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Abstract

This paper assesses the relationship between courses taken in high school and college

major choice. It considers individuals as holding a portfolio of relative human capital

rates that may either be similar to those in their major - specialized - or different from

those in their major - diversified. Using High School and Beyond survey data, I find

a U-shaped relationship between the diversification of high school courses portfolio,

measured by the differences from the typical student in the major, and college perfor-

mance. The underlying relation linking high school to college is assessed by estimating

a structural model of high school human capital acquisition and college major choice.

Policy experiments suggest that taking an additional quantitative course in high school

increases the probability that a college student chooses a science, technology, engineer-

ing, or math major by four percentage points with little effect on college performance.
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1 Introduction

This paper assesses the relationship between courses taken in high school and college

major choice. In many countries, there has been an emphasis on encouraging science,

technology, engineering and math (STEM) majors. These fields are of critical impor-

tance to economic competitiveness in an increasingly global and highly competitive

economy. For example, in the U.S., the President’s Council of Advisors on Science

and Technology promotes the education of future STEM professionals through various

grants and programs. The council has stated that over the next decade, a million addi-

tional STEM graduates will be needed. In the U.K., the Royal Academy of Engineering

reported that the nation will need 100,000 new graduates with STEM majors annually

until 2020.

Several studies have shown the existence of ability sorting with respect to college

major. This sorting can be driven either by variations in the cost of successfully com-

pleting degree requirements or variations in expected returns to different majors by

ability in different majors. Arcidiacono (2004) finds that predetermined factors, such

as preferences and quantitative skills, play a larger role in major choice than economic

returns. Based on these findings, this paper examines the role of high school education

in developing quantitative skills and evaluates the potential effectiveness of high school

curriculum changes that promote enrollment and success in STEM majors.

I use data from the U.S. High School and Beyond (HS&B) survey, which has detailed

information on high school and college students. The first observation is that the types

of courses taken in high school vary significantly for each college major. Mathematics

and engineering majors take more quantitative courses in high school while business

and literature majors have more high school humanities courses. Natural sciences and

health majors take a mix of quantitative and humanities courses in high school.

However, there is a U-shaped relationship between the diversity of courses taken in

high school and college performance: students who specialize in a particular subject as

well as those who broadly diversify across subjects tend to have a higher college grade

point average (GPA) in their corresponding major than those who slightly diversify.

This result is the consequence of uncertainty about which majors students will pursue

in college. Moreover, it suggests that the high school curriculum plays a crucial role in
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a student’s choice of college major and their post-secondary performance.

Based on the link between high school and college, I propose and estimate a struc-

tural model of high school human capital acquisition and college major choice. By

explicitly modeling the educational decision-making process, I both disentangle the

heterogeneous effects of specialization and control for the self-selection inherent in ed-

ucational outcomes.

Students in the model differ in their abilities in different subjects, as well as their

preferences for these subjects. They are endowed with different initial abilities and

have two decision periods; in the first period, they choose which high school courses to

take, and in the second period, they choose their college major (or decide to not attend

college). Students choose high school courses that maximize their expected discounted

utility across college majors. Upon graduation from high school, in the second period,

they choose their majors and observe their major-specific preferences.

Estimation results suggest that students who specialize in a particular area in high

school tend to prefer quantitative majors in college, even after controlling for selection.

Particular high school courses also play an important role in influencing a student’s

choice of college major. More quantitative courses in high school increase the like-

lihood of majoring in natural sciences, engineering, and math and physics, whereas

more humanities courses mean a student is more likely to pursue a major in social

sciences and humanities, or business and communications. These results suggest that

an appropriate high school quantitative curriculum can increase enrollment in STEM

majors.

I examine different counterfactuals to confirm this intuition. First, I examine what

we would expect to happen if students were to take one more high school course on a

particular subject. Second, I examine the expected outcome if all students faced the

same high school curriculum for quantitative, humanities and life sciences courses, thus

eliminating the possibility to specialize in a particular subject area in high school.1

Both experiments substantially affect college major choice and performance. Taking an

additional quantitative course in high school increases the probability of enrollment in

STEM majors by four percentage points. In contrast, taking an additional humanities

1Note that all these simulations are not taking into account general equilibrium effects; they are designed

to illustrate how much college major choice and performance is due to high school curriculum.
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course in high school almost has no effect on enrollment in STEM majors. An additional

life sciences course in high school also has a very small effect on a student’s choice of

college major. Imposing a single curriculum on all high school students also boosts

enrollment in humanities majors. The large effect of standardized curriculum suggests

that high school specialization plays a key role in influencing what majors students

choose. While high school curriculum plays a non negligible role in the major choice,

all experiments suggest a limited effect on college performance. These results contribute

to the literature linking high school curriculum to future life achievements.

There is an extensive literature on college major choice.2 Most of the theoretical

frameworks in this literature imply that college major choice is influenced by expecta-

tions of future earnings, preferences, ability, and preparation (see Altonji, Blom, and

Meghir (2012) for more details). Turner and Bowen (1999) document the sorting that

occurs across majors by scholastic aptitude test (SAT) math and verbal scores. Ar-

cidiacono (2004) finds that differences in monetary returns explain little of the ability

sorting across majors, and concludes that virtually all ability sorting is a result of pref-

erences for particular majors in college and the workplace, with the former being larger

than the latter. I extend the model in Arcidiacono (2004) to add college preparation

in high school, where students can choose which subjects to study.

A related strand of the literature studies the causal effect of high school curriculums

on labor-market outcomes (see Altonji (1995), Levine and Zimmerman (1995), and Rose

and Betts (2004)). More recently, Joensen and Nielsen (2009) and Goodman (2009)

use quasi-experiments to estimate the effect of math coursework on earnings. These

studies all aim to determine whether skills accumulated in high school matter for college

performance and labor-market outcomes.

Unlike these papers, I investigate the effect of the composition of skills acquired

in high school on college performance. This study, therefore, contributes to existing

studies by introducing multi-dimensional endowments of skills and by studying the ten-

sion between specialization and diversity. In this sense, this paper is closer to Malamud

(2010), Smith (2010), and Malamud (2012), who examine the trade-off between special-

ized and diversified human capital portfolios in college and their effect on labor-market

2See Montmarquette, Cannings, and Mahseredjian (2002), Zafar (2009), Stinebrickner and Stinebrickner

(2011), Arcidiacono (2005), and Arcidiacono, Aucejo, and Hotz (2013).
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outcomes. Silos and Smith (2014) study how diversification and specialization strategies

in college influence income dynamics. They find that diversification generates higher

incomes for individuals who switch occupations, whereas specialization benefits those

who stick with one type of job. This paper considers the effect of diversification earlier

in the educational process, by investigating how specialization in high school affects

college major choice and performance.

The paper proceeds as follows. Section 2 provides a brief overview of the U.S. high

school system and explains why the U.S. system offers a unique opportunity to investi-

gate the effect of high school course choice on college outcomes. Section 3 describes the

data and the sample used for empirical analysis and provides a reduced-form analysis

of the relationship between diversification in high school and college performance. A

dynamic model of college and major choice as well as the econometric techniques used

to estimate the model are described in Section 4. Section 5 provides the empirical and

simulation results. Section 6 concludes.

2 Background: High school course choice in the

U.S.

The U.S. high school education system provides a particularly appropriate setting to

examine almost all aspects of the effect of high school preparation on college. In the

U.S., high school students have significant control over their education and are allowed

to choose their core classes. This allows us to understand not only how success in each

high school subject affects college outcomes, but also how the choice of courses affects

college outcomes. The degree of control given to students varies from state to state3

and from school to school. This leads to a substantial variation in students’ academic

experiences, both between schools in the same state and across states (Lee, Croninger,

and Smith (1997), Allensworth, Nomi, Montgomery, and Lee (2009)). Despite the

wide variations in curriculums, many schools require that courses in the “core” areas of

English, science, social studies, and math be taken every year. However, some schools

3See for example Goodman (2009), Figure 2, for differences in math requirements by state. Graduation

requirements also differ by state (see Bruce Daniel (2007)).
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set the required number of credits and allow students to choose when the courses will

be taken.

The menu of courses available to students depends on a particular school’s financial

and staffing situation. Thus, the available choices are a direct function of the preferences

of teachers, which are usually idiosyncratic. Furthermore, inducements for students to

take a particular set of classes may differ between schools, as certain teachers are hired

or school administrators decide to place greater emphasis on these subject areas. Thus,

there is a substantial element of exogenous variation in course choice across schools due

to the idiosyncrasies of teachers, school administrators and states. I take advantage of

these exogenous variations to identify how the composition of courses taken (specialized

or diversified) in high school affects college performance.

