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Abstract

A key problem in spoken language identification (LID) is how
to effectively model features from a given speech utterance. Re-
cent techniques such as end-to-end schemes and deep neural
networks (DNNG5) utilising transfer learning such as bottleneck
(BN) features, have demonstrated good overall performance,
but have not addressed the extraction of LID-specific features.
We thus propose a novel end-to-end neural network which aims
to obtain effective LID-senone representations, which we de-
fine as being analogous to senones in speech recognition. We
show that LID-senones combine a compact representation of
the original acoustic feature space with a powerful descriptive
and discriminative capability. Furthermore, a novel incremental
training method is proposed to extract the weak language infor-
mation buried in the acoustic features of insufficient language
resources. Results on the six most confused languages in NIST
LRE 2009 show good performance compared to state-of-the-art
BN-GMM/i-vector and BN-DNN/i-vector systems. The pro-
posed end-to-end network, coupled with an incremental train-
ing method which mitigates against over-fitting, has potential
not just for LID, but also for other resource constrained tasks.

Index Terms: language identification, utterance represen-
tation, end-to-end neural network, LID-senone, incremental
training method

1. Introduction

Language identity is a key attribute of spoken utterances.
Unlike phonetic content which can be easily modelled using
end-to-end schemes at a frame level, it is difficult to map from
frame level features to a language target. Working backwards
from an LID target, it is necessary to have an effective utter-
ance representation which is in turn derived from frame-level
features, that are extracted from a section of input speech. At
present, the i-vector representation [1, 2] is the state-of-the-art
for utterance representation, due to its compactness and good
performance. However, i-vectors are extracted in an unsuper-
vised fashion without using language labels, and thus require
linear discriminant analysis (LDA) or similar methods to build
backend models.

In terms of feature representation, deep learning tech-
niques such as DNNs [3], have demonstrated their learning
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capabilities in several related fields, and various extensions
and additions have been studied to improve i-vector perfor-
mance for acoustic modelling. Song et.al, Richardson et.al
and Bing et.al [4, 5, 6] proposed using deep bottleneck features
(DBFs) from a DNN trained for automatic speech recognition
(ASR) [7]. DBFs are inherently robust for different speakers,
channels and background noises. Lei et.al, Kenny et.al and Fer-
rer et.al [8, 9, 10] proposed collecting sufficient statistics also
using structured DNNs to form an effective representation of
underlying phonemes or phoneme states. It seems that DNNs
are effective for either front-end frame-level feature extraction
or back-end utterance-level modelling, where sufficient good
quality and quantity training data is available. DBFs or senones,
both derived from ASR training, are therefore clearly able to
represent language-based content. However they are trained
to assign to phonemes or phoneme states. While this is useful
for LID, it does not specifically encode language-discriminative
information, particularly for highly confusable languages that
may have similar phoneme-level statistics.

Recent LID research has gradually moving towards task-
aware or end-to-end schemes, which have demonstrated im-
pressive performance. Jiang et.al showed [11] that tuning the
pre-trained DNN parameters using an LID-specific corpus can
improve performance. However this lattice-based optimisation
scheme adjusts final layers and does not propagate to earlier
acoustic layers.

Convolutional neural networks (CNNs) have also demon-
strated impressive front-end feature representation results on
large-scale speech and visual object recognition tasks [12, 13].
In current multi-layer CNNs, convolution-pooling-layer pairs
can be thought of as front-end feature extractors, followed by fi-
nal pooling layers to map frame-level features into an utterance
representation that is amenable to linear classification. Lozano-
Diez et.al [14] evaluated different CNNs for LID, demon-
strating comparable results for short utterances to end-to-end
methods. Lopez-Moreno et.al and Gonzalez-Dominguez et.al
[15, 16] also proposed end-to-end schemes using large scale
DNNs and long short-term memory (LSTM) recurrent neural
networks (RNN), which both perform well. Output scores at ut-
terance level are the log-average of the softmax outputs across
all frames.

