameters (λ1, t2, λ2) vary. Columns

list information for the following parameter values of interest: those which minimize Berry curvature fluctuations

σB (obtained using the steepest-descent procedure described in Supplementary Note 5) and those maximizing the

many-body gap ∆ for the Laughlin state of N = 8 bosons at ν = 1/2 and for the Moore-Read state of of N = 10

bosons at ν = 1. The latter two parameter values were found using our parameter space sampling procedure (see

Methods). For these parameters, we compute the root-mean-square average over the Brillouin zone of fluctuations in

the Berry curvature (σB) and quantum metric (σg), as well as the Brillouin zone averages of the determinant (⟨D⟩)

and trace (⟨T ⟩) conditions.
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Supplementary Table 4 | Parameter values, band-geometric quantities and gaps for the ruby
lattice model.

minσB max∆L max∆MR

Im t 1.857 1.886 1.672

Re t1 0.685 −0.569 −1.261

Im t1 2.079 2.536 2.789

t4 −2.118 −2.022 −2.007

σB 0.13398 0.14347 0.17980

σg 0.47669 0.21574 0.38617

⟨D⟩ 0.17740 0.25569 0.30456

⟨T ⟩ 0.17168 0.08262 0.11139

∆ 0.10173 0.03132

We fix an energy scale by setting Re t = 1 and letting the remaining parameters (Im t, t1, t4) vary. Columns list

information for the following parameter values of interest: those which minimize Berry curvature fluctuations σB

(obtained using the steepest-descent procedure described in Supplementary Note 5) and those maximizing the many-

body gap ∆ for the Laughlin state of N = 8 bosons at ν = 1/2 and for the Moore-Read state of of N = 10 bosons

at ν = 1. The latter two parameter values were found using our parameter space sampling procedure (see Methods).

For these parameters, we compute the root-mean-square average over the Brillouin zone of fluctuations in the Berry

curvature (σB) and quantum metric (σg), as well as the Brillouin zone averages of the determinant (⟨D⟩) and trace

(⟨T ⟩) conditions.
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SUPPLEMENTARY NOTES

Supplementary Note 1: Gauge freedom and geometric phases in band Hamiltonians

Here we discuss issues arising in the definition of Berry curvature for Bloch bands which are absent

from the general formalism of geometric phases. The issues identified here are not new;2,3 we discuss

them here in order to demonstrate that the values the Berry curvature and quantum metric take at a specific

crystal momentum k are unambiguously defined and, in principle, measurable.

Berry curvature arises in physical applications at the as the commutator of band-projected position oper-

ators; as examples, we cite the semiclassical approximation to the orbital magnetization4 which contributes

to anomalous thermoelectric transport, and the intrinsic contribution to the anomalous Hall conductance5

σint
xy =

e2

!

∫

ddk

(2π)d
f(Ek)B(k), (1)

Other applications are reviewed in Supplementary Ref. 6. We mention these observables here because they

depend on the Berry curvature through forms other than its Brillouin zone (BZ) average (the Chern num-

ber), meaning that the distribution of curvature within the BZ is an experimentally meaningful quantity.

There is also a recent experimental proposal to measure the Berry curvature directly.7

Textbook discussions of Berry’s phase are usually framed in the context of adiabatic evolution of a

quantum state tracing out a closed cycle in some parameter manifold. In Chern insulator applications, the

parameter manifold is the Brillouin zone, and the instantaneous eigenfunctions at a parameter k are the

spatially periodic part of the Bloch functions uα
b (k). The Berry connection is Aα(k) = −i⟨uα

k
|∇k|uα

k
⟩,

which has curvature given by

Bα(k) = −i
N
∑

b=1

(

∂uα∗
b

∂kx

∂uα
b

∂ky
−

∂uα∗
b

∂ky

∂uα
b

∂kx

)

. (2)

The first Chern number is defined as the surface integral of the Berry curvature

c1 =
1

2π

∫

BZ

d2k Bα(k) (3)

and is topologically quantized to integer values due to the fact that the Brillouin zone is a compact manifold

(a torus).
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Eigenstates of the band Hamiltonian

Hbc(k) =
N∑

α=1

Eα(k)u
α∗
b (k)uα

c (k) (4)

are only defined up to an overall phase

|uα
k⟩ → eiφα(k)|uα

k⟩, (5)

where φα(k) is any smooth function satisfying φα(k + G) = φα(k). This is the gauge symmetry of

the band Hamiltonian, and it is the only such symmetry in the absence of energy degeneracies (assumed

for simplicity throughout this section). As with the U(1) gauge symmetry of electromagnetism, gauge

transformations of the form (5) alter the Berry connection but leave the Berry curvature (analogue of the

magnetic field) and quantum metric unchanged, as can be seen from their explicitly gauge-invariant forms

(28), (29).