3 Data and descriptive statistics

3.1 Data

To investigate the empirical relationship between courses completed in high school and

post-secondary education outcomes, I use data from the 1980 HS&B survey. This panel

data set tracks students from high school to post-secondary, and contains detailed in-

formation on courses taken in high school as well as post-secondary outcomes. The

HS&B survey was conducted by the National Center for Education Statistics. A na-

tionally representative sample of high school sophomores, from 1980, were interviewed

once every two years from 1980 to 1986, and again in 1992. These interviews recorded

detailed information about the high school courses students took and their grades. This

high-quality data provides my measures of human capital and high school preparation.4

My data on students’ college performance comes from the Post-Secondary Education

Data System (PEDS), which contains institutional transcripts from all post-secondary

institutions attended for a sub-sample of students present in the HS&B survey. My

estimations are performed using data from 1980, 1982, 1984 and 1986 surveys.

The HS&B survey contains 14,825 students. A reduced form and a structural model

4High schools usually run from either grade 9 or 10 to grade 12. I restrict my analysis to grades 10 to 12,

since this data is available for all students in the sample.
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are estimated. For the reduced form model the sample contains individuals who are

enrolled in college. These individual should also have information for any variable

used in the reduced form model. I started with a sub-sample of 5,533 students having

transcripts encoded for both high school and college. Dropping those who do not

have SAT and have not participated to the first follow-up and base year test reduces

the sample to 1,921 individuals. Eliminating individuals with missing observations for

control variables, and dropping outliers reduce the sample to 1,083. The structural

model used information from base year tests to college. Starting with a sample of 1,921

individuals cleaning the data yields a final sample of 1,222 students for estimation. This

sample contains students who have never attended college and high school dropouts.

For both models, it was not possible to take into account college dropouts and major

switches, because of data limitation.

There is a huge amount of data dropout. Table 1 shows the average characteristics

for restricted samples and for the dropped sample (with the initial sample being of

1,921 individuals). It also reports the results of a t-test for difference in mean in the two

samples. Apart from college GPA, all the other tests assume equal variance. There is

not a large difference between the dropped sample and the restricted one for all but one

variable at the 5% level. The variable with statistically different mean is the proportion

of African Americans. However, the under-representation of African Americans is not

likely to affect our results since the race is not central to the research questions. Sample

selection may not, therefore, be a concern.

3.2 Empirical structure and descriptive statistics

This subsection provides empirical findings that show a possible relationship between

high school preparation and college outcomes.

I group subjects studied in high school into different categories (which could be

interpreted as types of human capital). Each student has a human capital portfolio

based solely on the courses that the student takes in high school. The portfolio contains

seven categories of study.5 High school courses are grouped into the following categories:

5The Appendix provides a step-by-step description of the construction of human capital portfolios, as well

as college major aggregation.
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(i) quantitative (mathematics and physics (Quant.)), (ii) reading and writing (R. &

W.), (iii) social sciences and humanities (Humanities), (iv) life sciences (Life sci.), (v)

business and communications (Bus. & Com.) , (vi) Arts, and (vii) Other.6

Let us study how the composition of high school courses is related to major choice.

Given courses taken in each subject (or type of human capital) k = 1, ...K, the weights

in the human capital portfolio of an individual i are:

ωi,k =
coursei,k∑K
j=1 coursei,j

,

where K = 7 and coursei,k is the number of courses taken in subject k.7 Table 2

displays these portfolio weights by major across the population. For each major, the

table contains the average, across individuals, of the weights in each of the seven subject

areas.

The proportion of quantitative subjects in high school varies from 0.165 for educa-

tion majors in college to 0.227 for engineering majors. It is not surprising that college

students majoring in humanities took a greater proportion of reading and writing classes

in high school (0.259) than other college majors. Likewise, business and communica-

tions majors took a greater proportion of business and communications courses in high

school (0.095) than did other college students. Although the difference in means in

some subjects appears small, the last two rows of Table 2 shows that these differences

are statistically significant. In summary, students enroll in a college major related to

subjects they concentrated on in high school.

Let us now investigate how the composition of high school courses will affect college

performance, through a reduced form regression analysis. This helps us investigate the

data beyond raw mean difference. To this end, a measure of diversification is defined.

With the chosen diversification measure, identification of the courses composition effect

is discussed.

Each student i has a vector of human capital weights, ωi,k, which measures the

weight of skill type k in his overall portfolio. This student portfolio can be viewed as

6My results are robust to the structure of these categories; I considered other potential categories and

obtained similar results.
7I focus on the distribution of courses by examining the share of total courses in a given subject, rather

than the number of courses taken.
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specialized or diversified. A skewed or balanced portfolio does not necessarily imply spe-

cialization or diversification of human capital investments. Some students may choose

a uniform allocation of courses across fields to self-insure against shocks or because a

particular major explicitly rewards balanced skills.8 To evaluate the level of diversifica-

tion, I follow Silos and Smith (2015); I assess how well tailored an individual’s acquired

skill set is for a particular college field by comparing human capital investments to a

benchmark for that field.9

Let us define the measure of diversification as

ρi,m =

√√√√ K∑
k=1

(ωi,k − ω̄k,m)2

where ω̄k,m denotes the average portfolio for major m observed in Table 2. I assume

that a portfolio is chosen for a given major if that portfolio is “close” to the average

portfolio of that major. Self-insurance against shocks is simply the distance between

the portfolio weights and the typical portfolio of the college major. Thus, students can

specialize in major-related subjects, or hedge with respect to a major by diversifying

their portfolios. Small values of ρ thus mean a student has specialized, and large values

indicate a student has diversified.

I estimate the following reduced-form equation:

Gi = α0 + α1ρi + α2ρ
2
i + α3Xi + αm + αh + εi

where αm and αh are fixed effects for major and high school, respectively. Gi is the

college GPA of individual i in major m from high school h. X represents control

variables such as SAT scores, socioeconomic status (SES) and gender.

Identifying the effect of diversification is one of the main challenges of this paper.

The identification is based on two assumptions. The first one is that there is a certain

amount of exogeneity in high school supply of courses. The second is that students are

identical in term of unobserved ability within a major.

8The student can for example not be accepted in his first-choice major, which can be viewed as a shock.
9This measure is related to the diversification index in the trade literature from Krugman (1992), which

uses an absolute distance instead of a square root. See also Palan (2010) for a review of the diversification

index in trade. I also consider other diversification measures, such as the Gini index. The results obtained

are qualitatively the same.

9



A key identifying assumption of the diversification effect is that the variation in

courses supplied across schools is exogenous. However, course choice can be shaped

by school requirements and tracking policies. I use the fact that some HS&B survey

students came from the same high schools to control for high school fixed effects. This

eliminates concerns about differences in high school curriculums driving the results.

Identification of the diversification effect is, therefore, coming from within school vari-

ation in course selection. The intuition is that each student will react differently to

school requirements and this exogenous variation will help identify the diversification

effect.

On the other hand, within school course selection can be affected by individual abil-

ity. An interesting feature of the diversification measure is that, under the assumption

that students are identical in term of unobserved ability within, it can help reduce the

major specific ability bias.10 Under these assumptions, the variations in the diversi-

fication measure within a school is driven by exogenous factors like preference for a

particular teacher or individual specific needs.

To evaluate the validity of this assumption, controls for ability are used, like SAT-

Math scores, SAT-Verbal scores and the number of courses taken in each high school

subject and the base year standardized test scores. The effect of ability variables on the

relationship between GPA and diversification will inform us about unobserved ability

bias.

Table 3 shows that the relationship between GPA and the measure of diversification

ρ is quadratic, large and significant. The results are robust to controlling for gender,

race, and SES. It is also robust to regional disparities by including a three regional

dummies. The major-specific effect is controlled for by including a dummy variable for

each major. It is worth noting that the inclusion of several ability control variables

does not change the effect of diversification on college performance. In Table 3, it can

be noted that the coefficients on ρ and ρ2 are not significantly affected by the inclusion

of ability measures like SATs and base year tests. This suggests that the effect of

diversification did not suffer too much from ability bias.

The U-shape is also robust to the level of course taken in different type of subject

10Readers interested in the identification of the diversification effect can refer to the working paper version

of this paper.
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in high school. This means that individuals with the same level of high school math

courses, but that differ in other courses will have different performances. The inclusion

of college major dummies has the largest effect on the diversification coefficients (see

Table 3 columns 3 and 4). However, this effect is not very large. The fact that most

of the controls do not have a very strong effect on diversification is a sign that even

if there is some selection on unobservables it is very unlikely that this effect is large

enough to cancel the U-shaped relationship between college GPA and diversification

(see Altonji, Elder, and Taber (2005) for discussion on selection on observed and unob-

served variables). To formally test for the presence of a U-shape, I use the procedure

proposed by Lind and Mehlum (2010). The results show that there is indeed a U-shaped

relationship.11

These empirical findings show the importance of high school preparation in de-

termining students’ college majors and performance. However, mean statistics and

parameter estimates may be subject to a selection bias due to the presence of unob-

served characteristics. I, therefore, propose and estimate a structural model of high

school human capital acquisition and college major choice. This enables me to not

only to control for potential selection bias on unobserved variables but also to conduct

counterfactual experiments to study the potential effects of various curriculum policies

in high schools.

