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Abstract

In event-related potentials (ERP) and other large multi-dimensional neuroscience datasets,
researchers often select regions-of-interest (ROls) for analysis. The method of ROl selection can
critically affect the conclusions of a study by causing the researcher to miss effects in the data or to
detect spurious effects. In practice, to avoid inflating Type | error rate (i.e., false positives), ROlIs are
often based on a priori hypotheses or independent information. However, this can be insensitive to
experiment-specific variations in effect location (e.g. latency shifts) reducing power to detect effects.
Data-driven ROl selection, in contrast, is non-independent and uses the data under analysis to
determine ROI positions. Therefore, it has potential to select ROls based on experiment-specific
information and increase power for detecting effects. However, data driven methods have been
criticized because they can substantially inflate Type | error rate. Here we demonstrate, using
simulations of simple ERP experiments, that data-driven ROl selection can indeed be more powerful
than a priori hypotheses or independent information. Furthermore, we show that data-driven ROI
selection using the aggregate-grand-average from trials (AGAT), despite being based on the data at
hand, can be safely used for ROl selection under many circumstances. However, when there is a
noise difference between conditions, using the AGAT can inflate Type 1 error and should be avoided.
We identify critical assumptions for use of the AGAT and provide a basis for researchers to use, and

reviewers to assess, data-driven methods of ROl localization in ERP and other studies.

Abstract Word Count: 245
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Introduction

Analysis of neuroimaging data (e.g., EEG, MEG, MRI) can involve hundreds or thousands of
statistical tests. A significant challenge in analysis of such data is how, with high power, to detect
effects without increasing the Type 1 error (false positive) rate. Given that experiments typically
show effects only for a small subset of the recorded data, one common approach is to select a
region-of-interest (ROI) across one or more dimensions in the data. Correct identification of the ROI
is often critical to the results of the study. If it is chosen incorrectly, then relevant effects may be
missed, inflating the Type Il error rate. On the other hand, if many locations are tested
simultaneously (mass univariate) without proper correction or biased procedures are used for ROl
selection (Kilner, 2013; Kriegeskorte, Simmons, Bellgowan, & Baker, 2009), then this can inflate the
Type | error-rate (i.e., false positives). Inflation of Type | error rate, along with low power (Button et
al., 2013) and publication bias (Easterbrook, Gopalan, Berlin, & Matthews, 1991; Rosenthal, 1979),
are serious issues which have significant knock-on consequences for the reliability of the scientific

literature (Colquhoun, 2014).

ROIs are commonly selected using a priori hypotheses or based on independent data (Kilner,
2013; Luck, 2014). For instance, boundaries of an ROl for an event-related potential (ERP) study of
the face-sensitive N170 component (e.g., 150-190 ms., electrodes P7/P8) may be based on the ROI
used in or location of significant effects in a previous study (e.g., Towler & Eimer, 2014). This
approach makes no reference to features of the data under analysis and it is safe and unbiased (i.e.,
does not inflate Type | errors) because ROl selection cannot be driven by noise fluctuations in the
data (Kilner, 2013; Luck, 2014). This approach is widely used in ERP and event-related field (ERF in

MEG) research.

However, there can be significant variation in the temporal or spatial location of effects
between experiments due to differences in design, stimulus characteristics (e.g., Flevaris, Robertson,

& Bentin, 2008; Zhang & Luck, 2009), and unknown noise factors. For example, the attention-related
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ERP component, N2pc (Luck & Hillyard, 1994), appears later in time for weaker stimuli than for
stronger stimuli (e.g., Brisson, Robitaille, & Jolicoeur, 2007). Although precedents for such stimulus-
based effect shifts may be available in some cases, this will often not be the case, especially because
the point of many experiments is to study an ERP component under novel conditions. Furthermore,
even when precedents are available, there can be several different options (especially for well-
studied effects), often with no clear rationale for choosing amongst them. This provides
opportunities for post-hoc “fishing” and without correction, can inflate Type | error rates (Simmons,
Nelson, & Simonsohn, 2011). ROl selection based on hypotheses or independent data cannot usually

account for inter-experiment variation and this may reduce the probability of detecting an effect.

For optimal detection of effects, the ROl selection process should be sensitive to
experiment-specific features of the data, i.e., data-driven. A data-driven approach would use
features of the data under analysis to position the ROI. In the N170 example above, data-driven ROI
selection may, for instance, search through the observed data in space and time and position the
ROI at the largest negative peak within a pre-determined time period (e.g., Caharel et al., 2013), e.g.
120-240 ms. (de Gelder & Stekelenburg, 2005), and spatial window on the scalp. This would allow
the ROl selection process to account for the experiment-specific location of the N170-associated
peak. This may or may not overlap with the locations of previous findings. Although peaks are
common and easily quantifiable features-of-interest in ERP studies, this is by no means the only
relevant, or even appropriate, feature for data-driven analysis (Luck, 2005, 2014). Other more
sophisticated features have been used (Koenig, Stein, Grieder, & Kottlow, 2014; Ten Caat, Lorist,
Bezdan, Roerdink, & Maurits, 2008). The appropriate feature should be determined by hypothesis,
theory, or a priori assumptions. We focus on peaks here because they are commonly used and easily

quantifiable.

Data-driven approaches to ROl localization, especially, but not only, in ERP research, have

faced criticism that they can inflate Type | error rates (Kilner, 2013; Kriegeskorte et al., 2009; Luck,
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2014; Vul, Harris, Winkielman, & Pashler, 2009). Publication guidelines (Keil et al., 2014) and
methods books (Luck, 2014) specifically warn about the dangers of this type of ROl localization. This
is because the data features used for selection (e.g., a peak) can be affected by random noise. If this
noise is not independent of the contrast-of-interest (e.g. difference between conditions) then using
it for ROl-selection will inflate Type | errors. Similar issues have arisen and garnered significant
attention in FMRI (e.g., Kriegeskorte et al., 2009; Vul et al., 2009) and exploratory behavioural
research (e.g., Simmons et al., 2011; Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011).
Nonetheless, we believe that some researchers already employ some form of data-driven approach
despite the fact that there are few, if any, published and empirically-validated data-driven ROI
selection procedures for ERP data. For instance, some researchers select peaks on what we will call
the aggregate-grand-average-of-grand-averages (AGAGA). In a simple experiment with two
conditions, this is simply the average of the two condition grand average waveforms (Figure 1E).
However, whether, and under which conditions, this waveform is unbiased is not completely clear.
This leaves room for incorrect use which will inflate false positive rates. Thus, to avoid criticism,
many researchers may avoid using data-driven methods altogether. This has the consequence of

missing opportunities to increase power.