1.1. Contribution

We propose a new end-to-end approach, named LID-net that
combines the proven frame-level feature extraction capabilities
of the DNN with the effective utterance level mapping abilities
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Figure 1: LID-net Structure. The whole network spans from frame to utterance level, consisting of DNN layers, convolutional and SPP
layers with detailed configuration shown in Table 1. Through DNN layers, LID-features can be extracted whose size is 50 x Ni. After
convolutional layers, LID-senones are obtained and SPP acts as a speech utterance representation extractor, as explained in Section 3.
The detailed notation and meaning of N; and NN, is explained in Section 2.

Table 1: Configuration of LID-net. Eight layers are divided into DNN, convolution, SPP and fully connected (fc) layers, with Ny
and N> parameters used to experimentally explore the effect of context. Separate 30s, 10s and 3s networks are trained independently
(despite the 10s and 3s networks having identical structure).

[ Layer | Stage [ Input Size [ Configuration ‘
1 DNN layerl (48 x 21) x N; connections: (48 x 21) x 2048
2 DNN layer2 2048 x Ny connections: 2048 x 2048
3 DNN layer3 2048 x Ny connections: 2048 x 50
4 convl 1@50 x N filter size: 1@50 x 21
5 conv2 1024@Q1 x N, filter size: 1024@1 x 1
6 conv3 256@Q1 x Ny filter size: 256@Q1 x 1
. SPP 30s 64Q1 x N SPP pooled size: [1,1],[1, 2]

SPP 10s/3s 128@1 x Na SPP pooled size: [1,1],[1, 2]
8 fc 30s 64 x (14+2)@Q1 x 1 filter size: 64 x (1 +2)@1 x 1
fc 10s/3s 128 x (1 +2)@1 x 1 | filter size: 128 x (1 + 2)@1 x 1

of a CNN. Specifically, as shown in Fig. 1, LID-net consists of a
DNN-based front-end to derive acoustic features related to LID
tasks, followed by a CNN back-end, applying spatial pyramid
pooling (SPP) [17] to form an utterance representation. The
DNN is configured with a constricted bottleneck (BN) layer to
transform acoustic features into a compact representation in a
frame-by-frame manner’. Convolutional layers then perform
nonlinear transformations of BN features into units which are
discriminative for different languages. Following the definition
of senones in DNNs for ASR, we term these units LID-senones
and will investigate them further in Section 3. A SPP layer is in-
troduced to form an utterance representation from LID-senones.

Despite having a logical and compelling structure, LID-net
contains a large number of parameters needing training. Given
the limitations of LID training data, particularly for utterance-
level labels, direct training leads to severe over-fitting issues.
An incremental training scheme is therefore proposed, inspired
by transfer learning techniques. Specifically, we first initialise
DNN layers from a DNN well-trained by the SwitchBoard cor-
pus as in [18], then train LID-net by incrementally adding and
training successive convolutional layers. Results show good
performance gains through adding convolutional layers in this
way (see Section 5.4).

To summarise, the contribution of this paper are:

e LID-net, a novel end-to-end structure aiming to model
LID-senones.

e An incremental training scheme to effectively exploit in-
formation from related tasks (e.g., large scale ASR) and
address the over-fitting issues in the deep structure.

TNote that DNN layers could also be implemented as convolutional
layers as a consequence of them being initialized by a previously well
trained DNN. This will be explained further in Section 4.

e Extensive experiments of different LID-net configura-
tions on NIST LRE 2009 highly confusable languages.
Comparing these to state-of-the-art i-vector methods
based on DBFs, improved performance is achieved.

2. LID-net structure

We propose a comprehensive task-aware neural network span-
ning frame to utterance level, as shown in Fig. 1. The whole sys-
tem includes DNN layers followed by Convolutional and SPP
layers. The natural ability of task aware NN to infer discrimi-
native rules allows effective transformation of acoustic features,
with pooling to take the place of the i-vector generative ap-
proach.

In operation, acoustic features are extracted from frame to
utterance level, with certain frames combined together to ex-
ploit context in some layers. The first context window size is
in DNN layerl, using a fixed 10 — 1 — 10 size (which means
a sliding context window is used with every 21 frames input
to represent the current frame) which is common in DNN based
speech systems. 50 dimensional LID-features are then extracted
through the DNN layers before another context window is ap-
plied at layer convl. Its size is controlled by the filter length.
If the convolutional filter is 1@50 x 21 (meaning a 50 x 21
rectangle over 1 channel), this means it combines 10 — 1 — 10
frame-level features. The final context is the SPP layer after the
convolutional layers. This differs from the first two context win-
dows, as it is intended to extract features at an utterance level
while the previous windows are at a frame level.

