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UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
(Dated: April 8, 2016)

Self-assembly of proteins into amyloid aggregates is an important biological phenomenon associ-
ated with human diseases such as Alzheimer’s disease. Amyloid fibrils also have potential applica-
tions in nano-engineering of biomaterials. The kinetics of amyloid assembly show an exponential
growth phase preceded by a lag phase, variable in duration as seen in bulk experiments and exper-
iments that mimic the small volumes of cells. Here, to investigate the origins and the properties
of the observed variability in the lag phase of amyloid assembly currently not accounted for by
deterministic nucleation dependent mechanisms, we formulate a new stochastic minimal model that
is capable of describing the characteristics of amyloid growth curves despite its simplicity. We then
solve the stochastic differential equations of our model and give mathematical proof of a central limit
theorem for the sample growth trajectories of the nucleated aggregation process. These results give
an asymptotic description for our simple model, from which closed form analytical results capable
of describing and predicting the variability of nucleated amyloid assembly were derived. We also
demonstrate the application of our results to inform experiments in a conceptually friendly and clear
fashion. Our model offers a new perspective and paves the way for a new and efficient approach on
extracting vital information regarding the key initial events of amyloid formation.

INTRODUCTION

The amyloid conformation of proteins is of increas-
ing concern in our society because they are associated
with devastating human diseases such as Alzheimer’s dis-
ease, Parkinson’s disease, Huntington’s disease, Prion
diseases and type-2 diabetes [1, 2]. The fibrillar assem-
blies of amyloid are also of considerable interest in nano-
science and engineering due to their distinct functional
and materials properties [3–6]. Elucidating the molecular
mechanism of how proteins polymerize to form amyloid
oligomers, aggregates and fibrils is, therefore, a funda-
mental challenge for current medical and nanomaterials
research.
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Amyloid diseases are associated with the aggregation
and deposition of mis-folded proteins in the amyloid con-
formation [1, 2]. Amyloid aggregates form through nu-
cleated polymerization of monomeric protein or peptide
precursors (e.g. [7–11]). The slow nucleation process that
initiates the conversion of proteins into their amyloid con-
formation is followed by exponential growth of amyloid
particles, resulting in growth of amyloid fibrils that is
accelerated by secondary processes such as fibril frag-
mentation and aggregate surface catalyzed heterogeneous
nucleation [7, 11–13] (Figure 1). Current mathematical
description of protein assembly into amyloid are based
on systems of mass-action ordinary differential equations,
and they have been successful in describing the average
behaviour of amyloid assembly observed by kinetic exper-
iments (e.g.[11, 12]). The formation kinetics of amyloid
aggregates has been studied extensively by bulk in vitro
experiments in volumes typically in the range of hun-
dreds of µL or larger [12], but has also been observed
recently in elegant microfluidic experiments in pL to nL
range, more closely mimicking physiological volumes in
tissues and cellular compartments [14]. Amyloid growth
experiments typically follow the appearance of amyloid
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aggregates or the depletion of monomers as function of
time, yielding information regarding the rate of the ex-
ponential growth and the length of the lag phase un-
der different protein concentrations at fixed volumes. A
hitherto overlooked piece of information that can be de-
rived from these kinetic experiments is the observed vari-
ation between experimental repeats, which may hold the
key to understanding the early rare nucleation events of
amyloid formation [12, 15–17]. However, current deter-
ministic models cannot describe variability, thus, unable
to address whether the observed variations in lag phase
length reflect subtle experimental differences between the
replicates, contributions from the stochastic nature of the
nucleation mechanism, or a combination of both factors.
As shown recently by Szavits-Nossan and co-workers us-
ing a stochastic nucleated growth model, rare nucleation
events are expected to dictate the behaviour and vari-
ability of amyloid formation in small volumes such as in
cellular compartments [15]. Understanding these rare ini-
tial nucleation events of amyloid formation and the vari-
ability resulting from the stochastic nature of nucleation,
therefore, is of paramount importance in the fundamen-
tal understanding of amyloid diseases and in controlling
amyloid formation.