Our goal is to demonstrate empirically that data-driven ROI selection can be used safely in
ERP (and, by extension, other) experiments and thereby take advantage of study-specific
information to reduce Type Il errors, while still maintaining Type | error rate at 5%. We will focus on
ERP data because ROIs are routinely used in ERP analysis, ERP work forms a large body of cognitive
neuroscience research, and because recent criticism suggests that data-driven approaches used in
this area may be biased or, at least, poorly reported (Kilner, 2013, 2014). However, the basic issues
apply, in principle, to other types of data in which ROls are used and similar issues can arise, e.g.,
MEG event-related fields (ERFs), psychophysiology, eyetracking (e.g., von der Malsburg & Angele,

2015).
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To perform ROl selection, we will compute what we call the aggregate-grand-average-from-
trials (AGAT), which is similar to the use of orthogonal contrasts for ROl-selection in FMRI research
(Kriegeskorte et al., 2009), and demonstrate that selection of ROIs based on this waveform is
unbiased and does not inflate Type | error rates. In the simplest case, the AGAT is computed by
aggregating all of the individual trial waveforms/timeseries from all participants and conditions and
averaging across them to form a single timeseries (Figure 1F), the AGAT. It is important to notice that
the AGAT is, in some circumstances (see Simulation 2), distinct from the AGAGA, described above,
which is more naturally derived from the typical ERP processing pipeline (Figure 1E). We will show
that AGAT-based ROl-selection is safe for both balanced (Simulation 1) and unbalanced designs (i.e.,
different amounts of data between conditions, Simulation 2), demonstrate conditions under which it
can fail (Simulation 3), and establish its power relative to widely used ROI-selection based on
independent data (Simulation 4). Importantly, we will also examine some of the assumptions that
are critical for proper use of the AGAT method and which are also likely relevant to other ROI
selection methods. In particular, use of the AGAT may not be effective if the waveform morphology
and latency of ERP features-of-interest (e.g., peaks) differs substantially between the conditions (see
discussion for more detail). The results and interpretation of these simulations will empower
researchers and reviewers to make educated decisions about data-driven ROI selection and,
hopefully, prompt further discussion and method development in this domain. To support our
claims, we will conduct null hypothesis data simulations, under various conditions, to assess the
Type | error rate and also power simulations associated with using the AGAT for ROl selection in an
ERP experiment with realistic EEG noise and two ERP deflections of different polarity (to show

generalizability).

Simulation 1: AGAT Type | Error Rate

Simulation 1 focused on estimating the Type 1 error rate associated with using data-driven ROls

selected using the data-driven AGAT waveform. It compared this to other data-driven ROls including
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the already discredited difference wave (Kilner, 2013) and the AGAGA. To test generality across
different types of data, Simulation 1 used three different ERP signal types. One contained noise-only
data (Simulation 1A). The other two had realistic ERP deflections (P300, Simulation 1B; and N170,
Simulation 1C) added to the noise in individual trials so that the grand averages contained ERP-like
waveform morphology. It is not practically possible to simulate all possible ERP waveform types.
However, by using these three different types of ERP data (noise-only, negative polarity ERP, and
positive polarity ERP), including two widely-used ERP components, we aimed to test whether our
conclusions about the safety of the AGAT are significantly affected by the exact morphology and
polarity of the ERP waveform. We expected that the AGAT-based ROIs will maintain Type | error
rates at 5% whereas selecting ROls based on the difference wave will substantially inflate Type |

error rates.

Method

We performed 12 versions of Simulation 1 in R (R Core Team, 2014), version 3.1.0. These 12
versions arose from varying two orthogonal factors. First, we varied the signal content of the data:
(Simulation 1A) EEG Noise-only, (Simulation 1B) Noise+P300, and (Simulation 1C) Noise+N170.
Within each of these three versions, we also created 4 variations with different numbers of channels
in the data (1, 8, 16, or 32). The label Simulation 1A refers to the class of all simulations containing
Noise-Only data. The label 1A-16Ch refers to the single simulation involving noise-only data with 16
channels. For each individual simulation, we generated data for 10,000 experiments, each having
two conditions with 16 participants, 50 trials per condition and either 1, 8, 16, or 32 channels of
data. Each trial comprised 900 sample points with a sampling rate of 1000 Hz and time points -100 to
800 ms. The EEG noise time series (e.g., Figure 1A) for each individual trial was generated by
summing 50 sinusoids with randomly (without replacement) chosen frequencies (integer values 1-
125 Hz) and random phases (with replacement, different across frequencies and trials), 0-2rt (Yeung,

Bogacz, Holroyd, & Cohen, 2004). Each sinusoid was scaled according to its frequency’s power in the
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human EEG power spectrum (Figure 1C; source http://www.cs.bris.ac.uk/~rafal/phasereset/) and
normalized to the 1 Hz amplitude. The resulting noise waveform was multiplied by 20 pV to increase
its overall amplitude. The noise in each channel was created independently without spatial or

temporal autocorrelation.

For Simulations 1B and 1C with ERP signals, we added one of the ERP signal waveforms
(Figure 1D) to the EEG noise (produced as above) on each trial (e.g., Figure 1B), equivalently in both
conditions. ERP waveforms were derived from grand averages in previous studies in our group; P300
(fake condition in Bowman et al., 2013) and N170 (unpublished data)’. The ERP peak amplitudes
were scaled such that the maximum for P300 was at 8 and the minimum for N170 was at -8. This

was done to ensure that signal-to-noise ratio of the two signals was equivalent.

For each of the 10,000 experiments within a simulation, we derived three waveforms to be
used in ROI selection: the Difference Wave, the aggregate-grand-average-from-grand-averages
(AGAGA), and the aggregate-grand-average-from-trials (AGAT). The difference wave was calculated
by, within each condition, A and B, creating participant ERPs (i.e., averaging across trials within each
condition for each participant, see Figure 1E) and then averaging these participant ERPs into a grand
average for each condition, GA, and GA;. The difference wave was the subtraction of the two grand
average waves, GA, - GAg. The AGAGA was calculated by averaging the two grand average
waveforms. The AGAT waveform was calculated by aggregating all of the individual trial waveforms
from all participants and both conditions into a single group (i.e., 2 conditions x 50 trials x 16
participants = 1600 trials) and averaging the waveforms (Figure 1F). In Simulation 1, the AGAGA and

AGAT were equivalent.

The ROIs on the difference, AGAGA, and AGAT waves in each experiment were positioned
for detecting the relevant peak: Simulation 1A (Noise-Only), minimum value (arbitrarily chosen);
Simulation 1B (Noise+P300), maximum value to detect P300 peak; Simulation 1C (Noise+N170),

minimum value to detect N170 peak. For data with ERP signals, the rule was chosen to identify the
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feature of interest in the AGAGA/AGAT (e.g., N170 peak is a minimum). For noise-only data, the rule
was arbitrarily set to locate a minimum. Results were equivalent when we used a maximum rule for
noise-only data. An unsigned rule was also implemented for noise-only data and produced
equivalent results for the AGAT but further inflated the Type | error rate for difference wave based
ROls. For data with more than one channel, the ROl was selected as the maximum or minimum
across the two dimensional time x channel space and the ROl was centred at a channel-time

coordinate.

