
Smith, Connor Lane and Kahrs, Stefan (2016) Non-omega-overlapping TRSs
are UN. In: 1st International Conference on Formal Structures for Computation
and Deduction (FSCD 2016). 2016 Formal Structures for Computation and
Deduction. Leibniz International Proceedings in Informatics , 52. 22:1-22:17.
Schloss Dagstuhl: Leibniz-Zentrum für Informatik, Porto, Portugal ISBN
978-3-95977-010-1.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/55349/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.4230/LIPIcs.FSCD.2016.22

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/55349/
https://doi.org/10.4230/LIPIcs.FSCD.2016.22
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Non-ω-overlapping TRSs are UN
Stefan Kahrs and Connor Smith

School of Computing
University of Kent
Canterbury, United Kingdom
{S.M.Kahrs,cls204}@kent.ac.uk

Abstract
This paper solves problem #79 of RTA’s list of open problems [14] — in the positive. If the
rules of a TRS do not overlap w.r.t. substitutions of infinite terms then the TRS has unique
normal forms. We solve the problem by reducing the problem to one of consistency for “similar”
constructor term rewriting systems. For this we introduce a new proof technique. We define a
relation ⇓ that is consistent by construction, and which — if transitive — would coincide with
the rewrite system’s equivalence relation =R.

We then prove the transitivity of ⇓ by coalgebraic reasoning. Any concrete proof for instances
of this relation only refers to terms of some finite coalgebra, and we then construct an equivalence
relation on that coalgebra which coincides with ⇓.

Keywords and phrases consistency, omega-substitutions, uniqueness of normal forms

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.12

1 Introduction

For over 40 years [13] it has been known that TRSs that are left-linear and non-overlapping
are confluent, and for over 30 years [8] that non-overlapping on its own may not even give
us unique normal forms:

I Example 1. By Huet [8]: {F (x, x)→ A,F (x,G(x))→ B,C → G(C)}. The term F (C,C)
possesses two distinct normal forms, A and B.

However, in a certain sense the first two rules overlap semantically: the infinite term
G(G(· · ·)) provides such an overlap, and in the world of infinitary rewriting [9] the term C

even rewrites to that term in the limit.
The notion of overlap is based on the notion of substitution. By changing the codomain

of the substitutions of concern from the set of finite terms to the set of infinitary (finite or
infinite) ones we arrive at the notion of ω-overlap.

This creates the question: do non-ω-overlapping TRSs have unique normal forms? This
was first conjectured 27 years ago by Ogawa [11], with an incomplete proof, and the problem
is still listed as open problem 79 in RTA’s list of open problems.

When making the step from a rewrite relation →R to its equivalence closure =R one is
typically interested in its consistency [3, p32ff], i.e. are there terms t, u such that ¬(t =R u)?

Both uniqueness of normal forms (UN) and consistency (CON) can be looked at as
properties of open terms or ground terms. We stick in this paper to the versions on open
terms, as these notions are unaffected by signature extensions; for the versions on ground
terms, UN can be lost and CON gained when we extend the signature. Moreover, on open
terms UN implies CON.

For non-ω-overlapping systems UN and CON are closely related, as we can extend non-
UN systems in a seemingly harmless way to make them fail CON too:

licensed under Creative Commons License CC-BY
1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Non-ω-overlapping TRSs are UN

I Example 2. Add to the system of Example 1 the rewrite rules H(A, x, y) → x and
H(B, x, y)→ y. The system remains non-overlapping but it is now inconsistent.

Even if a TRS is non-ω-overlapping, the reduction relation →R may still not be confluent
(and so we need a different approach to show consistency); this follows from a well-known
example by Klop [10]:

I Example 3. {A→ C(A), C(x)→ D(x,C(x)), D(x, x)→ E}.

In this system we have A→∗R E and A→∗R C(E), but C(E) and E have no common reduct.

1.1 Translation of TRSs to Constructor TRSs
We are going to show how TRSs can be translated into Constructor TRSs, without affecting
its equivalence in a substantial way, in particular: consistency is both preserved and reflected
by the translation, as is strong normalisation.

The translation works by (i) doubling up the signature, so that for each function symbol
F we have both a constructor version Fc and a destructor Fd; (ii) translate the rewrite rules
to make them comply with the regime of Constructor TRSs; (iii) add further rules that
make former patterns regain pattern status.

I Example 4. If we take the rewrite rules of Combinatory Logic, A(A(K,x), y) → x and
A(A(A(S, x), y), z) → A(A(x, z), A(y, z)) and apply the translation, we end up with the
following system:

Ad(Ac(Kc, x), y)→ x

Ad(Kc, x)→ Ac(Kc, x)
Kd → Kc

Ad(Ac(Ac(Sc, x), y), z)→ Ad(Ad(x, z), Ad(y, z))
Ad(Sc, x)→ Ac(Sc, x)

Ad(Ac(Sc, x), y)→ Ac(Ac(Sc, x), y)
Sd → Sc

The top two rules are the translated versions of the original rules, the ones below are their
respective pattern rules.

In Example 4, an orthogonal TRS was translated into an orthogonal Constructor TRS.
In general, this will not quite be the case, and non-ω-overlapping TRSs will not remain
non-ω-overlapping either. However, all overlaps created by the translation are benign.

1.2 Consistency of Constructor Rewriting
At the heart of our overall proof is showing (for our rewrite systems in question) that the
equivalence closure =R of single rewrite steps is a subrelation of a consistent relation ⇓
and therefore itself consistent. This relation ⇓ is defined using slightly stronger closure
principles than those that characterise the joinability relation ↓, however they remain weak
enough to ensure (for arbitrary TRSs) that ⇓ is consistent. Because ⇓ is closed under the
same operations as =R, except for transitivity, proving consistency of =R can be reduced to
proving that ⇓ is transitive.

Our proof idea is then based on the following fundamental observations: (i) (inductive,
finitely-branching) proofs are finite objects, (ii) therefore each proof can only refer to finitely
many terms. Instead of asking the question: “is t ⇓ u true?” we consider its provability
relative to some finite set of terms A (t ⇓A u); we need A to be closed under subterms
which implies that it is a coalgebra of the signature. We show that — provided the TRS

Stefan Kahrs and Connor Smith 12:3

is “suitably well-behaved” — such finite coalgebras give rise to a single structure one might
call a universal proof for A that proves t ⇓A u whenever it holds. This universal proof also
exhibits the property that ⇓A is an equivalence relation. We have that t ⇓ u iff t ⇓A u for
some finite A. Since these coalgebras are closed under union, and A ⊆ B∧ t ⇓A u⇒ t ⇓B u,
we have that ⇓ itself is transitive.

2 Preliminaries

We assume familiarity with the standard notions of term rewriting and infinitary term
rewriting [18, 2], but use this section to fix some notation.

