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Abstract

In reliability engineering, system failures may occur due to intrinsic or extrinsic

factors. For example, drinking water systems may fail due to ageing and deteriora-

tion (i.e., intrinsic factors) or flooding (i.e., extrinsic factors). An interesting question

is: for such systems, how should preventive maintenance be scheduled? This paper

investigates this question.

The paper develops a maintenance policy for repairable systems subject to extrinsic

shocks. It assumes that a system may fail due to either intrinsic factors or extrinsic

factors. Reliability indexes and the expected long run cost rate are then derived. A

numerical example is given to illustrate the theoretical results.

Linear corrective maintenance; Hazard function; Geometric process;

Repair-replacement policy; Poisson shock.

1 Introduction

In the reliability literature, most authors assume that system failures are due to system’s

intrinsic factors such as ageing and/or deterioration. In practice, failures can be due to

intrinsic factors as well as extrinsic factors. For example, drinking water systems may fail

due to flooding, which is an extrinsic factor. Reliability models that describe such shocks

have been extensively investigated in the last two decades.

In the literature, shock models can be classified into the following three categories.
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• Cumulative shock model describes the scenario where a system fails if the accumulative

damage due to shocks exceeds a threshold.

• Extreme shock model describes the scenario where a system fails if an individual shock

exceeds a threshold.

• δ-shock model describes the scenario where a system fails if the interval of two consec-

utive shocks is shorter than a threshold δ.

In the literature, Sheu and Griffith (2002) investigate an extended block replacement

policy under the assumption that shocks arrive according to a non-homogeneous Poisson

process and that two types of failure may occur due to shocks. Type 1 failure can be rectified

by a minimal repair while type 2 failure can only be removed by a major maintenance.

Lam and Zhang (2004), and Wang and Zhang (2005) investigate maintenance policies for

repairable systems subject to δ-shocks. They assume that shocks arrive according to a

Poisson process and that repair time follows the geometric process (GP), which is a stochastic

process proposed by Lam (1988). Tang and Lam (2006) propose a δ-shock maintenance

model for a deteriorating system, assuming the shocks arrive according to a renewal process

and that repair times follow the geometric process. Li and Zhao (2007) study the reliability

of systems consisting of components subject to δ-shock shocks. Chen and Li (2008) derive a

maintenance policy for a deteriorating system, assuming that system failures may be caused

by either intrinsic or extrinsic factors. In their work, they assume that, with the number of

repairs, the magnitude of shock damage the system can bear is decreasing and consecutive

repair time is increasing. Cha and Lee (2010) study an extended stochastic failure model for

a system subject to random shocks, assuming that a fatal shock causes systems to failure

and a non-fatal shock may shorten system’s working time. Wu (2012) considers a model

under the assumption that the component may fail due to intrinsic or extrinsic factors.

On the other hand, optimization of maintenance policy based on the geometric process

has attracted considerable attention in the reliability literature (Lam and Zhang, 2004; Lam,

1988; Chen and Li, 2008; Wang and Pham, 1996; Wu and Clements-Croome, 2006). The

geometric process (Lam, 1988) defines an alternative to the non-homogeneous Poisson pro-

cess: a sequence of random variables {Xk, k = 1, 2, · · · } forms a geometric process if the

cumulative distribution function of Xk is given by F̃ (ak−1t) for k = 1, 2, · · · , where a is a

positive constant and F̃ (t) is an arbitrary distribution function. Wang and Pham (1996)

later refer to the geometric process as a quasi-renewal process. Wu and Clements-Croome

(2006) extend the geometric process by replacing its parameter ak−1 with αak−1 + βbk−1,

where a ≥ 1 and 0 < b ≤ 1. The geometric process has been applied to reliability analysis

and maintenance policy optimization for various systems, see (Wang and Pham, 1996; Liang

et al., 2012; Cheng and Li, 2012; Yu et al., 2013; Wang and Zhang, 2014), for example. In

order to model the effectiveness of preventive maintenance (PM), Wu and Zuo (2010) review

existing PM models, explore their interrelationships, and extend them to three new models:

linear, nonlinear and their hybrid. A PM model is

• linear if the system has hazard rate hk(t)(k = 1, 2, · · · ) immediately after the kth PM

with hk(t) = ahk−1(t) + b,
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• nonlinear if hk(t) = hk−1(αt+ β), and

• hybrid if hk(t) = ahk−1(αt + β) + b, where a, b, α, β are non-negative parameters and

t > 0.

Motivated by the above discussions, this paper investigates a linear corrective maintenance

(CM) model for a single-component system under Poisson shocks. A maintenance policy N

is considered under the following assumptions:

• repair on failed items is imperfect;

• after the kth repair, the intrinsic hazard rate function of the component becomes

hk(t) = αhk−1(t) + β, where hk−1(t) is the hazard rate function between the (k − 1)th

and the kth repair and α, β(k = 1, 2, · · · ) are parameters; and

• Repair time follows the geometric process.

To investigate maintenance policies for systems under the above assumptions is important

because shocks occur from time to time in the real world and maintenance effect is not always

perfect. As such, this paper derives the expected long run cost rate and optimal policy N∗.

The following assumptions are used in this paper.

1. Component failure may be due to either intrinsic factors or the extrinsic shocks;

2. Repair time follows the geometric process;

3. Repair effect on failed components is linear CM (corrective maintenance);

4. The system will fail if the threshold of a shock is greater than a threshold, which is a

non-negative random variable with a general distribution function.

To the best of our knowledge, neither Assumption (3) nor Assumption (4) has been

considered in the literature, which generates novelty.

The remainder of this paper is organized as follows. Section 2 recalls the geometric

process defined by Lam (1988), and the linear preventive maintenance defined by Wu and

Zuo (2010). Section 3 takes a further development on the proposed model. Section 4 derives

explicit expressions for reliability indices. Section 5 studies a replacement policy and derives

the average cost rate under policy N . Section 6 discusses two special cases. Section 7

presents two numerical examples. Section 8 closes the paper.

2 Definitions and assumptions

We first recall some definitions.
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2.1 Definitions

Definition 1 (Ross, 1996) Assume that ξ and η are two random variables. If for every

real number a, the inequality

P (ξ ≥ a) > P (η ≥ a)

holds, then ξ is stochastically greater than η, or η is stochastically less than ξ.

Definition 2 (Lam, 1988) Assume that {M(t), t ≥ 0} is a counting process, {Xk, k =

1, 2, · · · } is a sequence of independent non-negative random variables, and the distribution

function of Xk is F̃ (ak−1t), k = 1, 2, · · · , where a > 0 is a positive constant and F̃ (t) is an

arbitrary distribution function.

If Sn =
∑n

i=1Xi, n ≥ 1 and

{M(t) ≥ n} = {Sn ≤ t}, t ≥ 0, n = 1, 2, · · · ,

then the counting process {M(t), t ≥ 0} is a geometric process (GP ).

Obviously,

if a > 1, then {Xk, k = 1, 2, · · · } is stochastically decreasing,

if a < 1, then {Xk, k = 1, 2, · · · } is stochastically increasing, and

if a = 1, then {Xk, k = 1, 2, · · · } is renewal process.

