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Feature Engineering for Improving Financial
Derivatives-based Rainfall Prediction

Sam Cramer
School of Computing
University of Kent
Email: sc649 @kent.ac.uk

Abstract—Rainfall is one of the most challenging variables
to predict, as it exhibits very unique characteristics that do
not exist in other time series data. Moreover, rainfall is a
major component and is essential for applications that surround
water resource planning. In particular, this paper is interested
in extending previous work carried out on the prediction of
rainfall using Genetic Programming (GP) for rainfall derivatives.
Currently in the rainfall derivatives literature, the process of
predicting rainfall is dominated by statistical models, namely
using a Markov-chain extended with rainfall prediction (MCRP).
In this paper we further extend our new methodology by looking
at the effect of feature engineering on the rainfall prediction
process. Feature engineering will allow us to extract additional
information from the data variables created. By incorporating
feature engineering techniques we look to further tailor our GP
to the problem domain and we compare the performance of the
previous GP, which previously statistically outperformed MCRP,
against our new GP using feature engineering on 21 different
data sets of cities across Europe and report the results. The goal
is to see whether GP can outperform its predecessor without
extra features, which acts as a benchmark. Results indicate that
in general GP using extra features significantly outperforms a
GP without the use of extra features.

I. INTRODUCTION

Predicting rainfall is a major component and is essential
for applications that surround water resource planning and
management. Over the years numerous attempts have been
made at capturing rainfall. One area where it is vital to predict
the rainfall amount accurately is within rainfall derivatives.
Rainfall derivatives fall under the umbrella concept of weather
derivatives, which are similar to regular derivatives defined
as contracts between two or more parties, whose value is
dependent upon the underlying asset. In the case of weather
derivatives, the underlying asset is a weather type, such as
temperature or rainfall. The main difference between normal
derivatives and weather derivatives is that weather is not
tradeable. Hence, typical methods that exist in the literature
for other derivatives are not suitable for weather derivatives.

In this problem domain the underlying asset is the ac-
cumulated rainfall over a given period, which is why it is
crucial to predict rainfall as accurately as possible to reduce
potential mispricing. Contracts based on the rainfall index
are decisive for farmers and other users whose income is
directly or indirectly affected by the rain. A lack or too much
rainfall is capable of destroying a farmer’s crops, hence their
income. Thus, rainfall derivatives are a method for reducing
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the risk posed by adverse or uncertain weather circumstances.
Moreover, they are a better alternative than insurance, because
it can be hard to prove that the rainfall has had an impact
unless it is destructive, such as severe floods or drought.
Similar contracts exist for other weather variables, such as
temperature.

Within the literature rainfall derivatives is split into two
main parts. Firstly, predicting the level of rainfall over a
specified time and secondly, pricing the derivatives based
on different contract periods/length. The latter has its own
unique problem, as rainfall derivatives constitute an incom-
plete market'. This means the standard pricing models such
as the Black-Scholes model are incapable of pricing rainfall
derivatives, because of the violation of the assumptions of
the model; namely no arbitrage pricing. Thus, a new pricing
framework needs to be established. This paper focuses on the
first aspect of predicting the level of rainfall. Note it is essential
to have a model that can accurately predict the level of rainfall,
before pricing derivatives, because the contracts are priced on
the predicted accumulated rainfall over a period of time.

In order to predict the level of rainfall for rainfall deriva-
tives, the statistical approaches of Markov-chain extended with
rainfall prediction (MCRP) [1] and spatial-temporal rainfall
(STR) models [2] is used. By predicting the underlying
variable of rainfall, this increases the accuracy of pricing,
which is crucial because contracts are priced ahead of time—
sometimes this can be up to a year ahead. Please note we are
only interested in the approaches that are currently used within
the rainfall derivatives literature, because the problem domain
of predicting accumulated rainfall amounts is different than
applications such as rainfall-runoff or other time-series based
applications. Rainfall-runoff are concerned with either short-
run predictions, requiring data up to an hour or requiring radar
data depending on the application and do not model rainfall
directly, but use rainfall indirectly to the problem domain.

