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Abstract

In  this  paper  we  present  a  method  for  the  quantification  of  chemically  distinguished

airborne particulate matter, required for health risk assessment. Rather than simply detecting

chemical  compounds  in  a  sample,  we  demonstrate  an  approach  for  the  quantification  of

exposure to airborne particles and nanomaterials. In line with increasing concerns over the

proliferation of engineered particles  we consider  detection of synthetically produced ZnO

crystals. A multi-stage approach is presented whereby the particles are first aerodynamically

size  segregated  from a  lab-generated  single  component  aerosol  in  an  impaction  sampler.

These size fractionated samples are subsequently analysed by Raman spectroscopy. Imaging

analysis is applied to Raman spatial maps to provide chemically specific quantification of

airborne exposure against background which is critical for health risk evaluation of exposure

to  airborne  particles.  Here  we present  a  first  proof-of-concept  study of  the  methodology

utilising particles in the 2 – 4 μm aerodynamic diameter range to allow for validation of the

approach by comparison to optical microscopy. The results show that the combination of these

techniques  provides  independent  size  and chemical  discrimination  of  particles.  Thereby a

method  is  provided  to  allow  quantitative  and  chemically  distinguished  measurements  of

aerosol concentrations separated into exposure relevant size fractions.
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Introduction

There is  a  growing demand for devices that provide both size resolved information and

chemical  identification  of  aerosol  particles  (Kuhlbusch  et  al.,  2011,  Maynard  & Aitken,

2007). Size resolved information is critical in the evaluation of deposition of particles in the

lungs (e.g. Oberdörster et al., 2005). This is required, for example, to address the health risks

associated with exposure to airborne nanoparticles at working places and residential  areas

(Donaldson et al., 2000; Maynard & Kuempel, 2005; Pope et al., 2006; Yang et al., 2008).

Recently there has been a proliferation of engineered nanoparticles (ENP) in various products

and industrial processes (Meyer et al., 2009). Due to the uncertain health risks associated with

these materials  (Simeonova  et  al.,  2009),  it  is  a  matter  of pressing urgency to develop a

technique  that  can  detect  and quantify ENP selectively in  size  resolved samples.  It  is  of

particular  importance to  develop methods to  distinguish these particles  of interest  from a

potentially much higher, but more benign, background aerosol concentration (Kuhlbusch  et

al.,  2011;  Ono-Ogasawara  et  al.,  2009).  Much  work  has  been  carried  out  previously  on

identifying  the  chemical  composition  of  sampled aerosol  particles  using  a  wide range of

different techniques (e.g. see reviews by Chow, 1995; Maynard, 2000; McMurry, 2000; Matti

Maricq, 2007; and Chow et al., 2008). While such studies have been invaluable in helping to

identify sources and compositions of aerosols, they do not provide a quantitative exposure

metric. Such a metric would allow for either a comparison to be made to measured responses,

or assessments of risks to be carried out if a suitable response correlation is understood.

We employ a two stage technique for characterizing ENP and other aerosols. First, aerosol

particles  are  sampled  and  size  segregated  from  the  atmosphere  utilizing  a  size  resolved

sampler. Here we use a ‘Nano-ID® Select’ (Gorbunov  et al., 2009) which is commercially

available  from Naneum (www.naneum.com).  A primary  benefit  of  this  sampler  is  that  it

characterizes particles according to their aerodynamic equivalent diameter. This is a critical

parameter as it determines the deposition efficiency of particles in the lungs and respiratory

tract and is crucial for understanding the potential health risks of aerosol particles (Kreyling

et al.,  2006).  It  is also worth noting that while freshly generated ENP may have primary

particle sizes in the order of 20 nm, the material will quickly agglomerate in the air up to sub-

micron sized particles (e.g. ~ 100 – 300 nm) which can survive much longer in the air due to

their  lower  diffusion  mobility  (Eggersdorfer  and Pratsinis,  2014).  The second stage  is  to

analyse the size ranges of interest with Raman spectroscopy to provide chemically sensitive

detection  of  particles.  Finally,  with  consideration  of  the  sampled  volume,  a  quantitative
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analysis  is  carried out which allows for the absolute determination of concentrations of a

particular species in the air. This final step is critical for providing a meaningful exposure

assessment, and is the key benefit of this approach compared to previous studies.

 Micro-Raman  spectroscopy  (Huong  &  Verma,  1990)  provides  sensitive  detection  of

chemical traces in a dominant background aerosol matrix. The same technique is also able to

distinguish small deposits from a substrate material and has seen increasing application to

nanomaterials  (Gouadec  &  Colomban,  2007).  Other  techniques  have  been  used  for  the

identification of aerosol particles including; various mass spectrometry techniques (Prather et

al., 1994; Koch  et al., 2002; Horn & Günther, 2003; Mouli  et al., 2006; Nizkorodov  et al.