Definition 3 (Wu and Zuo, 2010) The kth PM is linear PM if

hk(t) = αkhk−1(t) + βk, (k = 1, 2, · · · ) (1)

where hk−1(t) and hk(t) are the hazard rate functions pre- and post- kth PM, respectively,

αk and βk are positive parameters.

The parameters in (1) have their physical meanings. Parameter αk indicates a degree

of deterioration after PM. It is called an ageing alteration parameter of the linear PM

model. Parameter βk indicates the starting value of the hazard rate immediately after a

PM. Therefore, βk is called a location parameter.

Remark 2.1 From Definition 3, it follows that

(1) if αk > 1, then the system deteriorates faster than before;

(2) if αk < 1, then the system deteriorates slower than before;

(3) if αk = 1 and βk 6= 0, then the system keeps the same shape but has a different

location of the hazard rate as before;

(4) if βk > hk−1(tk−1), then PM is a worse maintenance; and

(5) if βk < hk−1(tk−1), then PM is a better maintenance,

where tk is the time interval length between (k − 1)th PM and kth PM.

In this paper, we will apply the linear maintenance concept to describe corrective main-

tenance, and refer it to as a linear CM. In addition, the following notions will be used.

• The time interval from the completion of the (n-1)th repair to the completion of the

nth repair is called the nth cycle, where n = 1, 2, · · · .

• The time interval from the time when a component is started to the time when the
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component fails due to intrinsic factors is referred to as the intrinsic lifetime of the

component.

• The time interval from the time when a component is started to the time when the

component fails due to extrinsic shocks is referred to as the shock lifetime of the com-

ponent.

• The intrinsic hazard rate is the hazard rate of the component failure that is caused by

intrinsic factor.

2.2 Notation

We summarize the notation in Table 1.

2.3 Assumptions

The following assumptions are made.

A1. A system consists of a component and a repairman. The component is new when it

starts working at time t = 0. Once the component fails, a repairman will repair it

immediately. As soon as a repair is completed, the component is put back into use

again.

A2. The failure of the system may be due to intrinsic or extrinsic shocks. The effects of

the intrinsic factors and the extrinsic shocks are statistically mutually independent in

the the same cycle. The arrivals of shocks follow a Poisson process {N(t), t≥0}
with intensity λ > 0. The magnitudes of shocks {X̂(n)

j , n = 1, 2, · · · , j = 1, 2, · · · } are

independent and identically distributed random variables with distribution function

F (t).

A3. When a shock arrives, it may affect the component. Each effect is independent of its

history. The component will fail when the magnitude of a shock exceeds the threshold

of the component at that time. The threshold under the jth shock in the nth cycle is

an non-negative random variable $
(n)
j (j = 1, 2, · · · , n = 1, 2, · · · ). $(n)

j , j = 1, 2, · · ·
are i.i.d. with a distribution function Φn(x). The distribution of the intrinsic lifetime

of the component in the first cycle is D1(t) = D(t) = 1− exp{−
∫ t

0
h0(x)dx}, and the

intrinsic hazard rate function is h0(t).

A4. The thresholds and the repair times upon failures follow two GPs, respectively. The

repair is linear, i.e., {$(n)
1 , n = 1, 2, · · · } forms a GP with ratio a, i.e., Φn(x) =

Φ(an−1x), and {Yn, n = 1, 2, · · · } forms a GP with ratio b, i.e., Hn(y) = H(bn−1y).

However, the intrinsic hazard rate of the system changes from hn−1(t) before the nth

CM to hn(t) = αnhn−1(t) + βn after the nth CM, where αn > 0, βn > 0, n = 1, 2, · · · .

A5. All random variables and processes involved are statistically mutually independent.
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Table 1: Notation

X̂
(n)
j : magnitude of the jth shock in cycle n. F (t) = P (X̂

(n)
j ≤ t).

$
(n)
j : threshold of the component under the jth shock in cycle n. For n ≥ 1,

Φn(t) = P ($
(n)
j ≤ t) = Φ(an−1t),Φ(t) = P ($

(1)
j ≤ t).

ξn : shock lifetime of the component in cycle n. For n ≥ 1, Ln(t) = P (ξn ≤ t)

= 1− e−rnλt, where rn = P (X̂
(n)
j > $

(n)
j ) =

∫∞
0

Φ(an−1x)dF (x).
ηn : intrinsic lifetime of the component in cycle n. For n ≥ 1, Dn(t) = P (ηn ≤ t)

= 1− exp(−
∫ t

0
hn−1(x)dx), D(t) = D1(t), where hn(x) = αnhn−1(x) + βn.

Xn : lifetime of the component in cycle n. For n ≥ 1, Gn(t) = P (Xn ≤ t)

= 1− (1− Ln(t))(1−Dn(t)), λn = EXn, g
∗
n(s) =

∫∞
0
e−stdGn(t), G

∗
n(s) =∫∞

0
(1−Gn(t))e−stdt .

Yn : failure repair time of the component in cycle n. H1(t) = H(t) = P (Y1 ≤ t)

= 1− exp
(
−
∫ t

0
µ(y)dy

)
, h∗(s) =

∫∞
0
e−stdH(t), H(t) = 1−H(t).

Hn(t) = P (Yn ≤ t) = H(bn−1t) = 1− exp
(
−
∫ t

0
bn−1µ(bn−1y)dy

)
, µ = EY1.

Q : the replacement time of the system. M(t) = P (Q ≤ t), θ = EQ.
a, b, αk, βk : positive constants satisfying a > 1, αk > 0, βk > 0, (k = 2, 1, · · · ), 0 < b ≤ 1.

S(t) : system state at time t, if the system is operating at time t, then S(t) = 0,
if the system is being repaired at time t, then S(t) = 1.

I(t) : number of cycles of system at time t.
X(t) : elapsed working time of the component at time t.
Y (t) : elapsed repair time of the system being repaired at time t.

P0,i(t, x) : state probability density function at time t when S(t) = 0, I(t) = i,X(t) = x.
P ∗0,i(s, x) =

∫∞
0
P0,i(t, x)e−stdt.

P1,i(t, y) : state probability density function at time t when S(t) = 1, I(t) = i, Y (t) = y.
P ∗1,i(s, y) =

∫∞
0
P1,i(t, y)e−stdt.

A(t) : system availability at time t. A∗(s) =
∫∞

0
A(t)e−stdt

mf (t) : rate of occurrence of system failure at time t. m∗f (s) =
∫∞

0
mf (t)e

−stdt
R(t) : the system reliability at time t.
Cm : repair cost per unit time of component.
Cw : working reward per unit time.
Cr : basic replacement cost of the system.
Cp : cost proportional to the length of replacement time.
N : number of failures of the component before replacement.
W : length of a renewal cycle of the system under policy N .
C : cost of a renewal cycle of the system under policy N .

C(N) : long run average cost per unit time under policy N .
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A possible realization of the system is shown in Fig. 1.

Figure 1

Fig. 1. A possible realization of the system.

3 Model development

Based on assumptions A3, A4 and A5, we can see that, the probability that one shock

causes the component to fail in the nth cycle is

rn = P (X̂
(n)
j > $

(n)
j ) =

∫∞
0
P ($

(n)
j < x|X̂(n)

j = x)dP (X̂
(n)
j ≤ x) =

∫∞
0

Φ(an−1x)dF (x)

for n = 1, 2, · · · see (Wu and Wu, 2011; Wu, 2012).