The amount of literature surrounding rainfall derivatives
is quite light, due to rainfall derivatives being quite a new
concept and rainfall being very difficult to accurately measure.
Therefore, we focus on the rainfall prediction process by de-
veloping a methodology that can predict rainfall as accurately

'In incomplete markets, the derivative can not be replicated via cash and
the underlying asset; this is because one can not store, hold or trade weather
variables.



as possible, noted earlier. The general approach of MCRP is
often referred to as a ‘chain-dependent process’ [3], which
splits the model into capturing first the occurrence pattern,
and then the rainfall intensities. The occurrence pattern is
produced by a Markov-chain, where state O is a dry day and
state 1 is a wet day. If a wet day is produced then the rainfall
intensity is calculated by generating a random number from
a given distribution (typically Gamma or Mixed-Exponential
distribution), otherwise a value of 0 is assigned (zero rainfall).
We refer the reader to [1] for a complete description and
to [4] where MCRP was most recently applied for rainfall
derivatives. The alternative STR methodology is based on the
simulation of the underlying physical processes that govern
rainfall. The methodology models the storm arrivals and how
it develops and decays over time using a poisson jump process.
We refer the reader to [2] for a complete description and to [5]
where STR was most recently applied for rainfall derivatives.

Even though the above approaches are popular, both face
several drawbacks. First of all, MCRP is very simplistic and
is heavily reliant on past information being reflective of the
future. Additionally, the predicted amount is essentially the
average level of rainfall observed across the study period
and does not take into account annual deviations in weather
patterns. Furthermore, for both approaches the model for each
city needs to be specifically tuned as each exhibits different
statistical properties, i.e. a new model for each city. Lastly,
MCRP produces weak predictive models, as its only focus is
on fitting the historical data. Similarly, STR although closer to
the meteorological methods and is far more robust than MCRP,
does suffer from long range prediction problems. This last
point is very important, as one should not only be interested
in deriving models that describe past data effectively, as it
currently happens; instead, we should also be focusing on
producing effective predictive models, which can offer us
insights on future long range weather trends.

Due to the disadvantages highlighted above, we divert away
from the use of statistical approaches and in this paper we
extend our previous work [6] where we proposed using a
machine learning technique called Genetic Programming (GP).
Rainfall prediction on a daily basis has not been covered in
great detail within the machine learning literature due to the
complex nature of rainfall and the applications are mainly
focussed on either the short term predictions (e.g. rainfall-
runoff models up to a few hours [7] or monthly amounts
[8] [9]). Little literature exists for the daily predictions, e.g.
[10] used a feed-forward back-propagation neural network for
rainfall prediction in Sri Lanka, which was inspired by the
chain-dependent approach from statistics. [11] applied GP to
daily rainfall data, but the GP performed poorly by itself,
although when assisted by wavelets the predictive accuracy
did improve. [6] applied GP for the first time to modelling the
accumulated rainfall amounts using a sliding window within
the context of rainfall derivatives. Results showed that GP
statistically outperformed the most commonly used approach
(MCRP) within rainfall derivatives literature across 21 cities
around Europe.

In this paper, we look to predict rainfall amounts more
accurately to assist with the pricing step, which as mentioned
is the second part of the rainfall derivatives application. We
choose to continue with GP for this paper over other machine
learning techniques not only because it has outperformed
the commonly used approach within the rainfall derivatives
literature, but it has the benefit of producing white box
(interpretable, as opposed to black box) models, which allows
us to probe the models produced. Moreover, we can capture
nonlinear patterns in data without any assumptions regarding
the data. This should allow us to produce a model that can
reflect the ever changing process of rainfall. As a result,
we could capture yearly deviations that the current MCRP
is unable to replicate and provide longer range predictions
that STR is lacking. Additionally, we are able to produce
a more general model, which can be applied to a range of
cities/climates, without having to build a new model each time.

The extension introduced in this paper is on feature en-
gineering. The idea exploited here is that our original data
in its raw values, may have underlying properties that can
further assist the prediction process. Although this approach
is typically used on high dimensionality problems e.g. 100’s
or 1000’s of variables to help with dimension reduction [12],
we experiment to help discover and create more features based
on the same variables used within [6]. Moreover, the variables
used in [6] are very limited, hence is important to create new
features.

Hence, the main contribution of this paper is exploring the
use of feature extraction for the problem of rainfall prediction
within rainfall derivatives. We will create a comprehensive
set of extra features and use a variable selection technique
to select only the most significant features, further tailoring
a GP to the problem domain. The features themselves will
provide additional information to assist with the problem at
hand and aim to achieve better predictive accuracy. In order
to show the effectiveness of the extra features we will follow
and update the methodology used within [6].

