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Brief summary: Several novel biomarkers of acute kidney injury (AKI) have recently been 

described but little is known of their biological variability, a prerequisite to their use in 

clinical practice. We characterised the biological variability of whole blood, plasma and 
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urinary neutrophil gelatinase-associated lipocalin (NGAL), urinary kidney injury 

molecule-1 (KIM-1), tissue inhibitor of metalloproteinases-2 (TIMP-2) and interleukin-18 

(IL-18), in addition to more traditional markers of kidney damage (plasma cystatin C and 

creatinine, urinary N-acetyl-β-D-glucosaminidase, albumin and α1-microglobulin). 

Biological variability of the novel markers is high, but compared against the scale of 

change described in disease situations would not preclude their use as sensitive markers of 

AKI.  
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Abstract: 

Background: 

Identification of acute kidney injury (AKI) is predominantly based on changes in plasma 

creatinine concentration, an insensitive marker. Alternative biomarkers have been 

proposed. The reference change value (RCV), the point at which biomarker change can be 

inferred to have occurred with statistical certainty, provides an objective assessment of 

change in serial tests results in an individual.  

Methods: 

In 80 patients with chronic kidney disease weekly measurements of blood and urinary 

biomarker concentrations were undertaken over 6 weeks. Variability was determined and 

compared before and after adjustment for urinary creatinine and across subgroups stratified 

by level of kidney function, proteinuria and presence/absence of diabetes. 

Results: 

RCVs of whole blood, plasma and urinary neutrophil gelatinase-associated lipocalin 

(NGAL, 111%, 59%, 693% respectively), plasma cystatin C (14%) and creatinine (17%), 

urinary kidney injury molecule-1 (KIM-1, 497%), tissue inhibitor of metalloproteinases-2 

(TIMP-2, 454%), N-acetyl-β-D-glucosaminidase (NAG, 361%), interleukin-18 (IL-18, 

819%), albumin (430%) and α1-microglobulin (216%) were determined. Blood biomarkers 

exhibited lower variability than urinary biomarkers. Generally, adjusting urinary biomarker 

concentrations for creatinine reduced (p<0.05) within-subject biological variability (CVI). 

For some markers, variation differed (p<0.05) between subgroups.  

Conclusions 

These data can form a basis for application of these tests in clinical practice and research 

studies and are applicable across different levels of kidney function, proteinuria and in the 

presence/absence of diabetes. Most of the studied biomarkers have relatively high CVI 

(noise) but also have reported large concentration changes in response to renal insult 

(signal); thus evolutional change should be detectable (high signal: noise ratio) when 

baseline data are available. 
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Introduction 

 

Acute kidney injury (AKI) is common, harmful, and potentially preventable.(1, 2) 

Definitions of AKI, including the RIFLE (Risk, Injury, Failure, Loss, End-stage) and 

AKIN (Acute Kidney Injury Network) criteria, are based upon recognition of changes in 

plasma creatinine concentration.(3) However, creatinine is a poor biomarker for AKI.(4) 

Earlier identification with more sensitive biomarkers has potential to improve outcomes 

including mortality, hospital length of stay and progression to chronic kidney disease 

(CKD).(5) Widely studied markers include plasma and urinary neutrophil gelatinase-

associated lipocalin (NGAL)(6, 7) and kidney injury molecule-1 (KIM-1).(8) Interleukin-

18 (IL-18)(9) and, more recently, tissue inhibitor of metalloproteinases-2 (TIMP-2) have 

also been proposed as early markers of AKI.(10) Historically, a range of tubular enzymes 

and filtered proteins have been measured in urine as indicators of tubular functional 

integrity including N-acetyl-β-D-glucosaminidase (NAG)(11) and α1-microglobulin.(12, 

13) Many of these have recently been re-evaluated as markers of AKI.(14, 15) 

 

It is appreciated that there is a need for a better understanding of these potential AKI 

markers, including their biological variability, amongst people with CKD.(16) CKD is 

prevalent in the general population, increases susceptibility to AKI,(17) and is potentially 

amenable to surveillance for AKI-avoidance measures. Biological variation may differ in 

chronic disease states compared to health:(18) there is little data on variability of 

biomarkers in CKD patients. An understanding of biological variation of markers is 

essential to interpretation of changes in response to disease events. Data on biological 

variation should be generated early in the evolution of new diagnostic and disease 

monitoring tests.(19) Critical evaluation of the significance of changes in results obtained 

on analysis of serial specimens can be performed only by consideration of biological and 

analytical variation.(20) Such data enables the derivation of the reference change value 

(RCV), the point at which a true change in a biomarker in an individual can be inferred to 

have occurred. Knowledge of biological variability is imperative to objectively compare 

available tests; to set analytical performance goals; and to determine the utility of reference 

intervals through derivation of the index of individuality (II).(20, 21)  

 

The primary aim of this study was to measure biological variation of biomarkers of AKI 

amongst patients with CKD. We focussed on within-subject variation (CVI) as the 



5 

parameter of most relevance when detecting change within an individual. Subsidiary 

research questions were (i) should urinary biomarker results be expressed as a 

concentration or as a ratio to urinary creatinine and (ii) does variability differ amongst 

different groups of CKD patients? 

