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Abstract
Accurately measuring the neural correlates of consciousness is a grand challenge for neu-

roscience. Despite theoretical advances, developing reliable brain measures to track the

loss of reportable consciousness during sedation is hampered by significant individual vari-

ability in susceptibility to anaesthetics. We addressed this challenge using high-density

electroencephalography to characterise changes in brain networks during propofol seda-

tion. Assessments of spectral connectivity networks before, during and after sedation were

combined with measurements of behavioural responsiveness and drug concentrations in

blood. Strikingly, we found that participants who had weaker alpha band networks at base-
line were more likely to become unresponsive during sedation, despite registering similar

levels of drug in blood. In contrast, phase-amplitude coupling between slow and alpha oscil-

lations correlated with drug concentrations in blood. Our findings highlight novel markers

that prognosticate individual differences in susceptibility to propofol and track drug expo-

sure. These advances could inform accurate drug titration and brain state monitoring during

anaesthesia.

Author Summary

Though scientific understanding of how brain networks generate consciousness has seen
rapid advances in recent years, application of this knowledge to accurately track transi-
tions to unconsciousness during general anaesthesia has proven difficult due to consider-
able variability in this gradual process across individuals. Using high-density
electroencephalography, we studied changes in these networks as healthy adults were
sedated using propofol. By measuring their behavioural responsiveness and amount of
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sedative in their blood, we found a striking pattern: the strength of their brain networks
before sedation predicted why some participants lost consciousness while others did not,
despite registering similar blood levels of drug. By uncovering underlying signatures of
this variability, our findings could enable accurate brain monitoring during anaesthesia
and minimise intra-operative awareness.

Introduction
Understanding how the human brain reversibly generates and loses consciousness, through
complex interactions of neural activity at multiple spatial and temporal scales, is a grand chal-
lenge for modern neuroscience. Recent theoretical advances have argued that consciousness
changes when the balance between integrated and differentiated neural activity is affected [1–
4]. However, accurately tracking these changes in brain dynamics remains a key research chal-
lenge with potentially wide-ranging applications, and is complicated by the significant individ-
ual variability in the trajectory along which consciousness is lost and regained.

The process of reversibly inducing unconsciousness using anaesthetic drugs like propofol is
commonplace in clinical medicine [5]. However, tracking brain activity to accurately assess the
depth of anaesthesia in an individual is currently not a universal component of clinical practice.
Indeed, surface electroencephalography (EEG) is relatively easy to measure from the scalp and
has long been known to index changes in brain dynamics induced by anaesthetic action [6],
but it is still not universally used in the clinical setting. This is despite the fact that intraopera-
tive awareness during surgery continues to result in pain and distress [7], highlighting the need
for reliable depth of anaesthesia monitoring in the operating room. The absence of ubiquitous
brain monitoring during general anaesthesia is, in part, due to the lack of robust EEG markers
derived from current advances in neuroscience [8–12], which can accurately track the loss and
reestablishment of reportable consciousness. Monitoring of brain states is currently limited to
proprietary systems with mixed results [13–15]. Crucially, one reason for this is the consider-
able individual variability in susceptibility to anaesthetic dosage [16], which adversely affects
the accuracy of these systems [17].

To better understand the factors underlying this variability, we combined the measurement
of high-density resting state EEG from healthy volunteers sedated with propofol with measure-
ment of drug concentrations in blood, in addition to objective assessment of behavioural
responsiveness. With this aim in mind, we administered propofol at dosages expressly aimed at
engendering varying degrees of mild to moderate sedation across our participant group, rather
than complete unconsciousness in all of them. Employing modern functional EEG tools to
assess spectral power and connectivity, we identified key changes in brain networks using
graph-theoretic tools, and linked these changes to individual variability in drug concentrations
and loss of behavioural acuity during sedation. Drawing upon previous research [18–21], we
hypothesised characteristic impairments in the strength and topography of EEG power and
connectivity, especially manifesting in the slow and alpha frequency bands, alongside adminis-
tration of propofol. In addition to confirming these hypotheses, our findings highlight valuable
EEG-derived signatures that can not only track the actual amount of propofol in blood, but
also predict loss of responsiveness even before any drug is administered. These findings con-
tribute to the current interest in identifying consistent markers of the loss and recovery of con-
sciousness during propofol sedation. In the clinical context, these findings could lead to more
accurate drug titration and brain state monitoring during anaesthesia.

