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Abstract

Hierarchical Feature Selection (HFS) is an under-explored subarea of data min-

ing/machine learning. Unlike conventional (flat) feature selection algorithms, HFS

algorithms work by exploiting hierarchical (generalisation-specialisation) relation-

ships between features, in order to try to improve the predictive accuracy of classi-

fiers. The basic idea is to remove hierarchical redundancy between features, where

the presence of a feature in an instance implies the presence of all ancestors of

that feature in that instance. By using an HFS algorithm to select a feature sub-

set where the hierarchical redundancy among features is eliminated or reduced,

and then giving only the selected feature subset to a classification algorithm, it is

possible to improve the predictive accuracy of classification algorithms.

In terms of applications, this thesis focuses on datasets of ageing-related genes.

This type of dataset is an interesting type of application for data mining methods

due to the technical difficulty and ethical issues associated with doing ageing ex-

periments with humans and the strategic importance of research on the biology of

ageing - since age is the greatest risk factor for a number of diseases, but is still a

not well understood biological process.

This thesis offers contributions mainly to the area of data mining/machine

learning, but also to bioinformatics and the biology of ageing, as discussed next.

The first and main type of contribution consists of four novel HFS algorithms,

namely: select Hierarchical Information Preserving (HIP) features, select Most

Relevant (MR) features, the hybrid HIP–MR algorithm, and the Hierarchy-based

Redundancy Eliminated Tree Augmented Naïve Bayes (HRE–TAN) algorithm.

These algorithms perform lazy learning-based feature selection - i.e. they post-

pone the learning process to the moment when testing instances are observed and

select a specific feature subset for each testing instance. HIP, MR and HIP–MR
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select features in a data pre-processing phase, before running a classification algo-

rithm, and they select features that can be used as input by any lazy classification

algorithm. In contrast, HRE–TAN is a feature selection process embedded in the

construction of a lazy TAN classifier.

The second type of contribution, relevant to the areas of data mining and bioin-

formatics, consists of two novel algorithms that exploit the pre-defined structure

of the Gene Ontology (GO) and the results of a flat or hierarchical feature selec-

tion algorithm to create the network topology of a Bayesian Network Augmented

Naïve Bayes (BAN) classifier. These are called GO–BAN algorithms.

The proposed HFS algorithms were in general evaluated in combination with

lazy versions of three Bayesian network classifiers, namely Naïve Bayes, TAN and

GO–BAN - except that HRE–TAN works only with TAN. The experiments in-

volved comparing the predictive accuracy obtained by these classifiers using the

features selected by the proposed HFS algorithms with the predictive accuracy

obtained by these classifiers using the features selected by flat feature selection

algorithms, as well as the accuracy obtained by the classifiers using all original

features (without feature selection) as a baseline.

The experiments used a number of ageing-related datasets, where the instances

being classified are genes, the predictive features are GO terms describing hierar-

chical gene functions, and the classes to be predicted indicate whether a gene has

a pro-longevity or anti-longevity effect in the lifespan of a model organism (yeast,

worm, fly or mouse).

In general, with the exception of the hybrid HIP–MR which did not obtain

good results, the other three proposed HFS algorithms (HIP, MR, HRE–TAN)

improved the predictive performance of the baseline Bayesian network classifiers

- i.e. in general the classifiers obtained higher accuracies when using only the

features selected by the HFS algorithm than when using all original features.

Overall, the most successful of the four HFS algorithms was HIP, which out-

performed all other (hierarchical or flat) feature selection algorithms when used

in combination with each of the Naïve Bayes, TAN and GO–BAN classifiers. The

difference of predictive accuracy between HIP and the other feature selection al-

gorithms was almost always statistically significant - except that the difference of

accuracy between HIP and MR was not significant with TAN.

Comparing different combinations of a HFS algorithm and a Bayesian network
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classifier, HIP+NB and HIP+GO–BAN were both the best combination, with the

same average rank across all datasets. They obtained predictive accuracies statis-

tically significantly higher than the accuracies obtained by all other combinations

of HFS algorithm and classifier.

The third type of contribution of this thesis is a contribution to the biology of

ageing. More precisely, the proposed HIP and MR algorithms were used to pro-

duce rankings of GO terms in decreasing order of their usefulness for predicting

the pro-longevity or anti-longevity effect of a gene on a model organism; and the

top GO terms in these rankings were interpreted with the help of a biologist expert

on ageing, leading to potentially relevant patterns about the biology of ageing.
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Chapter 1

Introduction

Data mining (or machine learning) techniques have attracted considerable atten-

tion from both academia and industry, due to their significant contributions to

intelligent data analysis. The importance of data mining and its applications is

likely to increase even further in the future, given that organisations keep collect-

ing increasingly larger amounts of data and more diverse types of data.

The thesis describes inter-disciplinary research, integrating the areas of data

mining and the biology of ageing. Hence, before describing the contributions of

this research, we first specify its scope within each of those two areas.

This research addresses the classification task of data mining [37,50,129], where

each instance (object being classified) consists of a set of features – sometimes

called attributes – and a class variable. The goal of a classification algorithm

is to build, from a set of training instances (called the training set), a classifi-

cation model that predicts the value (also called label) of the class variable for

an instance, based on the values of the features for that instance. Note that the

classification model is built from the training set, where the algorithm has access

to the class label of each instance; but the model is evaluated on a separate set

of instances (called the testing set), where the algorithm does not have access to

the class label of each instance – those class labels will have to be predicted, as

mentioned earlier. After these predictions are computed for all instances in the

testing set, the system computes the accuracy of those predictions, by comparing

the class label predicted for each testing instance with that instance’s true class

label. Hence, the testing set is used to measure the predictive performance, or

1
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generalisation ability, of the model built from the training set.

In the context of the classification task, this thesis focuses on the feature se-

lection task. When the number of features is large (like in the datasets used in

this research), it is common to apply feature selection methods to the data. These

methods aim at selecting, out of all available features in the dataset being mined,

a subset of the most relevant and non-redundant features [84,96] for classifying in-

stances in that dataset. There are several motivations for feature selection [84,96],

one of the main motivations is to try to improve the predictive performance of

classifiers. Another motivation is to accelerate the training time for building the

classifiers, since training a classifier with the selected features should be consid-

erably faster than training the classifier with all original features, in general. Yet

another motivation is that the selected features may represent a type of knowl-

edge or pattern by themselves, i.e. users may be interested in knowing the most

relevant features in their datasets.

Note that feature selection is a hard computational problem, since the number

of candidate solutions (feature subsets) grows exponentially with the number of

features. More precisely, the number of candidate solution is 2m - 1, wherem is the

number of available features in the dataset being mined, and “1” is subtracted in

order to take into account that the empty subset of features is not a valid solution

for the classification task.

Although there are many types of feature selection methods for classifica-

tion [47, 84, 96], in general these methods have the limitation that they do not

exploit information associated with the hierarchy (generalisation-specialisation re-

lationships) among features, which present in some types of features. As the

example shown in Figure 1.1, those features like J, H, D, B, A, C, etc., are hier-

archically structured as a Directed Acyclic Graph (DAG), where feature J is the

parent of features H and D, and both of them are the parent of feature B, while

feature A is the child of features D and C.

This type of hierarchical relationships are relatively common (although usu-

ally ignored) in applications. In text mining, for instance, features usually repre-

sent the presence or absence of words in a document, and words are involved in

generalisation-specialisation relationships [31, 91]; in bioinformatics, which is the

type of application this thesis focuses on, the functions of genes or proteins are of-

ten described by using a hierarchy of terms, where terms representing more generic
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Figure 1.1 Example of a Small DAG of Features

functions are ancestors of terms representing more specific functions. As another

example of hierarchical features, many datasets in financial or marketing applica-

tions (where instances represent customers) have the address of the customer as a

feature. This feature can be specified at several hierarchical levels, varying from

the most detailed level (e.g. the full post code) to more generic levels (e.g. the

first two or first three digits of the post code).

From another perspective, hierarchies of features can also be produced by using

hierarchical clustering algorithms [129] to cluster features, rather than to cluster

instances, based on a measure of similarity between features. The basic idea is

that each object to be clustered would be a feature, and the similarity between any

two features would be given by a measure of how similar the values of those fea-

tures are across all instances. For instance, consider a dataset where each instance

represents an email, and each binary feature represents the presence or absence of

a word. Two features (words) can be considered similar to the extent that they

occur (or don’t occur) in the same sets of emails. Then, a hierarchical clustering

algorithm can be used to produce a hierarchy of features, where each leaf clus-

ter will consist of a single word, and higher-level clusters will consist of a list of

words connected by an “or” logical operator. For example, if words “money” and

“buy” were merged into a cluster by the hierarchical clustering algorithm, when

mapping the original features to the hierarchical features created by the cluster-

ing algorithm, an email with word “money” but without the word “buy” would be

considered to have value “yes” for feature “money”, value “no” for feature “buy”,



Chapter 1. Introduction 4

and value “yes” for feature “money or buy”. Note that in this example the “or”

operator was used (as opposed to the “and” operator) in order to make sure the

feature hierarchy is a “IS-A” hierarchy; i.e. if an email has value “yes” for a feature,

it will necessarily have value “yes” for all ancestors of that feature in the hierarchy.

Intuitively, in datasets where such hierarchical relations among features exist,

ignoring such relationships seems a sub-optimal approach; i.e. these hierarchical

relationships represent additional information about the features that could be

exploited to improve the predictive performance associated with feature selection

methods – i.e. the ability of these methods to select features that maximise the

predictive accuracy to be obtained by classification algorithms using the selected

features. This is the basic idea behind the hierarchical feature selection methods

proposed in this thesis.

The proposed hierarchical feature selection methods perform “lazy learning”,

in the sense that they postpone the feature selection process to the moment when

testing instances are observed, rather than in the training phase of conventional

learning methods (which perform “eager learning”). The proposed methods are

evaluated together with lazy learning versions of Bayesian network classifiers (al-

though other types of lazy learning classifiers could be used in feature research).

In terms of applications of the proposed hierarchical feature selection meth-

ods, this thesis focuses on analysing biological data about ageing-related genes

[27,30,35,54,82,122–124]. The causes and mechanisms of the biological process of

ageing are a mystery that has puzzled humans for a long time. Biological research

has, however, revealed some factors that seem associated with the ageing process.

For instance, caloric restriction – which consists of taking a reduced amount of

calories without undergoing malnutrition – extends the longevity of many species

[88]. In addition, research has identified that several biological pathways seem

to regulate the process of ageing (at least in model organisms), such as the well-

known insulin/insulin-like growth factor (IGF-1) signalling pathway [68]. It is also

known that mutations in some DNA repair genes lead to accelerated ageing syn-

dromes [34]. Despite such findings, ageing is a highly complex biological process

which is still poorly understood, and much more research is needed in this area.

Unfortunately, conducting ageing experiments in humans is very difficult, due

to the complexity of the human genome, the long lifespan of humans, and eth-

ical issues associated with experiments with human. Therefore, research on the
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biology of ageing is usually done with model organisms like yeast, worms, flies or

mice, which can be observed in an acceptable time and have considerably simpler

genomes. In addition, with the growing amount of ageing-related data on model

organisms available on the web, in particular related to the genetics of ageing, it is

timely to apply data mining methods to that data [123], in order to try to discover

patterns that may assist ageing research.

More precisely, in this work, the instances being classified are genes from four

major model organisms, namely: C. elegans, S. cerevisiae, D. melanogaster andM.

musculus. Each gene has to be classified into one of two classes: pro-longevity or

anti-longevity, based on the values of features indicating whether or not the gene is

associated with each of a number of Gene Ontology (GO) terms, where each term

refers to a type of biological process, molecular function or cellular component.

Pro-longevity genes are those whose decreased expression (due to knockout, muta-

tions or RNA interference) reduces lifespan and/or whose overexpression extends

lifespan; accordingly, anti-longevity genes are those whose decreased expression

extends lifespan and/or whose overexpression decreases it [111].

We adopt GO terms as features to predict a gene’s effect on longevity because

of the widespread use of the GO in gene and protein function prediction and the

fact that GO terms were explicitly designed to be valid across different types of

organisms [112]. GO terms are organised into a hierarchical structure where, for

each GO term t, its ancestors in the hierarchy denote more general terms (i.e.

more general biological processes, molecular function or cellular component) and

its descendants denote more specialised terms than t. It is important to consider

the hierarchical relationships among GO terms when performing feature selec-

tion, because such relationships encode information about redundancy among GO

terms. In particular, if a given gene g is associated with a given GO term t, this

logically implies that is also associated with all ancestors of t in the GO hierarchy.

This kind of redundancy can have a substantially negative effect on the predictive

accuracy of Bayesian network classification algorithms, such as Naïve Bayes [129].

This issue will be discussed in detail later.
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1.1 An Overview of Original Contributions

This thesis makes original contributions in terms of proposing and empirically eval-

uating four hierarchical feature selection methods, including three filter methods

(which run in a data pre-processing phase, independent of the classifier), described

in Chapter 4; and one embedded method (i.e. a method that performs the fea-

ture selection process as part of the process of building the classifier), described in

Chapter 5. In addition to these hierarchical feature selection methods, two algo-

rithms for constructing the network topology of a Bayesian Network Augmented

Naïve Bayes classifier are also proposed and empirically evaluated in Chapter 6.

Both these methods are based on the features selected by conventional flat or the

new hierarchical feature selection methods. Note that these contributions, which

are the main contributions of this thesis, are contributions to the area of machine

learning/data mining.

As another type of contributions, which are contributions to the area of the

biology of ageing, we have created new datasets of ageing-related genes with hier-

archical features, in order to evaluate the proposed hierarchical feature selection

methods. In addition, these methods were applied to the created datasets, and

the results were used to produce rankings of biological features.

1.2 Structure of This Thesis

This thesis is structured into 7 chapters, including the current Introduction Chap-

ter. A brief description of the remaining chapters is presented next.

• Chapter 2 - Background on Data Mining

This chapter presents a review of data mining concepts and methods relevant

for this research, especially focusing on the classification task. Conventional

types of Bayesian network classification algorithms, e.g. Naïve Bayes and

some Semi-naïve Bayes classifiers will be discussed. Moreover, feature selec-

tion methods for classification will also be discussed in detail.

• Chapter 3 - Background on Biology of Ageing and Bioinformatics

This chapter presents a brief review about molecular biology, the biology of
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ageing and bioinformatics, especially focusing on the task of gene/protein

function prediction. Then, related works about ageing-related gene/protein

function prediction using machine learning/data mining methods as well

as work on classification methods applied to the biology of ageing will be

reviewed.

• Chapter 4 - Lazy Hierarchical Feature Selection Methods with

Naïve Bayes

This chapter presents a detailed description of three proposed filter hierar-

chical feature selection methods, followed by the empirical evaluation of their

predictive performance when working with the Naïve Bayes classifier, in a

number of ageing-related datasets. This chapter also presents the methods

used to create the ageing-related datasets that were used in our experiments.

In addition, this chapter also reports a ranking of ageing-related GO terms,

based on the results of one of the best performing hierarchical feature selec-

tion methods.

• Chapter 5 - Lazy Hierarchical Feature Selection Methods with Tree

Augmented Naïve Bayes (TAN)

This chapter presents a detailed description of one proposed embedded hier-

archical feature selection method based on the Tree Augmented Naïve Bayes

(TAN) classifier, followed by the empirical evaluation of its predictive perfor-

mance by comparing it with other feature selection methods (including the

filter hierarchical feature selection methods proposed in Chapter 4), when

working with the Tree Augmented Naïve Bayes (TAN) classifier. This chap-

ter also reports a ranking of ageing-related GO terms, based on one of the

best performing hierarchical feature selection methods combined with the

TAN classifier.

• Chapter 6 - Lazy Hierarchical Feature Selection Methods with

Bayesian Network Augmented Naïve Bayes (BAN)

This chapter presents a detailed description of two algorithms proposed for

constructing the network topology of a Gene Ontology-based Bayesian Net-

work Augmented Naïve Bayes (GO–BAN), based on the features selected

by either flat or hierarchical feature selection methods. This chapter also
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conducts an empirical evaluation of both proposed algorithms. In addi-

tion, this chapter includes a comparison between the best performing hi-

erarchical feature selection methods when working with different Bayesian

network classifiers, i.e. Naïve Bayes, Tree Augmented Naïve Bayes and Gene

Ontology-based Bayesian Network Augmented Naïve Bayes.

• Chapter 7 - Conclusions and Future Work

This chapter concludes the thesis by summarising its contributions to the

area of machine learning/data mining (primary contribution) and the area

of biology/bioinformatics of ageing research (secondary contribution). In

addition, further research directions are suggested.

1.3 List of Publications

The publications derived from this thesis consist of one journal paper, two con-

ference papers and one abstract. In addition, one journal paper is in preparation.

The detailed information about these papers is listed below.

Peer-Reviewed Journal Paper :

• C.Wan, A. A. Freitas, and J. P. de Magalhães, “Predicting the Pro-longevity

or Anti-longevity Effect of Model Organism Genes With New Hierarchical

Feature Selection Methods”, IEEE/ACM Transactions on Computa-

tional Biology and Bioinformatics (TCBB), 12(2), pp. 262–275, Mar.–

Apr., 2015. DOI: 10.1109/TCBB.2014.2355218.

Note: This paper is a major extension of the IEEE BIBM conference paper,

whose details are mentioned later.

Journal Paper in Preparation:

• C. Wan and A. A. Freitas, “An Empirical Evaluation of Hierarchical Feature

Selection Methods in Datasets of Ageing-related Genes”.

Peer-Reviewed Conference Papers:
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• C. Wan and A. A. Freitas, “Prediction of the pro-longevity or anti-longevity

effect of Caenorhabditis Elegans genes based on Bayesian classification

methods”, in Proceedings of IEEE International Conference on Bioin-

formatics and Biomedicine (BIBM 2013), Shanghai, China, Dec.,

2013, pp. 373–380. (Acceptance rate: 19.6%, 60/306)

• C. Wan and A. A. Freitas, “Two Methods for Constructing a Gene Ontology-

based Feature Network for a Bayesian Network Classifier and Applications to

Datasets of Aging-related Genes”, in Proceedings of the 6th ACM Confer-

ence on Bioinformatics, Computational Biology, and Health In-

formatics (ACM–BCB 2015), Atlanta, USA, Sept., 2015, pp. 27–36.

(Acceptance rate: 34.0%, 48/141)

Published Abstract:

• C. Wan and A. A. Freitas. Gene Ontology Hierarchy-based Feature Se-

lection. Features and Structures 2014 (FEAST 2014) Workshop

attached to the 22nd International Conference on Pattern Recog-

nition (ICPR 2014), Stockholm, Sweden, Aug., 2014. (Abstract [125];

Poster and Oral Presentation)



Chapter 2

Background on Data Mining

2.1 Knowledge Discovery in Databases (KDD)

Due to the rapid growth of data from real world applications, it is timely to

adopt Knowledge Discovery in Databases (KDD) methods to extract knowledge

or valuable information from data. Indeed, KDD has already been successfully

adopted in real world applications, both in science and in business.

KDD is a field of inter-disciplinary research across machine learning, statistics,

databases, etc [37,50,129]. Broadly speaking, the KDD process can be divided into

four phases. The first phase is selecting raw data from original databases according

to a specific knowledge discovery task, e.g. classification, regression or clustering.

Then the selected raw data will be input to the phase of data pre-processing

(the second phase), which aims at processing the data into a form that could be

efficiently used by the type of algorithm(s) to be applied in the data mining phase

- such algorithms are dependent on the chosen type of knowledge discovery task.

The data pre-processing phase includes data cleaning, data normalisation, feature

selection and feature extraction, etc. The third phase is data mining, where a

model will be built by running learning algorithms on the pre-processed data. In

this work, we address the classification task, where the learning (classification)

algorithm builds a classification model or classifier as will be explained later. The

final phase is extracting the knowledge from the built classifier or model. Among

those four phases of KDD, the focus of this research is on the data pre-processing

10
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phase, in particular the feature selection task, where the goal is to remove the

redundant or irrelevant features in order to improve the predictive performance of

classifiers. The feature selection task will be reviewed later in this chapter.

2.2 Data Mining Tasks and Paradigms

Data Mining tasks are types of problems to be solved by a machine learning or

data mining algorithm. The main types of data mining tasks can be categorized

as classification, regression and clustering. The former two tasks (classification

and regression) are also grouped as the supervised learning paradigm, whereas the

latter one (clustering) is categorised as unsupervised learning.

Supervised learning consists of learning a function from labeled training data

[93]. The supervised learning process consists of two phases, i.e. the training phase

and the testing phase. Accordingly, in the supervised learning process, the original

dataset is divided into training and testing datasets. In the training phase, only

the training dataset will be used for inferring the specific function by learning a

specific model, which will be evaluated by using the testing dataset in the testing

phase.

Unlike supervised learning, unsupervised learning is usually defined as a process

of learning particular patterns from unlabelled data. In unsupervised learning,

there is no distinction between training and testing datasets, and all available data

are used to build the model. The usual application of unsupervised learning is to

find groups (or clusters)/patterns of similar instances, constituting a clustering

problem.

2.2.1 Classification

The classification task is possibly the mostly studied task in data mining. It con-

sists of building a classification model or classifier to predict the class label (a

nominal or categorical value) of an instance by using the values of the features

(predictor attributes) of that instance [37, 50]. Actually, the essence of the clas-

sification process is exploiting correlations between features and the class labels

of instances in order to find the border between class labels in the data space - a
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space where the position of an instance is determined by the values of the features

in that instance. The classification border is exemplified in Figure 2.1, in the con-

text of a problem with just two class labels, where the found classification border

(a black dashed line) distinguishes the instances labelled as square or circle.

Figure 2.1 Example of Data Classifiertion into Two Categories [89]

Many types of classification algorithms have been proposed, such as Bayesian

network classifiers, Decision Trees, Support Vector Machines (SVM), Artificial

Neural Networks (ANN), etc. From the perspective of interpretability of the clas-

sifier, those classifiers can be categorised into two groups, i.e. “white box” and

“black box” classifiers. The “white box” classifiers, e.g. Bayesian network clas-

sifiers and Decision Trees, have better interpretability than the latter ones, e.g.

Support Vector Machine (SVM) and Artificial Neural Networks (ANN) [38]. In

this thesis, we focus on Bayesian network classifiers [41, 126, 127, 141, 142] (more

precisely, Naïve Bayes and Semi-naïve Bayes classifiers), due to their good poten-

tial for interpretability; in addition to their ability to cope with uncertainty in

data – a common problem in bioinformatics [44].
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2.2.2 Regression

Regression analysis is a traditional statistical task with the theme of discovering

the association between predictive variables (features) and the target (response)

variable. As it is usually used for prediction, regression analysis can also be con-

sidered a type of supervised learning task from the perspective of machine learning

and data mining.

Overall, a regression method is capable of predicting the numeric (real-valued)

value of the target variable of an instance - unlike classification methods, which

predict nominal (categorical) values, as mentioned earlier. A typical example of a

conventional linear regression model for a dataset with just one feature x is shown

as Equation 2.1,

yi = β0 + β1xi + ξi (2.1)

where xi denotes the value of the feature x for the i-th instance, βi denotes the

corresponding weight, and ξi denotes the error. The most appropriate values of

the weights in Equation 2.1 can be found using mathematical methods, such as the

well-known Linear Least Square [78,86,110]. Then the predicted output value yi is

computed based on the values of the input feature with its corresponding weight.

As shown in the simple example of Figure 2.2, the small distances between the

line and the data points indicates that Equation 2.1 fits well the data. Regression

analysis has been well studied in the statistics area and widely applied in different

domains.
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Figure 2.2 Example of Regression for Data [56]

2.2.3 Clustering

The clustering task mainly aims at finding patterns in the data by grouping similar

instances into clusters (or groups). The instances within the same cluster are more

similar with each other, but simultaneously more dissimilar with the instances in

other clusters. An example of clustering is shown in Figure 2.3, where the left

graph represents the situation before clustering, where all data are unlabelled (in

blue), and the right graph represents the situation where all data are clustered

into three different groups, i.e. one group of data in blue, one group of data in

red, and one group of data in green.

Clustering has been widely studied in the area of statistical data analysis,

and applied on different domains, like information retrieval, bioinformatics, etc.

Examples of well-known, classical clustering methods are k-means [51] and k-

medoids [61].
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Figure 2.3 Example of Data Clustered into Three Groups [99]

2.2.4 Eager and Lazy Learning Paradigms

Data mining or machine learning methods can be categorised into two general

paradigms, depending on when the learning process is performed, namely: eager

learning and lazy learning. An eager learning method performs the learning process

during the training phase, i.e. learning the classifier (or classification model) using

the whole training dataset before any testing instance is observed. Then the

classifier is used to classify all testing instances. This is in contrast to the lazy

learning approach, where the learning process is performed after observing the

feature values for each individual testing instance in the testing phase. That is,

a lazy learning-based classification algorithm builds a specific classification model

for each individual testing instance to be classified [6, 96].

In the context of feature selection, which is the research theme of this thesis

and will be discussed in later sections, lazy learning-based methods select a specific

set of features for each individual testing instance, whilst eager learning-based

methods select a single set of features for all testing instances.
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2.3 The Naïve Bayes (NB) Classifier

The Naïve Bayes classifier [37,50,92,95,129] is a type of Bayesian network classifier

that assumes that all features are independent from each other given the class

attribute. An example of this classifier’s network topology is shown in Figure 2.4,

where each feature xi (i = 1, 2, ..., 5) only depends on the class attribute. In the

figure, this is indicated by an edge pointing from the class node to each of the

feature nodes. As shown in Equation 2.2,

P (y | x1, x2, ..., xn) ∝ P (y)
n∏

i=1

P (xi | y) (2.2)

where ∝ is the mathematical symbol for proportionality and n is the number of

features; the estimation of the probability of a class attribute value y given all

predictor features’ values xi of one instance can be obtained by calculating the

product of the individual probability of each feature value given a class attribute

value and the prior probability of that class attribute value. Naïve Bayes (NB)

has been shown to have relatively powerful predictive performance, compared with

other Bayesian network classifiers [41], even thought it pays the price of losing the

dependencies between features.

X1

X2

X3 X5

X4
Class

Figure 2.4 An Example Naïve Bayes Network Topology
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2.4 Semi-naïve Bayes Classifiers

The Naïve Bayes classifier is very popular and has been applied on many domains

due to its advantages of simplicity and short learning time, compared with other

Bayesian classifiers. However, the assumption of conditional independence between

features is usually violated in practice. Therefore, many extensions of Naïve Bayes

focus on approaches to relax the assumption of conditional independence [41, 73,

141]. This sort of classifier is called Semi-naïve Bayes classifier.

Both the Naïve Bayes classifier and Semi-naïve Bayes classifiers use estimation

of the prior probability of the class and the conditional probability of the features

given the class to obtain the posterior probability of the class given the features,

as shown in the Equation 2.3 (i.e. the Bayes’ formula), where y denotes a class

and x denotes the set of features, i.e. {x1, x2, ..., xn}. However, different Semi-

naïve Bayes classifiers use different approaches to estimate the term P (x | y), as
discussed in the next subsections.

P (y | x) = P (x | y)P (y)
P (x)

(2.3)

2.4.1 Tree Augmented Naïve Bayes (TAN) and SuperPar-

ent Tree Augmented Naïve Bayes (SP–TAN)

TAN constructs a network in the form of a tree, where each feature node is allowed

to have at most one parent feature node in addition to the class node (which is

a parent of all feature nodes), as shown in Figure 2.5, where each feature except

the root feature X4 has only one non-class parent feature. TAN computes the

posterior probability of a class y using Equation 2.4,

P (y | x1, x2, ..., xn) ∝ P (y)
n∏

i=1

P (xi | Par(xi), y) (2.4)

where the number of non-class parent features for each feature xi (i.e. Par(xi)),

except the root feature, equals to “1”. Hence, it represents a limited degree of

dependencies among features.
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X2

X3 X5

X4
Class

Figure 2.5 An Example of TAN’s Network Topology

In essence, the original TAN classifier firstly produces a rank of feature pairs

according to the conditional mutual information between the pair of features given

the class attribute. Then the Maximum Spanning Tree is built based on the rank.

Next, the algorithm randomly chooses a root feature and then sets all directions

of edges to other features from it. Finally, the constructed tree is used for classi-

fication.

The concept of conditional mutual information proposed for building TAN clas-

sifiers is an extension of mutual information. The formula of conditional mutual

information is shown as Equation 2.5,

Ip(Xi;Xj | Y ) =
∑

xi,xj ,y

P (xi, xj, y)log
P (xi, xj | y)

P (xi | y)P (xj | y)
(2.5)

where Xi and Xj are predictor features, Y is the class attribute, xi, xj, y are the

values of the corresponding features and the class attribute, P (xi, xj, y) denotes

the joint probability of xi, xj, y; P (xi, xj | y) denotes the joint probability of fea-

ture values xi and xj given class value y; and P (xi | y) denotes the conditional

probability of feature value xi given class value y. Each pair of features “xi, xj”

is taken into account as a group, then the mutual information for each pair of

features given the class attribute is computed [41].

As a variant of TAN, SuperParent-TAN (SP–TAN) adopts the wrapper ap-

proach to build the feature tree. More precisely, it tentatively makes each feature
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node as the SuperParent in turn. The SuperParent is a node that has arcs to every

orphan node, i.e. every node that currently has no feature parent. Then, the node

that mostly improves the predictive accuracy by leave-one-out cross validation will

be selected as the SuperParent Asp. After selecting the unique SuperParent fea-

ture, the selection of its favorite orphan is conducted. The favorite orphan is the

feature which mostly improves the predictive accuracy, if it is connected with the

SuperParent. Then an arc will be connected from Asp to its favorite orphan. The

process above will be repeated until there is no improvement on accuracy or the

number of remaining orphans equals to one [69].

In terms of the type of classification model finally built, the original TAN

randomly selects a root node of the Maximum Spanning Tree, whereas SP–TAN

selects a SuperParent node as the root by taking into account the predictive per-

formance of the feature tree. In the topology of the network built by TAN, the

number of arcs equals to n - 1 (n denotes the number of nodes), whereas the

number of arcs made by SP–TAN might be fewer. According to the experimental

results reported in [69], SP–TAN outperforms TAN in most cases for the datasets

adopted in the experiments.