4 Structural model of high school human capital

choice

This section proposes and estimates a model of high school human capital acquisition

and college major choice. In the model, individuals differ in both their innate ability to

learn and in their preferences for different college majors. I assume that students know

their ability to acquire imperfectly substitutable skills in high school through courses.

They choose their high school courses to maximize their expected utility across college

majors. Upon high school graduation, students choose to pursue a particular college

major or do not enroll in college.

11The results of the test for U-shaped relationship are in the footnote of Table 3
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Individuals live a finite number of period and have a discount factor β ∈ (0, 1).

They choose their human capital investments, i.e. a set of high school courses, in the

initial period (t = 0) to optimize expected discounted utility.

There are several types of skills that are differently useful for all majors. In other

words, the high school skills are useful in college, but their importance differs from one

major to another. I denote an individual’s high school set of course by s = (sQ, sH , sNS),

where sQ is the number of quantitative courses, sH is the number of humanities courses

and sNS is the number of natural sciences courses.12 Individuals can choose their

portfolio composition by selecting more high school courses in a particular area.13

Before choosing their high school courses, individuals draw abilities τ = (τQ, τH , τNS)

from distribution H(τ), where τNS represents the ability to accumulate natural sciences

human capital. Individuals know how useful each type of human capital is for each col-

lege major. However, they are unsure about an idiosyncratic component of their college

preferences. A student’s initial or innate abilities and his preferred college major pro-

vide an incentive for the student to specialize by acquiring skills that reflect his personal

circumstances. In contrast, the risk of low utility draws in each college major provides

an incentive to acquire a more widely applicable portfolio of human capital.14

Once an individual has acquired a skill set of high school courses (s), they decide

whether or not to enter college in the second period (t = 1). Those who choose to enter

college also select a major. Although they have a general idea, before they invest in

their portfolio of skills, of how well they are likely to fit into a given major, it is only

after the completion of high school and when they enter to college that their true fit

in a major becomes known; actual experience in a major reveals an individual’s true

preference for that major.15

12In the estimation I used seven types of courses or human capital like in the reduced form part. However

to ease the presentation I have used only three types of courses. Quantitative human capital is measured by

the number of high school courses taken in math and physics. Humanities human capital is measured by high

school courses taken in reading and writing, humanities or business and communication. Natural sciences

human capital is the number of high school biology and chemistry courses.
13Students could also change their portfolio by doing more homework or tutoring in a particular area, but

this behavior is not observed in the data.
14The student may discover that he is not very good at a major, or that he does not like a major as much

as he thought he would.
15For simplicity, I assume that students make a one-time decision about their college major; I ignore the
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The timing of the model is as follows:

• In period 1: Individuals draw abilities τ from distribution H(τ).

• In period 2: They choose the number of courses to take in each high school

subject.

• In period 3: Individuals choose a major. They receive new information about

their abilities and preferences in that major and accumulate human capital.

4.1 College major choice

In this subsection, I specify the model of college major choice given high school out-

come. Once individual decide their college major, there is no decision left. Base on

results of the reduced-form in Section 3, the college performance measured by GPA (G)

is a function of individual observed abilities, the level of diversification as well as demo-

graphic characteristics, such as gender and SES.16 Specifically, performance in college

takes the following form:

G = η0 + η1ρ+ η2ρ
2 + η3s+ η4XG + ηm + ε1

The model also contains a major-specific fixed effect, ηm, as well idiosyncratic shocks

(the ε1’s), which are drawn from distributionN (0;σ2G). I assume that the human capital

gains in high school by attending courses (sk) affect college performance directly and

through the level of diversification (ρ) of the student. I also use SAT math and verbal

scores as a measure of observable ability.

The utility of choosing a college major m is given by

ucm = ϑ0cs+ ϑ1cXcm − cm(s,G) + vm + εm

where εm is a generalized extreme value (GEV) distribution. The fixed intercept (vm)

represents the combined effect of all omitted major-specific covariates that cause some

possibility that students may do post-graduate work or drop out of college.
16Due to data limitations, I do not include a wage equation in the model. However, given that GPA

has a positive effect on future earnings (see Arcidiacono (2004)), it can be used as a proxy for future wages.

Moreover, several recent studies suggest that monetary factors are not the main driver of college major choice

(see Beffy, Fougère, and Maurel (2012), Carneiro, Hansen, and Heckman (2003), and Delavande and Zafar

(2014))
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students to be more predisposed to a particular major. The variables Xcm are individual

characteristics that could influence college major preference like gender, performance

in college, SATs, state wage in manufacturing and courses taken in high school. This

college major utility includes the cost of effort needed for a particular combination of

high school courses (s) and major to achieve a performance level (G). It reflects the

fact that high school preparation can make some major more enjoyable and also affect

the effort needed to succeed.

The utility from being in high school is given by

uh = −ch(τ, s) + ε

where ε is normally distributed. Acquiring high school human capital has a cost ch(τ, s).

This high school utility implies that the cost of attending a course in a particular area

depends on individual initial ability.

Let us now specify the costs functions using marginal costs. I assume that the

marginal high school cost of acquiring a specific high school human capital depend of

your initial ability and the quantity of courses already taken in the area. The intuition is

that, more advanced courses require more effort and initial abilities reduce the marginal

cost. The marginal cost of acquiring high school human capital k is:

Mchk(τ, s) = ϑ3hk + ϑ4hksk + ϑ5hkτ

where Mchk is the marginal cost of acquiring skill k in high school. ϑ.hk are parameter

of the cost function contribution of producing human capital (k).

The college cost functions is cm(s,G). The marginal benefit of acquiring a specific

high school human capital (k) for a student entering major m is:

Mcmk(G) = ϑ4mk + ϑ5mkG

where Mcmk is the marginal benefit of acquiring high school skill k for major m. ϑ.mk

are parameters observed with error; that is why I control for major-specific fixed effects,

vm. Having appropriate high school skills make the subject more enjoyable for the

student and may also reduce the effort needed to perform well.

Introducing cost of effort in college may imply that even if an individual were allowed

to enroll in any major, the individual may not choose to attend the highest-paying major

because of the effort required or their lack of preparation.
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Individuals also have the option not to attend college. In this scenario, the individual

receives a utility uo, where the o subscript indicates that the individual chooses an

outside option.

College students choose the major with the highest ucm, i.e. the major that yields

the highest utility. I assume that εm follows a GEV distribution. Special cases of the

GEV distribution require the use of a multinomial logit or nested logit model. I use

a nested logit model; this GEV distribution as set out in McFadden (1978), allows for

errors to be correlated across multiple nests while still being consistent with random

utility maximization.17

I assume that majors are grouped into four nests:

• Nest 1: Quantitative majors (math, physics and engineering)

• Nest 2: Business & communications, humanities, education and military majors

• Nest 3: Health and natural sciences majors

• Nest 4: No college

Let uc
′
m be the net present value of the indirect utility for completing major m.

F
(
eu

c′
)

=
∑
m

(∑
N

exp

(
uc

′
mn

η

))η
+ exp (uo)

The error terms are known to the individuals, but they are not observed by the econo-

metrician. Therefore, from the econometrician’s perspective, the probability of choosing

17The framework from McFadden (1978) is as follows. Let r = 1, ..., R be an index of all possible choices.

Define a function G(y1, ..., yR) on yr for all r. If G is non negative, homogeneous of degree 1, approaches

+∞ as one of its arguments approaches +∞, it has non-negative nth cross-partial derivatives for odd values

of n, and non-positive cross-partial derivatives for even values of n, then McFadden (1978) shows that

F (ε1, ..., εR) = exp{−G(e−ε1 , ..., e−εR)}

is the cumulative distribution function for a multivariate extreme value distribution. Furthermore, the prob-

ability of choosing the rth alternative conditional on the observed characteristics of the individual is given

by

P (r) =
yrGr(y1, ..., yR)

G(y1, ..., yR)

where Gr is the partial derivative of G with respect to the rth argument. This is the same as in Arcidiacono

(2005).
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a major m is given by

Pr(m) =

exp

(
uc

′
mn
η

)(∑
N exp

(
uc

′
mn
η

))η−1

F
(
euc

′
) .

Before choosing a major, individuals first choose their high school human capital. The

net utility from the outside option, which is not going to college, is normalized to zero.

4.2 Choice of high school human capital

After deciding on a college major, there are no decisions left. Let uc1 indicate an

individual’s optimal choice of college major. Individuals need to choose how much of

the different types of human capital to accumulate in high school. They choose the

level of high school human capital (s) that yields the highest discounted utility V0(s, τ):

V0(s, τ) = uh + βE0(u
c
1|τ)

For each type of human capital, s∗k is the optimal level of human capital in the area

(k).18 Let us consider

s̃∗k = s∗k + εk = θ0k + θ1kτ + θ2kG+ θ3km+ εk

where εk is the normally distributed forecast error. It is independent of initial abilities,

college performance and major. The observed chosen level of high school courses (sk)

is:

sk =

 s̃∗k if s̃∗k > 0

0 if s∗k ≤ 0

The optimal high school human capital choice implies that the number of courses

chosen in high school depends on the initial abilities, the expected major choice and the

expected level of GPA in college. I estimate the coefficients of the model with a Tobit

model. The parameters of this equation are functions of deep structural parameters.

