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A

The Truth, the Whole Truth, and Nothing but the Truth:
A Pragmatic Guide to Assessing Empirical Evaluations

Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F. Sweeney,

José Nelson Amaral, Tim Brecht, Lubomr Bulej, Cliff Click, Lieven Eeckhout, Sebastian
Fischmeister, Daniel Frampton, Laurie J. Hendren, Michael Hind, Antony L. Hosking,
Richard E. Jones, Tomas Kalibera, Nathan Keynes, Nathaniel Nystrom, and Andreas
Zeller

An unsound claim can misdirect a field, encouraging the pursuit of unworthy ideas and the abandonment
of promising ideas. An inadequate description of a claim can make it difficult to reason about the claim, for
example to determine whether the claim is sound. Many practitioners will acknowledge the threat of un-
sound claims or inadequate descriptions of claims to their field. We believe that this situation is exacerbated
and even encouraged by the lack of a systematic approach to exploring, exposing, and addressing the source
of unsound claims and poor exposition.

This paper proposes a framework that identifies three sins of reasoning that lead to unsound claims
and two sins of exposition that lead to poorly described claims. Sins of exposition obfuscate the objective of
determining whether or not a claim is sound, while sins of reasoning lead directly to unsound claims.

Our framework provides practitioners with a principled way of critiquing the integrity of their own work
and the work of others. We hope that this will help individuals conduct better science and encourage a
cultural shift in our research community to identify and promulgate sound claims.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems

General Terms: Performance evaluation (efficiency and effectiveness)

Additional Key Words and Phrases: experimental evaluation, observation study, experimentation

1. INTRODUCTION
To understand the behavior of a system or to understand the efficacy of an idea, we con-
duct evaluations and then derive and form claims that attempt to draw meaning from
the evaluations. An evaluation is either an experiment or an observational study, con-
sisting of steps performed and data produced from those steps. A claim is an assertion
about the significance and meaning of an evaluation that has already been conducted;
thus, unlike a hypothesis which precedes an evaluation, a claim comes after the eval-
uation. The dissemination of claims and evaluations may be formal or informal, and
can take many forms, including a talk, a paper, an appendix, or an associated arti-
fact. Evaluation is central to our discipline, because, as Brooks [1996] argues, we are
a design discipline, therefore we must test our ideas by their usefulness.

When we derive a claim that the evaluation does not support, our claim is unsound:
the claim may incorrectly characterize the behavior of the system or state that an idea
is beneficial when it is not (or vice versa). Concretely, a claim is sound if the evaluation
(i) provides all the evidence [the whole truth] necessary to support the claim; and
(ii) does not provide any evidence [nothing but the truth] that contradicts the claim.
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Evaluation Claim

Sin of Exposition
(of Claim):
Inscrutability

Sin of Exposition
(of Evaluation):
Irreproducibility

Sins of Reasoning
(Derive Claim):
Ignorance,
Inappropriateness, 
Inconsistency

Consumer

Fig. 1. Sins of exposition and sins of reasoning. The sins of exposition obfuscate the evaluation and/or the
claim, preventing an observer from determining the soundness of the claim. The sins of reasoning interfere
with the derivation of the claim, resulting in an unsound claim.

Furthermore, we demonstrate in Section 1.1 that a claim is unsound if it suffers from
one or more sins of reasoning. In contrast, an evaluation is what it is: it is neither
sound nor unsound. Rather, an evaluation may be uninteresting or too weak to derive
useful claims.

For the progress of a field, it is not enough for the claim to be merely sound: imagine
a situation where experimentalists put out claims but do not describe in detail how
they arrived at the claim. Without such details the community at large has no way of
determining which claims are sound and which are unsound: thus, no one knows which
ideas are worth building upon and which are not. Consequently the field progresses
only by accident. When either the claim or the evaluation is inadequately described,
the description suffers from one or more sins of exposition.

Figure 1 shows the relationship between the Claim and the Evaluation and where
sins of exposition and sins of reasoning arise. The remainder of this paper systemati-
cally explores these sins.

1.1. Sins of reasoning
Figure 2 shows all the possible relationships between the scope of a claim and the scope
of its supporting evaluation. The scope of a claim is the set of facts (data, methodology,
etc.) that the claim assumes. The scope of an evaluation is the set of facts that describe
all aspects of the evaluation including any data that the evaluation produces. A claim is
sound when the scope of the claim and scope of the evaluation perfectly overlap. When
they do not overlap, anything additional in the claim’s scope must be either general
knowledge (e.g., the laws of physics) or cited (e.g., some result in the literature). Given
these two scopes, one or more of (a), (b), or (c) may be empty: thus, the full space
has 8 combinations, some of which produce sound claims while others may produce
unsound claims. Because we assume that there is a claim and there is an evaluation,
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Fig. 2. Relationship between the scopes of the claim and the evaluation.

it must be the case that: (a) ∪ (b) 6= φ and (b) ∪ (c) 6= φ, where ∪ is set union and
φ represents the empty set. This assumption eliminates three ((a) and (b) are both
empty, (b) and (c) are both empty, or (a) and (b) and (c) are all empty) of the eight
possible combinations. In addition, when only (b) 6= φ, the claim and the evaluation
perfectly overlap; consequently, our claim is sound. This leaves us with four remaining
possibilities, each of which may lead to an unsound claim:

(1) (a) is empty, (b) and (c) are not empty. Thus, the evaluation provides support for the
claim (i.e., (b)) but includes other facts from the evaluation (i.e., (c)) that the claim
ignores. If (c) does not invalidate the claim then some aspects of the evaluation may
have been wasteful: e.g., the evaluation collected data that was never used in the
claim. On the other hand, if (c) invalidates the claim, then the claim is unsound.
We say such a claim commits the sin of ignorance because it ignores important
facts from the evaluation.

(2) (c) is empty, (a) and (b) are not empty. Thus, the claim extends beyond the evalua-
tion; in other words, the claim relies on aspects that are actually missing from the
evaluation. If (a) relies on anything other than established knowledge (e.g., laws of
physics or cited literature), we say such a claim commits the sin of inappropriate-
ness.

(3) (b) is empty, (a) and (c) are not empty. Thus the claim and evaluation are disjoint:
the claim and evaluation are essentially about different things. We can think of
this as an extreme case of the sin of ignorance and the sin of inappropriateness but
there is one special case here that we highlight because we have encountered it
frequently. Specifically, we mean the situation where we compare two incompatible
entities in the evaluation and the claim ignores this incompatibility. We say such
a claim commits the sin of inconsistency because it is based on an evaluation that
compares two entities that are not comparable (i.e., apples and oranges).

