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Commonality in equity options liquidity: 

Evidence from NYSE LIFFE 

 

 

 

 Abstract 

This paper examines the commonality in liquidity for individual equity 

options trading at NYSE LIFFE. We use high-frequency data to construct 

a novel index of liquidity commonality and we find that it can explain a 

substantial proportion of the liquidity variation of individual options. 

The explanatory power of the common liquidity factor is more 

pronounced during periods of higher implied volatility at the market 

level. The common factor’s impact on individual options’ liquidity is 

found to depend on the options’ idiosyncratic characteristics, while 

there is limited evidence of systematic liquidity spillover effects among 

the NYSE LIFFE exchanges. 

 

 

JEL Classifications: G12; G19 

Keywords: LIFFE; options; commonality; liquidity; bid-ask spread 

 

 

1. Introduction 

 

The issue of liquidity underpins virtually every financial transaction and it has been 

attracting increasing attention in the literature, especially after the recent financial 

crisis. One particularly important aspect of this issue refers to the role of common cross-

asset variation in liquidity. To the extent that liquidity across assets is driven by 

common factors, understanding the behavior of liquidity’s systematic component is 
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fundamental in explaining, and ultimately anticipating, incidents of a general liquidity 

breakdown. The recent financial crisis serves as an illustrative example of the dramatic 

impact that a break in systematic liquidity can have on global financial markets, as do 

the stock market crisis of 1987 and the debt market crisis of 1998 which are typically 

viewed as systematic liquidity breakdowns (Hasbrouck and Seppi, 2001). In this paper, 

we examine the systematic liquidity component extracted from a large high-frequency 

dataset of equity options traded in NYSE LIFFE.  

Previous empirical studies have highlighted the existence of a common liquidity 

factor across individual assets (Cao and Wei, 2010; Chordia et al., 2000; Hasbrouck and 

Seppi, 2001; Huberman and Halka, 2001). One likely explanation for this commonality in 

liquidity could be related to inventory management considerations. In particular, 

market-wide swings in prices and/or volatility are expected to affect trading volume, 

which is one of the principal determinants of dealer inventory. As a result, dealers are 

likely to respond by changing their optimal levels of inventory across assets in a 

relatively uniform way, affecting the provision of liquidity (for example as it is reflected 

by quoted spreads and depths). Another possible source of liquidity commonality is the 

fact that market rates have a direct impact on the dealers’ cost of carrying inventory (see 

also Chordia et al., 2000).  

Irrespective of its sources, commonality in liquidity has important implications for 

market participants. For instance, the common component of asset liquidity potentially 

represents an undiversifiable source of price risk which, in equilibrium, should be 

priced in the cross-section of expected returns (Brennan and Subrahmanyam, 1996; 

Chordia et al., 2000). More importantly, temporary large changes in this common 

liquidity factor are likely to trigger incidents of market stress which could, even in the 

absence of other significant events, precipitate a financial crisis. For example, the 

October 1987 stock market crash was characterized by a dramatic drop in liquidity 

although it is hard to identify any concurrent significant financial events (Roll, 1988). 

This paper contributes to the literature in a number of ways. First, we expand the 

literature on liquidity commonality to a new market, namely the European market of 

NYSE LIFFE. Previous studies on commonality in liquidity have predominantly focused 

on stock markets. For instance, Chordia et al. (2000) construct a systematic liquidity 

factor and explore the extent to which it can explain individual liquidity across stocks 

(see also Brockman and Chung, 2002, 2006; Hasbrouck and Seppi, 2001; Korajczyk and 

Sadka, 2008). Furthermore, Kempf and Mayston (2008), Rakowski and Beardsley 

(2008) and Visaltanachoti et al. (2008) examine liquidity commonality along the order 

book, while Dunne et al. (2011) document substantial common movements in returns, 
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order flows and liquidity for the Athens Stock Exchange. Despite the significant interest 

in liquidity commonality for stocks, this issue has remained relatively underexplored in 

the case of options.1 Cao and Wei (2010), who extract a common liquidity component for 

US options, represent the main exception. We contribute to the related literature by 

investigating liquidity commonality in the largest options market in Europe. Combining 

the exchanges of Amsterdam, London and Paris, NYSE LIFFE accounts for a large part of 

global exchange-based trading in options and, as such, its systematic liquidity 

component is likely to have a substantial impact on investors internationally.2  

Second, we contribute to the literature by examining what drives systematic 

liquidity. More specifically, we investigate how commonality in liquidity behaves under 

different market conditions by examining its relationship with a set of market-wide 

factors such as index options’ trading volume and implied volatility, a sentiment 

indicator, short sale restrictions, and momentum factors for past returns. We also 

investigate if the explanatory power of liquidity commonality over a given option’s 

individual liquidity depends on the option’s idiosyncratic characteristics (e.g. market 

value, volatility, underlying stock’s spread etc.). Finally, we explore potential spillover 

effects among the three options exchanges of NYSE LIFFE.  

Our third contribution relates to the use of high-frequency options data. Previous 

studies have used daily data to compute liquidity measures. In contrast, we extract our 

liquidity commonality factor from an extensive high-frequency dataset of options, which 

allows us to obtain considerably more accurate measures of liquidity by taking into 

account the intraday variation in trading activity.  

We employ Principal Component Analysis (PCA) to extract the common liquidity 

factor. Our results highlight that common effects are significant drivers of options 

liquidity in NYSE LIFFE. More specifically, we report that the proportion of variance 

explained by the common liquidity factor in the PCA is 15% for Amsterdam, and 27% for 

London and Paris. When we regress the liquidity of individual options against the first 

common factor from the PCA, we find that the latter can explain on average 11% of the 

                                                           
1In contrast to the very limited interest in commonality in options liquidity, some previous 
studies have investigated the determinants of options liquidity. For instance, Cho and Engle 
(1999) link liquidity in the options market to the activity of the underlying market through the 
derivatives hedging theory, while Wei and Zheng (2010) associate market liquidity with 
inventory management practices.   
2 Verousis et al. (2015) also examine liquidity for options traded in NYSE LIFFE. However, they 
focus on the intraday determinants of liquidity for individual options, with only a brief mention 
of a common factor. In contrast, this paper shifts the emphasis from idiosyncratic characteristics 
acting as liquidity determinants to exclusively examining commonality in liquidity as the driving 
factor. 
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liquidity variance at the ticker level, with this proportion rising to 15% when we use the 

first three common factors.  

Moreover, the explanatory power of commonality in liquidity over the liquidity of 

individual options appears to depend on market conditions. When we regress the 

proportion of liquidity variance at the ticker level that can be explained by the common 

liquidity component against a set of market-wide factors, we find that the strongest 

effect stems from the index’s implied volatility. In particular, on days of greater 

uncertainty at the aggregate market level, as reflected by higher levels of index implied 

volatility, systematic liquidity has a bigger contribution to the liquidity of individual 

options. The explanatory power of the common factor generally correlates with the sign 

of market returns in the case of calls, and it is also related to market trading volume and 

sentiment for Amsterdam in particular, where retail activity is highest.  