We conducted an unpaired-samples t-test between conditions at each ROl location. This
used individual participants’ ERP amplitudes at the ROl location (e.g. 2 groups of 16 amplitudes). We
also conducted these t-tests using four integration windows of different sizes (10, 20, 50, 100
samples) to understand their effect and to account for common practice of averaging over
intervals/windows around an ROl center point. In these tests, voltage in each participant’s ERP was
averaged (across time) within the window centred at the ROI position. For each simulation, we
estimated the Type | error rate for each combination of ROI-type and integration window as the
percentage of experiments with a significant difference between conditions. We computed 95%
confidence intervals of the type | error rate in each simulation with the bootstrapping function in R
using 5000 bootstrap replicates and the “basic” bootstrap method. This involved resampling the

original distribution of 10000 p-values and recalculating the type | error rate for each replicate.

Results and Discussion

In Simulation 1 we estimated the Type | Error Rate associated with AGAT-based ROls. As
expected from previous work (Kilner, 2013), the Type | Error rate for difference-wave-based ROIs in
all simulations consistently exceeded the desired 5% level with approximately 75% errors when
using the smallest integration window (1 sample width). Type | error rate decreased as the
integration window size increased (Figure 2A, light grey bars). In contrast, AGAT-based ROls were

associated with an approximately 5% error rate regardless of the integration window size and

9
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regardless of whether the data were pure noise (Figure 2A, dark grey bars) or contained ERP
deflections (Figure 2B-C, dark grey bars). The AGAGA produced identical results to the AGAT and
thus is not plotted separately. Figures 2A-C show results from simulations of one channel data. The
AGAT results for multi-channel data were equivalent. Figure 2D shows that as the number of
channels increased in Simulation 1C (N170 data), using an AGAT ROI maintained Type | error rate at
5%. In contrast, Type | error rate for the difference wave reached 100% as the number of channels
increased. The multiple channel results were equivalent for Simulations 1A and 1B. We also
conducted simulations where we varied the number of samples across time (i.e., increased sampling
rate but with same length of time) and found that the AGAT maintained Type 1 error rate whereas
the difference wave did not. Overall, our results suggest that the AGAT is safe regardless of the size

of the data (number of channels x number of samples).

These results clearly demonstrate that using data-driven AGAT-based ROIs does not inflate Type
| error rate above 5%. This is because the AGAT time-series is independent of the contrast of interest
(i.e., the difference between conditions here). The average cross-correlation (zero-lag) coefficient
between the AGAT and Difference-Wave was not different from zero (one-sample t-test) for any of
the Simulations: rygise-only = 0.003, £(9999) =1.66, p = 0.09; rp3q0 = 0.0003, t(9999) =-0.16, p = 0.87; ry170
= 0.001, t(9999) = 0.60, p = 0.54. Thus, the AGAT provides an unbiased, data-driven basis for ROI-

selection in ERP studies.

Simulation 2: Condition Trial Number Asymmetry

Unbiased performance of the AGAT ROI-selection procedure depends critically on it being
independent of condition differences. Independence could be violated if the ROI-selection waveform
were generated with unequal contributions of data from the two conditions, e.g., mismatch
negativity ERP component (e.g., Ndatanen, Gaillard, & Mantysalo, 1978). In this situation, the noise
from one condition may be weighted more heavily in the AGAT than noise from the other condition,

rendering the waveform non-independent of condition differences. Using the same parameters as

10
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Simulation 1A-C except now in the presence of a trial number asymmetry between conditions (and
with only 1500 experiments per simulation for computational efficiency), we estimated Type | error
rates for ROIs based on the AGAT, the AGAGA, and the difference wave to test their performance

under condition trial number asymmetry.

Method

We generated data for Simulation 2 with the parameters used in Simulations 1A-C (noise-
only; noise+P300, noise+N170) except that we varied the ratio of the number of trials in the two
conditions: Tyere (number of trials in the condition with more trials) and Trewer (NUMber in the
condition with fewer trials). The resulting Condition Trial Number Asymmetry was expressed as a
Condition Trial Number Asymmetry ratio, Tyore/ Trewer- FOr computational efficiency we reduced the
base number of trials from 50 per condition (as in Simulation 1) to 10. Thus, for the ratio Tyiore/Trewer
=1, the simulation contained 10 trials per condition. For the other trial asymmetries, Trewer Was
always 10 trials whereas Tyore took values of Trewer X 2' with i = 0 to 8. This resulted in Condition Trial
Number Asymmetry Ratios, Tyore/Trewer, 0f: 1, 2, 4, 8, 16, 32, 64, 128, and 256 (i.e., Tyore Was 20, 40,
80, 160, 320, 640, 1280, and 2560 trials, respectively). To test whether the ratio of trial numbers in
the two conditions is the determining factor, rather than the absolute number of trials, we also
repeated all of these simulations with half the number of trials (Trewer = 5), but with the same trial
asymmetry ratio values (see Figure 3A-C, black and dark blue bars). The number of experiments per
simulation was reduced to 1500 for computational efficiency. Thus, for each level of trial number

asymmetry within each simulation there were 1500 experiments conducted.

As in Simulations 1A-C we chose ROI positions on the difference wave, the AGAGA, and the
AGAT wave, separately. ROIs were chosen as the minimum for Simulation 2A, maximum for 2B
(noise-only simulations and P300) and the minimum for Simulation 2C (N170). For all of these ROls,

we calculated the Type | error rate as the percentage of experiments with a significant difference
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between conditions. Only results for the peak (integration window size = 1) are shown to reduce

figure complexity because results for the AGAT were equivalent across integration window sizes.

Cross correlations between the Difference wave and the AGAT and AGAGA, separately, were
computed to assess the independence of AGAGA and AGAT from the difference wave. All cross
correlations were assessed at zero lag. A distribution of cross correlation r values was determined
separately for AGAGA and AGAT. The mean r-value was computed for each simulation and 95%
confidence intervals for the correlations were generated based on the standard deviation and the

sample size: +/- 1.96 * (SD/Vn).

Results and Discussion

As the condition trial number asymmetry ratio, Tyore/ Trewer (ratio of condition-with-more-trials to
condition-with-fewer-trials), increased, the cross-correlation of the AGAGA with the difference wave
also increased (Figures 3D). This non-Independence was stronger for noise-only data (Figure 3D,
dotted line) than for data containing ERP signals (Figure 3D, dashed and solid lines) presumably
because the ERP signals introduced variance which was not different between conditions. As would
be expected from using a non-independent waveform for selection, Type | error rate for AGAGA-
based ROIs increased with trial number asymmetry ratio (Figure 3A-C, blue bars) for all three
simulations. However, these increases were substantially attenuated by the presence of ERP
deflections in the data (Figure 3B-C) compared to pure noise data (Figure 3A). All of the results in
Figure 3 represent data with one channel. Results for multi-channel show a similar increase but with

higher overall error rates (Table 1, N170, but results were equivalent for P300 and noise-only data).

In contrast, the AGAT was not correlated with the difference wave at any of the trial number
asymmetries that we tested (average cross correlation for all data types, r = 0.002) and regardless of
whether the data contained ERP deflections or pure EEG noise. Furthermore, the Type | error rate

remained at 5% when using the AGAT for ROl-selection (Figure 3A-C, black and gray bars) for all of
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the condition trial number asymmetry ratios, Tyore/ Trewer- This was also true for multi-channel data

N170 data (Table 1) and there were equivalent results for P300 and noise-only data.