A signature Σ is a pair (F ,#) comprising a set F of function symbols and a function
: F → N assigning to each function symbol an arity. We write Ter(Σ, X) for the set of
finite terms over the variable set X, and Terω(Σ, X) and Ter∞(Σ, X) for the corresponding
sets of rational and infinitary terms. Given a rewrite rule l → r we write l→r−→ for the
substitutive closure of the rule, and ε→ for the union of l→r−→ for all rewrite rules l → r of a
TRS.

We say that a relation R on Ter(Σ, X) is consistent if ∀x, y ∈ X.x R y ⇒ x = y. We say
that a TRS is consistent (has the CON property) if the congruence closure of ε→ is consistent
on Ter(Σ, Y), for an infinite set Y .

A substitution is a map σ : V → Ter(Σ, X) which we homomorphically extend to
Ter(Σ, V) → Ter(Σ, X). Two terms t ∈ Ter(Σ, V), u ∈ Ter(Σ,W) are said to be unifiable
iff there is a pair of substitutions σ : V → Ter(Σ, X), θ : W → Ter(Σ, X) such that
σ(t) = θ(u). A pair of terms is said to be ω-unifiable if these conditions hold for substitutions
with infinite terms in their codomain. Unifiability implies ω-unifiability, as all finite terms
inhabit the infinite term universe as well.

As an aside, ω-unifiability of finite terms coincides with their unifiability w.r.t. substi-
tutions with rational terms. This was first studied by Huet [7], and is these days usually
implemented via union/find structures [16], which incidentally provide some inspiration for
the notion of “proof graph” we consider later on.

2.1 Constructor Rewriting
A TRS is a Constructor TRS if the signature Σ is a constructor signature, i.e. it splits into
two disjoint subsignatures Σc and Σd such that for any rewrite rule F (p1, . . . , pn) → r we
have F ∈ Σd and p1, . . . , pn ∈ Ter(Σc, X).

The standard notion of non-overlapping TRSs is based on the notion of unifiability, and
it can be simplified for Constructor TRSs. A Constructor TRS is non-overlapping iff the
left-hand sides of any two different rules are not unifiable. Replacing ‘unifiability’ in that
setting with ‘ω-unifiability’ provides the analogous (stronger) notion of non-ω-overlapping.
A similar notion is that of almost non-ω-overlapping TRSs, which means that non-variable
proper subterms of left-hand sides of rules are not ω-unifiable with left-hand sides of rules,
and that ε→ is deterministic.

2.2 Term-Coalgebras
In order to consider coalgebras of signatures Σ we would have to view signatures as functors
on the category Set. However, we only need the following special instance of this concept
later, which helps to keep the proofs short:

FSCD 2016

12:4 Non-ω-overlapping TRSs are UN

I Definition 5. Given a signature Σ, a term-coalgebra is a set A ⊆ Ter∞(Σ, ∅) which is
closed under subterms. It is called finite if it is a finite set, and strongly finite if in addition
A ⊆ Ter(Σ, ∅). We refer to the elements of a coalgebra as nodes.

More generally, Σ-coalgebras A would be characterized by a function υ : A → Σ(A) which
maps a node to a structure containing its root function symbol and the list of its subnodes. In
that setting two nodes are bisimilar if their repeated unfolding via υ yield the same infinitary
term. In a term-coalgebra this is unique, so bisimilarity coincides there with equality.

We also allow for variables in term-coalgebras by “freezing” them, i.e. using the canonical
isomophism between Ter∞(Σd+Σc, X) and Ter∞(Σd+(Σc+X), ∅). Thus, when considered
as a member of a term-coalgebra a variable is a nullary constructor. For heterogeneous
relations between term-coalgebras we must therefore have that the variable set X is the
same, so that they are coalgebras of the same functor. Relations between term-coalgebras
can be consistent simply due to the lack of variables occurring in them as nodes, or indeed
any other nodes: the empty set is a term-coalgebra that can only be consistently related to
other term-coalgebras.

2.3 Relational Algebra
We use some standard constructions from relational algebra; in particular, we write R · S
for relational composition in diagrammatical order, i.e. a (R · S) b ⇐⇒ ∃c. a R c ∧ c S b.
As constants, we also use the empty relation ∅, and the identity relation id.

Binary relations on any set form a complete lattice, and so Tarski’s fixpoint theorems
[17] apply — any monotonic function f on these relation domains has a smallest fixpoint,
µ(f), and a largest fixpoint ν(f). One usually writes µx.f(x) for µ(λx.f(x)), etc. Most
operations in relational algebra are monotonic (with the notable exception of complement,
which we are not using here), as are the smallest/largest fixpoint constructions themselves
[1, Proposition 1.2.18]. Thus any composition of these operations will result in a monotonic
function on relations that therefore has both of these fixpoints. In the following, we will
tacitly exploit that any function arrived by these means is monotonic.

I Definition 6. A predicate P on a complete lattice L is called sup-continuous iff for any
function f : I → L such that ∀x ∈ I. P (f(x)) we also have P (

⊔
i∈I f(i)).

Note that — as the definition also applies when the index set is empty — we would also
necessarily have P (⊥).

I Proposition 7. Let P be a sup-continuous predicate on a complete lattice L, and f a
monotonic function on L that preserves P , i.e. ∀x ∈ L.P (x)⇒ P (f(x)). Then P (µx.f(x)).

Proof. This follows from [1, Theorem 1.2.11]. That theorem defines for any ordinal β,
xβ =

⊔
{f(xα) | α < β}, and shows that for some β that is sufficiently large xβ = µx.f(x).

Hence the result follows by ordinal induction on the ordinal β + 1. J

3 Constructor Translation

We first demonstrate that a TRS can, in a sense, be viewed as a Constructor TRS, by
translating it into a Constructor TRS with similar properties. This similarity is particularly
strong for non-ω-overlapping TRSs.

To translate TRSs we use the concept of signature morphism — see [15] for a more
general and modern version of the concept; we specialise it here for the standard signatures
used in TRSs, as this concept rarely shows up in term rewriting literature.

Stefan Kahrs and Connor Smith 12:5

I Definition 8. A signature morphism between signatures Σ = (FΣ,#Σ) and Θ = (FΘ,#Θ)
is a function f : FΣ → FΘ such that #Θ(f(G)) = #Σ(G). Each signature morphism
f : Σ → Θ induces a map Tf : Ter(Σ, X) → Ter(Θ, X) given as Tf (F (t1, . . . , tn)) =
f(F)(Tf (t1), . . . , Tf (tn)) and Tf (x) = x for x ∈ X.

Signatures and signature morphisms form a category, and this category clearly has cop-
roducts, given by the disjoint union of signatures.

I Definition 9. Given a signature Σ we write Σ2 for the coproduct Σ+Σ, which we view as
a constructor signature; the images of Σ under the injections ι1 and ι2 give us Σc and Σd,
respectively. We write Fc and Fd for the function symbols ι1(F) and ι2(F), respectively.
We use the abbreviations btc for Tι1(t) and dte for Tι2(t).