Brain Connectivity during Propofol Sedation
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Results

Drug and behaviour are distinct variables
The behavioural changes accompanying the administration of progressively increasing
amounts of propofol (Fig 1A) are shown in Fig 1B, which plots the hit rate of participants as a
function of the level of sedation. Based on binomial modelling of their hit rates (see Materials
and Methods), we identified a subgroup of 7 participants who became behaviourally impaired
at this simple task during moderate sedation; 13 others remained responsive throughout,
though their reaction times were impaired during sedation (Fig 1C). We designate these two
groups as drowsy (green triangles) and responsive (blue triangles) in the following descriptions.
As expected, we found a highly significant interaction between group and sedation level in hit
rates (Fig 1B; F(3) = 38.4, p = 9e-09). Further, in the responsive group, there was a significant
effect of sedation on reaction times (Fig 1C; F(2) = 14.6, p = 0.0002).

In comparison to the relative distinction between the two groups in their hit rates, there was
considerably more overlap in drug concentrations measured in blood plasma (Fig 1D). We

Fig 1. Experimental manipulation andmeasurement of behaviour and propofol concentration in blood plasma. (A) Resting state EEG data were
collected for four ~7 minute periods from each participant: at baseline before administration of propofol, at mild sedation, moderate sedation, and finally at
recovery. Each resting state data collection was followed by a two-choice speeded response task to assess behavioural responsiveness. Blood samples
were collected and analysed offline to measure and correlate actual levels of propofol in plasma with EEGmeasures. (B) Two sub-groups of participants,
responsive and drowsy, were identified based on binomial modelling of the change in their behavioural responsiveness due to sedation. (C) Reaction times in
the responsive group were slower during moderate sedation. (D) Measured drug concentrations in blood plasma overlapped between the two groups.

doi:10.1371/journal.pcbi.1004669.g001
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found a relatively weaker interaction between group and level of sedation in drug concentra-
tions: F(2) = 4.7, p = 0.0242, and the difference between drug concentrations in the two groups
reached significance only during moderate sedation (p = 0.0181). This finding points to the
well-studied inter-individual variability in pharmacodynamic impact of propofol [16, 17], and
motivates the development of more accurate signatures of responsiveness that can be measured
passively and non-invasively during propofol sedation.

Alpha connectivity is compromised during sedation
Connectivity between EEG channels was assessed to directly investigate the impact of propofol
on the structure of brain networks of oscillatory neural interactions, using the debiased
weighted Phase Lag Index (dwPLI, see Fig 2 and [22]). Here, we define brain networks as the
characteristic patterns of scalp-level connectivity observable in human EEG at different

Fig 2. Summary of EEG data analysis pipeline. Cross-spectral density between channel pairs was estimated using dwPLI. Symmetric connectivity
matrices generated were thresholded before the estimation of graph-theoretic metrics. In the connectivity matrix shown (bottom left), the threshold has been
set to depict only top 30% of strongest connections. In the network topograph (bottommiddle), intra-modular links in modules identified by the Louvain
algorithm are indicated by colour.

doi:10.1371/journal.pcbi.1004669.g002
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frequencies, generated by underlying cortical networks [23] with firing rates oscillating at their
natural frequencies [24]. We employed the dwPLI connectivity matrices in each band to con-
struct such EEG-derived brain networks, and used graph-theoretic algorithms to quantitatively
compare their topological properties. By representing the EEG channels as nodes of a network
and the strength of dwPLI between them as weighted, undirected links between them, we calcu-
lated four measures that captured micro-scale (clustering coefficient), meso-scale (modularity
and participation coefficient) and macro-scale properties (characteristic path length) of each
participant’s network at each level of sedation (see bottom right panel of Fig 2 for a visual
description of these properties). Importantly, these metrics were chosen a priori to summarise
key network properties that we expected to be modulated during propofol sedation.