2011;  Laskin  et  al.,  2013;  O’Brien  et  al.,  2013),  energy-dispersive X-ray analysis  (EDX)

(Laskin  et  al.,  2002;  Krueger  et  al.,  2003),  Fourier  transform  infrared  spectroscopy  in

combination with EDX (Liu et al., 2008; Liu & Laskin, 2009; Ryu & Ro, 2009; Song et al.,

2010; Song  et al., 2013), laser-induced breakdown spectrometry (Beddows & Telle, 2005),

atomic absorption spectroscopy (Gorbunov et al., 2009), and proton-induced X-ray emission

spectrometry compared to inductively coupled plasma atomic emission spectroscopy (Menzel

et al., 2002). These techniques require expensive, bulky, equipment and highly trained sample

preparation  personnel.  However,  by  comparison  Raman  spectroscopy  offers  a  relatively

economical solution to chemical identification and commercial solutions are now available in

compact,  portable,  packages.  The  combination  of  aerodynamic  diameter  selectivity  and

Raman characterization therefore may offer a cost-effective and practical technique for the

detection of potentially toxic aerosol particles and the speedy assessment of any associated

exposure risks. 

Raman  spectroscopic  data  has  been  measured  from  aerosol  particles  in  a  variety  of

schemes before. Straightforward approaches include analysing material collected on a filter

(Rosen & Novakov, 1977; Mertes et al., 2004) or material impinged by a fluid which is then

deposited and dried  on a microscopy slide (Kong et al. 2011). More complex arrangements

have also  been used to  directly analyze  suspended particles  (Schweiger,  1990)  including;

electrodynamic suspension (Buehler  et al., 1991; Vehring  et al., 1998; Lee & Chan, 2007),

optical trapping (Hoffmann et al., 1991; Hoffmann et al., 1995; Ling & Li, 2013), or from a

droplet chain arrangement (Vehring, 1998). In recent years Raman spectroscopy has also been

utilised to identify particles collected by impaction (Sobanska et al., 2006; Batonneau et al.,

2006; Ivleva et al., 2007; Ault et al., 2013, Avzianova & Brooks, 2014). In addition, Raman

spectroscopy has been combined with other techniques such as scanning electron microscopy
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(SEM) (Nelson et al., 2001), with SEM combined with X-ray analysis (Stefaniak et al., 2006;

Worobiec  et  al.,  2010;  Sobanska  et  al.,  2012),  and  more  recently  with  atomic  force

microscopy, electron microscopy and X-ray analysis, and mass spectrometry (Sobanska et al.,

2014).

The idea of using Raman spectroscopic information to create a chemically resolved spatial

surface map has been around for some time (Delhaye & Dhamelincourt, 1975). Raman spatial

maps  built  up  from  pixels  representing  discrete  sample  points  have  seen  some  modest

applications in  recent  years  in  the investigation of  both  non-biological  (Batonneau  et  al.,

2001; Sobanska  et al., 2006; Batonneau  et al., 2006)  as well as biological (Tripathi  et al.,

2009; Schwarzmeier  et al., 2013) aerosols. The same technique has also been used to study

cell  mitosis  (Matthäus  et  al.,  2006),  to  study  the  uptake  and  localization  of  various

nanoparticles  in  hepatocarcinoma  cells  (Estrela-Lopis  et  al.,  2011),  to  distinguish  carbon

nanotubes collected in a personal sampler (Keller  et al.,  2011) and  to  map solar radiation

induced  skin  damage  (Ali  et  al.,  2013).  In  these  studies  Raman  spectroscopy is  used  to

identify  particular  chemical  compounds,  or  to  provide  quantification  of  the  relative

contributions of different chemical compounds (Ivleva et al., 2007). 

However  none  of  these  prior  studies  have  allowed  for  the  quantitative  assessment  of

airborne  particle  exposure.  Such  an  assessment  approach  is  presented  here  based  on

quantitative analysis of sampled aerosol composition.