The remainder of this paper is organised as follows. Section
IT will cover the setup of the data including the data sets that
will be used. Section IIT describes in detail our GP for rainfall
prediction. Section IV discusses the feature engineering pro-
cess. Section V will then discuss the experimental setup, and
Section VI will discuss the results from feature engineering.
Finally, Section VII will conclude findings and suggest future
research.

II. DATA SETUP

There are two elements to the setup of the data, first is
the number of cities we will test our GP on, including the
length of each training set. Second, is how the data will be
treated and the number of attributes that will be passed to the
algorithms. We follow the same procedure outlined in [6] and
have described the process below.



A. Choice of data

The daily rainfall data used is summarised in Table I, which
includes a total of 21 cities from around Europe. The cities
were chosen based on two aspects, firstly, the availability of
data, hence minimising the potential for missing values. The
data corresponding to the European cities were provided by
the National Centers for Environmental Information?> (NCEI).
Secondly, the climate of each city. In order to get an approach
that can be generalised, different climates are present across
the selection of cities, ranging from very wet climates to very
dry climates. This is an important factor as the climate has
an impact upon an algorithm’s performance, in the literature
individual models are built for each city.

TABLE I
THE LIST OF ALL CITIES WHOSE DAILY RAINFALL AMOUNTS WILL BE
USED FOR EXPERIMENTS.

Cities used for daily rainfall

Amsterdam (Netherlands) Ljubljana (Slovenia)
Arkona (Germany) Luxembourg (Luxembourg)
Basel (Switzerland) Marseille (France)
Bilbao (Spain) Oberstdorf (Germany)
Bourges (France) Paris (France)
Caceres (Spain) Perpignan (France)
Castricum (Netherlands) Potsdam (Germany)
De Kooy (Netherlands) Regensburg (Germany)
Delft (Netherlands) Santiago (Portugal)
Gorlitz (Germany) Strijen (Netherlands)
Hamburg (Germany)

The length of data was chosen to be 10 years of daily
rainfall for training and 1 year of daily rainfall for testing.
We leave it as a future investigation whether different training
lengths can impact the results. The length of training data is an
important aspect, given climatic shifts can occur across long
periods of time. Therefore, by using 10 years allows us to have
sufficient observations to build a model on, without having to
worry about climatic shifts within the period. Additionally,
this will capture the periodic shifts in rainfall that occur each
year, not associated with climatic shifts. As rainfall derivative
contracts are written several months ahead of time and could
span several months at a time, a testing period of 1 year is an
appropriate length. Additionally, forecasting one year ahead
really tests the robustness and suitability of the algorithm.

B. Treatment of data

The way the data is treated is an additional factor, as it
is uncommon that giving raw data values to an algorithm
will return anything of use. Therefore, the data should be
transformed to better suit our problem domain. The end goal
of this work is to price rainfall derivative contracts based on
the accumulated amount of rainfall, over the specified contract
length. For example, a contract for the month of January

Zhttp://www.ncdc.noaa.gov/
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Fig. 1. The daily level of rainfall in tenths of mm of Luxembourg over the
period from 01/01/2013 till 31/12/2013.
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Fig. 2. The daily level of rainfall in tenths of mm of Luxembourg using the
sliding window approach over the period from 01/01/2013 till 31/12/2013.

would require the summation of daily rainfall over 31 days.
An important aspect, which should be taken into account is
that contracts must be in the future, usually up to a year ahead
of time and the contract period can be of any length. The most
common period lengths being monthly or seasonally, but there
is nothing stopping having a contract of 37 days or 164 days
being specified. In addition, there is an even greater necessity
for transforming the data, given the unique aspect of rainfall.
Daily rainfall is one of the most volatile and hardest variables
to predict, which includes (depending upon climate) long or
frequent periods of wet and/or dry spells. Findings from [11]
suggest that using daily values for GP is unsuitable given
the relative poor performance of their GP. Figure 1 shows
the annual rainfall for Luxembourg and just how volatile and
unpredictable the rainfall process is over a year.