 



6 

Subjects and Methods 

 

Patients with CKD (n=80), who did not have kidney failure (glomerular filtration rate 

[GFR] >15 mL/min/1.73 m2), were recruited at the Kent Kidney Care Centre, UK between 

January 2012 and March 2014. The sample was a convenience sample targeted to include 

representative numbers of patients with diabetes and/or proteinuria. Exclusion criteria 

included patients aged <18 years, renal transplant recipients, terminal illness or significant 

cognitive impairment. Patients provided written informed consent. The study had ethical 

approval (South-East Coast Research Ethics Committee reference 11/LO/1304). The study 

conforms to the internationally agreed checklist for the reporting of studies of biological 

variation.(22)  

 

Demographic details, blood pressure, height, weight and relevant medical and drug history 

and cause of CKD were recorded (http://www.era-edta-reg.org/prd.jsp , last accessed 28th 

July 2015). Samples were either taken at the Kent Kidney Care Centre or in patient’s 

homes by registered nursing staff. Patients provided a random urine sample and a blood 

sample weekly for 6 consecutive weeks. To standardise preanalytical variables, samples 

were collected on the same day of the week for each patient and consistently either in the 

morning (n=62) or afternoon (n=18). Blood samples were collected using standard 

venepuncture procedures, including the use of a tourniquet, into ethylenediaminetetraacetic 

acid- and lithium heparin-containing VacuetteTM tubes (Greiner Bio-One International) 

following manufacturer’s recommended order of draw. Patients provided urine samples in 

a plain sterilin pot. Plasma/serum was separated by centrifugation within 4 h of 

venepuncture and sample aliquots were stored at -80°C pending analysis. All analyses 

were undertaken within 15 months and the majority within 6 months of venepuncture. 

 

For each patient, at each of the six time points in the study, blood and plasma NGAL, 

plasma cystatin C and creatinine, and urinary biomarkers, NGAL, KIM-1, NAG, albumin, 

IL-18, TIMP-2, α1-microglobulin and creatinine were measured. Blood NGAL was 

measured using a point of care testing device (Triage Biosite, Inverness Medical 

Innovations) and plasma NGAL using a turbidimetric immunoassay (The NGAL TestTM, 

BIOPOPRTO Diagnostics, Denmark) on an Abbott Architect analyser (Abbott 

Laboratories, Abbott Park, Illinois, USA). Urinary NGAL was measured using a 

chemiluminescent microparticle immunoassay (Abbott Architect).(23)  KIM-1 (Quantikine 

http://www.era-edta-reg.org/prd.jsp
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DKM100, R&D Systems, www.RnDSystems.com), IL-18 (MBL International 

Corporation, Woiburn, MA, www.mblintl.com) and TIMP-2 (Quantikine DTM200, R&D 

Systems) were measured using enzyme-linked immunosorbent assays. Urinary NAG was 

measured using a colorimetric assay (PPR Diagnostics Ltd). Urinary α1-microglobulin 

(Beckman Immage),(12) plasma cystatin C and urinary albumin (both Abbott Architect) 

were measured using turbidimetric immunoassays. Plasma and urinary creatinine were 

measured using an enzymatic assay (Abbott Architect) traceable to a reference isotope 

dilution-mass spectrometry method. GFR was estimated using the Modification of Diet in 

Renal Disease (MDRD) Study equation.(24) Prior to analysis samples were thawed at 

room temperature and mixed by inversion. All samples from each individual subject were 

measured in duplicate in random order in a single assay. Each of the biomarker analyses 

was undertaken by a single operator using a single instrument. Quality control data for the 

respective assays are given in Supplementary Table 1.  