We document that the extent to which individual options’ liquidity responds to 

systematic liquidity depends on the characteristics of the options and those of the 

underlying stocks. In cross-sectional regressions, we find that the common factor’s 

explanatory power over the liquidity variance of individual options is significantly 

positively related to the frequency of transactions and negatively related to trading 

volume and options’ realized volatility. In other words, options with a larger number of 

relatively low-volume transactions at low levels of volatility appear to be more 

responsive to the common liquidity factor compared to their counterparts. The 

underlying’s percentage bid-ask spread is found to positively affect the explanatory 

power of the common factor for puts, while the firm’s market value has a significantly 

positive effect in the case of calls.  

Finally, using a Vector Autoregression (VAR) framework, we find some 

interconnectedness among the three exchanges of NYSE LIFFE in terms of systematic 

liquidity’s explanatory power over individual options’ liquidity. However, these spillover 

effects do not appear to be particularly pronounced. 

The remaining of the paper is organized as follows. Section 2 discusses the market 

structure of NYSE LIFFE and the high-frequency options dataset used in the empirical 

analysis. Section 3 describes the methodology for extracting the liquidity commonality 

factor, variable construction and research design. Section 4 presents the empirical 

results, while Section 5 concludes. 

 

 

2. Market Structure and Data 
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2.1 Market Structure 

 

NYSE LIFFE represents the European branch of NYSE for derivatives trading, consisting 

of five country-specific exchanges, namely Amsterdam, Brussels, Lisbon, London and 

Paris. In this paper, we examine the liquidity of individual equity options in Amsterdam, 

London and Paris, since options are not traded in Lisbon and option trading is very 

limited in Brussels. 

Options trading in NYSE LIFFE is structured around market makers who provide 

liquidity under the Euronext Liquidity Provider System (ELPS), by continuously 

submitting bid and asks quotes. The ELPS, which sets the various spread and size 

obligations for market makers’ quotes across different contracts, was initially 

introduced in Amsterdam and subsequently adopted for all options contracts traded via 

LIFFE CONNECT. 

The market makers who operate in NYSE LIFFE fall under two general categories, 

depending on the extent of their contractual obligations to the exchange. More 

specifically, Primary Liquidity Providers (PLPs) are required to submit quotes for In-

The-Money (ITM) and Out-of-The-Money (OTM) contracts, while Competitive Liquidity 

Providers (CLPs) need to submit quotes only for a number of near-the-money 

contracts.3 The classification of market makers is somewhat different in Amsterdam, 

where Primary Market Makers (PMMs) are required to provide bid and asks for all 

individual equity options across all strikes and maturities, while Competitive Market 

Makers (CMMs) have contractual obligations similar to those of CLPs.4  

Market makers’ obligations in terms of submitting quotes refer to both a maximum 

spread and a minimum size and they vary across different underlying assets, since they 

are set out as functions of the underlying’s price and volatility (updated semi-annually). 

Furthermore, market makers are required to submit continuous quotes for a minimum 

of 85% of the contracts in the series in which they are involved, and at least during 85% 

of the specific time period. Finally, all market makers have to trade at least a minimum 

number of contracts of the highest liquidity assets, as these are defined by the exchange. 

Despite a significant effort to harmonize rules across the number of exchanges of 

NYSE LIFFE, several important differences remain. First, the options exchange in 

Amsterdam is at the cutting edge of high frequency trading (HFT), with Dutch firms 

                                                           
3 “Near-the-money” refers to a flexible concept, defined as a percentage mark up (down) from the 
lowest (highest) underlying share price of the current day. 
4 PMMs may also have the right to receive a percentage of the turnover traded at the PMM’s best 
bid or ask price. CMMs and PMMs may quote spreads up to twice the maximum contractually 
agreed spread. 
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contributing three of the four founding members of the HFT body for Europe (The 

Economist, 2013). Second, the Premium Based Tick Size (PBTS) rule that was 

implemented in Amsterdam is expected to have a significant impact on the exchange’s 

liquidity, particularly with respect to increasing the liquidity of lower-priced options. 

Third, the number of market makers whose role is to provide liquidity has not been 

harmonized across exchanges. Finally, the extent to which individual investors 

participate in options trading exhibits substantial variation across the three options 

exchanges of NYSE LIFFE. 

 

2.2 Data 

 

Our objective is to construct daily time-series of liquidity and volatility measures that 

incorporate the rich information available from intraday data (see also Stoll, 2000, who 

uses an intraday dataset across 61 trading days for 3,890 NYSE stocks and 2,184 

NASDAQ stocks). Our dataset consists of tick data for all options written on individual 

stocks (henceforth referred to as tickers) that traded on NYSE LIFFE Amsterdam, 

London and Paris from March 2008 to December 2010.5 This intraday options dataset 

covers a period of 34 months in total, which is substantially long by the standards of the 

related high-frequency literature. Each ticker consists of several sub-tickers, i.e. option 

contracts that are written on the same underlying stock but have different 

characteristics in terms of strike price, time-to-maturity and contract type (call or put). 

The dataset includes, among other fields, the option price, strike price, maturity date 

and volume for every sub-ticker, time-stamped to the nearest second. This information 

is provided separately for asks, bids and trades.  

We follow Stoll (2000) to construct daily time-series for each ticker using the high-

frequency dataset, in order to obtain more accurate estimates of daily liquidity across a 

relatively large sample (the number of trading days per ticker ranges from 707 to 712). 

For each exchange, we categorize sub-tickers according to their type (call or put), 

moneyness level (defined as the ratio of the underlying’s opening price S to the option’s 

strike price K) and time-to-maturity.6 Furthermore, we focus only on Short-Term (ST) 

At-The-Money (ATM) contracts, selecting sub-tickers that are within 90 days to 

expiration (but not expiring in the next 7 days) and with a spot-to-strike ratio S/K 

between 0.95 and 1.05. 

                                                           
5 The number of tickers refers to the total number of underlying assets on which options have 
been written trading at the exchanges (firm-options), including delisted options. 
6 End-of-day prices for the underlying stocks were obtained through DataStream. 
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In addition to selecting option contracts according to their moneyness and time-to-

maturity, several other filters are applied to the intraday dataset. First, we drop tickers 

for which we cannot find the respective underlying assets in DataStream. Second, we 

drop all European-style contracts trading in Paris (leaving only American-style options 

in our sample) as well as the newly introduced contracts with weekly and daily 

expirations trading in Amsterdam (to avoid short-expiration effects). Third, we address 

the potential issue of misrecordings by deleting observations with zero volumes, zero 

prices, negative or zero bid-ask spreads, and out-of-hours time-stamps.7 Finally, we 

follow Wei and Zheng (2010) to delete observations with exceptionally large bid-ask 

spreads (exceeding 150% for ATM contracts). As can be seen from Table 1, the majority 

of contracts are kept post filtering, with 90%, 93% and 84% of observations maintained 

for Amsterdam, London and Paris, respectively. 

 

 

3 Methodology 

3.1 Variable Construction 

 

We compute spreads and returns of option sub-tickers as the mid-points of bids and 

asks sampled at 5-minute intervals. More specifically, on each trading day, we begin by 

identifying the first quote of the day (which is provided by 8:01 at the latest) and then 

split the trading day to 5-minute intervals (n = 101 intervals within a trading day). 