But we will not try to recover them because they are not going to be useful for our

counterfactual analysis.

18The solution solves the Euler equation Mck = βE0(uc1k|τ). If I apply the envelope theorem to uc1, I

get E0(uc1m|τ) = βϑ0ck − βE0(Mcmk(s,G))) and ϑ4hksk + ϑ5hkτ + ϑ3hk = βϑ0ck − βMcmk(G). Thus,

s∗k = θ0m̂k + θ1m̂kτ + θ2m̂kG
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4.3 Identification and estimation strategy

In this subsection, I discuss how several key parameters of the model are identified

and how they are going to be estimated. Two versions of the model are estimated.

In the first case, I assume that there is no selection on unobservables for high school

courses and major choice as well as no unobserved omitted variable affecting college

performance. This assumption is relaxed in the second set of estimations where the

selection on unobservables is allowed.

4.3.1 Identification and estimation without unobservables

In the version of the model without unobservables, all individual characteristics are

assumed to be exogenous, including gender, SES and 10th-grade standardized test score.

Selection into college, irrespective of the major, and state difference in major preference

is controlled for by the hourly state wage in manufacturing. One of the main advantages

of HS&B data is that individuals in the sample have base-year test scores in different

subjects. These scores are in math, science, civics, reading and writing and are my

main exogenous variables useful to estimate high school human capital acquisition. I

assume that there is no correlation across the various stages of the model. Therefore,

selection into majors is controlled for by these exogenous characteristics.

The log-likelihood function is the sum of three pieces:

• L1(η) – the log-likelihood contribution of grade point averages,

• L2(ϑc, η) – the log-likelihood contribution of major decisions, and

• L3(ϑh, ϑc, η) – the log-likelihood contribution of high school human capital deci-

sions.

The total log-likelihood function is then L = L1 + L2 + L3.

Consistent estimates of η can be found by maximizing L1 separately conditional on

knowing your major and high school courses choices. Then, the η is replaced by consis-

tent estimates in L2. A consistent estimate of ϑc can then be obtained by maximizing

L2. I estimate ϑh using L3 and all other estimates. This procedure provides us with

consistent estimates of the model parameters.
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4.3.2 Identification and estimation with unobservables

It is unreasonable to assume that preference parameters are uncorrelated over time

(that is, if one has a strong preference for high school math initially, he is just as likely

as someone who has a weak preference for high school math to choose any major in

college). This is likely not the case. Furthermore, it is unreasonable to assume that

there is no unobserved (to the econometrician) ability that is known to the individual.

To account for unobservable characteristics affecting students’ choice of majors, I

use a mixture distribution that allows errors to be correlated across the various stages

it also provides a way of controlling selection base on unobserved characteristics. More

precisely, I assume that there are two types of individuals. Types remain the same

throughout all stages and individuals know their type. Preferences for particular fields

in college and high school courses may vary across types. For computational simplicity,

in all equations estimated, I assume that the parameters do not vary across types except

for the constant term. Some variables can be used to identify types: initial ability (here

measured by base-year standardized test scores), the level of high school human capital

and college major choice.

The log-likelihood function for a data set with N observations is then given by

L(η, ϑ) =
N∑
i=1

ln(
R∑
r=1

πrLir1Lir2Lir3)

where πr is the proportion of type r in the data and Lir. refers to the likelihood (as

opposed to the log likelihood L) and R is the number of types.19

The log-likelihood function is no longer additively separable. I use the expectation-

maximization (EM) algorithm to solve the problem. The EM algorithm has two steps:

• First, calculate the expected log-likelihood function given the conditional proba-

bilities at the current parameter estimates, and

• Second, maximize the expected likelihood function holding the conditional prob-

abilities fixed.

19The proportion of each type is estimated using the expectation-maximization (EM) algorithm. The Type

1 individuals make up 60% of the population, while the Type 2s make up 40%. See Arcidiacono (2004, 2005)

for other examples of using mixture distributions to control for unobserved heterogeneity in college major

choice models.
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These steps are repeated until there is convergence.

The expected log-likelihood function is:

L(η, ϑ) =
N∑
i=1

R∑
r=1

Pi(r|Xi, α, η, ϑ)[Lir1(η) + Lir2(η, ϑc) + Lir3(η, ϑc,h)]

with Pi(r|Xi, η, ϑ) =
πrLir1Lir2Lir3∑R
r=1 πrLir1Lir2Lir3

Using the EM algorithm helps to recover the additivity of the log-likelihood function.

Parameters can also be estimated at each step, as in the case without unobservable

heterogeneity. Note that all pieces of the likelihood function are still linked through

the conditional probabilities, where the conditional probabilities are updated at each

iteration of the EM algorithm. Arcidiacono and Jones (2003) show that it is possible to

estimate parameters sequentially during each maximization step. Using this sequential

estimator generates large computational savings with little loss of efficiency.

5 Structural model estimation results

This section presents and discusses the results from estimating the parameters of the

performance equations, the structural parameters of the utility function and high school

course choice equations. Results of the model with unobserved heterogeneity are pre-

sented in the estimation of each equation separately.

5.1 College performance regressions

Estimates of the performance equation for the college period are given in Table 4.

The first column displays the coefficient estimates without unobserved heterogeneity,

while the second presents estimates with unobserved heterogeneity approximated by

two types of students.

There is a U-shaped relationship between college performance and diversification

in high school. The size of the coefficients is the same with or without unobserved

heterogeneity. Figure 1 represents college GPA as a function of diversification measure.

The visual representation also suggests the presence of a U-shaped relationship between

GPA and the measure of diversification. This means people with broader minds and
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those with very focused minds will both do well in college.20

The U-shaped relationship suggests a tension between specialization and diversi-

fication. This tension is driven by two opposing forces implied by the diversification

strategy. On the one hand, diversification reduces human capital in the targeted college

major, but on the other hand, it increases knowledge in other subjects. When the diver-

sification starts, the negative effect is stronger. As the level of diversification increases,

more knowledge in other subjects is accumulated. At a turning point, other skills ac-

quired compensate the losses through complementarity, and diversification’s positives

outweigh its negatives.

The tension between specialization and diversification is not new in economics. Usu-

ally, in modern labor markets, workers specialize in specific occupations. Likewise, be-

fore entering college, individuals may acquire particular skills in high school. Every

field of study requires a specific set of skills. Conversely, many skills are useful, to

different degrees, in a wide variety of fields. Psychology, law and biology students all

require some reading, writing and arithmetic ability, albeit in different amounts. More-

over, some fields appear to more heavily emphasize a small subset of particular skills,

whereas other majors more or less weigh skills evenly.

In high school, individuals are uncertain about their future college major. As a

result, a high school graduate may study science courses and end up majoring in an

unrelated field. Faced with uncertainty, a high school student may want to balance their

efforts in case their intended major does not pan out. However, if students specialize

in a particular skill, they may be more productive in a related field – this is why we

first observe a positive effect of specialization. But if they diversify, they will acquire

skills that have some use, even if they are rarely used. As such, there is a certain point

at which diversification has a positive effect on performance. This explanation is based

on substitutability of skill acquired in different high school subjects. There is another

explanation of the U-shaped relationship based on learning.

Indeed, while in high school, individuals could have a guess of their expected major

in high school and some make appropriate investments while others make a slightly

different one. In college, they receive new information. In order to switch against their

early investments and course choices, they have to have new information suggesting

20I thank Paul Oyer for suggesting this interpretation.
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that the destination major is a better fit. This could explain why individuals whose

investments cut against their eventual decision do so well. While those who do not

receive new information and were slightly different do not do as well as others.21

Other variables coefficient are qualitatively similar to those obtain in the literature.

For example, females earn higher grades than their males counterparts. All of the

ability coefficients are positive, with smaller coefficients for SAT-Verbal scores. Without

unobserved heterogeneity, ability in math is particularly useful. Once the mixture

distribution is added, the differences in ability coefficients dissipate. The results with

unobserved heterogeneity show that type 1s receive substantially higher grades.

5.2 Estimate of the utility function parameters

I use the estimates of performance to obtain the second-stage maximum likelihood

estimates of the utility function parameters. Table 5 and Table 6 display the maximum

likelihood estimates for the parameters of the utility function.

The first three sections of Table 5 display the preferences for the three types of high

school courses, depending on a college student’s major. More quantitative courses are

attractive for college majors in natural sciences, engineering, and math and physics,

while more humanities courses are preferred for social science and humanities majors,

as well as business and communications majors.22

Females are more likely to enroll in education or health majors, and less likely to

enroll in quantitative majors.23 There is a sizeable literature on college major choice

and the gender gap,which has documented differences in males’ and females’ college

major choices that are in line with my findings.24 However, the investigation of the

effect of high school choices on the college gender gap is beyond the scope of this paper.

Types 1s are more likely to enroll in science majors in the model with the mixture

distribution. Ability measures (SAT-Math and SAT-Verbal scores), GPA, and GPA×

HScourses interact with major, along with major-specific constants that were included.