Layers DNN layerl to DNN layer3 act as a feature trans-
former. Unlike general acoustic features such as MFCC or PLP,
the derived LID-features are task-specific. Since LID systems
are effective at a frame or short utterance level [15, 16], these



layers process acoustic features frame by frame. As mentioned
above, the BN construction aims to keep LID-features compact.

The subsequent layers could be viewed as an utterance rep-
resentation extractor. Previous work has proven that the statis-
tics of senones can be discriminative in languages [19, 10]. We
aim for a task-aware version which we name LID-senones, that
are constructed from LID-features to make their statistics even
more discriminative for LID. The frame-level LID-senones are
pooled into an utterance representation by the SPP layer.

The configuration of each layer is shown in the Table 1. An
input size configuration of “1024@1x N2 means a 1 x N2 input
feature over 1024 channels. SPP pool parameters “[1, 1], [1, 2]”
indicate that the pooled feature vector size is [1, 1] and [1, 2] at
each channel then reshaped to different channels respectively.

Note that the 30s, 10s and 3s networks are trained indepen-
dently. Although 10s and 3s networks have the same structure,
they contain different parameters. The 30s network difters from
the others before SPP due to lack of training data, so the number
of filters in the 30s network is naturally smaller. Unlike the 30s
case, the other networks benefit from augmentation techniques
to effectively enlarge their training datasets.

3. LID-senones and utterance
representation

3.1. LID-senones with convolutional layers

Given two dimension input features, researchers tend to anal-
yse small blocks across both local time and frequency domains,
such as 5 X 5 or 7 x 7 [14], despite the fact that useful corre-
lations exist in larger time and frequency domain regions [20].
We therefore include the entire frequency domain over several
frames in our convolution.

To explain how it works, consider the following hypothet-
ical example. An LID-net with just one convolutional layer
(i.e. LID-feature output linked directly to LID-senone input)
has been well-trained, and the configuration of SPP is [1, 1]; this
means pooling size is [1 x Na], thus the whole speech feature
matrix has N2 frames pooled directly into an utterance vector.
In Fig. 1, before the fc layer, LID-senone statistics are expected
to be obtained through feed-forward calculation so a classifier
can directly follow in obtaining language ID. LID-senones do
not have specific names like ordinary senones in ASR, which
is unimportant as long as they contain sufficient information to
discriminate between languages. In our example, the activa-
tion of each LID-senone on each frame could be obtained from
convl. Therefore we could view the trained filters in convl as
being LID-senone detectors.

In fact, we do not know how many frames are needed to
effectively learn an LID-senone, so Section 5.3 will explore dif-
ferent sizes of filters. However we can use a simple network to
conduct some experiments to briefly provide evidence for the
LID-senone idea. Firstly, activation values from the layer prior
to the SPP (of size 1024 x 1) are explored from four frames
from a recording. A simple plot of the vectors, in Fig. 2 shows
distinct activations from different utterances in (a) and (b), a
transition region in (c) and a non-speech region in (d). Note
the amplitude scale of the latter. It appears that different LID-
senones are active in different regions of an utterance.

To explore further, the activations prior to the fc layer are
also captured and analysed. Four different utterances (two utter-
ances from two languages) are taken from the training dataset,
and 35 LID-senones randomly chosen from the higher dimen-
sional utterance vector. The statistics from these sets of LID-
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Figure 2: Activation Values before SPP From Four Different
Frames. The values are operated with softmax for convenience.
Filter size in convl is 1@50 x 21. (a) and (b) show the activation
values of normal frames, who could represent an activated LID-
senone precisely. (c) describes activation of LID-senones at a
change point, so more than one LID-senone is activated. (d)
shows very small activation values for non-speech frames.

senones are compared for the four utterances in Fig. 3, com-
prising two utterances of Dari and two of Farsi. Fig. 3 clearly
exhibits greater uniformity in the within-language statistics in
each case, providing evidence to support the language discrim-
inating ability of LID-senones.