Moreover, we enforce a 2-minute rule for the closing interval (16:30) and we also 

control for stale pricing by dropping quotes that are recorded more than 2 minutes prior 

to each interval. We record the bids and asks for each 5-minute interval and compute 

midquotes when both bids and asks are available for a particular interval, otherwise the 

midquote is treated as a missing observation. This approach allows us to construct 

observations at the maximum number of intervals, after addressing potential biases of 

missing variables and stale pricing. 

Similarly to Frino et al. (2008) and Mayhew (2002), we compute volume-weighted 

and price-volume-weighted quoted spreads, in order to account for the fact that spreads 

vary with the price level. The volume-weighted quoted spread VolSpr and the price-

volume-weighted quoted spread PVolSpr for ticker q are computed as  

                                                           
7 All three exchanges have opening times between 08:00 and 16:30 (GMT). The raw dataset 
contains only reported trades, so no zero-volume observations are included. This stands in 
contracts to other datasets used in the literature, where market orders may contain zero-volume 
observations (pre-reporting). 
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𝑉𝑜𝑙𝑆𝑝𝑟𝑞 =
∑ 𝑉𝑜𝑙𝑞𝑖𝑆𝑝𝑟𝑞𝑖

𝑛
𝑖=1

∑ 𝑉𝑜𝑙𝑞𝑖
𝑛
𝑖=1

 
(1) 

 

𝑃𝑉𝑜𝑙𝑆𝑝𝑟𝑞 =
∑ 𝑃𝑞𝑖𝑉𝑜𝑙𝑞𝑖𝑆𝑝𝑟𝑞𝑖

𝑛
𝑖=1

∑ 𝑃𝑉𝑜𝑙𝑞𝑖
𝑛
𝑖=1

 
(2) 

 

where Sprqi is the raw (un-weighted) spread recorded during the 5-minute interval i, 

given as the simple difference between bid and ask quotes. The terms 𝑉𝑜𝑙𝑞𝑖 and 𝑃𝑞𝑖 

denote the volume and price, respectively, of the sub-ticker during the 5-minute interval 

i. Sub-ticker subscripts are omitted for notational convenience. On each day, we 

compute both measures of spread separately for each sub-ticker, and then use the 

average across sub-tickers as the spread of ticker q on that day.     

In addition to spread, we use the quoted depth (Depth) as a reciprocal measure of 

liquidity (see for instance Harris, 1990), measured as the quoted volume averaged 

across the 5-minute intervals. Furthermore, we compute logarithmic intraday returns ri 

per interval i, based on midquote prices at a sub-ticker level, dropping outlying returns 

that are at least 3 standard deviations from the mean per ticker (99% of the computed 

returns are maintained post filtering).  

One of our objectives is to understand if idiosyncratic characteristics have an impact 

on the extent to which the liquidity of a particular option is driven by the common 

liquidity factor. To this end, we examine a wide set of stock-specific and option-specific 

characteristics. More specifically, we follow Andersen et al. (2001) to compute the daily 

option price realized volatility (OPRV) as the sum of absolute intraday returns per 

ticker8 

 

𝑂𝑃𝑅𝑉𝑞 = ∑ |𝑟𝑞𝑖|

𝑛

𝑖=1

 
(3) 

 

where 𝑟𝑞𝑖 is the return of ticker q during the interval i. Furthermore, we use a range 

estimator as a measure of the underlying market volatility as follows (see Parkinson, 

1980 and Petrella, 2006). 

                                                           
8 Measuring volatility using absolute returns has the advantage of mitigating the impact of extreme 

(tail) observations, compared to using squared returns (see, for instance, Davidian and Carroll, 1987). 

For robustness, we have also used the average of squared intraday returns as an alternative 
proxy for volatility. The results are almost identical to those obtained when absolute intraday 
returns are used. 
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𝑉𝑜𝑙𝑡 =  100 ×
𝑃𝑡

𝑚𝑎𝑥 − 𝑃𝑡
𝑚𝑖𝑛

𝑃𝑡
𝑚𝑎𝑥 + 𝑃𝑡

𝑚𝑖𝑛

2

 
(4) 

 

where 𝑃𝑡
𝑚𝑎𝑥 and 𝑃𝑡

𝑚𝑖𝑛 refer to the maximum and minimum daily underlying price of 

each ticker on trading day t, respectively. The remaining idiosyncratic variables that we 

consider comprise the number of option transactions per interval (Fr), the market value 

of the underlying stock (MV), and the underlying percentage bid-ask spread (PBAS). 

 

3.2 Extracting a Commonality in Liquidity Factor 

 

The levels of individual liquidity of options that trade in the same exchange are very 

likely to exhibit a significant degree of collinearity, given that they are affected by factors 

that are common to multiple assets. In order to investigate the cross-sectional 

commonality in liquidity for tickers trading in Amsterdam, London and Paris, we employ 

the well-established methodology of Principal Component Analysis (PCA). PCA is a 

variable reduction procedure that, in this context, is applied to derive a smaller set of 

variables that will account for most of the variations in spreads per ticker. Importantly, 

the set of factors extracted by the PCA can be viewed as the most important 

uncorrelated sources of liquidity variation across tickers.  

For each ticker, and separately for calls and puts, we select the ATM, ST contracts at 

5-minute intervals for the whole sample period. There are 101 intraday intervals i for 

each day t. Because several sub-tickers may fall within the ATM, ST category per ticker, 

we estimate the average liquidity measure for each ticker and interval i. As the number 

of contracts j is smaller than the number of intervals i, PCA can be performed for each 

trading day. Finally, we apply PCA separately for calls and puts in each exchange, and we 

extract the first three principal components on each day. This approach results in six 

triplets of common factors per day, across two types of options (calls vs puts) and three 

exchanges.   

In order to accommodate missing data, we apply two criteria. First, for each day, we 

only use tickers that report quotes for 80% of the number of intervals. Second, we 

interpolate missing values by using the most recent liquidity estimate i.e. if spread is 

missing for the interval i, then we use the most recent interval to replace the missing 

value. If the first interval of the day is missing, we use the first available non-missing 

value of the day. This allows us to retain the maximum number of tickers per day and 
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also to use a n x j matrix where the number of intervals per day n is greater than the 

number of tickers i. All ticker measures are standardized by the daily mean and daily 

standard deviation per ticker in order to avoid overweighting because of scale 

differences (see Korajczyk and Sadka, 2008).9   

As the PCA code is iterated on each trading day, the proportion of assets included in 

the calculation of the common factors may vary. We make sure that our measure of 

liquidity commonality is robust to missing observations that result in a varying number 

of available assets per day as follows. First, we perform all the subsequent empirical 

analysis with the entire dataset and for the sub-sample of days when more than 30% of 

the total number of assets is included in the calculation of the common factors. The 

empirical results are quantitatively similar in both cases. We also calculate the ratio of 

the number of assets included in the calculation of daily common factors over the total 

number of assets quoted on a single day. The correlation ranges from -11% to 14%, 

hence we believe that the results are invariant to the total number of assets included per 

day (results available upon request). Overall, we believe that the commonality in 

liquidity measure mostly captures those assets that are the most frequently traded, as 

generally assets that report more trades also tend to be more active in quotes. 