In the alpha band, median dwPLI across all channel pairs was significantly more reduced in
the drowsy group during mild (p = 0.003) and moderate sedation (p = 0.01). Further, the clus-
tering coefficient [25, 26], which measures local efficiency, was significantly lower (Fig 3A) in

Fig 3. Summary of alpha connectivity changes. There were significant differences in the levels of local
clustering (A) and global path lengths (C) between responsive and drowsy groups during mild and moderate
sedation. Alpha networks in the drowsy group were hence significantly less locally and globally efficient.
Crucially, these differences between the groups were apparent even at baseline, when the groups were
behaviourally indistinguishable. Within the responsive group, decreasing levels of local (B) and global (D)
efficiency were associated with slowing of reaction times during moderate sedation, relative to baseline.
There were also significant differences in meso-scale modularity (E) and the presence of hub-like nodes with
high participation coefficients (F) between responsive and drowsy groups during moderate sedation. Alpha
networks in the drowsy group were more modular, with weaker hubs, even at baseline. Error bars depict
standard error of the mean.

doi:10.1371/journal.pcbi.1004669.g003
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the frontal alpha networks of the drowsy group during mild (p = 0.007) and moderate sedation
(p = 0.04). Furthermore, within the responsive group, clustering during moderate sedation
tended to decrease linearly alongside increasing reaction times (Fig 3B), though this effect only
approached significance. Conversely, characteristic path length (Fig 3C), the inverse of global
efficiency, was significantly higher during mild (p = 0.0004) and moderate sedation
(p = 0.0035), and tended to increase with slower reaction times among responsive participants
(Fig 3D). Taken together, small-worldness, a combined measure of a network’s local and global
efficiency (calculated as the ratio of clustering to path length [26, 27]), was significantly
reduced in the drowsy group during mild (p = 0.005) and moderate sedation (p = 0.03). At the
meso-scale, these drowsy alpha networks were also more modular at moderate sedation (Fig
3E, p = 0.02), and hence more separable into relatively disconnected topological modules [28].
Crucially, these modules lacked hub nodes that connected them into an integrated network, as
evidenced by statistically lower standard deviation (p = 0.002) of participation coefficients [29]
in the drowsy group (Fig 3F). Together, these network differences demonstrated that the fron-
tal alpha connectivity in the drowsy group did not have the network capacity of the occipital
alpha network commonly observed in human resting EEG during wakefulness.

These changes in alpha networks can be understood more visually with Fig 4A. At baseline,
both groups had prominent frontocentral and occipital modules of strong connectivity. While
these modules persisted through moderate sedation in the responsive group, the structure of
connectivity networks in the drowsy group shifted to qualitatively distinct state comprising of
coherent, frontally centered oscillations that manifested as a frontal module (Fig 4B), before
reverting back to the typical pattern of baseline connectivity during recovery. On the whole,
this shift in alpha connectivity mirrors the frontal shift in alpha power (Fig 5) commonly
observed during propofol sedation [18, 19, 30–32]. In contrast to these changes in alpha net-
works, no differences were observed between delta networks in the two groups (see S1 Fig).

Fig 4. Alpha band connectivity networks.Network topographs are visualised at each level of sedation,
averaged over participants in the responsive (A) and drowsy (B) groups. Colour of the scalp indicates the
degree of a node. The normalised height of an arc connecting two nodes indicates the strength of the dwPLI
link between them. Network modules were identified by the Louvain algorithm. For visual clarity, of the
strongest 30% of links, only the intra-modular links are plotted. The colour of an arc identifies the module to
which it belongs. While alpha band networks in the responsive group exhibited a relatively stable fronto-
centro-occipital pattern of connectivity, the drowsy group altered significantly, and registered a pronounced
frontally centered module during moderate sedation.

doi:10.1371/journal.pcbi.1004669.g004
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Alpha network properties before sedation predict susceptibility to
propofol
Spectral connectivity in the alpha band identified a prospectively valuable determinant of the
variability in susceptibility to propofol seen in the behavioural data. During the baseline period
before sedation, though there were no differences in the topography or relative strength of
alpha power between the responsive and drowsy groups (Fig 5A and 5B), there were significant
differences in median dwPLI (p = 0.0085) and key network properties that captured the topo-
logical structure of connectivity in the alpha band. Specifically, alpha networks in the drowsy
group were already less clustered (Fig 3A; p = 0.04) and less small-worldy (p = 0.0187) at base-
line. They were also more modular (Fig 3E; p = 0.04), and had fewer hubs (Fig 3F; p = 0.0018).
Remarkably, these baseline alpha network differences were evident when the two groups of
participants were indistinguishable, both in terms of behavioural hit rates (Fig 1B) and occipital
alpha power (Fig 5B). Furthermore, this predictive value of brain connectivity was unique and
specific to the alpha band, and not evident in other frequency bands (see S1 Fig). In line with
previous findings [31, 33, 34], sedation selectively increased beta/gamma power and connectiv-
ity among responsive participants, but baseline power or connectivity in these bands was not
significantly different between the two groups.