Therefore, we use a sliding window, which will transform



the data to something more manageable and better suited for
the problem domain. Figure 2 shows the benefit of applying a
sliding window approach to the data. The output appears a lot
less random, which was the motivation behind applying the
sliding window, i.e., to help smooth out the data. Additionally
the day-by-day volatility appears to have decreased and a
pattern in rainfall is more easily noticeable. This approach
is very flexible to the problem of predicting rainfall and can
be modified to any length of interest. We refer the reader to
[6] for a more detailed explanation of the process.

C. Data variables

In order to predict the accumulated rainfall amount, histori-
cal data from previous periods in the same form is required. If
we predict for a 31 day sliding window, then our data variables
should be consistent with this. Therefore, constructing the
variables in the same way from [6], we generate a set of
variables r; and ry. Where r; is the accumulated rainfall
amount in the last known non overlapping sliding window ¢
periods ago. Similarly, r, is the accumulated rainfall amount in
the current sliding window y years ago. We use this latter kind
of variable to capture information regarding annual rainfall
variations. The variables are shown in Figure 3. For example
if our target day was 1°% January 2016, then r;_; is 15
December 2015 - 315" December 2015, r;_s is 31°¢ October
2015 - 30" November 2015 and r,_; is 1! January 2015 -
315t January 2016.

350 I

E LY-1 |l -3 t2 t 1 T

= 300 A

=] I I

= 250 |- 1ol R

3 200! Lo G

£ I $ 1

= 150 ' ]

g [

£ 100 I

£ |

> 50

£ Lol O Lo 08

S Dl" Lk 'Il ||||.| ull M “ ,.A_- 1.} h' Ltll_lll II
-1 years -93 62 -31 0 30

Days
Fig. 3. The sliding window value with the targets day amount with its

respective t’s and y’s. The daily rainfall amounts within each boundary would
be accumulated.

To sum up what we have discussed in this section, the
data sets that we will use consist of 21 different European
cities, from different climate types. In addition, we will use
a sliding window approach to summarise the data, instead of
daily predictions. Lastly, the attributes we will be using for
predicting the rainfall amounts are the previous contract length
periods 7, and 7.

III. OUR GENETIC PROGRAMMING METHODOLOGY

Here we briefly outline the GP used in [6] for the problem
of rainfall prediction. To avoid illegal trees being generated we
use a Strongly-typed GP (STGP) [13] allowing us to specify
different types. Several modifications have been made to the
STGP, which will be covered briefly here.

A. Terminal set

There are three types of elements to the terminal set.
The first set of elements in the terminal set includes all the
variables available within the data. The variables are defined
by the original r,’s and r;’s calculated from the original data.
The second element is an ephemeral random constant (ERC),
which will pick a uniformly distributed random number. We
allow our ERC to choose a random number between the limits
of -500 to 500. We want to generate a larger spread, due to
predicting accumulated rainfall over a contract length, rather
than daily amounts. Additionally, we allow for flexibility in
our ERC and include a separate range for positive and negative
numbers. Therefore, allowing a way to reduce the search space
for choosing meaningful random numbers. The ERC requires
four parameters to control the range of random numbers. Two
parameters to control the positive range and two to control the
negative range. Each different range requires a parameter for
its upper bound and a parameter for its lower bound.

The third element is a set of constants from -4 to 4, at 0.25
intervals, which will take a separate type from the terminals
already discussed. These are constants that are specific to the
power function. Due to using a STGP, we can ensure that
the second argument of the power function is always one
of these constants and does not create an illegal tree. We
opt for choosing from within this range, to avoid excessively
large numbers being created, whilst maintaining a reasonable
amount of options for our GP to choose from during initiali-
sation and evolution.

TABLE I
GP FUNCTION AND TERMINAL SETS.

Set Value
. ADD, SUB, MUL, DIV,
Functions
POW, SQRT, LOG
11 r¢ periods (¢-1, t-2, ..., t-11),
10 iods (y-1,y-2,...,y-10
Terminals ry periods (y-1.y-2,....y-10),

ERC,
Constants in the range [-4,4]

B. Function set

The function set includes: Add (ADD), Subtract (SUB),
Multiply (MUL), Divide (DIV), power (POW), square root
(SQRT), and log (LOG). The functions LOG, SQRT and DIV
are protected, because the data includes zeroes and negative
numbers. If the input is zero or negative then SQRT and LOG
will return zero. If the second argument passed to DIV is
zero (denominator), then zero is also returned. Protecting these
values will stop NaN’s (not a number) and Inf’s (infinity) from
being generated. The final function that has been modified is
POW. It has been forced such that the second argument will
be a constant within a specified range as mentioned within
the previous discussion regarding the terminals stopping very
large values from being generated. Additionally, we allow