So Σ2 contains two copies of every function symbol, one as a constructor, and one as a
destructor. The two embedding signature morphisms induce two different embeddings of
terms, labelling all symbols as constructors or destructors, respectively.

I Definition 10. Let γ : Σ2 → Σ be the signature morphism [id, id], i.e. γ(Fc) = F ,
γ(Fd) = F . We write |t| for Tγ(t).

Thus, given a “labelled” term t ∈ Ter(Σ2, X), |t| ∈ Ter(Σ, X) is the term we get when we
erase the labels from t. Clearly, we have |dte| = t = |btc|, but no corresponding property
when we go the other way, e.g. u and d|u|e can differ.

I Definition 11. Given a TRS T = (Σ, R), a pattern is a proper subterm of the left-hand
side of a rule in R. We write Pat(T) for the set of all patterns of the TRS T .

Recall that Constructor TRSs are characterised by having all their patterns confined to
Ter(Σc, X). Therefore, patterns play a special role in the translation of TRSs into Con-
structor TRSs:

I Definition 12. Let T be a TRS with ruleset R and signature Σ. The constructor trans-
lation of T is a Constructor TRS T ′ = (Σ2, R′) built as follows. R′ = R′d ∪ R′c, where
R′d = {Fd(bt1c, . . . , btnc) → dre | F (t1, . . . , tn) → r ∈ R} and R′c = {Fd(bt1c, . . . , btnc) →
Fc(bt1c, . . . , btnc) | F (t1, . . . , tn) ∈ Pat(T)}.

Any rule of the original TRS becomes a rule in R′d by turning its patterns into constructor
patterns, and every non-variable pattern of T becomes a rule in R′c. We have already seen
the translation of Combinatory Logic (Example 4) as an example for this translation in the
introduction. For simplicity, the constructor translation does not make a distinction which
symbols already acted like constructors, such as the constants K and S.

We can relate a TRS to its constructor translation. First, when terms lose pattern status
via the destructor translation then they can regain it through rewriting:

I Lemma 13. Let T be a TRS and T ′ its constructor translation. For any p ∈ Pat(T) we
have dpe →∗T ′ bpc.

Proof. By induction on the term structure of p. If p is a variable then dpe = bpc. Otherwise,
p = F (t1, . . . , tn) and dpe = Fd(dt1e, . . . , dtne). By induction hypothesis dtie →∗R′ btic, for
all i. Therefore, Fd(dt1e, . . . , dtne)→∗T ′ Fd(bt1c, . . . , btnc).

Moreover, Fd(bt1c, . . . , btnc) → Fc(bt1c, . . . , btnc) is a rule in R′ and therefore overall
dpe = Fd(dt1e, . . . , dtne)→∗T ′ Fd(bt1c, . . . , btnc)→T ′ Fc(bt1c, . . . , btnc) = bpc. J

FSCD 2016

12:6 Non-ω-overlapping TRSs are UN

I Lemma 14. Let T be a TRS and T ′ its constructor translation. If t→T u then dte →+
T ′

due. If p→T ′ q then |p| →T |q| ∨ |p| = |q|.

Proof. If t →T u then we must have that for some context C, substitution σ and rewrite
rule F (p1, . . . , pn) → r in T , t = C[F (σ(p1), . . . , σ(pn))] and u = C[σ(r)]. We clearly
have dte = dCe[Fd(dσe(dp1e), . . . , dσe(dpne))] and due = dCe[dσe(dre)], where dCe and dσe
are straightforward extensions of the signature morphism to contexts and substitutions.
By Lemma 13 we have dpie →∗T ′ bpic, hence by substitutivity of rewriting dσe(dp1e) →∗T ′

dσe(bpic). Compatibility of rewriting gives us dte →∗T ′ dCe[Fd(dσe(bp1c), . . . , dσe(bpnc))].
The latter term then rewrites in one step to due.

In the case of p→T ′ q a rewrite step with a rule from R′c gives us |p| = |q|, otherwise it
is a translated rule from the old system and we have |p| →T |q|. J

I Proposition 15. Let T be a TRS and T ′ be its constructor translation. For t, u ∈
Ter(Σ, X), if t =T u then dte =T ′ due. For p, q ∈ Ter(Σ2, Y), if p =T ′ q then |p| =T |q|.

Proof. Either way we split the equational proof into individual rewrite steps, and then
rebuild these using Lemma 14. J

Proposition 15 tells us that we can translate equations back and forth between a TRS and
its constructor translation. This has a consequence on consistency.

I Corollary 16. Let T be a TRS and T ′ its constructor translation. Then T is consistent
iff T ′ is.

Proof. If, say, T is inconsistent, then x =T y, for distinct variables x and y. By Proposition
15 we have dxe =T ′ dye. But dxe = x and dye = y and so T ′ is inconsistent too. The other
direction is analogous. J

So, the constructor translation preserves and reflects consistency — in the following we
really only need that it reflects that property. Aside: regarding termination and confluence,
the constructor translation preserves and reflects the former, but only reflects the latter. In
general, it does not even preserve weak confluence.

Notice that our construction can fail to produce an almost non-ω-overlapping TRS if our
original TRS was merely almost-non-ω-overlapping.

I Example 17. Consider the following rules describing an if-and-only-if operator on the
Booleans: {Iff (F, x)→ N(x), Iff (x, F)→ N(x), Iff (x, x)→ N(F), N(N(F))→ F}.

The system is almost non-ω-overlapping, with trivial overlaps between any of the first three
rules. However, the constructor translation makes some of the trivial overlaps non-trivial,
because F becomes Fc on the left and Fd on the right.

4 Strongly Almost non-ω-overlapping Constructor TRSs

In the Introduction we were mentioning that overlaps created by the constructor translation
are “benign”. We will now characterise how benign they are more precisely.

I Definition 18. Two rewrite rules l1 → r1, l1, r1 ∈ Ter(Σ, X), and l2 → r2, l2, r2 ∈
Ter(Σ, Y), have a common generalisation l3 → r3 iff there are substitutions σ1 : Z →
Ter(Σ, X), σ2 : Z → Ter(Σ, Y) such that:

σ1(l3) = l1 and σ2(l3) = l2, and σ1(r3) = r1 and σ2(r3) = r2,
all variables in r3 occur in l3.