 

3.3 Research Design 

 

Once we have constructed the liquidity commonality factor as the main principal 

component of the previous analysis, we examine this factor’s time-series properties. We 

are also interested in the extent to which the main factor can explain the cross-sectional 

variation in liquidity, separately for each exchange. A second question that we ask is 

which firms display significant and consistent loadings on the main factor. Since we 

extract the main principal component independently for each trading day, we are able to 

determine which firms contribute the most to the first principal factor. In other words, 

we identify which tickers in essence contribute the most to systematic liquidity. Given 

that we are using standardized balanced data per day, this process is independent of any 

price level effects or the trading volume of any firm. 

Another question of interest is the extent to which the daily commonality in liquidity 

is able to explain individual variations in liquidity (see Korajczyk and Sadka, 2008). We 

address this question through a two-step approach. First, we regress each sub-ticker’s 

                                                           
9 Because prices do not vary substantially during a trading day and since we extract the PCA 
factors at a daily frequency, we employ this method to the percentage quoted spread instead of 
the volume-weighted spread. 
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liquidity against the liquidity factors extracted from the PCA discussed above. We run 

these time-series regressions separately for up to three principal factors and we keep 

the proportion of variance explained by the principal factors, as given by the respective 

Adj-R2 values. The second step involves estimating cross-sectional regressions of the 

price-volume-weighted spread against the previously obtained Adj-R2 values. The cross-

sectional Adj-R2 from the second-stage regressions captures the ability of the principal 

components to explain the variation in liquidity at the sub-ticker level. 

We investigate the determinants of systematic liquidity by considering market-wide 

factors that are related to the options and the underlying market. More specifically, we 

estimate the following time-series regression 

 𝑃𝑟𝑜𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝐼𝑉𝑡 + 𝛽3𝑆𝑆𝑡 + 𝛽4𝐷𝑜𝑊𝑡 + 𝛽5𝑌09𝑡 + 𝛽6𝑌10𝑡

+ 𝛽7𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑡+𝛽8𝑅𝑡
−/+

+ 𝛽9𝑃𝑅𝑡
−/+

+ 𝑢𝑡 
(5) 

where the dependent variable (Pro) is the proportion of variance explained by the 

common factor. The terms V and IV refer to index volume and index implied volatility, 

respectively. We use the AEX Index for Amsterdam, FTSE100 for London and CAC40 for 

Paris. All values refer to the nearest-the-money call and put contracts that are available 

on DataStream. SS is the short sale dummy that takes the value of one in the first month 

of the short selling restriction period.10 The term DoW is a day-of-the-week dummy that 

takes the value of one if the trading day is Monday-Thursday and zero if it is Friday. The 

Y09 and Y10 dummy variables take the value of one if the year is 2009 and 2010, 

respectively, while Sentiment refers to the put-to-call ratio across all tickers per day. The 

term R+ refers to the contemporaneous return rate and takes the value of one if it is 

positive and zero otherwise, while PR+ refers to the past trading activity and takes the 

value of one if returns in the last three trading days are positive and zero otherwise. 

Similarly, R- and PR- refer to past and contemporaneous negative index returns and 

enter the specification when contemporaneous returns are negative. Further, we include 

year dummies and short sale dummies that are designed to capture the time-variation in 

liquidity commonality due to these factors. Statistical inference is based on Newey-West 

autocorrelation and heteroscedasticity consistent standard errors. 

We expect commonality in liquidity to be positively related to trading volume as the 

latter reflects changes in inventory risk. The common liquidity factor is also expected to 

                                                           
10 We only include the first month of the short selling restriction ban as this variable would 
otherwise overlap with the year dummy variable.  
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be positively related to options market-wide volatility. Positive option market returns 

are likely to induce more trading and increase systematic liquidity, thus we expect a 

positive sign for the coefficient of positive contemporaneous returns and a negative sign 

for negative ones. In univariate analysis, we find that the commonality in liquidity 

follows a U-shaped pattern over the trading week (results not reported for brevity). In 

particular, the proportion of variance explained by the main common factor is high on 

Mondays, levels off from Tuesday to Thursday and is at maximum levels on Fridays.11 

Regarding the sentiment variable, we anticipate a positive coefficient for calls and a 

negative coefficient for puts if liquidity commonality increases when investors become 

more bearish. Finally, positive (negative) past trading activity is related to momentum 

strategies that are hypothesized to have a positive (negative) effect on systematic 

liquidity (see also Chordia et al., 2001). 

In addition, we investigate if the extent to which the common factor explains the 

liquidity variability of individual tickers depends on the ticker’s idiosyncratic 

characteristics. To this end, we adopt again a two-step approach. The first step is similar 

to the one previously described, where price-volume-weighted spread for a given sub-

ticker is regressed against the first factor from the PCA. The Adj-R2 of this time-series 

regression reflects the proportion of the sub-ticker’s liquidity variance that can be 

explained by the common factor. We perform one time-series regression per sub-ticker. 

The second step, then, involves estimating a regression of the previously obtained Adj-

R2 values against a set of firm-specific characteristics, namely Market Value (MV), mean 

underlying volatility (Vol), underlying percentage bid-ask spread (PBAS), the frequency 

of transactions (Fr), the option realized volatility (OPRV), and the options’ trading 

volume (OVol). 

Finally, we explore the possibility of potential spill-overs of liquidity commonality 

among option markets. In order to understand the linkages between the three options 

exchanges in terms of liquidity commonality, we employ a standard Vector 

Autoregression (VAR) framework which recognizes the potential endogeneity of all 

variables in the system and allows for the inclusion of lagged values (as opposed to 

simply computing pairwise correlations). The VAR model is given as 

 

                                                           
11 We tested the above hypothesis with a delivery-day dummy. We have also tested for GDP, CPI 
and unemployment announcement effects. No delivery day or announcement effects were 
detected. This pattern could theoretically be associated with the maturity cycle of equity options 
as these contracts expire on the third Friday of the expiry month. However, given that in this 
sample we do not include contracts within the last week prior to expiry, such interpretations are 
highly unlikely. 
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𝑌𝑡 = 𝑐 + 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 + 𝜀𝑡 (6) 

 

where 𝑌𝑡 is a 6x1 vector of variables. More specifically, the variables in the VAR system 

refer to the proportion of liquidity variance explained by the common factor, measured 

separately for calls and puts in each of the three exchanges (resulting in a total of six 

time-series).  

 

4. Empirical Results 

4.1 Time-Series of Individual Liquidity 

 

Before discussing the relative importance of the common liquidity factor for options 

liquidity, it is important to get a better understanding of our time-series of interest. To 

this end, Table 1 presents some descriptive statistics of the two liquidity measures, 

separately for calls and puts, as well as for each market. The average spread varies 

significantly across markets, from a level of 0.12 cents for Amsterdam and 0.24 cents for 

Paris, to between 1.06 and 42.91 pence for London.12 Calls are found to have 

significantly different spreads compared to puts for all three markets, as evidenced by 

both the t-test and the non-parametric Wilcoxon test.  