The reader will note that the band Hamiltonians used in this article do not have the periodicity of the

reciprocal lattice; nor do their eigenfunctions |uα
k
⟩, and so neither can immediately be viewed as functions

on the BZ torus defined by identifying the points k and k + G for any reciprocal lattice vector G. We

first explain that the formalism of band geometry is unchanged in this situation, and then argue that this

choice of basis is the canonically correct one, in the sense of corresponding to the observable quantities

mentioned above.

Because the full Hamiltonian is periodic in real space, Bloch’s theorem implies

uα
k(r = db) ≡ ⟨0b|uα

k⟩ =
∑

G

ck−Ge
iG·db (6)

is unchanged under db → db +R; in other words, there exists a unitary matrix UG = eiG·r̂ such that

uα
b (k+G) =

N∑

c=1

(UG)bcu
α
c (k), (7)

for all k,α. Because UG is independent of k, it drops out of the expressions for the Berry curvature and

quantum metric, which are therefore periodic in k.

One could also obtain manifestly periodic Bloch functions by performing momentum-dependent phase

shifts c†b,k → e−irb·kc†b,k, with different offsets rb for each sublattice b, so that the transformed Bloch

functions are invariant under k → k+G: the transformed curvature and metric are then periodic as well.
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The resulting Hamiltonian is, of course, gauge-inequivalent to the original one, which can be seen from

the fact that the curvature itself changes: under transformations

uα
a (k) → ũα

b (k) = eirb·kuα
b (k) (8)

for b = 1, . . . ,N , the Berry curvature at k changes by

B̃α(k)− Bα(k) =
N∑

b=1

rb,y
∂

∂kx
|uα

b (k)|
2 − rb,x

∂

∂ky
|uα

b (k)|
2. (9)

Because this is a sum of total derivatives, the surface integrals of B̃α(k) and Bα(k) yield the same Chern

number. The difference itself, however, only vanishes when rb is the same for all b, which is the gauge

transformation (5).

Phase shifts of the form (8) were employed in recent publications1,8 to obtain band Hamiltonians that

were periodic in k. This was described as a “gauge transformation” in these references, but as we’ve noted,

the only gauge symmetry of the Hamiltonian is with respect to bands (i.e. U(1) rotations in the eigenbasis

γα†
k

→ e−iφα(k)γα†
k

). For the transformations made in Supplementary Ref. 1, the difference in curvature

fluctuations is substantial, as shown in Supplementary Fig. 1 for the Haldane, kagomé lattice and ruby

lattice models. Note that each panel of this figure shows the curvature distribution for parameters which

minimize σB as computed with each panel’s respective Hamiltonian; i.e. they depict the closest one may

get to uniform band geometry in the parameter space of the Hamiltonian considered.

For completeness, we note that unlike these single-particle properties, the many-body gap is invariant

under the generalized phase shift (8), because single-particle density operators ρk are left unchanged by

the transformation. As an example, in Supplementary Fig. 2 we reproduce the results shown in Fig. 26 of

Supplementary Ref. 1, along with the fluctuations in the canonically defined Berry curvature for the same

system. The latter are lower than in the transformed Hamiltonian used in that reference, meaning that the

negative correlation between σB and the gap is stronger than depicted there: introducing phase shifts by

hand distorts the Berry curvature distribution to a degree which significantly affects the conclusions one

may draw from that data.

We have shown that band geometry may be defined for non-periodic band Hamiltonians; we now

argue that the non-periodic basis used in this paper is in fact the one measured by any (direct or indirect)

experimental probe, and hence is the only one which should be regarded as physical. The feature possessed

by Bloch bands which is absent from the general theory of Berry phases is the fact that the parameter space

in question is defined via the Fourier transform of the kinematic setting of the physical system. Because
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this is a global transform, in doing the Fourier sum

|k, b⟩ =
1√
Nc

∑

R

eik·(R+db)|R, b⟩, (10)

we have already implicitly chosen a basis for the band Hilbert space at each k. For example, the the

transformations made in Supplementary Refs. 1 and 8 correspond to defining modified tight-binding states

on the reciprocal lattice via

χ̃b(k) =
1√
Nc

∑

R

eik·Rχb(r−R− db) (11)

where χb(r− (R+ db)) = ⟨r|Rb⟩; this is manifestly invariant under k → k+G, but in doing so the po-

sition operator is no longer consistently defined for orbitals with different offsets db: the transformation is

equivalent to shifting the orbitals of the crystal basis to the origins of various lattice cells. As an obviously

apparent consequence, the crystal symmetry of the transformed Berry curvatures in the second row of

Supplementary Fig. 1 are unphysically broken. Because experiments probe position-space quantities, we

conclude that the basis defined by (10) and used in this paper is the canonical, physically relevant quantity.