Stefan Kahrs and Connor Smith 12:7

The idea goes back to Plotkin’s concept of generalisation and anti-unifiers [12]. Indeed we
can check whether two rules have a common generalisation by computing the anti-unifier of
the terms R(l1, r1) and R(l2, r2), and then checking whether the result — which must have
the form R(l3, r3) — satisfies the final condition on variables.
I Lemma 19. If two rewrite rules of a Constructor TRS have a common generalisation
l3 → r3 then this is either a legal rewrite rule for a Constructor TRS over the same signature,
or l3 is a variable.
Proof. Proper subterms of l3 must be constructor terms, otherwise σ1(l3) = l1 must have
non-constructor subterms, contradicting the premise. J

We do not need the concrete rewrite system a common generalisation would be part of; all
we need is that the rule behaves like a rewrite rule from a Constructor TRS.
I Definition 20. A TRS is called strongly almost non-ω-overlapping iff (i) all ω-overlaps
are in root position, (ii) whenever two left-hand sides are ω-unifiable then their rules have
a common generalisation.
To justify the chosen terminology:
I Proposition 21. Any non-ω-overlapping TRS is strongly almost non-ω-overlapping. Any
strongly almost non-ω-overlapping TRS is almost non-ω-overlapping.
Proof. A non-ω-overlapping TRS clearly satisfies the conditions of being strongly non-ω-
overlapping, as its rules can only overlap with themselves, and that at the root.

For the second part, assume we have a strongly almost non-ω-overlapping TRS. Let
〈θ1, θ2〉 be a ω-unifier for the left-hand sides l1, l2. Then we have θ1(l1) = (θ1 ◦ σ1)(l3),
and similarly θ2(l2) = (θ2 ◦ σ2)(l3). Thus, the composite substitutions θ1 ◦ σ1 and θ2 ◦ σ2
must agree on all variables occurring in l3. The variable condition on r3 then gives us
(θ1 ◦ σ1)(r3) = (θ2 ◦ σ2)(r3), and as (θ2 ◦ σ2)(r3) = θ2(r2) and (θ1 ◦ σ1)(r3) = θ1(r1) we have
that 〈θ1, θ2〉 is also a ω-unifier for the right-hand sides r1, r2. J

I Proposition 22. The constructor translation of an almost non-ω-overlapping TRS is
strongly almost non-ω-overlapping.
Proof. Because the constructor translation produces a Constructor TRS all ω-overlaps
between left-hand sides of rules, if any, are at root position. Let l1 → r1 and l2 → r2
be two rules in the constructor translation R′, such that l1 and l2 are ω-unifiable. That
implies that |l1| and |l2| are ω-unifiable too.

If both rules are translated rules then we can only avoid a contradiction by |l1| = |l2|
and |r1| = |r2| which implies l1 = l2 and r1 = r2, as the translation of rules is injective.

If the first rule is a translated rule and the second a pattern rule then |l2| is a non-
variable subterm of a left-hand side in R, and is ω-unifiable with |l1| which contradicts our
assumption about R.

If both rules are pattern rules then both rules clearly have the common generalisation
Fd(x1, . . . , xn)→ Fc(x1, . . . , xn), where F is the root symbol of the pattern. J

Note: it is not generally true that the constructor translation of a strongly almost non-ω-
overlapping TRS is itself strongly almost non-ω-overlapping, because the constructor trans-
lation breaks the sharing of subterms of left-hand and right-hand sides, e.g. for the rules
F (C(x), y) → G(C(x)) and F (y,B) → G(y) — the common generalisation F (y, z) → G(y)
of the two rules is not preserved by the constructor translation. One could fix this by provid-
ing a more sophisticated translation that maintains the sharing of common subexpressions
between left-hand and right-hand sides.

FSCD 2016

12:8 Non-ω-overlapping TRSs are UN

5 Reasoning with Term-Coalgebras

The main purpose of this section is to establish some tools to reason about consistency. These
tools are largely relation-algebraic, for relations operating on term-coalgebras, though they
could be generalised to arbitrary Σ-coalgebras.

As an additional ingredient to define relations between or on term-coalgebras for a sig-
nature Σ we use the following notation: if R ⊂ A×B, where A and B are term-coalgebras
A and B then R̃ ⊆ A×B is defined as follows:

∀t ∈ A. ∀u ∈ B. t R̃ u ⇐⇒ ∃F ∈ Σ. ∃a1, . . . , an ∈ A. ∃b1, . . . , bn ∈ B.
t = F (a1, . . . , an) ∧ u = F (b1, . . . , bn) ∧ ∀i. ai R bi

This concept was first used in [5, 6]; we modified it slightly by removing the reflexivity case.
For constructur signatures, we use the notations R and R̂ to mean R̃ for the subsignatures
Σd and Σc, respectively. In particular, t îd t iff the root symbol of t is a constructor, and
so R̂ · S = ∅. We still use R̃ for constructor signatures, to refer to the combined signature;
hence R̃ = R ∪ R̂.

One can generalise this to arbitrary Σ-coalgebras where the conditions t = F (a1, . . . , an)
and u = F (b1, . . . , bn) would be replaced by υA(t) = F (a1, . . . , an) and υB(u) = F (b1, . . . , bn)
where υA and υB are the unfolding maps of their respective coalgebras.

I Proposition 23. Some general relation-algebraic properties of R̃:
1. R̃ ∩ S = R̃ ∩ S̃, which moreover implies that the function x 7→ x̃ is monotonic.
2. R̃−1 = R̃−1.
3. R̃ · S ⊇ R̃ · S̃. Therefore also: R̃∗ ⊇ R̃∗.

Proof. Trivial. J

We have R̃ ∪ S ⊇ R̃ ∪ S̃ by monotonicity, and it is not an equation because a signature can
contain function symbols of arity greater than 1. Also, the relation ∅̂ is generally not the
empty relation — it will relate all bisimilar nodes that have no subnodes and are topped
with a constructor, and therefore also variables.

For term-coalgebras we have id = ĩd, but arbitrary Σ-coalgebras would only give us
id ⊆ ĩd, because a coalgebra can contain distinct bisimilar nodes with identical subnodes.

I Definition 24. A relation R between term-coalgebras is called Σ-closed iff R̃ ⊆ R.

Note: this is standard terminology taken from [2], except that we generalise it to coalgebras.

I Definition 25. Let V = ℘(A×B) be the set of relations between term-coalgebras A and
B. Then the function CT : V → V is defined by CT(R) .= µx. R ∪ x̃. Thus CT(R) is the
smallest Σ-closed relation containing R.

We can use the R̃ notation to define =R in a relation-algebraic way:

I Definition 26. The inductive congruence closure CGI(R) of a relation R on a term-
coalgebra is defined as: CGI(R) .= µx. R ∪ x−1 ∪ (x · x) ∪ id ∪ x̃.

Thus =R is then CGI(ε→) on the coalgebra Ter(Σ, X). Notice that for rewrite systems this
is in general not the same as the equivalence closure of rewrite steps, because a coalgebra
might lack the intermediate terms. To reason about pattern matching we will later need a
stronger notion of consistency, that includes reasoning about constructors:

Stefan Kahrs and Connor Smith 12:9

I Definition 27. A relation R between term-coalgebras is called constructor-compatible iff
îd · R · îd ⊆ R̂.