To explicate this result further, Fig 6A depicts a scatter plot of alpha network small-world-
ness in each participant measured during pre-drug baseline, against their consequent beha-
vioural hit rates and drug concentrations measured during moderate sedation. Though there

Fig 5. Alpha band power changes as a function of sedation. (A) Alpha power topography in the drowsy
group progressively switched from an occipital to a frontal pattern during moderate sedation, while the
responsive group remained stable throughout. (B) The resulting interaction between group and level of
sedation on their alpha power contributions from frontal vs. occipital channels was statistically significant (F
(3) = 10.1, p = 0.0008). (C) Even amongst the responsive group, reduction in relative occipital alpha power
during moderate sedation was correlated with relatively slower reaction time, relative to baseline.

doi:10.1371/journal.pcbi.1004669.g005
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was considerable variability in small-worldness across the responsive group at baseline, the
drowsy group already had relatively lower small-worldness in comparison. To directly test
whether participants who already had less robust brain networks at baseline later became
drowsy or unresponsive during moderate sedation, Fig 6B plots the individual hit rate trajecto-
ries of the participants separated based on whether their baseline small-worldness was above or
below the median. Those in the group with high baseline small-worldness remained respon-
sive, and had significantly higher hit rates during moderate sedation (Fig 6B, inset; p = 0.0093).
This predictive role of alpha brain networks in characterising individual variability in suscepti-
bility to propofol is exemplified in Fig 6C, which depicts their evolution in two ‘drug concen-
tration-matched’ participants. Despite registering relatively similar drug concentrations at
moderate sedation, one of them remained responsive while the other became completely unre-
sponsive. As is evident, the latter participant already had a comparatively less robust alpha net-
work already at baseline, which then evolved into a frontally alpha module at moderate
sedation. In comparison, the responsive participant had a relatively more small-worldy, less
modular network at baseline, which was sustained during moderate sedation. These differences
potentially explain why the drowsy group, whose alpha networks were already compromised to
some degree, became behaviourally impaired while the responsive group did not, despite both
groups registering overlapping levels of propofol as measured in their blood at moderate seda-
tion. It is important to note that these differences observed in the baseline alpha networks were
abolished at recovery (see Fig 3A and 3C). This suggested that these differences between the
two groups were essentially dependent on the latent alpha network state of the participants at
the beginning of the data collection rather than any individual trait, and were ‘reset’ after the
washout of the drug.

Fig 6. Baseline alpha band networks predict loss of responsiveness duringmoderate sedation.
Participants in the drowsy group had relatively lower small-worldness (A) already at baseline. Median split of
participants based on baseline small-worldness predicted eventual loss of responsiveness (B) despite similar
blood levels of drug concentration during moderate sedation (C).

doi:10.1371/journal.pcbi.1004669.g006
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Slow-alpha phase-amplitude coupling is linked to drug concentrations in
blood
We found that, at baseline, participants in both responsive and drowsy groups had similar tem-
poral coupling between the phase of slow oscillations and alpha power, with negative values of
phase-amplitude coupling (PAC; Fig 7A) over occipital channels (delineated in Fig 5A, top
left). This pattern persisted during mild sedation and only changed during moderate sedation
within the drowsy group, in whom it shifted toward positive PAC values, before reverting back
to negative PAC at recovery. There was a significant interaction in occipital PAC between level
of sedation and group (F(3) = 3.8, p = 0.021). Fig 7C provides more detail on this, using angular
histograms of alpha power distributed over slow phase, for a pair of representative participants,
one in each of the two groups, responsive and drowsy. At baseline, occipital alpha power was
either evenly spread over slow phase, or was greater near the trough of the slow oscillation,
resulting in a trough-max distribution and negative PAC. During moderate sedation, only the
drowsy participant’s distribution shifted towards peak-max positive PAC with greater alpha
power near slow oscillation peaks. At recovery, this distribution reverted back to a trough-max
pattern with negative PAC. Further, we also found a highly significant positive correlation
between PAC and drug concentrations in blood during moderate sedation (Fig 7B). This corre-
lation did not manifest during mild sedation or recovery, when drug concentrations were rela-
tively low. Importantly, there was no significant correlation between PAC and reaction times.
This was in contrast to the correlations between alpha power/connectivity and reaction times
(Figs 3B and 3D and 5C), and highlights a novel dissociation between phase-phase and phase-
amplitude coupling: while the former correlated with responsiveness as measured by hit rates
and reaction times, the latter correlated drug concentrations in blood.