 

***insert Table 1 here*** 

 

Figure 1 plots the price-volume-weighted quoted spread and depth across the three 

exchanges, separately for calls and puts.13 As can be easily seen, option liquidity 

exhibited significant variability over the 34-month sample period, with a set of spikes in 

liquidity being associated with important systematic events. For instance, liquidity 

dropped substantially across all three markets during early September 2008, coinciding 

with the rescue by the US government of Fannie Mae and Freddie Mac. For Amsterdam, 

the biggest liquidity drop (highest spread, lowest depth) took place on October 10, 2008 

when several European exchanges, as well as the Dow Jones and the Nikkei, lost a 

considerable part of their market value. For London and Paris, liquidity was at its lowest 

on October 23, 2008 after a consistently negative trend during that month. 

                                                           
12 These numbers are not rounded, since spreads are estimated as the average of sub-tickers’ 
spreads per contract per day. 
13 Each plot is constructed as the equally-weighted average of the daily average quoted spread 
per trading day and ticker. We standardize all measures, using their means and standard 
deviations, in order for the resulting liquidity series to be comparable across markets. 
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***insert Figure 1 here*** 

 

In addition to observing spikes on the Figure, periods of significant illiquidity can 

also be identified when spread plots above depth. This is evident during the period from 

September 2008 to March 2009, when the short-sale ban on financial stocks was 

imposed across all three markets (starting on September, 19 in London, and September, 

23 in Amsterdam and Paris). Finally, we also plot on Figure 1 the ratio of put-to-call 

traded volume. This measure is a well-established proxy for investor sentiment in the 

sense that higher values of the ratio are the result of more puts being bought relative to 

calls, meaning that investors are more likely to expect asset prices to fall. Trading in puts 

generally increases throughout the period from September 2008 to February 2009, and 

it reaches its peak in Amsterdam in the midst of the financial crisis (October 13, 2008). 

The put/call volume ratio correlates strongly with the liquidity measures for 

Amsterdam (correlation coefficients of 0.63 and -0.27 regarding spread and depth, 

respectively), which is hardly surprising given the significant presence in the market of 

retail investors who are generally more prone to trading on sentiment. The respective 

correlations are quite weaker for London (0.17 and 0.01 regarding spread and depth, 

respectively) and Paris (0.19 and -0.11 for spread and depth, respectively), where the 

activity of retail investors is fairly limited.  

 

4.2 Liquidity Commonality and Variation in Individual 

Liquidity  

 

As has been previously discussed, we extract the first three components from the PCA 

on each trading day, separately for calls and puts and for the three options exchanges in 

our sample. Table 2 reports the respective PCA results using the daily time-series of 

spread and depth. More specifically, Panel A refers to using Spread as a measure of 

liquidity and tabulates the eigenvalue, the proportion of variance explained by each of 

the three factors, and the cumulative proportion of variance explained by up to three 

factors. Panel B reports the same figures when liquidity is measured by Depth. Panel C 

reports the first three canonical correlations between spread and depth liquidity. As can 

be seen from the Table, the common factors can explain a large proportion of the 

variance of liquidity at the daily level for both calls and puts across all three exchanges. 

For instance, the first principal component can explain 36% of the variation of spread in 
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the panel of daily options liquidity for Amsterdam calls, while the respective figure 

reaches 55% when the first three principal components are used. The explanatory 

power of liquidity commonality is comparably high for the Paris and Amsterdam, with 

the proportion of spread liquidity variance explained by the first three factors exceeding 

50% in all cases. The PCA results are even stronger in the case of depth, with the first 

three factors accounting for over 60% of the variance of depth liquidity for both calls 

and puts in all three exchanges.   

 

***insert Table 2 here*** 

 

When we replicate the PCA separately for each trading day (directly using intra-daily 

data for spread and depth as opposed to the daily time-series discussed in sub-section 

3.2), we find that the proportion of liquidity variance that can be explained by 

systematic liquidity is again considerably high. The time-series of the common factor’s 

explanatory power over liquidity variance can be seen in Figure 2. The vertical axis of 

Figure 2 uses the proportion of variance explained by the principal factor instead of the 

eigenvalue of that factor, as the latter does not take into account the number of assets 

included in the calculation of this factor. For Amsterdam and on average, 15% of the 

daily total variance of liquidity among tickers is explained by a common factor, although 

it is also clear that commonality increases when liquidity deteriorates. This is clearly 

consistent with events during the financial crisis. Compared to the time series of 

volume-weighted spread, the commonality of liquidity is relatively constant outside 

those liquidity spikes and rarely falls below the 10% level. For London, the average 

cross-sectional variance explained per day is 27% and, compared to the results for 

Amsterdam, commonality in liquidity is more variable and tends to exhibit more spikes. 

For both markets, systematic liquidity generally increased during the financial crisis 

period. For Paris, the proportion of cross-sectional variance explained is 27% and, in 

general, the time series is very similar to the distribution of the principal factor for 

London.  

 

***insert Figure 2 here*** 

 

In addition to the ability of the common factor to explain the liquidity of individual 

options at the level of the cross-section, we examine the proportion of liquidity variance 

at the level of the individual ticker that can be explained by the common factor. To this 

end, Table 5 reports the mean Adj-R2 from estimating time-series regressions of the 
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price-volume-weighted spread per ticker against the first principal factor. In general, 

liquidity commonality is found to explain about 11% of the variability at a sub-ticker 

level. There is variability in the percentage of variance explained by the main principal 

factor. For Amsterdam, the mean Adj-R2 is approximately 14% and a similar figure is 

found for London. For Paris, the average Adj-R2 is 6%. The percentage of variation 

explained by the commonality factor increases as the number of factors included in the 

regression increases. When all three main factors are included in the regressions, 

systematic liquidity explains on average 15% of the variation at a ticker level. This figure 

ranges from 8% for Paris puts to 17% for Amsterdam puts. These results demonstrate 

less commonality in liquidity than observed for US equities (see Korajczyk and Sadka, 

2008). However, it is by definition much more demanding to detect commonality in 

daily liquidity than at the monthly frequency used in Korajczyk and Sadka (2008). 

 

***insert Table 3 here*** 

 

Next, we turn to identifying which firms tend to be more significantly and 

consistently associated with the common liquidity factor. Figure 3 presents those tickers 

that consistently appear with significant loadings in the first principal factor as a 

proportion of the total number of trading days. For example, MT for Amsterdam calls is 

a significant contributor to systematic liquidity for approximate 352 days in our sample 

(50% of 703, the total number of trading days).14 Clearly, across markets and contract 

types, there are firms that contribute much more than others to liquidity commonality. 

For Amsterdam there are seven tickers that appear on more than 40% of the trading 

days in the first principal factor and, in general, the same firms have significant loadings 

for puts. For London calls, two tickers have significant loadings for more than 558 days, 

or more than 80%. Finally, for Paris, there are 14 tickers that exhibit a proportion of 

50% or greater towards their overall contribution to the first principal factor. 