2.4.2 Bayesian Network Augmented Naïve Bayes (BAN)

The BAN classifier is a more complicated type of Semi-naïve Bayes classifier,

which (unlike NB and TAN) can represent more complicated dependencies between

features [23,41]. More precisely, in a BAN, in Equation 2.4, the number of parent

feature node(s) for each node xi (i.e. Par(xi)) is allowed to be more than one. An

example of this classifier’s network topology is shown in Figure 2.6, where each

feature xi has the class attribute as a parent, indicated by the dashed lines; and

possibly other non-class parent feature(s), as indicated by the solid lines. Node X4

has two non-class parent nodes X1 and X5, while node X3 also has two non-class

parent nodes X2 and X4.

There exist several approaches for constructing a BAN classifier from data that

have been shown to be relatively efficient to use, particularly when the number

of feature parents of a node is limited to a small integer number (a user-specified

parameter). However, in general, learning a BAN classifier tends to be much more

time consuming than learning a NB or TAN classifier, mainly due to the large
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X2

X3 X5

X4
Class

Figure 2.6 An Example of BAN’s Network Topology

time taken to search for a good BAN network topology.

Fortunately, in the context of the bioinformatics data used in this project, there

are strong dependency relationships between features, which have been already de-

fined by expert biologists in the form of a feature graph, containing hierarchical

relationships among features that are represented as directed edges in the feature

graph (as will be explained in detail later). Such hierarchical relationships pro-

vide a sophisticated representation of biological knowledge that can be directly

exploited by a BAN classifier. Hence, we will use the pre-defined hierarchical rela-

tionships retained in the data as the topology of the BAN classifier network, rather

than learning the BAN network topology from the data, as will be discussed in

Chapter 6.

2.4.3 Average One-Dependence Estimators (AODE)

The Average One-Dependence Estimators (AODE) method [127] infers the class of

a new instance by calculating the average posterior class probability over all possi-

ble one-dependence classifiers. An one-dependence classifier consists of merely one

feature as the parent for all other features. Each feature is treated as the parent

for all other features in turn. For example, in Figure 2.7, five types of AODE’s

network topology represent the cases where each of features X1, X2, ..., X5 is the

parent feature in turn. In this figure, the dependencies between a parent feature

and its child features are shown in solid lines, while the dashed lines denote the
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Figure 2.7 An Example of AODE’s Network Topology

dependencies between the class attribute and all features.

In order to avoid the inaccurate estimation of probabilities caused by few in-

stances, the minimal number of instances that have each value of the parent feature

was set to 30, due to concerns on statistical significance. AODE computes the pos-

terior probability of class value y given the values of the set of features x as shown

in Equation 2.6,

P (y | x) ∝
∑

i∈N
∧

F (xi)≥m P (y, xi)
∏

j∈N,j 6=i P (xj | y, xi)
|i : {i ∈ N

∧
F (xi) ≥ m}|

(2.6)
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where xi denotes each possible parent feature for all other features, xj denotes one

of the features in the set of features except the parent feature xi, F (xi) denotes

the number of instances associated with different values of the parent feature xi,

N denotes the set of feature indices and m is a user-defined parameter – set to 30

in the original work proposing AODE, as mentioned earlier.

In terms of alleviating the problem of the feature independence assumption for

Naïve Bayes, the AODE algorithm has the advantages of simplicity and theoret-

ical foundation. But it has the disadvantage that the model’s interpretability is

hindered by the fact that the final model actually consists of a large number of

one-dependency models (one such model for each predictor feature used as parent

for all other features).

2.4.4 Naïve Bayes Tree (NBTree)

The NBTree classifier [72] is a hybrid classifier combining Naïve Bayes and Decision

Tree classifiers. It follows the idea of recursive partitioning of a dataset according

to the values of features selected to discriminate among the classes, as performed

by Decision Tree algorithms [37]. An important difference between NBTree and

conventional Decision Tree algorithms is the evaluation function used for selecting

features. NBTree uses the utility (rather than the entropy) of individual features as

the criterion for selecting the splitting feature. The utility of a feature is measured

by the predictive accuracy associated with individual tree nodes by using Naïve

Bayes, where the predictive accuracy is estimated through 5-fold cross validation.

In NBTree, for each leaf in the tree, the set of features can be divided into two

feature subsets, namely the set of splitting features occurring in the path from the

root to that leaf, and the remaining set of features (i.e. features not occurring in

that path). The estimation of the posterior probability of the class value y given

the set of values of the remaining features xi and the set of values of the splitting

features x′ for a given leaf is given by Equation 2.7,

P (y | x, x′) ∝ P (y, x′)
∏
i∈l

P (xi | y, x′) (2.7)
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where x′ is the set of values of the set of splitting features in the path from the

root to the current leaf, and l is the set of indices for the remaining features [141].

The utility of each split for an individual feature equals to the weighted sum of

the utility of the new leaf nodes created by that split. For the sake of avoiding the

over-fitting problem caused by splitting nodes with few instances, the process of

recursively splitting the data terminates if the error reduction is below 5% or the

number of instances in the current node to be split is less than 30.

According to the experimental results reported in [72], NBTree obtains high

predictive accuracy in many cases, but its running time is not competitive against

Naïve Bayes. In addition, the interpretability is a merit of NBTree, which is similar

to an advantage of Decision Tree classifiers [38].

2.4.5 The Lazy Bayesian Rules (LBR) Algorithm

The Lazy Bayesian Rules (LBR) algorithm [143] follows the lazy learning approach,

i.e. it builds a local Naïve Bayes classifier for each testing instance, rather than for

the whole training dataset. A rule has the form: IF(antecedent),THEN(Class);

where the Class in the rule’s consequent (THEN part) is predicted for instances

satisfying the rule’s antecedent (IF part). The antecedent of a Bayesian rule is

composed by a set of feature-value pairs with the form “feature = value”. The

utility of adding each feature-value pair into the antecedent is evaluated by leave-

one-out cross validation and the best pair will be added into the antecedent if its

associated classification error is lower than the error obtained by the existing local

Naïve Bayes classifier created from the training dataset. This process terminates

if there is no significant improvement on predictive performance. The inference

formula used by LBR is shown as Equation 2.8,

P (y | x, q) ∝ P (y, q)
∏
i∈s

P (xi | y, q) (2.8)

where y denotes the class attribute value, q denotes the set of features’ values in

the rule’s antecedent and s represents the set of indices of the remaining features.

LBR’s criterion for stopping rule growing can naturally avoid the over-fitting

problem by avoiding including in a rule antecedent an infrequent feature value, due
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to its “lazy” learning approach. However, LBR uses cross validation to measure

the predictive accuracy associated with each feature-value pair to be added to a

rule, so it has a high processing time for growing the antecedent.

2.5 Conventional, “Flat” Feature Selection

Feature selection is a type of data pre-processing task that consists of removing

irrelevant and redundant features in order to improve the predictive performance

of classifiers. The role of feature selection methods in the classification process is

illustrated by the flow-chart shown in Figure 2.8, where the dataset with the full

set of features is input to the feature selection method, which will select a subset

of features to be used for building the classifier. Then the built classifier will be

evaluated, by measuring its predictive accuracy. Irrelevant features can be defined

as features which are not correlated with the class variable, and so removing such

features will not be harmful for the predictive performance. Redundant features

can be defined as those features which are strongly correlated with other features,

so that removing those redundant features should also not be harmful for the

predictive performance.

Generally, feature selection methods can be categorised into three groups, i.e.

wrapper approaches, filter approaches and embedded approaches, as discussed

next.

Input
Dataset

Feature
Selection

Build
Classifier

Measure
Accuracy

Figure 2.8 Flow-Chart of the Classification Process Including Feature
Selection in a Pre-Processing Phase
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2.5.1 The Wrapper Approach

The wrapper feature selection approach decides which features should be selected

from the original full set of features based on the predictive performance of the

classifier with different candidate feature subsets. In the wrapper approach, the

training dataset is divided into a “building” (or “learning”) set and a validation

set. As summarised in graphical form in Figure 2.9, the best subset of features to

be selected is decided by iteratively getting a candidate feature subset, building

the classifier from the learning set, using only the candidate feature subset, and

measuring accuracy in the validation set. The boolean function “End?” will check

whether the selected subset of features satisfies the expected improvement on pre-

dictive performance. If not so, the re-selection of a candidate feature subset will

be conducted again, otherwise, the stage of feature selection will terminate, and

the best subset of features will be used for building the classifier, which is finally

evaluated on the testing dataset.

The wrapper approach selects features that tend to be tailored to the classifi-

cation algorithm, since the feature selection process was guided by the algorithm’s

accuracy. However, the wrapper approach has relatively higher time complex-

ity than the filter and embedded approaches, since in the wrapper approach the

classification algorithm has to be run many times.

One feature selection method following the wrapper approach is Backward

Sequential Elimination (BSE). It starts with the full set of features, then iteratively

uses leave-one-out cross validation to detect whether removing a certain feature,

whose elimination will most reduce the training error on the validation set, will

improve predictive accuracy. It repeats this process until the improvement in

accuracy ends [141].

The opposite approach, named Forward Sequential Selection (FSS), starts with

the empty set of features and then iteratively adds the feature that mostly im-

proves accuracy on the validation dataset to the set of selected features. This

iterative process is repeated until the predictive accuracy starts to decrease [76].

Both wrapper feature selection methods just discussed have a very high processing

time because they perform many iterations and each iteration involves measuring

predictive accuracy on the validation dataset by running a classification algorithm.
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Figure 2.9 Flow-Chart of the Wrapper Feature Selection Approach - Adapted
from [84]

2.5.2 The Filter Approach

Unlike the wrapper approach, the filter approach conducts the feature selection

process by evaluating the quality of a feature or feature subset using a quality

measure that is independent from the classification algorithm that will be applied

to the selected features. As shown in the flow-chart in Figure 2.10, the subset

of features is chosen from the original full set of features according to a certain

selection criterion (or feature relevance measure). The selected feature subset is

then input into the classification algorithm, the classifier is built and then the

predictive accuracy is measured on the testing set and reported to the user. Note

that the classifier is built and evaluated only once at the end of the process,

rather than being iteratively built and evaluated in a loop, like in the wrapper

approach (Figure 2.9). This means the filter approach is much faster than the

wrapper approach in general. In this thesis, we propose three filter feature selection

methods, which will be described in detail in Chapter 4.

Filter feature selection methods can be mainly categorised into two groups.

The first group focuses on measuring the quality (relevance) of each individual

feature without taking into account the interaction with other features. Basically,
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Figure 2.10 Flow-Chart of the Filter Feature Selection Approach - Adapted
from [84]

the relevance of each feature will be evaluated by a certain criterion, such as the

mutual information with the class variable, the information gain [131], etc. Then

all features will be ranked in descending order according to the corresponding

relevance measure. Only the top-k features will be selected for the classification

stage, where k is a user-defined parameter. This type of methods is simple, but

it ignores the interaction between features, and therefore it can select redundant

features.

The second group of filter methods aims at selecting a subset of features to be

used for classification by considering the interaction between features within each

evaluated candidate subset of features. For example, one of the most well-known

multivariate filter feature selection methods is called Correlation-based Feature

Selection (CFS) [48,49,137], which is based on the following hypothesis:

“A good feature subset is one that contains features highly correlated with

(predictive of) the class, yet uncorrelated with (not predictive of) each other”

– Hall, 1999.

The approach used by the CFS method for evaluating the relevance (Merit) of

a candidate subset of features based on the above hypothesis is based on Equa-

tion 2.9, which is based on Pearson’s linear correlation coefficient (r) used for

standardised numerical feature values. In Equation 2.9, k denotes the number

Merits =
krcf√

k + k(k − 1)rff
(2.9)
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of features in the current feature subset; rcf denotes the average correlation be-

tween class and features in that feature subset; rff denotes the average correlation

between all pairs of features in that subset. The numerator measures the pre-

dictive power of all features within that subset, which is to be maximised; while

the denominator measures the degree of redundancy among those features in the

subset, which is to be minimised.

Another part of CFS is the search strategy used to perform a search in the

feature space. A lot of heuristic search methods have been applied, e.g. Hill-

climbing search, Best First search and Beam search [103], and recently genetic

algorithms [64, 65]. However, the CFS method based on genetic algorithms ad-

dresses the task of multi-label classification, where an instance can be assigned

two or more class labels simultaneously, a more complex type of classification task

which is out of the scope of this thesis.

The search strategy implemented in the Weka version of CFS, used in our ex-

periments reported in other chapters is Backward-Greedy-Stepwise, which conducts

a backward greedy search in the feature subset space. The termination criterion

is when the deletion of any remaining feature leads to a decrease on validation

results.

Another example of multivariate filter method is Markov Blanket-based feature

selection [10,42,105,132,138,139]. Given a Directed Acyclic Graph (DAG) where

each node represents a variable, the Markov Blanket Mf for an individual feature

f is defined as the set of all parent and child features of f, and the other features

that are parents of f ’s child features. The features within Mf are the most rele-

vant features with respect to f, since f is statistically independent from all other

features outside the Markov Blanket given Mf . As an example is shown in Figure

2.11, where only the nodes in black denote the features within the Markov Blanket

of the Class attribute.

A well-known Markov Blanket discovery algorithm is Incremental Association

Markov Blanket (IAMB) [114]. IAMB consists of two stages, namely the Grow

stage and the Shrink stage. In the Grow stage, features which are outside the

Markov Blanket will be considered to be added into the set of Candidate Markov

Blanket (CMB), where some features will be removed at the Shrink stage. The

construction of CMB starts from an empty set, then each feature will be heuristi-

cally evaluated whether its inclusion into the existing CMB maximises a heuristic
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function f(X;T |CMB), e.g. the mutual information, which measures the degree of

relevance between feature X and the target attribute T given the set of features in

the CMB. Before formally adding each candidate feature X into CMB, IAMB will

check whether feature X and target feature T are not independent given CMB,

mathematically shown as ¬I(X;T |CMB). At the second stage (Shrink stage),

IAMB removes in turn the features from CMB which are independent from T

given CMB excluding those features, using the function I(X;T |CMB −X).

X1

X2

X3 X5

Class

X4

X9 X8

X7 X6

X10 X11X12

Figure 2.11 Example of the Markov Blanket for the Class Attribute

2.5.3 The Embedded Approach

Embedded feature selection methods conduct the feature selection process within

the process of building the classifier, rather than conducting feature selection be-

fore building the classifier. As shown in Figure 2.12, between the stages of features

input and accuracy report, the feature selection and the classifier building process

are within the same stage.

For example, within the process of building a Decision Tree classifier, each fea-

ture is evaluated as a candidate for splitting the set of instances in the current tree

node based on the values of that feature. Another example of embedded feature
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selection method is linear regression methods, which will be discussed in the next

section. In this thesis, we also proposed one embedded feature selection method

for the Tree Augmented Naïve Bayes classifier, to be described in detail in Chapter

5.

Full Set

of

Features

Building Classifier

(Candidating Subset

of Features)

& Validation

Report

Accuracy

Figure 2.12 Flow-Chart of the Embedded Feature Selection Approach -
Adapted from [84]

2.6 Hierarchical Feature Selection

Hierarchical feature selection methods are a specific type of feature selection meth-

ods based on the principle of exploiting the hierarchical relationships among fea-

tures in order to improve the quality of the selected feature subset. This type of

feature selection method is the theme of this thesis.

There has been very little research so far on hierarchical feature selection,

i.e. on feature selection methods that exploit the generalisation-specialisation re-

lationships in the feature hierarchy to decide which features should be selected.

Hierarchical feature selection methods have been proposed for the task of selecting

“enriched” Gene Ontology terms (terms that occur significantly more often than

expected by chance) [9] and the task of learning linear models for regression, where

the target variable to be predicted is continuous [59,87,134,140]. Note that these

tasks are quite different from the classification task addressed in this paper, where

the goal is to predict the value of a categorical (or nominal) class variable for an

instance based on the values of features describing properties of that instance. In

any case, a brief review of these methods is presented next.
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Alexa, et al. (2006) [9] proposed two methods to identify enriched Gene Ontol-

ogy (GO) terms in a group of genes using the dependency information retained in

the GO hierarchy. The first proposed method exploits the hierarchical dependen-

cies between GO terms, i.e. the calculation of the p-value for each GO term starts

from the bottom-most level of the GO Graph. If a GO term is found as significant

based on its p-value, then all genes associated with that GO term’s ancestor terms

will be removed from that GO term’s set of associated genes. This significance

test will be applied until all GO terms have been processed.

The second method calculates the significance score of GO terms using the

weights of their associated genes. The adjustment of weights for individual GO

terms takes into account the significance score of its children GO terms. If the

significance score for one child GO term is greater than the one for its parent GO

term, then the weights for that parent term and all ancestor GO terms will be

increased, and then the weight of that child GO term will also be re-computed.

This adjustment process will be iteratively executed until there does not exist any

child GO term whose weight is greater than any of its ancestor’s weights. Both

methods showed better performance than competing methods.

Another group of hierarchical feature selection methods is based on the Least

Absolute Shrinkage and Selection Operator (LASSO) [52, 113], which is a linear

regression method that performs embedded feature selection. In general, LASSO

aims to find the parameters (regression coefficients) of a linear model that min-

imises both the value of a loss function and the value of a regularisation term,

which penalises models with large values of feature weights. The need to minimise

the value of the regularisation term forces the construction of sparse models, where

many features with a weight of “0” are eliminated. Therefore, LASSO effectively

selects a subset of relevant features.

Variations of the LASSO method perform hierarchical feature selection by us-

ing regularisation terms that consider the feature hierarchy. Briefly, a feature can

be added into the set of selected features only if its parent feature is also included in

that set. LASSO could be seen as one type of embedded feature selection method,

since it removes features during the stage of model training. LASSO has been

successful in various applications such as biomarker selection, biological network

construction, and magnetic resonance imaging [134].
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2.7 Hierarchical Redundancy

In this section, we described a type of redundancy which is a key concept for the

feature selection methods proposed in later chapters. In this thesis, we define hi-

erarchical redundancy as the situation where there exists more than one features

that are related via a specialisation-generalisation relationship and have the same

value (i.e. either “0” or “1”). In the example shown in Figure 2.13, the features

can be grouped into two sets, i.e. a set of features having value “1” (the left four

features: E, F, G, C), and another set of features having value “0” (the right four

features: H, A ,B, D). In terms of features E, F, G, C, feature E is the parent of

F, which is the parent of G. Feature G has the child C. It means that the value “1”

of C logically implies the value “1” of G, whose value implies the value of F, and

the value of F implies the value of E. Therefore, it can be noted that feature E

is hierarchically redundant with respect to F, G and C; feature F is hierarchically

redundant with respect to G and C; and feature G is hierarchically redundant with

respect to C.

E F G C H A B D

1 1 1 1 0 0 0 0

Figure 2.13 Example of a Set of Hierarchical Redundant Features

Analogously to the set of features having values “1”, the other set of features

having values “0” contains a similar type of hierarchical redundancy. In details, the

value “0” of feature H logically implies the value “0” of A, whose value implies the

value of B, and the value of B implies the value of D. Therefore, it can be noted

that feature D is hierarchically redundant with respect to B, A and H; feature

B is hierarchically redundant with respect to feature A and H; and feature A is

hierarchically redundant with respect to H.

This type of hierarchical redundancy could be retained by a more complicated

scenario, i.e. a given directed acyclic graph (DAG) structure of features. As shown

in Figure 2.14, the DAG actually is composed by a set of different paths, where

each individual path contains a set of hierarchically structured features. Note
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that some features are shared by more than one path, e.g. feature F is shared

by 4 paths, feature I is shared by 4 paths, feature A is shared by 3 paths, etc.

This scenario of hierarchically structured features, with hierarchical redundancy

as defined earlier, is the core problem addressed in this thesis, and we propose

later feature selection methods that remove or at least reduce the hierarchical

redundancy among features.
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Figure 2.14 Example of a Set of Hierarchical Redundant Features Structured
as a DAG

Note that this type of hierarchical redundancy scenario fits well with the lazy

learning paradigm, i.e. the hierarchical redundancy occurs in the context of the

values of features in an individual instance. For instance, Table 2.1 is an example

dataset matrix, where each individual row represents one instance consisting of

the value of the class attribute (in the last column) and the values of a set of

features (in all other columns). The set of features in this example dataset matrix
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retains the hierarchical dependencies associated with the feature DAG shown in

Figure 2.14. For example, in the first row, the value of feature C equals to “1”,

then the values of features I, F, M, L are all equal to “1”; and vice versa, the value

of feature A equals “0”, then the values of features D and H are both equal to “0”.

Therefore, all proposed novel feature selection methods and the classifiers used in

this thesis are based on the lazy learning scenario.

Table 2.1 Example Matrix of Dataset

C I F M L K O Q B J ... A D H Class

Inst1 1 1 1 1 1 0 1 1 0 0 ... 0 0 0 1

Inst2 0 0 0 1 1 0 1 1 0 0 ... 1 0 0 0

Inst3 0 1 1 1 1 1 1 1 1 1 ... 1 0 0 1

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

Instn 0 0 1 1 1 1 1 1 0 0 ... 1 0 0 1

2.8 Final Remarks

The previous sections have reviewed background knowledge on data mining, spe-

cially about Bayesian network classification algorithms and feature selection meth-

ods. Recall that we decided to adopt Naïve Bayes, Tree Augmented Naïve Bayes

(TAN) and Bayesian Network Augmented Naïve Bayes (BAN) as the classification

algorithms for the research in this thesis. The reasons are described next.

First, considering the interpretability of classifiers, “white-box” classifiers are

more suitable for the theme of this thesis, i.e. conducting data mining and knowl-

edge discovery from ageing-related data, in order to discover knowledge or patterns

that can be interpreted by biologists. The models learnt by Naïve Bayes, TAN

and BAN are in principle more interpretable than the “black-box” models built

by classification algorithms like Support Vector Machines and Artificial Neural

Networks [38].
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Second, considering that the theme of this thesis focuses on hierarchical fea-

ture selection methods, there are good reasons to expect that such methods can

improve the predictive performance of Bayesian network classifiers, as follows.

Bayesian network classifiers are sensitive to redundant features [18] and the pro-

posed hierarchical feature selection methods are designed to eliminate or at least

reduce redundancy among features, as discussed in later chapters. In addition,

some Bayesian network classifiers like BAN does not scale well with the large

number of features, due to the overfitting problem, i.e. there is a large number

of parameters that need to be learnt from the training dataset, but those learnt

parameters might not work well on the testing dataset.

Another reason for focusing on Bayesian network classifiers is due to the learn-

ing approach used by this type of classifiers, in terms of the distinction between

eager and lazy learning paradigms discussed in Section 2.2.4. In this thesis, the pro-

posed hierarchical feature selection algorithms follow the lazy learning paradigm,

i.e. the proposed algorithms conduct feature selection for each individual testing

instance and then lazy learning-based classifiers are used for classifying the indi-

vidual instance based only on the selected features. Naïve Bayes, TAN and BAN

can be naturally adapted for working under the lazy learning paradigm, as will be

shown in Chapters 4, 5 and 6.

Hierarchical feature selection is the main research theme for this thesis. As

described in Chapters 4, 5 and 6, we propose and evaluate four hierarchical fea-

ture selection methods and two methods for constructing the network topology

of a BAN classifier. These methods have been shown, overall, to improve the

predictive performance of Bayesian network classifiers.



Chapter 3

Background on the Biology of

Ageing and Bioinformatics

3.1 Introduction

Ageing is an ancient research topic that has attracted scientists’ attention for a

long time, not only for its practical implications on extending the longevity of

human beings, but also due to its high complexity.

With the help of modern biological science, it is possible to start to reveal

the mysteries of ageing. In this thesis, we focus on research about the biology

of ageing, which is an application topic associated with our proposed hierarchical

feature selection methods, which will be described in the next three chapters.

In this chapter, we will briefly review basic concept of molecular biology; biol-

ogy of ageing; and bioinformatics.

3.2 Overview of Molecular Biology

Molecular Biology is defined by the Oxford Dictionary as “the branch of biology

that deals with the structure and function of the macromolecules essential to life”.

More precisely, molecular biology focuses on understanding the interactions be-

tween DNA, RNA and proteins, including the regulation of the systems consisting

36
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of those macromolecules.

Such regulation mechanisms include the process of gene expression, which can

Figure 3.1 Overview of the Gene Expression Process [117]

be divided into three main stages, i.e. transcription, translation and protein fold-

ing as shown in Figure 3.1. At the stage of transcription, Deoxyribonucleic acid

(DNA), which is a type of nucleic acid that contains the genetic information, is

transcribed into messenger RNA (mRNA), then the mRNA will be translated into

the amino acid sequence of a protein, which is finally folded into a 3D structure

in the cell.

Figure 3.2 DNA Double Helix [119]

The basic units of DNA consist of adenine (A), guanine (G), cytosine (C) and

thymine (T), and a DNA sequence can be represented by the combination of A, G,

C, and T, such as ATAAGCTC [115]. The 3D structure of DNA is a double helix
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(Figure 3.2), where one strand governs the synthesis of a complementary RNA

molecule during the transcription process [102].

RNA, which is another type of nucleic acid, plays an important role on the

process of protein production. RNA has basic units that are the same units of

DNA with the exception that thymine (T) in DNA is replaced by uracil (U) in

RNA. The structure of RNA is represented as a chain of nucleotides, which is

different from DNA having a double helix structure. There exist different types

of RNA, e.g. mRNA, tRNA, rRNA, etc. Among those types of RNA, mRNA

performs its function during the stage of transcription, which is defined as the

synthesis of RNA based on a DNA template [115] or the process of copying one

of the DNA strands into an RNA [102]. Then the next step is translation, by

which the linear sequence of information retained in mRNA is decoded and used

for producing linear chains of amino acids, which are the basic component for

proteins and determine the structure of proteins [102].

A gene is considered as a segment/unit of DNA containing heredity information

and defines particular characteristics/functions of proteins [102]. As shown in

Figure 3.3, gene-1 and gene-2 are respectively contained by different segments of

DNA, which is stored in a chromosome. Briefly, one specific gene controls different

functions of proteins, and therefore affects particular functions of organisms, such

as the effect on the metabolism rate, which is possibly an ageing-related factor

that will be discussed later.
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Figure 3.3 Example of Genes within DNA [118]

Proteins are large biological molecules that carry out almost all of living cells’

functions, most of which are determined by the ability of proteins to recognize

other molecules through binding [19]. The functions of proteins can be categorised

into three major broad groups: structural proteins, which are considered as the

organism’s basic building blocks; enzymes, which regulate biochemical reactions;

and transmembrane proteins that maintain the cellular environment [21].

Proteins consist of 20 different types of amino acids that are joined together to

compose a linear sequence named poly-peptide chain [21]. Proteins have four types

of structure (Figure 3.4). The primary structure (Figure 3.4.A) is a linear amino

acid sequence which determines all other three types of structures. The secondary

structure consists of α helices (Figure 3.4.B) and β sheets. The tertiary structure

(Figure 3.4.C) is a 3D structure that is built according to the spontaneous folding

of poly-peptides in the cell environment. It is made by α helices, β sheets, other

minor secondary structures and connecting loops [115]. The quaternary structure

(Figure 3.4.D) is composed by two or more poly-peptide chains with the same
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(a) Primary Structure (b) Secondary Structure

(c) Tertiary Structure (d) Quaternary Structure

Figure 3.4 Protein Structures [1–3]

forces that stabilise tertiary structure [115].

In this thesis, we focus on ageing-related genes. Recall that one specific gene

controls certain functions for organisms by producing certain proteins. We will

review some factors associated with ageing, including some discovered age-related

genes and their related biological processes in the next section.

3.3 Overview of the Biology of Ageing

3.3.1 Introduction to the Biology of Ageing

Ageing is a complex and stochastic process of progressive function loss for an

organism with time [71], and the accumulation of function losses leads to the
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mortality of the organism. The speed of ageing and the longevity of organisms

differs between species. For example, C. elegans’ lifespan is around 2-3 weeks [66],

whereas the ocean quahog has 400 years of longevity. In terms of human longevity,

the longest age record is 122.5 years and the average longevity measured in 2009

was 79.4 years in the UK [128].

The mystery of ageing is a sophisticated issue that has puzzled humans for

thousands of years, as there has been many stories about a failure on finding the

method of being immortal. Nowadays, with the help of molecular biology, some

possible factors related to ageing have been found, as discussed next.

3.3.2 Some Possible Ageing-Related Factors

Some ageing-related factors have been revealed with the help of molecular biol-

ogy, such as genetic factors, environmental factors, etc. From the perspective of

molecular biology, those factors have an effect on ageing through their regulation

of ageing-related biological pathways.

A biological pathway is a series of actions among molecules in a cell that leads to

a certain product or a change in a cell [57]. Biological pathways analysis is consid-

ered as an approach to research the molecular mechanisms of ageing. In particular,

the pathways related with the regulation of growth, energy metabolism, nutrition

sensing and reproduction seem associated with the process of ageing [120].

Genetic factors have been shown to be one of the most important types of factor

that impacts on biological pathways related with the ageing process. The mutation

of a gene(s) change(s) the effects of pathways on organisms. For instance, it has

been found that a gene called daf-2 is highly related to the extension of lifespan

in C.elegans (a worm). The mutation of daf-2 will affect the activation of FOXO

proteins that can activate cell maintenance and stress resistance mechanisms [68].

In addition, changes on daf-2 are related with insulin/insulin-like growth factor-1

(IGF-1) signaling. The former is a hormone that regulates the metabolism of glu-

cose and the latter primarily controls growth [120]. It was found that inhibiting

insulin/IGF-1 signaling or increasing the activity of FOXO extends Drosophila’s

lifespan [68]. Conversely, it was found that mutations that increase oxidative

damage can shorten lifespan. For example, the ctl-1 mutants shorten lifespan and

prevent lifespan extension of daf-2 mutants by age-associated lipofuscin granules
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accumulation [46]. Therefore, it is possible to speculate that gene mutations, es-

pecially changes on the sensitivity of the insulin/IGF-1 receptor, can enhance the

resistance to environmental stress [68]. In support of this inference, the relation-

ship between stress responsiveness and lifespan was found for age-1 mutants in

C. elegans [32]. In addition, this point of view is also supported by another pos-

sible ageing-related pathway, i.e. the target of rapamycin (TOR) pathway. TOR

kinase stimulates growth and blocks salvage pathways [68] that are related with

autophagy (a basic repair mechanism for damaged cell degradation), which can

alleviate the accumulation of damages on cells.

Oxidative stress was found as an ageing-related factor. In essence, the role

of oxidative stress on longevity regulation is related with reactive oxygen species

(ROS), which are a type of byproduct of normal metabolism [101]. It was discov-

ered that the balance between ROS and an antioxidant defence system controls

the degree of oxidative stress, which is associated with modifications of cellular

proteins, lipids and DNA [32]. Also, other research revealed that a cycle of growing

DNA damage is caused by damaged mitochondria, which leads to increased ROS

production [32]. ROS can damage and crosslink DNA, proteins and lipids [120] and

affect the formation of base adducts of mutation and canceration-related DNA [53].