 

Data analysis 

Normality tests were performed using the Shapiro-Wilk test (Analyse-It, Leeds, UK). For 

estimation of variance components data were log-transformed using natural log. Outliers 

between duplicate measurements and of within-subject variance were excluded using 

Cochran’s test and outliers amongst mean values of subjects were excluded using Reed’s 

test, in the entire cohort and in the subgroups (Supplementary Table 2).(20) Log 

transformation improved the normality of the data as assessed by determining the 

percentage deviation from one of the mean over the median,(25)  an increase in Shapiro-

Wilk W statistic, minimisation of excess kurtosis and skewness scores, and by visual 

examination of the distributions (Supplementary Table 3). Terminology used was as 

proposed by Simundic et al.(26) Total (CVT), analytical (CVA), CVI and between-subject 

(CVG) components of variation were calculated using standard approaches(20) with 

general linear model ANOVA (Minitab; Coventry, UK) followed by back-transformation 

of the data. Confidence intervals for CVI were estimated using the method of Roraas et 

al.(27) CVA was considered acceptable if minimal performance standards were met (CVA 

<75% CVI).(21) The RCV (p<0.05) for change in analyte concentration between two 

results was calculated using a log-normal approach.(25) The number of specimens (n) 

required to produce a precise estimate of the homeostatic set-point with 95% confidence 

within +10% was calculated as: 

 

http://www.rndsystems.com/
http://www.mblintl.com/
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n = [1.96⋅(CVI
2 + CVA

2)1/2/10]2 

 

For each biomarker the index of individuality (II) was calculated as: 

 

II = (CVI
2 + CVA

2)1/2/CVG 

 

The value of population-based reference ranges was assessed based on the II, following the 

conventional approach that when the II is low (<0.6)(i.e. individual results stay within a 

narrow range compared with the population reference interval) then a population-based 

reference interval will be of limited sensitivity in detecting changes in an individual. The 

converse applies to a high II (>1.4).(20) 

 

Urinary data was reanalysed after adjustment of biomarker concentrations for urinary 

creatinine, to establish whether such adjustment reduced CVI. A comparison of CVI 

between males and females was also undertaken. Differences were tested using the F-test 

(Minitab).  

 

In addition to studying variability in the whole cohort, analyses were also undertaken 

across 4 groups (groups A-D) divided on the basis of glomerular filtration rate (GFR, <60 

or >60 mL/min/1.73 m2), albuminuria (albumin to creatinine ratio <30 or >30 

mg/mmol),(28) and in the presence and absence of diabetes mellitus (Table 1). For native 

data, the Kruskal-Wallis test (non-parametric analysis of variance (ANOVA)) was used to 

assess the significance of differences in continuous variables between the groups and chi-

squared test was used for categorical variables (Analyse-It). Variation was compared 

across the groups using multilevel regression methods. Three level models were used to 

divide the total variation into that between patients, between weeks (within patient), and 

between repeat measurements (within patient/week). The variation between weeks was 

allowed to vary between the patient groups (A-D), and the significant of this difference 

was assessed. Due to the skewed distribution of all markers the analysis was performed on 

the log scale. The analyses were performed using MLwiN version 2.25 (Centre for 

Multilevel Modelling, University of Bristol, Bristol BS8 1TX, UK). 
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Results 

 

Characteristics of the study subjects are shown in Table 1. Causes of CKD were autosomal 

dominant polycystic kidney disease (3), chronic hypertensive nephropathy – no histology 

(9), diabetic nephropathy (6), IgA nephropathy – histologically proven (5), membranous 

nephropathy – idiopathic (8), mesangial proliferative glomerulonephritis (3), 

mesangiocapillary glomerulonephritis type 1 (3), other (17), systemic vasculitis (3), 

tubulo-interstitial nephritis – no histology (2) and aetiology unknown (21). No patients 

developed AKI(3) during the study.  

 

Variance components for all biomarkers are given in Table 2. Blood biomarkers exhibited 

lower CVI than urinary biomarkers. Plasma creatinine and cystatin C exhibited the lowest, 

and plasma NGAL the highest, CVI values of the blood markers. The concentration of 

serial plasma NGAL measurements would need to increase by 59% between any two 

measurements before it can be considered a significant change: serial changes in all urinary 

markers would need to be greater than this (Table 2). With the exception of α1-

microglobulin, adjusting urinary biomarker concentrations for urinary creatinine 

siginificantly reduced their biological variability (p<0.05). Significant (p<0.05) differences 

for CVI were observed between males and females for urinary NGAL, KIM-1, NAG, IL-

18, and TIMP2 both with and without adjustment for urinary creatinine concentration in all 

cases (Supplementary Table 4). Most biomarkers satisfied minimal analytical performance 

standards except for whole blood NGAL (CVA 17.8%, CVI 20.8%).  