Here, we present a new stochastic protein assembly
model with the aim to capture the fundamental features
of amyloid self-assembly that includes their stochastic na-
ture, and still allow a fully rigorous mathematical anal-
ysis of these processes (Figure 1). In this spirit, our
model contains minimal possible complexity needed to
describe a nucleated protein polymerization process, al-
lowing us to study it theoretically in a mathematically
rigorous manner, but still allowing useful comparison to
experimental data. From our minimal model, we derive
a closed form formula that can describe and predict vari-
ability in the lag phase duration of nucleated protein as-
sembly by giving a proof to a central limit theorem for
our model. Our results demonstrate how stochasticity
at the molecular level may influence the kinetics of the
total reaction population at a macroscopic scale depend-
ing on the relative rates of nucleation and exponential
growth, and on reaction volume. We also show how new
information relevant to any specific nucleated amyloid as-
sembly can be gained in a conceptually simple and clear
manner by applying our analytical results to the analy-
sis of published β2m amyloid assembly kinetics data [12].
We demonstrate that our model qualitatively captures
key features of the data such as parallel progress of the
curves and the order of magnitude for the rates of the self-
accelerating reactions. We also show that the intrinsic
stochastic nature of nucleation alone cannot explain the
observed variability in lag phase length for published β2m
amyloid assembly data acquired in large (100 µL) vol-
umes suggesting alternative mechanistic assembly steps
and additional experimental sources that contribute to
the lag-time variability in the observed amyloid growth
curves. Our approach represents the basis for the de-
velopment of extensive and tractable stochastic models,

which will allow the variability information from amy-
loid growth kinetics experiments to be used to inform
the fundamental molecular mechanisms of the key rare
initial events of amyloid formation that may be involved
in producing early on-pathway cytotoxic species associ-
ated with amyloid disease.

See supplemental material [18] at [URL will be inserted
by AIP] for the mathematical background of these re-
sults, in particular the rigorous proofs of the convergence
results, the precise mathematical characterization of the
variability of the assembly process and, finally, some sim-
ulations of these stochastic processes.

FIG. 1. (A) Schematic illustration of a full amyloid assembly
model, including conformational exchange, nucleation, elon-
gation growth, secondary surface nucleation and fibril frag-
mentation processes. (B) Schematic illustration of the min-
imal model represented by reactions (1) and (2). The phe-
nomenological parameters α and β represent the rate constant
of the ignition phase, and the rate constant of all possible ac-
celerated growth pathways to the formation of polymers, re-
spectively. The circles represent the un-polymerised monomer
X and the parallelograms represent the monomeric units in
the amyloid formation Y in (1) and (2). Some monomeric
units are highlighted with bold outlines to highlight few pos-
sible paths a monomeric unit in (1) and (2) can take through
the aggregation process.

A PHENOMENOLOGICAL STOCHASTIC
MODEL

To make the model as simple as possible, we con-
sider two distinct types of monomers, we call these
species monomers (X ) and polymerised monomers (Y),
respectively. The polymerised monomers Y represent
all monomeric units in the amyloid conformation in the
aggregates. Its amount may be viewed as representing
the total polymerised mass, captured for instance by
Thioflavine T (ThT) measurements, as example shows
in Figure 2. Such a simplification is also justified by
the fact that current kinetics measurements of amyloid
growth exhibit variability on the timecourse of the total
polymerised mass, without giving any information on the
size distribution of fibrils. However, such a simplification
do not contain any contributions from spatial dynamics,
molecular motion and transport processes, which may
add complexity to the stochastic behaviour in small vol-
umes. Previous studies (see for instance [19], Supplemen-
tal material (S.M.) 2) have shown that the detail of the
reactions of secondary pathways, such as a fragmentation
kernel, may have a major impact on the size distribution
of polymers, but comparably smaller effects on the time-
course of the polymerised mass. Overall, with this sim-
plification, we can distill the problem down from infinite
number of species to two species, which subsequently can
describe the ability of the amyloid state to convert nor-
mal un-polymerised monomers to the amyloid state with-
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out invoking polymer ends or number. Thus, our model
is phenomenological and aims to give new insights into
the key determinants of stochastic behavior of protein
aggregation and suggests simple ways to extract infor-
mation from experimental data. Our approach departs
from the mechanistic modelling approach used in conven-
tional deterministic models of protein aggregation but is
complementary to those models (e.g. [11, 12, 15]), and
the simplifications allows tractable mathematical deriva-
tion of closed expressions.
We thus consider two distinct species in our model:

monomers, X , and polymerised monomers, Y. We then
consider XV (t) and YV (t) to be the respective numbers
of particles of each species at time t in a fixed volume V .
Initially, it is assumed that there are only M monomers:
XV (0) = M and YV (0) = 0. We denote m = M/(V ·NA)
the initial molar concentration of monomers, where NA

is the Avogadro constant. For convenience in the calcula-
tions hereinafter, we introduce the notation VA = V ·NA.
Thus, the chemical reactions associated with this sim-

ple model are as follows:

X + X α/V 2
A−→ 2Y, (1)

X + Y β/V 2
A−→ 2Y, (2)

where α/V 2
A and β/V 2

A are rates of the reactions with
rate constants of α > 0 and β > 0. These reactions de-
scribe the following features of a nucleated polymerisa-
tion of proteins that characterises amyloid assembly (see
Figure 1 for an explanatory scheme of the reactions):

— Reaction (1): We call this step ”ignition” since it
models the starting point of the polymerisation pro-
cess. Here, we represents this step as the simplest
possible concentration dependent nucleation step
that converts two monomers into two monomeric
units in the amyloid state that are growth com-
petent (equivalent to two polymerised monomers).
The initiation step (1) is equivalent to a nucleation
step involving dimer formation. This is a common
simplification that has been applied in a number
of deterministic model (e.g. [11, 13]), and is also
motivated by the fact that the first molecular at-
tachment step towards the nucleation barrier may
have the biggest energetic penalty according to the
classical nucleation theory. In our model, this re-
action will occur in a stochastic way. Following the
principles of the law of mass action, the encounter
of two chemical species occurs at a rate propor-
tional to the product of the concentrations of each
species. Therefore two monomers (X ) disappear to
produce two polymerised monomers (Y) at a rate
α/V 2.

— Reaction (2): We call this second step “conver-
sion”, which we modelled as a self-accelerating au-
tocatalytic process. Here, given a monomer and a

polymerised monomer, the monomer converts into
a polymerised monomer at a rate β/V 2. This is
representative of a range of accelerating secondary
pathway reactions such as fragmentation, lateral
growth, and aggregate surface catalyzed second nu-
cleation. In this sense, our model may be viewed as
a phenomenological simplification and amalgama-
tion of several mechanistic models. Even though
different secondary processes lead to very differ-
ent size distributions of fibrils, they affect the total
polymerised mass, represented here by the quantity
of the species Y, in a qualitatively similar way in
that they provide acceleration of growth through
positive feedback. For example, in the case of frag-
mentation accelerated growth, fibril fragments that
interact with monomers X are generated, in a first
order approximation, proportional to the number
of breakage sites [7], which in-turn depends on the
number of monomeric units in the amyloid fibrils.
In the case of secondary fibril surface nucleation,
the sites that promote surface nucleation is pro-
portional to available surface [13], which is also de-
pendent on the number of monomeric units in the
amyloid fibrils (Fig 1). In particular, we expect
our model to behave qualitatively similarly to the
mechanistic model described in [15], which includes
nucleation, polymerization, and fragmentation as
a representative self-accelerating secondary process
motivated by its experimental analysis [14]. It is
however not intended for reaction (2) to be asso-
ciated to any specific microscopic meaning as de-
scribed above.

FIG. 2. Examples of experimental timecourses of amyloid
assembly reactions [12]. Twelve experimental timecourse
of polymerised mass for two given initial concentrations of
monomers are shown: 122 µM (blue) and 30.5 µM (green).