I Lemma 28. Every constructor-compatible relation R between any two term-coalgebras A
and B is consistent.

Proof. Let x R y where x and y are variables. Since variables in term-coalgebras are viewed
as constructors we have x îdA x and y îdB y. Hence x îdA x R y îdB y. Constructor-
compatibility of R then gives us x R̂ y which means x = y since they have no subterms. J

I Lemma 29. Constructor-compatible relations are closed under arbitrary union. Relational
inverse also preserves constructor-compatibility.

Proof. Let Ri with i ∈ I be a family of constructor-compatible relations.

îd · (
⋃
i∈I

Ri) · îd =
⋃
i∈I

(îd · Ri · îd) ⊆
⋃
i∈I

R̂i ⊆
⋃̂
i∈I

Ri

For inverse, for relations between term-coalgebras A and B:

îdB · R−1 · îdA = ((îdB · R−1 · îdA)
−1

)
−1

= (îdA · R · îdB)
−1
⊆ R̂−1 = R̂−1

J

Lemma 29 means that constructor-compatibility is a sup-continuous predicate on the
lattice of binary relations between two coalgebras. We also have that any relation between
term-coalgebras has a constructor-compatible interior — the union of all its subrelations
that have this property.

I Definition 30. Given a Constructor TRS over a signature Σ, a consistency invariant is
a consistent and Σ-closed relation S on a term-coalgebra A such that for any constructor-
compatible equivalence =S ⊆ S we have ε← · =S ·

ε→ ⊆ CT(=S).

Explanation: if we have a1
ε← a2 =S a3

ε→ a4 then the pair 〈a1, a4〉 can be viewed as a
form of “semantical critical pair”, because it has been obtained by root-rewrite-steps from
〈a2, a3〉 which share their root symbols and are “semantically equal” below the root. Thus
a consistency invariant is characterised by the property that semantical critical pairs stay
within the invariant. That this is relative to a term-coalgebra A matters insofar as rewrite
steps with contracta outside A are simply discarded.

The reason =S is locally quantified in the definition of consistency invariant is that
although constructor-compatible relations are closed under union, equivalence relations are
not, so we cannot simply compute a suitable interior relation. The reason the definition uses
constructor-compatible equivalences is that we can turn them into functions that unify the
nodes in their equivalence classes.

I Definition 31. Given a term-coalgebra A, a function f : A → Ter∞(Σ, ∅) is called
constructor-preserving iff

∀a1, . . . an ∈ A.∀C ∈ Σc. f(C(a1, . . . , an)) = C(f(a1), . . . , f(an))

I Proposition 32. Let =% be a constructor-compatible equivalence relation on a term-
coalgebra A. Given some well-ordering on =%-equivalence classes, there is a function U(=%) :
A → Ter∞(Σ, ∅) such that: (i) U(=%) is constructor-preserving; (ii) ∀a, b ∈ A. a =% b ⇒
U(=%)(a) = U(=%)(b).

FSCD 2016

12:10 Non-ω-overlapping TRSs are UN

Proof. Let minD denote the minimum element of any non-empty subset D of any equi-
valence class w.r.t. that well-order. Let [a] ⊆ A be the =%-equivalence class of some node
a ∈ A. Let B = {b ∈ [a] | b îd b}. Then we define U(=%)(a) as follows:

U(=%)(a) =
{
C(U(=%)(b1), . . . , U(=%)(bn)) if B 6= ∅ ∧minB = C(b1, . . . , bn)
min[a] if B = ∅

Clearly, U(=%) satisfies condition (ii) because its definition only depends on the equivalence
class [a], not on a directly. Let c ∈ [a] be constructor-topped, i.e. c îd c. Thus we have
c îd c =% minB îd minB: and constructor-compatibility of =% gives us: c =̂% minB.
Therefore c = C(c1, . . . , cn) and ci =% bi and the result follows. J

Notice that even if the coalgebra A only contains finite terms the function U(=%) may still
have infinite terms in its range; e.g. this would be the case for the equivalence class [K,C(K)]
if C is a constructor.

6 Rewrite-Related Reasoning

We now study some properties of our relations in the presence of pattern matching and
rewrite rules. The aim is to establish invariants that “survive” the parallel application of
rewrite rules at the root of a term (node).

Besides giving us an ω-unifier (for equivalences), constructor-compatible relations give
us an invariant in pattern matching:

I Lemma 33. Let t ∈ Ter(Σc, X), s = σ(t), u = θ(t), and s R u where R is a constructor-
compatible relation between two term-coalgebras A and B. Then for any x ∈ X that occurs
in t, σ(x) R θ(x).

Proof. Let x ∈ X be any variable occurring in t, i.e. there is some position p ∈ Pos(t) such
that t|p = x. The proof goes by induction on the length of p.

If p = 〈 〉 (the empty position) then σ(t) = σ(x); similarly, θ(u) = θ(x), and so the result
follows.

Otherwise, p = i · p′ and t = C(t1, . . . , tn), for some constructor C ∈ Σc. s = σ(t)
implies s = C(σ(t1), . . . , σ(tn)). Similarly, u = C(θ(t1), . . . , θ(tn)). Thus, s and u are both
constructor-topped, therefore s R u implies s R̂ u by constructor-compatibility of R. Hence
σ(ti) R θ(ti), and we can apply the induction hypothesis to ti w.r.t. position p′. J

For applying a substitution after matching we have the following result:

I Lemma 34. Let R be a Σ-closed relation between two term-coalgebras A and B. Let
t ∈ Ter(Σ, X), s = σ(t) ∈ A, u = θ(t) ∈ B. If for all variables x ∈ X that occur in t we
have σ(x) R θ(x) then s R u.

Proof. By induction on the term structure of t. If t ∈ X (it is a variable) then s = σ(t) R
θ(t) = u and the result follows from the assumption.

Otherwise, t = F (t1, . . . , tn), s = F (σ(t1), . . . , σ(tn)), u = F (θ(t1), . . . , θ(tn)). By induc-
tion hypothesis we have si R ui (for all i), thus s R̃ u which entails the result, because R is
Σ-closed. J

As a direct consequence we can characterise “how safe” parallel rewrite steps with the same
rule are in a constructor rewrite system:

Stefan Kahrs and Connor Smith 12:11

I Corollary 35. Let S be constructor-compatible, and let l → r be a rewrite rule of a
Constructor TRS. If t1

l→r←− t2 S t3
l→r−→ t4 then t1, t4 are related by CT(S).