Lemma 1(Wu, 2012) The distribution function of the shock lifetime of the component

in the nth cycle is

Ln(t) = 1− e−rnλt, t > 0, n = 1, 2, · · · . (2)

(i) If all of the first k CMs are linear, then from A4, we have

hk(t) = Akh0(t) +Bk,

where A0 = 1, B0 = 0, Ak =
k∏
i=1

αi, Bk =
k−1∑
i=1

(
βi

k∏
j=i+1

αj

)
+ βk.

(ii) If all of the first k CMs are linear and all the parameters are identical, i.e., αi =

α, βi = β, i = 1, 2, · · · , k, then we have

hk(t) = A′kh0(t) +B′k,

where A′0 = 1, B′0 = 0, if α 6= 1, then A′k = αk, B′k = ((αk − 1)/(α − 1))β; if α = 1, then

A′k = 1, B′k = kβ.

Lemma 2 (Wu and Zuo, 2010) If all of the first (k − 1) CMs are linear, then the

distribution of the intrinsic lifetime of the component in the kth cycle is

Dk(t) = 1− eBk−1t(1−D(t))Ak−1 . (3)

Lemma 3 (Wu and Zuo, 2010) If all of the first (k − 1) CMs are linear and all the

parameters are identical, then the distribution of the intrinsic lifetime of the component in

the kth cycle is

Dk(t) = 1− eB′k−1t(1−D(t))A
′
k−1 . (4)

7



Theorem 1 If all of the first (n− 1) CMs are linear, then the distribution of the lifetime

of the component in the nth cycle is

Gn(t) = 1− e−(rnλ+Bn−1)t [1−D(t)]An−1 , n = 1, 2, · · · . (5)

Proof. According to Assumptions A2−A5, ξn and ηn (n = 1, 2, · · · ) are mutually independent

and Xn = min{ξn, ηn}. From Lemma 1 and 2, we have

Gn(t) = P (Xn ≤ t) = 1− P (Xn ≥ t) = 1− P (min{ξn, ηn} ≥ t) = 1− P (ξn ≥ t, ηn ≥ t)

= 1− P (ξn ≥ t)P (ηn ≥ t) = 1− e−rnλte−Bn−1t [1−D(t)]An−1

= 1− e−(rnλ+Bn−1)t [1−D(t)]An−1 , n = 1, 2, · · · .

The state space is Ω = {0, 1}, where the operating state set is W = {0} and the failure

state set is F = {1}. According to the assumptions, {S(t), t ≥ 0} is not a Markov process.

However, if we introduce the following supplementary variables I(t), X(t) and Y (t), then

{(S(t), I(t), X(t), Y (t)), t ≥ 0} is a continuous vector Markov process with the state space

Ω∗ = {[0, i, x], [1, i, y]}, where i, x and y are the values taken by I(t), X(t) and Y (t), respec-

tively,see (Wu and Wu, 2011; Wu, 2012).

Remark 3.1

(1) When S(t) = 0, the Y (t) vanishes and we ignore Y (t) in the description of

the states for simplicity;

(2) When S(t) = 1, the X(t) vanishes and we ignore X(t) in the description of

the states for simplicity.

At time t, the state probabilities of the system are defined by

P0,i(t, x)dx = P (S(t) = 0, I(t) = i, x ≤ X(t) ≤ x+ dx), i = 1, 2, · · · ,

and

P1,i(t, y)dy = P (S(t) = 1, I(t) = i, y ≤ Y (t) ≤ y + dy), i = 1, 2, · · · .

Then the following relations are valid:

p0,i(t) = P (S(t) = 0, I(t) = i) =
∫∞

0
P0,i(t, x)dx, i = 1, 2, · · · ,

p1,i(t) = P (S(t) = 1, I(t) = i) =
∫∞

0
P1,i(t, y)dy, i = 1, 2, · · · .

Since the process {(S(t), I(t), X(t), Y (t)), t ≥ 0} is a continuous vector Markov process,

we can express it in a way considering the transitions occurring in t and t + ∆t. Relating

the state of the system at t and t + ∆t, we can set up the following integro-differential

equations for the system. For example, for all k ≥ 1, x > 0, if the system is in state

{S(t+ ∆t) = 0, I(t+ ∆t) = k,X(t+ ∆t) = x+ ∆t} at the moment t+ ∆t, the system

must be in state {S(t) = 0, I(t) = k,X(t) = x} at time t and it does not fail within
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the time interval (t, t+ ∆t]. Then

P0,k(t+ ∆t, x+ ∆t) = P{S(t+ ∆t) = 0, I(t+ ∆t) = k,X(t+ ∆t) = x+ ∆t}
= P{S(t) = 0, I(t) = k,X(t) = x} × P{S(t+ ∆t) = 0, I(t+ ∆t) = k,

X(t+ ∆t) = x+ ∆t|S(t) = 0, I(t) = k,X(t) = x}+ o(∆t)

= P0,k(t, x) {1− [rkλ+Bk−1 + Ak−1h0(x)] ∆t}+ o(∆t).

Let ∆t tend to zero, then we have[
∂

∂t
+

∂

∂x
+ rkλ+Bk−1 + Ak−1h0(x)

]
P0,k(t, x) = 0, k ≥ 1. (6)

Similarly, for all k ≥ 1, y > 0, if the system is in state {S(t + ∆t) = 1, I(t + ∆t) =

k, Y (t+ ∆t) = y + ∆t} at time t+ ∆t, the system must be in state {S(t) = 1, I(t) =

k, Y (t) = y} at time t and the failed component is not completed within time

interval (t, t+ ∆t], then

P1,k(t+ ∆t, y + ∆t) = P{S(t+ ∆t) = 1, I(t+ ∆t) = k, Y (t+ ∆t) = y + ∆t}
= P{S(t) = 1, I(t) = k, Y (t) = y} × P{S(t+ ∆t) = 1, I(t+ ∆t) = k,

Y (t+ ∆t) = y + ∆t|S(t) = 1, I(t) = k, Y (t) = y}+ o(∆t)

= P1,k(t, y)
{

1− bk−1µ(bk−1y)∆t
}

+ o(∆t).

Letting ∆t tend to zero, we have[
∂

∂t
+

∂

∂y
+ bk−1µ(bk−1y)

]
P1,k(t, y) = 0, k ≥ 1. (7)

For all k ≥ 2, if the system is in state {S(t+∆t) = 0, I(t+∆t) = k, 0 < X(t+∆t) ≤ ∆t}
at time t + ∆t, the system must be in state {S(t) = 1, I(t) = k, Y (t) = y} at time

t (for y > 0) and the failed component has been completed within time interval

(t, t+ ∆t]. Thus we have

P0,k(t, 0)∆t =

∫ ∆t

0

P0,k(t+ ∆t, y)dy

=

∫ ∞
0

bk−2µ(bk−2y)P1,k−1(t, y)∆tdy + o(∆t).