21I thank the editor for suggesting this alternative explanation of the U-shaped relationship. Developing a

model integrating these intuitions is beyond the scope of this paper.
22Controlling for unobserved heterogeneity does not change these results.
23Taking unobserved heterogeneity into account does not change this result.
24See Zafar (2009) for more information.
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Consistent with Arcidiacono (2004), I also find that students’ comparative advantages

in their abilities for different majors play a very important role in the choice of a major.

The nesting parameters, for the models with and without unobserved heterogeneity,

are both relatively small for all models. The estimates that are less than one suggest

that preferences for different majors are correlated. Indeed, these nesting parameters

measure the cross-major component of the variance. In particular, had these coefficients

been estimated to be one, then a multinomial logit would have resulted.

5.3 Course choice equations regressions

Estimates of the course equations Tobit model are presented in Tables 7 to 12. As with

performance results, adding controls for unobserved heterogeneity does not significantly

affect other parameter estimates. Those who have high math and science scores from

the grade 10 standardized test tend to accumulate more skills in quantitative and life

sciences subjects. Those with high scores in civics and writing are more likely to

accumulate humanities skills. Type 1s tend to take more life sciences than quantitative

courses or humanities courses in high school.

5.4 Model fit

In order to see how the model matches some key features and trends of the data, Table

13 compares actual data with the predictions of the model. I show two sets of parameter

estimates from the model: one with unobserved heterogeneity, and the other without.

For each of the three groups of high school courses (quantitative, humanities and life

sciences), I show the average number of these courses that different college majors took

while in high school. The actual number of quantitative courses chosen in high school is

very close to what is predicted by the model. The models with and without unobserved

heterogeneity predict the trends in the data extremely well. The predictions with the

mixture model are better than those without.
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5.5 Simulations

Since the model matches the data reasonably well, I can use the model to simulate how

decisions about majors and college performance would vary in different environments.

The purpose of the simulations is to compare policies that may increase enrollment in

STEM majors.

The first policy I examine is an increase in high school quantitative course require-

ments. The second experiment is an increase in high school humanities course require-

ments while the third simulation increases high school life sciences course requirements.

These three simulations are designed to evaluate the impact of a change in high school

curriculum on college outcomes. However, they are not helpful in evaluating the effect

of diversification with respect to performance or to major choice; because they leave

the level of diversification unchanged.

The last simulation assumes that there is no course choice in high school. This means

that students are required to take same courses. I consider the situation in which they

are required to take the average number of courses in the sample for all subjects. The

aim of this counterfactual experiment is to measure the effect of forced specialization

or high school standardization on college outcomes. The level of diversification in this

simulation is zero. The impact of the single curriculum experiment depends on which

curriculum is imposed. Moreover, such a standardization could have general equilibrium

implications. Indeed, standardization may lead to the production of students that are

more suitable for specific majors. Implying excess demand for these majors and shortage

in others majors. This simulation does not take general equilibrium nature of the

problem into account. It, therefore, provides limited evidence and should be interpreted

with caution. However, it can be viewed as the partial effect of standardization in one

school.25

Increasing the enrollment in STEM majors is of considerable interest to many coun-

tries, given that the economy is increasingly driven by complex knowledge and advanced

cognitive skills. Thus, STEM workers are a key component to ensuring competitive-

ness in a global economy. The shortage of STEM majors occurs despite STEM majors

25Taking into account the general equilibrium nature of the question and providing alternative standard-

ization are left for future research.

23



earning substantially more than other college graduates, with the potential exception of

business graduates (see Arcidiacono (2004), Pavan and Kinsler (2012), and Arcidiacono,

Aucejo, and Hotz (2013)).

The first, second and third simulations assume that students each take one more

quantitative course, one more humanities course and one more life sciences course, re-

spectively, in high school. These simulations show the extent to which the choice to

pursue a STEM major is a result of high school course choice. The last simulation

eliminates specialization in high school. The results of the simulation show how much

specialization in high school affects enrollment in STEM majors. Note that these sim-

ulations do not account for general equilibrium effects; the simulations illustrate how

much of the current major choice is due to high school courses choice or specialization.

Table 18 shows that high school quantitative courses affect the decision of pursuing

STEM majors. When students take one more high school quantitative course, the share

of people in STEM and natural sciences majors increases (see Simulation 1). One more

high school quantitative course increases enrollment in STEM majors by four percentage

points.26 The adoption of such a policy for one decade, with an initial number of STEM

graduates of 300,000, will lead to an additional 161,836 STEM graduates.

An increase in one high school humanities course does not decrease enrollment in

STEM majors. One more life sciences course in high school increases enrollment in

natural sciences majors by very small percentage points and reduces enrollment in

other STEM majors. Forcing every student to take the same courses (see Simulation

4) also boosts enrollment in math, physics and engineering majors. The share of stu-

dents choosing math, physics and engineering majors moves up by 8 percentage points.

However, I observed the same amount of reduction is natural science majors. This

suggests that high school specialization plays a key role in major choice. The adoption

of a standardized curriculum for one decade, with an initial number of math physics

and engineering majors graduates of 200,000, will lead to an additional 266,327 math

physics and engineering majors graduates.

These results suggest that increasing high school quantitative course requirements

would improve enrollment in STEM majors. Imposing a uniform curriculum in high

school can also lead to a major increase in some STEM enrollment, however, this

26These results are similar to those obtain by Ning (2014)
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depends on the curriculum imposed. Another aspect of college outcomes investigated

by simulation is college performance.

The simulations one to four show little impact of the change in high school curricu-

lum on college performance. In all majors, the change in performance is less than 3.35%

for all four experiments. It is interesting to note that when the model without unob-

served heterogeneity is used, one more high school quantitative course slightly decreases

performance in all but engineering major. In the model with unobserved heterogeneity,

the college performance slightly increases in all but engineering major. Suggesting a

correction of the unobserved ability bias. An increase of one high school humanities

course does have a larger effect on college performance than others changes.

To summarize, simulations suggest that increased of enrollment in STEM can be

achieved by increasing quantitative requirements in high school. However, changes in

high school curriculum will have a slight effect on college performance.

6 Conclusion

This paper investigates how the high school curriculum influences future college major

choices and performance.

I establish panel data evidence linking an individual’s high school skill sets with

his choice of college major. I find that students usually choose a major in which they

acquired more related skills in high school. However, I find a U-shaped relationship

between diversification and college performance.

This result suggests that there is a tension between specialization and diversification.

The link between high school and college is assessed through a model of high school

human capital acquisition and college major choice. In the model, individuals with

different initial abilities and preferences, who are uncertain about their preferences

for particular college majors, choose a set of high school courses and a college major.

Estimation of the structural parameters of the model suggests that high school course

choice plays an important role in determining college major choice.

More quantitative high school courses make natural sciences, engineering, math and

physics majors more attractive while more humanities courses are preferred by social

sciences, humanities and business and communications majors. Moreover, the estimated
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model remarkably matches some central tendencies in the data.

I then exploit the model to evaluate and quantify the impact of education policies on

enrollment in STEM majors. Policy experiments suggest that requiring students to take

an additional high school quantitative course would boost enrollment in STEM majors

by four percentage points. For the U.S., it means that one additional quantitative

course in high school will contribute for around 16% of the additional STEM graduates

needed by the President’s Council of Advisors on Science and Technology to maintain

U.S. competitiveness.

In this paper, I restrict my attention to the role played by high school specialization

on college major choice and performance. Possible future research could investigate the

effect of high school specialization on labor-market outcomes (e.g. unemployment and

income). It would also be interesting to compare systems with forced specialization in

high school (European-style systems) with more flexible systems (U.S.-style systems).
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A Appendix

A.1 Data

This appendix section describes the data used for estimations. First, I describe the

sample selection. Second, I show how different high school courses are aggregated into

human capital portfolios. Finally, I describe how I aggregate college majors.

Data used for estimations are obtained by merging the PEDS, Sophomores in 1980

- HS&B and high school transcript data sets. This first aggregation reduces the initial

sample of 11,391 to 5,533 students who have both high school and college transcripts.

Dropping students for whom there is no SAT data reduces the sample to 2,064 indi-

viduals, which includes students who did no enroll in college. Eliminating observations

that are missing other control variables reduces the sample to 1,083 individuals that

are used in the reduced-form analysis. To estimate the structural model the sample is

1,222 when accounting for non-college.

To construct high school course portfolios, courses are classified into seven broad

areas of knowledge using the National Center for Education Statistics’ Classification of

Secondary School Courses (CSSC). The measure of human capital in each of these areas

is the sum of courses taken in all subjects belonging to the same group of knowledge.27

- Quantitative (math and physics): 04, 11, 15, 14, 27, 40,41

- Reading and writing:16, 23

- Social sciences and humanities: 05, 13, 19, 24, 37, 38, 39, 42, 43, 44, 45

- Natural and life sciences: 02,17, 18, 26, 34

- Business and communications: 01, 06, 22, 07, 08, 09,10

- Art: 21, 50

- Other: 03, 12, 20, 25, 28, 29, 30, 31, 32, 33, 35, 36, 46, 47, 48, 49, 54, 51, 55, 56

I also aggregate college majors into seven categories: math and physics, engineering,

business and communications, social sciences and humanities, natural sciences, educa-

tion, and health. The criteria for aggregation is the degree of similarity in field topics.