Simulations involving different numbers of trials, but having the same trial number asymmetry
ratios, showed exactly the same results (Figure 3A-C, compare black and grey bars). This indicates
that the trial asymmetry ratio, rather than the total number of trials, drove the bias within the
AGAGA results and that the AGAT is robustly safe in the presence of trial number asymmetries

regardless of the total number of trials.

The results of Simulation 2 demonstrate that the AGAT is robust to between-condition trial
number asymmetries for all of the asymmetry ratios that we tested. We anticipate that these ratios
far exceed those that would be encountered in actual experiments and thus the AGAT can be
treated as essentially unbiased for all practical purposes. It is important to note that the AGAGA was
not independent of condition differences when between-condition trial number asymmetries were

present.

Simulation 3: Condition Noise Asymmetry

Although AGAT-based ROI selection is robust to condition trial number asymmetries, an
asymmetry of noise between conditions could render the AGAT non-independent (Kilner, 2014)
under the null hypothesis (i.e., no mean difference). To systematically test this, we generated
simulations with the same parameters as in Simulations 1A-C (including equal trial numbers in the
conditions) except that we varied the ratio of the noise in the two conditions, i.e. condition noise

asymmetry ratio, Noisepigher/NOiS€ ower-

Method

The parameters for these simulations were exactly the same as those for Simulations 1A-C
except that we varied the ratio of the noise amplitude in the two conditions. To generalize our

findings beyond the total noise levels, we expressed the noise asymmetry as a ratio of condition

13
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noises, Nyigher aNd Niower, and called this the Condition Noise Asymmetry Ratio, Nyigher/Niower- IN the
case of Nyigner/Niower = 1 (equal noise) the simulations were replications of Simulations 1A-C. For the
other simulations, Noiseygner took values of Noise gyer X 2" with i = 0 to 11. This resulted in Condition
Noise Asymmetry Ratios, Nyigher/Niower, 0F: 1,2, 4, 8, 16, 32, 64, 128, 256, 1024, and 2048 (see
horizontal axes in Figure 4). ROls were selected on the difference wave and AGAT as in Simulations
1A-C and additionally on the AGAGA. Simulation 3A contained noise-only, 3B was noise+P300, and
3C was noise+N170. Only results for the peak (integration window size = 1) are shown to reduce
figure complexity. As integration window increased, the pattern was similar to the peak results but
with lower overall Type 1 Error rates. To reduce computing time, we reduced the number of

experiments used to generate each data point to 1500 rather than the 10000 used in Simulation 1.

In an additional Simulation 3D (Figure 4D), to examine the effect of ERP signal amplitude on
Type 1 Errors for the AGAT/AGAGA, we varied the amplitude of the ERP signal within the data for
noise+N170 data only. At 100% amplitude, the N170 negative polarity peak reached -8 and the
simulation was equivalent to Simulation 3C. At 0% amplitude, there was no ERP signal present in the
data and the simulation was equivalent to Simulation 3A. The N170 signal was scaled in increments
of 20% between these values and the Type | error rate estimated across the different condition noise

asymmetries.
Results and Discussion

In Simulation 3A (noise-only), Type | error rates for AGAT-based ROls increased with
condition noise asymmetry (Figure 4A, black line). At asymmetry ratios above approximately
Nhigher/Niower = 8, error rates for AGAT-based ROIs were equivalent to rates for difference wave ROls
(Figure 4A, grey line). A similar pattern of results was seen for Simulations 3B and 3C (containing
P300 and N170 ERP signals, respectively), except that AGAT error rates (Figures 4B and 4C, black

lines) were lower than those for noise-only data and approached the difference wave level (Figures
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4A and 4B, grey lines) at higher asymmetry ratios (above Nyigher/Niower = 32). AGAGA and AGAT

produced exactly the same results and thus only one line was plotted for these.

Results for simulations with multiple channels in the N170 simulation show that, in the
presence of a condition noise asymmetry, Type | error rates increased for AGAT-based ROlIs as the
number of channels increased (Figure 4C, coloured lines vs 1-channel black line). The impact of
multiple channels was similar for N170, P300 and Noise-Only data. Thus, to reduce figure

complexity, we plotted multi-channel data only for the N170.

The results of Simulation 3 place an important constraint on the use of the AGAT. In cases of
asymmetric condition noise, the AGAT can be biased to the exact same extent as the AGAGA. This is
different than with condition trial number asymmetries (Simulation 2) where only the AGAGA was
biased. The amount of bias depends on the signal-to-noise ratio of the ERP feature-of-interest (i.e.,
N170 or P300 peak in this case). This was shown in a series of further simulations (with N170 ERP).
As the ERP peak amplitude was increased from 0 to the full intensity (8 uV max), the absolute levels
of bias decreased (Figure 4D). Thus higher signal-to-noise ratio ERP peaks were more shielded,
though not completely, from the bias than lower signal-to-noise ratio peaks. Although the peak
amplitudes were the same for the N170 and the P300, it is clear that there were some small
differences in susceptibility to bias across the condition noise asymmetry range (c.f., shape of black
lines, Figures 4B and 4C). These could signal that the AGAT’s bias depends slightly on the type of ERP
peak or feature-of-interest even when they have the same signal-to-noise ratio. However, further
work will need to be done to determine exactly which factors affect this. Finally, the absolute level
of bias increased with the number of channels in the data across which the search for the AGAT peak

was conducted (Figure 4C).

In Simulation 3, we found that the average zero-lag cross correlation between the AGAT and
the difference wave increased as a function of the noise asymmetry (Table 2) in a manner similar to

that seen for trial number asymmetry in Simulation 2. Eventually this correlation approached r=1 at
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higher asymmetry values. This means that the AGAT, at high noise asymmetry, comes to almost
perfectly match the difference wave. Given that the difference wave is not independent of the
contrast-of-interest, in fact it comes to very closely reflect the contrast-of-interest, using an AGAT

which reflects the differences wave inflates Type | error rate substantially.

Overall, the results of Simulation 3 suggest that the AGAT is not safe to use when the
amplitude of the individual trial EEG noise differs between conditions. Even at our lowest noise
asymmetry of 2 (double noise in one condition compared to the other) we could find Type | error
rates of up to 30% when selecting the AGAT amongst multiple channels in a high amplitude
component (32 channel N170 data). Although some protection against Type | errors seems to be
afforded by using high signal-to-noise ratio ERP features/peaks, further work is needed to determine
the full range of parameters that need to be considered. We advise against using the AGAT when
condition noise asymmetry is greater than 1.5, especially in multi-channel data or when considering
ERP features with lower signal-to-noise ratios than used in our simulations (approximately S/N = 0.4

in our 100% case, see methods for noise and signal amplitudes).