 In  this  paper  we extend the application of Raman spatial  mapping.  Image analysis  is

applied to  the Raman spatial  maps  to  quantify the number of  particles  and particle  sizes

present. By consideration of the sampling system and measurement time, these data can then

be related back to what was originally present in the air. Glass slides are used as a sampling

substrate,  which  give  a  complex  Raman  background  spectrum to  test  the  discrimination

efficacy. In addition, in combination with a choice of larger agglomerates for analysis, the use

of  glass slides  allows for validation of the approach by utilising optical  microscopy as a

reference method for discriminating the particles of interest. Immediately prior to collection

of  the  Raman  data,  equivalent  analysis  is  also  applied  to  the  optical  microscopy images

acquired from the same sample area. The results for the particle counts and sizes from the

Raman maps are then compared to those obtained with optical microscopy. This provides a

proof  of  concept  study  for  the  presented  technique.  However,  in  principle  optical

measurements are not required and hence their use does not represent a restriction on the

applicability of this approach in general.
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Here  ZnO  particles  (considered  as  agglomerated  nanoparticles  or  nano-structured

microparticles) are used as a test case material. ZnO is often used as an additive in sunscreens

to block UV light. Whilst there is minimal risk from sunscreens due to the low penetration of

ZnO through the skin, toxic responses to ZnO may pose a risk with inhaled material (Gulson

et al., 2010; Smijs & Pavel 2011; SCCS, 2012; Vandebriel & De Jong, 2012).

Methods

The  sampling  setup  is  shown in  Figure  1(a).  The test  aerosol  is  generated  from ZnO

powder (Sigma-Aldrich 205532) using a modified Naneum PA100 aerosolizer.  In separate

measurements with a Scanning Mobility Particle Sizer, the aerosolized powder is found to

form an airborne state with a geometric mean particle size of 300 nm and geometric standard

deviation of 1.63. However the underlying size distribution is not considered to be important

for this proof of concept study.  The setup is designed to provide a stabilized ZnO aerosol

flow to two measurement instruments: (i) a ‘TSI 3007 CPC’, which  is used to monitor the

total concentration; and (ii) a ‘Nano-ID® Select’, which provides size segregated samples. The

size bins available on the ‘Nano-ID® Select’ are detailed in  Table 1. The impaction stages

collect narrow bands of aerosol particles deposited along the centre of the chosen substrate

(here standard glass microscopy slides), as shown in Figure 1(b). A number of sampling runs

provided a range of deposited concentrations.

Size Stage # 1 2 3 4 5 6 7 8 9 10 11 12
Min. cut-off diameter 20 8.1 4.0 2.0 1.0 0.5 0.25 60 15 5 1.5 1
Max. cut-off diameter ~35 20 8.1 4.0 2.0 1.0 0.5 250 60 15 5 1.5

Impaction stages (size in μm) Diffusion stages (size in nm)

5

Table 1. Aerodynamic diameter ranges of the Nano-ID® Select sampling channels. The impaction
stages show the lower D50 size cut-off with the upper size limit being set by the preceding stage
or by the inlet geometry for the first stage. The diffusion stages are ordered in the reverse pattern

in the flow path with the smaller particles being removed first.



Raman data was collected from a 31 × 31 point grid with a 2 μm spacing between each

point using a Horiba LabRam-HR with an external 473 nm excitation laser and ×50 (NA  =

0.55)  objective lens. Particular  spectral  features  indicative of  ZnO were chosen and their

intensity mapped to either  a  greyscale  or  colour  (with different  component  contributions)

pixel value for each measurement point on the grid. Combining these pixels into a single

image  yields  the  resulting  Raman  map,  showing  the  distribution  of  the  chosen  spectral

features  (and  hence  compound  of  interest)  in  the  chosen  grid  area.  Sample  slides  were

positioned  and  focussed  using  an  integrated  computer  controlled  stage.  Starting  from  a

lengthwise central point on the edge of the slide, where the xyz stage coordinates were zeroed,

the total width of the slide (‘y-value’) was measured using the xyz microscopy stage readout.

This y-value was then divided by 2 and then input into the stage positioning software to give a

centrally chosen point without any preview, avoiding any researcher bias. Sample areas were

imaged using  an  optical  microscope and an integrated  white  light  source  in  transmission

mode. Horiba’s ‘Lab-Spec 5’ software was used for data acquisition and generation of contour

maps to identify ZnO particles based on their 435, 1613 and 1724 cm-1 Raman peaks (see