Therefore, the damage caused by oxidation reactions, cell or DNA self-repair mech-

anisms and resistance to environmental stress are probably interacting factors that

affect the process of ageing, and all of them are supported by the theory that the

reduction of energy intake associated with calorie restriction (discussed next) will

be helpful for extending longevity.

Nutritional level is another type of environment factor. This was discovered in

1935 by McCay, Crowell and Maynard [90] under well-executed studies, which dis-

covered that the longevity of rats can be extended by a dietary control approach.

Then several findings showed that the method of dietary control for extending

longevity can be applied to other species, such as yeast, fish, hamster, etc. [88].

Caloric restriction was found to be helpful for extending lifespan with the possible

reason of oxidative damage attenuation. The joint impact of reduced rate of reac-

tive oxygen molecules generation and increased efficiency of protective processes

might alleviate the accumulation of oxidative damages; the evidence for this was

found in isolated mitochondria and microsomes from caloric restricted rodents [88].

In addition, some diseases (in particular, most types of cancers) are also factors
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that are highly related with ageing. Cancer cells could be seem as immortal, and

this is opposite to normal cells that have intrinsic process of senescence. Some

research revealed that cell senescence might be a mechanism of tumour suppres-

sion [116]. The experiments about observing the function of p53 (a gene that pre-

vents cancer) supported that hypothesis. Finkel, Serrano and Blasco (2007) [33]

found that mice which over-expressed p53 could be resistant to cancer, but was

found as prematurely aged; and reduction of p53 expression prevents telomere- or

damage-induced senescence [22]. The possible reasons would be due to the fact

that p53 helps to avoid or reduce genomic instability, which is considered the hall-

mark of both cancer and ageing. However, the relationship between ageing and

cancer is very complex and has not been precisely understood so far.

3.3.3 The Evolutionary History Theory of Ageing

The evolutionary history theory of ageing is a popular explanation about the dif-

ference of longevity between species. Firstly, the natural selection principle plays

an essential role on the development of a species’ lifespan. The rate of ageing

will be concomitantly changed with changes on the force of natural selection [71].

Especially in hazardous environments, the surviving individuals would promote

their somatic maintenance ability and propagate their gene variants [120]. Also, a

deleterious mutation will not be easily passed to offspring via reproduction, since

the effect of a mutation usually appears in early life [43], before the individual has

a chance to reproduce. On the other hand, if a mutation has a deleterious effect

that occurs only in late life, long after the organism has reproduced, there is little

selection pressure to eliminate that kind of mutation (since it does not affect the

reproduction of the organism).

Secondly, the competition between species will suppress the growth of longevity

expectation for the weaker, as limited resources would not support the energy con-

sumption in harsh environmental conditions [70]. The weaker competitor usually

could not have enough time for evolution. For example, the observation on a

mainland population and an island population of Didelphis virginiana revealed

that the latter has longer longevity, since they have reduced exposure to predators

comparing with the former [13]. The evolutionary history hypothesis provides
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a macro-perspective about the development of lifespan expectation for different

species.

3.3.4 Mysteries in Ageing Research

Although some findings about the possible reasons for the process of ageing have

been revealed, several mysteries about ageing still cannot be figured out. To start

with, the actual biological mechanisms leading to ageing are still not clear. For ex-

ample, the actual function of longevity-associated genes with respect to the stress

resistance is unknown [32] and the answer about how different ageing-related bi-

ological pathways interact and cooperate is still absent [120]. Moreover, it is not

clear how gene mutations affect ageing-related cellular degeneration [120]. Further-

more, the diversity between species limits the universality of support from those

hypotheses about the reasons of ageing. In terms of the caloric restriction theory,

which caloric restriction approach extends the lifespan and the actual molecu-

lar mechanism underlying that extension are still debated, and whether caloric

restriction extends longevity in long-lived species is unknown [53]. Therefore, dis-

covering answers to the mysteries of ageing is challenging, as the vast variety of

ageing-related factors interactively work, and the answers are still a long way to

go.

3.4 An Overview of Protein/Gene Function Pre-

diction in Bioinformatics

3.4.1 Introduction to Bioinformatics

Bioinformatics is an inter-disciplinary field that integrates computer science, math-

ematics, statistics, etc., with the purpose of assisting biological research. Bioin-

formatics can be defined as follows:

“The science of collecting and analysing complex biological data such as ge-

netic codes.” - Oxford Dictionary
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The main subareas of bioinformatics consist of biological data management, bio-

logical data analysis software development and research on biological data analysis

methods.

In terms of biological data management, there exists a lot of biological databases

with different types of biological data. For example, the well-known GenBank

database is a collection of publicly available nucleotide sequences [16]; the Biologi-

cal General Repository for Interaction Datasets (BioGRID) is a repository of data

about physical and genetic interactions from model organisms [109]; and REAC-

TOME is a curated database about human pathways and reactions [25]. Those

bioinformatics databases foster the development of bioinformatics and also pro-

mote biology research, since the biological data in these databases are well stored,

integrated or managed.

Based on those biological databases, a lot of applications have been made for

supporting biology research, e.g. protein/gene function prediction [20, 39, 77, 100,

104], protein structure prediction [14, 55, 62, 63, 74], etc. In this thesis, the main

theme is developing novel biological data analysis methods, in particular novel fea-

ture selection methods for the classification task of data mining, and using them

for predicting a kind of gene function; more precisely for predicting the effect of a

gene on the longevity of an organism.

3.4.2 Protein/Gene Function Prediction

As one of the main tasks in bioinformatics, protein function prediction has been

highly valued due to its advantages of saving time and reducing cost, since it

can be used for guiding the direction of biological experiments designed to confirm

whether a protein has a certain function. A biologist can conduct only experiments

focusing on fewer specific proteins whose function have been predicted with high

confidence, rather than conducting a large amount of slow and expensive biological

experiments. The methods for gene/protein function prediction can be categorised

into three main broad groups, i.e. sequence alignment analysis, 3D structure

similarity analysis, and machine learning/data mining methods. We will review

those three groups of methods in the next three subsections.
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3.4.2.1 Sequence Alignment Analysis Methods

Sequence Alignment Analysis is the most conventional approach to predict the

functions of proteins and genes. A well-known Sequence Alignment Analysis-

based method, named Basic Local Alignment Search Tool (BLAST), has been

highly valued and widely applied on protein/gene function prediction. The basic

principle of BLAST is measuring the degree of similarity between the amino acid

sequence of a protein with unknown function and the amino acid sequence of a

set of proteins with known functions. The motivation for this approach is that a

protein’s amino acid sequence dictates the protein’s 3D structure, which further

determines the function of the protein. In this approach, an unknown-function

protein is predicted to have the functions of its most similar known-function pro-

teins.

In details, BLAST employs a measure of local similarity called maximal seg-

ment pair (MSP) score between two sequences and also detects whether the score

will be improved by extending or shortening the segment pair by using a dynamic

programming algorithm [12]. Then a user-defined threshold is used for filtering

the most reliable MSPs. Based on this basic principle, BLAST has been extended

for fitting more applications, such as Primer-BLAST [133], IgBLAST [135], etc.

Although BLAST has dominated in the area of protein/gene function predic-

tion, it has several limitations, as follows [36]. Firstly, BLAST is only applicable

for predicting the function of proteins or genes which are similar to known-function

proteins/genes. Secondly, similar amino acid sequences do not guarantee similar

functions between proteins, because of the difference of their 3D structure. There-

fore, the high score obtained by BLAST might not be quite reliable. Thirdly, in

the context of coping with hierarchical protein function data, such as the data con-

sisting of generalisation-specialisation relationships used in this thesis (discussed

later), BLAST has the limitation of ignoring such hierarchical relationships.

3.4.2.2 3D Structure Analysis-Based Protein Function Prediction

In a cell, the folds of proteins will spontaneously change depending on cellular envi-

ronment factors. Therefore, it is uncertain that a high degree of similarity between

amino acid sequences will lead to similar functions. In general, the information
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about protein structure is more valuable in terms of protein function prediction.

The second group of methods for protein function prediction is based on protein

3D structure analysis. There are some protein folds that are associated with mul-

tiple functions, but most folds have been found to represent a unique function [39].

Some algorithms based on the knowledge of folds don’t fit the expectation of high

accuracy. For the purpose of overcoming that shortage, a more reliable strategy

consisting of analysing the structure patterns of proteins that are spatial regions

within protein structure, denoting unique markers for specific functions, has been

proposed [39].

The basic concept of a 3D structure analysis-based protein function prediction

algorithm consists of two parts: 3D motif library generation and a searching algo-

rithm for matching motifs between two proteins [39]. For example, a well-known

3D structure analysis-based protein function prediction server ProFunc [77] detects

the possible function of unknown proteins by using a graph-matching algorithm

to compare the secondary structure elements (SSEs) between target proteins and

the proteins whose SSEs are known and stored in the databases. In addition, Pro-

Func further analyses the cleft size, residue type and other details of structural

information about the protein.

3D structure analysis has attracted attention due to its highly reliable predic-

tive results. There are several tools based on structure analysis that are available

to be used by the bioinformatics community, such as SuMo, PINTS, PDBFun, etc.

3.4.2.3 The Machine Learning/Data Mining Approach

Machine learning/data mining methods have been widely applied in bioinformat-

ics research, such as in the task of protein/gene function prediction. Unlike the

popular sequence similarity-based methods, such as BLAST, the machine learn-

ing/data mining approach can be called a model induction or alignment-free ap-

proach. Briefly, this approach treats protein function prediction as a classifica-

tion task, where the protein functions are classes and the predictor attributes (or

features) are properties or characteristics of protein. One of the advantages of

machine learning/data mining-based protein function prediction methods (more

precisely, classification methods) is that they can predict the functions of a given

protein without being given existing similar proteins (i.e. protein with amino
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acid sequence similar to the protein being classified). More precisely, classification

methods take into account the variables (attributes) denoting different types of

biological properties that might be associated with protein function prediction.

A lot of different types of classifiers have been adopted for different tasks of

protein/gene function prediction and have shown powerful predictive performance.

For example, Support Vector Machine (SVM), which is a type of classifier that

obtains very good predictive performance in general, have been widely used. For

instance, Borgwardt, et al. (2005) [20] classified proteins into functional classes

by applying SVM with graph kernels; Bhardwaj, et al. (2005) [17] used SVM to

predict DNA-binding proteins; and Krishnan and Westhead (2003) [75] applied

SVM and Decision Tree classifiers to predict the effects of single nucleotide poly-

morphisms on protein function. Note, however, that SVMs have the disadvantage

of producing “black-box” classification models, which in general cannot be inter-

preted by biologists.

Bayesian network classifiers are another group of classifiers that are widely

applied in protein function prediction, due to their advantage of producing proba-

bilistic graphic models that can be interpreted by biologists. For example, Yousef,

et al. (2007) [136] used Naïve Bayes to predict microRNA targets. As another ex-

ample, Barutcuoglu, et al. (2006) [15] proposed to use a Bayesian network to cope

with the prediction inconsistency problem that happens in a hierarchical classi-

fier. Inconsistent hierarchical predictions occur, e.g. when a classifier predicts for

a given instance, a certain class y, but not an ancestor of class y in the hierarchy.

This is inconsistent, assuming the class hierarchy is a “is-a” hierarchy, so that an

instance assigned to a class must be assigned to its ancestor classes. That Bayesian

network calculates the most probable prediction results by Bayes’ theorem. More

specifically, they trained an individual SVM classifier for each class, so that the

different SVMs can make inconsistent predictions across the class hierarchy, and

then combined the predictions of all those SVMs by using a Bayesian network.

Apart from classifiers, feature selection methods also play an important role

on protein function prediction, due to their capacity of improving the predictive

performance of classifiers by providing the classification algorithm with a subset of

very relevant features, removing features with little relevance or containing redun-

dant information for classification purposes. For example, Glaab, et al. (2012) [45]

adopted three different types of eager learning-based feature selection algorithms,
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i.e. partial least squares-based feature selection (PLSS), correlation-based feature

selection and random forest-based feature selection, working with rule-based evolu-

tionary machine learning systems to tackle the microarray data classification task.

The experimental results show that PLSS outperforms other non-univariate feature

selection methods and indicate that the feature independence assumption could be

beneficial for microarray gene selection tasks. Note that those three types of fea-

ture selection methods select a feature subset for classifying all testing instances,

following the eager learning paradigm. Al-Shahib, et al. (2005) [7] adopted a

type of wrapper feature selection method with a genetic search algorithm com-

bined with SVM, Decision Tree and Naïve Bayes classifiers for predicting protein

functions for the Neisseria gonorrhoea proteome. In another work of Al-Shahib,

et al. (2005) [8], they proposed a new feature selection approach. This feature

selection approach first ranks all features according to those features’ correspond-

ing p-values calculated by the Wilcoxon rank sum test between each feature and

the class variable, and then removes the redundant features with respect to the

features from top to the bottom of the ranking table. The method used to detect

redundancy is based on the correlation coefficient. Li, et al. (2012) [81] adopt the

mRMR (minimal-redundancy-maximal-relevance) method [94] to select the opti-

mal subset of features for predicting protein domain. This method firstly ranks

all features according to the quality measure computed by the mRMR method,

and then evaluates the predictive performance of different subsets of features by

stepwise adding one feature into the current feature subset. The adding order is

from high to low on the features’ ranking. In addition, Leijoto, et al. (2014) [80]

adopted genetic algorithms to select a subset of physical-chemical features to pre-

dict protein functions.

3.4.3 A Comparison Between Three Approaches for Pro-

tein/Gene Function Prediction

Comparing machine learning/data mining methods and sequence alignment anal-

ysis methods, the latter seems to have more limited reliability in general. As

mentioned in the previous section, although the primary structure broadly deter-

mines the functions of proteins, it is also possible that two proteins have different
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functions while their primary structure are quite similar. That means the high

score obtained by sequence alignment will not guarantee a high degree of similar-

ity between the functions of the aligned proteins/genes. For example, according

to research on Gene Ontology term annotation errors, the error rate of annotation

inferred by sequence similarity reaches 49% in same cases [36]. In addition, the

sequence alignment methods have the drawback of not discovering relationships

between biochemical properties and protein functions, which would be valuable

for biologists.

Comparing machine learning/data mining methods and 3D structure analysis

methods, the latter show high accuracy in terms of protein function prediction.

However, the obvious limitation of 3D structure analysis methods is that there are

many proteins whose 3D structure is unknown. Therefore, in the case of predicting

functions of an unknown protein, the prediction method’s accuracy is limited by

the availability of proteins that not only have a known 3D structure, but also have

a 3D structure similar to the current unknown protein.

Although machine learning/data mining methods show advantages of flexibility

and potential for discovering comprehensible models, compared with the other two

methods, the model induction approach also has the limitation of not producing

comprehensible models sometimes, when the choice of data mining algorithm(s)

is not appropriate. More precisely, as an advantage of black-box classifiers, their

high predictive accuracy attracts most researchers’ attention in the bioinformat-

ics community. Especially, artificial neural networks and support vector machines

are widely used as protein function prediction methods. However, as mentioned

earlier, in general, those classifiers cannot be interpreted by users and they cannot

reveal valuable insight on relationships between protein features (properties) and

protein function. Therefore, white-box (interpretable) classifiers, such as Bayesian

network classifiers, Decision Trees, etc., should receive more attention in area of

protein function prediction.
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3.5 Related Work on The Machine Learning/Data

Mining Approach Applied to Biology of Age-

ing Research

There exist few works about the machine learning/data mining approach with

application on ageing-related proteins/genes function prediction. As the key ap-

plication area of this PhD project, the use of classification methods for predicting

the functions of ageing-related proteins/genes has been investigated by the bioin-

formatics community only in the last few years, so there is a broad space for

research in this area. The relevant articles in this research topic are briefly re-

viewed as follows.

Freitas, et al. (2011) [35] addressed the classification of DNA repair genes

into ageing-related or non-ageing related by applying conventional data mining

techniques on datasets which consisted of ageing-related protein/gene data and

several types of features. The experiments revealed that protein-protein interac-

tion information, which was obtained from the HPRD (Human Protein Reference

Database) [98], is helpful for prediction. Other predictor features, such as biologi-

cal process Gene Ontology (GO) terms, evolutionary gene change rate, and types

of DNA repair pathway were used for the prediction task. After comparing the

results of two different classification algorithms, Naïve Bayes outperformed J48 (a

Decision Tree algorithm) in terms of predictive accuracy. But with the help of

the J48 algorithm, some interesting and interpretable IF-THEN rules which can

be used for classifying a DNA repair gene into an ageing-related gene or a non-

ageing-related gene were found. Similarly, Fang, et al. (2013) [30] addressed the

classification of ageing-related genes into DNA repair or non-DNA repair genes.

Both studies used GO terms as features, in addition to other types of features.

GO terms are particularly relevant for this thesis, since they are the type of

feature to which the feature selection methods proposed in this thesis were applied.

Hence, GO terms will be discussed separately in the next section.

Li, et al. (2010) [82] classified C. elegans genes into longevity and non-longevity
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genes by adopting a support vector machine (SVM). They firstly created a func-

tional network by adopting information about gene sequences, genetic interactions,

phenotypes, physical interactions and predicted interactions from wormnet [79].

Then they derived graph features from the functional network, such as a node’s

degree, longevity neighbour ratio, average shortest distance, etc. The experiments

showed that the predictor features as a whole contribute to a high predictive ac-

curacy, up to 85%.

Huang, et al. (2012) [54] proposed a method using the information about the

effect of a gene’s deletion on lifespan to predict whether the deletion of a spe-

cific gene will affect the organism’s longevity. The three effect classes were: no

effect on lifespan, increased or decreased lifespan. They adopted network features,

biochemical and physicochemical features, and functional features obtained from

the deletion network, which was constructed by mapping the information about

gene deletion and protein-protein interaction data (obtained from the STRING

database [60]). For each deleted gene, they removed its downstream lifespan-

related genes from the complete lifespan-related gene network and considered the

remaining network as the deletion network for that gene. They computed GO

enrichment scores (based on the p-value of a hypergeometric test) as functional

features of the deletion networks. A two-layer classifier was used to firstly detect

whether the deletion of one gene will affect the longevity, then another classifier

predicts the specific function of that gene in terms of longevity.

These works regarding ageing-related gene classification/prediction shed a light

on ageing-related knowledge discovery based on data mining approaches. However,

given the small number of works in this research topic, there is still much space for

further research, not only in terms of optimising the predictive accuracy, but also

finding new clues that help to solve or reduce the mystery of ageing, by discovering

knowledge that can be interpreted by biologists.

3.6 Biological Databases Relevant to This Research

In this section, we discuss the two biological databases used in our research, i.e.

the Gene Ontology and the Human Ageing Genomic Resources (HAGR).



Chapter 3. Background on the Biology of Ageing and Bioinformatics 53

3.6.1 The Gene Ontology (GO)

The Gene Ontology project aims to provide dynamic, structured, unified/con-

trolled vocabularies for the annotation of genes [112]. To minimise the inconsis-

tent annotations of individual genes between different biological databases, it is

required that a centralised public resource provides universal access to the on-

tologies, annotation datasets and software tools. In addition, an ontology can

facilitate communication during research cooperation and improve the interoper-

ability between different systems. The initial members/contributors of the Gene

Ontology Consortium were FlyBase, Saccharomyces Genome Database and the

Mouse Genome Informatics project, whereas now the number of databases mem-

bers rose to around 36. The information resources of GO consist of documentation-

supported links between database objects and GO terms with the experimental

evidence from the published literature for individual source information, in order

to provide high-quality GO annotations. In addition, the standard for GO term

annotation defined that all GO terms should not be species specific.

There are three categories of GO terms, each implemented as a separate on-

tology: biological process, molecular function, and cellular component [112]. The

biological process represents a biological objective to which a gene product con-

tributes, such as regulation of DNA recombination, regulation of mitotic recom-

bination, etc. The process might be accomplished by one or more assemblies of

functions. Note that the meaning of a biological process is not necessarily con-

sistent to the meaning of a biological pathway. The molecular function ontology

represents the biochemical level of gene functions, regardless of the location or

when that function occurs, such as lactase activity. The cellular component refers

to a location where the gene product is active, such as ribosome, nuclear mem-

brane, etc.

In terms of structure of the GO information, there are hierarchical relation-

ships between GO terms. The hierarchical relationships are composed mainly by

“is-a” relationships, which is the type of hierarchical relationship considered in this

research. That is, the process, function or location represented by a GO term is

a specific instance of the process, function or location represented by its parent

GO term(s). Hence, these hierarchical relationships are effectively generalisation-

specialisation relationships. Examples of such hierarchical relationships are shown
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in the example graph in Figure 3.5 where GO:0051234 (establishment of localiza-

tion) and GO:0044699 (single-organism process) are both a child of GO:0008150

(biological process), and GO:0006810 (transport) is a child of GO:0051234 and

a parent of GO:0044765, which is a child of not only GO:0006810, but also

GO:0044699, and also a parent of GO:0045056 (transcytosis). These hierarchical

relationships can be used for building a Directed Acyclic Graph (DAG) composed

by GO terms.

GO:0008150

GO:0051234

GO:0006810

GO:0044699

GO:0044765

GO:0045056

Figure 3.5 Example of a Topology of Gene Ontology Data

3.6.2 Human Ageing Genomic Resources (HAGR)

The HAGR is a high-quality biological database that specifically focuses on the

biology or genetics of ageing. The HAGR database consists of four main groups

of data, namely GenAge, AnAge, GenDR and DAA (Digital Ageing Atlas).

Firstly, GenAge is a database of ageing/longevity-associated genes for humans

and model organisms, such as mice, worms, fruit flies and yeast. GenAge includes

high-quality curated information of genes that have been shown to have notice-

able effect on changes in the ageing phenotype and/or longevity [27]. GenAge
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consists of three sections, i.e. 1) a set of ageing-associated genes for human, 2)

a set of longevity-associated genes for model organisms, 3) a set of mammalian

genes whose expression is commonly altered during ageing in multiple issues.

Secondly, AnAge is a database that focuses on animal ageing and longevity.

The reason for building this database is providing sufficient data that can be

used for conducting comparative analysis on ageing mechanisms between different

species. AnAge contains longevity-related data about 4,205 species, which consists

of mammals, birds, reptiles, amphibians and fishes in version of Build 12 [111].

The data included in AnAge is of high quality and confidence, based on data from

authoritative sources and checked by curators.

Thirdly, HAGR includes GenDR, which is a database designed for the anal-

ysis of how caloric restriction extends lifespan, consisting of data about dietary

restriction-essential genes, which are defined as those genes that interfere with di-

etary restriction lifespan extension after being genetically modified, but do not

have impact on the lifespan of animals under the condition of an ad libitum

diet [27]. In addition, as complementary information, GenDR includes a set of

mammalian genes differentially expressed under dietary restriction condition.

In addition, DAA is a centralised collection of human ageing-related changes

that integrates data from various biological levels, e.g. molecular, cellular, phys-

iological, etc [24]. DAA provides a system-level and comprehensive platform for

ageing research, focuses on ageing-associated changes.

Overall, GenAge offers a bioinformatics platform where ageing-associated genes

can be found through a user-friendly interface, and is a way of integrating infor-

mation about ageing-related genes, for the purpose of functional genomics and

systems biology analysis. Also, as an overall picture of ageing-associated genes,

GenAge provides sufficient data for conducting data mining research, which will

be discussed in a later section and is the application theme of this project.



Chapter 4

Lazy Hierarchical Feature Selection

Methods with Naïve Bayes

4.1 Introduction

In this chapter we describe three proposed hierarchical feature selection methods,

namely Select Hierarchical Information-Preserving (HIP) Features, Select Most

Relevant (MR) Features and the hybrid Select Hierarchical Information-Preserving

and Most Relevant (HIP–MR) Features. In this chapter these methods are used to

select features, in a data pre-processing phase, for the Naïve Bayes classification

algorithm. These methods will also be used to select features for the Tree Aug-

mented Naïve Bayes (TAN) algorithm in Chapter 5. All these hierarchical feature

selection methods work in the scenario of lazy learning (discussed in Chapter 2,

i.e. feature selection is performed separately for each testing instance). The hier-

archical feature selection methods described in this chapter, as well as part of the

computational results reported here, have been published in [122,123].

56
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4.2 Select Hierarchical Information-Preserving (HIP)

Features

The Select Hierarchical Information-Preserving (HIP) Features method focuses

only on eliminating the hierarchical redundancy in the set of selected features,

ignoring the relevance values of individual features. Recall that two features are

hierarchically redundant, in a given instance, if they have the same value in that

instance and are located in the same path from a root to a leaf node in the feature

graph (for more details on hierarchical redundancy, see Chapter 2). The motivation

for eliminating the hierarchical redundancy among selected features is that some

types of classification algorithms, like Naïve Bayes, are particularly sensitive to

redundancy among features, as discussed earlier.

The pseudocode of the HIP method is shown as Algorithm 4.1, where TrainSet

and TestSet denote the training dataset and testing dataset, and they consist of

all input features; A(xi) and D(xi) denote the set of ancestors and descendants

(respectively) of the feature xi; Status(xi)means the selection status (“Selected” or

“Removed”) of the feature xi; Inst<w> means the current instance being classified

in TestSet; V alue(xi,w) denotes the value of feature xi (“1” or “0”) in that instance;

Aij denotes the jth ancestor of the feature xi; Dij denotes the jth descendant of

the feature xi; TrainSet_FS denotes the shorter version of the training dataset

where all features’ status are “Selected”; and Inst_FS<w> denotes the shorter

version of instance w that consists only of features whose status is “Selected”.

In the first part of Algorithm 4.1 (lines: 1 – 8), it firstly constructs the DAG

of features, finds all ancestors and descendants of each feature in the DAG, and

initialises the status of each feature as “Selected”. During the execution of the algo-

rithm, some features will have their status set to “Removed”, whilst other features

will remain with their status set “Selected” throughout the algorithm’s execution.

When the algorithm terminates, the set of features with status “Selected” is re-

turned as the set of selected features.

In the second part of Algorithm 4.1 (lines: 9 – 27), it performs feature selection

for each testing instance in turn, using a lazy learning approach. For each instance,

for each feature xi, the algorithm checks its value in that instance. If xi has value
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Figure 4.1 Example of a Small DAG of Features

“1”, all its ancestors in the DAG have their status set to “Removed” – since the

value “1” of each ancestor is redundant, being logically implied by the value “1”

of xi. If xi has value “0”, all its descendants have their status set to “Removed” –

since the value “0” of each descendant is redundant, being logically implied by the

value “0” of xi.

To show how the second part of Algorithm 4.1 works, we use as example a

hypothetical testing instance with just 12 features, denoted by the letters A – L.

Figure 4.1 shows a small hypothetical DAG specifying the hierarchical relation-

ships among the features of our hypothetical instance. In Figure 4.1, the relevance

and value (“1” or “0”) for each feature is shown on the left (in bold) and on the

right (respectively) of the node representing that feature. Note that the HIP fea-

ture selection method uses only information about the feature values and their

hierarchical relationships; the features’ relevance values are used only by the two

other feature selection methods described later.

With respect to the example DAG in Figure 4.1, lines 10 – 20 of Algorithm 4.1

work as follows. When feature A is processed, the selection status of its ancestor

features D, J, C and K will be assigned as “Removed” (lines: 12 – 14), since the

value “1” of A logically implies the value “1” of all of A’s ancestors. Analogously,

when feature B is processed, the selection status of its descendant features G, I,
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F, L and E will be assigned as “Removed” (lines: 16 – 18), since the value “0” of

B logically implies the value “0” of all of B’s descendants. When feature C (with

value “1”) is processed, its ancestor K has its status set to “Removed”. And so on,

processing one feature at a time.

Note that the status of a feature may be set to “Removed” more than once,

as it happened for feature K in the earlier example. However, once the status of

a feature is set to “Removed”, it cannot be re-set to “Selected” again. Hence, the

result of Algorithm 4.1 does not depend on the order in which the features are

processed.

After processing all features in the example DAG, the features selected by the

loop in lines 10 - 20 are A, B and H. Note that these three core features contain

the complete hierarchical information associated with all the features in the DAG

of Figure 4.1, in the sense that the observed values of these three core features

logically imply the values of all other features in that DAG.

Next, the training dataset and current testing instance are reduced to contain

only features whose status are “Selected” (lines: 21 – 22), and that reduced in-

stance is classified by Naïve Bayes (line: 23). Finally, the status of all features is

reassigned as “Selected” (lines: 24 – 26), as a preparation for feature selection for

the next testing instance.
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Algorithm 4.1 Select Hierarchical Information-Preserving (HIP) Features
1: Initialize DAG with all features in Dataset;

2: Initialize TrainSet;

3: Initialize TestSet;

4: for each feature xi do

5: Initialize A(xi) in DAG;

6: Initialize D(xi) in DAG;

7: Initialize Status(xi)← “Selected”;

8: end for

9: for each Inst<w> ∈ TestSet do

10: for each feature xi ∈ DAG do

11: if V alue(xi,w) = 1 then

12: for each ancestor Aij ∈ A(xi) do

13: Status(Aij)← “Removed”;

14: end for

15: else

16: for each descendant Dij ∈ D(xi) do

17: Status(Dij)← “Removed”;

18: end for

19: end if

20: end for

21: Re-create TrainSet_FS with all features xi where Status(xi) = “Selected”;

22: Re-create Inst_FS<w> with all features xi where Status(xi) = “Selected”;

23: NaïveBayes(TrainSet_FS, Inst_FS<w>);

24: for each feature xi do

25: Re-assign Status(xi)← “Selected ”;

26: end for

27: end for
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4.3 Select Most Relevant (MR) Features

The Select Most Relevant (MR) Features method performs feature selection con-

sidering both the relevance values of individual features and the hierarchical re-

dundancy among features. Like the HIP method, for each feature xi in the current

instance being classified, MR first identifies the set of features whose values are

implied by the value of xi in that instance – i.e. either the ancestors of xi, if xi has

value “1”; or the descendants of xi, if xi has value “0”, for each path from the cur-

rent node to a root or a leaf node of the feature DAG, depending on whether the

current feature has value “1” or “0”, respectively. Next, MR compares the relevance

of xi and all features in each identified path. Among all those features (including

xi), MR marks for removal all features, except the most relevant feature. If there

are more than one features with the same maximum relevance value in a given

path, as a tie-breaking criterion, MR retains the most specific (deepest) feature

among the set of features with value “1” or the most generic (shallowest) feature

among the set of features with value “0” – since those features’ values logically

imply the largest number of other features’ values, among the set of features being

compared.