 

For all biomarkers, concentrations differed across the sub-groups (Table 1, p<0.001 in all 

cases). Within-subject variation differed significantly between the four patient subgroups 

for some of the markers examined (Table 3). For plasma NGAL variation was largest in 

group A (estimated GFR >60 mL/min/1.73 m2 with or without proteinuria). For the 

majority of the urine markers where a difference was observed, the least variation was 

observed for Group C (proteinuric, non-diabetic patients with estimated GFR 15-59 

mL/min/1.73 m2). Supplementary Tables 5-8 provide full variance component data for the 

four subgroups in addition to causes of CKD. 
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Discussion  

 

We report the biological variability characteristics of a range of biomarkers of AKI 

amongst patients with CKD. Generally the within-subject variability of these markers is 

relatively high and the index of individuality low, suggesting that use of conventional 

reference ranges for disease detection will be unsuitable.(20) This discussion places the 

biological variability of the markers we have studied in the context of changes in 

concentration that have been observed in AKI, and also compares our data in CKD patients 

with that previously reported in healthy individuals, where such is available 

(Supplementary Table 9).  

 

We studied variability of NGAL in urine and plasma and also in whole blood using a point 

of care testing device. The latter did not meet minimum analytical performance criteria as 

defined by biological variability, such that >25% of the variability observed may be 

attributable to analytical imprecision.(21) Establishment of biological variability data for 

whole blood NGAL will require use of a device with improved analytical performance. We 

have not identified previous studies of the biological variability of plasma NGAL. Plasma 

NGAL demonstrated lower variability than urinary NGAL. In some carefully controlled 

situations plasma NGAL has been shown to increase rapidly (within 2 h) and markedly 

(290% increase) in response to kidney injury:(6, 29) concentrations then remain increased 

and relatively stable for some time (e.g. 48 h(17)) after insult. Such large changes in 

biomarker concentration could be detected against background biological variability. 

However, in some studies pre-AKI plasma NGAL concentrations have not been available: 

monitoring rate of change is not an option and analysis is based on presenting plasma 

NGAL concentrations amongst patients who have AKI compared to those that do not. 

Studies have been undertaken in an attempt to define a cut-off value above which AKI can 

be diagnosed. Whilst differences in plasma NGAL concentrations between patients with, 

and without, AKI are marked, in the presence of pre- and coexisting CKD such 

discrimination is less clear-cut. For example, in the study of Soto et al plasma NGAL 

concentrations amongst a non-AKI sub-group of their cohort with stable CKD almost 

completely overlapped values observed in the AKI group.(17) One third of patients with 

AKI in that study had pre-existing CKD, illustrating the significance of this issue.(17) 
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The CVI of urinary NGAL was considerable and was slightly reduced by adjusting the 

concentration for urinary creatinine. Our data are in broad agreement with other reports 

(Supplementary Table 9). Bennett et al reported 20-fold increases in urinary NGAL 

concentrations amongst paediatric cardiac surgery patients who developed AKI, well in 

excess of the RCV.(23) However, as for plasma NGAL, the increase in urinary NGAL 

concentration occurs early (within 2 h) after insult(29) and the concentration remains 

increased for at least 24 h.(30) Consequently, in more general situations AKI patients 

presenting to emergency departments will most likely already have had an increase in their 

urinary NGAL concentration and recognition of AKI will require use of a diagnostic cut-

off for NGAL. Whilst such a cut-off may allow identification of patients with more severe 

AKI (e.g. RIFLE stage F), discrimination of lesser degrees of injury compared to non-AKI 

may be more difficult.(30)  

 

The observed CVI of urinary KIM-1 reported here is lower than that for urinary NGAL, 

especially after adjustment for creatinine concentration, and agrees reasonably with a 

previous report amongst healthy volunteers (Supplementary Table 9). In contrast to 

NGAL, urinary KIM-1 concentration shows a later increase after insult in patients with 

AKI, with for example more than two-fold increases being observed after cardiopulmonary 

bypass surgery after 12 h, with further increases up to 24 h.(30) The delayed rise and 

marked increase in urinary concentration of KIM-1 may allow serial monitoring of this 

marker to be a useful tool in the detection of AKI. IL-18 also exhibited a high CVI in the 

present and a previous study (Supplementary Table 9), but changes in IL-18 concentration 

after renal insult are also likely to exceed the RCV.(30) 

 

TIMP-2 is a relatively novel marker of AKI.(10) We found no other studies of urinary 

TIMP-2 biological variation. Biological variability was of a similar order of magnitude to 

other urinary markers and was reduced by adjustment for creatinine concentration. 

Yamashita et al report five-fold increases in urinary TIMP-2 concentration in patients 

developing AKI.(14) 

 

We also studied the biological variability of some more established markers of kidney 

damage: plasma creatinine and cystatin C and urinary albumin, NAG and α1-

microglobulin. Criteria for diagnosis of stage 1 AKI are currently met when there is a 

>26.4 umol/L (>0.3 mg/dL) or a 50% increase in plasma creatinine concentration above 
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baseline within 48 h.(3) This definition has primarily been based on increased risk 

associated with such a change rather than considerations of what is detectable analytically 

against background variation.(31) The overall CVI we obtained for plasma creatinine 

amongst stable CKD patients (5.7%) is similar to that reported in healthy individuals 

(Supplementary Table 9) and would facilitate AKI detection at baseline physiological 

concentrations (e.g. 1 mg/dL).  