Letting ∆t tend to zero, we have the boundary condition:

P0,k(t, 0) =
∫∞

0
bk−2µ(bk−2y)P1,k−1(t, y)dy, k ≥ 2. (8)

Similarly, for all k ≥ 1, in order that the system is in state {S(t + ∆t) = 1, I(t +

∆t) = k, 0 < Y (t + ∆t) ≤ ∆t} at the moment t + ∆t, the system must be in state

{S(t) = 0, I(t) = k,X(t) = x} at time t, where x > 0 and the system has been failed
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in the time interval (t, t+ ∆t]. Then we have

P1,k(t, 0)∆t =

∫ ∆t

0

P1,k(t+ ∆t, x)dx

=

∫ ∞
0

(rkλ+Bk−1 + Ak−1h0(x))P0,k−1(t, x)∆tdx+ o(∆t).

Letting ∆t tend to zero, we have

P1,k(t, 0) =
∫∞

0
(rkλ+Bk−1 + Ak−1h0(x))P0,k(t, x)dx, k ≥ 1. (9)

P0,1(t, 0) =

{
1, t = 0

0, t 6= 0.
(10)

The initial conditions are

P0,1(0, x) = δ(x) =

{
1, x = 0

0, x 6= 0
,

P0,k(0, x) = 0, k = 2, 3, · · · ,
P1,k(0, y) = 0, k = 1, 2, · · · .

The Laplace transforms of the above differential equations are given by[
s+

d

dx
+ rkλ+Bk−1 + Ak−1h0(x)

]
P ∗0,k(s, x) = 0, k ≥ 1, (11)

[
s+

d

dy
+ bk−1µ(bk−1y)

]
P ∗1,k(s, y) = 0, k ≥ 1, (12)

P ∗0,1(s, 0) = 1, (13)

P ∗0,k(s, 0) =
∫∞

0
bk−2µ(bk−2y)P ∗1,k−1(s, y)dy, k ≥ 2, (14)

P ∗1,k(s, 0) =
∫∞

0
[rkλ+Bk−1 + Ak−1h0(x)]P ∗0,k(s, x)dx, k ≥ 1. (15)

According to Eqs. (11) – (12), we have

P ∗0,k(s, x) = P ∗0,k(s, 0)e−(s+rkλ+Bk−1)x−Ak−1

∫ x
0 h0(u)du, k ≥ 1, (16)

and

P ∗1,k(s, y) = P ∗1,k(s, 0)e−syH(bk−1y), k ≥ 1. (17)

10



Substituting Eqs. (16) and (17) into (14) and (15), respectively, we have

P ∗0,k(s, 0) = h∗(
s

bk−2
)P ∗1,k−1(s, 0), k ≥ 2, (18)

and

P ∗1,k(s, 0) = g∗k(s)P
∗
0,k(s, 0), k ≥ 1. (19)

With Eqs. (13), (18) and (19), we obtain

P ∗0,k(s, 0) =
k−1∏
i=1

g∗i (s)
k∏
i=2

h∗(
s

bi−2
) =

k−1∏
i=1

(
g∗i (s)h

∗(
s

bi−1
)
)
, k ≥ 1 (20)

and

P ∗1,k(s, 0) =
k∏
i=1

g∗i (s)
k∏
i=2

h∗(
s

bi−2
) =

k−1∏
i=1

(
g∗i (s)h

∗(
s

bi−1
)
)
g∗k(s), k ≥ 1 (21)

Remark 3.2 Eqs. (20) and (21) are valid for k = 1 because an empty product is

equal to 1 by convention.

Substituting Eqs. (13), (20) and (21) into (16) and (17), we have

P ∗0,k(s, x) =

[
k−1∏
i=1

(
g∗i (s)h

∗(
s

bi−1
)
)]

e−(s+rkλ+Bk−1)x−Ak−1

∫ x
0 h0(u)du, k ≥ 1,

and

P ∗1,k(s, y) =

[
k−1∏
i=1

(
g∗i (s)h

∗(
s

bi−1
)
)
g∗k(s)

]
e−syH(bk−1y), k ≥ 1.

With these explicit expressions, we can derive system reliability indices below.

4 Reliability indices

4.1 System availability

By definition, we have the system availability

A(t) = P (S(t) = 0) =
∞∑
k=1

∫ ∞
0

P0,k(t, x)dx.

The Laplace transform of A(t) is given by

A∗(s) =
∞∑
k=1

∫∞
0
P ∗0,k(s, x)dx

11



=
∫∞

0
e−(s+r1λ)x−

∫ x
0 h0(u)dudx+

∞∑
k=2

[
k−1∏
i=1

(
g∗i (s)h

∗(
s

bi−1
)
)] ∫∞

0
e−(s+rkλ+Bk−1)x−Ak−1

∫ x
0 h0(u)dudx

=
∞∑
k=1

[
k−1∏
i=1

(
g∗i (s)h

∗(
s

bi−1
)
)]

G
∗
k(s).

If the component cannot be repaired as good as new, then for s > 0, 0 < G
∗
k(s) <

G
∗
1(s), and hence

A∗(s) ≤
∞∑
k=1

[
k−1∏
i=1

(
g∗i (s)h

∗(
s

bi−1
)
)]

G
∗
1(s). (22)

In this case, for s > 0, g∗i (s) is decreasing in i and 0 < g∗i (s) < 1. Since b < 1,

then h∗(
s

bi−1
) is decreasing in i and 0 < h∗(

s

bi−1
) < 1. Hence, we have ρ(s) =

lim
k→+∞

k∏
i=1

(
g∗i (s)h

∗(
s

bi−1
)
)

k−1∏
i=1

(
g∗i (s)h

∗(
s

bi−1
)
) = lim

k→+∞
g∗k(s)h

∗(
s

bk−1
) < 1. According to the ratio test,

the series
∞∑
k=1

[
k−1∏
i=1

(
g∗i (s)h

∗(
s

bi−1
)
)]

converges. Denote its sum by K(s). Then,

0 ≤ lim
s→0

sA∗(s) ≤ lim
s→0

sK∗(s)G
∗
1(s) = 0, which implies that lim

s→0
sA∗(s) = 0. Accord-

ing to the final value theorem of Laplace transform, the limiting availability of

the system is given by

A = lim
t→+∞

A(t) = lim
s→0

sA∗(s) = 0.

This agrees to our intuition. Since the component can not be repaired as good as new, the

system availability will tend to be 0 as t→ +∞.

4.2 System ROCOF

Let Mf (t) be the expected number of failures in (0, t], then its derivative mf (t) is the rate

of occurrence of system failure (ROCOF) at time t, i.e., mf (t). Thus, Mf (t) =
∫ t

0
mf (u)du.

Su and Shi (1995) has shown that

mf (t) =
∑
i∈W

∑
j∈F

[
∞∑
k=1

∫∞
0

∫∞
0
· · · [Pi,k(t, x1, y1, · · · )aijk(x1, y1, · · · )dx1dy1, · · · ]

]
,

where the matrix [aijk(x1, y1, · · · )] is an infinitesimal transition matrix of {S(t), X1(t), Y1(t), · · · },
and Pi,k(t, x1, y1, · · · ) is the probability that the system appears in the state (i, x1, y1, · · · )
in kth cycle at time t. In view of the assumptions, we have W = {0}, F = {1},
a01k(x) = rkλ+Bk−1 + Ak−1

∫ x
0
h0(u)du, therefore,

mf (t) =
∞∑
k=1

∫∞
0
P0,k(t, x)

(
rkλ+Bk−1 + Ak−1

∫ x
0
h0(u)du

)
dx.