Figure 2) in the ZnO Raman spectrum (Alim et al., 2005).
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Figure 1. (a) – Sampling setup. N: Nitrogen tank; V: valve; R: rotameter; AF: air filter; A:
aerosolizer; S: shaker, run at 15 – 20 Hz; SV: Stabilisation Volume of 18.9 litres; T: three-way

switching valve; MC: Mixing Chamber. I: impactor stages on Nano-ID® Select; D: diffusion net
stages on Nano-ID® Select (not used apart from final filter stage). (b) – Example sample set from

run H showing impactor stages 4 – 7 from left to right which correspond to aerodynamic
equivalent diameter ranges 2 – 4 μm, 1 – 2 μm, 0.5 – 1 μm and 0.25 – 0.5 μm respectively.
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The image processing package ‘Fiji’ (distribution of ‘ImageJ’ – Abràmoff et al., 2007) was

used to process the microscope images, to produce Raman contour maps and to carry out

counting  and sizing  analyses.  Counts  were  also performed by eye  with  the  aid  of  a  cell

counter plug-in to mark particles and keep track of counts. The results of this manual count

were  compared  to  those  obtained  with  the  semi  automated  process.  Software  analysis

involved processing and thresholding the images to allow a particle  analysis  algorithm to

distinguish and demarcate particles from background. Firstly the scale is measured off the

image and applied to the image such as to provide the software with a conversion from pixel

values to distance in micrometres. The full field of view of the particles is then selected and a

4 pixel median filter is applied to smooth out noise and artefacts while retaining the edge

sharpness  of  the  particles.  The  contrast  and  brightness  of  the  image  is  optimised  before

converting it to 8-bit greyscale. A threshold is then applied to create a binary distinction on the

image between “particles” and “background”. The resulting image is then selected again and

Fiji’s “Analyze Particles” routine can then be run with the necessary restrictive parameters on

acceptable  limits  of  particle  size  (e.g.  0.35  –  infinity  µm2)  and  circularity  (defined  as

4π{area/perimeter2}  –  e.g.  0.1  –  1).  The  output  can  then  be  set  to  display the  measured

outlines of particles as well as measured counts, sizes and other parameters. For the purposes

of this  study it  was decided to use the measured area and convert  it  to a  single,  circular

equivalent size parameter “dequiv”. Counts and sizing were compared between the Raman and

microscopy data. In the case of optical microscopy results, this routine will characterize any

and all  particles  visible  on the  substrate.  However,  when the  same routine  is  utilized  on

Raman maps, it can be used to measure only the particles of interest from the relevant Raman

peak(s). In this proof of concept study we examine ZnO particles on a glass substrate that

gives a significant Raman background on which the ZnO signal has to be positively identified.

This allows us to assess the effectiveness of the Raman data in measuring the size and number

of particles present by direct comparison to the optical microscopy results. The validation

approach  employed  for  this  study  requires  the  case  where  the  compound  of  interest  is

optically distinct from the background such that the data can be correctly correlated between

the Raman and optical microscopy data. This leads to the requirement for the use of larger

particles here. However the optical microscopy data is not in general required and therefore it

is not a limitation on the applicability of the overall approach.
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Figure 2. (a) – Example background Raman spectrum measured from a clean glass slide. The
SiO2 line is dominant at 1100 cm-1 and is still clearly apparent when measuring ZnO particles
on the slide as seen in (c). (b) – ZnO Raman spectrum measured directly from a bulk powder
sample from a powder well. (c) – Example range of ZnO Raman spectra obtained from the

measurement grid used on the glass slide sample C4 (ref. Figure 3). The plot shows the limits
from all of the 961 individual spectra from each grid position. The Stokes peaks used to

distinguish ZnO particles from background in the resulting data maps are marked at 435, 1613
and 1724 cm-1 respectively. Note that these latter two peaks are found to be associated with
the ZnO particles only in these impaction samples, and did not appear in the spectra from

powder well samples. Therefore they may be related to some surface contaminant on the ZnO
particles picked up during the sample aerosolisation, impaction or subsequent handling of the

sample.

Results

The experiment was conducted in four stages. First, aerosols were generated from ZnO

powder; see Figure 1(a). Second, airborne particles of ZnO were collected onto glass slides.

After that Raman spectra of slides containing ZnO particles were recorded. And finally, data

were analysed. 
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Sampling periods  were adjusted to achieve different concentrations.  Table 2 shows the

measured total number of particles which passed through the Nano-ID® Select during each

sampling  interval,  calculated  from  the  number  concentration  measured  by  the  CPC

(representing  all  the  particle  sizes),  sampling  time and the  sampling  flow rate.  Sampling

intervals  ranged  from 15 seconds  to  10  minutes  with  the  target  of  collecting  a  range of

concentrations within the constraints of having sufficient numbers for representative statistics

whilst avoiding overlap of neighbouring particles. Clearly separated particles are necessary to

provide a correct count, and therefore, if higher concentrations or longer sampling times are

needed, either a diluter or multiple shorter samples may be required. Samples were collected

from size stages 4 – 7, covering a total size range of 0.25 – 4 μm (Table 1). The relative

differences between the total sampling concentrations are the same as the relative differences

across any particular size channel only if the shape of the size distribution remains the same

throughout.