 

We included cystatin C in our study as it is increasingly being proposed as an alternative 

marker of kidney damage to creatinine, including in the AKI setting.(32) The biological 

variability we observed amongst CKD patients is in keeping with data of others, being 

similar to, but slightly lower than, the CVI of creatinine (Supplementary Table 9). It should 

be noted that plasma creatinine and cystatin C were the only two markers we studied where 

measurement of a single sample would enable a useful assessment of the true concentration 

(homeostatic set point) in an individual.  

 

Albuminuria is associated with AKI(15) and predicts progression of AKI after surgery in 

individuals with AKI.(33) The CVI of urinary albumin we observed is broadly similar to 

that previously reported (Supplementary Table 9); was reduced by adjustment for 

creatinine concentration; and was highest amongst those with the lowest levels of 

albuminuria, as also noted by others.(34) Urinary NAG showed similar within-subject 

biological variability to KIM-1, including a reduction after adjustment for creatinine and 

differences in CVI across the patient groups which disappeared after creatinine adjustment. 

Our data compares reasonably well with earlier estimates of CVI derived in first morning 

urines of healthy individuals (Supplementary Table 9). The CVI of urinary α1-

microglobulin was lower than that for other urinary markers but was not reduced by 

adjustment for creatinine concentration, as noted by others (Supplementary Table 9). α1-

microglobulin in its free form is relatively freely filtered at the glomerulus, following 

which it undergoes proximal tubular reabsorption.(13) Possibly variability in urinary α1-

microglobulin loss is determined by variability in tubular reabsorption rates, irrespective of 

urinary flow.  

 

For most biomarkers included in the present study adjustment for urinary creatinine 

concentration reduces within-subject variability, since it effectively adjusts for changes in 

urinary flow rate. Generally this is considered an advantage when monitoring markers over 
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time within an individual or comparing marker concentrations between individuals. 

However, creatinine adjustment itself can also be misleading as it may distort differences 

between individuals with differing muscle mass or changes within individuals at times of 

change in creatinine excretion (e.g. AKI).(35) Although achieving statistical significance 

for some markers, variances across different groups of CKD patients were relatively 

consistent, with the possible exception of non-diabetic proteinuric patients with CKD who 

appeared to have lower variance for some markers (e.g. urinary NGAL, Table 3). Given 

their higher levels of proteinuria, we postulate that this could be related to saturation of 

tubular reabsorptive mechanisms in such individuals.(36) We also observed higher within-

subject variability for some urinary, but not plasma, markers in females compared to 

males. This difference persisted after adjustment for urinary creatinine. As noted above, 

these analyses do not take into account other potential influences on variability (e.g. age, 

level of proteinuria and GFR) and would require further study to confirm. 

 

In most cases the variability we have observed in CKD patients is similar to that observed 

in earlier studies amongst healthy individuals (Supplementary Table 9). A limitation of our 

study is that we have not directly established the magnitude of marker changes in patients 

with AKI, but have compared our data to that reported elsewhere. However, it is generally 

accepted that estimates of biological variability can be generalised across studies. In most 

cases, reported AKI-related changes in marker concentrations are likely to exceed 

biological variability, suggesting that evolutional change in markers will allow AKI 

detection when patients can be followed from onset of insult (e.g. in elective surgical 

situations). However, in the general acute medical setting, knowledge of baseline 

biomarker concentrations is unlikely to be the norm. The high individuality of the markers 

(low II), and higher concentrations in CKD patients compared to healthy individuals, 

suggest that interpretation against reference intervals or simple decision thresholds may 

result in reduced sensitivity for AKI detection amongst patients with pre-existing CKD. A 

single biomarker may be unable to diagnose all aspects of a complex multifactorial process 

such as AKI, and a panel of biomarkers may therefore be necessary.(37) Biological 

variability is clearly not the only criterion of importance in biomarker selection e.g. the 

temporal delay in increase in creatinine compared to NGAL following an episode of AKI 

will remain a major limitation of creatinine. Practical considerations also impinge on 

choice of biomarker employed e.g. experience suggests that blood sampling is more 

commonly undertaken than urine sampling in patients presenting with AKI.(2) The high 
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reagent cost of some of the newer markers (e.g. NGAL, KIM-1) should also be tested in 

health economic analysis against the more traditional, and less expensive, markers (e.g. 

NAG).  