TABLE III
A TABLE SHOWING THE COMPLETE LIST OF FEATURES TO BE
CALCULATED
Features
Mean Standard Deviation
Sum
Difference Adjacent Difference

Moving Average Standard Deviation across MA

Last Maximum Last Minimum
Time Last Maximum Time Last Minimum
Magnitude of Maximum Magnitude of Minimum
Maximum Last Contract Length ~ Minimum Last Contract Length
Difference of Maximum over Last Contract Length

Difference of Minimum over Last Contract Length

for fractional powers, which means there is the potential for
rooting negative values and producing NaN. One final check
is whether the first argument (number to be raised by a
power) is negative, if so then the second argument must be
a whole number, which will be rounded to the nearest number
if fractional. These adjustments will avoid illegal trees being
generated.

All functions and terminals presented in this section are
summarised in Table II.

C. Management of trees

Another adjustment made involves dealing with negative
number outputs. For this problem domain the values have to be
greater than or equal to zero, it is impossible to have negative
rainfall amounts. Therefore, we include a wrapper around each
individual (candidate solution) to change the prediction to zero
if the prediction was less than zero. The final adjustment made
was to ensure a good balance between variables and random
numbers in an individual. Therefore, when initialising the
population using the ramped-half-and-half method, we make
sure that the first child is either a function or a variable,
whereas the second child can either be a variable, an ERC
or another function. This will avoid trees being dominated by
random numbers.

D. Fitness (evaluation) function

The fitness used for evaluation will be the root mean squared
error, given by:

RMSE =

1 N
N (=72, @)
t=1

where N is the length of the data set, r; represents the
predicted rainfall amount and 7; represents the actual rainfall
amount for the ¢ data point (time index).

IV. ADDITIONAL FEATURES

Here we outline the features that are to be created to extract
additional information from the variables outlined in II-C
with the given number of r;’s and r,’s as specified from II.

The motivation is that the original variables previously used
may contain relationships between themselves that provide
additional information that can be extracted. Additionally, we
can create features that GP does not need to construct by itself
or does not have the means to easily do so. Therefore, we
are saving precious computational time during the evolution
process by giving GP the necessary tools ahead of time, thus
we do not need to rely on the features being generated by
chance or even not at all. One issue that is raised by such an
approach is that we will be increasing the dimensionality of
the problem, but we are confident that the extra information is
worthy of the increased dimensionality by creating meaningful
features in the first place. Given that we are increasing the
dimensionality we will also select the best features from those
generated to avoid issues caused by high dimensionality.

A. Creation of features

Table III outlines the full list of features that we are to
create for the problem at hand. We opt to create them ahead
of time, rather than having GP randomly create them during
the evolution process as demonstrated by [12]. If left for GP
to randomly create the features, we will not know which
features were considered other than the best ones in the final
individual (if any). Therefore, by creating them ahead of time,
we can analyse and compare across multiple data sets which
features were actually used from the initial set. Likewise, as
previously mentioned we get more choice in deciding what
would make a good feature by our intuition of the problem
domain. Subsequently, from the list of features created we may
want to enforce a structure within the trees on how to handle
or which features are allowed to be combined. Thus, avoiding
wasted evolution time during the experiments. Additionally,
we calculate the features by respecting the natural temporal
order of the data, rather than randomly choosing variables
ignoring the temporal order.

The Mean, Standard Deviation and Sum are all calculated
over various lengths of periods for both r; and ry, e.g.
Mean;_; would be the mean of the corresponding rainfall
amounts at times 7;_1 and r;_o, Mean;_s would be the mean
of the corresponding rainfall amounts at times r;_1, r;—o and
rt—3.

The Difference is very similar, however, the relevant period
is always taken away from either r,_; or r,_; e.g., Diff,_o
would be the difference between rainfall amounts r,_; and
ry—2, whereas Diff,_3 would be the difference between rain-
fall amounts r,_; and r,_3. Adjacent difference (AdjDiff)
works in a similar way, but is between adjacent pairs e.g.,
AdjDiff,_ would be the difference between rainfall amounts
Tt—2 and rt—3.