 

4.3 Liquidity Commonality and Market-Wide Factors 

 

After establishing that systematic liquidity can explain a considerably large, albeit 

varying, proportion of individual options’ liquidity, we shift our focus on examining if 

this explanatory power of the common factor depends on market-wide variables. Table 

4 reports the results from estimating the time-series regression in (5), separately for 

                                                           
14 We only present tickers with a contribution greater than 5%. 
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calls and puts and for each of the three exchanges. We also estimate the regression 

separately for positive and negative trading activity (contemporaneous and past).  

 

***insert Table 4 here*** 

 

As hypothesized, market volume has a positive impact on systematic liquidity, 

although the result is only significant for Amsterdam. The market-wide implied volatility 

is clearly the strongest and most consistent determinant of systematic liquidity. The 

short sale dummy is negative and significant for 5 out of 6 regressions. One explanation 

for this is that the short sale restriction affected financial stocks only. If this is the case, 

then the plot observed in Figure 2 reflects news announcements rather than the short 

sale ban.  

The drop in liquidity commonality is confirmed for Fridays and the result is highly 

significant for London and Paris. Also liquidity commonality drops significantly in 2009 

for all three markets. A similar pattern is observed for 2010. Finally, there is a consistent 

response to market performance. Sentiment is only significant for Amsterdam calls, a 

finding that may reflect the fact that retail activity in Amsterdam is much more 

pronounced than in London or Paris. Commonality in liquidity for calls increases in an 

up market whereas puts remain unchanged. Also, commonality in liquidity decreases in 

a down market for calls. Such an asymmetric response of commonality in liquidity to 

return variation is also observed by Cao and Wei (2010) for the US options markets. 

 

4.4 Liquidity Commonality and Idiosyncratic Characteristics 

 

Our previously reported results highlighted the fact that different tickers exhibit 

different sensitivities to the common liquidity factor. We further explore this finding by 

investigating the determinants of the extent to which the liquidity of a particular asset is 

affected by liquidity commonality. Table 5 reports the results from estimating a cross-

sectional regression of the proportion of liquidity variance explained by the common 

factor against a set of idiosyncratic characteristics.  

 

***insert Table 5 here*** 

 

The results support the hypothesis that the impact of the common factor on 

individual liquidity depends on firm-specific characteristics. More specifically, we find 

that the number of options transactions per time interval (Fr) is positively and 
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significantly related to the impact of the common liquidity factor. In contrast, the trading 

volume of options and the options’ realized volatility are significantly negatively related 

to the explanatory power of the common factor. These findings hold for both calls and 

puts, and they seem to indicate that individual liquidity is more responsive to the 

common factor when trading in assets is characterized by a larger number of relatively 

low-volume transactions at low levels of volatility. At the other end of the spectrum, 

assets with higher volatility that are traded in larger blocks and more infrequently seem 

to be less exposed to the common liquidity factor.  

Furthermore, the percentage bid-ask spread (PBAS) is positively related with the 

proportion of variance explained by the common factor only in the case of puts, while 

the firm’s market value (MV) is positively related to the impact of the common factor 

only for calls. Finally, the coefficient of the volatility of the underlying stock (Vol) is 

insignificant for calls and puts. Overall, the previously documented differences in the 

explanatory power of liquidity commonality over individual liquidity among assets seem 

to be driven, to a significant extent, by some of these assets’ idiosyncratic characteristics.  

 

4.5 Liquidity Commonality Spill-Overs 

 

The final analysis relates to whether liquidity commonality effects spill-over from one 

exchange to another. Estimating the VAR system described in sub-section 3.3 provides 

some, albeit not extensive, support for the hypothesis of the explanatory power of the 

common liquidity factor being interrelated among the three exchanges. In particular, 

Table 6 reports the results from estimating the VAR system in equation (6).  

 

***insert Table 5 here*** 

 

Out of the three options exchanges, Amsterdam appears to be the one for which the 

explanatory power of the common liquidity factor is significantly related to that of the 

other two exchanges. More specifically, the effect of the common factor extracted from 

Amsterdam options (calls and puts) is significantly positively related to the respective 

series from Paris calls and negatively related to that of Paris puts at the first lag. 

Amsterdam calls are, in addition, significantly positively related to London calls at the 

first lag, although a similar relationship is not found in the case of puts. In the case of 

London, calls are significantly negatively related to Paris puts, and puts are significantly 

positively related to Amsterdam puts. Finally, the explanatory power of the common 

factor for Paris puts is significantly related to that of Amsterdam and London puts, while 
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Paris calls are only significantly related to London calls. Overall, some spill-over effects 

seem to be present, with the effects of the common liquidity factor being, to a limited 

extent, interconnected among the three options exchanges of NYSE LIFFE. 

    

 

5. Conclusions 

 

Despite the substantial literature on the liquidity of equity markets, the issue of options’ 

liquidity has only recently begun to attract attention. This paper contributes to the 

literature on the liquidity of individual equity options, from the specific viewpoint of 

liquidity commonality. In particular, we examine the relatively underexplored European 

market of NYSE LIFFE using an extensive high-frequency dataset of options trading in 

Amsterdam, London and Paris.  

Our empirical findings highlight the importance of a common liquidity factor for the 

liquidity of individual equity options. In particular, we find that systematic liquidity can 

explain a large part of the variation in liquidity across individual options, ranging from 

15% for Amsterdam to 27% for London and Paris. Therefore, our index of commonality 

in liquidity serves as an important driver of liquidity for individual equity options. The 

explanatory power the common liquidity factor depends on market-wide factors, 

especially in terms of being significantly higher during periods of greater market 

uncertainty, as reflected in higher index implied volatility. Moreover, individual tickers 

are found to be more responsive to the common liquidity factor when they are 

characterized by more frequent, low volume and low volatility trading.  

Documenting the significant presence of a common liquidity factor in options, and 

understanding its relationship with market-wide and idiosyncratic variables has 

important implications in several contexts. For instance, individual asset returns could 

command a risk premium for exposure to systematic liquidity risk, in addition to the 

premium related with the asset’s particular level of individual liquidity. More 

importantly, understanding the dynamics of the common liquidity factor could provide a 

useful framework for anticipating, and ultimately preventing, cases where a breakdown 

in liquidity can escalate to a full-blown crisis, even in the absence of other significant 

events.  
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Table 1 
Descriptive statistics 

  Amsterdam London Paris 
  Call Put Call Put Call Put 
No. of days 707 709 712 
No. of tickers 65(72) 65(72) 99(106) 99(106) 59(70) 59(70) 

 Spread             
Mean 0.12 0.11 6.31 6.29 0.25 0.25 

Min 0.03 0.03 1.06 1.04 0.04 0.04 
Max 0.36 0.38 42.91 41.97 1.08 1.11 
STD 0.06 0.06 5.95 5.85 0.17 0.17 

 Depth             
Mean 385.38 395.77 22.12 22.04 60.94 60.82 

Min 20.20 19.68 3.06 3.07 16.88 17.39 
Max 2039.45 2096.40 227.67 228.12 202.74 216.44 
STD 518.74 531.98 27.50 27.58 42.43 42.94 