Here is a list of majors by category:

27The number for each field corresponds to CSSC codes.
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- Math and physics: Physics, science technologies, mathematics, Calculus, commu-

nication technologies, computer and information sciences, and computer program-

ming.

- Engineering: Engineering, civil engineering, electrical and communications engi-

neering, mechanical engineering, and architecture and environmental design.

- Business and communications: Construction trades, business and management,

accounting, banking and finance, business and office, secretarial and related pro-

grams, marketing and distribution, communications, journalism, precision pro-

duction, and transportation and material moving.

- Natural and life sciences: Geology, life sciences, geography, and renewable natural

resources, biology, chemistry.

- Social sciences and humanities: Area and ethnic studies, foreign languages, home

economics, vocational home economics, law, letters, composition, American liter-

ature, English literature, philosophy and religion, theology, psychology, protective

services, public affairs, social work, social sciences, anthropology, economics, ge-

ography, history, political science & government, sociology, visual and performing

Arts, dance, fine arts, music, and liberal/general studies.

- Education: Education, adult and continuing education, elementary education,

junior high education, pre-elementary education, secondary education.

- Health: Allied health, practical nursing, health sciences, nursing.
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Figure 1: Relationship between GPA and diversification measure.

NB: This figure shows collapse mean by bins of 0.022 length of the diversification

measure. It suggests a quadratic relationship.

Table 1: Summary statistics
Dropped sample Restricted sample

Mean Std. Err. Obs. Mean Std. Err. Obs. t Pr(|T| > |t|)

Female .523 .0184 737 .559 .014 1,184 -1.510 0.130

Black .135 .012 737 .098 .008 1,184 2.482 0.013

SAT-Math 478.23 4.423 737 477.56 3.247 1,184 0.120 0.901

SAT-verbal 442.79 4.176 737 440.55 3.017 1,184 0.440 0.657

College GPA 2.413 .103 109 2.620 .020 1,184 -1.96 0.052

High school share of courses

Reading and Writing .246 .002 737 .249 .001 1,184 -1.056 0.290

Math .132 .001 737 .130 .001 1,184 1.177 0.239

Life Science .164 .002 737 .167 .001 1,184 -1.049 0.294

Physics .062 .001 737 .064 .001 1,184 -0.996 0.310

Humanities .199 .002 737 .197 .002 1,184 0.649 0.515

Bussiness and Communication .058 .001 737 .060 .001 1,184 -0.956 0.338

NB: This table provides the mean and standard error of some variables in the dropped sample and in the restricted one.

The initial sample is the sample are those who have participated to the first follow-up and have their SATs scores.

t represents the two-sample difference in mean. t statistic and Pr(|T| > |t|) the p-value of the test. There is not

a large difference between most of the variable in both sample, suggesting that sample selection may not be an issue.
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Table 2: High school human capital portfolios by college major
College Major \ Share HS courses Quant. R. & W. Life sci. Humanities Bus. & Com. Arts Others

Bus. & com. .166 .233 .167 .189 .095 .065 .086

Natural sciences .222 .252 .188 .176 .039 .063 .060

Math and physics .227 .244 .164 .186 .057 .058 .063

Education .165 .230 .173 .182 .075 .094 .081

Engineering .227 .226 .173 .171 .050 .065 .088

Social sci./hum. .188 .259 .162 .199 .055 .066 .071

Health .171 .232 .181 .190 .075 .071 .081

Other .162 .222 .173 .176 .062 .089 .116

F 50.218 12.651 3.385 5.174 37.233 9.784 6.410

P-value 0.000 0.000 0.001 0.000 0.000 0.000 0.000

NB: This table shows the mean share of high school subjects by college major. In bold are the largest, relative to other majors,

the share of a specific high school subject. The last two rows show the F statistics and p-values for the test of significance for the

difference in means. For all the subjects, the null hypothesis of mean equality is rejected at 1%.

Table 3: Reduced form estimation results for college performance (GPA as the dependent

variable)

(1) (2) (3) (4) (5) (6) (7) (8)

ρ -7.756*** -9.108*** -9.638*** -6.783** -5.647** -5.216* -5.216* -5.001*

(2.63) (3.20) (3.15) (3.07) (2.83) (2.90) (2.90) (2.68)

ρ
2

19.004*** 20.252** 24.099*** 19.535** 16.057** 14.830* 14.830* 14.018*

(6.81) (8.82) (8.94) (8.56) (7.67) (7.87) (7.87) (7.33)

Female 0.145** 0.204*** 0.161*** 0.184*** 0.183*** 0.183*** 0.245***

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.05)

Black -0.333*** -0.195** -0.179** -0.158* -0.172* -0.172* -0.237***

(0.09) (0.09) (0.09) (0.09) (0.10) (0.10) (0.07)

SES 0.008 -0.060 -0.056 -0.040 -0.040 -0.040 -0.019

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03)

SAT Math 0.171*** 0.157*** 0.095** 0.086** 0.086** 0.090***

(0.03) (0.03) (0.04) (0.04) (0.04) (0.03)

SAT verbal 0.113*** 0.100*** 0.046 0.037 0.037 0.091**

(0.03) (0.03) (0.04) (0.04) (0.04) (0.04)

Major fixed-effect X X X X X

Soph. Test X X X X X

High School course level X X X

High school region X X

Constant 3.349*** 3.490*** 2.126*** 1.723*** 1.300*** 1.798*** 1.798*** 1.403***

(0.24) (0.29) (0.31) (0.30) (0.36) (0.50) (0.50) (0.34)

Observations 1157 1157 1157 1157 1083 1083 1083 1083

R2 0.01 0.04 0.17 0.21 0.21 0.23 0.23 0.26

Numberofgroups 366 366 366 345 345 345

R2overall 0.05 0.20 0.24 0.24 0.23 0.23

NB: *** denotes significance at the 1% level, ** denotes significance at the 5% level, and * denotes significance at the 10% level.

Heteroskedasticity-robust standard errors are clustered by high school in parentheses. Column (1) and (8) are ordinary least

square. While Column (2) to (7) estimate ordinary least squares with a high school fixed-effect. Lind and Mehlum (2010) test for

U-shape, Overall test for presence of a U-shape: t-value=2.10 P > |t| = .0182
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Table 4: Performance regressions: Structural model.
One type Two types

Coefficient Stand. Error Coefficient Stand. Error

ρ -4.216** 1.888 -3.019* 1.738

ρ
2

12.603** 4.956 11.234** 4.559

Female 0.241*** 0.038 0.238*** 0.035

SATM 0.119*** 0.023 0.101*** 0.021

SATV 0.123*** 0.023 0.129*** 0.021

SES -0.011 0.027 0.006 0.025

Business and Communication 0.351*** 0.050 0.332*** 0.046

Natural science 0.360*** 0.102 0.358*** 0.093

Math & Physics 0.363*** 0.078 0.353*** 0.072

Education and Military 0.411*** 0.103 0.394*** 0.095

Engineering 0.161* 0.087 0.185** 0.080

Humanities 0.382*** 0.054 0.357*** 0.049

Health 0.408*** 0.086 0.332*** 0.079

High school courses

Humanities -0.003 0.007 -0.005 0.007

Reading and Writing -0.004 0.009 0.033 0.009

Math -0.012 0.018 -0.003 0.016

Physics 0.005 0.016 0.019 0.015

Life science 0.005 0.008 0.005 0.008

Business and Com. 0.004 0.011 0.024 0.011

Other -0.008 0.006 -0.003 0.005

Type 1 0.51*** 0.03

Variance 0.59*** 0.012 0.549*** 0.011

NB: Major-specific constant terms are included along with courses taken in high school. *** Significant at 1%; ** Significant at

5%; and * Significant at 10%
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Table 5: Utility parameters estimates (1/2)
One type Two types