12



The Laplace transform of mf (t) is

m∗f (s) =
∞∑
k=1

∫∞
0
P ∗0,k(s, x)

(
rkλ+Bk−1 + Ak−1

∫ x
0
h0(u)du

)
dx

=
∞∑
k=1

[
k−1∏
i=1

(
g∗i (s)h

∗(
s

bi−1
)
)]

g∗k(s).

Likewise, if the component can not be repaired as good as new, then m∗f (s) ≤
∞∑
k=1

[
k−1∏
i=1

(
g∗i (s)h

∗(
s

bi−1
)
)]

g∗1(s) = K(s)g∗1(s), we have 0 ≤ lim
s→0

sm∗f (s) ≤ lim
s→0

sK∗(s)g∗1(s) =

0, which implies that lim
s→0

sm∗f (s) = 0. According to the final value theorem for

Laplace transform, the limiting ROCOF of the system is given by

mf = lim
t→+∞

mf (t) = lim
s→0

sm∗f (s) = 0.

4.3 System reliability and MTTFF

Since the system is consisted of one component, the reliability of the system is given by

R(t) = P{X1 > t} = P{min{ξ1, η1} > t} = P{ξ1 > t, η1 > t}
= P{ξ1 > t}P{η1 > t} = e−r1λt−

∫ t
0 h0(x)dx.

Therefore, the mean time to the first failure (MTTFF) of the system is

MTTFF =

∫ ∞
0

R(t)dt =

∫ ∞
0

e−r1λt−
∫ t
0 h0(x)dxdt.

Remark 4.1 If P ($
(n)
j = ∞) = 1, b = 1, µ(y) = µ0, βn = β and αn = α = 0, i.e.,

rn = 0, j, n = 1, 2, · · · , shocks cause no harm on the component. Then the model

reduces to the classical two-state Markov chain model. That is, the system is a

one-component system where the component can be repaired as good as new, and

the lifetime and the repair time of the component are exponential distribution

with parameter µ0 and β, respectively. Taking the limit as α tends to 0, we have

lim
α→0

Ak = lim
α→0

αk = 0, lim
α→0

Bk =
k−1∑
i=1

β(lim
α→0

αk−i) + β = β. Then lim
α→0

g∗k(s) =
β

s+ β
, and

lim
α→0

G
∗
k(s) =

1

s+ β
, h∗(s) =

µ0

s+ µ0

. The Laplace transform of the system availability

13



is given by

A∗(s) = lim
α→0

∞∑
k=1

[
k−1∏
i=1

(g∗i (s)h
∗(s))

]
G
∗
k(s) =

∞∑
k=1

[
k−1∏
i=1

(
lim
α→0

g∗i (s)h
∗(s)

)]
lim
α→0

G
∗
k(s)

=
∞∑
k=1

(
βµ0

(s+ β)(s+ µ0)

)k−1
1

s+ β

=
s+ µ0

s(s+ β + µ0)

In the same way, we can obtain the Laplace transform of the rate of occur-

rence of the system failure as fellow

m∗f (s) =
β(s+ µ0)

s(s+ β + µ0)
According to the final value theorem for Laplace transform, the limiting avail-

ability and the limiting ROCOF of the system are A = lim
s→0

sA∗(s) =
µ0

β + µ0

and

m = lim
s→0

sm∗f (s) =
βµ0

β + µ0

, respectively. This result agrees with the results of the

classical two-states Markov chain model.

5 Expected cost under policy N

In this section, we consider the repair-replacement policy N : a replacement is carried out

if the number of failures reaches N . Our objective is to determine an optimal replacement

policy N∗ such that the expected long run average cost rate is minimized. Theoretical

analysis will be carried out for this model. To this end, in addition to the assumptions in

Section 2, we make one more assumption:

A6. A repair-replacement policy N is used, where N is the number of failures of the com-

ponent. When a replacement is required, a new and identical component will be used,

and the replacement time is a non-negative random variable Q.

The time interval between two replacements is referred to as a renewal cycle of the system.

Let τ1 be the time of the first replacement of the system. Denote the time between the

(n-1)th replacement and the nth replacement of the system as τn, n = 2, 3, · · · .
It is obvious that {τ1, τ2, · · · } forms a renewal process. Let C(N) be the expected long

run cost rate of the system under the policy N , then we have

C(N) = lim
t→∞

Expected cost within [0, t]

t
.

Since {τ1, τ2, · · · } is a renewal process, the time interval between two consecutive replace-

ments is a renewal cycle. According to the renewal theorem Ross (1996), the long run average

cost rate is given by

C(N) =
Expected cost incurred in a cycle

Expected length of a cycle
=

E(C)

E(W )
, (23)
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where W is the length of a renewal cycle of the system and C is the cost of a renewal cycle

of the system under the policy N . In fact, it is observed that

W =
N∑
k=1

Xk +
N−1∑
k=1

Yk +Q. (24)

Then the expected length of a renewal cycle is

E(W ) =
N∑
k=1

∫ ∞
0

e−(rkλ+Bk−1)t−Ak−1

∫ t
0 h0(x)dxdt+

N−1∑
k=1

µ

bk−1
+ θ. (25)

On the other hand,

C = Cr + Cm

N−1∑
k=1

Yk + CpQ− Cw
N∑
k=1

Xk, (26)

and the expected cost within a cycle is given by

E(C) = Cr + Cm

N−1∑
k=1

µ

bk−1
+ Cpθ − Cw

N∑
k=1

∫ ∞
0

e−(rkλ+Bk−1)t−Ak−1

∫ t
0 h0(x)dxdt. (27)

Now we can give the main result of this section.

Theorem 2 For this repair system, under replacement policy N the average cost is given

by

C(N) =

Cr + (Cm + Cw)
N−1∑
k=1

µ

bk−1
+ (Cp + Cw)θ

N∑
k=1

λk +
N−1∑
k=1

µ

bk−1
+ θ

− Cw. (28)

Proof. Substituting the numerator and denominator of Eq. (23) with (25) and (27), respec-

tively, we can derive the expected long run average cost rate of the system under policy

N .

Let q1(N) =
N∑
k=1

λk +
N−1∑
k=1

µ

bk−1
+ θ. Then

C(N + 1)− C(N) =

Cr + (Cm + Cw)
N∑
k=1

µ

bk−1
+ (Cp + Cw)θ

q1(N + 1)
− Cw

−
Cr + (Cm + Cw)

N−1∑
k=1

µ

bk−1
+ (Cp + Cw)θ

q1(N)
+ Cw

=

(Cm + Cw)µ

(
N∑
k=1

λk + θ − λN+1

N−1∑
k=1

bN−k
)
− [Cr + (Cm + Cp)θ]

(
λN+1b

N−1 + µ
)

bN−1q1(N + 1)q1(N)
.
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Since bN−1q1(N + 1)q1(N) is always positive, it is clear that the sign of C(N + 1)−C(N) is

the same as the sign of its numerator. Therefore, we can obtain following lemma:

Lemma 4 C(N + 1) ≥ C(N)⇔ B(N) ≥ 1, where

B(N) =

(Cm + Cw)µ

(
N∑
k=1

λk + θ − λN+1

N−1∑
k=1

bN−k
)

[Cr + (Cm + Cp)θ] (λN+1bN−1 + µ)
. (29)

Lemma 5 B(N) is non-decreasing in N if λN+1 − bλN+2 ≥ 0 for all integer N .