Notes: Number of tickers refers to the total number of firm-options trading at the exchanges and 
includes delisted options, given as the total number of contracts separately for calls and puts. In 
parentheses, the number of tickers in the original (raw) dataset. Spread refers to the price-volume 
weighted quoted spread. Depth refers to the quoted volume. Both Spread and Depth per ticker are 
computed as the means of intra-daily 5-minutes values, also averaged across sub-tickers. For 
Amsterdam and Paris, prices are quoted in Euros per contract whereas for London prices are quoted in 
pence per contract, hence the discrepancy in the results. Depth is calculated from the average of bids 
plus asks per five minute interval, aggregated to daily estimates. The t-test and Wilcoxon test for the 
equality of means between calls and puts for Spread and Depth are uniformly rejected.  
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Table 2 
PCA results for the commonality in liquidity and canonical correlations 

Panel A 

Sp
re

ad
 

  Amsterdam London Paris 

  Call Put Call Put Call Put 

  Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

Eigenvalue 13.152 4.258 2.772 13.843 4.316 2.649 20.675 7.208 3.921 21.741 8.105 3.976 10.428 4.288 3.390 11.610 4.496 3.788 

Proportion 0.356 0.115 0.075 0.374 0.117 0.072 0.345 0.120 0.065 0.362 0.135 0.066 0.290 0.119 0.094 0.323 0.125 0.105 

Cumulative 0.356 0.471 0.546 0.374 0.491 0.562 0.345 0.465 0.530 0.362 0.497 0.564 0.290 0.409 0.503 0.323 0.447 0.553 

Panel B 

D
ep

th
 

  Amsterdam London Paris 

  Call Put Call Put Call Put 

  Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

Eigenvalue 9.985 9.432 3.147 9.572 8.700 3.448 22.786 9.634 4.587 23.058 9.420 4.622 10.889 6.213 5.066 11.051 6.216 4.847 

Proportion 0.270 0.255 0.085 0.259 0.235 0.093 0.380 0.161 0.077 0.384 0.157 0.077 0.303 0.173 0.141 0.307 0.173 0.135 

Cumulative 0.270 0.525 0.610 0.259 0.494 0.587 0.380 0.540 0.617 0.384 0.541 0.618 0.303 0.475 0.616 0.307 0.480 0.614 

Panel C 

C
an

C
o

rr
 

  Amsterdam London Paris 

Root no. Call Put Call Put Call Put 

1 0.954 0.948 0.974 0.971 0.952 0.961 

2 0.908 0.897 0.907 0.938 0.939 0.941 

3 0.796 0.843 0.887 0.914 0.845 0.847 

Wilks' 
Lambda 

4.9E-06 3.0E-06 1.7E-10 7.3E-11 2.4E-06 1.9E-06 

F-test 6.500 6.825 4.392 4.606 8.445 8.636 

P-value 0.000 0.000 0.000 0.000 0.000 0.000 

Notes: Panel A and Panel B show the proportion of spread and depth liquidity explained by the first three common factors, respectively, as obtained from estimating a principal Component Analysis (PCA). Spread refers to the price-
volume weighted quoted spread. Depth refers to the quoted volume. Both Spread and Depth per ticker are computed as the means of intra-daily 5-minutes values, also averaged across sub-tickers. Proportion refers to the proportion of 
variance explained by each factor. Cumulative refers to the cumulative proportion of variance explained by adding extra factors. Panel C shows the first three canonical correlations between spread and depth liquidity. The results are 
tabulated separately for the Amsterdam, London and Paris exchanges, and also separately for calls and puts.  
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Table 3 
Proportion of individual liquidity explained by the common factors 

No. of 
Factors 

Amsterdam London Paris 
Call Put Call Put Call Put 

1 0.13 0.14 0.15 0.14 0.07 0.05 
2 0.15 0.15 0.16 0.15 0.09 0.07 
3 0.19 0.17 0.18 0.16 0.11 0.08 

Notes: This table shows the proportion of liquidity explained by the first three common 
factors, estimated from time-series regressions. The dependent variable is the price-volume 
weighted spread per day, and the independent variables are the common liquidity factors 
obtained from the PCA. Each cell represents the average Adj-R2 for up to three main 
principal factors. The results are tabulated separately for the Amsterdam, London and Paris 
exchanges, and also separately for calls and puts. 
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Table 4 
Regression results for the proportion of variance explained by the principal common factor against market-wide characteristics 

 
Amsterdam London Paris Amsterdam London Paris 

  Call Put Call Put Call Put Call Put Call Put Call Put 
V 0.027 0.023 0.008 0.003 -0.003 0.003 0.026 0.022 0.008 0.004 -0.002 0.004 

 
(3.51)*** (3.28)*** (1.00) (0.37) (-0.41) (0.54) (3.46)*** (3.36)*** (1.05) (0.41) (-0.33) (0.56) 

IV 0.331 0.317 0.512 0.527 0.741 0.662 0.317 0.304 0.497 0.511 0.73 0.644 

 
(6.23)*** (6.23)*** (7.54)*** (8.01)*** (9.91)*** (8.82)*** (6.06)*** (6.15)*** (7.28)*** (7.66)*** (9.69)*** (8.44)*** 

SS -0.040 -0.041 0.009 -0.011 0.009 0.013 -0.037 -0.039 0.014 -0.005 0.011 0.015 

 
(-3.63)*** (-4.07)*** (0.4) (-0.45) (0.48) (0.63) (-3.41)*** (-3.89)*** (0.6) (-0.20) (0.56) (0.73) 

DoW -0.005 -0.010 -0.032 -0.034 -0.026 -0.023 -0.004 -0.010 -0.032 -0.033 -0.026 -0.023 

 
(-0.80) (-1.84)* (-3.96)*** (-3.99)*** (-3.23)*** (-2.63)*** (-0.77) (-1.82)* (-3.94)*** (-3.95)*** (-3.20)*** (-2.68)*** 

Y09 -0.018 -0.023 -0.066 -0.056 -0.016 -0.004 -0.018 -0.023 -0.063 -0.052 -0.015 -0.002 

 
(-3.24)*** (-4.44)*** (-5.62)*** (-4.91)*** (-1.60) (-0.45) (-3.27)*** (-4.44)*** (-5.44)*** (-4.53)*** (-1.45) (-0.29) 

Y10 0.004 -0.007 -0.049 -0.040 0.058 0.070 0.003 -0.008 -0.049 -0.039 0.059 0.070 

 
(0.46) (-1.04) (-4.54)*** (-3.66)*** (6.36)*** (8.25)*** (0.42) (-1.14) (-4.41)*** (-3.50)*** (6.47)*** (8.29)*** 

Sentiment 0.023 0.019 < 0.001 -0.004 0.004 0.005 0.020 0.017 < 0.001 -0.004 0.004 0.005 

 
(2.06)** (1.29) (0.18) (-1.55) (0.97)  (1.13) (1.92)* (1.2) (0.12) (-1.61) (0.97) (1.15) 

R+ 0.013 0.003 0.024 < -0.001 0.021 <- 0.001 . . . . . . 

 
(3.01)*** (0.62) (3.45)*** (-1.40) (3.11)*** (-0.06) . . . . . . 

PR+ 0.009 0.009 0.015 0.025 0.013 0.012 . . . . . . 

 
(1.59) (1.53) (1.48) (2.03)** (1.27) (1.1) . . . . . . 