Coefficient Stand. Error Coefficient Stand. Error

Math & Physics courses

Business and Communication -0.058** 0.027 0.005 0.052

Natural science 0.011 0.134 0.107 0.121

Math & Physics 0.115 0.101 0.329*** 0.092

Education and Military -0.131 0.058 -0.025 0.060

Engineering 0.139 0.102 0.298*** 0.095

Humanities -0.125** 0.056 -0.023 0.056

Health 0.010 0.130 -0.045 0.084

Life science courses

Business and Communication -0.022 0.019 0.071* 0.041

Natural science -0.025 0.120 0.064 0.108

Math & Physics -0.123 0.090 0.084 0.085

Education and Military -0.045 0.044 0.056 0.049

Engineering -0.076 0.092 0.083 0.086

Humanities -0.068 0.040 0.022 0.047

Health -0.028 0.115 -0.092 0.069

Humanities courses

Business and Communication -0.054*** 0.017 -0.002 0.041

Natural science -0.204* 0.119 -0.130 0.106

Math & Physics -0.190** 0.087 0.006 0.081

Education and Military -0.102** 0.041 -0.010 0.048

Engineering -0.170** 0.088 -0.027 0.082

Humanities -0.120*** 0.037 -0.037 0.046

Health -0.194* 0.115 -0.269*** 0.067

Biss. courses

Business and Communication -0.004 0.027 0.112** 0.050

Natural science -0.269* 0.143 -0.207 0.133

Math & Physics -0.177 0.112 0.028 0.104

Education and Military -0.047 0.057 0.050 0.060

Engineering -0.173 0.115 -0.031 0.109

Humanities -0.100* 0.053 -0.019 0.060

Health -0.178 0.134 -0.233** 0.089

Languages courses

Business and Communication -0.010 0.020 0.087** 0.044

Natural science -0.132 0.125 -0.036 0.112

Math & Physics -0.169* 0.096 0.044 0.089

Education and Military -0.046 0.045 0.044 0.053

Engineering -0.139 0.098 0.015 0.091

Humanities -0.016 0.043 0.078* 0.047

Health -0.095 0.121 -0.129* 0.073

Arts courses

Business and Communication -0.031 0.020 0.039 0.044

Natural science -0.238* 0.126 -0.180 0.113

Math & Physics -0.180* 0.096 0.010 0.086

Education and Military 0.001 0.048 0.103** 0.046

Engineering -0.206** 0.098 -0.070 0.090

Humanities -0.093** 0.041 -0.018 0.051

Health -0.191 0.122 -0.278*** 0.077
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Table 6: Utility parameters estimates (2/2)
One type Two types

Coefficient Stand. Error Coefficient Stand. Error

Others courses

Business and Communication -0.047** 0.019 0.008 0.037

Natural science -0.275** 0.124 -0.197* 0.111

Math & Physics -0.156* 0.087 0.038 0.076

Education and Military -0.090** 0.043 0.001 0.043

Engineering -0.137 0.088 0.006 0.077

Humanities -0.118*** 0.040 -0.039 0.043

Health -0.245** 0.119 -0.313*** 0.073

Female

Business and Communication 0.033 0.083 0.111 0.168

Natural science 0.318 0.281 0.384 0.289

Math & Physics -0.488** 0.246 -0.335 0.249

Education and Military 0.100 0.172 0.163 0.177

Engineering -0.916*** 0.258 -0.843*** 0.266

Humanities 0.088 0.167 0.142 0.169

Health 0.711** 0.283 0.884*** 0.292

State Wage 80

Business and Communication 0.013 0.038 0.140** 0.073

Natural science -0.077 0.131 0.062 0.132

Math & Physics -0.048 0.111 0.104 0.110

Education and Military -0.018 0.080 0.081 0.079

Engineering -0.108 0.114 0.004 0.115

Humanities 0.014 0.077 0.119 0.074

Health -0.035 0.127 0.117 0.124

GPA

Business and Communication 0.187 0.136 1.712*** 0.292

Natural science -0.465 1.120 0.331 0.973

Math & Physics -0.145 0.839 2.141*** 0.778

Education and Military 0.559 0.361 1.770*** 0.362

Engineering -0.110 0.862 1.546** 0.808

Humanities 0.284 0.308 1.373*** 0.359

Health 0.160 1.099 -0.495 0.509

SATM

Business and Communication -0.007 0.051 0.014 0.103

Natural science -0.043 0.170 0.082 0.177

Math & Physics 0.386*** 0.144 0.419*** 0.147

Education and Military -0.086 0.105 -0.077 0.108

Engineering 0.467*** 0.146 0.525*** 0.149

Humanities -0.120 0.101 -0.121 0.103

Health -0.358** 0.166 -0.320* 0.171

SATV

Business and Communication 0.071 0.051 0.185 0.106

Natural science 0.225 0.171 0.281 0.180

Math & Physics -0.073 0.147 0.004 0.151

Education and Military 0.136 0.106 0.183 0.112

Engineering -0.176 0.150 -0.132 0.154

Humanities 0.248** 0.102 0.319*** 0.106

Health 0.133 0.166 0.158 0.172

GPA × Hs Courses

Business and Communication 0.116*** 0.039 -0.191** 0.088

Natural science 0.533 0.370 0.262 0.311

Math & Physics 0.355 0.281 -0.391 0.251

Education and Military 0.187 0.108 -0.197 0.114

Engineering 0.285 0.290 -0.268 0.260

Humanities 0.271*** 0.091 -0.075 0.113

Health 0.396 0.364 0.605*** 0.158

Type 1

Business and Communication -0.119 0.185

Natural science 0.029 0.314

Math & Physics 0.007 0.274

Education and Military -0.095 0.193

Engineering -0.029 0.281

Humanities -0.080 0.187

Health 0.186 0.303

Nesting Parameter 0.266*** 0.012 0.331*** 0.023

NB:major-specific constant terms were also included. *** Significant at 1%; ** Significant at 5%; and * Significant at 10%
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Table 7: High school courses choices estimations
Quantitative courses

One type Two types

Coefficient Stand. Error Coefficient Stand. Error

Base year test score

Vocabulary -0.002 0.002 -0.002 0.002

Reading 0.001 0.002 0.001 0.002

Math 0.000 0.001 0.000 0.001

Science 0.003*** 0.001 0.003*** 0.001

Writing -0.002** 0.001 -0.002** 0.001

Civic -0.000 0.001 -0.000 0.001

Expected GPA 2.403*** 0.041 2.436*** 0.048

Expected GPA interacted with major

Business and Communication -0.850** 0.440 -0.906** 0.442

Natural science -0.352 1.283 -0.411 1.282

Math & Physics -1.504** 0.619 -1.529** 0.619

Education and Military -0.965 0.725 -0.968 0.725

Engineering -1.027 0.799 -1.062 0.799

Humanities -1.397*** 0.455 -1.412*** 0.455

Health -0.906 0.999 -0.906 0.999

Major

Business and Communication 1.300 1.213 1.448 1.217

Natural science 0.918 3.729 1.076 3.727

Math & Physics 2.664 1.723 2.734 1.723

Education and Military 2.680 2.074 2.684 2.072

Engineering 3.547 2.038 3.635 2.038

Humanities 2.910*** 1.286 2.946*** 1.285

Health 1.438 2.815 1.447 2.814

Type 1 -0.141 0.104

Variance 1.766*** 0.037 1.765*** 0.037

NB: *** Significant at 1%; ** Significant at 5%; and * Significant at 10%
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Table 8: High school courses choices estimations
Reading and Writing courses

One type Two types

Coefficient Stand. Error Coefficient Stand. Error

Base year test score

Vocabulary -0.001 0.002 -0.001 0.002

Reading 0.001 0.002 0.001 0.002

Math 0.000 0.001 0.000 0.001

Science 0.001 0.001 0.001 0.001

Writing 0.000 0.001 -0.001 0.001

Civic -0.000 0.001 -0.000 0.001

Expected GPA 3.127*** 0.047 3.393*** 0.052

Expected GPA interacted with major

Business and Communication -1.571*** 0.502 -2.029*** 0.484

Natural science -3.504** 1.463 -3.980*** 1.406

Math & Physics -2.301*** 0.706 -2.503*** 0.679

Education and Military -2.754*** 0.827 -2.775*** 0.794

Engineering -4.493*** 0.912 -4.773*** 0.876

Humanities -1.311 0.519 -1.434*** 0.499

Health -2.486** 1.140 -2.483** 1.095

Major

Business and Communication 3.144** 1.383 4.356*** 1.334

Natural science 8.789** 4.252 10.079** 4.087

Math & Physics 4.747** 1.965 5.322*** 1.889

Education and Military 6.095** 2.365 6.128** 2.272

Engineering 10.581*** 2.324 11.29*** 2.234

Humanities 2.753* 1.466 3.046** 1.409

Health 5.633* 3.211 5.702* 3.085

Type 1 -1.147*** 0.114

Variance 2.014*** 0.042 1.936*** 0.041

NB: *** Significant at 1%; ** Significant at 5%; and * Significant at 10%
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Table 9: High school courses choices estimations
Humanities

One type Two types

Coefficient Stand. Error Coefficient Stand. Error

Base year test score

Vocabulary 0.002 0.003 0.002 0.003

Reading -0.002 0.003 -0.002 0.003

Math 0.001 0.001 0.001 0.001

Science 0.002 0.002 0.002 0.002

Writing -0.003 0.002 -0.003 0.002

Civic -0.001 0.001 -0.001 0.001

Expected GPA 2.730*** 0.058 2.749*** 0.068

Expected GPA interacted with major

Business and Communication -3.749*** 0.626 -3.782*** 0.629

Natural science -7.188*** 1.826 -7.222 *** 1.827

Math & Physics -3.718*** 0.881 -3.733*** 0.882

Education and Military -2.875*** 1.032 -2.877*** 1.032

Engineering -2.898*** 1.138 -2.919** 1.138

Humanities -4.934*** 0.648 -4.943*** 0.648

Health -3.198*** 1.423 -3.197*** 1.422

Major

Business and Communication 8.919*** 1.726 9.007*** 1.733

Natural science 18.863*** 5.308 18.956*** 5.310

Math & Physics 8.393*** 2.453 8.434*** 2.454

Education and Military 6.071** 2.952 6.073** 2.952

Engineering 5.963** 2.901 6.014*** 2.902

Humanities 12.468*** 1.830 12.489*** 1.830

Health 7.315* 4.008 7.320* 4.008

Type 1 -0.083 0.148

Variance 2.515*** 0.052 2.514*** 0.052

NB: *** Significant at 1%; ** Significant at 5%; and * Significant at 10%
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Table 10: High school courses choices estimations
Business and Com.