(4) None of (a), (b), or (c) are empty. This is again a combination of the sin of ignorance
and the sin of inappropriateness. When evaluating the relationship between the
scopes of a claim and an evaluation, we should not assume that all of the sins
cleanly fall into just one category.
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It is our intention that the framework in this paper will lead to identifying new
sources of sins and improve community standards. As we show in this paper, these sins
are non-obvious: even when following the best community practices we may commit
these sins.

1.2. Sins of exposition
Having a claim that perfectly matches the underlying evaluation is not enough: we
have to adequately communicate the claim and the evaluation in clear enough terms
that others can properly interpret and assess our work.

The sin of inscrutability occurs when the description of the claim is inadequate.
Authors may neglect to explicitly identify a claim at all; they may make claims that
are ambiguous; or they may express their claim in a way that unintentionally distorts
their intent. Because a claim is synthesized by its author, it should always be possible
to avoid the sin of inscrutability.

The sin of irreproducibility occurs when the description of the evaluation is inad-
equate. This sin is the failure of the authors to clearly communicate an evaluation,
including the steps that were taken in the course of the evaluation and the data that it
produced. In addition to hampering the reproduction of the evaluation, irreproducibil-
ity also makes the evaluation unclear, clouding its relationship to the claim. In contrast
to a claim, an evaluation is a natural process; i.e., an unbounded number of factors in
the environment may affect the outcome of the evaluation in subtle ways. While the
relevance of some variables to an evaluation (such as the model of computer or set
of benchmarks used) is obvious, the relevance of other variables is much less obvious
(e.g., a news event leads to a changed load seen by the search engine being evaluated).
For this reason, irreproducibility is hard to avoid entirely.

The sins of exposition interact with sins of reasoning: if an evaluation is irrepro-
ducible or a claim is inscrutable, others have no way of establishing whether or not the
claim suffers from any sins of reasoning.

2. CONTRIBUTIONS
Sound claims are difficult to produce: a subtle incompatibility between the scope of the
claim and the scope of the evaluation can render a claim unsound. The most that we
can do is to collectively, as a community, learn to recognize patterns that frequently
produce unsound claims.

Thus, this paper makes four primary contributions:

(1) It presents a principled framework that categorizes sins of reasoning as a mis-
match between the scope of the claim and the scope of the evaluation. In doing
so, it provides a high-level checklist for experimenters to use for avoiding unsound
claims. It illustrates and clarifies the different sins with examples drawn from
prior published work or the authors’ own experiences.

(2) It encourages the community to think about sound claims and to publish their
findings, particularly when it involves discovering new factors that lead to unsound
claims. Each such finding increases the knowledge of the entire community and
thus reduces the risk of producing unsound claims.

(3) It challenges the community by calling for a change to a culture that values idea
papers just as much as evaluation papers. Specifically, this paper takes the position
that producing an insightful evaluation is just as hard and just as commendable
as coming up with a great new idea; both should be rewarded accordingly.

(4) It identifies common sins of exposition, which obscure the communication of claims
and their underlying evaluations. Elimination of the sins of exposition is a prereq-
uisite to being able to reason about the sins of reasoning.
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3. GOALS OF THIS PAPER
This paper is an ‘ideas paper’ about empirical evaluation. As such, we purposefully do
not provide an empirical evaluation nor do we survey papers that have committed sins
of exposition or reasoning. Moreover, this paper assumes that all participants behave
ethically; that is, we focus on unsound claims that come about even with the best
intentions.

In empirical evaluations, unsound claims are costly because they misdirect a field:
encouraging pursuit of fruitless endeavours and discouraging investigation of promis-
ing ideas. Yet, empirical computer science lacks a systematic approach with which to
identify unsound claims. The goal of this paper is to address this need by providing
a framework that allows us to identify unsound claims — and the errors that lead
to them — more easily. Our hope is that this framework will provide reviewers with
a systematic approach to avoid the promulgation of unsound claims about empirical
evaluation and provide practitioners with a basis for self critique, curtailing unsound
claims at their source.

4. SINS OF EXPOSITION
The sins of exposition hinder our goal of ensuring the soundness of claims because the
sins obfuscate the claim and/or the evaluation. This section discusses the two sins of
exposition and illustrates them with examples.

4.1. Sin of Inscrutability
The sin of inscrutability occurs when poor exposition obscures a claim. In other words,
the readers’ understanding of the claim may be different from the intent of the author.
The reader cannot begin to assess the soundness of a claim if the claim itself is unclear.
The sin of inscrutability is not an attempt to deceive (to do so would be unethical).

Inscrutability arises in three common forms: omission, ambiguity, and distortion.
The most basic example of inscrutability is the omission of an explicit claim. In this
case, the reader is left to either decide that there is no claim (the work is literally
meaningless), or to divine an implied claim, reading between the author’s lines. Thus
the advice of standard guides on scientific writing holds true — writers should take
care to be explicit about their claims. A second common example of inscrutability oc-
curs when a claim is ambiguous. This leaves the reader unsure of the authors’ intent
and thus unable to discern the soundness of the claim. For example, the claim might
use the phrase ‘improved performance’ but the context may leave it ambiguous as to
whether this phrase refers to latency or throughput of the system. A third common
example of inscrutability occurs when the claim is distorted, leaving the reader with
a clear, but incorrect, impression of the author’s intent. For example, poor exposition
may result in a claim that suggests that (total) execution time is improved by 10%, but
in fact the garbage collector is improved by 10% and total time is improved by only
1%. In each of these cases, inscrutability will make the claim hard or impossible to
reconcile with the evaluation.

Because the claim is synthesized by the author, the sin of inscrutability, at least in
theory, is avoidable: an author should always be able to accurately express their intent.
As we shall see, this differs from the sin of irreproducibility, which concerns a natural,
rather than synthetic, phenomenon and thus may be impossible to completely avoid.