Stochastic Evolution. Any given pair of monomers
reacts together by Reaction (1) at rate α/V 2

A, whereas
for a given pair of monomer/polymerized monomer re-
acts by Reaction (2) at rate β/V 2

A. Let MV be the
initial number of monomers and the random variable
describing the number of monomers remaining at time
t is denoted by XV (t). By taking into account the
XV (XV −1)/2 monomers pairs, and the XV (MV −XV )
monomers/polymerised pairs, the variable XV (t) has
jumps of size −2 or −1 which occur at the following rates

XV 7→

XV −2 at rate
XV (XV −1)

2
× α

V 2
,

XV −1 “ XV (MV −XV )×
β

V 2
.

(3)

The conservation of mass gives the additional relation
XV (t)+YV (t)=MV . As noticed previously, in the de-
scription of Reactions (1) and (2) above, this representa-
tion is completely coherent with the law of mass action.
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A. Asymptotic Evolution of the Number of
Monomers

Assuming that the volume V is large and the initial
concentration of monomers remains constant and equal
to m > 0, i.e. the initial number of monomers MV is
such that MV /VA ∼ m, we can derive the following:

Polymerisation occurs on the time scale t7→VAt.
Let (XV (t)) be the scaled process defined by

XV (t) =
XV (VAt)

VA
. (4)

In Equation (4), the time scale of the process (XV (t))
is accelerated with a factor VA. As it will be seen, as
V gets large, t → VAt is the correct time scale to carry
out a large volume expansion and to observe the decay
of (XV (t)) on the space scale proportional to VA.
Assuming for the moment that (XV (t)) is converging

in distribution, Relations (3) then suggest that its limit
(x̄(t)) should satisfy the following ODE, which is the law
of Mass Action for our simple model

dx̄

dt
= −αx̄(t)2 − βx̄(t)(m− x̄(t)), with x̄(0) = m. (5)

One can show that this is indeed the case. If the initial
number MV of monomers is such that

lim
V→+∞

MV

VA
= m > 0,

then, as V goes to infinity, the process (XV (t)) converges
in distribution to (x̄(t)), solution of Equation (5), given
by the formula

x̄(t) = m
β

α

1

eβmt − 1 + β/α
. (6)

The proof is classical [20], we recall it in Sections A
and E of supplemental material, we comment on the rela-
tive influence of the parameters α and β on the determin-
istic curve, see supplemental figure S2. This asymptotic
result is illustrated with simulations in Figure 3.
In order to be able to quantify the variability of ex-

perimental replicates, we need to go further, to a second
order approximation, i.e. with a central limit result. If
the initial number MV of monomers is such that

MV = mVA + o
(√

VA

)
,

for m > 0, then, for the convergence in distribution,

lim
V→+∞

(
XV (VAt)− VAx̄(t)

m
√
VA

)
= (U(t)),

where U(t) is a diffusion, the unique solution of the fol-
lowing stochastic differential equation (S3).
The proof is postponed in Section B of supplemental

material, together with an explicit formulation and an

analysis of the influence of the parameters α and β on the
stochasticity of the reactions. We found that the smaller
the ratio α/β is, the more important the influence of the
stochasticity on the lag-time, but the less important for
the following of the reaction. This is quantified in the
following study of the stochastic time for δ completion
below.

FIG. 3. Simulations of the model with different numerical
parameter values. Parameters and the time axes are scaled
with identical units. The red curve is the first order solution
of Equation(5).

B. Asymptotics of the Time for δ Reaction
Completion

To quantify the effect of α and β on the stochasticity
of the reactions, we define the time for δ reaction com-
pletion, where 0 < δ < 1 is a percentage, as the following
stopping time

TV (δ) = inf{t > 0, XV (t) ≤ (1− δ)MV }

where TV is the first time when there is a δ fraction
of polymers is produced. TV for δ small - 5 to 10% -
represents an alternative definition for the lag-time of
the reaction[19].