One type Two types

Coefficient Stand. Error Coefficient Stand. Error

Base year test score

Vocabulary 0.000 0.002 0.000 0.002

Reading -0.000 0.002 -0.000 0.002

Math -0.001 0.001 -0.001 0.001

Science 0.001 0.001 0.001 0.001

Writing 0.001 0.001 0.001 0.001

Civic -0.001 0.001 -0.001 0.001

Expected GPA 0.761*** 0.046 0.810*** 0.053

Expected GPA interacted with major

Business and Communication -1.780*** 0.490 -1.866*** 0.491

Natural science -1.251 1.497 -1.342 1.498

Math & Physics -1.333** 0.693 -1.372 0.692

Education and Military -1.535* 0.827 -1.541 0.826

Engineering -1.395 0.915 -1.448 0.915

Humanities -2.599*** 0.519 -2.621*** 0.519

Health -1.361 1.104 -1.359 1.103

Major

Business and Communication 4.922*** 1.348 5.150*** 1.351

Natural science 2.042 4.348 2.285 4.348

Math & Physics 3.246 1.927 3.353 1.926

Education and Military 3.455 2.363 3.460 2.359

Engineering 2.494 2.331 2.628 2.330

Humanities 6.366*** 1.461 6.417*** 1.459

Health 3.598 3.110 3.611 3.105

Type 1 -0.208* 0.116

Variance 1.935*** 0.047 1.932*** 0.047

NB: *** Significant at 1%; ** Significant at 5%; and * Significant at 10%
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Table 11: High school courses choices estimations
Life science courses

One type Two types

Coefficient Stand. Error Coefficient Stand. Error

Base year test score

Vocabulary -0.001 0.002 -0.001 0.002

Reading -0.000 0.002 -0.000 0.002

Math 0.001 0.001 0.001 0.001

Science -0.002** 0.001 -0.002** 0.001

Writing 0.002** 0.001 0.002** 0.001

Civic -0.002** 0.001 -0.002** 0.001

Expected GPA 2.152*** 0.051 2.101*** 0.059

Expected GPA interacted with major

Business and Communication -2.637*** 0.550 -2.548*** 0.551

Natural science 0.182 1.602 0.274 1.601

Math & Physics -1.738** 0.774 -1.699** 0.773

Education and Military -3.119*** 0.906 -3.114*** 0.905

Engineering -3.700*** 0.999 -3.646*** 0.998

Humanities -2.046*** 0.569 -2.022*** 0.568

Health -1.856 1.248 -1.857 1.247

Major

Business and Communication 6.652*** 1.515 6.417*** 1.519

Natural science -0.764 4.656 -1.014 4.653

Math & Physics 3.945* 2.152 3.834* 2.151

Education and Military 7.687*** 2.590 7.679*** 2.587

Engineering 9.172*** 2.546 9.034*** 2.544

Humanities 4.579*** 1.606 4.522*** 1.604

Health 4.585 3.517 4.571 3.513

Type 1 0.217* 0.130

Variance 2.207*** 0.046 2.207*** 0.046

NB: *** Significant at 1%; ** Significant at 5%; and * Significant at 10%
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Table 12: High school courses choices estimations
Art

One type Two types

Coefficient Stand. Error Coefficient Stand. Error

Base year test score

Vocabulary 0.000 0.003 0.000 0.003

Reading -0.001 0.003 -0.001 0.003

Math 0.000 0.001 0.000 0.001

Science 0.002 0.002 0.002 0.002

Writing -0.003 0.002 -0.003 0.002

Civic 0.002** 0.001 0.002** 0.001

Expected GPA 0.481*** 0.076 0.525*** 0.087

Expected GPA interacted with major

Business and Communication -0.830 0.793 -0.877 0.796

Natural science -0.387 2.348 -0.439 2.350

Math & Physics 0.645 1.092 0.624 1.092

Education and Military -2.341* 1.313 -2.344* 1.312

Engineering -3.094** 1.486 -3.122** 1.485

Humanities -0.097 0.831 -0.113 0.831

Health -0.518 1.775 -0.515 1.774

Major

Business and Communication 2.076 2.183 2.203 2.191

Natural science 0.610 6.834 0.743 6.840

Math & Physics -0.426 3.038 -0.366 3.038

Education and Military 6.171* 3.745 6.173* 3.745

Engineering 6.744* 3.757 6.818* 3.756

Humanities -0.051 2.348 -0.022 2.348

Health 1.175 5.002 1.184 5.000

Type 1 -0.189 0.189

Variance 3.045*** 0.084 3.044*** 0.084

NB: *** Significant at 1%; ** Significant at 5%; and * Significant at 10%
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Table 13: Comparing model predictions of high school course selection with the data
Quantitative GPA

Data One type Two types Data One type Two types

Business and Communication 5.5843 5.4969 5.4969 2.7376 2.6819 2.6813

Natural science 6.8537 6.814 6.814 2.9 2.8024 2.8186

Math & Physics 6.7722 6.6724 6.6724 2.8519 2.7864 2.7977

Education and Military 5.1712 5.1171 5.1171 2.7757 2.7042 2.6974

Engineering 7.0323 6.9576 6.9576 2.5371 2.4679 2.4722

Humanities 5.7111 5.6854 5.6854 2.8004 2.7504 2.7548

Health 5.6379 5.4762 5.4762 2.8103 2.7795 2.7802

Humanities Female

Data One type Two types Data One type Two types

Business and Communication 7.4392 7.386 7.386 0.5882 0.5925 0.5916

Natural science 7.6829 7.5517 7.5517 0.439 0.4416 0.4504

Math & Physics 7.1519 7.1254 7.1254 0.4557 0.4539 0.4592

Education and Military 7.0541 6.9898 6.9898 0.6577 0.653 0.6516

Engineering 7.1129 6.9732 6.9732 0.1452 0.1292 0.1319

Humanities 7.8622 7.8389 7.8389 0.6089 0.6048 0.6045

Health 7.431 7.3262 7.3262 0.8448 0.8211 0.8249

Life sciences

Data One type Two types

Business and Communication 5.2275 5.1408 5.16

Natural science 5.8293 5.6701 5.77

Math & Physics 4.8608 4.7313 4.77

Education and Military 4.982 4.9422 4.95

Engineering 5.1452 5.1113 5.17

Humanities 4.7778 4.7711 4.7711

Health 5.3103 5.1526 5.19

NB: The data column contains the actual mean from the data. One type refers

to estimates using one type of individual, and two types refers to estimates

using two types of individuals.
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Table 14: Simulations of the change in major choice distribution and changes in college

performance (GPA)

Simulations

One type (1) (2) (3) (4)

Major Choice Math, phys. & eng. majors 0.026 -0.004 -0.006 -0.051

Natural sciences & Health 0.012 0.008 -0.002 -0.049

Humanities -0.038 -0.003 -0.000 -0.035

No college -0.000 -0.000 0.008 0.135

GPA (% Changes)

Business and Communication -1.139 -1.337 -1.124 -0.974

Natural science -0.760 -1.038 -0.849 -1.377

Math & Physics -0.914 -1.143 -0.852 -1.959

Education and Military -1.707 -1.930 -1.710 -1.226

Engineering 0.260 0.097 0.373 -0.882

Humanities -1.062 -1.275 -1.054 -1.018

Health -1.831 -2.041 -1.865 -2.483

Two types

Major choice Math, phys. & eng. 0.027 -0.005 -0.005 0.089

Natural sciences & Health 0.013 0.007 -0.002 -0.082

Humanities -0.036 -0.003 0.000 0.042

No college -0.003 -0.003 0.007 -0.049

GPA(% changes)

Business and Communication 0.409 1.109 0.655 1.793

Natural science 0.741 1.281 0.862 -0.175

Math & Physics 0.891 1.502 1.158 0.899

Education and Military 1.205 1.881 1.432 1.900

Engineering -0.726 -0.004 -0.394 -1.194

Humanities 0.962 1.627 1.192 0.390

Health 2.664 3.343 2.854 1.702

NB: Simulation (1): One additional quantitative course in high school. Simulation (2): One additional life

sciences course in high school. Simulation (3): One additional humanities course in high school. Simulation

(4): The same curriculum imposed to all high school students.

44