Simulation 4: AGAT Power

It is clear from Simulations 1-3 that AGAT-based ROI selection can avoid inflating Type | error
rate. However, does using the AGAT to position ROIs actually adapt to the features of the data, and
thus potentially increase power, as we suggested above? In order to evaluate this, we conducted
power simulations and compared AGAT-based ROI selection with the commonly-used method of
selecting an ROl based on a priori or independent information. We hypothesized that using the
AGAT would be advantageous because, assuming that the location of effects varies between
experiments, the AGAT, being data-driven, should take account of experiment-specific data features

whereas a priori/independent information cannot.
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To assess power, we generated data as in Simulations 1B and 1C (noise+ERP) but with two
differences. First, we varied the latency of the ERP (P300 and N170) peaks across experiments within
each simulation to simulate experiment-to-experiment variation of ERP peak latencies. If this
variation is large then we expected a priori/independent ROIs to regularly miss effects because they
cannot take this variation into consideration. In contrast, the AGAT should detect the relevant peak
in each experiment regardless of the variation across experiments, giving it an advantage at higher

levels of variation.

Second, at the relevant peak (N170 or P300), we inserted a difference between conditions.
The size of this effect varied across simulations. In each experiment within a simulation, we then
conducted hypothesis tests at two ROIs. One ROl was an a priori/independent ROI that was the same
for all experiments within a simulation, i.e. the middle of the latency distribution for the ERP peak-
of-interest. The other ROl was selected by using the AGAT to find the N170 or P300 peak. We then
estimated the power, i.e. the percentage of correctly detected effects for each ROI. For simplicity,

Simulation 4 was conducted with a single channel of data.

Method

Data were generated as in the single-channel versions of Simulations 1B and 1C (noise+P300,
noise+N170, respectively) except that we varied two things. First, at the ERP peak location
(maximum for P300, 200 ms; minimum for N170, 477 ms), we added a boxcar effect (difference
between conditions) lasting 21 samples (21 ms) and centred on the peak. This was added to one
condition. The other condition was unchanged relative to Simulation 1. Due to the different peak
polarities for the two ERP components, for the P300 simulation (Simulation 4A) positive effect values
were added, whereas for the N170 simulation (Simulation 4B) a negative effect was added. This
simulated an amplitude increase of the peak in one condition compared to the other. Although not

realistic, a boxcar effect allowed us to have uniform effect size across the effect interval. This was
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important in giving validity to our manipulation of effect size across simulations. Otherwise, effect

size would have varied across time within each experiment within the simulation.

Across simulations, we varied the amplitude of this effect across 16 levels: 0.03125, 0.06250,
0.09375, 0.12500, 0.15625, 0.18750, 0.21875, 0.25000, 0.28125, 0.31250, 0.34375, 0.37500,
0.40625, 0.43750, 0.46875, and 0.50000 uV. These effect amplitudes were chosen to correspond to
a particular set of effect sizes (Cohen’s d) ranging from 0.1 — 1.6 in increments of 0.1. For each effect
amplitude, we calculated the corresponding effect size (Cohen’s d) by dividing the effect amplitude
by the average within-condition noise. The within-condition noise was estimated from the simulated
data. Within one condition (without added effect) of each simulated experiment, we calculated the
standard deviation of the participant ERP amplitudes at the selected ROI (peak only, 1 sample
window). The average within-condition noise across all experiments was approximately 2.5 pV.
Effect size values are used as the x-axes in Figure 5 to provide generality of the results across

experiments with different absolute levels of noise and effect amplitudes.

The second change from Simulations 1B-C involved addition of latency variation of the ERP
peaks. This was achieved by shifting the entire ERP waveform left or right and padding with zeros.
Latency varied according to a normal distribution centred on the original peak location (N170 = 200
ms; P300 = 477 ms). Across simulations, we varied the standard deviation of the latencies from 0 (no
variation, as in Simulations 1-3) to 60 ms (in 5 ms steps). Thus, we conducted 208 simulations (16
effect sizes x 13 latency SDs) each for the two ERP components. To reduce total processing time,
each simulation included 1500 experiments (instead of 10000 in Simulations 1). For each experiment
within a simulation, we conducted a hypothesis test at each ROl and then counted the percentage of
experiments in which an effect was significantly detected within the time range of the inserted

effect, i.e. power.

Results and Discussion
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Figures 5A and 5C show the raw power for AGAT (dashed line) and a priori (solid line) ROls as
a function of effect size when the average latency variation of the peak was 30 ms. The AGAT
consistently had higher power than the a priori ROI, especially at higher effect sizes. Because we
were primarily interested in the difference in power between AGAT and a priori ROIs, we calculated
the difference in power between them (AGAT minus a priori) for each simulation and plotted this
difference, the AGAT Power Advantage, as a function of effect size and latency variation (Figure 5B
and 5D). Higher positive values indicate that AGAT had greater power than a priori ROls and negative
values would indicate the reverse. Values of zero indicate equivalent power. In data with low latency
variation (below 5-10 ms, on average), AGAT and a priori methods had approximately equal power
(Figure 5B and 5D). However, when latency variation was 15 ms or greater, the AGAT became
substantially more powerful than a priori methods at effect amplitudes above 0.3 (Figure 5B and
5D). It is important to note that this simulation was carried out, for simplicity of design, with single-
channel data. Thus, strictly speaking, we cannot generalize the exact size of the AGAT benefit to
situations when one may also be identifying an ROI position on a multi-channel AGAT. However, we
expect that the benefit of AGAT over the independent ROI will hold across multi-channel data
because the AGAT should allow adaptation to changes in the location of the peak in space/channel
in addition to changes in latency (as we have shown in Simulation 4). This is because the feature of
interest (peak here) can be detected across space as well as in time. In contrast, an a
priori/independent ROI cannot, by definition, show this adaptability and thus should have less power

to detect the effect. However, further work will be required to confirm and quantify this benefit.

General Discussion

We have demonstrated empirically that ROls can be selected in a data-driven manner
without inflating Type | error rates by selecting peaks of the AGAT. This method is safe even in the
presence of an asymmetry in the number of trials between the conditions®. However, this is subject

to two conditions. First, the AGAT must be computed by averaging the aggregate of all individual
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trials from both conditions rather than averaging over grand averages (AGAGA). Secondly, using the
AGAT with large condition noise asymmetries can inflate Type | error rates. This could occur, for
instance, when comparing data from a patient group with control participants. Our results show that
even with relatively small noise asymmetries (e.g., x2), Type 1 error rates can inflate to 6.1% (N170,
Figure 4C) and (9.8%, Figure 4B) in single channel data and further in multi-channel data. It is clear
that higher signal-to-noise ratio/amplitude of the ERP peak-of-interest can partially protect against
this at low noise asymmetries (Figure 4D). However, a more detailed exploration of this will be
needed to identify all of the relevant factors. Finally, our power simulations showed that, subject to
certain assumptions (see next paragraph), using the AGAT for ROl selection can be more powerful
than a common method of selecting ROls based on a priori/independent information. Thus, we
believe that using the data-driven AGAT for ROI-selection is a safe and effective method when one is
looking for ERP features, such as peaks, at which to position an ROI for testing. It allows one to take
advantage of more information in the data to customize ROlIs to its features. Table 3 provides an

outline of the steps that should be used to calculate the AGAT for use in studies.