As a part of our feature selection method, we use Equation 4.1 to measure the

relevance (R), or predictive power of a binary feature xi taking value xi1 or xi2,

R(xi) =
n∑

c=1

[P(yc|xi1)−P(yc|xi2)]2 (4.1)

where yc is the c-th class and n is the number of classes. A general form of Equation

4.1 was originally used in [108] in the context of Nearest Neighbour algorithms,

and here it has been adjusted to be used as a feature relevance measure for feature

selection algorithms. In this work, n=2, xi is a feature, and Equation 4.1 is

expanded to Equation 4.2, where the two terms being added in the right part of

the equation are equal, as shown in Theorem 4.1, followed by the corresponding

proof.

R(xi) = [P(y=1 | xi=1) – P(y=1 | xi=0)]2

+ [P(y=0 | xi=1) – P(y=0 | xi=0)]2 (4.2)
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Equation 4.2 calculates the relevance of each feature as a function of the differ-

ence in the conditional probabilities of each class given different values (“1” or “0”)

of a feature, indicating whether or not a instance is annotated with that feature.

Theorem 4.1. In Equation 4.1,

if n = 2, so that R(xi) =[P (y1|xi1)− P (y1|xi2)]2 + [P (y2|xi1)− P (y2|xi2)]2,

we have: [P (y1|xi1)− P (y1|xi2)]2 = [P (y2|xi1)− P (y2|xi2)]2.

Proof :

∵ [P (y1|xi1) + P (y2|xi1) = 1] ∧ [P (y1|xi2) + P (y2|xi2) = 1]

∴[P (y1|xi1)− P (y1|xi2)]2 = [(1− P (y2|xi1))− (1− P (y2|xi2))]2

= [1− P (y2|xi1)− 1 + P (y2|xi2)]2

= [−P (y2|xi1) + P (y2|xi2)]2

= [−(P (y2|xi1)− P (y2|xi2))]2

= [P (y2|xi1)− P (y2|xi2)]2 2

The pseudocode of the MR method is shown as Algorithm 4.2, where R(xi)

denotes the value of relevance for the ith feature; A+(xi,k) and D+(xi,k) denote

the set of features containing both the ith feature and its ancestors or descendants

(respectively) in the k-th path; MRF denotes the most relevant feature among the

set of features in A+(xi,k) or D+(xi,k); Ai,j,k+ and Di,j,k+ denotes the jth feature

in A+(xi,k) and D+(xi,k), respectively.

In the first part of Algorithm 4.2 (i.e. lines 1 – 9), firstly the DAG will be

constructed, then A+(xi,k) and D+(xi,k) for each feature xi at each path k will be

initialized, and the relevance (R) value for each feature will be calculated. In the

second part of the algorithm (i.e. lines 10 – 34), the feature selection process will

be conducted for each testing instance using a lazy learning approach.
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To show how the second part of Algorithm 4.2 works, we use again as example

the DAG shown in Figure 4.1. When feature A (with value “1”) is processed (lines:

13 – 18), the features in two paths, i.e. path (a) containing features J, D and

A; and path (b) containing features K, C and A, are processed. In path (a),

the features having maximum relevance value are D and A; but only feature A is

selected as the MRF (line: 14), since it is deeper than feature D in that path. In

path (b), only feature C is selected as MRF, since it has the maximum relevance

value. Hence, after processing feature A, all features contained in the two paths

have their status set to “Removed”, except feature C (lines: 15 – 17).

Analogously, when feature B (with value “0”) is processed, the features in three

paths, i.e. path (a) containing features B, G and I; path (b) containing features

B, F and L; and path (c) containing features B, E and L will be processed. In

path (a), both features G and I have maximum relevance value, but G will be

selected as the MRF (line: 21) since it is shallower than I. In path (b), feature

F is selected as the MRF since it has the maximum relevance value among all

features in that path. In path (c), feature E is selected as the MRF, since it

also has the maximum relevance value. Therefore, after processing feature B, the

selection status for all features contained in those three paths will be assigned as

“Removed”, except features G, F and E (lines: 22 - 24).

After processing all features in that example DAG, the selected features are

H, C, G, F and E. Next, the training dataset and the current testing instance are

reduced to contain only those five selected features in line 28 - 29 of Algorithm

4.2, and that reduced instance is classified by Naïve Bayes in line 30. Finally, the

status of all features is reassigned to “Selected” in line 31 – 33, as a preparation

for feature selection for the next instance.

Note that, for each set of features being compared when MR decides which

features will have their status set to “Removed”, this decision is based both on the

relevance values of the features being compared and the hierarchical redundancy

among features, as explained earlier. Thus, in general the MR method does not

select all core features with complete hierarchical information on feature values, as

selected by HIP (see Section 4.2). Consider, e.g. the core feature B = “0”, which

implicitly contains the hierarchical information that features G, I, F, L and E have

value “0”. Also, the core feature A = “1” implies that features D, J, C and K have

value “1”. The features B and A were selected by the HIP method, but neither B
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nor A is selected by the MR method, because the relevance value of B is smaller

than the relevance values of G, F and E; and the relevance value of A is smaller

than the relevance value of feature C. Hence, we lose the information about the

values of nodes B and A, whose values are not implied by the values of features

G, F, E and C (nor implied by any other feature in the DAG).

On the other hand, the MR method has the advantage that in general it selects

features with higher relevance values than the features selected by the HIP method

(which ignores feature relevance values). For instance, in the case of our example

DAG in Figure 4.1, the three features selected by HIP (A, B and H) have on

average a relevance value of 0.263, whilst the five features selected by MR (H, C,

G, F and E) have on average a relevance value of 0.322.
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Algorithm 4.2 Select Most Relevant (MR) Features
1: Initialize DAG with all features in Dataset;

2: Initialize TrainSet;

3: Initialize TestSet;

4: for each feature xi on path k in DAG do

5: Initialize A+(xi,k) in DAG;

6: Initialize D+(xi,k) in DAG;

7: Initialize Status(xi)← “Selected”;

8: Calculate R(xi) in TrainSet;

9: end for

10: for each Inst<w> ∈ TestSet do

11: for each feature xi ∈ DAG do

12: if V alue(xi,w) = 1 then

13: for each path k from xi to root in DAG do

14: Find MRF in A+(xi,k);

15: for each ancestor Ai,j,k+ except MRF do

16: Status(Ai,j,k+)← “Removed”;

17: end for

18: end for

19: else

20: for each path k from xi to leaf in DAG do

21: Find MRF in D+(xi,k);

22: for each descendant Di,j,k+ except MRF do

23: Status(Di,j,k+)← “Removed”;

24: end for

25: end for

26: end if

27: end for

28: Re-create TrainSet_FS with all features xi where Status(xi) = “Selected”;

29: Re-create Inst_FS<w> with all features xi where Status(xi) = “Selected”;

30: NaïveBayes(TrainSet_FS, Inst_FS<w>);

31: for each feature xi do

32: Re-assign Status(xi)← “Selected”;

33: end for

34: end for
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4.4 Select Hierarchical Information-Preserving and

Most Relevant (HIP–MR) Features

Although both HIP and MR select a set of features without hierarchical redun-

dancy, HIP has the limitation of ignoring the relevance of features, and MR has

the limitation that it does not necessarily select all core features with the complete

hierarchical information (features whose observed values logically imply the val-

ues of all other features for the current instance). The hybrid Select Hierarchical

Information-Preserving and Most Relevant (HIP–MR) Features method addresses

these limitations, by both considering feature relevance (like MR) and selecting all

core features with the complete hierarchical information (like HIP). The price paid

for considering both these criteria is that, unlike HIP and MR, HIP–MR typically

selects a large subset of features having some hierarchical redundancy (although

less redundancy than the original full set of features), as will be discussed later.

For each feature xi in the instance being classified, HIP–MR first identifies the

features whose values are implied by the value of xi in the instance – i.e. the

set of features which are ancestors or descendants of xi, depending on whether xi
has value “1” or “0”, respectively. Then, HIP–MR removes features by combining

ideas from the HIP and MR methods, as follows. If feature xi has value “1”, HIP–

MR removes the ancestors of xi whose relevance values are not greater than the

relevance value of xi. If feature xi has value “0”, HIP–MR removes the descendants

of xi whose relevance values are not greater than the relevance value of xi.

Therefore, HIP–MR selects a set of features where each feature has the prop-

erty(ies) of being needed to preserve the complete hierarchical information associ-

ated with the instance being classified (the kind of feature selected by HIP) or has

a relatively high relevance in the context of its ancestors or descendants (the kind

of feature selected by MR). Hence, the set of features selected by the HIP–MR

method tends to include the union of the sets of features selected by the HIP and

MR methods separately, making HIP–MR a considerably more “inclusive” feature

selection method.

The pseudocode is shown as Algorithm 4.3. In the first part of the algorithm

(lines: 1 – 9), firstly the DAG is constructed, the ancestors and descendants of
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each feature are found, and the relevance value of each feature is calculated by

Equation 4.1. In the second part of the algorithm (lines: 10 – 32), the feature

selection process is carried out by combining ideas of the HIP and MR methods,

as explained earlier, for each testing instance, following a lazy learning approach.

In the case of our example feature DAG in Figure 4.1, when feature A (with

value “1”) is processed, its relevance value is compared with the relevance values

of all its ancestor features J, D, C and K. Then, features J, D and K are marked

for removal, since their relevance values are not greater than the relevance of A.

Next, when feature B (with value “0”) is processed, none of its descendant features

is marked for removal, since their relevance values are greater than the relevance

value of B. This process is repeated for all other features in the instance being

classified. At the end of this process, the selected features are: H, C, B, A, G, F

and E.

Note that in this example HIP–MR selects all features selected by HIP or MR.

Actually, as will be shown in Section 4.6.1, HIP–MR tends to select substantially

more features than the number of features selected by HIP and MR together.

Note also that, although HIP–MR selects a feature subset with less hierarchical

redundancy than the original full feature set, the features selected by HIP–MR

still have some redundancy, unlike the features selected by HIP and MR. This is

because HIP–MR can select a redundant feature xi if xi has higher relevance than

another selected feature logically implying xi. For instance, in the above example,

HIP–MR selects feature C, which is redundant with respect to selected feature A,

since C has higher relevance than A.
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Algorithm 4.3 Select Hierarchical Information-Preserving and Most Relevant
(HIP–MR) Features
1: Initialize DAG with all features in Dataset;

2: Initialize TrainSet;

3: Initialize TestSet;

4: for each feature xi in DAG do

5: Initialize A(xi) in DAG;

6: Initialize D(xi) in DAG;

7: Initialize Status(xi)← “Selected”;

8: Calculate R(xi) in TrainSet;

9: end for

10: for each Inst<w> ∈ TestSet do

11: for each feature xi ∈ DAG do

12: if V alue(xi,w) = 1 then

13: for each ancestor Aij ∈ A(xi) do

14: if R(Aij) ≤ R(xi) then

15: Status(Aij)← “Removed”;

16: end if

17: end for

18: else

19: for each descendant Dij ∈ D(xi) do

20: if R(Dij) ≤ R(xi) then

21: Status(Dij)← “Removed”;

22: end if

23: end for

24: end if

25: end for

26: Re-create TrainSet_FS with all features xi where Status(xi) = “Selected”;

27: Re-create Inst_FS<w> with all features xi where Status(xi) = “Selected”;

28: NaïveBayes(TrainSet_FS, Inst_FS<w>);

29: for each feature xi do

30: Re-assign Status(xi)← “Selected ”;

31: end for

32: end for
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4.5 Experimental Methodology

4.5.1 Dataset Creation

We constructed four datasets with data about the effect of genes on an organ-

ism’s longevity, by integrating data from the Human Ageing Genomic Resources

(HAGR) GenAge database (Build 16) [27] and the Gene Ontology (GO) database

(version: 2013-08-07) [112]. HAGR provides longevity-related gene data for four

model organisms, i.e. Caenorhabditis elegans, Saccharomyces cerevisiae, Drosophila

melanogaster and Mus musculus. We created one dataset for each of these model

organisms. To begin with, the data from the HAGR database contains, as one of

the identifiers for each gene, the EntrezID, which is adopted as the unique key for

mapping from the HAGR data to the gene2go file [4], which contains information

about GO terms associated with each gene. Then the integrated dataset created

by retrieving data from the HAGR database and the gene2go file has been merged

with the data from the GO database for the purpose of obtaining the relation-

ship between each GO term and its ancestor GO terms. In addition, an iterative

method had been implemented in order to collect all ancestor GO terms for each

gene in the dataset; i.e. for each GO term associated with a gene, we get that

GO term’s parent GO term(s), then the parent(s) of that parent GO term(s), etc.,

until the root GO term (note that the root GO term will not be included in the

created dataset, due to its uselessness for prediction). The structure of the newly

created dataset is represented as shown in Figure 4.2, where the feature value

“1” means the occurrence of a GO term with respect to each gene. In the class

variable, the values of “Pro” and “Anti” mean “pro-longevity” and “anti-longevity”.

Pro-longevity genes are those whose decreased expression (due to knock-out, muta-

tions or RNA interference) reduces lifespan and/or whose overexpression extends

lifespan; accordingly, anti-longevity genes are those whose decreased expression

extends lifespan and/or whose over-expression decreases it [111].

The GO terms that have only one associated gene would be useless for building

a classification model because they are extremely specifically related to an individ-

ual gene, and the model that includes these GO terms would be confronted with

the over-fitting problem. However, in terms of biological information contained in
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GO terms, those GO terms associated with only a few genes might be valuable for

discovering knowledge, since they might represent specific biological information.

Therefore, it is necessary to investigate what is the most appropriate GO term

frequency threshold for filtering the dataset through computational experiments.

We will consider the thresholds in range of 3 – 10, taking into account the relia-

bility of the classification model. It is necessary to check whether we would miss

valuable knowledge involving very specific GO terms after we decide to adopt a

higher threshold in order to avoid the over-fitting problem. The Gene Ontology

consists of three main types of terms, i.e. Biological Process, Molecular Function

and Cellular Component (with three corresponding root terms). Since the exper-

iments with all different GO term frequency thresholds are very time consuming,

these experiments will merely use the Biological Process GO terms. Further ex-

periments using all three types of GO terms will be discussed in Section 4.7.2.

In addition, our datasets do not include the GO term that is extremely general,

occurring in all genes; i.e. GO: 0008150 (biological process), which is the root for

all the GO terms of this type.

NCBIGene
Database

HAGR
Database

GeneOn-
tology+ +

Gene\GO GO_1 GO_2 GO_3 GO_4 ... GO_n Class

Gene_1 1 0 0 1 ... 0 Pro

Gene_2 0 1 0 0 ... 1 Anti

Gene_3 0 0 0 1 ... 1 Pro

... ... ... ... ... ... ... ...

Gene_n 1 0 1 0 ... 0 Pro

Figure 4.2 Structure of the Created Dataset
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Table 4.1 Detailed Information about the Created Datasets

Caenorhabditis Saccharomyces Drosophila Mus

elegans cerevisiae melanogaster musculus

Initial Number
1528 1708 1595 2625

of GO Terms

Initial Number
566 293 121 89

of Instances

Number (%) of

203 (35.9 %) 41 (14.0 %) 81 (66.9 %) 63 (70.8 %)Pro-Longevity

Instances

Number (%) of

363 (64.1 %) 252 (86.0 %) 40 (33.1 %) 26 (29.2 %)Anti-Longevity

Instances

Additional information about the initial created datasets is shown in Table

4.1. The initial number of GO terms is the number of GO terms (features) in

the dataset before removing GO terms with frequency of occurrence below a user-

defined threshold and before running the feature selection methods.

4.5.2 Predictive Accuracy Measure

Generally, in our datasets, the distribution of instances belonging to the two classes

is imbalanced, as shown in Table 4.1. Hence, we evaluate the predictive perfor-

mance of classifiers by using the value of the Geometric Mean (GMean) between

Sensitivity (Sen.) and Specificity (Spe.), defined as GMean =
√
Sen.× Spe.,

because it takes into account the balance of the classifiers’ Sen. and Spe. [58].

Sensitivity means the proportion of pro-longevity (positive class) genes that were

correctly predicted as pro-longevity, and specificity means the proportion of anti-

longevity (negative class) genes that were correctly predicted as anti-longevity in

the testing dataset [11]. For all classifiers evaluated in this work, the reported
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values of Sen., Spe. and GMean were computed by a well-known 10-fold cross

validation procedure [129].

4.6 Results for Naïve Bayes Varying GO Term Fre-

quency Thresholds

4.6.1 Experimental Results

We firstly report results comparing the GMean of four versions of Naïve Bayes

(NB), namely standard-NB (without using any feature selection method) and

HIP+NB, MR+NB and HIP–MR+NB, which denote NB applied on the set of

features selected by the respective hierarchical feature selection method (HIP, MR

or HIP–MR). The results are shown in Tables 4.2 – 4.5, where the bold figures de-

note the highest GMean value in the corresponding dataset version for each value

of the GO term frequency threshold. The figures after “±” are standard errors.

In details, for the results about Caenorhabditis elegans in Table 4.2, the values

of specificity are greater than the values of sensitivity obtained by all algorithms.

MR+NB obtains the highest GMean value 6 out of 8 times, while HIP+NB obtains

the highest GMean value the other two times. In Table 4.3, for the results about

Drosophila melanogaster, the values of sensitivity are greater than the values of

specificity obtained by all algorithms. HIP+NB obtains 6 out of 8 times the highest

GMean value, and MR+NB obtains the highest value two times. Analogous to

Table 4.3, the values of sensitivity are greater than the values of specificity obtained

by all algorithms shown in Table 4.4. HIP+NB obtains 6 out of 8 times the

highest GMean value, while MR+NB obtains the highest value two times (with

one draw of highest GMean value to HIP+NB), and NB without feature selection

obtains one time the highest GMean value. For the results about Saccharomyces

cerevisiae in Table 4.5, the values of specificity are greater than the values of

sensitivity. MR+NB obtains 5 out of 8 times the highest GMean value, while

NB without feature selection obtains two times the highest GMean value, and

HIP+NB obtains the highest value one time.
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In terms of average GMean value among all dataset versions for the four model

organisms, MR+NB obtained the highest value, i.e. 61.9%, which is slightly higher

than HIP+NB’s value, i.e. 61.6%. In terms of predictive performance on indi-

vidual model organisms, MR+NB obtained the highest GMean value (averaged

over all threshold values) in the Caenorhabditis elegans and Saccharomyces cere-

visiae datasets; and it obtained the second highest GMean value in the other two

datasets. Conversely, HIP+NB obtained the highest average GMean value in the

Drosophila melanogaster and Mus musculus datasets; and it obtained the second

highest GMean value in the Caenorhabditis elegans dataset. In summary, both

MR+NB and HIP+NB have been successful feature selection methods, obtain-

ing better results than both the baseline standard Naïve Bayes (without feature

selection) and the HIP–MR+NB feature selection method.
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Table 4.2 Sensitivity (%), Specificity (%) and Geometric Mean (%) of
Hierarchical Feature Selection Methods with Naïve Bayes Classifier for

Caenorhabditis elegans Datasets
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Table 4.3 Sensitivity (%), Specificity (%) and Geometric Mean (%) of
Hierarchical Feature Selection Methods with Naïve Bayes Classifier for

Drosophila melanogaster Datasets
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Table 4.4 Sensitivity (%), Specificity (%) and Geometric Mean (%) of
Hierarchical Feature Selection Methods with Naïve Bayes Classifier for Mus

musculus Datasets
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Table 4.5 Sensitivity (%), Specificity (%) and Geometric Mean (%) of
Hierarchical Feature Selection Methods with Naïve Bayes Classifier for

Saccharomyces cerevisiae Datasets
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Table 4.6 Average Number of GO Terms Selected by Each Feature Selection
Method for the 4 Model Organisms

Caenorhabditis elegans Drosophila melanogaster

Thre. HIP+NB MR+NB HIP–MR+NB HIP+NB MR+NB HIP–MR+NB

T3 65.3 140.7 265.4 73.3 121.4 228.2

T4 58.6 113.2 223.6 65.2 101.5 190.7

T5 55.7 99.7 201.9 60.4 88.4 164.7

T6 52.4 87.7 182.2 51.9 73.7 139.7

T7 51.1 84.0 170.0 47.2 68.4 122.8

T8 49.4 73.0 152.6 44.4 62.1 108.9

T9 46.7 67.0 142.9 41.2 55.3 97.8

T10 45.5 63.3 135.9 38.8 47.6 87.1

Ave. 53.1 91.1 184.3 52.8 77.3 142.5

Mus musculus Saccharomyces cerevisiae

Thre. HIP+NB MR+NB HIP–MR+NB HIP+NB MR+NB HIP–MR+NB

T3 120.6 178.5 330.3 54.3 99.6 218.7

T4 107.4 139.5 264.4 49.4 89.8 185.3

T5 93.1 114.8 215.9 44.5 73.2 151.3

T6 81.8 96.1 188.8 41.5 66.7 134.3

T7 71.8 78.3 160.9 37.3 57.2 117.1

T8 65.7 73.4 145.1 34.2 50.5 106.0

T9 61.0 68.0 133.7 33.2 46.0 98.5

T10 55.5 60.7 117.6 31.7 43.1 85.9

Ave. 82.1 101.2 194.6 40.8 65.8 137.1
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The main reasons for the inferior performance of HIP–MR+NB seem to be

that it tends to select a much larger number of GO term features, by comparison

with HIP and MR (see Section 4.4), and such a larger feature subset contains

some hierarchical redundancy among features (unlike the non-redundant features

selected by HIP and MR), as explained earlier. As evidence for this, Table 4.6

shows the average number of features selected by each method for each model

organism and each dataset version. Each value in the table is the mean number of

selected features over the 10 cross-validation iterations. As shown in Table (4.6),

the number of features selected by HIP–MR is always larger (and in most cases

substantially larger) than the sum of the number of features selected by HIP and

MR. Such larger feature subsets contain many hierarchically redundant features,

reducing the predictive accuracy of Naïve Bayes with the HIP–MR method, since

Naïve Bayes is sensitive to redundant features, as discussed in Chapter 2.

It is also worth observing the effect of different values of the GO term fre-

quency threshold in the GMean value obtained by the different versions of Naïve

Bayes in Tables 4.2 – 4.5. For standard-NB, the highest GMean value was ob-

tained with the threshold 3 in the Drosophila melanogaster and Mus musculus

datasets, threshold 4 in the Saccharomyces cerevisiae dataset, and threshold 6 in

the Caenorhabditis elegans dataset. For HIP+NB, the highest GMean value was

obtained with the threshold 3 or 4 in the Mus musculus dataset, threshold 4 in the

Saccharomyces cerevisiae dataset, and threshold 7 in the Caenorhabditis elegans

and Drosophila melanogaster datasets. For MR+NB, the highest GMean value was

obtained with the threshold 3 in the Saccharomyces cerevisiae dataset, threshold

4 in the Drosophila melanogaster dataset, and threshold 5 in the Caenorhabditis

elegans and Mus musculus datasets. For HIP–MR+NB, the highest GMean value

was obtained with the threshold 4 in the Drosophila melanogaster and Saccha-

romyces cerevisiae datasets, threshold 6 in the Caenorhabditis elegans dataset,

and threshold 9 in the Mus musculus dataset.

In summary, across the four versions of NB and the four model organisms, the

most successful GO term frequency threshold value was 4, which led to the highest

GMean value in 5.5 out of 16 cases – interpreting the tie between threshold values

3 and 4 for HIP+NB in the Mus musculus dataset as a count of “half-win” for each

of those values. The second most successful GO term frequency threshold value

was 3, which led to the highest GMean value in 3.5 out of 16 cases. That is, in 9



Chapter 4. Lazy Hierarchical Feature Selection Methods with Naïve Bayes 80

out of 16 cases the threshold value leading to the highest GMean value was either

3 or 4, which are the most inclusive threshold values – i.e. the values that lead

to the largest number of GO term features used as input by the different versions

of Naïve Bayes. Hence, broadly speaking, using lower, more inclusive threshold

values seems more effective than higher, less inclusive threshold values, although

the latter led to higher GMean values in several cases.

4.6.2 Discussion

We chose the combination of Friedman test and Holm post-hoc test as the statis-

tical significance tests applied on the Geometric Mean values obtained for the 32

datasets used in our experiments (8 different GO term frequency thresholds times

4 model organisms). The Friedman test is a nonparametric test based on the

rankings of each classifier’s predictive performance on each dataset, which avoids

the problems associated with the assumption of normal distribution made by the

t-test and ANOVA [29, 58]. The Holm post-hoc method is used for coping with

the multiple-comparison problem when using significance tests, by adjusting the

p-values for individual pairwise comparisons. Demsǎr [28] argues that in the case

of multiple comparisons between one control classifier and other classifiers, the

Holm post-hoc test is more powerful than the Nemenyi post-hoc test. We selected

MR+NB as the control method, since it obtains the highest average GMean value

(averaged over the 32 dataset versions) among the four methods being compared in

Tables 4.2 – 4.5. Comparing the GMean values of MR+NB as the control method

against the values of each of the other methods, at the significance level of 5%, there

is no significant difference between the GMean values of MR+NB and HIP+NB;

but MR+NB significantly outperforms both standard-NB and HIP–MR+NB.

Comparing the predictive accuracy of HIP+NB, MR+NB and HIP–MR+NB, it

seems that hierarchical redundancy among the selected GO terms tends to decrease

NB’s predictive accuracy. As evidence for this, HIP–MR+NB, which selects a set of

GO terms with some hierarchical redundancy, performed considerably worse than

MR+NB and HIP+NB, which do not select hierarchically redundant features.

Also, the core GO terms containing the complete hierarchical information in the

GO DAG for a given instance seem valuable for prediction, since HIP+NB, which
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selects such hierarchically non-redundant core GO terms regardless of relevance,

performed about as well as MR+NB.

4.6.3 On the Statistical and Biological Relevance of a Num-

ber of Very Frequently Selected GO Terms

Recall that the proposed lazy hierarchical feature selection methods select a differ-

ent set of features (GO terms) for each testing instance. Hence, when producing a

ranking of GO terms in descending order of their usefulness, it is natural to calcu-

late the ranking based on the number of instances where each GO term is selected

to be used as input by Naïve Bayes. MR was overall the best feature selection

method in terms of predictive performance in the experiments reported earlier.

Hence, for the purpose of ranking the GO terms in decreasing order of frequency

of selection, the ranking produced when using MR as the selection method is more

appropriate, and this ranking criterion is used here.

For each model organism, we produced a ranking of all GO terms occurring in

the dataset version with GO term frequency threshold 3 for that organism, since

that dataset contains the largest number of GO terms. Note that the ranking

criterion based on the frequency of selection when using the MR method does not

directly take into account the statistical significance of selected GO terms. Some

GO terms may be selected very often by MR due to their high relevance (pre-

dictive power), regardless of their statistical significance. Hence, to complement

the ranking of GO terms based on their frequency of selection by MR, we also

computed, for each GO term, its p-value associated with a statistical significance

test, based on the following rationale [123].

If we had to predict the class of a gene based on a given GO term alone (without

using any other feature), we would assign that gene to the class with the largest

number of genes (instances) annotated with that GO term. We refer to that class

as the class predicted by that GO term. The predictive accuracy associated with

the use of that GO term as a predictor is the ratio of the number of instances that

are annotated with that GO term and have the class predicted by the GO term

divided by the number of instances that are annotated with that GO term.
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To evaluate the statistical significance associated with a GO term used as a

predictor, we use a significance test based on the binomial distribution, which has

two parameters: n, the number of trials, and p, the probability of success in each

trial. When applying the significance test, the assignment of the class predicted

by the GO term to any given instance annotated with that term is regarded as

a random trial with two possible results: success (the class predicted by the GO

term equals the true class of that instance) or failure otherwise. The instances

classified by the GO term are assumed to be independent from each other, and

the number of trials n is the number of instances classified by the GO term –

i.e. instances annotated with the GO term. Under the null hypothesis that the

value “yes” (“1”) of the GO term feature is irrelevant for predicting the class of an

instance, the probability of observing a successful result is given by the relative

frequency of the class predicted by the GO term in the dataset – i.e. the ratio of

the number of instances of that class in the dataset divided by the total number

of instances (of any class) in the dataset.

Hence, to set up a test of hypothesis for the statistical significance of the

predictive power of a given GO term, we consider the observed number of instances

that are correctly classified by the GO term, denoted k. That is, k is the number of

instances that are annotated with the GO term and belong to the class predicted

by the GO term. Let X be a random variable representing the number of successes

in a binomial distribution with probability of success p and number of trials n.

Under the null hypothesis that the GO term has no predictive power, for each

model organism dataset version, the probability of observing exactly k successes,

according to the binomial distribution, is given by Equation 4.3,

Pr(X = k) = Cn
kp

k(1− p)n−k, (4.3)

where Cn
k is the number of combinations of k elements out of n elements. Finally,

for the test of hypothesis, we use Equation 4.3 to calculate the probability Pr(X ≥
k). If the null hypothesis that the GO term has no predictive power can be rejected

at the significant level of 5%, then the GO term’s ability to predict its associated

class can be considered as statistically significant.

We now discuss the relevance, to the biology of ageing, of 20 GO terms very



Chapter 4. Lazy Hierarchical Feature Selection Methods with Naïve Bayes 83

frequently selected as features by the MR method, among the set of terms whose

predictive power was considered statistically significant (p-value < 0.05). The

results are shown in Table 4.7, where the first three columns are self-explained.

The fourth column shows the number (and %) of instances (in the dataset of the

corresponding model organism) for which the GO term was selected by MR. The

fifth column shows the rank of the GO term (the lower the rank, the better), among

the set of GO terms whose p-value was deemed significant for the corresponding

organism. The sixth and seventh columns show the p-value and the relevance

value (computed by Equation 4.1) of the GO term. The eighth column shows

the class predicted by each GO term. The following biological interpretation of

the GO terms in Table 4.7 and their relevance to ageing was carried out by Dr.

João Pedro de Magalhães, a biologist expert on ageing and co-author of our paper

where such interpretation was reported [123].