 

In conclusion, we have established baseline data on biological variation of AKI markers in 

a carefully designed study in a clinically relevant population, namely patients with CKD. 

The data reported herein can form a basis for the application of these tests in clinical 

practice and research studies. Most of these biomarkers have relatively high within-subject 

variability (noise) but also have reported large concentration changes in response to renal 

insult (signal): thus evolutional change should be detectable (high signal to noise ratio) 

when baseline data is available. Broadly similar variability should be anticipated in the 

presence of proteinuria and diabetes. Generally variability will be reduced by adjustment 

of urinary markers for creatinine concentration: this may facilitate disease detection. 
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Table 1. Characteristics of study subjects in whole cohort and in four sub-groups.  
 
Continuous data shown as median (range) unless stated otherwise. Biomarker data represents the median (range) of data from all six sampling points. 
Group A: estimated glomerular filtration rate [GFR] >60 mL/min/1.73 m2 with or without proteinuria (albumin:creatinine ratio >30 mg/mmol)  
Group B: estimated GFR 15-59 mL/min/1.73 m2 non-proteinuric (albumin to creatinine ratio <30 mg/mmol) non-diabetic patients 
Group C: estimated GFR 15-59 mL/min/1.73 m2 proteinuric (albumin to creatinine ratio >30 mg/mmol) non-diabetic patients  
Group D: estimated GFR 15-59 mL/min/1.73 m2 proteinuric (albumin to creatinine ratio >30 mg/mmol) diabetic patients 
 
*One patient initially assigned to group B was subsequently excluded from the subgroup analysis after developing proteinuria across the course of the study. This 
patient’s data is included in the ‘All’ column but not in the ‘B’ column. 
 

 All* Group A Group B* Group C Group D p 
       
n 80 18 25 20 16 - 
Age, years 67.9 (33.8, 89.1) 61.5 (33.8, 74.9) 68.5 (53.7, 81.7) 73.5 (38.2, 88.1) 67.4 (47.5, 89.1) 0.013 
M:F 47:33 9:9 12:13 14:6 11:5 0.328 
Caucasian (n) 78 18 24 19 16 0.660 
Height, m 1.71 (1.50, 1.95) 1.70 (1.50, 1.95) 1.67 (1.55, 1.95) 1.71 (1.57, 1.88) 1.73 (1.57, 1.83) 0.660 
Weight, kg 80.1 (38.1, 150.0) 77.8 (48.3, 128.0) 75.7 (38.1, 114.0) 85.0 (46.7, 150.0) 90.3 (57.6, 142.0) 0.165 
Body mass index 27.2  (15.9, 60.9) 27.0 (18.9, 42.8) 25.1 (15.9, 33.5) 26.3 (18.9, 60.9) 32.5 (23.0, 47.4) 0.061 
Systolic blood pressure (mm Hg) 136 (98, 206)  134 (106, 176) 132 (110, 182) 134 (98, 206) 147 (101, 169) 0.398 
Diastolic blood pressure (mm Hg) 77 (56, 106) 83 (66, 106) 75 (58, 102) 76 (57, 93) 77 (56, 105) 0.180 
Diabetes (n) 20 4 0 0 16 - 
Estimated GFR (mL/min/1.73 m2) 41 (15, 90) 67 (60, 90) 40 (17, 56) 34 ( 15, 57) 31 (19, 51) - 
Plasma creatinine (µmol/L) 138 (53, 354) 84 (53, 116) 146 (76, 265) 154 (83, 354) 158 (113, 348) <0.0001 
Plasma cystatin C (mg/L) 1.76 (0.59, 3.93) 1.02 (0.59, 2.13) 1.75 (1.12, 3.93) 1.93 (1.06, 3.51) 2.23 (1.33, 3.86) <0.0001 
Plasma NGAL (µg/L) 148 (31, 10387) 78 (31, 368) 123 (60, 300) 181 (51, 549) 243 (108, 10387) <0.0001 
Whole blood NGAL (µg/L) 197 (46, 1245) 125 (46, 737) 175 (84, 1195) 270 (64, 1245) 363 (133, 798) <0.0001 
Urine NGAL (µg/L) 32 (1, 1501) 19 (2, 310) 20 (1, 501) 33 (3, 1501) 44 (6, 1456) <0.0001 
Urine KIM-1 (µg/L) 1.04 (0.01, 11.75) 0.90 (0.06, 3.07) 0.84 (0.01, 11.75) 1.19 (0.13, 5.85) 1.28 (0.09, 8.04) <0.001 
Urine NAG (µmol/L) 360 (23, 5678) 350 (23, 1632) 323 (44, 2456) 505 (79, 5678) 521 (58, 1520) <0.0001 
Urine albumin (mg/L) 160.4 (5.0, 10824.0) 112.1 (5.0, 10824.0) 18.7 (5.4, 369.7) 379.3 (25.3, 2591.4) 450.3 (9.6, 2508.4) <0.0001 
Urine IL-18 (ng/L) 39.4 (2.1, 1242.7) 38.6 (2.9, 569.6) 29.2 (2.3, 575.7) 45.0 (2.1, 1242.7) 45.58 (3.86,658.3) <0.0001 
Urine TIMP-2 (μg/L) 2.9 (0.1, 31.3) 3.5 (0.4, 19.5) 2.2 (0.1, 24.0) 2.9 (0.3, 31.3) 3.2 (0.2, 10.7) <0.0001 
Urine α1-microglobulin (mg/L) 22 (4, 306) 16 (4, 137) 18 (4, 146) 23 (5, 164) 33 (4, 306) <0.0001 
Urine creatinine (mmol/L) 7.1 (1.7, 22.8) 7.1 (1.3, 27.0) 7.8 (5.4, 22.8) 6.1 (1.7, 18.7) 6.4 (1.1, 20.0) <0.0001 