The AGAT is not appropriate for all data and analyses. Our results have already highlighted
that differences in noise amplitude between the conditions can introduce bias. Additionally, using
the AGAT depends on two key assumptions: (1) the effect of interest will have approximately the
same latency across all of the aggregated conditions and (2) the morphology of the ERP waveform is
approximately the same across all conditions. If this is not the case, then the power of the AGAT will
likely be significantly reduced or the results could be misleading. This arises because when there are
significant latency or ERP morphology differences between conditions, then aggregating across them
may create an AGAT waveform with peaks or other features that are not present in all, or any, of the
individual conditions. Thus, the ROl would miss the effect. However, it is worth pointing out that this
assumption applies equally to ROl selection based on a priori/independent information unless it
explicitly takes into account latency/morphology differences between conditions. Finally, the AGAT
will be of no use in analysis if there is no a priori hypothesis about which peak/feature of the AGAT is
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relevant. The researcher must provide a rule for choosing the peak, or other feature, on the AGAT. In
cases where there is no or little information about the location of effects, researchers may want to
consider mass univariate (Blair & Karniski, 1993; Groppe, Urbach, & Kutas, 2011; Kilner, Kiebel, &
Friston, 2005; Maris & Oostenveld, 2007) and multivariate (Hemmelmann et al., 2004; MciIntosh &
Lobaugh, 2004) approaches where one can analyse across large portions of a data set (with
appropriate correction). Although the ability of mass univariate approaches to detect unexpected
effects while controlling Type | errors is an incredibly useful complementary tool to ROI-based
analysis, many of these methods require substantial experience, specification of a number of
parameters for analysis, and some cost to power. Furthermore we expect that, when an effect is
typically known to occur near a localizable AGAT data feature (e.g., peak) and it is of low to medium
effect size, that AGAT-based ROI methods will be more powerful than mass univariate methods.
However, a more detailed comparison between the power of AGAT and mass univariate methods
will require further work across the range of different mass univariate methods to confirm this.
When there is a clear prediction about which peak/feature along the AGAT will be associated with
the effect, we believe that AGAT-based ROl approach should be preferred. Table 4 provides a
summary of the factors that researchers should check to determine whether using the AGAT is likely

to be safe and powerful for their data.

Assuming that ERP features-of-interest (peaks here) vary from one experiment to the next,
as we simulated, and that the effect is co-located with that feature, our results suggest that using
AGAT-based ROIs can be more powerful than a priori ROIs. This is because, unlike an a priori ROI, the
AGAT contains experiment-specific information about the latency of ERP features and can be used to
position tests at that location. Importantly, in our results, the AGAT never performed worse than the
a priori method. Use of the AGAT does assume that the effect-of-interest is co-located with a
feature-of-interest on the AGAT waveform. If this is not the case, then use of the AGAT will not be an
effective way of localizing the ROI. However, we believe that in many cases, researchers already
assume that this is the case and do aim to position ROls at a particular peak or other feature.
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Other researchers have previously suggested something like the AGAT for ROl selection in
other domains (Keil et al., 2014; Kilner, 2013, 2014, Kriegeskorte et al., 2009; Luck, 2014) and our
informal discussions with ERP researchers suggest that some already use data-driven methods such
as the AGAGA. In reviewing the methods sections of 20 randomly-selected N170 ERP papers, it is
clear that some researchers localize peaks on grand average data for quantification. However, it is
often not clear from the reported methods how they aggregated their data (i.e. AGAT, AGAGA, or
otherwise) and whether independence was established. We hope that our results and further
discussion of this issue will prompt researchers to more clearly report their ROl-selection procedures

and reviewers to request this information.

In our work, we have focused on identifying peaks on the AGAT because these are ERP
features that, in our reading of the literature, are commonly used for analysis and they are easily
identified. However, as others have pointed out (Luck, 2005), voltage peaks in the ERP waveform are
not equivalent to ERP components and do not necessarily reflect the underlying latent ERP
components in which researchers are interested. We acknowledge this and encourage researchers
to consider alternative methods of quantification (Luck, 2014). However, our goal is not to provide
an analysis of these issues here. Given that researchers can and do commonly use peaks to localize
and quantify ERP components, our goal was to analyse how to do this with high power and without
inflating Type | errors. Furthermore, we believe that, in principle, other features (e.g. largest area
under the curve, zero crossings) of the AGAT may be valid for unbiased ROl localization. Additionally,
in our work, we have always selected the absolute maximum and minimum peaks across the
waveform. However, we see no reason, in principle, why selecting a lower amplitude, local (within a
search window) peak within the AGAT waveform, which may be more appropriate for other ERP
components (e.g., P1, P2), should be any different as long as the AGAT is used for selection and the
assumptions of use are met (see second paragraph of General Discussion above and Table 4).

However, this will need to be confirmed with further work. In particular, the power of AGAT when
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selecting non-peak or lower amplitude features will need to be assessed in greater detail and

compared to ROIs based on independent data and other methods.

Although we have focused on using the AGAT in ERP studies, this approach can be applied
more widely. In principle, one can also use AGAT-based ROI selection in EEG/MEG time-frequency
studies, eyetracking fixation probability maps (Caldara & Miellet, 2011), psychophysiological
measures, and other types of multidimensional data. There is no reason, in principle, to believe that
adding further dimensions to the data should render the AGAT biased. In fact, FMRI researchers
often use orthogonal comparisons in 3D data sets (or independent data) to generate ROIs for
analysis and there has been substantial discussion of this practice (Friston, Rotshtein, Geng, Sterzer,
& Henson, 2006; Kriegeskorte et al., 2009; Nieto-Castafién & Fedorenko, 2012; Poldrack, 2007; Saxe,
Brett, & Kanwisher, 2006; Vul et al., 2009). In our analysis, we selected ROIs in the time dimension

but the AGAT can also be computed across spatio-temporal ERP data as well.

In practical terms, nearly all ERP analysis software should allow calculation of the AGAT.
However, this may depart significantly from the typical ERP processing pipeline and be cumbersome
in some software. One barrier will be that ERP analysis software does not typically involve averaging
individual trials across participants. This is because it is common first to compute the ERP average for
each participant separately and, only then, compute the grand average of participants’ ERPs (i.e.,
steps towards computing the AGAGA but not the AGAT). For instance, Matlab-based Fieldtrip
(Oostenveld, Fries, Maris, & Schoffelen, 2011) and ERPLab (Lopez-Calderon & Luck, 2014), to our
knowledge, do not automatically allow segments from different participants to be averaged together
without first creating an ERP? (a step which is prohibited in calculation of the AGAT). Brain Vision

Analyzer (Brain Products, Gmbh; http://www.brainproducts.com/) does allow computation of the

AGAT, but only using the weighted average option within its grand average function®. For other
software, researchers should check carefully exactly how their existing averaging functions work to

determine whether they support the AGAT. With some programming skill, it is possible to add one’s
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own functions to these packages to overcome this. However, one simple and immediately-available
way around this constraint in all three software packages above is to append all of the participant
data files together into one long file (e.g., ft_appenddata function in Fieldtrip; Append File option in
BrainVision Analyzer) and then do segmentation (combining data from all trial types into one
condition label) and averaging across segments/epochs within this multi-participant file (which
contains all participants’ individual trials). Once the AGAT waveform has been computed, the
time/location of the feature-of-interest (a peak in our examples), can then be found either by visual
inspection of the AGAT (with clear a priori criteria) or by using, for instance, a peak detection
function (with appropriate polarity and approximate time/location criteria). The result can then be
used as the exact position of the ROl and quantification of the data can go forward as with any other

ROl analysis in the original data set.