Proof. Because l is the left-hand side of a rule of a Constructor TRS, its direct subterms
are constructor terms. Thus Lemma 33 applies: the matching substitutions are pointwise
related by S. Hence they are also related by CT(S) and the result then follows from Lemma
34. J

Besides non-determinism of ε→ what might also introduce constructor-inconsistency if between
root-rewrite steps we rewrite on subterms in some way that might allow the adjacent root
steps to create an inconsistency. However, the situations allowing us to rewrite in opposite
directions are limited by the following observation:

I Lemma 36. Let a → b, c → d be two rewrite rules of a Constructor TRS. Let =% be a
constructor-compatible equivalence on some term-coalgebra A. If t1

a→b←− t2 =% t3
c→d−→ t4 then

a and c are ω-unifiable.

Proof. We know t2 = σ(a) and t3 = θ(c) for some substitutions σ and θ. We know from
Proposition 32 that U(=%) maps the direct subnodes of t2 and t3 to the same result.

Because that function is constructor-preserving we have U(=%)(t2|i) = U(=%)(σ(a|i)) =
(U(=%)◦σ)(a|i) and similarly U(=%)(t3|i) = (U(=%)◦θ)(c|i). Thus the pair of maps 〈U(=%)◦
σ, U(=%) ◦ θ〉 is an ω-unifier for a and c. J

Lemma 36 means that if the reasoning between root steps is done safely, i.e. via a constructor-
compatible equivalence on subterms then the subsequent rewrite steps were done with rules
with ω-overlapping patterns.

I Theorem 37. For a strongly almost non-ω-overlapping Constructor TRS, any Σ-closed
consistent relation R on a term-coalgebra A is a consistency invariant.

Proof. By Lemma 36 parallel rule applications are with ω-unifiable left-hand sides. As
the system is strongly almost non-ω-overlapping both are therefore instances of a common
generalisation l3 → r3, and we can apply Corollary 35. J

The standard equivalence relation =R associated with a Constructor TRS can be expressed
as CGI(ε→). We want to show that this relation is consistent. Instead, we are going to prove
the stronger property that it is constructor-compatible.

To define the right kind of invariant we need another auxiliary function on binary re-
lations over a term-coalgebra which allows us to compose rewrite steps and reasoning on
subterms “in a safe way” with another relation.

I Definition 38. The unary function IndA on binary relations over a term-coalgebra A is
defined as follows: IndA(x) .= (ε→A ∪ x) · x.

I Lemma 39. IndA(R) is constructor-compatible.

Proof. Constructor-topped terms are not in the domain of either ε→A or R. Hence îdA ·
IndA(R) · îdA is the empty relation. J

Using IndA we can construct a suitable consistent relation:

FSCD 2016

12:12 Non-ω-overlapping TRSs are UN

I Definition 40. Given a TRS with signature Σ, and a term-coalgebra A, the relation ⇓A
is a relation on A defined as follows:

⇓A
.= µx. fA(x)

fA(x) .= x−1 ∪ IndA(x) ∪ idA ∪ x̂ ∪ x

We omit the index if A = Ter∞(Σ +X, ∅).

I Lemma 41. Let A and B be term-coalgebras with A ⊆ B. Then ⇓A ⊆ ⇓B.

Proof. We have idA ⊆ idB and ε→A ⊆
ε→B simply because A ⊆ B. Hence IndA(x) ⊆

IndB(x) and fA(x) ⊆ fB(x). The result follows by monotonicity of fixpoint constructions
(Proposition 1.2.18 in [1]). J

I Proposition 42. ⇓A is Σ-closed.

Proof. ⇓A = ⇓A · idA ⊆ ⇓A · ⇓A ⊆ IndA(⇓A) ⊆ ⇓A, and ⇓̂A ⊆ ⇓A is immediate. J

In contrast to joinability, the direction of rewrite steps only matters here at root position.
Below root we do not rewrite, we just look for the invariant again. This change makes the
relation ⇓ strictly more expressive than ↓ (in non-confluent systems):

I Example 43. Recall that in Example 3 we had A →∗R E and A →∗R C(E), without a
common reduct for the two terms. However, we do have E ⇓ C(E), even E ⇓B C(B) in
a strictly finite term-coalgebra B: B = {A,E,C(A), C(E), D(A,C(A)), D(C(A), C(A))}.
Because A →∗R E and C(A) →∗R E we also have A ⇓B E (and C(A) ⇓B E), by symmetry
E ⇓B A and so C(E) ⇓B C(A). Because ⇓B is closed under prefixing with ⇓B we get
C(E) ⇓B E.

I Proposition 44. For any term-coalgebra A and w.r.t. any Constructor TRS, the relation
⇓A is constructor-compatible.

Proof. First note that the function fA preserves constructor-compatibility: We have that
the indivual parts of fA preserve constructor-compatibility (Lemmas 29 and 39), hence
îdA · fA(x) · îdA ⊆ x̂−1 ∪ ̂IndA(x) ∪ îdA ∪ x̂ ⊆ f̂A(x).

From Lemma 29 we get that constructor-compatibility is sup-continuous, hence µx.fA(x)
is constructor-compatible by Proposition 7. J

I Corollary 45. Given a strongly almost non-ω-overlapping Constructor TRS, ⇓A is a con-
sistency invariant on any term-coalgebra A.

Proof. This follows directly from Theorem 37 and Propositions 44 and 42. J

7 Proof Graphs

We introduce the new concept of proof graphs. The immediate purpose of these structures
is to permit us to reason about consistency proofs, and manipulate them, if necessary. The
overall goal is to show that ⇓A is an equivalence.

We assume throughout a fixed Constructor TRS (Σ,R), and a fixed strongly finite term-
coalgebra A.

I Definition 46. A proof graph % = (%→,=%) is given by a binary relation %→ on A with the
following properties:

Stefan Kahrs and Connor Smith 12:13

1. (%→ ∪ %←)∗ = =% ⊆ ⇓A;
2. %→ is deterministic, i.e. %← · %→ ⊆ idA;
3. %→ is terminating;
4. %→ ⊆ ε→A ∪ ⇓A ∪ =̂%

Explanation: the first condition means that a proof graph represents an equivalence relation
which is a subrelation of ⇓A; the second and third condition means that this representation
is a forest of trees (a union/find structure); the fourth condition means that these edges have
“good properties” when we want to extend the proof graph and merge equivalence classes.

I Lemma 47. Let % = (%→,=%) be a proof graph. Then =% is constructor-compatible.

Proof. Let t =% u, where t îdA t and u îdA u. The first condition of the definition gives
us t (%→ ∪ %←)∗ u; by the second and third condition %→ there must a common reduct s ∈ A
with t

%

→∗ s and s
%

←∗ u. Because the only outgoing edges for constructor-topped nodes are
of the relation =̂% we have t =̂%

∗
u, but =̂%

∗ ⊆ (̂=%)∗ = =̂%, and so t =̂% u. J

7.1 Extensions of a Proof Graph
I Definition 48. A node t ∈ A is called a normal form of % iff it is a normal form of the
relation %→. We write NF% for the set of normal forms of %. We write [%](a) for the normal
form of a node a.