 
Abbreviations: CKD, chronic kidney disease; IL-18, interleukin-18; KIM-1, kidney injury molecule-1; NAG, N-acetyl-β-D-glucosaminidase; NGAL, neutrophil gelatinase-
associated lipocalin; TIMP-2, tissue inhibitor of metalloproteinase-2 
 
To convert plasma creatinine concentration from umol/L to mg/dL, divide by 88.4. 
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Table 2. Variance components for CKD patients in whole cohort (n = 80)  
 
Variance components were used to calculate the critical difference for change in serial results (positive and negative reference change value, RCV) to be considered as significant 
(p<0.05), the number of specimens required to estimate the homeostatic set point of an individual (within +10%), and the index of individuality (II). 
 

Biomarker CVI, % (CI) CVG, % CVA, % Positive 
RCV, %   

Negative 
RCV,  %  

No. of 
samples 
for set-
point 
estimation 

II 

        
Plasma creatinine 5.7 (5.0, 6.3) 51.3 0.6 17 -15 1 0.1 
Plasma cystatin C 4.8 (4.3, 5.3) 49.9 0.9 14 -13 1 0.1 
Plasma NGAL 16.1 (14.4, 17.7) 127.5 5.1 59 -37 11 0.1 
Whole blood NGAL 20.8 (17.8, 23.8) 91.9 17.8 111 -53 29 0.3 
Urine NGAL 86.3 (79.7, 92.9) 196.2 5.2 693 -87 287 0.4 
Urine NGAL/creatinine 70.7 (65.1, 76.4)* 219.0 5.3 486 -83 193 0.3 
Urine KIM-1 71.6 (65.9, 77.3) 124.6 4.8 497 -83 198 0.6 
Urine KIM-1/creatinine 29.8 (27.1, 32.5)* 103.2 5.1 127 -56 35 0.3 
Urine NAG 59.5 (54.6, 64.4) 86.5 4.0 361 -78 137 0.7 
Urine NAG/creatinine 33.4 (30.4, 36.3)* 83.1 4.3 148 -60 43 0.4 
Urine albumin 66.0 (60.7, 71.4) 462.9 2.9 430 -81 168 0.1 
Urine albumin/creatinine 44.9 (41.1, 48.8)* 509.2 2.9 229 -70 78 0.1 
Urine IL-18 94.6 (87.5, 101.8) 130.5 4.5 819 -89 345 0.7 
Urine IL-18/creatinine 65.0 (59.8 70.3)* 128.9 5.0 420 -81 164 0.5 
Urine TIMP-2 67.9 (62.4, 73.3) 119.7 6.0 454 -82 178 0.6 
Urine TIMP-2/creatinine 29.6 (26.6, 32.5)* 104.2 8.4 130 -57 36 0.3 
Urine α1-microglobulin 43.3 (39.6, 47.1) 140.6 1.3 216 -68 72 0.3 
Urine α1-microglobulin /creatinine 41.1 (37.5, 44.6) 147.0 1.9 199 -67 65 0.3 

 
 
Abbreviations: CI, confidence interval; CVA, analytical variation; CVG, between-subject variation; CVI, within-subject variation; II, index of individuality; IL-18, interleukin-18; 
KIM-1, kidney injury molecule-1; NAG, N-acetyl-β-D-glucosaminidase;  NGAL, neutrophil gelatinase-associated lipocalin; RCV, reference change value; TIMP-2, tissue 
inhibitor of metalloproteinase-2 
 
*Significantly different than the CVI in patients with the equivalent urinary biomarkers not corrected for creatinine concentration (p<0.05).  
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Table 3. Within-subject variation [CVI (confidence interval)] in the four different subgroups of CKD patients. Multilevel regression methods were used 
to test for differences in CVI across the four groups.  
 