Although some data-driven methods for data analysis have been shown to be biased, not all
are problematic. Our results demonstrate a simple, unbiased, data-driven method for ROI
localization for ERP data which can likely be generalized more broadly. Using data-driven methods
such as the AGAT may also increase power to detect effects when effect latencies vary from
experiment-to-experiment avoiding Type Il errors. In avoiding Type | errors associated with some
data-driven ROI techniques, researchers may be ignoring useful information in data and
unnecessarily inflating Type Il errors. Most importantly, our results expand our understanding of the
conditions under which this particular method of ROl localization can fail and indicate how it needs

to be computed in order to minimize bias.
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Table 1: Simulation 2C (N170) Multi-Channel Type | error rates.

Trial Number Asymmetry Ratio, Tyiore/ Trewer

Number
of 1 2 4 8 16 32 64 128 256
Channels
AGAGA
8 5.1% 9.7% 23.1% 36.4% 58.5% 72.1% 91.2% 100% 100%
16 4.8% 12.9% 30.2% 48.4% 68.4% 85.4% 100% 100% 100%
32 4.6% 21.5% 55.7% 85.4% 99.9% 100% 100% 100% 100%
AGAT
8 5.0% 4.8% 5.3% 4.5% 4.2% 5.1% 4.5% 4.6% 5.0%
16 5.3% 4.9% 5.1% 4.7% 3.8% 4.8% 4.7% 3.9% 3.9%
32 3.8% 4.7% 5.1% 4.5% 4.5% 4.6% 5.1% 4.7% 3.9%
29
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Table 2: Simulation 3C (N170) Average Cross-Correlation between AGAT and Difference Wave for

Amplitude = 100%.

Noise
Asymmetry 1 2 4 8 16 32 64 128 256 512 1024 2048
r-value .006 .151 .392 .679 .886 .968 993 996 .997 .998 .998 .998
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Table 3: Steps for selecting an AGAT-based ROI positions

Step Instructions

Step 1 Aggregate all trials from all conditions and all participants into one set. Do not use
Subject ERPs or condition Grand Averages.

Step 2 Average waveforms/maps across this set of trials to generate the Aggregate Grand
Average from Trials (AGAT) waveform.

Step 3 Select a peak (or other feature) of interest on this waveform (e.g. for the N170 this
may be a minimum between 150-200 ms.). This must be selected a priori and
should not be changed based on statistical testing of the difference between
conditions.

Step 4 Apply your integration window, or other quantification method, of choice (based

on a priori information) and perform statistical analysis, as usual, at this location on
original data.
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Table 4. AGAT Usage Guidelines and Assumptions

Assumptions/Criteria Detail

to Check

For more detail:

Noise-Equivalence

AGAT Method of
Computation

Latency Equivalence

Waveform
Morphology
Equivalence

ERP Feature-of-
interest is known

Expected Latency
Variation

The single-trial EEG noise must be approximately
equivalent across your conditions. As a rule-of-thumb, if
the noise amplitude is more than 1.5 times greater in
one condition than others, then avoid using the AGAT.
Note that having unequal numbers of trials in the two
conditions does not create this problem (see Simulation
2).

The AGAT must be computed from the individual trials of
all participants and not from the participant ERPs

The latency of your ERP feature-of-interest (usually a
peak) must be approximately equivalent across your
conditions. If you expect or see significant latency
differences, AGAT may not be appropriate

The morphology of the ERP waveform must be
approximately equivalent across conditions. A failure of
this assumption could reduce power or produce
misleading results.

You must have an a priori hypothesis about which ERP
feature you intend to locate and have a priori criteria for
detecting it on the AGAT. For instance, this may be a
particular peak and you must specify the polarity and
other criteria (e.g., negative polarity peak/minimum
between 150 and 220 ms.) If little or no information is
known, then mass univariate methods may be more
appropriate.

The AGAT confers the biggest advantage over a
priori/independent ROI selection when the variation in
latency of the ERP feature across experiments is higher.
Features with less latency variability benefit less.

Simulation 3 &
Figure 4

Simulation 1
Methods

General
Discussion,
paragraph 2

General
Discussion,
paragraph 2

See Simulation 1
Methods &
General
Discussion,
paragraph 2

Simulation 4;
Figure 5
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Figure Captions

Figure 1. Examples of simulated data and calculation of AGAT and AGAGA Waveforms. (A)
An example of an EEG pure noise waveform for an individual trial. (B) Some simulations contained
both noise and ERP deflections. The arrow below each waveform indicates a point of difference
between panel A and panel B caused by the addition of the N170 ERP to the signal in Panel B. (C)
Power spectrum of EEG data used to scale the amplitudes of sinusoids in the creation of EEG noise.
(D) Pure ERP signal waveforms (without noise) for the N170 (black) and P300 (gray) which were
added to single trials in simulations containing ERP deflections. Note the different scale from Panels
A and B. (E) The aggregate grand average from grand averages (AGAGA) was computed by averaging
the individual trials separately within each condition (condition A in black boxes and condition B in
white boxes) for each participant into an ERP waveform for each participant. Then these participant
ERPs were averaged within each condition to form a grand average ERP for each condition. The
AGAGA waveform was created by averaging the condition grand average ERPs. Arrows indicate an
averaging process. Note that panel E represents an experiment with a condition trial number
asymmetry as in Simulation 2. However, most experiments will have approximately the same
number of trials in each condition. (F) The aggregate grand average from trials (AGAT) was created
by aggregating all of the individual trials, from all participants and both conditions, into one group
and then averaging them. An example of the AGAT waveform (dashed gray line) is plotted along with
grand averages for the two conditions (thick black line and thin gray line). Note that the amplitude
difference between conditions here is for illustration purposes only and was not present in null

hypothesis simulations (Simulations 1-3).