Fig 7. Phase-amplitude coupling (PAC) between slow and alpha oscillations. Coupling between
ongoing slow phase and alpha power over occipital channels delineated in Fig 5A (top left) shifted from a
trough-max to a peak-max (C) distribution in the drowsy group during moderate sedation, resulting in a
significant interaction between group and sedation in PAC values (A). Crucially, these subject-wise PAC
values significantly correlated with drug concentrations measured in blood across both groups during
moderate sedation (B).

doi:10.1371/journal.pcbi.1004669.g007
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Juxtaposed with previous research, our findings are convergent with existing evidence for
characteristic changes in PAC alongside propofol induction. Trough-max slow-alpha PAC has
been shown to accompany transitions to unconsciousness in frontal EEG channels, which then
switches to a peak-max pattern in the same channels following loss of consciousness during
deep sedation [18, 35]. While we have highlighted complementary changes in occipital chan-
nels, we also replicated these previous findings. In frontal channels, slow-alpha PAC values
were close to zero at baseline, and progressed to a trough-max pattern during moderate seda-
tion (see S2 Fig). This resulted in a significant interaction between level of sedation and group
in frontal PAC values (F(3) = 4.1, p = 0.0136), with the drowsy group showing a significantly
stronger trough-max pattern than the responsive group during moderate sedation (p = 0.011).
Further, as with occipital PAC, there was a significant correlation between frontal PAC and
drug concentrations in blood during moderate sedation (S2 Fig).

Discussion
Our experimental design used propofol sedation to engender transitional states of responsive-
ness that varied across participants. The levels of drug administered produced a variable pat-
tern that spread the participant group along a spectrum of varying behavioural impairment,
rather than resulting in complete unconsciousness in all of them. Using EEG to track brain
activity and measuring actual levels of drug in blood alongside this spectrum of impairment
has enabled us to identify neural markers that dissociate conscious report from drug exposure
[2], and makes the results presented here distinctive in their contribution to advancing under-
standing of the neural markers of loss of consciousness due to propofol.

We have built upon previous research that has shown that while occipital alpha power pro-
gressively drops as participants become behaviourally compromised as measured by reaction
times, the qualitatively dissimilar onset of frontal alpha power is a characteristic marker of the
loss of consciousness [18, 19, 30, 32, 36]. Confirming our hypotheses, while this frontal alpha
generates meso-synchronous modules, brain network connectivity as a whole is nevertheless
impaired. Graph-theoretic measures quantify this loss of the capacity of individual brain net-
works in the alpha band, linking them to concomitant variability in behavioural impairment
across participants. Small-worldness is commonly seen as a measure of the cost-versus-effi-
ciency optimality of a network configuration, and our findings converge with previous evi-
dence [37] highlighting the reduction in the efficiency of cortical networks during loss of
consciousness during propofol sedation, potentially due to dysfunctional modulations in thala-
mocortical connectivity [8, 38, 39]. It is worth noting that a similar breakdown in the capacity
of alpha networks has also been reported with other anaesthetic agents like sevoflurane and
ketamine [40–42]. This is despite the fact that these distinct anaesthetic agents had varying
effects on EEG oscillations and, unlike propofol, did not always produce increases in frontal
alpha. Hence the observed changes in alpha networks due to sedation cannot be explained as a
shift of alpha power and connectivity from posterior to anterior areas. Rather, our results,
along with these previous findings, point toward a broader understanding of characteristic sig-
natures of connectivity in alpha networks as potentially reliable correlates of reportable con-
sciousness [43].