Supplementary Note 2: Relation between the trace and determinant inequalities

The inequalities

tr gα(k) ≥ |Bα(k)|; (12)

det gα(k) ≥ Bα(k)
2/4, (13)

were proved in Supplementary Ref. 9. Assuming the quantum metric is nondegenerate, it may be factored

as

gα =
√
gα

⎛

⎝g̃11 g̃12

g̃12 g̃22

⎞

⎠ (14)

where the scalar
√
gα = (det gα)1/2 and the second factor is a unimodular matrix. Using the standard

inequality between arithmetic and geometric means,

tr gα =
√
gα(g̃11 + g̃22) ≥ 2

√
gα

√
g̃11g̃22. (15)
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By unimodularity
√
g̃11g̃22 =

√
1 + g̃212 ≥ 1, so

(tr gα(k))2 ≥ 4 det gα(k), (16)

with equality if and only if gα is proportional to the identity matrix. Because the Berry curvature is alge-

braically independent of the components of the quantum metric, we can conclude that saturation of trace

inequality (12) implies saturation of the determinant inequality (13). In physical terms, a constant curva-

ture and metric that saturate the determinant inequality imply the closure of a modified Girvin-MacDonald-

Platzman (GMP) algebra; saturation of the trace inequality then corresponds to the stronger condition that

the algebra of band projected density operators is not only isomorphic to the GMP algebra, but identical

to it.

Supplementary Note 3: Two-band models

By adding suitably chosen exponentially-localized couplings, any two-band Hamiltonian may be

brought to a band-flattened form parameterized by a unit 3-vector Hflat(k) = −n̂(k) · σ, where σ =

(σ1, σ2, σ3) are the three Pauli matrices. The eigenvectors of the original and flattened Hamiltonians are

identical (by construction) and can be obtained analytically:

u±(k) =
1√

2(1∓ n̂3)

⎛

⎝ n̂3 ∓ 1

n̂1 + in̂2

⎞

⎠ . (17)

Using this expression gives the Berry curvature and quantum metric of the lower band as

B = 1
2 n̂ · ∂xn̂× ∂yn̂; (18)

gµν = 1
4∂µn̂ · ∂νn̂, (19)

since n̂ · ∂µn̂ = 0. Using this and standard identities relating multiple dot and cross products, it follows

that

gxx(k)gyy(k)− gxy(k)
2 −

1

4
B(k)2 = 0 : (20)

the determinant condition det gα(k)− Bα(k)2/4 = 0 is necessarily satisfied for any two-band model. As

our results with the kagomé and ruby lattice models show, this ceases to be the case for models having

more than two bands.
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Supplementary Note 4: Scaling of gaps with the number of bands

Fractional Chern insulators (FCIs) exhibit states which may be thought of as discretizations of contin-

uum fractional quantum Hall (FQH) states, in that they have identical topological and long-wavelength

properties (see, e.g., Supplementary Ref. 10). To that end, consider a continuum position-space wave-

function ψ(r) which is discretized to set of values ψb in a tight-binding model with N sites per unit cell.

The normalization conditions on the corresponding Bloch functions are

∫

UC

dr |uk(r)|2 =
N
∑

b=1

|uk,b|2 = 1, (21)

for any k, where the integral is taken over a unit cell of the lattice. In the limit of large N , we may assume

that uk(r) at r = db is proportional to the discretized value uk,b. Approximating the continuum normal-

ization integral by a sum introduces a factor of 1/N from the integration measure, which is compensated

by the scaling

uk(db) ∼
√
Nuk,b. (22)

Now consider the matrix elements of the delta-function interaction employed in the main text to stabi-

lize the bosonic Laughlin state. In the continuum, these are

⟨k3k4|V̂ |k1k2⟩ = V

∫

dr u∗
k3
(r)u∗

k4
(r)uk1

(r)uk2
(r)

∼
V

N
∑

b

u∗
k3
(db)u

∗
k4
(db)uk1

(db)uk2
(db),

times a momentum-conserving δ-function. Comparing this with an on-site interaction in the discretized

model

Vdisc

∑

b

u∗
k3,bu

∗
k4,buk1,buk2,b

and using (22) shows that the discretized interaction strength should be scaled as

Vdisc ∼ VN (δ-function). (23)

This means that, given gaps which have been obtained for the FCI Laughlin state in two lattice models

A,B, the quantities which should be compared are NA∆A and NB∆B (assuming that the single-particle

dispersion has been flattened; i.e. that the gap is only set by the interaction term.) Similar considerations

show that for the three-body delta-function interaction used to stabilize the Moore-Read state, the leading
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scaling should be Vdisc ∼ VN 2.