Farsi-1

Farsi-2

Figure 3: Statistics on Four Different Utterances. The left two
are different analysis regions of a Dari utterance and the two on
the right are from Farsi. Plots show 35 statistical values ran-
domly selected from the LID-senone statistics vector.

3.2. Spatial pyramid pooling for utterance represenation

Spatial Pyramid Pooling can be viewed as a special method of
pooling, which was first introduced in image recognition [17].
The motivation of SPP is to solve the problem that input fea-
ture size is arbitrary, yet a fixed-dimension representation is re-
quired, irrespective of input size.

Unlike a normal pooling layer with a fixed pooling size,



SPP has a fixed pooled number. If input feature vector size is
CQM x M, and [N, N] SPP is implemented, this means that
whatever the input size, the feature vector will be segmented

into N X N parts while the pooling size is (M] and stride is

N
L%J then every sub-spatial space executes max/average pool-
ing. By this means, C' channels would give an N x N x C
feature matrix, which is reshaped to an (N x N x C)@1 x 1
four dimensional matrix. Thus to cater to a deep network of
arbitrary size, ordinary pooling is replaced with SPP.

SPP could be utilized not only for its tolerance to different
input sizes, but can also pool at different scales. In LID-net, a
[1,1] and [1, 2] SPP are applied simultaneously. It is observed
that [1, 1] pooling is implemented over the whole N2 frames
while [1, 2] is carried out on the N2 /2 frame scale.

4. Incremental training strategy

In DNN for ASR systems, each frame is associated with one la-
bel whereas an end-to-end LID system utterance, which might
contain hundreds or even thousands of frames, has just one la-
bel. If LID-net is trained directly using the target language
dataset, performance will be limited by lack of training data,
since a large quantity of labeled data is required to train the
NNs. We propose an incremental training method to ease this
dilemma. Due to the success of adopting pre-trained ASR
DNN:ss for LID tasks [11], we first train a DNN using the Switch-
Board corpus, and partly transfer the parameters to DNN layerI-
DNN layer3 of LID-net. Convolutional layers are then added
layer by layer to fine-tune the whole network. The detailed pro-
cedure is shown in Fig. 4.

SwitchBoard—layerl-3

senone

Y

(b) Language DN-N~—ﬁ convl ¥ SPP — fc
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Language ID
Y Y
Language DNN § )
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Figure 4: Incremental Training Strategy Flowchart. (a) A DNN
with one internal BN layer for ASR is trained using the Switch-
Board corpus. (b) layerl-layer3 parameters from (a), with one
convolutional layer appended, is trained until convergence. (c)
DNN layerl-DNN layer3 and convl parameters, with a second
convolution layer appended, is trained until convergence. (d)
DNN layer1-DNN layer3 and convi-conv2 parameters are trans-
ferred to LID-net and another convolutional layer appended,
then trained until convergence.

4.1. Transfer learning from large-scale corpus

Transfer learning [21, 22, 23] is very common in NNs for tasks
such as recognition and verification, especially in image and
speech processing. It is obvious that most of the trainable pa-
rameters are at the frontal DNN layers, hence severe over-fitting
may be caused by training such a deep network when there is a

deficiency of training data. In this case, SwitchBoard is utilized
to train a six layer DNN with one internal bottleneck layer, us-
ing 48 dimension features (15 PLP +A + AA + 3 pitch) and
3020 senones, which is identical to LID-net. The structure of
the DNN is 48 x 21 —2048 — 2048 — 50 — 2048 — 2048 — 3020.
Once the DNN is trained using the ASR data, the parameters in
the first three layers are transferred to DNN layerI-DNN layer3
of LID-net, as previously discussed. The learning rate of pa-
rameters in the transferred layers is set to one tenth of the newly
added layers, and the number of additional convolutional layers
constrained to the training dataset size.