Measurement of drug concentrations at each level of sedation dissociated a principal clinical
pharmacodynamics target per se (sedation and consequent behavioural unresponsiveness)
from incidental pharmacodynamic consequences of drug exposure during propofol sedation.
The considerable individual variability in the susceptibility to anaesthesia has been docu-
mented [16], and is evident in the large overlap between blood levels of drug in our responsive
and drowsy groups. While our measurement of modulations in phase-phase coupling in delta
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and alpha bands during sedation showed clear correlations with behavioural impairment, we
have also demonstrated a latent relationship between slow-alpha phase coupling and individual
variation in drug concentrations. It is important to distinguish these dynamic slow oscillations
from stable slow cortical potentials observed during propofol anaesthesia [12], and from delta
oscillations during sleep [44]. This link between PAC and individual levels of drug in blood
was not observed in the delta or alpha bands separately, in either power or connectivity. Ana-
lytical approaches used for estimating Bispectral Index (BIS, see [45] that do not take phase
information into account are unlikely to detect this key marker of individual drug concentra-
tion [18]. Hence our findings are relevant to the challenge of engendering an appropriate level
of unconsciousness by accurately tailoring drug concentrations to individuals, a key consider-
ation with significant implications for clinical anaesthesia.

Finally, by tracking individual brain networks across levels of sedation, we have shown that
the quantifiable robustness of alpha connectivity networks in the awake state before sedation
predicts susceptibility to propofol. Specifically, given two behaviourally indistinguishable indi-
viduals undergoing administration of sedative, the one with the more robust, small-worldy
alpha network with well-connected hubs is likely to require a greater amount of drug to render
them unresponsive to the same degree. It is important to note that this latent variability in the
state of alpha connectivity at baseline could be detected despite the lack of any significant dif-
ferences in behavioural performance or alpha power at that time. Orthogonally, slow-alpha
PAC complements this predictive capability by tracking the concentration of propofol in blood
plasma. This set of results, if replicated and verified in the clinical context, could contribute to
reliable applications of brain monitoring for tracking and accurately modulating consciousness
with anaesthetics during routine surgery.

Materials and Methods

Ethics statement
All healthy controls gave written informed consent. Ethical approval for testing healthy con-
trols was provided by the Cambridgeshire 2 Regional Ethics Committee. All clinical investiga-
tions were conducted in accordance with the Declaration of Helsinki.

Participants
A convenience sample of 22 neurologically healthy adults participated in the study. Data from
two participants could not be used due to technical issues, leaving 20 participants (9 male; 11
female) (mean age = 30.85; SD = 10.98) whose data were analysed.

Experimental protocol
Each experimental run began with an awake baseline period lasting 25–30 minutes (Fig 1A)
following which a target-controlled infusion of propofol [46] was commenced via a computer-
ized syringe driver (Alaris Asena PK, Carefusion, Berkshire, UK). With such a system the anes-
thesiologist inputs the desired (“target”) plasma concentration, and the system then
determines the required infusion rates to achieve and maintain the target concentration (using
the patient characteristics which are covariates of the pharmacokinetic model). The Marsh
model is routinely used in clinical practice to control propofol infusions for general anesthesia
and for sedation.

Three blood plasma levels were targeted– 0.6μg/ml (mild sedation), 1.2μg/ml (moderate
sedation), and recovery from sedation. The state of mild sedation was aimed to engender a
relaxed but still responsive behavioural state. At each target level, a period of 10 minutes was
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allowed for equilibration of plasma propofol concentrations to attain a steady state, following
which behavioural tests and EEG measurements were commenced. After cessation of infusion,
plasma propofol concentration exponentially declined toward zero. Computer simulations
with the TIVATrainer pharmacokinetic simulation software revealed that plasma concentra-
tion of propofol would approach zero in 15 minutes leading to behavioural recovery; hence
behavioural assessment was recommenced 20 minutes after cessation of sedation. Blood sam-
ples of 1cc each were taken at the beginning and end of the mild and moderate sedation states,
and once at recovery, as indicated in Fig 1A. In total, 5 blood samples were taken during the
study. These samples were analysed offline for characterising the significant inter-individual
variability in actual propofol levels in blood plasma. We confirmed that the samples taken at
the beginning and end of mild and moderate sedation had similar values of propofol concen-
tration. The average of the two values, along with the value at recovery, were used as distinct
covariates for EEG data analysis.