4.2. Sin of Irreproducibility
The sin of irreproducibility occurs when poor exposition obscures the evaluation; that
is, obscuring the steps, the data, or both. As with the sin of inscrutability, irrepro-
ducibility has three common manifestations: omission, ambiguity, or distortion. Omis-
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sion has historically been a major cause of irreproducibility and has three sources: (i)
space constraints often mean that not all steps are reported and data is only presented
in digest form, (ii) an incomplete understanding of the factors that are relevant to the
evaluation; and (iii) confidentiality. Ambiguity is a common source of irreproducibility:
imprecise language and lack of detail can leave important elements of the evaluation
ambiguous. Distortion occurs when poor exposition results in an unambiguous but in-
correct account of the evaluation, such as the use of incorrect units.

While a diligent researcher can avoid distortion and ambiguity, omission is not en-
tirely avoidable. The issue of space constraints has become less important in the age
of digital libraries, online publishing, and cloud storage, where authors can provide
comprehensive accounts of steps and data outside the confines of their primary publi-
cation. However, the other two issues related to omission are unavoidable in general.

First, the steps may be unbounded in the limit. While a research community can
often tightly bound what it considers to be ‘significant’ factors in the steps, it can-
not know with certainty every aspect of the empirical environment that may have
significant bearing on the outcome of the evaluation. Experience shows that whole
communities can ignore important, though non-obvious, aspects of the empirical envi-
ronment, only to find out their significance much later, throwing into question years
of published results [Ioannidis 2005]. This situation invites two responses: (i) authors
should be held to the community’s standard of what is known about the importance of
the empirical environment, and (ii) the community should intentionally and actively
improve this knowledge, for example, by promoting reproduction studies.

The second issue is that while some authors have the liberty to make full disclosure
of their empirical environment, others are constrained by matters of propriety and con-
fidentiality. Thus, there exists a tension between irreproducibility and the knowledge
brought to the community by authors who work within such constraints. Perhaps this
tension is best dealt with by full disclosure of the limitations of the exposition of the
evaluation. Readers can then be clear about to the extent of which they must take the
author’s evaluation on faith and which matters are concretely communicated. Armed
with this, the reader can make a clearer determination of the soundness of the authors’
claims.

The rest of this section demonstrates the sin of irreproducibility with a concrete
example. It demonstrates how a factor that the community considered irrelevant (and
thus omitted from the exposition of the evaluation) turned out to be relevant, thus
throwing into question years of published results.

Figure 3 illustrates the effect of changing the size of the Linux environment vari-
ables on the quantification of speedup due to gcc -O3 over gcc -O2 (i.e., to determine
the benefit of gcc’s most expensive optimizations). A point (x, y) on this graph says that
the ratio of execution time with gcc -O2 to execution time with gcc -O3 is y if the en-
vironment size is x. Each point in this graph gives the arithmetic mean and standard
deviation from 30 runs; the run-to-run variation was miniscule and thus the error bars
show up as a dash through the circles. To collect this data, the authors started with an
empty environment and then extended the environment a few bytes at a time.

Figure 3 demonstrates that changing the environment size has a significant effect
on the speedup due to different optimization levels. This occurs because the size of the
environment affects memory layout (e.g., starting address of the call stack) and thus
the performance of the program, because different memory layouts interact with the
numerous underlying hardware buffers (e.g., caches) differently. Thus, if an evaluation
only explores one environment size and that size is left out of the description of the
evaluation, we commit the sin of irreproducibility.

While it was well known that memory layout affects performance, it was not obvious
to most researchers that environment variables could affect memory layout enough to
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Fig. 3. Change in speedup as we vary the size of environment variables, which are ostensibly unrelated.
Graph taken from [Mytkowicz et al. 2009].

affect performance. Therefore it was reasonable for experimenters to ignore the setting
of environment variables in the evaluation when making a claim. While our example
illustrates how memory layout subtly affects evaluation, the problem is more general:
we commit the sin of irreproducibility whenever we exclude, in the description of the
evaluation, any relevant control variables.

5. SINS OF REASONING
This section presents the sins of reasoning, which cause a claim to be unsound, and,
for each sin, real examples found in the literature.

5.1. Sin of Ignorance
We commit the sin of ignorance when we make a claim that ignores elements of the
evaluation that support a contradictory alternative claim. The sin of ignorance can
manifest in a variety of ways including overlooking important data and overlooking
a confounding variable that would provide an alternative explanation for observed
behavior.

Often, the sin of ignorance is easy to see, such as when a claim ignores data outliers
that undermine the claim. Other times the error is less obvious. The remainder of this
section describes two non-obvious examples of the sin of ignorance

5.1.1. Ignoring data points. Deriving a claim from a subset of the data points may yield
an unsound claim.

Figure 4 illustrates two different ways to summarize the data for different garbage
collection algorithms. The graph on the left illustrates the best out of 30 runs for the
benchmark db using one heap size. The claim derived from this graph states that the
SemiSpace collector has significantly improved performance over all the other collec-
tors, and that there is no substantial difference between CopyMS and GenCopy. The
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with the non-determinism in the experimental setup. In a
Java system, or managed runtime system in general, there
are a number of sources of non-determinism that affect over-
all performance. One potential source of non-determinism is
Just-In-Time (JIT) compilation. A virtual machine (VM) that
uses timer-based sampling to drive the VM compilation and
optimization subsystem may lead to non-determinism and
execution time variability: different executions of the same
program may result in different samples being taken and,
by consequence, different methods being compiled and op-
timized to different levels of optimization. Another source
of non-determinism comes from thread scheduling in time-
shared and multiprocessor systems. Running multithreaded
workloads, as is the case for most Java programs, requires
thread scheduling in the operating system and/or virtual ma-
chine. Different executions of the same program may in-
troduce different thread schedules, and may result in dif-
ferent interactions between threads, affecting overall per-
formance. The non-determinism introduced by JIT compi-
lation and thread scheduling may affect the points in time
where garbage collections occur. Garbage collection in its
turn may affect program locality, and thus memory system
performance as well as overall system performance. Yet an-
other source of non-determinism is various system effects,
such as system interrupts — this is not specific to managed
runtime systems though as it is a general concern when run-
ning experiments on real hardware.

From an extensive literature survey, we found that there
are a plethora of prevalent approaches, both in experimen-
tal design and data analysis for benchmarking Java perfor-
mance. Prevalent data analysis approaches for dealing with
non-determinism are not statistically rigorous though. Some
report the average performance number across multiple runs
of the same experiments; others report the best performance
number, others report the second best performance number
and yet others report the worst. In this paper, we argue that
not appropriately specifying the experimental design and not
using a statistically rigorous data analysis can be mislead-
ing and can even lead to incorrect conclusions. This paper
advocates using statistics theory as a rigorous data analysis
approach for dealing with the non-determinism in managed
runtime systems.