Figure 2. Simulation 1 Results. The percentage of Type | Errors is plotted as a function of the
size of the integration window (in sample points) used for Difference-Wave-based ROIs (light grey
bars) and AGAT-based ROIs (dark grey bars). The horizontal dashed red line indicates the target 5%

Type | error rate level. Error bars represent 95% confidence intervals (see methods). (A) Results for
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Simulation 1A-1Ch (single channel), Noise-Only, show that AGAT-based ROIs maintain Type | error
rate at 5% whereas the difference wave does not. (B) Results for Simulation 1B-1Ch (single channel),
Noise+P300 ERP. (C) Results for Simulation 1C-1Ch (single channel), Noise+N170 ERP. Numbers
above the AGAT-based dark bars indicate the percentage of Type | errors for those ROIs. (D) Type |
error rate results are plotted as a function of the number of channels in Simulation 1C (N170 data)
for AGAT and Difference Wave ROlIs. Results were similar for P300 and noise-only data (not shown

here). Please note that the maximum of the scale in panel D goes to 105% (100% in other panels).

Figure 3. Simulation 2 Results. For panels A-C, the horizontal dashed red line indicates the
target 5% Type | error rate level and error bars represent 95% confidence intervals (same method as
Sim 1 methods but with 1000 replicates). (A) Simulation 2A Type | error rates are plotted as a
function of trial number asymmetry ratio, Tyore/ Trewer, When using either the AGAGA (blue bars) or
the AGAT (black and grey bars) for ROl selection in Noise-Only data. Dark blue and black bars
represent simulations with Trewer = 5 Whereas the light blue and gray bars represent simulations with
Trewer = 10. The results show that the AGAT remains unbiased for ROl-selection across all condition
trial number asymmetries tested whereas the non-independent AGAGA becomes increasingly biased
as trial asymmetry increases. The results do not depend on the absolute number of trials as different
values of Trewer produce the same results (c.f., dark and light bars). The difference wave ROI
produced approximately 70% errors regardless of Tyere/Trewer l€Vel and is not plotted. (B) Simulation
2B Type | error rates as a function of trial number asymmetry ratio for data containing noise plus
P300 ERP signal. (C) Simulation 2C Type | error rates as a function of trial number asymmetry ratio
for data containing noise plus N170 ERP signal. (D) Average cross-correlation r values between the
difference wave and the AGAGA for Simulations 2A-C are plotted as a function of condition trial
number asymmetry ratio, Tyore/ Trewer, fOr Noise-only data (Sim. 2A, dotted line), P300 data (Sim. 2B,
dashed line), and N170 data (Sim. 2C, solid line). These show higher cross-correlation between
AGAGA and difference wave with increasing trial number asymmetry ratio. Error bars represent 95%
confidence intervals of each distribution.
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Figure 4. Simulation 3 results. Simulations 3A-D examined the effect of a condition noise
amplitude asymmetry on Type 1 error rates and compared three ROl selection methods. Type 1
error rate is plotted as a function of the condition noise asymmetry ratio, Noisepigher/NOiS€ ower-
Higher values mean a larger asymmetry. Error bars represent 95% confidence intervals (same
method as Sim 1 methods but with 1000 replicates). (A) The results for Simulation 3A (noise-only
data) showed that Type 1 error rates were high for ROIs based on the difference wave (grey line)
regardless of noise asymmetry level. ROIs based on the AGAT and AGAGA produced identical results
and thus only one line is plotted for these (black line). Type 1 error rates for AGAT and AGAGA ROls
increased with condition noise asymmetry. (B) Simulation results for Simulation 3B, condition noise
asymmetry with noise+P300 data. The addition of ERP signal reduced Type | error inflation but bias
remained and increased with noise asymmetry. (C) Simulation results for Simulation 3C, condition
noise asymmetry with noise+N170 single-channel data (black line. Searching for the ROl across time
and space in mutli-channel data further increases the type | error rates (8 channels, yellow; 16
channels, green; and 32 channels, pink). (D) In Simulation 3D (single channel data), the amplitude of
the N170 ERP signal was varied from 20% (green line) to 100% (black line), equivalent to panel C
black line) of the 8 uV used in the other simulations in increments of 20% (other coloured lines, see
legend). Resistance to inflation of Type 1 Error rate increased with increasing amplitude of the ERP

signal (i.e., increasing signal-to-noise ratio of the feature-of-interest).

Figure 5. Simulation 4: Raw power and AGAT Power Advantage. Error bars represent 95%
confidence intervals (same method as Sim 1 methods but with 1000 replicates). (A) Raw power is
plotted as a function of effect size (Cohen’s d) for detecting effects located at a P300 peak using
either an AGAT-based ROl selection (dashed line) or an ROI positioned at a static a priori position
(solid line). AGAT-based ROIs outperformed a priori ROls. Power increased with effect size but the
increase was larger for AGAT-based ROls than for a priori ROIs. This is for the simulation in which the

latency of the effect varied (across experiments) with a standard deviation of 30 ms. (B) For
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simulations with P300 ERP signals, the power advantage of using an AGAT-based ROI (calculated as
AGAT-ROI power minus a priori ROl power) is plotted as a function of effect size (Cohen’s d) and
latency variation of the effect (standard deviation of latency in ms). Colour represents the power
advantage (%) as indicated in the legend (e.g., light purple = -5 - 5% advantage for AGAT). Higher
positive values indicate a greater advantage of AGAT. The advantage of AGAT-based ROIs increased
with both latency variation and effect size. This plot includes the data from Panel A which is a
horizontal slice at the latency=30 ms level representing the difference between the lines plotted in
Panel A. (C) Raw power is plotted as in panel A but for data containing an N170 ERP signal with the
effect located near the N170 peak. The results are the same as for P300 data. (D) AGAT power
advantage is plotted as in panel B but for data containing an N170 ERP signal and show the same

advantage of using AGAT-based ROIs as for P300 data.
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Footnotes

! The data for the N170 waveform was derived from an experiment in which an ambiguous Rubin
Faces-vase stimulus was shown for 150 ms on each trial (followed by a white noise mask for 100 ms) and
participants responded about whether they saw the face regions as figure or the vase region as figural. The
N170 waveform was from data collapsed over the two response options and averaged across electrodes: P10,
P8, PO8, P9, P7, and PO7. There were 17 participants and 300 trials per participant. Data were recorded with a
Biosemi ActiveTwo active electrode system and sampled at 1024 Hz with an average reference of the 64 scalp
channels.

> The following is one observation about why the AGAT is unbiased under trial number asymmetry.
Assume, X trials for condition A and Y trials for condition B, with X>Y. The peak (or peak interval) selected in
the AGAT is (in a statistical sense) biased more towards condition A’s actual peak than condition B’s. However,
this disparity in bias is counteracted by the disparity in ERP amplitude due to averaging, i.e. amplitudes in
condition A ERP are (in a statistical sense) lower (or less extreme) than in condition B, since A involves
averaging more trials.

®The Compute Average ERPs (pop_averager) function in ERPLab, allows more than one
dataset/participant to be selected when computing an ERP. However, based on a personal communication
(April 2016) with the ERPLab developers, this function first computes the ERP for each participant and then
computes the grand average of these ERPs. Thus, it does not meet the requirements for computing the AGAT.

*Based on a personal communication with Brain Products technical support
(support@brainproducts.com), using the grand average function with the “Calculate Weighted Average” box
ticked will compute the AGAT as a weighted average of all of the individual trials from participants.
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