Table 2. Total sampling throughput for each of the eight sampling runs.

Sample A B C D
Total throughput:
(No. of Particles)

9.19 × 106 2.46 × 107 4.05 × 107 1.06 × 108

Sample E F G H
Total throughput
(No. of Particles)

2.34 × 108 3.33 × 108 8.28 × 108 1.54 × 109

Each individual sample is designated with the letter from Table 2, indicating the sample

run concentration with the channel number from Table 1, indicating the channel size range.

Stage 4 samples in the concentration range B – F were chosen for this Raman study (the

specific samples from stage 4 for each concentration shall henceforth be designated B4 – F4).

The larger particle size allows for the requisite comparison to microscopy results, while the

concentration  range  chosen  gave  reasonable  count  statistics  and  particle  overlap  without

needing to adjust the analysis process. An overview of the optical and sub-area Raman results

achieved  for  the  selected  samples  B4  –  F4  are  presented  in  Figure  3.  This  shows  the

microscopy images of the chosen sample areas (left column), positioning of the Raman grid

relative to each sample (middle column) and resultant smoothed Raman data generated from

signal intensity in ZnO Raman peaks (right column) for five different sample concentrations

deposited on stage number 4 of the Nano-ID® Select. The sampled areas were systematically

chosen from the central region of the particle deposit as described in the previous section.
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Figure 3. Overview of images acquired for samples B4 – F4. The full microscopy field of view is
shown on the left column. The 31 × 31 grid arrangement for Raman measurements is shown in the

centre column and is overlaid on top of a post-processed version of the microscopy images showing
the measured outlines of particles. The right column shows the resulting smoothed Raman data as

output from Lab Spec 5 utilising the 435, 1613, and 1724 cm-1 ZnO peaks.



As well as providing a reference for the Raman data, the optical microscopy images are

also useful for testing the efficacy of the automated particle sizing and counting procedure.

The accuracy of automated counting is  compared to that obtained manually by eye (with

assistance of the “Cell Counter” Fiji plugin) for the microscopy and Raman data in Figure 4.

The counts obtained from the automated counting of Raman and microscopy data from the

same samples  (B4 – F4)  are  compared in  Figure 5.  The auto analysis  routine provides  a

measured projected area (A) of the particle in units of µm2, once the appropriate scale has

been set in the software. This has been converted to a circular equivalent diameter dequiv (µm)

such that dequiv= 2√A /π . Number density distributions for dequiv are shown in Figure 6, and

Figure 7 provides a direct comparison of sizing between the microscopy and Raman data.
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Figure 4. Comparison of counts per unit area achieved with automatic image analysis /
thresholding (Auto Analysis) compared to counting by eye and marking particles (Cell Counter)

for the microscopy (a) and Raman (b) images from samples B4 – F4. Dashed lines show a
perfect y=x correlation while solid lines show fits to the data with associated fitting parameters. 



12

Figure 5. Comparison of particle concentration measured from the Raman data to that measured
from the optical microscopy data. A perfect correlation is shown by the dashed (y=x) line.

Figure 6. (a) – Size distribution of all particles measured from size stage number 4 microscopy images.
(b) – Comparison of size distribution from Raman measurements (red, overlaid semi-transparent)

compared to the same set of particles measured with microscopy (grey). The y-axis shows the number (N)
density per log unit size. 



Discussion

Obtaining  correct  information  from Raman  maps  requires  some  careful  consideration.

Many parameters  need to be optimized and verified to  characterize ENP correctly.  These

include; the spot size and intensity of the Raman laser source, transversal resolution from the

grid density, sampling time, and statistical characterizations of the particle ensemble. With the

correct choice of Raman spectroscopy parameters it can be seen (Figure 3) that ZnO particles

can be reliably resolved, even when using a sampling resolution (here 2 microns) comparable

to the particle size. Figure 4(a) demonstrates that particles distinguishable by eye in the image

can be accurately counted with automatic image analysis. Accurate counting and sizing is also

demonstrated  in  Figure  3 by comparison of  the  measured  particle  outlines  in  the  middle

column to the raw optical images in the left column. This technique has been successfully

carried over for processing the Raman data. 