Proof. Now we consider the difference of B(N+1) and B(N) and obtain the following result.

B(N + 1)−B(N)

=

(Cm + Cw)µ

(
N+1∑
k=1

λk + θ − λN+2

N∑
k=1

bN+1−k
)

[Cr + (Cm + Cp)θ] (λN+2bN + µ)
−

(Cm + Cw)µ

(
N∑
k=1

λk + θ − λN+1

N−1∑
k=1

bN−k
)

[Cr + (Cm + Cp)θ] (λN+1bN−1 + µ)

=
(Cm + Cw)µ

[Cr + (Cm + Cp)θ] (λN+2bN + µ) (λN+1bN−1 + µ)

{(
N+1∑
k=1

λk + θ − λN+2

N∑
k=1

bN+1−k
)
×(

λN+1b
N−1 + µ

)
−
(

N∑
k=1

λk + θ − λN+1

N−1∑
k=1

bN−k
)(

λN+2b
N + µ

)}
.

=
(Cm + Cw)µ

[Cr + (Cm + Cp)θ] (λN+2bN + µ) (λN+1bN−1 + µ)

{
N+1∑
k=1

λkλN+1b
N−1 + θλN+1b

N−1

−λN+1λN+2

N∑
k=1

b2N−k + µ
N+1∑
k=1

λk + θµ− µλN+2

N∑
k=1

bN+1−k −
N∑
k=1

λkλN+2b
N

− θλN+2b
N+ λN+1λN+2

N−1∑
k=1

b2N−k − µ
N∑
k=1

λk − θµ+ µλN+1

N−1∑
k=1

bN−k
}

=

(Cm + Cw)µbN−1(λN+1 − bλN+2)

(
N+1∑
k=1

λk + θ +
N∑
k=1

µ

bk−1

)
[Cr + (Cm + Cp)θ] (λN+2bN + µ) (λN+1bN−1 + µ)

≥ 0.

Since a > 1, then rk = P (X̂
(k)
j > $

(k)
j ) =

∫∞
0

Φ(ak−1x)dF (x) is non-decreasing in k. If the

intrinsic lifetime of the component becomes shorter and shorter after it has been repaired,

then −(rkλ+Bk−1)x− Ak−1

∫ x
0
h0(u)du is non-increasing in k for all x > 0, and

λk =

∫ ∞
0

e−(rkλ+Bk−1)x−Ak−1

∫ x
0 h0(u)dudx

is non-increasing. Therefore, λN+1 − bλN+2 ≥ 0. Then we have the following lemma:

Lemma 6 B(N) is non-decreasing in N if αk ≥ 1, (k = 1, 2, · · · ).
According to Lemmas 3 and 4, an analytical expression for an optimal policy for minimiz-

ing C(N) can be obtained through analysis of B(N). Thus, we have the following theorem.

Theorem 3 If λN+1 − bλN+2 ≥ 0 for all integer N or αk ≥ 1, (k = 1, 2, · · · ), then the

optimal replacement policy N∗ can be determined by
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N∗ = min{N |B(N) ≥ 1}. (30)

Furthermore, if B(N∗) > 1, then the optimal policy N∗ is unique. Because B(N) is

non-decreasing in N , there exits an integer N∗ such that

B(N) ≥ 1⇔ N ≥ N∗

Note that N∗ is the minimum in (30), which is an optimal replacement policy. Fur-

thermore, it is easy to verify that if B(N∗) > 1, then the optimal policy is existent and

unique.

6 Special cases

In this section, we consider the following two special cases:

Case 1. If P ($
(n)
j = ∞) = 1, i.e. rn = 0, j, n = 1, 2, · · · , then shocks cause no harm on

the component. The system is a repairable system that the repair time of component

is GP with linear corrective maintenance. Hence, the expected long run average cost

rate of the system under policy N is given by

C(N) =

Cr + Cm
N−1∑
k=1

µ

bk−1
+ Cpθ − Cw

N∑
k=1

∫∞
0
e−Bk−1t−Ak−1

∫ t
0 h0(x)dxdt

N∑
k=1

∫∞
0
e−Bk−1t−Ak−1

∫ t
0 h0(x)dxdt+

N−1∑
k=1

µ

bk−1
+ θ

. (31)

Case 2. If P (ηn = ∞) = 1, n = 1, 2, · · · , then the component failure is only caused by

external shocks and the system is repairable. Hence, the expected long run average cost

rate of the system under policy N can be obtained from (28) by taking αk = βk = 0.

It is given by

C(N) =

Cr + (Cm + Cw)
N−1∑
k=1

µ

bk−1
+ (Cp + Cw)θ

N∑
k=1

1

rkλ
+

N−1∑
k=1

µ

bk−1
+ θ

− Cw. (32)

7 Numerical examples

To illustrate the above derivation, we carry out the following numerical experiments

and assume the distribution function of the value of each shock, the threshold, the intrinsic

lifetime and the repair time of a new component, and the replacement time of the system are

F (x) =

{
1− exp (−γx2) , x > 0,

0, x ≤ 0,
Φ(x) =

{
1− exp

(
−γ

2
x2
)
, x > 0,

0, x ≤ 0,
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D(x) =

{
1− exp (−εx2) , x > 0,

0, x ≤ 0,
H(x) =

{
1− exp (−νx2) , x > 0,

0, x ≤ 0,

S(x) =

{
1− exp

(
−x
θ

)
, x > 0,

0, x ≤ 0,

respectively, where γ > 0, ε > 0, ν > 0, θ > 0. Then, the probability that one shock causes

the system to fail in the nth cycle is

rn =
∫∞

0
Φ(an−1x)dF (x) =

a2n−2

a2n−2 + 2
, n = 1, 2, · · · .

Following H(x), we have

µ =

∫ ∞
0

H(x)dx =

∫ ∞
0

e−νx
2

dx =

√
π

2
√
ν
.

According to Lemma 1, we have the distribution of the shock lifetime of the component in

the nth cycle ξn

Ln(x) = 1− exp

(
− a2n−2λ

a2n−2 + 2
x

)
, x ≥ 0.

We also assume αk = α, βk = β, k = 1, 2, · · · . Then the distribution function of Xn is given

by

Gn(x) = 1− exp

{
−
(

a2n−2λ

a2n−2 + 2
x+

(αn−1 − 1)β

α− 1
x+ αn−1εx2

)}
, x ≥ 0.