The pitfall in using a prevalent method is illustrated in
Figure 1 which compares the execution time for running
Jikes RVM with five garbage collectors (CopyMS, GenCopy,
GenMS, MarkSweep and SemiSpace) for the SPECjvm98
db benchmark with a 120MB heap size — the experi-
mental setup will be detailed later. This graph compares
the prevalent ‘best’ method which reports the best perfor-
mance number (or smallest execution time) among 30 mea-
surements against a statistically rigorous method which re-
ports 95% confidence intervals; the ‘best’ method does not
control non-determinism, and corresponds to the SPEC re-
porting rules [23]. Based on the best method, one would

mean w/ 95% confidence interval
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Figure 1. An example illustrating the pitfall of prevalent
Java performance data analysis methods: the ‘best’ method
is shown on the left and the statistically rigorous method is
shown on the right. This is for db and a 120MB heap size.

conclude that the performance for the CopyMS and Gen-
Copy collectors is about the same. The statistically rigorous
method though shows that GenCopy significantly outper-
forms CopyMS. Similarly, based on the best method, one
would conclude that SemiSpace clearly outperforms Gen-
Copy. The reality though is that the confidence intervals for
both garbage collectors overlap and, as a result, the per-
formance difference seen between both garbage collectors
is likely due to the random performance variations in the
system under measurement. In fact, we observe a large per-
formance variation for SemiSpace, and at least one really
good run along with a large number of less impressive runs.
The ‘best’ method reports the really good run whereas a sta-
tistically rigorous approach reliably reports that the average
scores for GenCopy and SemiSpace are very close to each
other.

This paper makes the following contributions:

• We demonstrate that there is a major pitfall associ-
ated with today’s prevalent Java performance evaluation
methodologies, especially in terms of data analysis. The
pitfall is that they may yield misleading and even in-
correct conclusions. The reason is that the data analysis
employed by these methodologies is not statistically rig-
orous.

• We advocate adding statistical rigor to performance eval-
uation studies of managed runtime systems, and in partic-
ular Java systems. The motivation for statistically rigor-
ous data analysis is that statistics, and in particular con-
fidence intervals, enable one to determine whether dif-
ferences observed in measurements are due to random
fluctuations in the measurements or due to actual differ-
ences in the alternatives compared against each other. We
discuss how to compute confidence intervals and discuss
techniques to compare multiple alternatives.

• We survey existing performance evaluation methodolo-
gies for start-up and steady-state performance, and ad-
vocate the following methods. For start-up performance,
we advise to: (i) take multiple measurements where each

Fig. 4. Deriving a claim from a subset of the data commits the sin of ignorance. Graph from [Georges et al.
2007].

graph on the right illustrates the mean performance and the 95% confidence interval,
which represents all the data points. The claim derived from this graph is significantly
different, stating that although the SemiSpace collector has the best performance, its
benefit over GenCopy is minimal, and CopyMS is significantly worse than GenCopy.
The graph on the left commits the sin of ignorance when it derives a claim about per-
formance that is based only on the best of 30 runs, because the claim singles out a
particular data point without summarizing the rest. In general, we commit the sin of
ignorance when we make claims about performance, but only use a subset of the data
to derive the claim.

5.1.2. Ignoring data distribution. We often use statistics to summarize data and conse-
quently derive a claim from that summarization. There are many statistics that one
can calculate from a given set of data; however, commonly used statistical techniques
make assumptions about the data (e.g., that the data is normally distributed). If a
statistical technique’s assumptions are not valid for our data, then applying this tech-
nique and deriving a claim from the statistics will yield an unsound claim, because the
properties of our data are ignored.

Figure 5 illustrates a latency histogram for a component of Gmail 1. The µ marks
the arithmetic mean of the latency and µ− σ and µ+ σ mark the points one standard
deviation away from the mean. The x-axis of the graph is a log-scale and thus µ − σ
and µ + σ are not equidistant from µ. From this data we make the claim that 68% of
the requests will have a latency between the µ − σ and µ + σ (this is a property of
normal data). This claim incorrectly assumes that the data is normal and ignores a
key property of the collected data: the data distribution is bimodal (the histogram has
two peaks corresponding to the slow and fast paths respectively). Consequently we see
that a lot more than 68% of the data is one standard deviation away from the mean (for
convenience we have marked the 68th percentile on the graph). Using the arithmetic
mean and variance to derive the claim about Gmail performance commits the sin of
ignorance because the statistics ignores key properties of the collected data. In general,
we commit the sin of ignorance when we ignore the distribution of the underlying data

1One of the authors is a member of the Gmail team and was able to collect this data from live production
traffic.
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Fig. 5. A latency histogram for a component of Gmail. The x-axis is log-scale. The µ and σ are the arithmetic
mean and standard deviation respectively. Using the arithmetic mean and standard deviation to derive a
claim about Gmail performance is misleading because the mean does not capture the bi-modal or long tail
nature of the data.

and yet use statistical methods (without checking the underlying assumptions about
the data distribution) to make our claims.

Our example, as described above, is a cut-and-dried instance of the sin of ignorance.
However, the committed sin is not always so obvious. For example, let us change the
above example so that we calculate the mean and standard deviation on-the-fly (and
thus never collect the raw data). In that case we commit two sins: (i) a sin of irrepro-
ducibility because our evaluation does not record a factor (the actual raw data and its
distribution) that is essential to the claims we wish to make; and (ii) a sin of inap-
propriateness because we assume a normal distribution when making our claim even
though there is no evidence for or against it in the evaluation.

5.1.3. Summary. In our experience, while the sin of ignorance seems obvious and easy
to avoid, in reality it is far from that. Many factors in the evaluation that seem irrele-
vant to a claim may actually be critical to the soundness of the claim. As a community
we need to work towards identifying these factors.

5.2. Sin of Inappropriateness
We commit the sin of inappropriateness when we derive a claim that is predicated on
the presence of some fact; however, that fact is absent from the evaluation. For exam-
ple, our claim may include: (i) performance, but the data only contains cache misses,
(ii) a benchmark suite, but the data only covers a subset of the benchmarks, or (iii)
scalability, but the benchmarks are not sufficiently parallel. If you have ever derived
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Fig. 6. Fixing the heap size can yield an incorrect result when evaluating GC. Graph taken from [Blackburn
et al. 2008].

a claim from an evaluation and found that it did not apply to a real environment, you
may have suffered from the sin of inappropriateness.