The normal forms of a proof graph represent its equivalence classes. We want a way to merge
equivalences classes of a proof graph. In its simplest form (without allowing for “rewiring”)
this means the following:

I Definition 49. Given two proof graphs α and β, β is an extension of α iff α→ ⊆ β→.

I Lemma 50. Let β be an extension of α. Then for all a, b ∈ A with a β→ b ∧ ¬(a α→ b) we
must have: ¬(a =α b) and a ∈ NFα.

Proof. By contradiction: If a /∈ NFα then a α→ b′ for some b′, hence a β→ b′ because α→ ⊆ β→.
But then β→ fails to be deterministic, so β could not be a proof graph. If a =α b then

b
α

→∗ a, because α→ is deterministic and terminating. Therefore b
β

→∗ a β→ b. Thus β→ is not
terminating, so β could not be a proof graph. J

In addition to that one needs that the new merged equivalence class in =β is still contained
in ⇓A. However, that turns out not to be an issue because of our restrictions on edges.

I Definition 51. Given a proof graph % = (%→,=%) the grey edge relation on nodes is defined
as % = ε→A ∪ ⇓A ∪ =̂%.

So grey edges include those that are in that proof graph and those that “might be”.

I Lemma 52. Let % be a proof graph. Let →β ⊆ % such that →β is deterministic and
terminating, and let =β be the equivalence closure of →β. Then =β ⊆ ⇓A.

Proof. If t =β u we must have an s ∈ A with t →∗β s and u →∗β s, because →β is deter-
ministic and terminating. We prove this by induction on the number of→β steps. Moreover,
we strengthen the claim by requiring that if t îdA t and u îdA u then t =̂% u.

If t = u then by reflexivity of ⇓A we have t ⇓A u. If in addition t îdA t then t =̂% t by
reflexivity of =%.

FSCD 2016

12:14 Non-ω-overlapping TRSs are UN

If t (ε→A ∪ ⇓A) t′ =β u then t′ ⇓A u by induction hypothesis and so t IndA(⇓A) u which
implies t ⇓A u.

If t =β t
′(ε→A ∪⇓A)

−1
u then t ⇓A t′ by induction hypothesis, t′ ⇓A t by symmetry of

⇓A, u ⇓A t by the previous argument, and t ⇓A u by symmetry.
Otherwise, we must have t îdA t and u îdA u and t =̂% t

′ =β u. Thus t′ is constructor-
topped and t′ =̂% u by induction hypothesis. This implies t =̂% · =% u and so t =̂% u by
transitivity of =%. Since =% ⊆ ⇓A we have =̂% ⊆ ⇓̂A ⊆⇓A and so t ⇓A u. J

I Corollary 53. Let % = (%→,=%) be a proof graph, let a % b where a ∈ NF% and ¬(a =% b).
Then β = (%→ ∪{(a, b)},=β) is an extension of %.

Proof. The conditions on a and b mean that β→ remains deterministic and terminating.
Therefore, and because of β→ ⊆ % we can apply Lemma 52 and get =β ⊆ ⇓A. Finally,
because =% ⊂ =β we also have =̂% ⊆ =̂β and so all constructor edges can be retained. J

I Definition 54. A proof graph is called complete if it has no extensions other than itself.

I Proposition 55. Every proof graph has a complete extension.

Proof. Trivial, as each proper extension merges equivalence classes, and A is finite. J

I Lemma 56. For every complete proof graph % the relation =% is Σc-closed.

Proof. By contradiction. Suppose % were complete and we had t =̂% u and ¬(t =% u) then we
must also have t =̂% [α](t). This implies [α](t) =̂% u. By Corollary 53 β = (%→ ∪{(a, b)},=β)
is an extension of %, which contradicts completeness of %. J

The corresponding property is generally not true for Σ-closure, because we might only be
able to attach new edges from ⇓A to nodes that are redexes. But if a proof graph does not
contain “too many redexes” then such a conflict does not materialise.

We can characterise proof graphs for which this is possible by considering the relation
⇓A
∗ — which is an equivalence since ⇓A (and therefore ⇓A) is symmetric.

I Definition 57. For any t ∈ A we define Et
.= {u ∈ A | t ⇓A

∗
u}. We also define

DA
.= {Et | t ∈ A}. Rt

.= {u ∈ Et | ∃v ∈ A. u
ε→A v}.

Thus Et is the equivalence class of t for the relation ⇓A
∗, Rt the subset of redexes of Et and

DA the collection of equivalence classes. Note that if t is constructor-topped then Et is a
singleton and Rt is empty. We use these notions to build a proof a graph in which redexes
and Σ-closure are not in conflict.

I Definition 58. A target is a function targ : DA → A such that the following properties
hold: (i) ∀t ∈ A. targ(Et) ∈ Et and (ii) ∀t ∈ A. Rt 6= ∅ ⇒ targ(Et) ∈ Rt.

Thus a target singles out a member of each equivalence class, which moreover must be a
redex if the class contains any redexes. The motivation is to build a proof graph whose
subgraph on Et is a tree with root targ(Et).

I Definition 59. A targeted proof graph is a pair (%, targ%) such that % is a proof graph,
targ% is a target, and we have:

∀t ∈ A. t (⇓A ∩
%→)∗ targ(Et) ∨ t ∈ NF%

∀t ∈ A, u ∈ A. targ(Et)
%→ u⇒ u /∈ Et

Stefan Kahrs and Connor Smith 12:15

Thus, in a targeted proof graph a subset of Et is already connected with root targ(Et) whilst
all other nodes in Et are not linked to anything.

I Definition 60. A targeted extension of a proof graph α is a targeted proof graph (β, targβ)
such that β is an extension of α.

I Lemma 61. Any targeted proof graph has a targeted extension which is complete.

Proof. Suppose % was targeted and there is a t ∈ NF% such that with t 6= targ(Et). Then
there are nodes t = t0, . . . , tn = targ(Et) such that ∀i. ti ⇓A ti+1 and there must be some
j < n such that tj ∈ NF% and tj+1 (⇓A ∩

%→)∗ targ(Et). Thus we can extend % with the
edge (tj , tj+1), keep the same target, and then complete the extension.

If there is no such node then any extension will remain targeted, and so we can apply
Proposition 55. J

I Lemma 62. If (α, targα) is a complete targeted proof graph then =α is Σ-closed.

Proof. By Lemma 56 we know that =α is Σc-closed. Let t =α u. Because α is complete
and targeted t

α

→∗ targα(Et) and u
α

→∗ targα(Eu) Since t =α u we have t ⇓A u, hence
Et = Eu. J

7.2 The Universal Proof Graph
The kind of proof graph we want to build is one whose equivalence is the full relation ⇓A,
because that would show that ⇓A is transitive.

I Definition 63. A proof graph % is universal iff =% = ⇓A.