Behavioural data collection
At each of the 4 steady-state levels above, participants were requested to perform a simple beha-
vioural task involving a fast discrimination between two possible auditory stimuli (Fig 1A). Spe-
cifically they were asked to respond with a button press to indicate whether a binaurally
presented stimulus was a buzz or a noise. These stimuli constituted either broadband noise or a
harmonic complex with a 150Hz fundamental frequency (buzz). Forty such stimuli, twenty of
each kind, were presented in random order over two blocks, with a mean inter-stimulus interval
of 3 seconds. We calculated a participant’s cognitive processing of these stimuli at each sedation
level based on their hit rates, i.e., percentage of correct responses. In addition, we measured reac-
tion times based on the delay between auditory tone onset and correct button press.

Behavioural data analysis
We employed binomial modelling to distinguish participants who became behaviourally
impaired during moderate sedation, from those who remained responsive, albeit with slower
reaction times. Specifically, we fitted a binomial distribution to each participant’s hit rates at base-
line and during moderate sedation. With each fitted model, the distribution parameter p, the
probability of a correct response, and its 95% confidence intervals were estimated. For a given
participant, if the confidence interval at moderate sedation was lower than and non-overlapping
with that at baseline, they were considered to have become significantly impaired, and we desig-
nated them as drowsy. If the confidence intervals overlapped, we designated them as responsive.

EEG data collection and pre-processing
From each participant, approximately 7 minutes of 128-channel high-density EEG data were col-
lected at each level of sedation. EEG was measured in microvolts (uV), sampled at 250Hz and ref-
erenced to the vertex, using the Net Amps 300 amplifier (Electrical Geodesics Inc., Eugene,
Oregon, USA). Participants had their eyes closed in a resting state during data collection.

Data from 91 channels over the scalp surface (Fig 2) were retained for further analysis.
Channels on the neck, cheeks and forehead, which tended to contribute most of the move-
ment-related noise, were excluded. Retained channels were filtered between 0.5–45Hz, and seg-
mented into 10-second long epochs. Each epoch thus generated was baseline-corrected relative
to the mean voltage over the entire epoch. Data containing excessive eye movement or muscu-
lar artefact were rejected by a quasi-automated procedure: abnormally noisy channels and
epochs were identified by calculating their normalised variance and then manually rejected or
retained by visual inspection. After pre-processing, a mean (SD) of 38 (5), 39 (4), 38 (4) and 40
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(2) epochs were retained for further analysis in the baseline, mild sedation, moderate sedation
and recovery conditions, respectively. An ANOVA revealed no statistically significant differ-
ence between the numbers of epochs retained. Finally, previously rejected channels were inter-
polated using spherical spline interpolation, and data were re-referenced to the average of all
channels. These processing steps were implemented using custom MATLAB scripts based on
EEGLAB [47].

Spectral Power and connectivity analysis
Fig 2 depicts the data processing pipeline employed to calculate spectral power and connectiv-
ity measures from the clean EEG datasets. Spectral power values within bins of 0.25Hz were
calculated using Fourier decomposition of data epochs using the pwelchmethod. At each chan-
nel, power values within canonical frequency bands, namely delta (0–4Hz), theta (4–8Hz),
alpha (8–15Hz), beta (12-25Hz) and gamma (25–40Hz), were converted to relative percentage
contributions to the total power over all five bands. Alongside, cross-spectrum between the
time-frequency decompositions (at frequency bins of 0.49Hz and time bins of 0.04s) of every
pair of channels was used to calculate debiased weighted Phase Lag Index (dwPLI, see [22]).
For a particular channel pair and frequency band, mean dwPLI across all time at the peak fre-
quency within each band was recorded as the ambient amount of connectivity between those
channels. dwPLI is a sensitive measure of connectivity between cortical regions that has been
shown to be robust against the influence of volume conduction, uncorrelated noise, and inter-
subject variations in sample size [22], and has previously be used to characterise connectivity
in pathological [48] and pharmacological [49] alterations in consciousness. However, as
pointed out by Vinck, Oostenveld [22], dwPLI is relatively insensitive to true connectivity at
phase differences close to 0 or 180 degrees. Further, the actual locations of brain sources pro-
ducing dwPLI connectivity between a pair of sensors might not necessarily be spatially proxi-
mal to those sensors. Nevertheless, for the purposes of this study, it provides a robust measure
for estimating how this indirect connectivity is affected by propofol sedation.