Moving Average (MA) is calculated on each individual r;
and 7, in turn and will go back a predefined number of
days rather than across parameters like the Mean previously
described. Likewise, Standard Deviation across the Moving
Average (StdMA) works in the same way, but calculates the
standard deviation instead of the average. We allow for dif-
ferent lengths of moving averages as we make no assumption



what value is the most appropriate. We vary the MA length
from the last 10-100 days in increments of 10 days.

Last Maximum (LMax) and Last Minimum (LMin) is the
last known local maximum and local minimum point of
our data, as we move through our data. The Magnitude of
Maximum and Magnitude of Minimum is how far LMax and
LMin is from the mean value of our data. Maximum of last
Contract Length (MaxCL) and Minimum of Last Contract
Length (MinCL) are similar, but are over the predefined
contract length, instead of the last known local maxima or
minima. Thus, LMax and MaxCL can be different, similarly
LMin and MinCL can be different. Difference of Maximum
over Last Contract Length and Difference of Minimum over
Last Contract Length is the deviance away from the average
LMax and LMin values respectively.

The features presented have been chosen to assist GP and
are common for statistical analysis or for time-series analysis.
Additionally, our GP must operate within a set of constraints
whether it is the depth of the tree, the structure of the tree or
the terminal/function set (Table II) available. Therefore, we are
able to create features that GP would not be able to randomly
create if left during the evolution process. Additionally, we
have created features that are bounded by temporal constraints,
thus reducing the complexity and overhead of checking for
feasible feature creation.

B. Selection of features

From the extra features in Table III using the last 11 r,’s and
10 7,’s given in Table II, we are able to create a total of 514
extra features. From the features created, not all of them may
be useful and in fact some may not contribute much (or any)
in terms of extra information. Therefore, we will use a well
known variable selection technique called Correlation based
Feature Selection (CFS) [14]. This technique was designed to
select a feature subset where each feature has a high predictive
ability and the degree of redundancy between features is low.
Thus, we only choose variables that have a positive influence
to predict.

TABLE IV
A TABLE SHOWING THE TOTAL NUMBER OF FEATURES PER CITY AS
SELECTED BY CFS

City Number City Number
of features of features

Amsterdam 59 Ljubljana 46
Arkona 56 Luxembourg 40
Basel 48 Marseille 61
Bilbao 57 Oberstdorf 50
Bourges 51 Paris 47
Caceres 47 Perpignan 29
Castricum 55 Potsdam 59
Dekooy 60 Regensburg 52
Delft 43 Santiago 58
Gorlitz 59 Strijen 43
Hamburg 37

From the 514 features in total we use CFS to select the best
features for each data set based on the training data. Table IV
shows the full list of cities with their respective number of
features after feature selection. As we can observe we have
been able to successfully reduce the number of features from
514 to a range between 29 to 61 depending upon the city that
will be used for our experimentation.

V. EXPERIMENTAL SETUP

A. Parameter tuning - GP

We used a package called iRace [15] to find the optimal
parameters for GP based on the training data, presented in
Table V.

TABLE V
THE BEST CONFIGURATION OF GP FROM OPTIMISING THE PARAMETERS
USING IRACE.

GP parameters

Max depth of tree 8  Elitism percentage 0.03
Population size 1400  Number of gens 30
Crossover probability 0.76  ERC negative low -495.36
Mutation probability 0.69  ERC negative high -102.56
Primitive probability 0.55 ERC positive low 100.77
Terminal/Node bias 0.2 ERC positive high 438.58

B. Experimental methodology

Using the optimal GP parameters from Table V, we are then
ready to move on to the experimental comparison between our
GP’s, which are tested on all 21 datasets. GP will use the full
and most recent training set (01/Jan/2004 - 31/Dec/2013), be-
fore testing on the unseen test set (01/Jan/2014 - 31/Dec/2014).
As GP is a stochastic algorithm, we run it for 50 times on each
city and report the average over those 50 runs.

We will be running three different experiments for GP, the
first (GPOF) will be GP using the previous 11 r; periods
and previous 10 ry periods noted in Table II. The second
experiment (GPEF) will be GP using all of the extra features
after feature selection given in table IV along with the original
21 features used in the first experiment. Due to an uneven
distribution of extra features per data set, we will pick the 21
best ranked features from those generated to match the num-
ber from the initial experiment. Hence, the third experiment
(GPEF21) will be to use the best ranking 21 features from each
data set along with the original 21 features used in the first
experiment. For completeness we will include the performance
of MCRP, which is the most common method used within
rainfall derivatives. We do not include STR mentioned earlier,
due to not coping well with long run predictions.