A law of large numbers and a central limit result for
TV (δ) as V goes to infinity can be obtained. Note that
due to the change in the time scale, we need to rescale
TV by V to get a limit.
If the initial number MV of monomers is such that

MV = mVA + o
(√

VA

)
,

for m > 0 then, for the convergence in distribution

1. Law of Large Numbers.

lim
V→+∞

TV (δ)

VA
= tδ

def.
=

1

βm
log

(
1 +

βδ

α(1− δ)

)
. (7)

2. Central Limit Result.

lim
V→+∞

TV (δ)− VAtδ√
VA

=
U(tδ)

m[α(1− δ)2 + βδ(1− δ)]

where (U(t)) is the solution of the SDE (S3).
The proof of this result is given in Section C of sup-

plemental material. Fig. S1 illustrates and the law of
large numbers and the central limit theorem for T1/2.
Note that the definition of tδ, which is the limit of the
stochastic times TV (δ)/V when V → ∞ is coherent with
the definition of the deterministic time of δ reaction com-
pletion as

tδ = inf{t > 0, x̄(t) ≤ (1− δ)m} = x̄−1((1− δ)m),

http://dx.doi.org/10.1063/1.4947472


5

where (x̄(t)) is given by Equation (6). Thus, for any
given experiment, the distance between a realization of
TV (δ)/VA and tδ is being given by the explicit formula
above. We can therefore derive its stochastic behaviour.
Under the assumptions of the above theorem and with its
notations, the variance σ2

V of the time for δ completion
has a limit σ2, when α ≪ β

lim
V→+∞

σV = σ ∼
√
3√

2m
√
MV αβ

. (8)

The proof is given in Section D of supplemental material,
together with the exact formula (S9) for σ of supplemen-
tal material. Interestingly, this result obtained from our
minimal model is comparable to the expression on lag-
time variations obtained in [15] based on a more com-
plex mechanistic model by the mean of a Taylor expan-
sion. This result, therefore, corroborates with the idea
that our minimum model with only ignition and conver-
sion contains the key features sufficient in qualitatively
describing the stochastic properties of the nucleated pro-
tein aggregation processes. Our simplified formula (8)
and its full general form in the equation (S9) of the sup-
plemental information, are mathematically fully rigorous,
and allows analysis of the intricate interplay between the
ignition reaction and the autocatalytic reaction. In fact,
it is possible to have a whole range of times when both
reactions have an influence over the whole aggregation
timecourse, as may be seen on Formula (8).

It should be noted that this representation of σ is in-
dependent of δ. This suggests that the fluctuations do
not depend on δ, and therefore, the growth curves pre-
dicted by our simple model are all parallel for any given
concentration. Figures 5 (c) and 5 (d) below have been
obtained by centering the 12 curves of Figures 5 (a) and 5
(b) at the half-time corresponding to δ = 1/2. As it can
be seen, the times TV (δ) for 0.4 ≤ δ ≤ 0.7 are then also
superimposed: the curves are identical for this range of
values. This is an illustration of the above relation (8).
The exact mathematical formulation of this phenomenon
is shown in supplemental material. Simple as it is, our
model captures well this feature experimentally observed.
Also, it emphasizes the fact that we can take different
values for δ without having an influence on the study. A
difficulty however lies in the fact that when the numerical
values of the constant α above is in the order of 1/MV ,
then the convergence itself may be a problem, as it can
be seen on Figure 4.

FIG. 4. Comparison between the simulations and the pre-
dictions to see the regime of parameters where the calcula-
tions are valid. For these simulations, we fixed MV = 107

monomers, β = 1, and made α varying.