Broadly speaking, the top ranking GO terms not only reflect our understanding

of biological processes associated with ageing and life-extension in model organ-

isms, but may help identify new putative associations suitable for further stud-

ies. As the organism in which single genes were initially associated with age-

ing, the roundworm Caenorhabditis elegans is arguably the best studied model in

the context of ageing, with multiple pathways associated with the regulation of

longevity [68]. It is the organism in which more gene manipulations have been

shown to extend longevity [111] and unsurprisingly several top ranking GO cat-

egories in our results are known to impact on ageing. The top ranking term is

“translation” with a strong association with anti-longevity. This is not surpris-

ing, since it is well-established that an inhibition of translation extends lifespan

in Caenorhabditis elegans [68]. Other top categories like “autophagy”, “apoptotic

process”, metabolism (“generation of precursor metabolites and energy”) and main-

tenance of protein homeostasis (“response to topologically incorrect protein”) have

been linked to ageing [85]. Various top-ranked terms also relate to growth and

development, which is not surprising given that developmental pathways in worms

can significantly impact on ageing [26,68]. While all these results fit well with our

current understanding of ageing, some categories may point towards novel mecha-

nisms and warrant further investigation like “regulation of protein localization” and

“transmembrane transport” associated, respectively, with pro- and anti-longevity.
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Table 4.7 Information About 20 GO Terms Very Frequently Selected by the
MR Method

Model

GO Term ID GO Term Name

Selection

Rank P-Value Relev.

Predicted

Organism Frequency Class

GO:0006412 translation 478 (100 %) 1 1.15 E-6 0.30 Anti

GO:0006914 autophagy 478 (100 %) 3 1.57 E-3 0.50 Pro

Caenorhabditis GO:0006915 apoptotic process 478 (100 %) 5 4.41 E-3 0.08 Anti

elegans GO:0006091 generation of precursor metabolites and energy 478 (100 %) 7 1.05 E-2 0.20 Anti

GO:0032880 regulation of protein localization 478 (100 %) 8 1.82 E-2 0.30 Pro

GO:0035966 response to topologically incorrect protein 478 (100 %) 9 2.41 E-2 0.23 Pro

GO:0055085 transmembrane transport 435 (91.0 %) 24 5.26 E-5 0.21 Anti

GO:0001302 replicative cell aging 248 (100 %) 1 5.84 E-6 0.35 Pro

Saccharomyces GO:0000183 chromatin silencing at rDNA 248 (100 %) 2 5.67 E-4 0.73 Pro

cerevisiae GO:0006302 double-strand break repair 248 (100 %) 3.5 7.71 E-3 0.45 Pro

GO:0016265 death 244 (98.4 %) 6 1.48 E-2 0.53 Pro

GO:0032200 telomere organization 243 (98.0 %) 7.5 2.95 E-3 0.64 Pro

GO:0003006 developmental process involved in reproduction 119 (100 %) 1 3.48 E-3 0.30 Anti

Drosophila GO:0007600 sensory perception 119 (100 %) 2.5 1.15 E-2 0.55 Anti

melanogaster GO:0006629 lipid metabolic process 119 (100 %) 7 1.89 E-2 0.15 Pro

GO:0055085 transmembrane transport 119 (100 %) 12 4.26 E-2 0.33 Anti

GO:0040018 positive regulation of multicellular organism growth 89 (100 %) 2.5 7.28 E-3 0.65 Anti

Mus GO:0051093 negative regulation of developmental process 89 (100 %) 5 2.24 E-2 0.14 Pro

musculus GO:0010948 negative regulation of cell cycle process 78 (87.6 %) 19.5 2.24 E-2 0.14 Pro

GO:0097190 apoptotic signaling pathway 75 (84.3 %) 21 4.04 E-2 0.10 Pro
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A similar trend is observed in other model organisms. In yeast, which after

worms is the model with most genes associated with ageing [111], top-ranked cate-

gories include “chromatin silencing at rDNA”, “telomere organisation” and “double-

strand break repair”, all of which have been associated with longevity [85]; in

addition to the expected “replicative cell ageing” and “death”.

In flies, as in worms, some top terms are related to development, including the

top category “developmental process involved in reproduction” associated with

anti-longevity, and growth including cell division-related categories. Another top

category associated with anti-longevity is “sensory perception”, which fits well

with recent results linking sensory perception, and olfactation in particular, to

ageing [83]. Metabolism, with “lipid metabolic process” as the top category as-

sociated with pro-longevity, is in line with our understanding of life extension

pathways mediated by diet, such as caloric restriction [97]. Intriguingly, “trans-

membrane transport” is, like in worms, also associated with anti-longevity, which

merits further studies.

The top categories from mice partly reflect those found in lower model organ-

isms, such as categories related to development and growth, like “positive regula-

tion of multicellular organism growth” associated with anti-longevity and “negative

regulation of developmental process” associated with pro-longevity. These results

further emphasize the relationship between developmental processes and ageing,

and further strengthen the idea that retarding development and growth can extend

lifespan [26]. Also present in mice, as in invertebrates, are terms related to apop-

tosis (“apoptotic signaling pathway”) and cell cycle (“negative regulation of cell

cycle process”). Although this likely results from researcher biases, i.e. studying

pathways in mice known to be associated with ageing in other model organisms, it

highlights the evolutionary conservation of pathways associated with ageing [68].
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4.7 Results Comparing Hierarchical and “Flat” Fea-

ture Selection Methods

4.7.1 The Feature Selection Methods Being Compared

We compared the hierarchical HIP and MR methods with three “flat” feature selec-

tion methods, i.e. Hybrid-lazy/eager-entropy-based feature selection [96], Hybrid-

lazy/eager-relevance-based feature selection and Correlation-based Feature Selec-

tion (CFS). In these experiments we use only HIP and MR as hierarchical feature

selection methods; we do not use the hybrid HIP–MR method because it per-

formed clearly worse than HIP and MR in the experiments reported earlier. The

main characteristics of the feature selection methods involved in the experiments

are summarised in Table 4.8. The Hybrid-lazy/eager-entropy-based feature selec-

tion and Hybrid-lazy/eager-relevance-based feature selection methods follow the

lazy learning scenario, i.e. conducting feature selection for each individual testing

instance, although these two methods also have an “eager” learning component, as

discussed next. In essence, these two methods measure the quality of each feature,

and then produce a ranking of all the features based on that measure and select

the top k features in that ranking.

The difference between those two methods is the feature quality measure: one

uses entropy, as shown in Equation 4.4 [96]. This method calculates two versions

of a feature’s entropy: in the lazy version, the entropy is calculated using only the

training instances with the value vj (“1” or “0”) of the feature Aj observed in the

current testing instance being classified; whilst in the eager version, the entropy

is calculated using all training instances, regardless of the value vj observed in

the current testing instance. Then the method chooses the smaller of these two

entropy values as the feature’s quality measure.

Ent(Aj, vj) = min(Ent(Aj, vj), Ent(Aj)) (4.4)

The other method uses the relevance measure given by Equation 4.1, which

follows the eager scenario, i.e. calculating the relevance value of each feature using
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Table 4.8 Summary of Characteristics of Feature Selection Methods Working
with Naïve Bayes

Feature Learning
Annotations

Selection Method Approach

No Feature
Eager Performs as Standard NB

Selection

HIP Lazy

MR Lazy

Entropy-based(HIP-k) Hybrid
Select the same No. of
features selected by HIP

Entropy-based(MR-k) Lazy/Eager
Select the same No. of
features selected by MR

Relevance-based(HIP-k) Hybrid
Select the same No. of
features selected by HIP

Relevance-based(MR-k) Lazy/Eager
Select the same No. of
features selected by MR

CFS Eager

all training instances. This is a hybrid lazy/eager method because the measure of

relevance is calculated using the whole training dataset in an “eager” approach, but

it selects the top-k ranked features for each testing instance, in a “lazy” approach.

For both methods, the parameter k, representing the number of features se-

lected for each instance, equals to the number of features selected by the HIP or

MR method respectively. That is, for each testing instance, the Hybrid-lazy/eager-

entropy-based feature selection method and the Hybrid-lazy/eager-relevance-based

feature selection method will select the same number of features selected by HIP

or MR. This adds a lazy criterion to both these methods, since HIP and MR are

lazy methods.

In contrast, CFS is an eager feature selection method that selects a single fea-

ture subset for all testing instances. CFS does not require a parameter specifying

the number of features to be selected. It tries to select a subset of features that
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have a high correlation with the class variable and have low redundancy among

the features in the selected subset [48].

4.7.2 Dataset Creation

We created 28 datasets following essentially the methodology for creating datasets

explained in Section 4.5.1. For each model organism, we created 7 datasets, with

all possible subsets of the three GO term types, i.e. one dataset for each type of GO

term (BP, MF, CC), one dataset for each pair of GO term types (BP and MF, BP

and CC, MF and CC), and one dataset with all three GO term types (BP, MF and

CC). Note that, in the case of generating datasets that are composed by different

types of GO terms, their corresponding DAGs have sets of nodes that do not inter-

sect each other. For example, when generating datasets consisting of the BP and

MF types of GO terms, the corresponding BP and MF DAGs are separated, with

no intersection. This also means that the hierarchical feature selection methods

conduct the feature selection based on each individual DAG separately. In addi-

tion, the root terms for the DAG of biological process (GO:0008150); molecular

function (GO:0003674), and cellular component (GO:0005575) terms are merely

used for generating the datasets, but not included in the corresponding datasets

used for experiments, due to their uselessness in terms of predictive power. In

terms of the threshold for the minimum number of occurrences of a GO term,

according to the discussion in Section 4.6.1, the value of this threshold is defined

as 3, which retains more biological information than higher thresholds while still

leading to high predictive accuracy. The detailed information about the created

datasets is shown in Table 4.9, where the numbers of features, edges, instances

and the degree of class imbalance are reported. The degree of class imbalance is

calculated by Equation 4.5, where the degree equals to the complement of the ratio

of the number of instances belonging to the minority class (No.(Minor)) over the

number of instances belonging to the majority class (No.(Major)).

Degree = 1− No.(Minor)

No.(Major)
(4.5)
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Table 4.9 Main Characteristics of the Created Datasets with GO Term
Frequency Threshold = 3

Caenorhabditis elegans

Property BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

No. of Features 830 218 143 1048 973 361 1191

No. of Edges 1437 259 217 1696 1654 476 1913

No. of Instances 528 279 254 553 557 432 572

No. (%) of Pro- 209 121 98 213 213 170 215

Longevity Instances 39.6% 43.4% 38.6% 38.5% 38.2% 39.4% 37.6%

No. (%) of Anti- 319 158 156 340 344 262 357

Longevity Instances 60.4% 56.6% 61.4% 61.5% 61.8% 60.6% 62.4%

Degree of Class Imbalance 0.345 0.234 0.372 0.374 0.381 0.351 0.398

Drosophila melanogaster

Property BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

No. of Features 698 130 75 828 773 205 903

No. of Edges 1190 151 101 1341 1291 252 1442

No. of Instances 127 102 90 130 128 123 130

No. (%) of Pro- 91 68 62 92 91 85 92

Longevity Instances 71.7% 66.7% 68.9% 70.8% 71.1% 69.1% 70.8%

No. (%) of Anti- 36 34 28 38 37 38 38

Longevity Instances 28.3% 33.3% 31.1% 29.2% 28.9% 30.9% 29.2%

Degree of Class Imbalance 0.604 0.500 0.548 0.587 0.593 0.553 0.587

Mus musculus

Property BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

No. of Features 1039 182 117 1221 1156 299 1338

No. of Edges 1836 205 160 2041 1996 365 2201

No. of Instances 102 98 100 102 102 102 102

No. (%) of Pro- 68 65 66 68 68 68 68

Longevity Instances 66.7% 66.3% 66.0% 66.7% 66.7% 66.7% 66.7%

No. (%) of Anti- 34 33 34 34 34 34 34

Longevity Instances 33.3% 33.7% 34.0% 33.3% 33.3% 33.3% 33.3%

Degree of Class Imbalance 0.500 0.492 0.485 0.500 0.500 0.500 0.500

Saccharomyces cerevisiae

Property BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

No. of Features 679 175 107 854 786 282 961

No. of Edges 1223 209 168 1432 1391 377 1600

No. of Instances 215 157 147 222 234 226 238

No. (%) of Pro- 30 26 24 30 30 29 30

Longevity Instances 14.0% 16.6% 16.3% 13.5% 12.8% 12.8% 12.6%

No. (%) of Anti- 185 131 123 192 204 197 208

Longevity Instances 86.0% 83.4% 83.7% 86.5% 87.2% 87.2% 87.4%

Degree of Class Imbalance 0.838 0.802 0.805 0.844 0.853 0.853 0.856
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4.7.3 Experimental Results Comparing HIP and MR with

Other Feature Selection Methods

Tables 4.10 – 4.17 report the results for the hierarchical and “flat” feature selection

methods working with the Naïve Bayes classifier. In these tables, the numbers after

the symbol “±” denote standard errors. We also show, in Figure 4.3 and 4.4, the

average ranks based on the GMean values for different feature selection methods

working with Naïve Bayes.

Tables 4.10 – 4.13 compare the predictive accuracies obtained by Naïve Bayes

when using 4 different feature selection methods in a pre-processing phase: one

of the hierarchical feature selection methods, namely HIP; two hybrid lazy/ea-

ger “flat” (non-hierarchical) feature selection methods, namely Hybrid-lazy/eager-

entropy-based (selecting the same number of k features as HIP) (EntHIP−k) and

Hybrid-lazy/eager-relevance-based (selecting the same number of k features as

HIP) (ReleHIP−k); and one eager “flat” feature selection method, namely CFS.

The tables also report results for Naïve Bayes (NB) without using any feature

selection method, as a natural baseline.

In details, for the results about Caenorhabditis elegans in Table 4.10, the values

of specificity are greater than the values of sensitivity obtained by all algorithms,

since in this dataset sensitivity is the predictive accuracy for the minority class,

whose prediction is in general more difficult, due to less data to support such

prediction. HIP+NB obtains the highest GMean value 6 out of 7 times, while

ReleHIP−k+NB obtains one time the highest GMean value. In Table 4.11, for the

results about Drosophila melanogaster, the values of sensitivity are greater than

the values of specificity obtained by all algorithms, since in this dataset specificity

represents the predictive accuracy for the minority class. HIP+NB obtains 5 out

of 7 times the highest GMean value, and ReleHIP−k+NB and NB without feature

selection obtains each one time the highest GMean value. Analogous to Table

4.11, overall, the values of sensitivity are greater than the values of specificity

obtained by all algorithms shown in Table 4.12. HIP+NB obtains 5 out of 7

times the highest GMean value, while NB without feature selection obtains two

times the highest GMean value. For the results about Saccharomyces cerevisiae

in Table 4.13, the values of specificity are greater than the values of sensitivity.
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HIP+NB obtains 5 out of 7 times the highest GMean value, while NB without

feature selection obtains two times the highest GMean value.

The HIP+NB method obtains the best results with the average rank of 1.43,

while the second best rank (2.38) was obtained by NB without feature selection.

The average rank for CFS+NB is 3.18, and the average rank for ReleHIP−k+NB

is 3.23, whereas EntHIP−k+NB obtained the worst average rank (4.79) in terms

of GMean value. It is obvious that the HIP method performs best when it works

with Naïve Bayes, since it ranks in the first position in 21 out of 28 datasets, as

indicated by the boldfaced GMean values in Tables 4.10 – 4.13.
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Figure 4.3 Summary of Methods’ Average Ranks from Tables 4.10 – 4.13

Tables 4.14 – 4.17, which are analogous to Tables 4.10 – 4.13, compare the

predictive accuracy of Naïve Bayes using the hierarchical feature selection method

MR with the accuracies of Naïve Bayes using 3 “flat” feature selection methods,

namely EntMR−k, ReleMR−k and CFS, and NB without feature selection.

In details, for the results about Caenorhabditis elegans in Table 4.14, the values

of specificity are greater than the values of sensitivity obtained by all algorithms.

MR+NB obtains the highest GMean value 3 out of 7 times, while ReleMR−k,

EntMR−k, CFS and NB without feature selection obtain each one time the highest

GMean value. In Table 4.15, for the results about Drosophila melanogaster, the

values of sensitivity are greater than the values of specificity obtained by all algo-

rithms. MR+NB obtains 5 out of 7 times the highest GMean value, NB without
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feature selection obtains two times the highest GMean value, and and ReleMR−k

obtains one time the highest value (one draw with MR+NB). For the results about

Mus musculus in Table 4.16, the values of sensitivity are greater than the values of

specificity obtained by all algorithms. NB without feature selection obtains 3 out

of 7 times the highest GMean value, while MR+NB and CFS+NB obtain each two

times the highest GMean value. For the results about Saccharomyces cerevisiae in

Table 4.17, the values of specificity are greater than the values of sensitivity. NB

without feature selection obtains 5 out of 7 times the highest GMean value, while

ReleMR−k+NB obtains two times of the highest GMean value.

NB without using any feature selection method has the best average rank

of 2.18 over all datasets, while the average rank for MR+NB is 2.39, which is

better than the average rank obtained by ReleMR−k+NB (2.57), CFS+NB (3.09)

and EntMR−k+NB (4.77). MR+NB obtained the highest GMean in 10 out of 28

datasets, as indicated by the boldfaced GMean values in Tables 4.14 – 4.17; whilst

NB without feature selection did slightly better, with the highest GMean in 11

out of 28 datasets.
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Figure 4.4 Summary of Methods’ Ranks from Tables 4.14 – 4.17
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Table 4.10 Predictive Accuracy for Naïve Bayes with the Hierarchical HIP
Method and Baseline “Flat” Feature Selection Methods for Caenorhabditis

elegans Datasets
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Table 4.11 Predictive Accuracy for Naïve Bayes with the Hierarchical HIP
Method and Baseline “Flat” Feature Selection Methods for Drosophila

melanogaster Datasets
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Table 4.12 Predictive Accuracy for Naïve Bayes with the Hierarchical HIP
Method and Baseline “Flat” Feature Selection Methods for Mus musculus

Datasets
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Table 4.13 Predictive Accuracy for Naïve Bayes with the Hierarchical HIP
Method and Baseline “Flat” Feature Selection Methods for Saccharomyces

cerevisiae Datasets
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Table 4.14 Predictive Accuracy for Naïve Bayes with the Hierarchical MR
Method and Baseline “Flat” Feature Selection Methods for Caenorhabditis

elegans Datasets
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Table 4.15 Predictive Accuracy for Naïve Bayes with the Hierarchical MR
Method and Baseline “Flat” Feature Selection Methods for Drosophila

melanogaster Datasets
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Table 4.16 Predictive Accuracy for Naïve Bayes with the Hierarchical MR
Method and Baseline “Flat” Feature Selection Methods for Mus musculus

Datasets
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Table 4.17 Predictive Accuracy for Naïve Bayes with the Hierarchical MR
Method and Baseline “Flat” Feature Selection Methods for Saccharomyces

cerevisiae Datasets
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4.7.4 Discussion

4.7.4.1 Statistical Analysis of GMean Value Differences between HIP

or MR and Other Feature Selection Methods

We adopted the Friedman test and Holm post-hoc method to conduct the statistical

significance test on the differences between the GMean values of feature selection

methods working with Naïve Bayes. The results of the statistical significance

tests are shown in Table 4.18, where columns 2 and 6 present the average ranks

of different feature selection methods; columns 3 and 7 present the corresponding

p-values, and columns 4 and 8 present the adjusted significance level according to

Holm post-hoc method. The boldfaced p-values indicate that the corresponding

results are significant at the α=0.05 significance level, which occurs when the

p-value is smaller than the “Adjusted α”.

As shown on the left 4 columns of Table 4.18, HIP (the control method) is

compared with other feature selection methods. The outcome shows that HIP

significantly improves the performance of NB without feature selection, and sig-

nificantly outperforms Relevance-based (ReleHIP−k), Entropy-based (EntHIP−k)

and the CFS feature selection methods, when working with NB.

On the right 4 columns of Table 4.18, the MR method is used as the control

method, although NB without feature selection obtained the best rank since in the

context of this thesis it is more important to evaluate the predictive performance of

the new MR method than the performance of NB without feature selection. When

those feature selection methods work with NB, MR significantly outperforms the

Entropy-based (EntMR−k) feature selection method, but it shows no significant

difference to other feature selection methods.
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Table 4.18 Statistical Significance Test Results of the Algorithms’ GMean
Values According to the Non-Parametric Friedman Test with the Holm

Post-Hoc Test at the α = 0.05 Significance Level
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4.7.4.2 Analysis of the Correlation between GMean Values and De-

grees of Class Imbalance for the HIP and MR Methods

As shown in Figure 4.5, the values of the degree of class imbalance in the datasets

range from 0.35 to 0.84, where the Saccharomyces cerevisiae datasets have the

highest degree of class imbalance and the Caenorhabditis elegans datasets have

the lowest degree of class imbalance.
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Figure 4.5 Average Degree of Class Imbalance for Each of the 4 Model
Organisms Datasets – Averaged over the 7 Dataset Types

We calculated the linear correlation coefficient r between the degree of class

imbalance and GMean values, as shown in Figure 4.6. HIP also shows the best

performance compared with MR and Naïve Bayes without feature selection, be-

cause the value of the correlation coefficient for HIP is only -0.035, very close to

0, which means that HIP is only slightly affected by the degree of class imbalance

in the datasets. In addition, it is worth noticing that MR shows the worst perfor-

mance on the datasets where the degree of class imbalance is high, since MR has a

relatively large negative correlation-coefficient value. The reason for this seems to

be related with the nature of the predictive performance measure, i.e. the GMean

measure, as follows.

In general, it can be observed in Tables 4.10 – 4.13 and 4.14 – 4.17 that

both HIP and MR tend to obtain considerably higher Spe. than Sen. in the
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(c) r(MR+NB) = -0.483

Figure 4.6 Values of the Correlation Coefficient between the Degree of Class
Imbalance in the Datasets and the GMean Value Obtained by HIP, MR and

No Feature Selection

Caenorhabditis elegans and Saccharomyces cerevisiae datasets, where Spe. is a

measure of predictive accuracy for instances belonging to the majority class (“Anti-

Longevity”); and vice versa, both methods tend to obtain considerably higher Sen.

than Spe. in the Drosophila melanogaster and Mus musculus datasets, where Sen.

is a measure of predictive accuracy for instances belonging to the majority class

(“Pro-Longevity”). It can also be observed in Tables 4.10 – 4.13 and 4.14 – 4.17

that, in general, the difference between Sen. and Spe. (i.e. Diff , calculated by

Equation 4.6) is considerably larger for MR than for HIP. Hence, MR favours more

strongly the prediction of the majority class, by comparison with HIP.

Diff = Max(Sen, Spe)−Min(Sen, Spe) (4.6)
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We further calculated the linear correlation coefficient between Diff and the

degree of class imbalance as shown in Figure 4.7. It is clear that MR has a much

higher positive r value (r = 0.790) than HIP (r = 0.332), which indicates that a

higher degree of class imbalance will lead to a Diff substantially larger for MR than

for HIP. Recall that GMean =
√
Sen.× Spe., which means that GMean favours

the balance between Sen. and Spe. Therefore, it can be concluded that HIP,

which tends to select features that would lead to a considerably smaller difference

between Sen. and Spe. than the MR method, shows stronger robustness against

a large degree of class imbalance, contributing to HIP achieving in general higher

GMean than MR.
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(a) r(MR+NB) = 0.790
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(b) r(HIP+NB) = 0.332

Figure 4.7 Value of the Correlation Coefficient between the Degree of Class
Imbalance in the Datasets and the Difference between Sen. and Spe. for MR

and HIP with Naïve Bayes

4.7.4.3 Comparing HIP and MR When Working with NB

We further compared the experiment results between HIP and MR methods. Table

4.19 shows the GMean values obtained by HIP/MR methods respectively working

with NB for different datasets.

As shown by the boldface figures, which denote the higher value of GMean

between the two methods, HIP outperforms MR 24 out of 28 times, while MR

outperforms HIP 4 out of 28 times. We also conducted the statistical significance

test (i.e. two-tailed Wilcoxon signed-rank test at 0.05 of significance level) on the
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GMean values, and the result reveals that HIP significantly outperforms MR when

working with NB.

Table 4.19 Predictive Accuracy for Naïve Bayes with the Hierarchical HIP
and MR Methods

Organism Caenorhabditis elegans Datasets

GO Types BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

HIP + NB 63.9 48.6 59.5 63.8 64.9 60.1 63.0

MR + NB 62.2 49.6 55.3 67.9 63.9 57.0 62.8

Organism Drosophila melanogaster Datasets

GO Types BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

HIP + NB 57.2 60.5 61.2 64.9 69.1 72.2 72.1

MR + NB 55.5 59.7 67.1 59.5 67.5 69.5 69.9

Organism Mus musculus Datasets

GO Types BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

HIP + NB 71.3 59.8 61.5 70.6 69.8 68.3 73.5

MR + NB 63.6 57.2 58.1 64.2 62.4 68.4 65.3

Organism Saccharomyces cerevisiae Datasets

GO Types BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

HIP + NB 70.4 20.4 49.2 75.3 74.6 50.5 72.5

MR + NB 53.5 0.0 43.7 45.6 58.2 39.3 50.9
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4.7.4.4 Scalability of Computational Running Time for Different Fea-

ture Selection Methods

In this section we report results about the computational time of the feature selec-

tion methods used in our experiments, to evaluate their scalability. It should be

noted that many classification applications (including the ageing-related applica-

tion in this thesis) are off-line, batch tasks, rather than online tasks; and the time

spent collecting and preparing the data for classification typically is substantially

greater than the time taken to run the classification algorithm. However, as one of

criteria for evaluating classification methods, in any case, it is still interesting to

investigate the scalability of the computational time taken by the feature selection

methods used in our experiments, and to observe whether the time taken by run-

ning a feature selection method and then running NB with the selected features

is smaller than the time taken to run NB with all original features (without using

a feature selection method).

Hence, we measured the scalability of computational running time (using sec-

onds as the unit of measure) for all feature selection methods and the combinations

of those feature selection methods with the Naïve Bayes classifier. In order to mea-

sure this kind of scalability, we focus on measuring the computational time taken

by each method in two datasets, namely the dataset with the smallest dimension-

ality and the dataset with the largest dimensionality. This shows the widest range

of computational time for the datasets used in our experiments.

We measured the dimensionality D of a dataset by using Equation 4.7, which

D(Dataset) = No.(Features)×No.(Instance) (4.7)

computes D(Dataset) in terms of the product of the number of features times the

number of instances in the dataset. Equation 4.7 was applied to each of the 28

datasets used in our previous experiments (referring to 4 model organisms times

7 feature set types). After computing the value of the datasets’ dimensionalities,

we observed that the dataset for Caenorhabditis elegans consisting of biological

process, molecular function, and cellular component (BP+MF+CC) GO terms as

the features is the dataset having the largest dimensionality, while the dataset for

Drosophila melanogaster consisting of only cellular component (CC) GO terms as
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the features is the dataset having the smallest dimensionality. More precisely, the

former dataset has dimensionality 681,252, whilst the latter dataset has dimen-

sionality 6,750.

In addition, we estimated the computational running time of all algorithms

working on those two datasets using the following approaches. Firstly, in terms

of the dataset for Caenorhabditis elegans with BP+MF+CC GO terms, we only

use 10 instances to run Naïve Bayes, and all lazy learning-based feature selection

methods, which are high time-consuming. Then the average running time per

instance (averaged over 10 instances) is obtained. This average running time per

instance will be multiplied by 572, which is the total number of instances in that

dataset. There is one exception for CFS/CFS+NB, which will run by using all

instances in one cross validation fold (i.e. 58 instances). Then the average running

time of CFS/CFS+NB per instance will be multiplied by 572 to estimate the total

running time on the whole dataset.

Secondly, in terms of the dataset for Drosophila melanogaster, all methods will

run by using all instances in one cross validation fold, i.e. 9 instances, in order

to compute the average running time per instance. Then the estimated running

time equals to the average running time per instance multiplied by 90, which is the

total number of instances in the Drosophila melanogaster dataset. The use of these

relatively small samples of instances, rather than using all instances, was chosen

in order to avoid a very large computational time in the experiments to estimate

scalability - these experiments were carried out separately, after the completion of

the experiments that measured predictive accuracy.

Thirdly, the computer used for the experiments on estimating the computa-

tional time of all algorithms was an iMac equipped with one 2.9 GHz Intel Core

i5 CPU, 2×4 GB 1600 MHz DDR3 memory, one Macintosh hard drive and OS X

(version 10.8.2) operating system.

The results of these scalability experiments are included in Tables 4.20 – 4.21,

where Table 4.20 shows the running time for different feature selection methods

by themselves without including the time taken by the classification algorithm

and Table 4.21 shows the running time for different feature selection methods

working with Naïve Bayes classifier, i.e. the time taken to run both these types of

methods together, as a whole. Overall, in Table 4.20, in the experiments with the

Caenorhabditis elegans dataset, MR is the most time consuming method, taking
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26,125 seconds (about 7.3 hours); while EntHIP−k is the least time consuming one,

taking only 36.1 seconds. Comparing MR with HIP, the latter shows significantly

better time efficiency, since the MR method conducts the feature selection process

by comparing the relevance values of features for every individual path of the

DAG, whereas the HIP method conducts the feature selection process merely by

considering the hierarchical dependencies between features.

Table 4.20 Estimated Scalability of Computational Time (in Seconds) for
Each Feature Selection Method

Datasets Algorithms

C. elegans
HIP EntHIP−k ReleHIP−k CFS

(BP+MF+CC)
1,158.2 36.1 40.6 16,637.3

D(Dataset) = 681252
MR EntMR−k ReleMR−k

26,125.0 36.7 40.4

D. melanogaster
HIP EntHIP−k ReleHIP−k CFS

(CC)
214.2 2.5 3.7 2.2

D(Dataset) = 6750
MR EntMR−k ReleMR−k

224.6 2.6 3.7

CFS is another very time-consuming method. On one hand, CFS is an eager

method, which avoids the time consuming approach of selecting a different fea-

tures set for each instance, like lazy methods. On the other hand, CFS adopts

the Backward–Greedy–Stepwise searching approach to find the most appropriate

subset of features. This search process is time consuming, especially in the dataset

for Caenorhabditis elegans with BP+MF+CC GO terms as features, containing

1,191 candidate features.

Analogously to the results for the Caenorhabditis elegans dataset, in theDrosophila

melanogaster dataset, consisting only of cellular component (CC) GO terms as the
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features, MR is again the most time consuming method, and EntHIP−k is again

the least time consuming one. One significant difference is that CFS works much

more efficiently, i.e. it takes only 2.2 seconds. The reason is that the number of

candidate features is only 75.