VI. RESULTS

The performance of GPOP, GPEF and GPEF21 is presented
in Table VI based on the average RMSE performance from
the testing set for each city. For completeness we have also
included the results from MCRP. The table has been split



between those data sets seen by iRace (top) and unseen
(bottom), arranged by alphabetical order. We have chosen to
do this, as the best GP configurations were chosen based on
the validation set of the 11 cities shown in the top half. Hence,
we would expect GP to perform better. Whereas, the bottom
10 cities by have not influenced the choice of best parameter
configuration for GP and help show the ability to generalise.
Thus, allowing us to use our best configuration on future data
sets that exhibit a similar climate.

TABLE VI
THE AVERAGE RMSE PERFORMANCE IN TENTHS OF MM FOR EACH OF
OUR EXPERIMENTS ACROSS EACH CITY.

Data GPOF [6] GPEF GPEF21 MCRP

Amsterdam 412.49 503.93 500.53 373.42
Arkona 310.45 275.64 278.42 290.72
Bilbao 519.67 437.58 436.31 659.03
Bourges 375.46 335.29 338.26 382.62
De kooy 343.66 336.08 329.35 358.27
Ljubljana 1027.62 897.10 917.51 1058.86
Luxembourg 517.34 4717.67 482.29 585.23
Marseille 505.93 492.14 502.01 956.35
Potsdam 320.66 329.83 317.28 327.98
Regensburg 330.33 300.43 327.47 331.07
Santiago 1062.60 1043.97 1067.32 1085.10
Basel 425.13 403.58 413.39 467.23
Caceres 438.41 436.25 434.46 687.74
Castricum 438.88 409.25 406.94 465.77
Delft 404.47 447.56 444.09 449.82
Gorlitz 304.38 282.29 296.24 304.92
Hamburg 408.25 374.75 379.85 409.56
Oberstdorf 677.36 647.27 647.06 671.99
Paris 277.79 271.73 273.25 280.40
Perpignan 760.73 760.08 760.66 968.74
Strijen 298.62 287.53 310.30 343.21

GPEF achieved the lowest RMSE on 13 data sets, whilst
GPEF21 only 6 times and MCRP and GPOF sharing 1 each.
This is a very good result, showing the positives that can be
achieved with the use of extra features. Other than Amsterdam,
GP once again outperformed MCRP over the testing period
for all other cities. Generally speaking, the gains in predictive
accuracy from GPEF and GPEF21 over GPOF and is an
important step forward for the second part of pricing. From
the results the percentage gains in lower RMSE from the use
of extra features ranges from 0.1% for Perpignan to 16%
for Bilbao. Other noticeable gains include Ljubljana (13%),
Bourges (11%) and Arkona(11%), with the overall average
increase in performance just over 6%.

To check which of our GP’s performed better in terms of
victories, we compute the mean rank based on Table VI — the
lower the rank, the better the GP’s performance. Furthermore,
in order to determine whether the above results are statistically
significant, we compare the four approaches by using the
Friedman test [16]. The Friedman test is a nonparametric test

for testing the difference in mean between multiple related
samples. The null hypothesis is that there is no significant
difference between the average of the four approaches. We
apply the test at the 5% significance level.

TABLE VII
THE MEAN RANKINGS OF THE FOUR EXPERIMENTS, AND THE
FRIEDMAN’S p VALUE TO TEST WHETHER ONE OR MORE OF THE
APPROACHES STATISTICALLY OUTPERFORMED THE OTHERS.

Approach Ranking
GPOF 2.81

GPEF 1.62
GPEF21 1.86
MCRP 3.71
Friedman p-value 1.36x10~7

Table VII shows the mean rank of the four approaches,
GP using original features, GP using all extra features, GP
using the best ranking 21 features and MCRP, with values
of 2.81, 1.62 and 1.86, 3.71 respectively, where a lower rank
indicates better performance. Therefore, across all cities on
average GP with all extra features outperformed the three other
approaches. As we can observe, the Friedman test result has a
p value of 1.36x10~7, which is less than the 5% significance
level. Therefore, there is strong evidence to reject the null
hypothesis, and conclude that there is a statistical difference
between the four approaches.