C. Estimation of the parameters

In this section, we tested our theoretical results ob-
tained with our minimalistic stochastic model on the ex-
perimental data published in [12]. Our model suggests a
straightforward manner by which experimental amyloid
aggregation timecourse curves can be analysed to give
information on the expected variability of the lag-time
length resulting from the stochastic nature of nucleated
polymerisation. More precisely, using Formula (5) for k
and Relation (7) for t1/2, gives

t1/2 = log (1 + β/α) /βm and k = mβ (1 + α/β) /4.
(9)

In the experiments in [12], there are 12 replicate ki-
netic traces reported for each sample concentration in
constant 100L reaction volume. The parameters α and
β can be obtained in a straightforward manner by fit-
ting equations (9) to the mean half-time t1/2 and the
mean slope k of the curves at t1/2. Table I shows a sum-
mary of our analysis. The constants α and β, and the
calculated variance (8) are shown for each of the concen-
trations used. We also carried out a global analysis for α
and β, fitting (9) simultaneously all of the curves for all
concentrations. See Fig. S4. The overlay of the experi-
mental curves around the predicted mean is illustrated in
Figure 5, Figures 5 (c) and 5 (d) have been obtained by
centering the 12 curves of Figures 5 (a) and 5 (b) at the
half-time corresponding to δ = 1/2. As can be seen, the
agreement between the calculated and the experimental
curves is good for 0.4 ≤ δ ≤ 0.7. This is consistent with
the relation (8).

FIG. 5. (a) and (b): Experimental timecourse of polymerised
mass for 12 different experiments [12]. (c) and (d): with a
centering at the TV (1/2) of each curve. The red curve is the
predicted mean with the estimated parameters.

Our analysis further demonstrates two important in-
sights. Firstly, we obtained a more well-estimated β
parameter. It is remarkable that the numerical value
of β, which quantifies the conversion step in our model,
does not change much for the 15 concentrations tested in
the experiments, considering the simplicity of our model.
This is not the case for α,which quantifies the ignition
phase, varies between 10−7 and 10−13. Here, the param-
eter α which quantifies the take-off phase (remember that
the slope of (x̄(t)) at 0 is −αm2) is intrinsically estimated
with less precision than β, see Section E of supplemental
material. This is a limitation of this simple model, and it
also reflect the lack of information content in the kinetics
data during the lag phase compared to the growth phase.

Secondly, despite good agreement between our analy-
sis and the data in terms of the shapes of the growth
curves, the analysis results in a much smaller order of
magnitude for the variability among curves compared
with experimental data. Since the relation α ≪ β

http://dx.doi.org/10.1063/1.4947472
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m(10−6M) α(h−1.M−1) β(h−1.M−1) Exp. Dev. (h) Predicted Dev. (h)

12.3 6.18·10−7 5.07·104 7.95 5.34·10−2

14.6 2.81·10−6 4.54·104 2.98 2.05·10−2

16.7 1.59·10−4 3.75·104 2.68 2.45·10−3

17.0 1.88·10−3 3.70·104 1.52 6.98·10−4

29.5 1.40·10−5 3.34·104 2.13 3.7·10−3

30.2 2.89·10−2 2.96·104 2.57 8.40·10−5

30.5 9.57·10−8 4.16·104 1.53 3.84·10−2

43.7 7.99·10−3 2.35·104 2.10 1.03·10−4

48.5 1.68·10−2 2.01·104 1.56 6.55·10−5

61.0 2.61·10−2 2.04·104 1.03 3.71·10−5

61.0 2.22·10−5 2.56·104 2.55 1.14·10−3

84.1 4.53·10−4 2.24·104 1.59 1.66·10−4

102.2 1.52·10−3 1.88·104 0.62 7.39·10−5

122 1.33·10−4 1.75·104 0.90 1.98·10−4

123.5 2.13·10−4 1.79·104 0.90 1.52·10−4

142.1 2.58·10−4 1.74·104 1.11 1.13·10−4

243.5 1.75·10−3 1.09·104 0.60 2.46·10−5

TABLE I. Parameters estimated from experiments [12] using our model. The two first columns are the estimated parameters
α and β from the model. The third column is the experimental standard deviation of TV (1/2), while the fourth is the standard
deviation predicted by our mathematical results for the model with the estimated parameters. We see that the estimation for
β is quite robust, in contrast with that of α.