The critical step in the image processing procedure is the thresholding step, where each

pixel  is  limited  to  a  binary  distinction  between  “particle”  and  “background”.  Setting  the

threshold level too high will result in the merging of neighbouring particles, whilst setting the

level too low results in smaller particles or those with a lower contrast to the background not
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Figure 7. Particle size measurement comparison between the Raman and microscopy images.
Each marker represents a 15 point data cluster with error bars showing the standard deviation of

each cluster. 



being measured. Due to the constant light levels in the microscopy images, it was possible to

use  the  same level  adjustment  across  all  of  the  optical  images.  Therefore,  in  theory  the

analysis could have been fully automated for the microscopy images. However for the Raman

map images, there was some adjustment of contrast/brightness and thresholding steps from

image to image, and so additional work would be required here to fully automate this process.

Further study may allow the entire process to be made fully autonomous with tighter controls

on the Raman mapping parameters, or by developing an effective thresholding algorithm.

The correlation to manual counts in  Figure 4(b) tails off at higher concentrations, which

can be attributed to the comparatively low transversal resolution of the Raman data obtained

using a 2 μm grid spacing. This results in an increased overlap of adjacent particles at higher

concentrations, causing the analysis routine to measure multiple particles as one. This leads to

under-counting  and  over-sizing.  The  over-sizing  can  be  seen  in  the  shift  in  the  Raman

distribution in  Figure 6(b),  as well  as the greater abundance of data points above the 1:1

dashed line shown in Figure 7. The grid resolution was deliberately kept low in this study to

allow for a large enough area to be measured to generate useful statistics within reasonable

measurement times (~70 minutes for each of the 961 point Raman maps acquired in this

study). For a given sampling period, higher concentrations of particles in the air would lead to

a  higher  deposited  concentration,  and  hence  increased  particle  overlap.  However,  this

situation can be avoided for higher concentration aerosols, by either reducing the sampling

time and volume of air sampled, diluting the aerosol by a known ratio prior to sampling, or by

taking multiple shorter samples over the course of the desired total  sampling period.  The

sampling approach should be optimised for any given exposure scenario. For example, longer

sampling periods may be required to provide a representative exposure assessment over a

working shift, while the relevance of the chosen sampling point to personal exposure should

also be taken into account.

 A higher grid resolution (down to 500 nm) could also be used to more clearly distinguish

particles. The limits on resolution will ultimately be set by the spot size of the laser. Spot sizes

with a full-width at half-maximum of < 1 μm have been achieved utilizing a ×100 (NA = 0.8)

objective lens. However, super resolution approaches have recently led to the development of

Raman mapping techniques for aerosol particles with a spatial resolution as low as 200 nm

(Offroy et al., 2015). Here we focussed on particles in the micron size range as a first proof of

principle allowing for the required comparison to optical microscopy results. In addition, the
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473 nm laser  used  in  this  study should  offer  improved transversal  resolution  (as  well  as

improved Raman signal intensity) compared to the more commonly employed 633 nm laser.

As the ZnO particles were well resolved they could be counted reliably in the Raman data.

Any offset from the microscopy data in counts as seen in  Figure 5 can be attributed to the

reduced statistical significance of the Raman data due to the reduced sample areas measured

compared to the optical images.

The size distributions given in  Figure 6 demonstrate that the  dequiv size parameter chosen

correlates reasonably well to the aerodynamic particle size (expected to be 2 – 4 μm in this

sampling stage). This may be expected for samples without complicated structural or fractal

properties.  The  reduced  resolution  used  for  the  Raman  sampling  can  be  seen  to  cause

broadening of  the  size  distribution  and a  slight  shift  to  larger  sizes  due  to  neighbouring

particles becoming merged. The limited transversal resolution, and difficulty in choosing a

correct threshold in the software analysis, causes significant uncertainty in the particle sizes

measured from the Raman data as seen in Figure 7. The critical point to bear in mind is that

the aerodynamic particle size obtained from the sampling method is the size parameter of

importance  when  considering  particle  deposition  in  the  lung  and  associated  health  risks.

However, it is interesting to note the potential for sizing information to be obtained from the

Raman data alone. This could allow some approximate size information to be assigned to

polydisperse particles obtained from a simpler sampling system, or provide more detailed

characterization  information  when  combined  with  the  aerodynamic  particle  size  obtained

from the Nano-ID® Select.

The glass substrate used in this study (without ZnO particles) gives a complicated Raman

spectrum: comprising amorphous SiO2, other unidentified lines (Figure 2(a)), a fluorescent

background  Raman  signal  and  additionally,  some  contaminating  particles  (seen  in  the

microscopy images in Figure 3). This generates a background signal that must be filtered out

to identify the (ZnO) particles of interest. Therefore, the clear, unambiguous detection of ZnO

particles observed here, demonstrates the ability to resolve a specific chemical species against

a  contaminating  background  Raman  signal.  It  is  worth  considering  that  the influence  of

interfering substances is likely to be scenario specific and under certain conditions such as

mixed species agglomerates, the discrimination power of Raman will potentially be reduced.