The sin of inappropriateness sounds obvious. However, in general, the sin of inap-
propriateness is not obvious. This section gives three examples to illustrate this.

5.2.1. Using inappropriate metrics. Energy and peak power are increasingly important
concerns in many areas of computer science. Both power and energy have been partic-
ularly hard to accurately measure at the chip level. Unfortunately it is not uncommon
for authors to measure a change in execution time but to claim a change in energy
consumption. While execution time is often correlated with energy consumption, other
factors (e.g., the nature of the computation) can also affect energy consumption. Thus,
execution time does not support a claim about energy consumption.

Knowing that execution time is not always an accurate proxy for energy consump-
tion is not obvious. Before this fact was pointed out by Martin and Siewiorek [2001],
many papers on energy consumption suffered from this sin. We may commit the sin of
inappropriateness when we use a proxy metric to make claims about another metric
and the proxy metric does not always correlate to the other metric.

5.2.2. Misuse of independent variables. This section illustrates an example of deriving a
claim from only one value of a variable as if that value represents all possible values.
For many years, garbage collection results were typically reported for only one heap
size, implying that the results applied to all heap sizes.

Figure 6 illustrates how the size of the heap affects the relative performance of dif-
ferent garbage collection implementations. A garbage collector that is best for one heap
size may perform poorly for other sizes; thus, we commit the sin of inappropriateness
if we derive a claim that is not limited by heap size, but the evaluation contains data
for only one heap size.

Knowing that heap size affects performance for different garbage collection imple-
mentations is not necessarily obvious. Once it became known and published in various
venues (including a book [Jones and Lins 1996]), it has now become normal to vary
heap sizes in evaluating garbage collectors. Thus, exposing this common source of the
sin of inappropriateness produced a positive effect on the community and effectively
removed this particular sin from subsequent work.

5.2.3. Generalizing from biased sampling. We often use tools to perform measurements.
However, these tools may themselves be subtly biased; if our claim generalizes from
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Figure 1. Disagreement in the hottest method for benchmark pmd
across four popular Java profilers.

This paper is organized as follows: Section 2 presents a mo-
tivating example. Section 3 presents our experimental methodol-
ogy. Section 4 illustrates how profiler disagreement can be used
to demonstrate that profiles are incorrect. Section 5 uses causal-
ity analysis to determine if a profiler is actionable. Section 6 ex-
plores why profilers often produce non-actionable data. Section 7
introduces a proof-of-concept profiler that addresses the bias prob-
lems with existing profilers and produces actionable profiles. Fi-
nally, Section 8 discusses related work and Section 9 concludes.

2. Motivation
Figure 1 illustrates the amount of time that four popular Java
profilers (hprof , jprofile, xprof , and yourkit) attribute to three
methods from the pmd DaCapo benchmark [3]. There are three
bars for each profiler, and each bar gives data for one of the three
methods: jj scan token, getPositionFromParent, and evaluate.
These are the methods that one of the four profilers identified as the
hottest method. For a given profiler, P , and method, M, the height
of the bar is the percentage of overall execution time spent in M
according to P . The error bars (which are tight enough to be nearly
invisible) denote 95% confidence interval of the mean of 30 runs.

Figure 1 illustrates that the four profilers disagree dramatically
about which method is the hottest method. For example, two of the
profilers, hprof and yourkit , identify the jj scan token method as
the hottest method; however, the other two profilers indicate that
this method is irrelevant to performance as they attribute 0% of
execution time to it.

Figure 1 also illustrates that even when two profilers agree
on the hottest method, they disagree in the percentage of time
spent in the method. For example, hprof attributes 6.2% of overall
execution time to the jj scan token method and yourkit attributes
8.5% of overall execution time to this method.

Clearly, when two profilers disagree, they cannot both be cor-
rect. Thus, if a performance analyst uses a profiler, she may or may
not get a correct profile; in the case of an incorrect profile, the per-
formance analyst may waste her time optimizing a cold method
that will not improve performance. This paper demonstrates that
the above inaccuracies are not corner cases but occur for the major-
ity of commonly studied benchmarks.

3. Experimental methodology
This section describes profilers we use in this study, the benchmark
programs we use in our experiments, the metrics we use to evaluate
profilers, and our experimental setup.

B.mark Description Time Overhead
[sec.] hprof xprof jprof. y.kit

antlr parser generator 21.02 1.1x 1.2x 1.2x 1.2x
bloat bytecode optimizer 74.26 1.1x 1.3x 1.0x 1.2x
chart plot and render PDF 75.70 1.1x 1.1x 1.1x 1.1x
fop print formatter 27.68 1.5x 1.1x 1.0x 1.8x
jython python interpreter 68.12 1.1x 1.3x 1.1x 1.7x
luindex text indexing tool 85.98 1.1x 1.2x 1.0x 1.1x
pmd source analyzer 62.75 1.9x 1.3x 1.0x 2.2x

mean 1.3x 1.2x 1.1x 1.5x

Table 1. Overhead for the four profilers. We calculate “Overhead”
as the total execution time with the profiler divided by execution
time without the profiler

3.1 Profilers
We study four state-of-the-art Java profilers that they are widely
used in both academia and industry:

hprof : is an open-source profiler that ships with Sun’s Hotspot
and IBM’s J9.

xprof : is the internal profiler in Sun’s Hotspot JVM.

jprofile: is an award-winning2 commercial product from EJ tech-
nologies.

yourkit : is an award-winning3 commercial product from YourKit.

To collect data with minimal overhead, all four profilers use
sampling. Sampling approximates the time spent in an application’s
methods by periodically stopping a program and recording the cur-
rently executing method (a “sample”). These profilers all assume
that the number of samples for a method is proportional to the time
spent in the method. We used a sampling rate of 10ms for the ex-
periments in this paper (this is the default rate for most profilers).

3.2 Benchmarks
We evaluated the profilers using the single-threaded DaCapo Java
benchmarks[3] (Table 1) with their default inputs.

We did not use the multi-threaded benchmarks (eclipse, luse-
arch, xalan, and hsqldb), because each profiler handles threads
differently, which complicate comparisons across profilers.