I Lemma 64. If ⇓A is a consistency invariant for our rewrite system then any targeted
proof graph which is complete is universal.

Proof. Let (%, targ%) a target proof graph which is complete. This is universal iff =% and
CG(ε→A) coincide. We write =R for CG(ε→A).

We prove the implication ∀t, u ∈ A. t ⇓A u⇒ t =% u by induction on the term structure.
Because =% is a Σ-closed equivalence this reduces to ∀t, u ∈ A. t ε→A u⇒ t =% u.

If t ε→A u then Rt 6= ∅ and so targ%(Et) ∈ Rt and we have t (⇓A ∩
%→)∗ targ%(Et)

by completeness of %. Since ⇓A
∗ ⊆ =R

∗ ⊆ =R we get t =R targ%(Et) and so by induction
hypothesis t =% targ%(Et). Because targ%(Et) ∈ Rt there is some r ∈ A with targ%(Et)

ε→A r

and because of completeness we have targ%(Et) =% r. The consistency invariant property
then gives us u CT(=%) r. Because =% is Σ-closed (Lemma 62) we get u =% r and t =%

targ%(Et). Overall t =% targ%(Et) =% r =% u. J

I Lemma 65. If ⇓A is a consistency invariant for our rewrite system then there is a universal
proof graph.

Proof. Let targ : DA → A be any target function. Then ((∅, id), targ) is a targeted proof
graph. We can then apply Lemma 61 and Lemma 65. J

I Theorem 66. Let (Σ, R) be a Constructor TRS such that ⇓A is a consistency invariant
for any strongly finite term-coalgebra A. Then =R coincides with ⇓ on Ter(Σ, ∅) (and is
therefore constructor-compatible).

FSCD 2016

12:16 Non-ω-overlapping TRSs are UN

Proof. Moreover, we even have that t =R u implies t ⇓B u for some strongly finite B.
Since t =R u, we must have a sequence of distinct terms s1, . . . , sn with t = s1 and

u = sn such that for all i < n either si →R si+1 or si+1 →R si. Closing the set {s1, . . . , sn}
under subterms then gives us the term-coalgebra B. By assumption ⇓B is a consistency
invariant for B, therefore there is a universal proof graph for B by Lemma 65 and thus
t ⇓B u. By the coalgebra-inclusion argument (Lemma 41) we have t ⇓ u. J

I Corollary 67. Strongly almost non-ω-overlapping Constructor TRSs have a consistent
equational theory.

Proof. Follows from Theorem 66 and Corollary 45. J

8 Consequences

Now we can put these results together to deliver the main theorems.

I Theorem 68. Non-ω-overlapping TRSs have a consistent equational theory.

Proof. By Corollary 16 a TRS is consistent iff its constructor translation is. By Proposi-
tion 22 the constructor translation of a non-ω-overlapping TRS is strongly almost non-ω-
overlapping, which — by Corollary 67 — means that it is consistent. J

From this, we also easily get uniqueness of normal forms:

I Theorem 69. Non-ω-overlapping TRSs have unique normal forms.

Proof. By contradiction. Suppose T = (Σ, R) were a non-ω-overlapping TRS, t, u ∈
Ter(Σ, X) were normal forms with t =R u and t 6= u. Then they remain normal forms
in the TRS U = (Σ + X + {F}, R ∪ F (t, x, y)→ x, F (u, x, y)→ y). The system U is also
non-ω-overlapping, as the new rules do not ω-overlap with each other or any old rule. But
x =U F (t, x, y) =U F (u, x, y) =U y, i.e. U is inconsistent which contradicts Theorem 68. J

9 Future Work

We would like to extend the result to wider ranges of TRSs. In particular, it would be nice
to be able to extend it to almost non-ω-overlapping Constructor TRSs, as these are the kind
of TRSs that are of concern in the Glasgow Haskell compiler which originated our interest
[4]. This is almost certainly doable with just slight extensions of the techniques displayed
here, though extending this further to arbitrary non-ω-overlapping TRSs might not be as
straightforward.

Also of special interest are semi-equational Conditional TRSs as the can be used to turn
TRSs into equivalent left-linear CTRSs, and non-duplicating TRSs into linear CTRSs, by
transforming variable sharing into equational constraints.

10 Conclusion

We have proved that non-ω-overlapping TRS have a consistent equational theory, as well as
unique normal forms. More important than the result itself is the novel proof technique that
makes use of finite Σ-coalgebras, in order to show that certain relations are invariants across
equational reasoning. The technique is related to the notion of “equivalent reductions” of
orthogonal term rewriting, but in contrast does not require “the creation of” additional
terms — the terms participating in the consistency proof are the same as the ones of the
original equational proof.

Stefan Kahrs and Connor Smith 12:17

References
1 André Arnold and Damian Niwiński. Rudiments of µ-calculus. North-Holland, 2001.
2 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University

Press, 1998.
3 Hendrik P. Barendregt. The Lambda-Calculus, its Syntax and Semantics. North-Holland,

Amsterdam, 1984.
4 Richard Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich.

Closed type families with overlapping equations. In Principles of Programming Languages,
pages 671–684. ACM, 2014.

5 Jörg Endrullis, Helle Hvid Hansen, Dimitri Hendriks, Andrew Polonsky, and Alexandra
Silva. A coinductive treatment of infinitary rewriting. In Workshop on Infinitary Rewriting,
page 8, 2013.

6 Jörg Endrullis, Dimitri Hendriks, Helle Hvid Hansen, Andrew Polonsky, and Alexandra
Silva. A coinductive framework for infinitary rewriting and equational reasoning. In Re-
writing Techniques and Applications, 2015.

7 Gérard Huet. Résolution d’Equations dans les Langages d’Ordre 1,2,...,ω. PhD thesis,
Université de Paris VII, 1976.

8 Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. Journal of the ACM, 27:797–821, 1980.

9 Richard Kennaway and Fer-Jan de Vries. Term Rewriting Systems, chapter Infinitary
Rewriting, pages 668–711. Cambridge University Press, 2003.

10 Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, Centrum voor Wiskunde
en Informatica, 1980.

11 Mizuhito Ogawa and Satoshi Ono. On the uniquely converging property of nonlinear term
rewriting systems. Technical Report IEICE COMP89-7, NTT Software Laboratories, 1989.

12 Gordon D. Plotkin. A note on inductive generalisation. Machine Intelligence, 5:153–163,
1970.

13 Barry K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the
ACM, 20:160–187, 1973.

14 RTA. The RTA list of open problems.
http://www.cs.tau.ac.il/~nachum/rtaloop

15 Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Springer, 2012.

16 Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215–225, April 1975.

17 Alfred Tarski. A lattice-theoretic fixed point theorem and its applications. Pacific Journal
of Mathematics, 5:285–309, 1955.

18 Terese, editor. Term Rewriting Systems. Cambridge University Press, 2003.

FSCD 2016