In addition, the Raman spectrum could be complicated by additional lines if multiple species

inhabit the region covered by the laser spot size. However, these are standard challenges in
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the field, and, as long as a signal can be detected for a given species, the number of such

signatures  can  be  quantified  and  correlated  to  the  aerodynamic  size  as  defined  by  the

sampling method.

 This  study has  focussed  on  the  micron  size  range  to  allow  for  proof-of-concept  by

comparison to microscopy images. The size range can be extended to sub-micron by changing

the objective lens in the setup to a ×100. Although reliable sizing information may not be

achievable  into  the  nanometre  range  from  the  Raman  data  alone,  detection  and  some

quantification  should  still  be  achievable.  Particles  which  are  smaller  than  the  laser  beam

diameter still contribute to the Raman signal, but their size will be unresolvable by Raman

alone.  Here  the  segregated  sampling  could  be  of  advantage  to  provide  size-resolved

information. The sensitivity of the approach can be further improved by considering more

advanced  Raman  techniques  such  as  Surface  Enhanced  Raman  Spectroscopy (SERS),  as

achieved recently for aerosol particles (Craig  et al., 2015), or Coherent Anti-Stokes Raman

Spectroscopy (CARS), although the latter requires prior knowledge of the target material. 

Although the Raman spectrometer system used in this study is certainly not compact, the

approach should be equally possible utilising a small bench-top spectrometer coupled with an

automated miniature translation stage.

Due to the large number of parameters in this  study,  it  is  difficult  to assess the lower

detection  limit  of  this  approach.  However  we  can  assess  the  potential  sensitivity  by

considering the detection of a single particle in one grid area measurement. A high detection

rate is considered to be justified by the good correlation between the optical microscopy and

Raman results shown in  Figure 3. The Raman map grid area used (as shown in the centre

column of Figure 3) is 3,600 µm2 and a total deposit area on the slide is 50 mm2. If we assume

uniform  deposition  across  the  deposit  area,  a  single  detected  particle  in  a  grid  would

correspond to a total of ~14,000 particles deposited on the slide. If we conservatively estimate

that only particles in the diameter range (dequiv) of 2 – 4 µm will be reliably detected by our 2

µm grid spacing, this leads to a deposited mass sensitivity of ~ 200 ng (assuming spherical

particles  of  density 1,000 kg/m3).  While  considering  the  detection  of  one of  the  smallest

particles seen above (~ 0.7 – 0.8 µm) gives a total deposited mass of ~ 3 ng. These values are

approximate estimates, especially in the latter case where the measured size from the image is

smaller than can be properly resolved, and there starts to be significant probability of being

missed by the sampling grid due to undersampling. However, the values obtained can be taken
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as  indicative  of  the  order  of  mass  sensitivity  available,  even without  optimization  of  the

system. Clearly this could be improved on simply by measuring a larger area of the deposit, or

by adjusting the Raman setup for better sensitivity to smaller particles, or by increasing the

density of the deposit with better particle focussing in the sampling system.

These  estimates  can  be  used  to  evaluate  the  number  concentration  and  the  mass

concentration of airborne particles. For 2 – 4 µm particles the lowest number concentration is

14,000/V, where V is the sampling volume. The Nano-ID® Select sampling flow rate is 20

litres/min. If we consider a typical sampling time of 100 minutes, the sampled volume V is

therefore  2,000 litres  or  2  m3.  The  lower  detection  limit  of  the  number  concentration  of

particles is then 7,000 per m3 or 7 × 10-3 particles per cm3. 

From the above, the lower mass concentration limit of 2 – 4 µm particles is 200 ng / 2 m 3

equal to 100 ng/m3. This is considerably lower than the majority of exposure limits for toxic

substances. Thus, Raman chemical speciation, quantified in the manner described above, may

have practical application in evaluating potential health risks at working places. However, it

must  also  be  recognised  that  the  presented  method  is  only  applicable  to  Raman  active

materials,  and  only  for  materials  with  distinct  signatures.  The  potential  impact  on  the

sensitivity due to increased relative loading of other species can also not be ignored.  The

requirement for a transparent background for optical validation precluded investigation of

these effects in the present study, however it is clear that quenching of the sensitivity can only

occur in the situation where the interfering species is found within the same laser spot area as

the  target  of  interest.  Therefore,  overloading  of  the  slides  should  be  avoided  to  mitigate

against any possibility of this occurring.