holds in the numerical estimations, Equation (8) gives
the approximation σ2 ∼ 3/(2MV m

2αβ) for the variance
of the characteristic times of the kinetic traces. A vari-
ance of the order of magnitude observed in the experi-
ments [12] would be obtained by our model for an ini-
tial number of monomers MV in the order of 106. As
the number MV in the experiments of [12] performed
in 100µL volumes is closer to 1015, our analysis suggest
that the variability observed result from more than a
simple stochastic homogeneous nucleation of monomers.
This result is consistent with the mechanistic approach
used by Szavits-Nossan and co-workers [15], where
the authors used a stochastic nucleation-polymerization-
fragmentation based model. Thus, our model and anal-
ysis of the variance suggest alternative initial rare as-
sembly steps that involve additional complexities such as
conformational exchange, and/or additional experimen-
tal sources that contribute to the variability in the ob-
served amyloid growth curves.

CONCLUSION

In this study, we described an approach that repre-
sents the molecular mechanisms of amyloid growth in a
condensed way to enable the development of a rigorous
framework that can describe the stochastic behaviour in
addition to the general features of the kinetics of assem-
bly. We adopted a reductionist approach by including
minimal complexity using two simple processes, ignition
and conversion, to reflect the idea that a protein poly-
merization reaction accelerated by secondary processes
is dictated by the first nucleation event [14, 15]. With
our minimal model, we were able to derive an exact ana-

lytical formula for the expected variability among curves
as function of relative rates of the ignition and conver-
sion processes, and the reaction volume. This is use-
ful both in exploring the interplay between the reaction
rates of nucleation and growth, and the variability in
reaction traces. Our approach also suggest a straightfor-
ward manner in which information regarding the stochas-
tic behaviour of nucleated protein aggregation can be
extracted from experimental kinetics data using equa-
tions (8) and (9). We see that the stochasticity influ-
ences mainly the ignition step: once the reaction accel-
erates in the conversion step, all curves become parallel
and deterministic, as illustrated both by experiments and
the model we presented here. Thus, simple as it is, our
model captures well the features experimentally observed
for amyloid growth curves. Also, it confirms, as expected,
that we can take different characteristic times (such as
lag time, or growth mid point) when analysing kinetic
growth curves. Our model further informed the need
for new mechanistic steps or experimental interpretation
of the large observed variations in the lag time lengths.
Thus, the variation seen in the kinetic traces must be
taken into account in addition to the concentration de-
pendent behaviour of the kinetic traces in evaluating and
developing mechanistic understanding of amyloid protein
assembly processes.

While our model design was not aimed at describing
the reality of any specific amyloid forming system with
all of their individual associated complexities, our design
by pursuing maximum simplicity are complementary to
mechanistic approaches such as in [11, 12, 15] in captur-
ing global properties of amyloid assembly. A particularly
interesting direction for future work would be to envisage
other orders for the reactions, in particular β, which cur-
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rently is not specific to any particular accelerating growth
processes, or an extended model with an initial confor-
mational exchange step, for example. In summary, our
current method allows for a rigorous theoretical treat-
ment and understanding, and therefore, provides a basis
for future model selection on stochastic minimal models,
each of these models being the condensation of a family
of possible stochastic mechanistic models that are closer
to reality but for which analytical formulae are out of
reach.
It should be remarked that in many cases the reaction

curve shows significant asymmetries about the half-time
which cannot be captured without accounting for the cor-
rect dependencies of the secondary nucleation rate on the
monomer. Such an asymmetry is present e.g. in the data
of Figures 2 and 5, take off is slower than the approach

to the plateau, a common characteristic of systems domi-
nated by fragmentation. However, the model predictions,
e.g. in Figure 3, give curves that are perfectly symmet-
ric about the half time (because of the term X(M −X)
in the rate equations). This suggests the possibility of
different dependencies of the autocatalytic part on the
monomer which we plan to investigate in the future.
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Regime of Validity of the Model
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(a) m = 122µM
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(b) m = 30.5µM
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(c) Superimposition m = 122µM
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