The “Overhead” columns in Table 1 give the overhead of each
profiler. Specifically, they give the end-to-end execution time with
profiling divided by the end-to-end execution time without profil-
ing. We see that profiler overhead is relatively low, usually 1.2 or
better for all profilers except yourkit , which has more overhead
than other profilers because it also injects bytecodes into classes to
count the number of calls to each method, in addition to sampling

3.3 How to evaluate profilers
If we knew the “correct” profile for a program run, we could eval-
uate the profiler with respect to this correct profile. Unfortunately,
there is no “correct” profile most of the time and thus we cannot
definitively determine if a profiler is producing correct results.

For this reason, we relax the notion of “correctness” into “ac-
tionable”. By saying that a “profile is actionable” we mean that
we do not know if the profile is “correct”; however, acting on the
profile yields the expected outcome. For example, optimizing the
hot methods identified by the profile will yield a measurable bene-
fit. Thus, unlike “correctness” which is an absolute characterization
(a profile is either correct or incorrect), actionable is necessarily a
fuzzy characterization.

2 Java Developer’s Journal Readers Choice Award for Best Java Profiling
(2005-2007).
3 Java Developer’s Journal Editors Choice Award.(2005).

Fig. 7. Hotness of three methods in the pmd benchmark according to four profilers. The choice of profiler
radically affects the outcome [Mytkowicz et al. 2010].

such biased data without accounting for the bias, the claim may commit the sin of
inappropriateness.

For example, Figure 7 illustrates the hot method according to four different profilers
for the pmd benchmark. The graph has four sets of bars, one for each profiler. Each set
gives the CPU cycles spent in three important methods in the benchmark. We see that
the different profilers significantly disagree: e.g., xprof considers evaluate to be a hot
method consuming more than 18% of CPU cycles; however, the other three profilers do
not identify this method as consuming any CPU cycles.

This disagreement comes about because the profilers use biased, rather than ran-
dom, sampling (specifically the profilers used GC safe points for sampling, which are
not randomly distributed [Mytkowicz et al. 2010; Buytaert et al. 2007]). We commit
the sin of inappropriateness when we derive a claim from biased data, which con-
sists of just a subset of points, but our claim does not acknowledge biased sampling.
Knowing that these profilers use biased sampling is not obvious. Prior to these mea-
surements, it was not widely known that Java profilers were biased and that the bias
was significantly affecting claims derived from their output. We commit the sin of in-
appropriateness when we derive a claim about performance from biased data.

5.2.4. Summary. In our experience, while the sin of inappropriateness seems obvious
and easy to avoid, in reality, it is far from that. Many factors that may be unaccounted
for in evaluation may actually be important to derive a sound claim. As a community
we need to work towards identifying these factors.

5.3. Sin of Inconsistency
While the sins of ignorance and inappropriateness are sins about what to include and
what not to include in a claim, the sin of inconsistency is a sin of a faulty comparison.
Specifically, we commit the sin of inconsistency when a claim compares two systems,
but each system is evaluated in a way that is inconsistent with the other. For example,
a claim states that an optimization is beneficial by comparing the performance of the
optimized code on a server with the performance of the non-optimized code on a lap-
top. This comparison is inconsistent because the difference in performance may be due
to the different measurement contexts (server versus laptop) and not due to the op-
timization. In addition to different measurement environments, we commit the sin of
inconsistency when we derive a claim that is contingent on a comparison that uses (i)
different metrics (e.g., wall clock versus cycles); (ii) different workloads; or (iii) differ-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 EVALUATE 2011 Workshop participants

Time 

R
eq

ue
st

s 
pe

r S
ec

on
d 

Fig. 8. Requests per second to Gmail over the course of a week. Evaluating an optimization by disabling
it during the first half of the week and enabling it during the second half of the week commits the sin of
inconsistency.

ent data analysis, (e.g., average run versus best run). If you have ever derived a claim
from an improper comparison of data, you have suffered from a sin of inconsistency.

The sin of inconsistency sounds obvious; indeed most readers will readily find flaws
in our example above. However, in general the sin of inconsistency is not obvious: this
section will give examples to illustrate this.

5.3.1. Inconsistent hardware performance counters. When gathering data, we may use
hardware performance counters, which count hardware events, to understand the be-
havior and performance of our system. However, the performance counters that are
provided by different vendors may vary, and even the performance counters provided
by the same vendor may vary across different generations of the same architecture.
Comparing data from what may seem like similar performance counters within an
architecture, across architectures or between generations of the same architecture,
may result in the sin of inconsistency, because the hardware performance counters are
counting different hardware events.

An example of an inconsistent comparison of hardware performance counters is to
evaluate performance by comparing issued instructions with retired instructions on an
out-of-order speculative machine. On an out-of-order speculative machine, there may
be many more instructions issued than retired, because a speculative instruction may
never retire. Therefore, deriving a claim by comparing issued to retired instructions to
evaluate performance commits the sin of inconsistency, because the comparison may
be evaluating how well the machine’s speculation works, rather than determining a
difference in performance.

5.3.2. Inconsistent workloads. The workload on a server application may vary from day
to day and even from hour to hour. Therefore any evaluation of optimizing the perfor-
mance of a server application must make sure that the same workload is used in the
comparison with and without the optimization. If the performance of the server appli-
cation during the weekend without optimizations is compared with the performance of
the server application during the week with optimization to derive a claim, the claim
may suffer from the sin of inconsistency.

Figure 8 illustrates workload variations in the context of Gmail. One of the authors
is a member of the Gmail team and this graph from live production traffic shows the
rate of incoming requests for Gmail over the course of the week (Monday-Sunday).
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We see that the load varies significantly from day to day and even within the course
of a day. If we evaluate an optimization by disabling it for the first half of the week
and enabling it for the second half of the week we will end up with an inconsistent
comparison. Consequently, any claim may reflect the difference in load over time and
not the effect of the optimization.

5.3.3. Inconsistency in high performance computing. Bailey [2009] has identified sins of
inconsistency in the high-performance computing community. We discuss a subset of
them here.

Comparing the performance of two different high-performance algorithms, but using
different floating-point precision for the arithmetic operations in the evaluation of each
algorithm, commits the sin of inconsistency. This is because, on many systems, 32-bit
computation rates are twice that of 64-bit rates. Therefore, the comparison is more
about the effect of floating-point precision on execution time than about the algorithms.

Claims that compare the time to run a parallel algorithm on a dedicated system
with the time to run a conventional (sequential) algorithm on a busy system commit
the sin of inconsistency because the comparison may be more about the state of the
underlying measurement contexts, a dedicated versus a busy system, than about the
parallel versus conventional algorithms.