Importantly it  is  known that  nanoparticles  will  generally agglomerate  resulting in  sub-

micron or micrometer sized clusters. The aerosols obtained in this paper were generated from

typical commercial samples currently in use in the nanotechnology industry. 

Conclusions

A new approach has been developed and demonstrated for the quantification of exposure to

airborne  particles  and  nanomaterials.  Size  resolved  sampling  is  combined  with  Raman

spectroscopic spatial mapping analysis to provide chemically distinguished quantification of

ZnO particles. This combination considerably reduces or eliminates uncertainties related to
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the  sensitivity of  the Raman signal  to  particle  size.  Therefore,  in  this  way a quantitative

evaluation of ZnO particle number and mass with Raman spectroscopy becomes possible. The

test case particles are shown to be reliably detected in the Raman data, and can be counted

and  sized  in  a  manner  which  is  at  least  comparable  to  what  is  achievable  with  optical

microscopy imaging. The most significant advantage of using a Raman mapping approach is

the  crucial  chemical  information  acquired,  allowing different  species  to  be discriminated,

enabling  a  determination  of  the  concentration  of  benign  and  toxic  particles  in  a  sample.

Although this comes with a time penalty compared to optical imaging, it adds significantly to

the value of the data.

There is still some debate as to what the most significant metric is for determining the

toxicity  of  airborne  pollutants  (e.g.  number,  mass,  surface  area,  etc.),  but  it  is  generally

recommended to gather as much chemically selective and other distinguishing information as

possible. The aerodynamically selected first stage used here is critical in determining aerosol

deposition in the respiratory tract. Combined with Raman quantification, a specific measure

of  exposure  can  be  obtained.  Ongoing progress  in  the  development  of  miniature  Raman

systems, and miniature translation stages as required for mapping, opens the possibility of

using this technique as a tool for in situ occupational hygiene health risk assessment. 

The lower detection limit of the described approach is conservatively estimated at 200 ng

in  a  sample.  Given a  sampling  time of  100 minutes  this  would  correspond to  a  number

concentration sensitivity of 7 × 10-3 cm-3 or a mass concentration sensitivity of 100 ng / m3.

The sensitivity of this technique is therefore more than sufficient to cover the majority of

occupational hygiene exposure risk requirements.

This technique is considered to have potential application across a broad range of aerosol

particle sizes albeit only for species with a distinct Raman signature. In practice the upper size

limit  will  be  determined  by the  sampling  approach.  The  smallest  detectable  size  will  be

sample dependent and limited by the minimum detectable Raman signal required for positive

identification. However, as the particle size reduces much below the laser spot sizes, the risk

of under counting due to multiple particles being measured as one within the same laser spot

area is increased. Reduced sample loadings can help to avoid this issue. Sensitivity will likely

be improved by removing the need for a glass substrate as required only in this proof of

concept study. A substrate with a lower background Raman signal would interfere less with

the data signals.
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Considering how well this technique might fare when applied to a multicomponent aerosol

as encountered in workplace or environmental studies – as long as sample loading is restricted

to avoid any more than one particle at a time being measured, then there should not be any

reduction  in  sensitivity  compared  to  measuring  any particular  component  in  isolation  as

carried out here. However, additional analysis time would be required to separately identify,

suitably threshold and then count each component. Automated identification through the use

of Raman spectral libraries could provide significant time and labour savings in this area.

Also, larger sample areas, leading to longer Raman measurement times, may be required to

provide acceptable count statistics for each component depending on the fraction of the total

matrix they represent, and in consideration of the fact that the sample loading limits will be

determined  by the  total  concentration  of  all  components  combined.  Although  one  might

consider that multiple particle types with distinguishable Raman spectra falling within the

same  laser  spot  area  could  still  be  counted  separately,  in  practice  they  could  not  be

distinguished from a single particle of heterogeneous composition without additional a priori

information on the nature of the aerosol. In any case multiple particles falling within the same

spot area should be avoided as mentioned above due to the risk of under counting multiple

particles of the same composition. Although it would be possible to automate much of the

data analysis carried out here, the time required to measure each sample map (over an hour in

this  study),  on  top  of  the  concentration  dependent  sampling  time,  is  still  a  fundamental

limitation on the speed of this approach.

The main advance in measurement brought about by this study is a method to provide

quantitative measurements of aerosol concentrations of different chemical species separated

into  exposure  relevant  size  fractions  by  the  combined  use  of  aerodynamic  size-resolved

sampling with Raman spatial mapping.
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