Group A: estimated glomerular filtration rate [GFR] >60 mL/min/1.73 m2 with or without proteinuria (albumin:creatinine ratio >30 mg/mmol)  
Group B: estimated GFR 15-59 mL/min/1.73 m2 non-proteinuric (albumin to creatinine ratio <30 mg/mmol) non-diabetic patients 
Group C: estimated GFR 15-59 mL/min/1.73 m2 proteinuric (albumin to creatinine ratio >30 mg/mmol) non-diabetic patients  
Group D: estimated GFR 15-59 mL/min/1.73 m2 proteinuric (albumin to creatinine ratio >30 mg/mmol) diabetic patients 
 

Biomarker CVI, % (confidence interval) p 
 Group A Group B Group C Group D  
      
Plasma creatinine 5.1 (4.3, 6.0) 4.5 (3.7, 5.3) 6.7 (5.7, 7.7) 6.1 (5.1, 7.1) <0.001 
Plasma cystatin C 4.6 (3.8, 5.4) 4.4 (3.6, 5.2) 5.9 (5.0, 6.7) 3.9 (3.2, 4.5) <0.001 
Plasma NGAL 24.6 (20.4, 28.8) 13.1 (11.2, 15.1) 14.8 (12.7, 16.9) 10.9 (9.1, 12.6) <0.001 
Whole blood NGAL 18.8 (14.1, 23.4) 24.5 (15.2, 33.8) 22.9 (18.9, 26.9) 14.8 (8.8, 20.8) 0.20 
Urine NGAL 93.9 (81.2, 106.5) 99.8 (86.9, 112.7) 48.6 (43.0, 54.2) 87.6 (75.7, 99.5) <0.001 
Urine NGAL/creatinine 82.2 (70.9, 93.5) 79.3 (68.3, 90.4) 41.3 (36.1, 46.4) 74.5 (64.1, 85.0) <0.001 
Urine KIM-1 74.5 (64.1, 85.0) 72.2 (63.0, 81.2) 60.3 (53.1, 67.5) 82.9 (71.5, 94.3) <0.001 
Urine KIM-1/creatinine 32.7 (27.7, 37.8) 29.6 (24.9, 34.2) 26.1 (22.6, 29.7) 27.9 (23.5, 32.3) 0.48 
Urine NAG 64.7 (55.5, 74.0) 57.0 (50.0, 64.0 ) 47.4 (41.5, 53.3) 60.6 (51.9, 69.4) <0.001 
Urine NAG/creatinine 30.7 (26.0, 35.5) 33.6 (25.8, 41.4) 29.4 (25.5, 33.3) 40.1 (34.0, 46.1) 0.12 
Urine albumin 68.9 (59.1, 78.6) 70.2 (63.2, 83.8) 46.7 (35.8, 57.5) 47.3 (40.2, 54.3) <0.001 
Urine albumin/creatinine 42.6 (36.2, 49.0) 49.8 (41.6, 57.9) 33.6 (29.2, 38.1) 33.4 (28.2, 38.5) <0.001 
Urine IL-18 94.6 (81.9, 107.4) 107.0 (92.9, 120.9) 74.5 (64.1, 85.0) 96.8 (70.9, 122.7) 0.14 
Urine IL-18/creatinine 68.2 (58.5, 77.9) 70.9 (60.9, 80.9) 51.3 (43.7, 58.8) 61.6 (43.9, 79.3) 0.09 
Urine TIMP-2 68.7 (59.0, 78.4) 71.9 (61.8, 82.1) 52.2 (44.5, 59.8) 79.0 (57.1, 100.8) 0.03 
Urine TIMP-2/creatinine 23.0 (19.0, 27.0) 26.5 (21.9, 31.0) 28.5 (24.1, 33.0) 35.1 (23.3, 46.9) 0.004 
Urine α1-microglobulin 39.2 (33.3, 45.2) 40.6 (34.5, 46.8) 39.1 (33.2, 45.0) 46.5 (32.7, 60.4) 0.06 
Urine α1-microglobulin /creatinine 32.5 (27.4, 37.5) 38.1 (32.3, 43.9) 37.0 (31.4, 42.7) 43.2 (30.2, 56.2) 0.27 

 
Abbreviations: IL-18, interleukin-18; KIM-1, kidney injury molecule-1; NAG, N-acetyl-β-D-glucosaminidase; NGAL, neutrophil gelatinase-associated lipocalin; TIMP-2, tissue 
inhibitor of metalloproteinase-2 
 
 