5.3.4. Summary. In our experience, while the sin of inconsistency seems obvious and
easy to avoid, in reality it is far from that. Many artifacts that seem comparable may
actually be inconsistent. As a community we need to work towards identifying these
artifacts.

6. HOW TO USE OUR FRAMEWORK
There exists no framework or checklist that can completely eliminate unsound claims;
after all, we see that other sciences, despite a much longer history than computer
science, also suffer from unsound claims (e.g., [Ioannidis 2005]). Figure 9 expands upon
Figure 1 to make this clear: our knowledge of the evaluation’s data and steps is always
imperfect: even experts cannot completely enumerate all of the factors that may affect
or bias an evaluation; specifically, the ‘Evaluation’ box is dashed to indicate that even
the experimenter may not have full knowledge of this. While our framework cannot
eliminate unsound claims, it does bring up questions that authors and consumers (e.g.,
reviewers or artifact evaluation committees) should think about: we have found that
thinking about these questions helps identify weaknesses in our claims. In this way,
our framework reduces a 3rd order of ignorance [Armour 2000] (I don’t know something
and I do not have a process to find out that I don’t know it) to a 2nd order of ignorance
(I don’t know something but I do have a process to find out that I don’t know it).

For example, the author of an evaluation may ask the questions: (i) Have I con-
sidered all the data in my evaluation and not just the data that supports my claim
(sin of ignorance)? (ii) Have I made any assumptions in forming my claim that are
not justified by my evaluation (sin of inappropriateness)? (iii) When comparing my ex-
perimental evaluation to prior work, am I doing an apples-to-apples comparison (sin
of inconsistency)? (iv) Have I adequately described everything I know to be essential
for getting my results (sin of irreproducibility)? (v) Have I unambiguously and clearly
stated my claim (sin of inscrutability)?

7. A CALL FOR CULTURE CHANGE
The five sins are not unique to computer science; other sciences also suffer from them
also. Indeed other sciences frequently publish papers that refute prior work (e.g. [Ioan-
nidis 2005]). Thus, while it is difficult to eliminate these sins, our community can
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Fig. 9. Enhancement of Figure 1, which illustrates the sins of exposition and sins of reasoning. The sins of
exposition obfuscate the evaluation and/or the claim, preventing an observer from determining the sound-
ness of the claim. The sins of reasoning interfere with the derivation of the claim, resulting in an unsound
claim.

strive towards a culture that recognizes exemplary evaluation papers. By ‘exemplary’
we mean papers that go out of their way to conduct careful and insightful evaluations.

More concretely, we can place papers in our field in a two dimensional space (Fig-
ure 10). The first dimension is ‘novelty’; papers score highly in this dimension if they
present novel ideas. The second dimension is ‘quality of evaluation’; papers score
highly in this dimension if they present careful and insightful evaluation.

Papers in the (low-novelty, low-evaluation) cell do not present new algorithms nor
present insightful empirical evaluation; thus these papers are justifiably rejected from
our publication venues. Papers in the (high-novelty, high-evaluation) cell present ex-
citing new algorithms or ideas and a compelling empirical evaluation. Such papers
are rare and their scope is often much larger than a single paper. Papers in (middle-
novelty, middle-evaluation) cell are a ‘safe bet’: they have modestly novel algorithms
or ideas and a reasonable (but not fully convincing) evaluation. Thus these papers are
not an obvious failure along either dimension.

While ’safe bet’ papers are often easy to publish, these papers tend to be incremental;
thus rarely open up new opportunities and fields.

In our experience, our community rarely publishes papers that are in the low-
novelty, high-evaluation and high-novelty, low-evaluation cells. We believe that the
former get rejected because they do not present any new algorithms. We believe that
the latter get rejected because they present algorithms or ideas without empirical evi-
dence for their efficacy.
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Fig. 10. Types of a papers. We can categorize papers along two dimensions: (1) ‘novelty’, where papers score
highly in this dimension if they present novel ideas; (2) ‘quality of evaluation’, where papers score highly in
this dimension if they present careful and insightful experimental evaluations.

We believe that these two cells are important and that our community should be
encouraging papers in these categories.

Papers that have insightful empirical evaluations but no new algorithms are worth
publishing. Insightful evaluations often (i) expose new opportunities for exploration;
(ii) provide confidence in the validity or invalidity of ideas; and (iii) identify sins that
may be so far unknown by the community; e.g., they may identify new factors that
affect the outcome of evaluations and thus contribute to sins of irreproducibility or
ignorance. Thus, these papers are key to the advancement of our field. We contend
that a paper that has an exemplary insightful evaluation and no new algorithms is
superior to a paper that has an exemplary evaluation and gratuitously includes a low-
novelty algorithm: the low-novelty algorithm may have been placed in the paper to
satisfy conference reviewers and it may actually mislead readers away from the true
impact of the empirical work.

Papers that have highly novel algorithms and ideas but no real empirical evaluation
are also worth publishing as long as (i) they have theoretical or other arguments for
the likely usefulness of the algorithms, and (ii) do not make unsound claims.

These papers expose new ways of thinking about problems and open up entire fields
of exploration. We contend that a paper that has highly novel algorithms but no em-
pirical evaluation is superior to a paper with highly novel algorithms and unsound
claims: the unsound claims may mislead us as to the true value of the ideas. We rec-
ognize that quick and dirty evaluations have a place in a researcher’s toolbox: they
may be helpful in determining which of many different avenues to explore. However,
an unsound claim has no place in published research.

8. RELATED WORK
Our paper is related to several efforts to improve empirical evaluation and improve
the science in computer science.

8.1. Artifact Evaluation Committees
Several programming languages and software engineering conferences recently intro-
duced so-called ‘Artifact Evaluation Committees’ (AECs) [Krishnamurthi 2013]. These
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committees complement the program committees, with the goal ‘to empower others to
build on top of the contributions of a paper’ [Hauswirth and Blackburn 2013]. Their
main purpose is to evaluate the artifacts underlying the submitted papers along four
dimensions: their consistency with the claims formulated in the paper, their complete-
ness, their documentation, and the ease with which they can be reused. While the costs
and benefits of AECs have been debated [Krishnamurthi et al. 2013], most major pro-
gramming languages conferences now include AECs. The ‘consistency’ as evaluated by
the AEC is related to our framework. In fact, it is affected by all the sins we describe
(not just by the sin of inconsistency). While the submitted artifact supplements what is
in the paper, in general, it cannot fully reflect the evaluation as conducted by the orig-
inal author. Our framework can be used by an AEC in their evaluation of an artifact
and a paper to identify sins.