4.2. Incremental training with language corpus

Despite having transferred most of the LID-net parameters from
a well trained DNN, the remaining parameters cannot be ran-
domly initialized, as in usual practice, since the network con-
sistently fails to converge. We thus train the network layer-
by-layer, and Fig. 4 (b), (c) and (d) illustrates the training se-
quence. We first train LID-net with just one convolutional layer,
for which random Gaussian initialization is used, while other
layers are populated with transferred parameters. We train the
network until it converges, then add another new convolutional
layer which is randomly initialised, and continue training using
the same method. By this means, layers can be successively
added to an arbitrary depth, called incremental training.

S. Experiments
5.1. Experimental Setup
5.1.1. Language training corpus

All the experiments are evaluated on the six most confused lan-
guages from the NIST LRE 2009 dataset: Dari, Farsi, Russian,
Ukrainian, Hindi and Urdu. Most of the speech is collected
from the Conversational Telephone Speech (CTS) and Voice of
America (VOA) radio broadcasts. The training dataset com-
prises about 150 hours of speech, with Equal Error Rate (EER)
used to measure performance. Evaluations are on 30s, 10s and
3s temporal scales, so three independent systems are trained.
Data augmentation is used to expand the training dataset for the
10s and 3s data by segmenting the dataset into 3s chunks with
1.5s overlap and 10s chunks with 5s stride respectively. This
yields approximately 282 hours of 3s segments and 245 hours
of 10s segments, compared to the original 150 hours.

5.1.2. Hybrid temporal evaluation

Since the 30s, 10s and 3s networks are trained independently,
three different temporal scale networks are implemented. In
which case, during testing, 30s data could be segmented into
10s and 3s speech then use the corresponding well trained net-
work to evaluate them separately. Thus 30s test data yields three
temporal scale results for 30s, 10s and 3s, while 10s data uses
the same method to yield 10s and 3s temporal scale results. This
kind of testing procedure is called a hybrid evaluation method,
explored further in Section 5.5.

5.1.3. Baseline systems and proposed networks

For comparison, the following methods are implemented:
LID-net: Proposed LID-net without hybrid temporal eval-
uation, trained and tested independently using 30s, 10s or 3s
data.
LID-HT-net: Proposed LID-net with hybrid temporal eval-



uation. In the 30s test dataset, time scale could be 30s, 10s or
3s. In the 10s dataset, time scale can be 10s and 3s. The 3s
dataset has only a 3s timescale.

BN-GMM/i-vector: This is the first baseline system used
for comparison. The i-vector method uses DBF as front-end
features and Gaussian posterior probability for back-end mod-
eling [7]. LDA and within class covariance normalization
(WCCN) are applied to compensate the variability, and cosine
distance is used to obtain the final score.

BN-DNN/i-vector: This is the second baseline system used
for comparison. The procedure is the same as BN-GMM/i-
vector except that the back-end model is derived from a well-
trained DNN trained on ASR data.

Test systems are identified using the notation “Nzxy”, indi-
cating experiment x, variant y.

5.2. Baseline system configuration

Our baselines are the state-of-the-art BN-GMM/i-vector and
BN-DNN/i-vector systems, where both the acoustic feature and
the DNN structure configuration with BN layer are exactly the
same as the proposed LID-net. The systems are built as follows.

(1) Train a 6 layer DNN (48 x 21 — 1024 — 1024 — 50 —
1024 — 1024 — 3020) with an internal BN layer using the
SwitchBoard dataset;

(2) Extract 50-dimenstion DBF from the trained DNN;

(3) Construct zeroth-order and first-order Baum-Welch statis-
tics. The front-end features are all DBF and back-end mod-
eling by Gaussian posterior probability and output of DNN
for ASR in BN-GMM/i-vector and BN-DNN/i-vector re-
spectively.

(4) Train T-matrix using expectation maximization (EM) with
5 iterations;

(5) Extract 400-dimension i-vector of both training and evalu-
ation data;

(6) LDA and WCCN are applied to compensate for the inters-
ession variability. Cosine distance is used to calculate the
final score of each speech utterance.

5.3. Evaluation of different convolutional filter sizes

To ascertain how many frames are suitable for constructing
LID-senones, we explore different filter sizes of 50 X n in the
first convolutional layer, beginning with n = 1 and testing with
a step size of 5. In this experiment, all LID-net architectures
have just one convolutional layer and the number of channels
after convl is 1024. Results are presented in Table 2.