Denote vk = αk−1ε and bk =
a2k−2λ

a2k−2 + 2
+

(αk−1 − 1)β

α− 1
. Then,

λk =
∫∞

0
e−bkx−vkx

2
dx = e

b2
k

4vk
∫∞
bk

2vk

e−vkt
2
dt = e

b2
k

4vk

∫∞0 e−vkt
2
dt−

∫ bk
2vk

0 e−vkt
2
dt


= e

b2
k

4vk

 √π
2
√
vk
−
∫ bk

2vk
0 e−vkt

2
dt

 . (33)

Substituting µ and λk into (28) and (29), respectively, we obtain the expression for C(N)

and B(N) as follows:

C(N) =

Cr + (Cm + Cw)
N−1∑
k=1

√
π

2
√
νbk−1

+ (Cp + Cw)θ

N∑
k=1

e

b2
k

4vk

 √π
2
√
vk
−
∫ bk

2vk
0 e−vkt2dt

+
N−1∑
k=1

√
π

2
√
νbk−1

+ θ

− Cw, (34)
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B(N) =

(Cm+Cw)
√
π

2
√
ν

 N∑
k=1

e

b2k
4vk

 √
π

2
√
vk
−
∫ bk

2vk
0 e−vkt

2
dt

+θ−e
b2N+1
4vN+1

 √
π

2
√
vN+1

−
∫ bN+1

2vN+1
0 e−vN+1t

2
dt

N−1∑
k=1

bN−k


[Cr+(Cm+Cp)θ]

e b
2
N+1

4vN+1

 √
π

2
√
vN+1

−
∫ bN+1

2vN+1
0 e−vN+1t

2
dt

bN−1+
√
π

2
√
ν


.

(35)

Then we can determine the optimal repair-replacement policy N∗ by numerical methods

such that C(N∗) is minimized. We will see in the two numerical examples of Subsection 7.1

that the optimal policy N∗ for C(N) is unique.

7.1 Optimal policy N ∗

In this subsection, we consider two situations about the deterioration degree of the system:

the system deteriorates faster than before, i.e α > 1 and the system deteriorates slower

than before, i.e., α < 1, and then we provide numerical examples to show an approach to

determining N∗.

Situation 1: The system deteriorates faster than before. The system is simulated with

the parameters a = 1.05, b = 0.95, λ = 0.002, ε = 0.0001, ν = 0.004, α = 1.01, β =

0.0006, θ = 5, Cw = 30, Cm = 20, Cp = 10, and Cr = 4500. By numerical calculation,

the average cost rate of the system is shown in Table 2, which corresponds to Fig. 2.

From Table 2 and Fig. 2, we can see that the value C(N) decreases when the number

of failures N increases from 1 to 11, and then the value C(N) increases with N . This

shows that there exists a unique optimal repair-replacement policy N∗. From Table 2,

we can find that the optimal number of failures for replacement is N∗ = 11, and the

corresponding minimal long run average cost per unit time is C(N∗) = −15.8967.

The same conclusion can be drawn by calculating the values of B(N) and the results

are presented in Table 3 and Fig. 3. It follows from Table 3 that B(11) = 1.0908 and

11 is the first integer such that B(N) ≥ 1 and N∗ = 11 is the optimal replacement

policy from Theorem 3. Moreover, the optimal replacement policy is unique since

B(N∗) = B(11) = 1.0908 > 1.

Situation 2: The system deteriorates slower than before. The system is simulated with the

same parameters as Situation 1 except α = 0.98. By numerical calculation, the average

cost rate of the system is shown in Table 2, which corresponds to Fig. 2. Similarly,

from Table 2 and Fig. 2, we know that the value C ′(N) decreases when the number

of failures N changes from 1 to 12, and then increases with N . The optimal repair-

replacement policy N∗ exists uniquely, the optimal number of failures for replacement

is N∗ = 12, and the corresponding minimal long run average cost per unit time is

C ′(N∗) = −16.5555.

The same conclusion can be arrived at by calculating the values of B′(N), from the

results in Table 3 and Fig. 3 , we obtain: B′(12) = 1.0890 > 1 and 12 is the first

integer such that B′(N) ≥ 1. According to Theorem 3, the optimal replacement policy

N∗ = 12 is unique.
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Comparing C(N) and C ′(N) in Fig. 2 and Table 2, we obtain

C(N∗) = C(11) = −15.8967 > C ′(N∗) = C ′(12) = −16.5555,

and for the same N ,

C(N) > C ′(N).

Thus, the maintenance policy on the model with α = 0.98 < 1 costs less than the mainte-

nance policy on the model with α = 1.01 > 1.

Table 2. The expected long run cost per unit time versus the repair-replacement policy N

Table 2

Figure 2

Fig. 2. The average cost rate C(N) versus the repair-replacement policy N .

Table 3. The values of auxiliary function B(N) (or B′(N)) versus the values of N

Table 3

Figure 3

Fig. 3. The values of auxiliary function B(N) (or B′(N)) versus the values of N .

7.2 Sensitivity analysis

If we keep the values of parameters in Situation 2 in Section 7.1 unchanged, we obtain

the results as shown in Table 4.

Table 4 shows how much N∗ and C(N∗) change when the parameter b increases from

0.81 to 0.99. From Table 4, we have the following results. N∗ is sensitive to a small change

in parameter b when b is larger than 0.91. It becomes stable when b is smaller than 0.91;

it changes from 6 to 8 when b increases from 0.81 to 0.89. However, the average cost rate

C(N∗) decreases in b.

Similarly, Table 4 shows how N∗ and C(N∗) vary when the ageing alteration parameter α

increases from 0.9 to 1.2. From Table 4, we have the following results. N∗ is non-increasing

in α. It is sensitive to a small change of parameter α when α is smaller than 1.03. N∗ changes

from 9 to 20 when parameter α decreases from 1.03 to 0.90 and it becomes stable when b is

larger than 1.03 and it varies from 8 to 10 when α decreases from 1.2 to 1.07. The average

cost rate C(N∗) increases in α. It can also be seen that the optimal N∗ is non-increasing in

β, but the average cost rate C(N∗) increases in β.

Table 4. Optimal N∗ and C(N∗) versus for different values of b, α and β

Table 4
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8 Conclusions

This paper derives reliability indices and the expected cost rate for a repairable one-

component system that may fail due to system’s intrinsic and extrinsic factors. Maintenance

policy is derived when both the thresholds of shocks and the repair times of the system follow

geometric processes. A numerical example is given to illustrate the theoretical results of the

model.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under

Grant No. 71173109 and the Fundamental Research Fund for the Central University of

China under Grant No.KYZ201424.

References

Sheu,S.H., and Griffith,W.S.(2002), “Extended block replacement policy with shock models

and used items,” European Journal of Operational Research, 240,50-60.

Lam,Y., and Zhang,Y.L.(2004),“A shock model for the maintenance problem of a repairable

system,” Computers and Operations Research, 31,1807-1820.

Wang,G.J., and Zhang,Y.L.(2005),“A shock model with two-type failures and optimal re-

placement policy,” International Journal of Systems Science, 36,209–214.

Lam,Y.(1988),“A note on the optimal replacement problem,” Adv. Appl. Prob., 20(2),479–

482.

Tang,Y.Y., and Lam,Y.(2006), “A δ-shock maintenance model for a deteriorating system,”

European Journal of Operational Research, 168,541-556.

Li,Z., and Zhao,P.(2007), “Reliability analysis on the δ-shock model of complex systems,”

IEEE Transactions on Reliability, 56(2) 340–348.