Table 4.21 Estimated Scalability of Computational Time (in Seconds) for
Each Feature Selection Method Combined with Naïve Bayes

Datasets Algorithms

C. elegans

NB HIP + NB EntHIP−k + NB ReleHIP−k + NB

(BP+MF+CC)

1,887.6 1,272.6 211.2 212.0

D(Dataset) = 681252

CFS + NB MR + NB EntMR−k + NB ReleMR−k + NB

16,647.1 29,442.6 697.5 696.5

D. melanogaster

NB HIP + NB EntHIP−k + NB ReleHIP−k + NB

(CC)

0.5 215.0 2.8 3.9

D(Dataset) = 6750

CFS + NB MR + NB EntMR−k + NB ReleMR−k + NB

2.6 224.8 2.9 3.9

Table 4.21 shows the estimated computational running time for different feature

selection methods working with the Naïve Bayes classifier. Analogously to the

results shown in Table 4.20, in the experiments with the Caenorhabditis elegans

dataset, MR+NB is the most time-consuming algorithm, whereas EntHIP−k+NB

is the least time-consuming one. Note that the time taken by both CFS+NB and

MR+NB is much greater than the time taken by NB without feature selection

in the Caenorhabditis elegans dataset. However, for the other 5 feature selection

methods, the time taken to run the feature selection method and then run NB with
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the selected features is smaller than the time taken to run Naïve Bayes without

feature selection.

In the experiments with the Drosophila melanogaster dataset, MR+NB is still

the most time-consuming algorithm, whereas Naïve Bayes without any feature

selection is the least time-consuming one. The large difference in the running time

of Naïve Bayes without feature selection between the two different datasets is due

to the large difference in the number of features between these datasets. More

precisely, Naïve Bayes without feature selection is much slower on Caenorhabditis

elegans dataset, since the number of Conditional Probability Tables (CPTs) is

1,191 (each CPT includes learnt parameters about one feature), whereas in the

experiments with the Drosophila melanogaster dataset, the number of CPTs is

only 75.

Overall, the estimated computational running time of different feature selection

methods combined with the Naïve Bayes classifier reflects the scalability of time

spent on experiments for different datasets, i.e. ranging from 0.5 second for the

fastest method on the smallest dataset to 8.2 hours for the slowest method on the

largest dataset.



Chapter 5

Lazy Hierarchical Feature Selection

Methods with Tree Augmented

Naïve Bayes

5.1 Introduction

In this chapter, we propose a lazy hierarchical feature selection method based on

the Tree Augmented Naïve Bayes (TAN) classifier, called Hierarchy-based Redun-

dancy Eliminated-Tree Augmented Naïve Bayes (HRE–TAN). Unlike the HIP and

MR methods proposed in Chapter 4, which are filter feature selection methods,

the proposed HRE–TAN is a type of embedded feature selection method. In this

chapter we also compare the predictive accuracy of HRE–TAN with the accuracy

of TAN using other feature selection methods in a pre-processing phase.

112
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Figure 5.1 Example of a Small DAG of Features

5.2 Lazy Hierarchy-Based Redundancy Eliminated

Tree Augmented Naïve Bayes (HRE–TAN)

This is a new method based on the lazy learning approach, and it performs em-

bedded hierarchical feature selection, rather than conducting hierarchical feature

selection in a pre-processing step. As mentioned in Chapter 2, a conventional TAN

method builds a Maximum Weight Spanning Tree (MST) to detect dependencies

among features, but it assumes that the feature are “flat”, not hierarchical. In

contrast, the proposed algorithm aims to eliminate the hierarchical redundancy

between features when it builds the MST.
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As discussed in Chapter 2, two features are hierarchically redundant if one of

them is an ancestor or descendant of the other and they have the same feature value

(“1” or “0”). To avoid the selection of hierarchically redundant features, HRE–TAN

checks the status of each edge before adding it into the Undirected Acyclic Graph

(UDAG). The status of an edge will be set to “Unavailable”, if either of the vertices

connected by the edge is hierarchically redundant, with respect to the vertices that

have already been included in the UDAG, which will be transformed into a tree

later by marking directions of edges. To describe how HRE–TAN works, we use

the pseudocodes shown in Algorithms 5.1 and 5.2, as explained next.

In Algorithm 5.1, in the first part of the HRE–TAN algorithm (lines: 1–12),

HRE–TAN firstly generates the Directed Acyclic Graph (DAG) for the current

dataset; then it generates the set of ancestor and descendant features for each

feature xi. Status<E>(xi, xj), which is initialised as “Available”, denotes the se-

lection status of the edge connecting vertices xi and xj. CMI<E>(xi, xj) denotes

the value of the conditional mutual information for the edge E(xi, xj). All edges

are sorted in descending order of their conditional mutual information value (a

greater value of conditional mutual information means a higher priority of adding

the corresponding edge into the UDAG).

In the second part of the HRE–TAN algorithm (i.e. lines 13–21), the tree T will

be built for each individual instance (i.e. adopting the lazy learning approach) by

finding the Hierarchy-based Redundancy Eliminated-Maximum Weight Spanning

Tree (HRE-MST). Then the training dataset and the current testing instance will

be re-created with the features included in the tree, so that only those features

will be used for classifying the re-created testing instance.

Algorithm 5.2 shows the pseudocode for building the HRE-MST. NR(xi, xj,

Inst<w>, DAG) is a Boolean function that returns “True” if features xi and xj

are non-hierarchically-redundant in the current testing instance Inst<w>, given

the feature DAG. NoCycle(E(xi, xj),UDAG) is a Boolean function that returns

“True” if there is no cycle in the UDAG after adding edge E(xi, xj).

If the edge satisfies all the conditions in line 3 of Algorithm 5.2, it will be added

into the UDAG (line 4). Once the algorithm has added the edge E(xi, xj) to the

UDAG, for each of the two nodes connected by that edge, denoted as xg (line

5), the algorithm will consider each of the nodes which are either an ancestor or

a descendant of xg in the feature DAG, denoting each such ancestor/descendant
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as xh (line 6). If feature xg and its ancestor/descendant feature xh have the same

value in the current testing instance Inst<w> (line 7), indicating a hierarchical

redundancy in that pair of features, then the for each loop in lines 8–10 will set to

“Unavailable” the status of all edges where one of the nodes is xh – line 8, where

the symbol “∗” is a wildcard matching any node. In other words, among the

set of hierarchically-redundant nodes (features) with the same value, HRE–TAN

selects the node included in the edge having higher conditional mutual information,

since Algorithm (5.2) processes edges in descending order of conditional mutual

information.

To further explain how Algorithms 5.1 and 5.2 work, we use the example DAG

shown in Figure 5.1, where the left part is a feature hierarchy consisting of three

paths from a root to a leaf node of the DAG, i.e. from node F to node B; from

node F to node D; and from node E to node D. The right part of Figure 5.1 shows

the edges (for all pair of nodes) in descending order of CMI. HRE–TAN firstly

adds edge E(F,A) into the UDAG, since its selection status is “Available”; nodes

F and A are not hierarchically-redundant; and there is no cycle in the UDAG

after adding edge E(F,A). Then, after adding E(F,A), Algorithm 5.2 will delete

all edges that consist of the hierarchically redundant nodes with respect to either

node F or node A, in order to eliminate the redundancy. Node C is redundant

with respect to node F, because both of them have value “1” and are located in the

same path in Figure 5.1. So, all edges containing node C (i.e. E(C,E), E(C,D),

E(F,C), E(B,C), and E(C,A)) will be unavailable to be added into the UDAG.

Also, node D is redundant with respect to node A, because both of them have

value “0” and are located in the same path. Thus, all edges consisting of node

D (i.e. E(E,D), E(C,D), E(B,D), E(A,D) and E(F,D)) will be unavailable to

be added into the UDAG. Note that this hierarchical redundancy elimination

process will dramatically reduce the size of the search space of candidate TAN

structures.

After edges with node C or D had their selection status set to “Unavailable”,

edge E(F,B) – the next one available in the sorted list – will be added into the

UDAG, since nodes F and B are not redundant (although both of them are in

the same path in Figure 5.1, their values are different), and there is no cycle in the

UDAG after adding that edge. Node B is not redundant with respect to any other

node, so no edge has its status set to “Unavailable” in this step. Then, E(B,E) will
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Figure 5.2 Example of Built HRE–MST Corresponding to Example in Figure
5.1

be added into the UDAG as the next available edge in the sorted edge list, since

this edge also satisfies all conditions in line 3 of Algorithm 5.2. Then, E(B,A),

E(F,E) and E(E,A) will be processed in turn. However, none of them will be

added into the tree, since there would exist a cycle if each of them was added into

the tree. Finally, HRE–TAN randomly selects a node as the root, which is used to

mark directions of all edges in order to build the HRE–MST. Figure 5.2 shows the

tree built from the example DAG shown in Figure 5.1, by selecting node B as the

root. After finding the HRE-MST (i.e. tree T), the training dataset and current

testing instance will be re-created, and the testing instance will be classified using

the built tree (line 17 in Algorithm 5.1). Then the selection status of all edges

will be re-assigned as “Available” in line 19 of Algorithm 5.1, as a preparation for

processing the next testing instance.
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Algorithm 5.1 Lazy Hierarchical Redundancy Eliminated Tree Augmented
Naïve Bayes (HRE–TAN)

1: Initialise DAG with all features in Dataset;

2: Initialise TrainSet;

3: Initialise TestSet;

4: for each feature xi ∈ X do

5: Initialise A(xi) in DAG;

6: Initialise D(xi) in DAG;

7: end for

8: for each E(xi, xj) ∈ E do

9: Calculate CMI<E>(xi, xj) using TrainSet;

10: Initialise Status<E>(xi, xj)← “Available”;

11: end for

12: Sort all E(xi, xj) ∈ E by descending order of CMI;

13: for each instance Inst<w> ∈ TestSet do

14: T = HRE–MST(DAG, Inst<w>, A(X), D(X), E);

15: Re-create TrainSet_T with feature set X′ ∈ T;

16: Re-create Inst_T<w> with feature set X′ ∈ T;

17: Tree Augmented Naïve Bayes(T,TrainSet_T, Inst_T<w>);

18: for each E(xi, xj) ∈ E do

19: Re-assign Status<E>(xi, xj)← “Available”;

20: end for

21: end for
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Algorithm 5.2 Hierarchical Redundancy Eliminated Maximum Weight Span-
ning Tree (HRE–MST)
(assuming all edges are sorted in descending order of Conditional Mutual
Information)

1: Initialise an Empty UDAG;

2: for each E(xi, xj) ∈ E do

3: if {Status<E>(xi, xj) = “Available”} ∧

{NR(xi, xj , Inst<w>, DAG)} ∧

{NoCycle(E(xi, xj), UDAG)} then

4: add E(xi, xj) into UDAG;

5: for each xg in {xi, xj} do

6: for each xh in {A(xg) ∪ D(xg)} do

7: if Value(xg, Inst<w>) = Value(xh, Inst<w>) then

8: for each E(xh, ∗) do

9: Status<E>(xh, ∗) ← “Unavailable”;

10: end for

11: end if

12: end for

13: end for

14: end if

15: end for

16: Choose Root by Randomly selecting vertex x in UDAG;

17: Build the tree (T) by marking direction of all edges from the Root outwards

to other vertices;

18: Return T;
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5.3 Experiments

5.3.1 Datasets Used in the Experiments

We evaluated the performance of feature selection methods using the same datasets

mentioned in Section 4.7.2, i.e. for each model organism, we created 7 datasets,

with all possible subsets of the three GO term types, i.e. one dataset for each type

of GO term (BP, MF, CC), one dataset for each pair of GO term types (BP and

MF, BP and CC, MF and CC), and one dataset with all 3 GO term types (BP,

MF and CC).

5.3.2 Feature Selection Methods Evaluated in the Experi-

ments

We compared HRE–TAN with the HIP and MR methods (the proposed hier-

archical feature selection methods discussed on Chapter 4) when working with

TAN. Briefly, either the MR or HIP method is used to perform lazy hierarchi-

cal feature selection in a pre-processing phase, before building a TAN structure.

In essence, MR and HIP will substantially reduce the search space of candidate

edges for building the Maximum Weight Spanning Tree (MST) used by TAN.

This motivation is especially important for lazy learning algorithms, since they are

computationally expensive. Apart from those hierarchical feature selection meth-

ods, we also experiment with the flat methods discussed in Chapter 4, which are

Hybrid-lazy/eager-relevance-based feature selection (ReleHIP−k and ReleMR−k),

Hybrid-lazy/eager-entropy-based feature selection (EntHIP−k and EntMR−k) and

Correlation-based feature selection (CFS).

5.3.3 Experimental Results

Figure 5.3 summarises the average ranks (in terms of GMean values) of different

feature selection methods working with TAN. Overall, either HIP or MR obtains

the best rank compared with other feature selection methods. The results are

shown in more detail, for each dataset, in Tables 5.1 through 5.8, as follows.
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Figure 5.3 Summary of Ranks (a lower value means a better predictive
performance) Based on GMean Values for Different Feature Selection Methods

Working with TAN

Tables 5.1 – 5.4 compare the predictive accuracy of the hierarchical feature

selection method HIP with the accuracies of Tree Augmented Naïve Bayes (TAN)

using 3 “flat” feature selection methods (two Hybrid-lazy/eager methods, namely

EntHIP−k, ReleHIP−k, and one eager method, CFS), one lazy hierarchical feature

selection method (Hierarchy-based Redundancy Eliminated TAN (HRE–TAN)),

and TAN without using any feature selection method. In these tables, recall

that GM stands for the geometric mean between sensitivity (Sen.) and specificity

(Spe.), i.e. GM =
√
Sen.× Spe..

HIP+TAN ranks in the first position (average rank: 1.82) according to its

GMean value and ranks first in 17 out of 28 datasets. The second best ranked

method is CFS+TAN (average rank: 2.50), which successively ranks better than

HRE–TAN (average rank: 3.46), Hybrid-lazy/eager-relevance-based (HIP-k)+TAN

(average rank: 3.96), TAN without any feature selection (average rank: 4.14), and

Hybrid-lazy/eager-entropy-based (HIP-k)+TAN (average rank: 5.11).

More precisely, in terms of results for each type of model organism, the main

findings are as follows. In Table 5.1, for the datasets about Caenorhabditis elegans,

the “anti-longevity” class is the majority class, and overall the values of speci-

ficity (a measure of accuracy for that majority class) are greater than sensitivity.
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HIP+TAN obtains the highest GMean value 3 out of 7 times, CFS+TAN obtains

the highest GMean value 2 times, while Hybrid-lazy/eager-entropy-based (HIP-

k)+TAN and TAN without any feature selection obtain each the highest GMean

value one time. In Table 5.2, for the datasets about Drosophila melanogaster, the

“pro-longevity” class is the majority class, so the values of sensitivity (a measure of

accuracy for that majority class) are greater than the values of specificity obtained

by most of algorithms, except HIP+TAN working on BP, BP+MF, BP+CC and

BP+MF+CC datasets, which obtains the highest GMean value 5 out of 7 times,

while CFS+TAN and HRE–TAN obtain the highest GMean value one time each.

In Table 5.3, for the datasets about Mus musculus, “pro-longevity” is the majority

class, so overall the values of sensitivity are greater than the value of specificity

obtained by most of algorithms, also existing some exceptions on HIP+TAN work-

ing on BP, BP+MF, BP+CC, MF+CC and BP+MF+CC datasets. HIP+TAN

and CFS+TAN obtain the highest GMean value 2 out of 7 times, while Hybrid-

lazy/eager-relevance-based (HIP-k)+TAN, HRE–TAN and TAN without any fea-

ture selection obtain the highest GMean value one time each. In Table 5.4, for the

datasets about Saccharomyces cerevisiae, the “anti-longevity” class is the majority

class, so the values of specificity are greater than the values of sensitivity obtained

by all algorithms (except HIP+TAN working on BP+MF+CC dataset). Among

those algorithms, HIP+TAN obtains the highest GMean value all 7 times.

Tables 5.5 – 5.8, which are analogous to Tables 5.1 – 5.4, compare the predictive

accuracy of the hierarchical feature selection method MR with the accuracies of

TAN using 3 “flat” feature selection methods (two lazy methods, namely EntMR−k,

ReleMR−k, and one eager method, CFS), one hierarchical feature selection method

(Lazy Hierarchical Redundancy Eliminated TAN (HRE–TAN)), and TAN with-

out feature selection. The MR+TAN also ranks in the first position and obtains

the best ranks in 13 out of 28 datasets, with the average rank of 1.86, which

is successively better than CFS+TAN (average rank: 2.50), HRE–TAN (aver-

age rank: 3.43), Hybrid-lazy/eager-relevance-based (MR-k)+TAN (average rank:

3.66), TAN without feature selection method (average rank: 4.18), and Hybrid-

lazy/eager-entropy-based (MR-k)+TAN (average rank: 5.38).

In details, for the results about Caenorhabditis elegans datasets in Table 5.5,

similarly to the results in Table 5.1, the values of specificity are greater than
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the values of sensitivity obtained by all algorithms. MR+TAN obtains the high-

est GMean values 4 out of 7 times, while Hybrid-lazy/eager-entropy-based (MR-

k)+TAN, CFS+TAN and TAN without any feature selection obtain the high-

est GMean value one time each. For the results about Drosophila melanogaster

datasets in Table 5.6, similarly to the results in Table 5.2, the values of sensi-

tivity are greater than the values of specificity obtained by all algorithms, while

MR+TAN and CFS+TAN obtain the highest GMean value 3 out of 7 times, and

HRE–TAN obtains the highest GMean value one time. For the results about Mus

musculus datasets in Table 5.7, similarly to the results in Table 5.3, the values

of sensitivity are greater than the values of specificity obtained by all algorithms,

while MR+TAN obtains the highest GMean value 4 out of 7 times, HRE–TAN

obtains the highest GMean value 2 times, and TAN without feature selection ob-

tains the best result only one time. For the results about Saccharomyces cerevisiae

datasets in Table 5.8, similarly to the results in Table 5.4, the values of speci-

ficity are greater than the values of sensitivity obtained by all algorithms, while

CFS+TAN obtains the highest GMean values 4 out of 7 times, MR+TAN ob-

tains the highest value 2 times, Hybrid-lazy/eager-relevance-based (MR-k)+TAN

obtains the highest value one time as a draw with HRE–TAN.
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Table 5.1 Predictive Accuracy for Tree Augmented Naïve Bayes with the
Hierarchical HIP Method and Baseline “Flat” Feature Selection Methods on

Caenorhabditis elegans Datasets
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Table 5.2 Predictive Accuracy for Tree Augmented Naïve Bayes with the
Hierarchical HIP Method and Baseline “Flat” Feature Selection Methods on

Drosophila melanogaster Datasets
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Table 5.3 Predictive Accuracy for Tree Augmented Naïve Bayes with the
Hierarchical HIP Method and Baseline “Flat” Feature Selection Methods on

Mus musculus Datasets
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Table 5.4 Predictive Accuracy for Tree Augmented Naïve Bayes with the
Hierarchical HIP Method and Baseline “Flat” Feature Selection Methods on

Saccharomyces cerevisiae Datasets
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.5

12
.5
±
6.
1

93
.5
±
2.
9

34
.2

B
P
+
M
F

3.
3±

3.
3

99
.0
±
0.
7

18
.1

63
.3
±
9.
2

67
.7
±
3.
1

65
.5

0.
0±

0.
0

99
.5
±
0.
5

0.
0

13
.3
±
5.
4

94
.3
±
0.
9

35
.4

30
.0
±
6.
0

93
.8
±
1.
7

53
.0

26
.7
±
10
.9

95
.8
±
1.
5

50
.6

B
P
+
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C

10
.0
±
5.
1

99
.0
±
0.
7

31
.5

63
.3
±
6.
0
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.5
±
3.
8

68
.2

0.
0±

0.
0
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0±

0.
0

0.
0
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.0
±
7.
4

95
.6
±
1.
6
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.7
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.3
±
8.
6

94
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±
1.
6

56
.0

26
.7
±
6.
7

94
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±
2.
1
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F
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C
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0
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0.
8
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.2
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.0
±
9.
9
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.7
±
2.
5
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.3

0.
0±

0.
0
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0.
0

0.
0
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±
6.
1

95
.4
±
1.
6
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.3
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±
6.
1
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±
1.
4
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.2
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±
6.
1

95
.4
±
1.
9

31
.3

B
P
+
M
F
+
C
C

0.
0±

0.
0

99
.0
±
0.
6

0.
0

70
.0
±
9.
2

69
.7
±
3.
0

69
.8

0.
0±

0.
0

99
.5
±
0.
5

0.
0

16
.7
±
7.
5

93
.8
±
1.
3

39
.6

33
.3
±
9.
9

91
.8
±
2.
1

55
.3

23
.3
±
7.
1

96
.2
±
1.
4

47
.3
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Table 5.5 Predictive Accuracy for Tree Augmented Naïve Bayes with the
Hierarchical MR Method and Baseline “Flat” Feature Selection Methods on

Caenorhabditis elegans Datasets
C
ae

n
or

ha
bd

it
is

el
eg

an
s

D
at

as
et

s

Fe
at
u
re

T
A
N

w
it
h
ou

t

L
az
y
M
R

+
T
A
N

L
az
y/

E
ag
er

L
az
y/

E
ag
er

E
ag
er

C
F
S
+

T
A
N

L
az
y
H
R
E
–
T
A
N

T
yp

e
Fe

at
u
re

S
el
ec
ti
on

E
nt

M
R
−
k
+

T
A
N

R
el
e M

R
−
k
+

T
A
N

Se
ns
.

Sp
ec
.

G
M

Se
ns
.

Sp
ec
.

G
M

Se
ns
.

Sp
ec
.

G
M

Se
ns
.

Sp
ec
.

G
M

Se
ns
.

Sp
ec
.

G
M

Se
ns
.

Sp
ec
.

G
M

B
P

34
.0
±
3.
2

79
.6
±
2.
3

52
.0

55
.0
±
2.
4

73
.0
±
1.
8

63
.4

30
.1
±
3.
8

83
.7
±
2.
8

50
.2

36
.8
±
3.
1

80
.6
±
2.
4

54
.5

45
.9
±
3.
7

79
.3
±
2.
2

60
.3

41
.1
±
2.
4

76
.8
±
2.
1

56
.2

M
F

37
.2
±
5.
8

61
.4
±
5.
0

47
.8

33
.1
±
3.
5

65
.2
±
4.
0

46
.5

40
.5
±
5.
2

64
.6
±
5.
3

51
.1

24
.8
±
3.
5

75
.3
±
5.
0

43
.2

24
.8
±
4.
8

74
.7
±
4.
0

43
.0

23
.1
±
4.
8

75
.3
±
5.
4

41
.7

C
C

39
.8
±
3.
0

78
.2
±
2.
2

55
.8

37
.8
±
3.
4

74
.4
±
2.
7

53
.0

30
.6
±
3.
5

76
.9
±
3.
6

48
.5

33
.7
±
5.
4

75
.0
±
2.
8

50
.3

34
.7
±
4.
3

76
.9
±
3.
2

51
.7

24
.5
±
3.
6

80
.8
±
3.
0

44
.5

B
P
+
M
F

35
.2
±
1.
9

80
.3
±
2.
2

53
.2

61
.0
±
4.
3

71
.8
±
2.
3

66
.2

37
.1
±
4.
1

83
.8
±
1.
7

55
.8

43
.7
±
3.
6

81
.2
±
2.
7

59
.6

46
.0
±
3.
2

80
.6
±
2.
0

60
.9

42
.3
±
2.
3

80
.0
±
2.
6

58
.2

B
P
+
C
C

42
.7
±
3.
1

81
.7
±
2.
7

59
.1

56
.3
±
3.
0

77
.3
±
2.
2

66
.0

34
.7
±
4.
5

82
.6
±
2.
5

53
.5

44
.1
±
2.
1

82
.6
±
1.
3

60
.4

45
.1
±
2.
8

80
.8
±
2.
0

60
.4

44
.6
±
3.
0

74
.4
±
3.
6

57
.6

M
F
+
C
C

40
.6
±
3.
4

74
.4
±
3.
6

55
.0

45
.9
±
3.
8

70
.6
±
3.
0

56
.9

35
.9
±
3.
2

73
.7
±
2.
9

51
.4

40
.0
±
3.
3

74
.0
±
3.
4

54
.4

47
.1
±
3.
5

73
.7
±
3.
5

58
.9

32
.4
±
3.
3

79
.8
±
3.
2

50
.8

B
P
+
M
F
+
C
C

39
.5
+
2.
8

80
.1
+
2.
6

56
.2

54
.4
+
4.
2

76
.5
+
2.
3

64
.5

34
.0
+
3.
0

82
.6
+
1.
5

53
.0

44
.2
+
3.
8

80
.7
+
1.
6

59
.7

45
.6
+
5.
0

77
.3
+
2.
2

59
.4

44
.2
+
3.
9

79
.3
+
2.
9

59
.2
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Table 5.6 Predictive Accuracy for Tree Augmented Naïve Bayes with the
Hierarchical MR Method and Baseline “Flat” Feature Selection Methods on

Drosophila melanogaster Datasets
D
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a
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r
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at
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et
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at
u
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T
A
N

w
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t

L
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y
M
R

+
T
A
N

L
az
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E
ag
er

L
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E
ag
er

E
ag
er

C
F
S
+

T
A
N

L
az
y
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R
E
–
T
A
N

T
yp

e
Fe

at
u
re

S
el
ec
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E
nt

M
R
−
k
+

T
A
N

R
el
e M

R
−
k
+

T
A
N

Se
ns
.

Sp
ec
.

G
M

Se
ns
.

Sp
ec
.

G
M

Se
ns
.

Sp
ec
.

G
M

Se
ns
.

Sp
ec
.

G
M

Se
ns
.

Sp
ec
.

G
M

Se
ns
.

Sp
ec
.

G
M

B
P

92
.3
±
2.
9

19
.4
±
8.
4

42
.3

76
.9
±
3.
6

50
.0
±
9.
6

62
.0

95
.6
±
2.
5

2.
8±

2.
5

16
.4

87
.9
±
3.
8

27
.8
±
7.
5

49
.4

79
.1
±
5.
1

25
.0
±
5.
9

44
.5

86
.8
±
3.
2

30
.6
±
10
.2

51
.5

M
F

91
.2
±
3.
3

20
.6
±
5.
0

43
.3

83
.8
±
4.
5

41
.2
±
7.
4

58
.8

92
.6
±
3.
4

32
.4
±
6.
3

54
.8

89
.7
±
2.
4

35
.3
±
6.
1

56
.3

85
.3
±
4.
3

32
.4
±
7.
1

52
.6

86
.8
±
3.
4

41
.2
±
8.
8

59
.8

C
C

90
.3
±
3.
6

32
.1
±
11
.6

53
.8

75
.8
±
6.
6

42
.9
±
8.
3

57
.0

95
.2
±
2.
4

25
.0
±
7.
1

48
.8

88
.7
±
4.
3

35
.7
±
9.
9

56
.3

87
.1
±
3.
8

42
.9
±
10
.2

61
.1

75
.8
±
5.
8

28
.6
±
9.
7

46
.6

B
P
+
M
F

92
.4
±
3.
3

23
.7
±
6.
9

46
.8

80
.4
±
2.
8

47
.4
±
9.
5

61
.7

96
.7
±
2.
4

13
.2
±
4.
2

35
.7

87
.0
±
3.
6

23
.7
±
6.
9

45
.4

85
.9
±
2.
9

31
.6
±
5.
3

52
.1

87
.0
±
3.
3

31
.6
+
6.
5

52
.4

B
P
+
C
C

86
.8
±
4.
0

18
.9
±
7.
6

40
.5

82
.4
±
3.
8

40
.5
±
8.
0

57
.8

94
.5
±
2.
3

10
.8
±
5.
2

31
.9

83
.5
±
4.
3

27
.0
±
9.
0

47
.5

79
.1
±
5.
0

48
.6
±
10
.4

62
.0

84
.6
±
2.
4

32
.4
±
10
.6

52
.4

M
F
+
C
C

90
.6
±
3.
3

31
.6
±
5.
0

53
.5

72
.9
±
6.
4

52
.6
±
6.
9

61
.9

96
.5
±
2.
4

23
.7
±
6.
9

47
.8

92
.9
±
2.
5

42
.1
±
3.
8

62
.5

89
.4
±
3.
8

52
.6
±
5.
8

68
.6

87
.1
±
4.
4

39
.5
±
5.
5

58
.7

B
P
+
M
F
+
C
C

92
.4
±
2.
4

18
.4
±
5.
3

41
.2

77
.2
±
4.
5

60
.5
±
8.
5

68
.3

98
.9
±
1.
1

13
.2
±
6.
7

36
.1

92
.4
±
2.
4

42
.1
±
8.
4

62
.4

85
.9
±
1.
8

47
.4
±
8.
7

63
.8

82
.6
±
3.
4

47
.4
±
8.
7

62
.6
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Table 5.7 Predictive Accuracy for Tree Augmented Naïve Bayes with the
Hierarchical MR Method and Baseline “Flat” Feature Selection Methods on

Mus musculus Datasets
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+
T
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N
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er
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E
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E
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–
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N
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R
−
k
+

T
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N

Se
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.
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.
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M
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.
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.

G
M
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G
M

Se
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.
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G
M

Se
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.