Table 2: Comparison of LID-net with Different Filter Sizes in
Convolutional Layer. Performance is given in EER (%) for all
test conditions.

| No. [ System Name H 30s [ 10s [ 3s ‘
NI11 LID-net 50x1 filter 10.37 | 12.89 | 18.51
N12 | LID-net 50x6 filter 10.11 | 12.58 | 17.39
N13 | LID-net 50x11 filter 9.47 12.26 | 16.76
N14 | LID-net 50x16 filter 9.06 11.94 | 16.80
N15 | LID-net 50x21 filter 8.95 11.65 | 16.24
N16 | LID-net 50x26 filter 8.91 11.92 | 16.54

From Table 2 we can see results from different filter sizes
in the convolutional layers. The performance trend in the same

temporal scale decreases as the context window become larger.
The 10s and 3s network performance is best when n = 21.
A filter size of 50 x 26 has slight improvement in 30s and a
slight decrease for 10s and 3s. This means that the trained LID-
features best indicate LID-senones every 41 frames (i.e. two
context windows), which is longer than the 21 frames com-
monly used for ASR in 7-1-3-7 SDC features [24]. While 21
frames is a good representation of the basic phonemic unit in
ASR, LID-senones appear to benefit from more frames. As a
consequence, a filter size of 50 x 21 is selected for all of the
following experiments.

5.4. Evaluation of convolutional layer complexity

After one convolutional layer, some coarse LID-senones can
be obtained, which are available for calculating statistics infor-
mation. Still, we wish to extract more succinct LID-senones
through additional convolutional layers, which are applied with
an incremental training strategy. Table 3 explores how the per-
formance of the system changes when appending additional lay-
ers.

Table 3: Comparison of Different Complexities in Convolu-
tional Layers. The name “LID-net 1024C+128C” means two
convolutional layers with the first having 1024 channels and the
second having 128 channels. All the filter sizes of the first con-
volutional layer are 1@50x 21 and the other layers are C@Q1 x 1,
where C' is the number of input channels. The performance is
given in EER (%) for all test conditions.

| No. [ System Name H 30s [ 10s [ 3s ‘
NI15 LID-net 1024C 8.95 11.65 | 16.24
N21 LID-net 1024C+128C 8.87 9.26 13.72
N22 LID-net 1024C+256C 8.91 8.92 13.52
N23 LID-net 1024C+512C 10.27 | 9.26 13.83
N24 | LID-net 1024C+128C+64C 8.20 9.63 13.26
N25 | LID-net 1024C+256C+64C 7.87 8.52 13.34
N26 | LID-net 1024C+256C+128C 8.76 7.79 | 13.23

In Table 3, N15 was the best performing system from Table
2 whose convolutional filter size is 50 x 21 with 1024 channels.
In N21, N22 and N23, the number of channels in the first con-
volutional layer is fixed, but there is an additional convolutional
layer. Three complexities of 128, 256, 512 channels are evalu-
ated respectively. N24, N25 and N26 add a third convolutional
layer to the above three systems. The results indicate that per-
formance improves considerably by moving from two to three
layers in 30s and 10s networks while results show significant
improvement moving from one to two convolutional layers in
the 3s network. To explain this, we think the statistics in 30s/10s
tests are more abundant than for 3s LID-senones, therefore only
a more complex network can fit the distribution of 30s/10s LID-
senones. In the 3s network the circumstance is the opposite; the
complexity of such a short utterance is simpler, hence a shallow
network can effectively model the distribution. Due to the large
quantity of 3s training data, the more complicated network still
gains some improvement, but this appears to achieve decreasing
returns. In the two convolutional layer 30s network, the perfor-
mance become sharply worse with more parameters, due to lack
of training data in 30s compared to 10s and 3s. Still, we see that
the performance of N25 in 30s is counterintuitively worse than
N26 in 10s, and argue that this is mainly for the same reason.