Chen,J., and Li,Z.(2008), “An extended extreme shock maintenance model for a deteriorating

system,” Reliability Engineering and System Safety, 93,1123-1129.

Cha,J.H., and Lee,E.Y.(2010), “An extended stochastic failure model for a system subject to

random shocks,” Operations Research Letters, 38,468-473.

Wu,Q., and Wu,S.(2011), “Reliability analysis of two-unit cold standby repairable systems

under Poisson shocks,” Applied Mathematics and Computation, 218(1),171–182.

Wu,Q.(2012), “Reliability analysis of a cold standby system attacked by shocks,” Applied

Mathematics and Computation, 218(23),11654–11673.

21



Wang,H., and Pham,H.(1996), “A quasi renewal process and its applications in imperfect

maintenance,” International Journal of Systems Science, 27(10),1055–1062.

Liang,X., Lam,Y., and Li,Z.(2012), “Optimal replacement policy for a general geometric

process model with-shock,” International Journal of Systems Science, 42(12),2021-2034.

Cheng,G.Q., and Li,L.(2012), “A geometric process repair model with inspections and its

optimisation,” International Journal of Systems Science, 43(9),1650-1655.

Yu,M., Tang,Y., and Fu,Y.(2013), “A geometric process model for M / PH (M / PH)/1/ K

queue with new service machine procurement lead time,” International Journal of Systems

Science, 44(6),1061-1075.

Wang,G.J., and Zhang,Y.L.(2014), “Optimal replacement policy for a two-dissimilar-

component cold standby system with different repair actions,” International Journal of

Systems Science, DOI:10.1080/00207721.2014.911387

Wu,S., and Clements-Croome,D.(2006), “A novel repair model for imperfect maintenance,”

IMA Journal of Management Mathathematics, 17(3),235–243.

Wu,S., and Zuo,M.J.(2010), “Linear and Nonlinear Prevebtive maintenance Models,” IEEE

Transactions on Reliability, 59(1),242–249.

Ross,S. M.(1996),“Stochastic process(2nd ed),” New YorkNY: Wiley.

Su,B. and Shi,D.(1995), “Reliability analysis of n-unit series systems with multiple vacations

of a repairman,” Mathematical Statistics and Applied Probability, 10(1),78-82.

9 Figure captions page, tables, and figures.

Figure 1: A possible realization of the system.
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Table 2: The expected long run cost per unit time versus repair-replacement policy N
N C(N) C ′(N) N C(N) C ′(N) N C(N) C ′(N) N C(N) C ′(N)
1 21.9995 21.9995 11 -15.8967 -16.6277 21 -13.8009 -15.2200 31 -9.7056 -11.9254
2 -1.0344 -1.2130 12 -15.8627 -16.6555 22 -13.4529 -14.9487 32 -9.2354 -11.5367
3 -8.0859 -8.3483 13 -15.7711 -16.6273 23 -13.0887 -14.6622 33 -8.7569 -11.9254
4 -11.3900 -11.7169 14 -15.6323 -16.5534 24 -12.7094 -14.3616 34 -8.2708 -10.7336
5 -13.2279 -13.6132 15 -15.4539 -16.4417 25 -12.3160 -14.0478 35 -7.7776 -10.3199
6 -14.3389 -14.7805 16 -15.2418 -16.2978 26 -11.9094 -13.7216 36 -7.2779 -9.8987
7 -15.0344 -15.5321 17 -15.0004 -16.1261 27 -11.4905 -13.3836 37 -6.7724 -9.4705
8 -15.4686 -16.0228 18 -14.7331 -15.9300 28 -11.0599 -13.0345 38 -6.2616 -9.0355
9 -15.7263 -16.3382 19 -14.4427 -15.7123 29 -10.6185 -12.6747 39 -5.7463 -8.5942
10 -15.8584 -16.5291 20 -14.1313 -15.4750 30 -10.1668 -12.3049 40 -5.2269 -8.1470

Figure 2: A plot of average cost rate C(N) and C ′(N) for policy N .

Figure 3: A plot of the auxiliary function, B(N) and B′(N) versus N .
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Table 3: Results of B(N) and B′(N)
N B(N) B′(N) N B(N) B′(N) N B(N) B′(N) N B(N) B′(N)
1 0.1403 0.1386 11 1.0908 0.9256 21 3.9610 3.3732 31 8.36060 7.5452
2 0.1633 0.1579 12 1.2878 1.0890 22 4.3489 3.7180 32 8.8400 8.0394
3 0.1200 0.1885 13 1.5053 1.2699 23 4.7518 4.0803 33 9.3214 8.5447
4 0.2511 0.2311 14 1.7433 1.4687 24 5.1684 4.4596 34 9.8037 9.0602
5 0.3178 0.2864 15 2.0018 1.6856 25 5.5976 4.8555 35 10.2856 9.5852
6 0.4009 0.3553 16 2.2806 1.9209 26 6.0379 5.2674 36 10.7662 10.1188
7 0.5014 0.4383 17 2.5793 2.1746 27 6.4881 5.6948 37 11.2446 10.6602
8 0.6200 0.5363 18 2.8974 2.4468 28 6.9468 6.1369 38 11.7197 11.2087
9 0.7573 0.6497 19 3.2342 2.7373 29 7.4127 6.5932 39 12.1909 11.7633
10 0.9141 0.7793 20 3.5891 3.0462 30 7.8844 7.0629 40 12.6573 12.3234

Table 4: Optimal N∗ and C(N∗) versus for different values of b,α and β

d α = 0.98, β = 0.0006 α b = 0.95, β = 0.0006 β b = 0.95, α = 0.98
N∗ C(N∗) N∗ C(N∗) N∗ C(N∗)

0.99 20 -18.5724 0.90 16 -19.0220 0.0004 13 -17.2181
0.988 19 -18.4476 0.91 15 -18.6955 0.0006 12 -16.6555
0.985 18 -18.2704 0.92 15 -18.3813 0.0008 11 -16.1277
0.98 17 -17.9940 0.93 14 -18.0722 0.0012 11 -15.1706
0.97 15 -17.4963 0.94 14 -17.7715 0.0014 10 -14.7413
0.96 13 -17.0569 0.95 13 -17.4806 0.0016 10 -14.3231
0.95 12 -16.6555 0.96 13 -17.1968 0.0018 10 -13.9157
0.94 11 -16.2849 0.97 12 -16.9199 0.0020 9 -13.5339
0.93 10 -15.9344 0.98 12 -16.6555 0.0030 8 -11.7962
0.92 10 -15.6106 1.01 11 -15.8967 0.0040 8 -10.3195
0.91 9 -15.3050 1.02 11 -15.6540 0.0050 7 -8.9785
0.89 8 -14.7252 1.03 10 -15.4144 0.0070 7 -6.7277
0.87 8 -14.2025 1.07 10 -14.5369 0.0090 7 -4.7930
0.86 7 -13.9425 1.08 9 -14.3274 0.0100 6 -3.9366
0.82 7 -13.0079 1.14 9 -13.1695 0.0130 6 -1.7113
0.81 6 -12.8184 1.20 8 -12.1596 0.0150 6 -0.4283
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