G
M

Se
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.
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G
M

B
P

89
.7
±
3.
7

41
.2
±
4.
9

60
.8

73
.5
±
7.
1

50
.0
±
10
.0

60
.6

97
.1
±
1.
9

26
.5
±
3.
4

50
.7

83
.8
±
4.
5

41
.2
±
7.
4

58
.8

82
.4
±
3.
6

47
.1
±
6.
2

62
.3

86
.8
±
5.
5

47
.1
±
4.
7

63
.9

M
F

89
.2
±
4.
0

33
.3
±
9.
4

54
.5

83
.1
±
6.
6

54
.5
±
9.
1

67
.3

89
.2
±
3.
2

33
.3
±
12
.5

54
.5

87
.7
±
3.
6

39
.4
±
11
.2

58
.8

86
.2
±
4.
0

30
.3
±
9.
6

51
.1

83
.1
±
3.
3

42
.4
±
9.
3

59
.4

C
C

75
.8
+
4.
4

41
.2
+
8.
3

55
.9

74
.2
+
4.
3

44
.1
+
9.
8

57
.2

86
.4
+
4.
0

23
.5
+
10
.4

45
.1

78
.8
+
4.
0

26
.5
+
10
.2

45
.7

75
.8
+
3.
2

38
.2
+
12
.6

53
.8

86
.4
+
4.
0

41
.2
+
9.
7

59
.7

B
P
+
M
F

86
.8
±
3.
4

35
.3
±
5.
4

55
.4

79
.4
±
4.
3

55
.9
±
8.
6

66
.6

95
.6
±
2.
2

26
.5
±
4.
5

50
.3

89
.7
±
3.
7

35
.3
±
5.
4

56
.3

88
.2
±
4.
2

41
.2
±
8.
0

60
.3

83
.8
±
4.
5

41
.2
±
6.
8

58
.8

B
P
+
C
C

88
.2
±
3.
6

47
.1
±
9.
7

64
.5

70
.6
±
5.
9

58
.8
±
8.
9

64
.4

98
.5
±
1.
4

32
.4
±
6.
4

56
.5

80
.9
±
7.
1

41
.2
±
10
.5

57
.7

83
.8
±
5.
0

41
.2
±
8.
7

58
.8

79
.4
±
4.
9

47
.1
±
9.
7

61
.2

M
F
+
C
C

88
.2
±
4.
2

41
.2
±
10
.0

60
.3
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.4
±
3.
6

55
.9
±
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67
.9

92
.6
±
3.
2

38
.2
±
9.
4
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.5

88
.2
±
4.
7
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±
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66
.4

77
.9
±
3.
8

52
.9
±
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64
.2
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.7
±
3.
0
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.3
±
9.
6

56
.3

B
P
+
M
F
+
C
C

91
.2
±
3.
2

41
.2
±
8.
6

61
.3

75
.0
±
5.
7

58
.8
±
7.
9

66
.4

94
.1
±
2.
3

29
.4
±
6.
4

52
.6

89
.7
±
3.
0

41
.2
±
9.
9

60
.8

77
.9
±
4.
9

55
.9
±
7.
0

66
.0

85
.3
±
3.
7

44
.1
±
8.
9

61
.3
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Table 5.8 Predictive Accuracy for Tree Augmented Naïve Bayes with the
Hierarchical MR Method and Baseline “Flat” Feature Selection Methods on

Saccharomyces cerevisiae Datasets
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E
–
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R
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N
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+
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Se
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M
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Se
ns
.
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M
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.
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ec
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G
M

Se
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.

Sp
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.

G
M

Se
ns
.

Sp
ec
.

G
M

B
P

3.
3±

3.
3

98
.9
±
1.
1

18
.1

30
.0
±
7.
8

87
.0
±
2.
7

51
.1

0.
0±

0.
0

10
0.
0±

0.
0

0.
0

10
.0
±
5.
1

93
.0
±
3.
1

30
.5

33
.3
±
7.
0

91
.9
±
2.
4

55
.3

20
.0
±
7.
4

93
.5
±
1.
7

43
.2

M
F

0.
0±

0.
0

97
.7
±
1.
2

0.
0

0.
0±

0.
0

87
.8
±
2.
9

0.
0

0.
0±

0.
0

98
.5
±
1.
0

0.
0

0.
0±

0.
0

96
.2
±
1.
3

0.
0

5.
0±

5.
0

94
.7
±
1.
2

21
.8

0.
0±

0.
0

96
.9
±
1.
7

0.
0

C
C

16
.7
±
7.
0

95
.9
±
2.
1

40
.0

20
.8
±
6.
9

95
.1
±
2.
1

44
.5

5.
0±

5.
0

95
.9
±
1.
8

21
.9

12
.5
±
6.
9

94
.3
±
2.
4

34
.3

16
.7
±
7.
0

93
.5
±
1.
6

39
.5

12
.5
±
6.
1

93
.5
±
2.
9

34
.2

B
P
+
M
F

3.
3±

3.
3

99
.0
±
0.
7

18
.1

20
.0
±
7.
4

93
.2
±
1.
4

43
.2

0.
0±

0.
0

10
0.
0±

0.
0

0.
0

16
.7
±
5.
6

95
.3
±
1.
5

39
.9

30
.0
±
6.
0

93
.8
±
1.
7

53
.0

26
.7
±
10
.9

95
.8
±
1.
5

50
.6

B
P
+
C
C

10
.0
±
5.
1

99
.0
±
0.
7

31
.5

30
.0
±
9.
2

89
.2
±
2.
1

51
.7

6.
7±

4.
4

10
0.
0±

0.
0

25
.9

13
.3
±
5.
4

94
.1
±
1.
6

35
.4

33
.3
±
8.
6

94
.1
±
1.
6

56
.0

26
.7
±
6.
7

94
.1
±
2.
1

50
.1

M
F
+
C
C

5.
0±

5.
0

98
.5
±
0.
8

22
.2

10
.3
±
6.
1

93
.4
±
2.
5

31
.0

6.
9±

5.
7

99
.5
±
0.
5

26
.2

10
.3
±
6.
1

95
.4
±
1.
8

31
.3

10
.3
±
6.
1

94
.4
±
1.
4

31
.2

10
.3
±
6.
1

95
.4
±
1.
9

31
.3

B
P
+
M
F
+
C
C

0.
0±

0.
0

99
.0
±
0.
6

0.
0

36
.7
±
9.
2

89
.4
±
2.
1

57
.3

3.
3±

3.
3

10
0.
0±

0.
0

18
.2

10
.0
±
5.
1

96
.6
±
1.
3

31
.1

33
.3
±
9.
9

91
.8
±
2.
1

55
.3

23
.3
±
7.
1

96
.2
±
1.
4

47
.3



Chapter 5. Lazy Hierarchical Feature Selection Methods with Tree Augmented
Naïve Bayes 131

5.4 Discussion

5.4.1 Statistical Analysis of GMean Value Differences be-

tween the Feature Selection Methods

The Friedman test and the Holm post-hoc method were adopted for conducting a

statistical significance test on the differences of GMean values between the methods

working on all 4 model organisms. The HIP and MR methods were chosen as the

control methods, since each of them performed best among the methods compared

in Tables 5.1 – 5.4 and 5.5 – 5.8, respectively.

The significance test results are listed in Table 5.9, where the left part of the

table reports results for HIP and the right part reports results for MR. The control

method (HIP or MR) is considered significantly better than another method if,

in the row for that other method, the p-value is smaller than the adjusted α.

The significant results are shown in boldface in Table 5.9. Both HIP and MR

significantly improve the performance of conventional TAN without using feature

selection, significantly outperform the Hybrid-lazy/eager-relevance-based feature

selection method, the Hybrid-lazy/eager-entropy-based feature selection method,

and the HRE–TAN method, but show a non-significant difference to CFS.

Table 5.9 Statistical Test Results of the Methods’ GMean Values According
to the Non-Parametric Friedman Test with the Holm Post-Hoc Test at the α =

0.05 Significance Level

FS Method Ave. Rank P-value Adjusted α FS Method Ave. Rank P-value Adjusted α

HIP (ctrl.) 1.82 – – MR (ctrl.) 1.86 – –

CFS 2.50 1.74 E-01 0.0500 CFS 2.50 2.00 E-01 0.0500

HRE–TAN 3.46 1.04 E-03 0.0250 HRE–TAN 3.43 1.69 E-03 0.0250

ReleHIP−k 3.96 1.87 E-05 0.0167 ReleMR−k 3.66 3.18 E-04 0.0167

No FS 4.14 3.48 E-06 0.0125 No FS 4.18 3.48 E-06 0.0125

EntHIP−k 5.11 4.70 E-11 0.0100 EntMR−k 5.38 1.92 E-12 0.0100
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5.4.2 Analysis of the Correlation between Degrees of Class

Imbalance and GMean Values

We calculated the linear correlation coefficient r between the degrees of class im-

balance in the datasets and the GMean values obtained by HIP and MR working

with TAN, and HRE–TAN methods, as shown in Figure 5.4. The degree of imbal-

ance was defined in Chapter 4, i.e. it is the complement of the ratio of the number

of instances belonging to the minority class over the number of instances belong-

ing to the majority class, as shown in Equation 4.5. For more details about the

analysis of the correlation between the degree of class imbalance and the GMean

value obtained by a feature selection method, see Section 4.7.4.2.

Similarly to the results obtained when working with Naïve Bayes (in Chapter

4), HIP still shows the strongest robustness against a large degree of class imbal-

ance. The r value for HIP method is 0.088, which means that HIP is still little

affected by the class imbalance issue. HRE–TAN obtains the second best r value,

i.e. -0.479, which is better than the r value (i.e. -0.515) obtained by MR method.

TAN without using feature selection obtains the worst r value (-0.801). Overall,

all three hierarchical feature selection methods are able to enhance the robustness

against the class imbalance issue for the TAN classifier, by comparison with no

feature selection. However, among those three methods, HIP is still the best one

in terms of robustness against class imbalance.
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(c) r(MR+TAN) = -0.515
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(d) r(HRE–TAN) = -0.479

Figure 5.4 Values of the Correlation Coefficient (r) between the Degree of
Class Imbalance and GMean Values for No Feature Selection with TAN,

HIP+TAN, MR+TAN and HRE–TAN

5.4.3 Analysis of the Correlation between Degrees of Class

Imbalance and Differences between Sen. and Spe.

In order to investigate the reason why HIP shows the strongest robustness against

a large degree of class imbalance, we use here the same approach used in Section

4.7.4.2. Hence, we observed that the HIP+TAN’s difference between Sen. and

Spe. is smaller than MR+TAN’s and HRE–TAN’s difference. Then we calculated

the linear correlation coefficient (r) values for those three methods.

The results are shown in Figure 5.5. Similarly to the results obtained when

working with Naïve Bayes (in Chapter 4), the MR method again shows a much

stronger correlation coefficient than HIP, and HRE–TAN also has much higher
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r value than HIP. This means that MR and HRE–TAN tend to obtain higher

predictive accuracy for the instances that belong to the majority class. By contrast,

HIP’s difference between Sen. and Spe. is much less correlated with the degree of

class imbalance, which shows HIP’s ability to predict well both the majority and

the minority class.
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(b) r(HRE–TAN) = 0.789
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(c) r(HIP+TAN) = 0.208

Figure 5.5 Values of the Correlation Coefficient between the Degree of Class
Imbalance and the Differences between Sen. and Spe. for MR+TAN,

HRE–TAN and HIP+TAN
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5.4.4 Comparing HIP and MR When Working with TAN

In this section, we compare the experimental results obtained by the HIP and MR

methods when they are used to select features for the TAN classifier, in a data

pre-processing phase. Table 5.10 only shows the GMean values obtained by HIP

and MR methods working with TAN for different datasets; the values of sensitivity

and specificity are referred to Sen. and Spe. values in the previous corresponding

tables, i.e. Table 5.1 – 5.4 for HIP and Tables 5.5 – 5.8 for MR.

In Table 5.10, the boldface figures denote the higher values of GMean between

the two methods. As shown in the table, HIP outperforms MR in 17 out of 28

datasets, while MR outperforms HIP in 11 out of 28 datasets. HIP was particularly

successful in the Drosophila melanogaster datasets, where HIP outperforms MR

in 6 out of 7 datasets; and in the Saccharomyces cerevisiae datasets, where HIP

outperforms MR in all 7 datasets. MR was more successful in the other datasets.

We also conducted a statistical significance test (i.e. the two-tailed Wilcoxon

signed-rank test at 0.05 of significance level) on the GMeans values, and the result

reveals that there is no significant difference between HIP and MR when working

with TAN.
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Table 5.10 Predictive Accuracy (GMean Values) for Tree Augmented Naïve
Bayes with the Hierarchical HIP and MR Methods

Organism Caenorhabditis elegans Datasets

GO Types BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

HIP + TAN 59.4 46.6 52.8 62.7 64.0 55.2 65.5

MR + TAN 63.4 46.5 53.0 66.2 66.0 56.9 64.5

Organism Drosophila melanogaster Datasets

GO Types BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

HIP + TAN 64.8 48.8 62.8 62.0 63.3 68.0 69.3

MR + TAN 62.0 58.8 57.0 61.7 57.8 61.9 68.3

Organism Mus musculus Datasets

GO Types BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

HIP + TAN 56.0 67.9 60.3 58.2 63.2 63.9 61.3

MR + TAN 60.6 67.3 57.2 66.6 64.4 67.9 66.4

Organism Saccharomyces cerevisiae Datasets

GO Types BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

HIP + TAN 62.4 46.0 46.2 65.5 68.2 50.3 69.8

MR + TAN 51.1 0.0 44.5 43.2 51.7 31.0 57.3
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5.4.5 Scalability of Computational Running Time for Dif-

ferent Feature Selection Methods

We estimated the computational running time for different feature selection meth-

ods working with the TAN and TAN classifier without feature selection, following

the same approach mentioned in Section 4.7.4.4. Recall that this approach essen-

tially involves estimating the computational time in the largest dataset - C. elegant

dataset with BP+MF+CC features - and in the smallest dataset - D. melanogaster

dataset with CC features. The experiments to estimate the algorithms’ computa-

tional times were run on one iMac equipped with one 2.9 GHz Intel Core i5 CPU,

2×4 GB 1600 MHz DDR3 memory, one Macintosh hard drive and OS X (version

10.8.2) operating system.

Overall, in the experiments with the Caenorhabditis elegans dataset, MR+TAN

is the most time-consuming algorithm, taking 205.8 hours to run; while CFS+TAN

is the least time-consuming algorithm. This result for MR is consistent with the

one reported in Section 4.7.4.4 (referring to experiments with Naive Bayes), i.e.

MR is the most time-consuming feature selection method in both cases.

Recall that, when working with the lazy learning version of the TAN classifier,

MR selects one subset of features that are used for building one Maximum Weight

Spanning Tree (MST) for each testing instance, so the total experimental time

spent on the whole dataset is substantially higher than the time spent by MR

working with the Naive Bayes classifier.

CFS+TAN shows the best efficiency, since it works with the eager learning

version of the TAN classifier. More precisely, CFS selects one subset of features,

which are used for building one MST for classifying all testing instances. Note that

we estimated not only the total computational running time for the hierarchical

embedded feature selection method newly proposed in this chapter, i.e. HRE–

TAN, but also the time for building the Hierarchical Redundancy Eliminated-

Maximum Weight Spanning Tree (HRE–MST), the main procedure of the HRE–

TAN algorithm. Comparing with the computational time of other lazy learning-

based filter feature selection methods reported in Table 5.11, HRE–TAN is the

second most time-consuming method, and the HRE–MST procedure indeed takes

a large part (i.e. 91.9%) of the time taken by HRE–TAN.
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In the experiments with the much smaller Drosophila melanogaster dataset,

HRE–TAN is the most time-consuming algorithm, taking 348.6 seconds; while

CFS+TAN is the least time-consuming, taking 6.3 seconds.

Hence, the range of computational running time for these experiments varies

from 6.3 seconds for the fastest method on the smallest dataset to 8.6 days for the

slowest method on the largest dataset.

Table 5.11 Estimated Scalability of Computational Time (in Seconds) for
Each Feature Selection Method

Datasets Algorithms

TAN HIP + TAN EntHIP−k + TAN ReleHIP−k + TAN HRE-MST

C. elegans 342,871.6 52,814.2 52,379.1 60,459.6 653,852.2

(BP+MF+CC) CFS + TAN MR + TAN EntMR−k + TAN ReleMR−k + TAN HRE-TAN

16,686.7 740,896.2 459,824.5 517,679.1 711,681.4

TAN HIP + TAN EntHIP−k + TAN ReleHIP−k + TAN HRE-MST

D. melanogaster 98.9 225.4 11.2 11.8 239.1

(CC) CFS + TAN MR + TAN EntMR−k + TAN ReleMR−k + TAN HRE-TAN

6.3 236.9 20.1 19.6 348.6

5.5 Rank for HIP-Selected GO Terms Highly-Related

with Ageing

As the HIP method was overall the best performing feature selection method

when working with TAN, we computed the ranks of GO terms selected by HIP

for the BP+MF+CC datasets (the datasets with the largest number of features),

for each of the 4 model organisms. The top-ranked terms are shown in Tables
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Figure 5.6 Example of Built HRE–MST with Node E Having 5 Connections

5.12 – 5.13. Each of the tables consists of 7 columns; the first three columns

have self-explanatory names. The rank in column 4 is based on two criteria. The

first ranking criterion is the “Frequency of Selection” in column 5, which means

the number of times the GO term was selected by HIP for classifying the testing

instances. The second, tie-breaking ranking criterion is the “Frequency in Edges”

in column 6, which means the number of edges containing the GO term in the

trees built by TAN for classifying the test instances. Recall that, for building the

tree, each feature is allowed to have at most one parent feature, but each feature

could be the parent for more than one child features. For example, as shown in

Figure 5.6, node E has the largest number of connections to other nodes (being

the child node for node B, and a parent node for other 4 nodes). This type of

node could be called a “hub”, in the context of this small example graph. The

“hub” node plays an important role in the tree. Hence, a feature could act as a

“hub” node if that feature is the parent for many nodes. Note that, in terms of

the relationship between “Frequency of Selection” and “Frequency in Edges”, the

value of the latter will always be not smaller than the value of the former, since

one selected feature should be included in at least one edge. The class label in the

column “Predicted Class” is the most frequent class label in the set of instances

with value “yes” (“1”) for the corresponding GO term.

Note that Tables 5.12 – 5.13 are different from Table 4.7 shown in Chapter 4

in several ways as follows. First, the GO terms included in Tables 5.12 – 5.13 were
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Table 5.12 Most Frequently Selected GO Terms by the HIP Method in
Caenorhabditis elegans and Drosophila melanogaster Datasets

GO Term ID
GO Term

GO Term Name Rank
Freq. of Freq. in Predicted

Type Selection Edges Class

Caenorhabditis elegans

GO:0045202 CC synapse 1 572 2394 Anti

GO:0000003 BP reproduction 2 572 1929 Anti

GO:0005576 CC extracellular region 3 572 1095 Anti

GO:0016209 MF antioxidant activity 4 572 697 Pro

GO:0040007 BP growth 5 572 633 Pro

GO:0022610 BP biological adhesion 6 568 1046 Pro

GO:0000988 MF protein binding transcription factor activity 7 567 801 Pro

GO:0009055 MF electron carrier activity 8 567 779 Anti

GO:0031974 CC membrane-enclosed lumen 9 567 769 Anti

GO:0044456 CC synapse part 10 567 718 Anti

Drosophila melanogaster

GO:0009055 MF electron carrier activity 1 130 199 Pro

GO:0005576 CC extracellular region 2 130 193 Pro

GO:0000003 BP reproduction 3 130 184 Anti

GO:0044456 CC synapse part 4 130 174 Pro

GO:0045202 CC synapse 5 130 152 Pro

GO:0016209 MF antioxidant activity 6 127 354 Pro

GO:0005198 MF structural molecule activity 7 127 180 Pro

GO:0030234 MF enzyme regulator activity 8 126 144 Anti

GO:0004872 MF receptor activity 9 125 189 Anti

GO:0023052 BP signaling 10 125 171 Pro
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Table 5.13 Most Frequently Selected GO Terms by the HIP Method in Mus
musculus and Saccharomyces cerevisiae Datasets

GO Term ID
GO Term

GO Term Name Rank
Freq. of Freq. in Predicted

Type Selection Edges Class

Mus musculus

GO:0044456 CC synapse part 1 102 354 Anti

GO:0005198 MF structural molecule activity 2 102 344 Pro

GO:0005576 CC extracellular region 3 102 270 Pro

GO:0005623 CC cell 4 102 191 Anti

GO:0045202 CC synapse 5 102 124 Anti

GO:0030054 CC cell junction 6 99 248 Anti

GO:0016209 MF antioxidant activity 7 99 246 Pro

GO:0023052 BP signaling 8 99 207 Pro

GO:0031012 CC extracellular matrix 9 99 176 Pro

GO:0022610 BP biological adhesion 10 99 120 Pro

Saccharomyces cerevisiae

GO:0005085 MF guanyl-nucleotide exchange factor activity 1 238 358 Anti

GO:0004872 MF receptor activity 2 238 282 Anti

GO:0022414 BP reproductive process 3 234 511 Anti

GO:0009295 CC nucleoid 4 234 321 Anti

GO:0005933 CC cellular bud 5 231 479 Anti

GO:0000988 MF protein binding transcription factor activity 6 231 340 Anti

GO:0005622 CC intracellular 7 231 283 Anti

GO:0032126 CC eisosome 8 231 243 Anti

GO:0030234 MF enzyme regulator activity 9 230 403 Anti

GO:0040007 BP growth 10 230 277 Anti
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selected by the HIP method, whilst the GO terms in Table 4.7 were selected by

MR. In addition, in Tables 5.12 – 5.13, the ranking criteria are firstly “selection

frequency”, and then “frequency in edges”, whereas for Table 4.7, apart from the

same ranking criterion of “selection frequency”, it uses the p-value and relevance

value as other types of ranking criteria. The main reasons for adopting different

ranking criteria for GO terms is due to the difference in the feature selection strate-

gies used by the two methods. Recall that the HIP method selects the features

(GO terms) regardless of their relevance values, whereas the MR method selects

features according to their corresponding relevance values. Hence, for Tables 5.12

– 5.13, the relevance and p-value are not used as the ranking criteria for identifying

the most relevant GO terms. The other difference between Tables 5.12 – 5.13 and

Table 4.7 is that the former ones not only include “biological process” GO terms

(like Table 4.7), but also include the other two types of GO terms, i.e. “molecular

function” and “cellular component”.

As shown in Tables 5.12 – 5.13, several GO terms were selected across three

out of the four model organisms: Synapse (GO:0045202), Extracellular Region

(GO:0005576), and Antioxidant Activity (GO:0016209) are top-ranked terms in

the worm, fly and mouse datasets. Other GO terms were selected across two model

organisms: Reproduction (GO:0000003) and Electron Carrier Activity (GO:0009055)

are top-ranked in the worm and fly datasets; Protein Binding Transcription Fac-

tor Activity (GO:0000988) in the worm and yeast datasets; Receptor Activity

(GO:0004872) and Enzyme Regulator Activity (GO:0030234) in the fly and yeast

datasets.

Briefly, several of these very often selected GO terms fit well with some ageing-

related hypotheses. For example, oxidative processes produce byproducts, i.e.

ROS (reactive oxygen species), that can cause damage and crosslink DNA [120];

and antioxidant activity, which can mitigate the harmful effects of high-levels

of ROS and is also related to the hypothesis that calorie restriction can delay

ageing, was found to be able to extend the longevity of model organisms like

worms, mice and flies [106, 107, 121, 130]. As another example, in terms of the

link between reproduction and ageing, in C. elegans, mutations in the daf-2 gene

reduce insulin/insulin-like growth factor-1 (IGF-1) signaling and lead to extended

lifespan and delayed reproduction [68].



Chapter 6

Lazy Hierarchical Feature Selection

Methods with Bayesian Network

Augmented Naïve Bayes Classifiers

6.1 Introduction

In this chapter, we firstly propose a Bayesian Network Augmented Naïve Bayes

(BAN) classifier that exploits background knowledge in the Gene Ontology (GO)

to define the network topology. This classifier is called GO–BAN and was firstly

described in [122]. We propose two methods for constructing the network topol-

ogy that is used by the BAN classifier, which is a more complicated type of

Semi-naïve Bayesian classifier than TAN. The first method, called Flat Feature

Selection with Gene Ontology-based Bayesian Network Augmented Naïve Bayes

(FFS+GO–BAN), is used for building the GO–BAN classifier using the Gene

Ontology features selected by flat feature selection methods; whereas the second

method, called Hierarchical Feature Selection with Gene Ontology-based Bayesian

Network Augmented Naïve Bayes (HFS+GO–BAN), is used for building the GO–

BAN classifier using the Gene Ontology features selected by hierarchical feature

selection methods. In this chapter, in addition to evaluating the performance of

143
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the newly proposed methods, we compare the performance of all proposed hier-

archical feature selection methods (in Chapters 4 and 5) combined with different

types of Bayesian network classifiers, i.e. NB, TAN and GO–BAN. The BAN

network topology construction methods described in this chapter, as well as part

of the computational results reported here, have been published in the 6th ACM

Conference on Bioinformatics, Computational Biology, and Health Informatics

(ACM–BCB 2015) [124].

6.2 The Proposed Gene Ontology-Based Bayesian

Network Augmented Naïve Bayes (GO–BAN)

Classifier

BAN is a type of Semi-naïve Bayes classifier, as discussed in Chapter 2. Unlike NB

(where no parent feature is allowed for each feature, and only the class attribute

is a parent of all features) and TAN (where one parent feature is allowed for each

feature, in addition to the class attribute), a BAN classifier allows each feature

to have more than one parent features in the Bayesian network topology. More

precisely, as shown in Equation 6.1, in a BAN classifier, the probability of each class

value y given the values of the features in the instance is proportional (“∝” symbol)

to the prior probability of y multiplied by the product of the conditional probability

of each feature xi given the set of xi’s parent nodes in the network – which includes

parent features Par(xi) and the class y. After computing the probability of each

class for the current instance using Equation 6.1, a BAN classifier assigns to the

instance the class value with the highest probability.

P (y|x1, x2, ..., xn) ∝ P (y)
n∏

i=1

P (xi|Par(xi), y) (6.1)

In conventional BAN classifiers, the network topology is learnt from the dataset,

by assuming the set of features is “flat”, i.e. not taking into account hierarchical

relationships among features. Here we propose to construct a BAN’s network
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topology by directly adopting the hierarchical relationships occurring in the avail-

able GO data, in order to reduce the computational time needed for building the

classifier and exploit the valuable background knowledge encoded in the GO graph

that is pre-defined by expert biologists. This type of BAN classifier is here called

“Gene Ontology-based BAN” (GO–BAN). That is, in the feature network of the

GO–BAN classifier, each feature (GO term f) has a set of parents given by the

parents of f in the GO hierarchy, plus the class attribute (which is a parent for

all features, like in conventional BAN classifiers).

Figure 6.1 shows an example of network topology for a BAN classifier based on

Gene Ontology data. As pre-defined by the GO’s hierarchical relationships (repre-

sented as solid lines, whereas the dashed lines denote the dependency relationships

between an individual feature and the class attribute), term GO:0044765 is the

child of terms GO:0006810 and GO:0044699, and the parent of term GO:0045056.

This type of hierarchical relationship will be directly used by the GO–BAN clas-

sifier, as discussed in the next section.

GO:0008150

GO:0051234

GO:0006810

GO:0044699

GO:0044765

GO:0045056

Class

Figure 6.1 Example of Topology of a BAN Classifier Based on Gene
Ontology Data
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6.3 Proposed Methods for Constructing the Net-

work Topology of a GO–BAN Classifier

We propose two methods to construct the BAN network topology containing the

Gene Ontology features (GO terms) selected in a data pre-processing phase, where

that network topology will be directly used by GO–BAN classifier, as stated in

the previous section. The construction of the BAN network topology is not trivial,

because the feature selection methods can select features that are hierarchically

related (one is the ancestor or descendant of the other), but are not directly con-

nected by an edge in the GO DAG. For instance, in Figure 6.2, a method could

select features A and D but not feature B. In such cases, if the BAN network with

the selected features contained only edges occurring in the GO DAG, there would

be no edge connecting A and D in the BAN, suggesting these features are indepen-

dent, which would be misleading, given their hierarchical dependency. Therefore,

it is necessary to create artificial edges, not present in the GO DAG, which are

nonetheless based on hierarchical dependencies represented in the GO DAG, so

that these artificial edges can be used in the BAN network.

Hence, we propose two methods for constructing the GO–BAN network based

on the features selected in a pre-processing phase and on the structure of the

GO DAG. The first BAN network construction method was designed for the case

where features have been selected by a flat feature selection method (FFS) (i.e.

CFS [48] in this thesis, but other methods could be used). The second BAN

network construction method was designed for the case where features have been

selected by a hierarchical feature selection method (HIP and MR in this thesis,

but again other hierarchical methods could be used).
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Figure 6.2 Example of a Small DAG of Features

6.3.1 Flat Feature Selection with Gene Ontology-Based

Bayesian Network Augmented Naïve Bayes

(FFS+GO–BAN)

Here we introduce the method (described in Algorithm 6.1) for constructing the

GO–BAN classifier using the features selected by a conventional flat feature selec-

tion method.

In the first phase of Algorithm 6.1, in lines 1 – 3, the feature DAG, training

dataset and testing dataset will be initialised. The initial feature DAG simply

contains one node for each GO term (feature) in the dataset and all the edges in

the GO DAG where both GO terms connected by the edge are used as features in

the dataset. Next, in line 4, the flat feature selection process will be conducted;

then the set of selected features XFFS will be used to re-create the training and

testing datasets, in lines 5 – 6.

The second phase (lines 7 – 12) of FFS+GO–BAN (Algorithm 6.1) re-constructs

the edges between selected features according to the pre-defined hierarchical rela-

tionships in the DAG created in line 1. In details, for each feature xs selected by

FFS, the algorithm considers all paths leading from a root node of the DAG to xs.

As shown in lines 9 – 11, for each of those paths, the algorithm finds the closest an-

cestor of xs in that path that was also selected by FFS, denoted (Closest Selected
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Figure 6.3 Example DAG with Nodes Selected by a Flat Feature Selection
Method and Corresponding Edges Constructed According to the Gene

Ontology Hierarchical Structure Information (FFS+GO–BAN Algorithm)

Ancestor) CloSelAnc(xs), and adds CloSelAnc(xs) to the set of parents of xs in

the GO–BAN network. That is, it adds an edge pointing from CloSelAnc(xs) to

xs on the GO–BAN network. In the third and last phase of Algorithm 6.1, lines 13

– 15, each testing instance is classified using the previously constructed GO–BAN

network.

To further explain how Algorithm 6.1 works, Figure 6.3 shows an example DAG

where the selected nodes (features) are shown in black and the edges represent

generalisation-specialisation relationships among GO terms (features) in the GO

DAG. The dashed edges are the edges that are included in the GO DAG but

are not included in the constructed GO–BAN network. The solid edges are the

edges included in the constructed GO–BAN network; some of these solid edges

represent parent-child relationships between selected features in the GO DAG,

whilst other solid edges represent new edges which were artificially created to

represent a direct connection between two selected features, which are separated

by two or more edges in a given path of the GO DAG. Note that a selected node

can have more than one selected ancestor nodes in an individual path, e.g. node G

has two selected ancestors, B and A. In this case only its closest selected ancestor

node B – in the path A–B–D–G – will be assigned to the set of parent nodes of G

in lines 9 – 11 of Algorithm 6.1. Analogously, only the closest selected ancestor of

node I in the path A–B–E–I, namely node B, will be added to the set of parents
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of node I. Furthermore, node F is assigned two parent nodes, namely B, which

is F’s closest selected ancestor in path A–B–F, and A, which is F’s only selected

ancestor in path A–C–F.