5.5. Hybrid temporal evaluation

In this section, the best performing LID-nets are selected to be
part of LID-HT-net in 30s, 10s and 3s temporal scales respec-
tively. These are namely N25 on 30s, N26 on 10s and 3s. The
performance of the hybrid temporal evaluation is shown in Ta-
ble 4 alongside the current state-of-the-art baseline systems.

Table 4: Results of Hybrid Temporal Evaluation and State-of-
the-Art Systems. The performance is given in EER (%) for all
test conditions.

| No. [ System Name H 30s [ 10s [ 3s ‘

BO1 | BN-GMM/i-vector || 6.47 | 7.49 | 13.37
B02 | BN-DNN/i-vector || 5.84 | 8.02 | 15.27
N31 LID-HT-30s-net 7.87 -
N32 LID-HT-10s-net 6.36 | 7.79 -
N33 LID-HT-3s-net 7.07 | 8.50 | 13.23
N41 | LID-HT-net fusion || 6.07 | 7.73 | 13.23

From the results we can see that the 10s-net achieves best
performance on 30s and 10s test datasets. This is because statis-
tical information is insufficient in 3s, limited by speech length.
The 10s-net has both sufficient statistics as well as an adequate
training dataset. We firmly believe that if adequate training data
was available for the 30s-net, the performance would be much
better. Finally, we perform a simple fusion on the scoring of
the three networks (shown at the bottom of Table 4) indicating
further performance gains. This lends support to the suggestion
that different temporal networks capitalise on complementary
information.

The final LID-net performs well compared with the two
baseline systems. Compared to BN-GMM/i-vector, the 30s and
3s results are better but the 10s result is slightly worse. Com-
pared to BN-DNN/i-vector, the 30s result is slightly worse, but
the 10s and 3s results are clearly better. Note that the i-vector
baselines use both zeroth order and first order Baum-Welch
statistics for training an extractor. In LID-net, what the SPP
layer does is just equivalent to calculating zeroth order Baum-
Welch statistics. The discriminative power of the end-to-end
deep network has thus enabled LID-net to perform as well on
only zeroth order statistics as the i-vector systems do on both
zeroth and first order statistics.

6. Conclusion

In this paper we propose a comprehensive task-aware network
spanning frame to utterance level.

The network is deep but straightforward; first LID-features
are derived from ordinary acoustic features through several
DNN layers, followed by several convolutional layers and then
one SPP layer. LID-senones are expected to be derived from
several frames of context by the convolutional layers, and their
statistics are obtained through the SPP layer.

Despite a compelling architecture, when all of the layers
are trained together, the network suffers serious over-fitting due
to lack of LID training data combined with the large number of
parameters. Hence, we propose starting with a DNN trained us-
ing ASR data, and then specify an incremental training method
that successively transfers training parameters from a smaller
trained network to which a convolution layer is added and then
fine tuned. At the final layer, language ID labels are used with
the back-propagation algorithm for fine-tuning.

Hybrid temporal evaluation is proposed for various time
scales in the same test dataset. We consider that different tem-
poral scales contain complementary information to some de-
gree. Results show that LID-net can achieve good performance,
and this is achieved without utilizing first order Baum-Welch
statistics. The integrated procedure is summarised as follows.

(1) Train a 6 layer DNN (48 x 21 — 1024 — 1024 — 50 —
1024 — 1024 — 3020) with an internal BN layer using the
SwitchBoard dataset;

(2) Transfer the first 3 layers to DNN layerl-DNN layer3 of
LID-net;

(3) Using an incremental training strategy, add convolutional
layers and retrain;

(4) Use hybrid temporal evaluation to obtain different scales of
results on 30s and 10s test datasets.

Despite good performance, LID-net is not perfect. Firstly,
the training data for 30s is clearly not adequate for the complex-
ity of the network. We thus intend using the whole NIST LRE
2009 dataset for training, not just the six most confused lan-
guages. Secondly, only a simple fusion is performed on differ-
ent temporal scales. We consider that if a large neural network
is trained that combines all 30s, 10s and 3s networks together,
it would have six temporal scales including 30s, 15s, 10s, Ss,
3s and 1.5s due to the [1,1] and [1,2] SPP layers. This may
achieve even better performance due to the existence of com-
plementary information at different temporal scales.
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