Phase-amplitude coupling analysis
Phase-amplitude coupling (PAC), also referred to as cross-frequency coupling [50], was used
to measure the propofol-induced changes in the relationship between the phase of ongoing
oscillations in the slow (0.5–1.5Hz) and alpha (8–15Hz) bands at each channel. Calculation of
PAC was based on the Direct PAC estimator formally defined by Ozkurt and Schnitzler [51]
and implemented in the Brainstorm 3.2 toolbox [52]. Purdon, Pierce [18] and Mukamel, Pir-
ondini [35] previously identified changes from trough-max to peak-max PAC during propofol
sedation, as determined by whether the slow oscillation is at its trough (at a phase angle of pi)
or its peak (phase angle of 0) when alpha power is maximal, respectively. Such variations were
measured by assigning a negative or positive sign to the amplitude of the complex-valued Direct
PAC estimator depending on whether its phase angle was closer to pi or 0 radians, to indicate
trough-max and peak-max coupling respectively.

Graph-theoretic analysis
The 91x91 subject-wise, band-wise dwPLI connectivity matrices were thresholded to retain
between 50–10% of the largest dwPLI values. They were then represented as graphs with the
channels as nodes and non-zero values as links between nodes. The lowest threshold of 10%
ensured that the average degree was not smaller than 2 � log(N), where N is the number of
nodes in the network (i.e., N = 91). This lower boundary guaranteed that the resulting networks
could be estimated [26]. Similar ranges of graph connection densities have been shown to be the
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most sensitive to the estimation of ‘true’ topological structure therein [53, 54]: higher levels of
connection density result in increasingly random graphs, while lower levels result in increas-
ingly fragmented graphs.

At each step of the connection density between 50% and 10% in steps of 2.5%, the thre-
sholded graphs were submitted to graph-theoretical algorithms implemented in the Brain Con-
nectivity Toolbox [55]. These algorithms were employed to calculate metrics that captured key
topological characteristics of the graphs at multiple scales, and avoided the multiple compari-
sons problem entailed by comparing large numbers of network connections. These included
the micro-scale clustering coefficient and macro-scale characteristic path length [26], alongside
meso-scale measures like modularity and community structure [56], and participation coeffi-
cient [29]. Here, this functional notion of modularity measures the extent to which the nodes
of a graph can be parcellated into topologically distinct modules with more intra-modular links
than inter-modular links [28]. Modularity as calculated by the heuristic Louvain algorithm,
and all measures derived therefrom, were averaged over 50 repetitions. Next, each graph metric
thus derived was normalised by the average of 50 null versions of the metric similarly derived,
but after repeatedly phase-randomising the original cross-spectra and recalculating dwPLI for
each channel pair. Finally, the small-worldness index of a graph was calculated as the ratio of
normalised clustering coefficient to characteristic path length [57].

Metrics were compared using two-way ANOVAs with one non-repeated (group) measure
and one repeated (level of sedation) measure. The obtained p-values were corrected for viola-
tions of sphericity using a Greenhouse-Geisser correction. Pairwise tests between groups were
corrected for multiple comparisons using Tukey’s HSD test. The ability of graph metrics of
individual participants to predict their behaviour was tested using robust linear regression [58]
to calculate R2 and p-values.

Supporting Information
S1 Fig. Delta, theta, beta and gamma band power and connectivity as a function of seda-
tion. (A) Delta power topography in the drowsy group showed prominent increases over
occipital channels during moderate sedation, but there were no group differences in connectiv-
ity (B). Theta power decreased in both groups with sedation (C), with no differences in connec-
tivity (D). In contrast, beta and gamma band power over bilateral frontocentral channels (E
and G) and small-worldness (F and H) increased in the responsive but not the drowsy group.
However, unlike in the alpha band, neither baseline power nor connectivity in any of these
bands predicted later loss of responsiveness during moderate sedation.
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S2 Fig. Phase-amplitude coupling (PAC) between slow and alpha bands in frontal channels.
Coupling between ongoing slow phase and alpha power over frontal channels delineated in Fig
5A (bottom right) shifted from near zero to a trough-max distribution during moderate seda-
tion, resulting in a significant interaction between group and sedation in PAC values (A). As
seen in occipital channels, subject-wise PAC values in frontal channels significantly correlated
with drug concentrations measured in blood across both groups during moderate sedation (B).
(TIFF)
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