R- . . . . . . -0.012 -0.002 -0.023 0.009 -0.021 0.001 

 
. . . . . . (-2.78)*** (-0.43) (-3.33)*** (1.31) (-3.07)*** (0.18) 

PR- . . . . . . 0.014 0.009 0.008 -0.008 0.004 0.020 

 
. . . . . . (1.25) (0.88) (0.53) (-0.62) (0.32) (1.77)* 

Con -0.220 -0.162 0.116 0.180 0.077 0.039 -0.189 -0.151 0.139 0.173 0.096 0.041 

 
(-2.62)*** (-2.13)** (1.45) (1.87)* (1.28) (0.64) (-2.40)** (-2.13)** (1.72)* (1.81)* (1.58) (0.69) 

R2 0.29 0.32 0.37 0.34 0.41 0.39 0.29 0.32 0.36 0.33 0.41 0.39 
Adj-R2 0.28 0.31 0.36 0.33 0.40 0.38 0.28 0.31 0.36 0.33 0.40 0.38 

Notes: This table shows the regression results for the proportion of variance explained by the principal common factor regressed against market-wide factors. V and IV refer to index volume and index implied volatility 
respectively. For Amsterdam, we use the AEX Index, FTSE100 for London and CAC40 for Paris. All values refer to the continuous nearest-the-market call and put contracts that are available on DataStream. R+ refers to 
the current return rate and takes the value of one if it is positive and zero otherwise. PR+ refers to the past trading activity and takes the value of one if returns in the last three trading days are positive and zero 
otherwise. Similarly, R- and PR- refer to past and present negative index returns. SS is the short sale dummy that takes the value of one in the first month of the short shelling restriction period. DoW is a day of the week 
dummy that takes the value of one if the trading day is Monday-Thursday and zero if it is Friday. The Y09 and Y10 dummy variables take the value of one if year is 2009 and 2010 respectively. Sentiment refers to the 
put-to-call ratio. T-statistics in parentheses. *, **, *** denote significance at 10%, 5% and 1% levels, respectively. 
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Table 5 
Regression results for commonality in liquidity 

against firm-specific characteristics 

 
Call Put 

Constant 0.204*** 0.214*** 
 (0.030) (0.034) 

MV 9.350E-07** 3.230E-07 

 
(0.000) (4.860E-07) 

Vol -0.005 -0.006 

 
(0.006) (0.007) 

PBAS 0.065 0.155** 

 
(0.069) (0.078) 

Fr 0.002*** 0.004*** 

 
(0.001) (0.001) 

OPRV -0.022** -0.044** 

 
(0.011) (0.014) 

OVol -4.630E-05** -6.540E-05*** 

 
(0.000) (2.940E-05) 

Adj-R2 0.081 0.115 
Notes: This table shows the results of the cross sectional regression 
of the proportion of variability explained by the first common 
factor for each asset against firm characteristics. The dependent 
variable refers to the Adjusted R2 for each asset which is obtained 
by regressing the price-volume weighted spread against the first 
factor. MV refers to the mean market value per asset. Vol refers the 
mean underlying market volatility, PBAS refers to the mean 
underlying proportional bid-ask spread per asset, estimated from 
daily closing prices. Fr refers to the mean of transaction frequency 
and OPRV refers to mean option realized volatility per asset. OVol is 
the options trading volume per asset. Standard errors in 
parentheses. *, **, *** denote significance at 10%, 5% and 1% 
levels, respectively. 
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Table 6 
VAR: liquidity commonality by market 

  Amsterdam London Paris 

  Call Put Call Put Call Put 

Constant 0.071*** 0.072*** 0.075*** 0.105*** 0.048*** 0.063*** 

  (0.014) (0.012) (0.019) (0.019) (0.017) (0.017) 

Amsterdam call t-1 -0.079 0.067 -0.104 -0.002 -0.166 -0.095 

  (0.092) (0.083) (0.130) (0.126) (0.115) (0.117) 

Amsterdam call t-2 0.057 0.050 0.163 -0.034 0.065 -0.158 

  (0.092) (0.084) (0.131) (0.128) (0.116) (0.118) 

Amsterdam put t-1 0.156 -0.019 0.164 0.155 0.125 0.138 

  (0.103) (0.094) (0.147) (0.143) (0.130) (0.132) 

Amsterdam put t-2 0.141 0.149* 0.117 0.214* 0.103 0.241** 

  (0.091) (0.082) (0.129) (0.126) (0.115) (0.116) 

London call t-1 0.148*** 0.079 0.367*** 0.298*** 0.159** 0.066 

  (0.056) (0.051) (0.080) (0.077) (0.070) (0.071) 

London call t-2 -0.049 -0.001 -0.065 -0.013 -0.092 -0.067 

  (0.054) (0.049) (0.077) (0.075) (0.068) (0.069) 

London put t-1 0.008 0.015 0.237*** 0.189** 0.031 0.005 

  (0.056) (0.050) (0.079) (0.077) (0.070) (0.071) 

London put t-2 -0.051 -0.068 0.081 0.097 -0.048 -0.110* 

  (0.052) (0.047) (0.074) (0.072) (0.066) (0.067) 

Paris call t-1 0.176** 0.216*** -0.047 -0.049 0.196** 0.220** 

  (0.071) (0.065) (0.101) (0.099) (0.090) (0.091) 

Paris call t-2 0.101 0.046 0.147 0.060 0.189** 0.148 

  (0.068) (0.062) (0.097) (0.095) (0.086) (0.087) 

Paris put t-1 -0.114* -0.110* 0.036 0.016 0.246* 0.322* 

  (0.066) (0.060) (0.094) (0.091) (0.083) (0.084) 

Paris put t-2 -0.027 0.000 -0.175* -0.142 0.107*** 0.151*** 

  (0.066) (0.060) (0.093) (0.091) (0.083) (0.084) 

R2 0.175 0.197 0.366 0.307 0.447 0.455 
Notes: This table shows the VAR regression results for the proportion of variance explained by the principal common 
factor for each market. Standard errors in parentheses. *, **, *** denote significance at 10%, 5% and 1% levels, 
respectively. 
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Figure 1 
Time series of option spread and depth 

 

 

 
Notes: This figure shows the time series plots of individual equity options liquidity by exchange and contract type. Each plot is 
constructed as the equal-weighted average of the daily average quoted spread and depth per trading day and ticker. The put/call 
ratio refers to the ratio of put volume over call volume per trading day. All plots are standardized by the overall market mean and 
standard deviation to allow a visual comparison across markets.  
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Figure 2 
Commonality in liquidity 

 

 

 
Notes: This figure shows the time series of the proportion of liquidity explained by the main principal factors by exchange and 
contract type. The first principal component is extracted from the percentage bid-ask spread separately for each trading day with the 
procedure described in the main text. 
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Figure 3 
Tickers that have a significant loading in the first component  

 

 

 
Notes: This figure shows the tickers that have significant loading in the first component as a percentage of the total number of days in 
the sample.  Only firms with over 5% are displayed. The first principal component is extracted from the percentage bid-ask spread 
separately for each trading day with the procedure described in the main text. 

 

 

 

 