Due to having a statistical difference, we will perform the
Holm post-hoc test in order to determine which of the four
approaches statistically outperformed the other. The results can
be found in Table VIII.

TABLE VIII
A TABLE SHOWING THE PAIRED COMPARISONS OF INTEREST FROM THE
HOLM POST-HOC TEST FOR OUR FOUR EXPERIMENTS TO DETERMINE
WHICH APPROACH OUTPERFORMED ONE ANOTHER

Paired comparisons p value Holm
GPEF vs. MCRP 1.4484x10~7 0.0083
MCRP vs. GPEF21 3.1408x10—6 0.0100
GPOF vs. GPEF 0.0028 0.0125
GPOF vs. GPEF21 0.0168 0.0167
GPOF vs. MCRP 0.0232 0.0250
GPEF vs. GPEF21 0.5501 0.0500

The table shows that all of the approaches using GP statis-
tically outperformed MCRP, shown by p values 1.4484x10~7,
3.1408x107° and 0.0232 which are less than the Holm scores
of 0.0083, 0.0100 and 0.0250 respectively. This is an important
result as it shows that GP once again is able to outperform
MCRP, the most common approach that exists within the
literature of rainfall derivatives.

GPEF does not statistically outperform GPOF at the 95%
confidence level, with a p value of 0.0168 which is marginally
greater than the Holm score of 0.0167. However, we obtain



statistical significance at the 90% confidence level where the
Holm score would be 0.0333. Despite this, it still shows a
positive result as we are statistically outperforming MCRP at
the 95% confidence level using GPEF21.

The main result is that GPEF does statistically outperform
GPOF, with a p value of 0.0028 which is less than the Holm
score of 0.0125. Therefore, these results show that the use of
carefully designed extra features is beneficial and does help
increase the predictive power of GP.

From the above results, we can conclude that the use of extra
features is a beneficial in assisting GP for predicting rainfall in
the context of weather derivatives. Shown by outperforming
GPOF and also the most common approach in the rainfall
derivatives literature (MCRP). This is a very important result,
as it shows that there are more potential gains to be made for
predicting rainfall and that we can further tune our GP to the
problem at hand. Especially as by producing more accurate
rainfall predictions, helps to increase the accuracy of pricing
rainfall derivatives. As we explained at the beginning of this
paper, is another important problem. Lastly, as we are able to
give more confidence surrounding the prediction of rainfall,
this will help to reduce potential mispricing and attract more
investors to the rainfall derivative market.

VII. CONCLUSION

This paper extends the work by [6] by further looking to im-
prove the predictive accuracy of rainfall within the application
of rainfall derivatives. The extension proposed in this paper is
the use of carefully designed extra features and to see whether
they have a positive effect on Genetic Programming’s (GP)
ability to predict accumulated rainfall amounts. The motivation
for this paper comes from questioning whether the features
used within [6] were the most appropriate, which was left for
future research. The idea is that the standard features used may
contain additional information that might not be utilised if left
to GP by itself to construct. Thus, we aimed to construct a set
of new features that could extract more information to boost
the predictive performance of GP.

Strongly-typed Genetic Programming (STGP) was our cho-
sen methodology, due to producing white box (interpretive)
models and to being a technique that can detect and learn
from nonlinear data. Furthermore, STGP was chosen over
the standard GP, because we can influence types to avoid
illegal trees being created. In this paper we compared our
STGP across three different experiments, the first was using
the original features used in [6], the second was using a set of
extra features and the third was to use a smaller subset of extra
features. The first experiment and Markov-chain extended with
rainfall prediction (MCRP) acted as our benchmark for our
later experiments.

Using daily rainfall data across a collection of cities from
Europe, we predict accumulated rainfall based on using a
sliding window. This approach is more intuitive to the problem
at hand. When we compared the performance of our three
GP approaches, we found sufficient evidence to suggest that
the use of the proposed extra features is beneficial and that

GP using extra features statistically outperforms a GP using
the original features and the most currently used approach
(MCRP).

Future work will include testing other commonly used
regression algorithms to compare against GP. Furthermore, we
will develop a method to decompose the rainfall prediction
problem down for GP to further improve the accuracy. Lastly,
since we have obtained further promising rainfall prediction
results, we can also move towards the pricing task of rainfall
derivatives and investigate if our current results have an overall
positive effect in pricing.
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