We note that the above argument is not as simple as it may appear: we’re implicitly assuming ψ(r)

has the character of a low-lying eigenstate — more specifically, that it has support over almost all tight-

binding orbitals. This is the case when uk,b is a randomly chosen vector from the N -dimensional band

Hilbert space, but one can easily construct counterexamples violating this assumption: for example, let

lattice model B (with NB > NA) have a block-diagonal kinetic term, the first block of which is identical

to the kinetic term of model A and the second block of which describes additional, trivial “spectator”

orbitals with very high occupation energies. The low-lying bands uB
k,b will have vanishing amplitude

on these spectator orbitals, and will numerically be identical to the corresponding eigenfunctions uA
k,b of

model A, with zeros appended. In this scenario, the eigenfunction scaling assumption (22) is violated, and

the interaction strength (and gap size) would not scale with the number of spectator orbitals.

The scaling argument can be placed on a more rigorous footing in the context of the Hofstadter model11

in the limit of small flux per plaquette φ = 1/N , which offers a sequence of lattice models (with N bands)

which converges to the continuum FQHE in the N → ∞ limit. In this case, the scalings (22), (23) are

numerically observed to be obeyed to high accuracy.12 For the case of the FCI models studied in this work,

we know the ground states of different models lie in the same universality class as the continuum FQHE

state (as can be determined by topological order, done here by entanglement spectrum counting), but we

do not expect, e.g., the ruby lattice model ground state to be an interpolation of the kagomé lattice model

ground state. The fact that we observe the scaled gaps to be so close to each other provides an a posteriori

confirmation of this argument’s validity even for the relatively small values of N = 2, 3, 6.

Supplementary Note 5: Expansion of band-geometric quantities in parameter space

The Berry curvature and quantum metric are defined in terms of the derivatives of a wavefunction over

some parameter manifold. For both numerical and theoretical purposes, it becomes convenient to recast

these expressions in terms of derivatives of the Hamiltonian itself, rather than its eigenfunctions, since

ordinarily only the former is known analytically. This, of course, is not a new observation.13

In order to avoid overall phase ambiguities and the necessity of using multiple charts to cover the

Brillouin zone (BZ) in topologically non-trivial situations, it’s preferable to work with the occupied band

projector Pα = |k,α⟩⟨k,α|, instead of the eigenfunction |k,α⟩ itself. In these terms, the Feynman-



17

Hellman theorems are

∂λEα = tr Pα ∂λH; (24)

∂λPα = Rα ∂λH Pα + Pα ∂λH Rα, (25)

where the projected resolvent operator Rα is

Rα =
∑

β ̸=α

|β⟩⟨β|
Eα − Eβ

=
1− Pα

Eα −H
. (26)

Equations (24) and (25) hold for any parameter λ upon which the Hamiltonian smoothly depends, and

they are valid for arbitrary values of λ and hence may be further differentiated.

Assuming no additional degeneracies, (Eα −H) may be inverted in the subspace orthogonal to |k,α⟩,

and

∂λRα = −R2
α ∂λH Pα − Pα ∂λH R2

α −Rα∂λ(Eα −H)Rα. (27)

The relations (24), (25) and (27) then form a closed system and may be iterated to any order to develop

the Taylor expansion of band-geometric quantities.

For example, the Berry curvature and quantum metric for a single occupied Chern band are14,15

Bα = 2 Im tr Pα ∂yH R2
α ∂xH, (28)

gαµν = Re tr Pα ∂µH R2
α ∂νH. (29)

The derivative of the Berry curvature with respect to a coupling λ follows from a straightforward compu-

tation as

∂λBα = 2 Im tr Pα

{

−2(∂λEα)∂yH R3
α ∂xH + ∂yH R2

α ∂x,λH + ∂y,λH R2
α ∂xH

+ ∂yH Rα(∂λH Rα +Rα ∂λH)Rα ∂xH

+
[(

∂λH Rα ∂yH R2
α ∂xH + (∂xEα)∂λH R3

α ∂yH
)

− (x ↔ y)
]}

. (30)

Other quantities such as the Hessian ∂λ∂λ′Bα may be calculated in a similar manner, although the algebra

rapidly becomes tedious. These may, in turn, be used to find the variation in Brillouin zone-averaged

quantities with respect to couplings in the Hamiltonian; for example, denoting by ⟨· · · ⟩ the Brillouin zone
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average,

c1 =
ABZ

2π
⟨B⟩, (31)

σB =
ABZ

2π

√
⟨B2⟩ − ⟨B⟩2, (32)

and so ∂λσB =
(ABZ/2π)2

σB

⟨B∂λB⟩. (33)

Here we’ve made use of the fact that ∂λ⟨B⟩ = 0 while we remain in the same topological phase, which can

easily be checked during numerical computations. Using (30) in (33) then permits us to rapidly perform

a steepest-descent minimization of Berry curvature fluctuations, even in a high-dimensional parameter

space.
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