Other areas in computer science introduced similar committees. For example, the
SIGMOD conference uses so-called ‘Repeatability’ committees [Bonnet et al. 2011;
Manegold et al. 2010], to verify the evaluations published in the conference. They have
two goals: evaluate the ‘repeatability’ (independently reproducing the evaluations) and
the ‘workability’ (exploring changes to evaluation’s parameters).

8.2. Separating Ideas from Evaluations
Our call for a culture change in Section 7 reiterates that the idea and the evaluation
are two separate dimensions of a paper. We encourage papers with novel ideas but no
evaluation and papers with strong evaluations without novel algorithms. Both should
be viewed as contributions and accepted in our conferences.

Dittrich [2011] goes even further. He partitions traditional papers into ‘paper bricks’,
and considers each such brick an independent contribution. Proposed bricks include
‘introduction’, ‘problem statement’, ‘high level solution idea’, ‘details’, and ‘performance
evaluation’. Thus, it clearly separates the evaluation from the idea, partitions the idea
further, and introduces the identification of the problem (which might be driven by an
experiment or observational study) as a separate contribution.

8.3. Literate Experimentation
Singer [2011] proposes an approach to empirical evaluation that tightly couples the ex-
periment and the paper’s description of the experiment: both are automatically derived
from the same specification. Essentially, the specification of the experiment and its ex-
planation are interleaved as part of the source text of the paper. A toolchain reads the
specification from that source, and either generates the paper, or runs the experiment.
This reduces inconsistencies between the description of the experiment in the paper,
and the actual experiment. It also makes the experiment more repeatable. However,
not all aspects of the experiment can be captured in this way (e.g. the temperature in
the room while running the experiment), and thus the approach still is susceptible to
the sins in our framework.

While Singer introduces the idea of literate experimentation and provides an im-
plementation based on scripts and targeting virtual machine research, Schulte et al.
[2012] provide an implementation of a very similar approach based on emacs org-mode.

8.4. Independent Reproduction
Baker [2012] and Begley [2012] report on the commercialization of scientific repro-
duction studies. The company Science Exchange offers the ‘Reproducibility Initiative’,
a way for scientists publishing a paper to have their study reproduced. Scientists of
the original study pay for having the study reproduced by a second, independent lab
selected by Science Exchange. The two research teams then publish a second paper to-
gether with the results of the reproduction study. Begley’s article quotes Glenn Begley,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



The Truth, the Whole Truth, and Nothing but the Truth A:17

the former head of global cancer research at Amgen, as saying ‘There are too many
incentives to publish flashy, but not necessarily correct, results’.

Both de Oliveira et al. [2013] and Keahey and Desprez [2012] present computational
platforms that are available to a community of users to collect empirical results. These
platforms can be used for reproducibility studies.

Although the evaluation setup, in which results are collected, is an essential aspect
of an evaluation, our framework focuses on the evaluation after the results have al-
ready been collected.

8.5. Reproducibility
Reproducing empirical results is the foundation of science. If a result can’t be repro-
duced, then it can’t be used for prediction. There has been significant focus on the
failure of reproducibility of empirical results both in computer science (Stodden et al.
[2013] and Bailey et al. [2014]) and in other fields (Lehrer [2010] and eco [2013]), and
how to fix it (Touati et al. [2013]). Our framework identifies, at a high level of ab-
straction, the inability to reproduce empirical results as the sin of irreproducibility.
In addition, our framework identifies four other ways an empirical evaluation may be
unsound.

In Section 1.2, we point out that reproducibility is hard to ensure, because an un-
bounded number of factors in the environment may affect the outcome of the evalua-
tion in subtle ways. This point is important to emphasis. Nevertheless, reproducibility
is an important goal we must continue to strive for. There have been community ef-
forts to improve reproducibility. For example, Fursin [2015] promotes a venue for open
publication.

8.6. Examples of Sins of Reasoning
Norvig [2012] and Vitek and Kalibera [2011] present multiple examples of the sins of
reasoning in experimental design and interpretation of results. Our framework cap-
tures each of these examples at a higher level of abstraction. In Section 1.1 we prove
that our sins of reasoning cover all possibilities and thus are principled and complete.
In addition, Vitek and Kalibera [2011] propose a number of recommendations to im-
prove the way we do empirical evaluation.

8.7. Experimental Design
Pieterse and Flater [2014] discuss the pitfalls of experimental design, which is needed
to evaluate software performance, and provide a software performance experiment life
cycle process.

8.8. Challenging Cultural Norms
Nowatzki et al. [2015] challenge the field of computer architecture to reconsider how
architects evaluate their work. They question their field’s preoccupation with cycle-
accurate simulation, and propose that the evaluation technique reflect the ‘footprint’
of the subject of the evaluation — in other words, they propose that the scope of the
evaluation match the scope of the claim. They offer guidance on how to avoid pitfalls
of simulation-based evaluation of architectural innovations.

9. CONCLUSIONS
An evaluation, in isolation, is never wrong. It may be uninteresting or thoroughly
limited in scope, but it is still not wrong. However, when we derive claims from an
evaluation, we may commit errors that render the claim unsound. This paper shows
that many common errors fall into two broad classes of error: sins of exposition and
sins of reasoning.
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To help experimenters identify unsound claims and derive sound claims, this paper
makes two contributions. First, it provides a framework to understand and categorize
common mistakes that lead to unsound claims. The framework provides practitioners
with a principled way of critiquing the integrity of their own work and the work of
others. We hope that this will help individuals conduct better science and encourage
a cultural shift in our research community to identify and promulgate sound claims.
Second, it gives examples for each category of sin; these examples draw from real
sins that the authors have observed in their own work and in the literature. These
examples provide evidence that these sins occur, and that these sins are therefore not
apparently well understood.

This paper does not present a silver bullet: empirical evaluation is difficult and even
the most seasoned evaluator may inadvertently commit a sin. Our hope is that this
framework will provide reviewers with a systematic approach to avoid the promulga-
tion of unsound claims about empirical evaluation and provide practitioners with a
basis for self critique, curtailing unsound claims at the source.
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