Algorithm 6.1 Flat Feature Selection with Gene Ontology-Based
Bayesian Network Augmented Naïve Bayes (FFS+GO–BAN)
1: Initialise DAG with all features in Dataset;

2: Initialise TrainSet;

3: Initialise TestSet;

4: XFFS = FFS(TrainSet);

5: Create TrainSet_FFS with features XFFS ;

6: Create TestSet_FFS with features XFFS ;

7: for each xs ∈ XFFS do

8: Par(xs) = Ø;

9: for each path k in DAG from root to xs do

10: Par(xs)← Par(xs) ∪ CloSelAnc(xs);

11: end for

12: end for

13: for each Inst_FFS<w> ∈ TestSet_FFS do

14: Classify(Par(XFFS), TrainSet_FFS, Inst_FFS<w>);

15: end for
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Note that flat feature selection (FFS) methods cannot guarantee the elimina-

tion of hierarchical redundancies between features. Therefore, FFS methods can

select features that have the same value (either “1” or “0”) in an instance and are

located in the same path in the GO DAG. In the example DAG in Figure 6.2,

the FFS method has selected features A and B, which is a case of hierarchical

redundancy (the value “1” of B in an instance implies the value “1” of A in that

instance). Such hierarchical redundancies in the GO–BAN network are avoided

by using hierarchical feature selection methods, as discussed in the next Section.

6.3.2 Hierarchical Feature Selection with Gene Ontology-

Based Bayesian Network Augmented Naïve Bayes

(HFS+GO–BAN)

Recall that the Hierarchical Feature Selection (HFS) methods used in this work

perform lazy learning, i.e. they select a set of features specific for each testing

instance. We evaluate the predictive performance of GO–BAN when using two

lazy HFS methods in a pre-processing phase, i.e. HIP and MR (described in

Chapter 4). Hence, in this Section we propose another method to construct the

GO–BAN network topology from the set of features selected by HIP or MR. Note

that the proposed method is generic enough to be used with any other lazy HFS

method, which can eliminate the hierarchical redundancy.

Algorithm 6.2 works in a way analogous to Algorithm 6.1. The core part of

both algorithms consists of finding the closest selected ancestor of each selected

feature xs in each path of the GO DAG and adding that ancestor to the set of

parents of feature xs. The main difference between these two algorithms is as

follows. Since Algorithm 6.1 uses an eager feature selection algorithm, its core

part (the loop in lines 7 – 12) is performed before processing the testing instances

in lines 13 – 15. By contrast, since Algorithm 6.2 uses a lazy feature selection

method, both the use of a HFS method in line 5 and the algorithm’s core part

(the loop in lines 8 – 13) are performed within a loop over all testing instances.

Another difference is that line 10 of Algorithm 6.1 involves finding the closest

selected ancestor of selected feature xs in path k; whilst the corresponding line
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11 of Algorithm 6.2 is somewhat simpler; it is not necessary to select the closest

ancestor of xs among several ancestors, simply because xs will have at most one

selected ancestor feature. This is due to the fact that the HFS method executed

in line 5 (i.e. HIP or MR) eliminates hierarchical redundancies among features.

The initialisation phase of HFS+GO–BAN (lines 1 – 3 in Algorithm 6.2) is the

same as the initialisation phase of Algorithm 6.1. Then, for each testing instance

(Inst<w>), a lazy learning HFS method (either HIP or MR) will be run (line 5 in

Algorithm 6.2). Next, the set of hierarchically selected features XHFS is used to re-

create the new training dataset TrainSet_HSF and the current testing instance

Inst_HSF<w>. In lines 8 – 13, the GO–BAN network is constructed. For each

selected feature xs in XHSF , for each path in the DAG from a root node to xs, the

only selected ancestor of xs (if such ancestor exists) is added to the set of parents

of xs in the GO–BAN network in line 11.

To further explain how Algorithm 6.2 works when HIP is used, consider the

example DAG in Figure 6.4, where the nodes selected by HIP are marked in black

(nodes D, E, I, F and J). Each of these nodes has at most one selected ancestor

node in each path from the root to that node. Hence, Algorithm 6.2 assigns node

E as the parent of node I in path A–B–E–I; node E as the parent of node J in

path A–B–E–J; node F as the parent of node J in paths A–B–F–J and A–C–F–J.

Nodes D, E, F are not assigned any parent, since none of their ancestor nodes in

the DAG were selected by HIP.

To further explain how Algorithm 6.2 works when MR is used, consider the

DAG in Figure 6.5, where again the selected nodes are marked in black (nodes B,

G, H, C, I and J). Again, each selected node has at most one selected ancestor

node in each path from the root to that node. Hence, Algorithm 6.2 assigns node

B as the parent of node G in path A–B–D–G; node B as parent of node H in paths

A–B–D–H and A–B–H; node B as parent of node I in path A–B–E–I; node B as

parent of node J in paths A–B–E–J and A–B–F–J; node C as parent of node J in

path A–C–F–J.
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Algorithm 6.2 Hierarchical Feature Selection with Gene Ontology-Based
Bayesian Network Augmented Naïve Bayes (HFS+GO–BAN)
1: Initialise DAG with all features in Dataset;

2: Initialise TrainSet;

3: Initialise TestSet;

4: for each Inst<w> ∈ TestSet do

5: XHFS = HFS(DAG, TrainSet, Inst<w>);

6: Create TrainSet_HFS with features XHFS ;

7: Create Inst_HFS<w> with features XHFS ;

8: for each xs ∈ XHFS do

9: Par(xs) = Ø;

10: for each path k in DAG from root to xs do

11: Par(xs)← Par(xs) ∪ SelAnc(xs);

12: end for

13: end for

14: Classify(Par(XHFS), TrainSet_HFS, Inst_HFS<w>);

15: end for
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Figure 6.4 Example DAG with Nodes Selected by HIP and Corresponding
BAN Network Constructed according to the Gene Ontology Hierarchy

(HIP+GO–BAN Algorithm)
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Figure 6.5 Example DAG with Nodes Selected by MR and Corresponding
Network Constructed according to the Gene Ontology Hierarchy

(MR+GO–BAN Algorithm)
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6.4 Computational Experiments

6.4.1 Experimental Methodology

We used the ageing-related datasets which have already been adopted in Chap-

ters 4 and 5, i.e. 28 datasets that consist of three types of GO terms (BP, MF,

CC), and their different types of combination (BP+MF, BP+CC, MF+CC and

BP+MF+CC).

In the experiments reported in this section, there are 4 methods being com-

pared, namely: GO–BAN without feature selection (as a baseline method), GO–

BAN based on features selected by the HIP method (HIP+GO–BAN), GO–BAN

based on features selected by the MR method (MR+GO–BAN), and GO–BAN

based on features selected by the CFS method (a type of flat feature selection

method). We also used the well-known 10-fold cross validation procedure to eval-

uate the performance of classifiers as measured by their GMean value, as discussed

in Chapter 4.

6.4.2 Experimental Results

Tables 6.1 – 6.4 compare the predictive performance of the three above mentioned

feature selection methods working with GO–BAN and GO–BAN without feature

selection. Each table contains results for a different model organism. In these

tables, recall that GM stands for the geometric mean of sensitivity and specicity,

defined as GMean =
√
Sen.× Spe., where Sen. is the proportion of pro-longevity

instances corrently predicted as pro-longevity and Spe. is the proportion of anti-

longevity instances correctly predicted as anti-longevity. In general, considering

the results in all 4 tables (Tables 6.1 – 6.4), HIP+GO–BAN shows the best per-

formance among all 4 methods, being ranked as the best method in 23 (out of 28)

datasets (GMean values in boldface). In terms of the average ranks for those meth-

ods, HIP+GO–BAN obtains the best rank of 1.2 on average over the 28 datasets,

which is better than the average rank of MR+GO–BAN (2.2), CFS+GO–BAN

(2.8) and GO–BAN with no feature selection (3.8).
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Table 6.1 Predictive Accuracy for GO–BAN with Hierarchical HIP and MR,
and Flat CFS Method in Caenorhabditis elegans Datasets
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Table 6.2 Predictive Accuracy for GO–BAN with Hierarchical HIP and MR,
and Flat CFS Method in Drosophila melanogaster Datasets
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Table 6.3 Predictive Accuracy for GO–BAN with Hierarchical HIP and MR,
and Flat CFS Method in Mus musculus Datasets
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Table 6.4 Predictive Accuracy for GO–BAN with Hierarchical HIP and MR,
and Flat CFS Method in Saccharomyces cerevisiae Datasets
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More precisely, in terms of results for each type of model organism, the main

findings are as follows. In Table 6.1, for the datasets about Caenorhabditis elegans,

the “anti-longevity” class is the majority class, and overall the values of Spe. are

greater than Sen. HIP+TAN obtains the highest GMean value 6 out of 7 times

(including one draw with GO–BAN), whilst MR+GO–BAN and GO–BAN obtain

only once the highest GMean value.

In Table 6.2, for the datasets aboutDrosophila melanogaster, the “pro-longevity”

class is the majority class, and the values of sensitivity are greater than the val-

ues of specificity obtained by all algorithms. HIP+GO–BAN obtains 4 out of 7

times the highest GMean value, while MR+GO–BAN obtains 2 times the highest

GMean value, and CFS+GO–BAN obtains only once the highest value.

In Table 6.3, for the datasets about Mus musculus, “pro-longevity” is the ma-

jority class, and the values of sensitivity are greater than the value of specificity

obtained by most algorithms overall (with exceptions for HIP+GO–BAN working

on BP+MF, BP+CC and BP+MF+CC datasets). HIP+GO–BAN obtains 6 out

of 7 times the highest GMean value, while MR+GO–BAN obtains once the highest

GMean value.

In Table 6.4, for the datasets about Saccharomyces cerevisiae, the “anti-longevity”

class is the majority class, and the values of specificity are greater than the values of

sensitivity obtained by most algorithms (with exception of HIP+GO–BAN work-

ing on BP+MF, BP+MF+CC datasets). Among those algorithms, HIP+GO–

BAN obtains all 7 out of 7 times the highest GMean value.

Hence, in all 4 types of datasets, for all model organisms, when comparing the

values of Sen. and Spe., the highest value is obtained for the measure asscoci-

ated with the majority class. That is, as expected, it seems easier to predict the

majority class.

We performed a statistical significance test on the predictive accuracies of dif-

ferent feature selection methods by adopting the Friedman test and the Holm post-

hoc method. As discussed in Chapter 4, the Friedman test is a non-parametric

statistical test based on the ranks of each classifier’s predictive performance on

each dataset [29, 58], and the Holm post-hoc method is used for coping with the

multiple-comparison problem that arises when applying significance tests to mul-

tiple pairwise method comparisons [28]. We used HIP+GO–BAN as the control

(best) feature selection method to be compared with the other methods.
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Table 6.5 Statistical Significance Test Results of the Algorithms’ GMean
Values According to the Non-Parametric Friedman Test with the Holm

Post-Hoc Test at the α = 0.05 Significance Level

Algorithms Ave. Rank P-value Adjusted α

HIP+GO–BAN (ctrl) 1.2 – –

MR+GO–BAN 2.2 3.74 E-03 0.0500

CFS+GO–BAN 2.8 3.52 E-06 0.0250

No FS+GO–BAN 3.8 4.85 E-14 0.0167

The detailed results of these significance tests are shown in Table 6.5, where

the second column shows the average rank of each method (recall that the lower

the rank, the better the predictive performance); the third column shows the cal-

culated p-value; the fourth column shows the adjusted significance level (α). In the

third column, a boldfaced value indicates that the p-value is lower than the corre-

sponding adjusted significance level, which means the difference of GMean values

between HIP+GO–BAN and the corresponding method is statistically significant.

The outcomes of the statistical significance tests show that HIP+GO–BAN sig-

nificantly outperforms MR+GO–BAN, CFS+GO–BAN and GO–BAN without

feature selection.

6.5 Discussion

6.5.1 The Average Dimensionalities of Conditional Proba-

bility Tables Created by Different Algorithms

Table 6.6 reports a number of statistics about the size of the constructed GO–

BAN’s DAGs, when using different feature selection methods. More precisely, the

columns referring to GO–BAN without feature selection report the original number

of features (F) and edges (E) in the feature DAG for each dataset, and the average

dimensionality of a conditional probability table (CPT) in that DAG, denoted

D(CPT ). To calculate D(CPT ), note that each node is associated with a number
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of variables given by its number of parent feature nodes plus two – accounting

for one class variable (which is a parent of all feature nodes) and the feature

represented by the node itself. Since all (feature and class) variables can take two

values, the dimensionality of each CPT is given by Equation 6.2, where #Par is

the number of parent features. The table columns referring to GO–BAN using

HIP and MR as feature selection methods report the average number of selected

features (AvF), the average number of edges in the constructed DAG (AvE), and

the average CPT dimensionality in the DAG for the corresponding feature selection

method, where each average is computed over the DAGs constructed for all testing

instances (since HIP and MR select a specific feature set for each testing instance)

across all 10 cross-validation iterations. Finally, in the table columns referring to

GO–BAN using the feature selection method CFS, the average is computed over

the 10 cross-validation iterations only, since in each iteration CFS selects the same

set of features to classify all available testing instances.

D(CPT ) = 2(#Par+2) (6.2)

In general, the three feature selection methods selected substantially fewer fea-

tures and so the corresponding constructed GO–BAN DAGs had substantially

fewer edges, compared with the original DAGs (without performing feature selec-

tion). More precisely, among the three feature selection methods, CFS selected

the smallest number of features in 27 out of the 28 datasets (the only exception is

the dataset for S. cerevisiae with MF features). MR selected the largest number of

features in all 28 datasets; and the number of features selected by HIP is in general

an intermediate value between the numbers selected by the other two methods.

However, HIP+GO–BAN constructed DAGs having in general fewer edges than

the DAGs constructed by MR+GO–BAN and CFS+GO–BAN.

Figure 6.6 shows the average CPT dimensionality (D(CPT )) in the DAGs

constructed by each method, where the average was computed over all the 28

datasets. As shown in this figure, despite CFS selecting a smaller feature set

than HIP and MR, the CFS+GO–BAN method constructs DAGs with the largest

average CPT dimensionality (D(CPT )) value of 5.65, among the three feature
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selection methods – although this value is still much smaller than the value for GO–

BAN without feature selection (14.6). This D(CPT ) value of 5.65 for CFS+GO–

BAN is substantially higher than the D(CPT ) values obtained by MR+GO–BAN

(4.78) and by HIP+GO–BAN (4.26). This indicates that, although CFS selected

the smallest number of features, on average the features selected by CFS have a

higher number of parent nodes in the constructed DAGs, leading to the highest

D(CPT ) values for CFS among all the feature selection methods.
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Figure 6.6 Average D(CPT ) Values for Different Feature Selection Methods
Working with GO–BAN over 28 Datasets

These results are consistent with the discussion in Section 6.3.1, i.e. the features

selected by CFS can have more than one ancestor features that have the same

values and are also located in the same path in the DAG, constituting a case of

hierarchical redundancy (defined in Section 2.7), a type of redundancy that is not

eliminated by CFS; and this leads to a higher number of parents per node and so

a substantially higher D(CPT ) value for CFS.

Unlike CFS, both HIP and MR remove the hierarchical redundancy between

features, which means there will exist at most two nodes being selected and at

most one dependency being constructed for each individual path; and this leads

to substantially lower D(CPT ) values for HIP+GO–BAN and MR+GO–BAN, by

comparison with CFS+GO–BAN.

The reason for HIP+GO–BAN having a smaller D(CPT ) value than MR+GO–

BAN is that HIP selected in general substantially fewer features than MR (as



Chapter 6. Lazy Hierarchical Feature Selection Methods with Bayesian Network
Augmented Naïve Bayes Classifiers 163

shown in Table 6.6), which led to substantially smaller numbers of edges and

parent features per node. In particular, the lowest D(CPT ) value of 4.26 obtained

by HIP+GO–BAN suggests that most nodes in the constructed DAG have no

parent feature, since a D(CPT ) value of 4 means a CPT has only four probability

values, arising from the four combinations of two values of the current feature

and two values of the class variable. The small size of the CPTs constructed

by HIP+GO–BAN suggests that this method is the one that most mitigates the

problem of over-fitting associated with large CPTs. This is because the larger the

average dimensionality of CPTs in a constructed DAG, the larger the number of

“parameters” (probability values) to be estimated from the training data, and the

larger the risk of over-fitting.
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Table 6.6 Number of Selected Features F, Number of Edges E and
Dimensionalities of CPT Tables D(CPT ) for the Constructed GO–BAN

Classifier

Feature GO–BAN Hier. HIP Hier. MR Flat CFS

Types without FS + GO–BAN + GO–BAN + GO–BAN

Caenorhabditis elegans Datasets

F E D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT )

BP 830 1437 17.66 69.27 2.19 4.13 145.67 32.21 4.95 42.1 8.5 4.83

MF 218 259 10.32 29.81 2.91 4.40 50.52 9.02 4.73 27.8 6.3 4.91

CC 143 217 14.03 29.73 2.09 4.31 54.98 7.84 4.61 23.3 2.9 4.50

BP+MF 1049 1696 16.13 91.88 4.43 4.20 195.41 31.89 4.69 54.4 10.0 4.74

BP+CC 974 1654 17.12 90.01 3.11 4.15 189.84 32.43 4.73 53.9 11.4 4.88

MF+CC 362 476 11.79 51.85 3.89 4.31 102.00 14.57 4.60 40.0 7.5 4.75

BP+MF+CC 1193 1913 15.88 112.96 5.33 4.19 244.66 38.32 4.66 60.9 10.8 4.72

Drosophila melanogaster Datasets

F E D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT )

BP 698 1190 17.28 82.53 3.94 4.21 141.74 19.83 4.66 31.2 5.4 4.77

MF 130 151 10.29 22.87 2.65 4.49 31.76 5.99 4.80 13.3 2.7 4.81

CC 75 101 12.05 20.73 1.58 4.31 27.60 8.39 5.33 14.6 4.6 5.37

BP+MF 829 1341 16.17 120.99 6.39 4.26 172.68 27.38 4.73 31.8 6.4 4.93

BP+CC 774 1291 16.76 100.38 5.02 4.21 167.14 29.84 4.83 33.5 6.6 4.84

MF+CC 206 252 10.94 40.65 3.77 4.38 58.59 10.07 4.73 21.3 5.5 5.07

BP+MF+CC 905 1442 15.83 121.34 7.48 4.22 201.47 31.71 4.97 33.6 7.9 5.08

Mus musculus Datasets

F E D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT )

BP 1039 1836 17.18 128.60 7.48 4.25 197.48 28.37 4.64 36.6 6.5 4.79

MF 182 205 9.68 44.06 4.39 4.41 50.37 10.95 4.92 25.3 8.5 5.47

CC 117 160 12.37 36.68 2.87 4.33 38.75 11.85 5.50 15.7 2.4 4.64

BP+MF 1222 2041 16.06 171.32 11.70 4.29 245.42 38.58 4.69 43.7 10.2 5.04

BP+CC 1157 1996 16.69 164.83 10.29 4.27 234.87 40.58 4.77 40.2 8.4 4.94

MF+CC 300 365 10.74 78.96 7.03 4.37 90.04 19.76 4.99 27.5 7.8 5.24

BP+MF+CC 1340 2201 15.73 207.56 14.51 4.29 286.44 49.50 4.77 46.3 8.9 4.84

Saccharomyces cerevisiae Datasets

F E D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT )

BP 679 1223 18.85 54.58 1.97 4.15 107.24 13.51 4.55 31.4 19.0 7.68

MF 175 209 10.43 24.59 1.78 4.30 40.98 5.90 4.58 35.6 8.4 4.96

CC 107 168 14.56 28.56 1.14 4.16 35.34 9.51 5.15 20.7 18.0 7.98

BP+MF 855 1432 17.12 76.54 3.41 4.19 150.73 17.36 4.51 31.1 18.6 7.69

BP+CC 787 1391 18.26 77.91 2.63 4.14 144.09 21.46 4.65 34.5 33.3 10.57

MF+CC 283 377 12.00 48.11 2.28 4.19 84.59 11.81 4.58 29.8 18.3 7.07

BP+MF+CC 963 1600 16.83 99.96 4.03 4.17 191.24 25.35 4.57 34.9 28.4 9.21



Chapter 6. Lazy Hierarchical Feature Selection Methods with Bayesian Network
Augmented Naïve Bayes Classifiers 165

6.5.2 Scalability of Computational Running Time for Dif-

ferent Feature Selection Methods

We estimated the computational time of algorithms by using the iMac equipped

with one 2.9 GHz Intel Core i5 CPU, 2×4 GB 1600 MHz DDR3 memory, one

Macintosh hard drive and OS X (version 10.8.2) operating system.

Table 6.7 reports the estimated computational running time for different fea-

ture selection methods working with the GO–BAN classifier and the GO–BAN

classifier without feature selection, following the same approach explained in Sec-

tion 4.7.4.4. Recall that this approach essentially involves estimating the computa-

tional running time in the largest dataset - C. elegans with BP+MF+CC features,

and in the smallest dataset - D. melanogaster with CC features.

Overall, in the experiments with the Caenorhabditis elegans dataset, GO–BAN

without feature selection is the most time-consuming algorithm, while all other

feature selection methods give a significant contribution to reducing the compu-

tational running time of the original GO–BAN classifier. The reason is due to the

large dimensionalities of the CPTs created by the GO–BAN classifier, i.e. each

feature is associated with a CPT having a dimensionality of 15.9, on average.

This large average dimensionality leads to a much higher computational time,

comparing with the average CPT dimensionality for the other algorithms, i.e. 4.2

for HIP+GO–BAN, 4.7 for MR+GO–BAN and 4.7 for CFS+GO–BAN. Among

those three feature selection methods combined with GO–BAN, MR+GO–BAN is

still the most time-consuming algorithm, which is consistent with the results for

MR working with Naïve Bayes and TAN classifiers reported in Section 4.7.4.4 and

5.4.5, respectively.

In the experiments with the Drosophila melanogaster dataset, GO–BAN with-

out any feature selection method is the least time-consuming algorithm, while

MR+GO–BAN is the most time-consuming algorithm. The reason why GO–BAN

performs fastest is that, in this small dataset, GO–BAN is already fast without

feature selection; and the time taken by the feature selection methods is much

larger than the time taken by GO–BAN without feature selection.

Overall, the range of computational running time for the experiments varies

from 5.6 seconds for the fastest method on the smallest dataset to 14.5 hours for
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the slowest method on the largest dataset.

Table 6.7 Estimated Scalability of Computational Time (in Seconds) for
Each GO–BAN Algorithm

Dataset GO–BAN HIP + GO–BAN MR + GO–BAN CFS + GO–BAN

C. elegans (BP+MF+CC) 52,295.0 2,073.4 31,703.0 17,739.1

D. melanogaster (CC) 5.6 218.4 234.5 216.0

6.6 Comparison between All Proposed Feature Se-

lection Methods Working with Three Different

Types of Bayesian Network Classifiers

In general, the proposed hierarchical feature selection methods show an improve-

ment on the predictive performance of different types of Bayesian Network classi-

fiers, i.e. NB, TAN and GO–BAN in this work. In order to further quantify these

improvements, here we compare the performance of all proposed hierarchical fea-

ture selection methods combined with these different types of classifiers.

Recall that the proposed hierarchical feature selection methods are HIP, MR,

HIP–MR and HRE–TAN. Among those four methods, only HIP–MR cannot elim-

inate all hierarchical redundancy, and it shows comparatively lower predictive

accuracy than the HIP and MR methods. Hence, we only consider the comparison

among the HIP, MR and HRE–TAN methods. HIP and MR methods follow the

filter approach, so they can be used with the NB, TAN and GO–BAN classifiers,

whereas HRE–TAN is an embedded method to be used with TAN. We assembled

all experimental results for these methods reported earlier, i.e. GMean values for

HIP and MR working with NB, TAN and GO–BAN classifiers, along with the

GMean value for HRE–TAN, as shown in Table 6.8, where the boldface figures

denote the highest GMean values for each dataset. More precisely, in Table 6.8,

the GMean values reported for HIP+NB and MR+NB were taken from Tables
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4.10 – 4.13 and Tables 4.14 – 4.17 respectively in Chapter 4; the GMean values

for HIP+TAN, MR+TAN and HRE–TAN are taken from Tables 5.1 – 5.4 and

Tables 5.5 – 5.8 in Chapter 5; and the GMean values for HIP+GO–BAN and

MR+GO–BAN were taken from Table 6.1 to 6.4 in this current chapter.

We analyse the results reported in Table 6.8 from 3 different perspectives, as

follows. First, we focus on identifying the hierarchical feature selection method

which most often produced the best GMean values in general (working with dif-

ferent types of classifiers), rather than identifying the best combination of feature

selection method and classifier. From this perspective, we consider a feature selec-

tion method as the winner in a dataset if that method obtained the highest GMean

value in that dataset, regardless of which classifier was used together with the fea-

ture selection method. Overall, the HIP method obtained the highest GMean

value in 22 out of the 28 datasets, and was the clear winner from this perspective.

The second best hierarchical feature selection method, i.e. MR, obtained the high-

est GMean value in only 6 datasets; whilst HRE–TAN did not obtain any highest

GMean value.

Second, we focus on identifying the type of Bayesian network classifier which

most often produced the best GMean values in general (working with different

types of hierarchical feature selection methods). From this perspective, we consider

a type of classifier as the winner in a dataset if that type of classifier obtained

the highest GMean value in that dataset, regardless of which hierarchical feature

selection method was used together with that type of classifier. Overall, the most

successful type of classifier was NB, which obtained the highest GMean value in

13 out of the 28 datasets. Among these 13 cases, 11 involve the use of the HIP

feature selection method, whilst the other two cases involve the use of the MR

method. The GO–BAN classifier was almost as successful as NB, obtaining the

highest GMean value in 11 datasets – in 8 cases with HIP and in the other 3 cases

with MR. TAN was the least successful classifier, obtaining the highest GMean

value in only 5 out of the 28 datasets – in 4 cases with HIP and in one case with

MR.

Third, we focus on identifying the combination of hierarchical feature selection

method and type of classifier which most often produced the best GMean values.

In order to compare the different methods from this perspective, Figure 6.7 shows

the average ranks (across the 28 datasets included in Table 6.8) for each pair of
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Table 6.8 GMean Values of All Proposed Hierarchical Feature Selection
Methods Working with Different Classifiers

Feature
HIP + NB HIP + TAN HIP + GO–BAN MR + NB MR + TAN MR + GO–BAN HRE–TAN

Types

Caenorhabditis elegans Datasets

BP 63.9 59.4 63.2 62.2 63.4 62.2 56.2

MF 48.6 46.6 48.0 49.6 46.5 47.4 41.7

CC 59.5 52.8 59.2 55.3 53.0 54.6 44.5

BP + MF 63.8 62.7 64.4 67.9 66.2 68.3 58.2

BP + CC 64.9 64.0 65.3 63.9 66.0 63.5 57.6

MF + CC 60.1 55.2 60.0 57.0 56.9 57.5 50.8

BP + MF + CC 63.0 65.5 65.3 62.8 64.5 63.1 59.2

Drosophila melanogaster Datasets

BP 57.2 64.8 63.3 55.5 62.0 59.7 51.5

MF 60.5 48.8 56.9 59.7 58.8 61.7 59.8

CC 61.2 62.8 60.5 67.1 57.0 60.6 46.6

BP + MF 64.9 62.0 67.8 59.5 61.7 59.9 52.4

BP + CC 69.1 63.3 67.7 67.5 57.8 64.2 52.4

MF + CC 72.2 68.0 69.6 69.5 61.9 68.0 58.7

BP + MF + CC 72.1 69.3 71.1 69.9 68.3 71.8 62.6

Mus musculus Datasets

BP 71.3 56.0 72.8 63.6 60.6 62.4 63.9

MF 59.8 67.9 62.0 57.2 67.3 58.8 59.4

CC 61.5 60.3 63.4 58.1 57.2 58.9 59.7

BP + MF 70.6 58.2 69.8 64.2 66.6 59.8 58.8

BP + CC 69.8 63.2 71.2 62.4 64.4 64.2 61.2

MF + CC 68.3 63.9 70.0 68.4 67.9 70.2 56.3

BP + MF + CC 73.5 61.3 73.5 65.3 66.4 65.9 61.3

Saccharomyces cerevisiae Datasets

BP 70.4 62.4 69.7 53.5 51.1 54.7 43.2

MF 20.4 46.0 43.0 0.0 0.0 0.0 0.0

CC 49.2 46.2 49.4 43.7 44.5 44.1 34.2

BP + MF 75.3 65.5 72.6 45.6 43.2 45.7 50.6

BP + CC 74.6 68.2 70.4 58.2 51.7 59.1 50.1

MF + CC 50.5 50.3 57.8 39.3 31.0 35.0 31.3

BP + MF + CC 72.5 69.8 75.1 50.9 57.3 53.8 47.3
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feature selection method and type of classifier. HIP+NB and HIP+GO–BAN ob-

tained the same best average rank of 2.2, which is successively better than the

average ranks obtained by MR+GO–BAN, HIP+TAN, MR+NB, MR+TAN and

HRE–TAN. We also conducted a statistical significance test on those algorithms

using Friedman test and Holm’s post-hoc method, with the results shown in Ta-

ble 6.9. In this table, the first column represents the name of the algorithms (a

combination of different feature selection methods and classifiers); the second col-

umn represents the average rank of GMean values for those algorithms; the third

column represents the p-values of corresponding algorithms and the four column

represents the adjusted significance level by adopting Holm’s post-hoc method.

Since both HIP+NB and HIP+GO–BAN obtain the same highest average rank-

ing of GMean value, either HIP+NB or HIP+GO–BAN can be adopted as the

control algorithm to be compared with other algorithms. Here we chose HIP+NB

as the control algorithm, and found that HIP+NB and HIP+GO–BAN signifi-

cantly outperform other compared algorithms. Therefore, it is obvious that the

HIP method is overall the best performing hierarchical feature selection method

in this thesis.
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Figure 6.7 Average Ranks of Different Hierarchical Feature Selection
Methods Working With Different Classifiers over 28 Datasets
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Table 6.9 Statistical Significance Test Results of the Algorithms’ GMean
Values According to the Non-Parametric Friedman Test with the Holm

Post-Hoc Test at the α = 0.05 Significance Level

Algorithms Ave. Rank P-value Adjusted α

HIP+NB (ctrl) 2.20 – –

HIP+GO–BAN 2.20 1.0 0.0500

MR+GO–BAN 4.09 1.06 E-03 0.0250

HIP+TAN 4.14 7.80 E-04 0.0167

MR+NB 4.46 9.08 E-05 0.0125

MR+TAN 4.63 2.57 E-05 0.0100

HRE–TAN 6.29 1.41 E-12 0.0083



Chapter 7

Conclusions and Future Research

Directions

The research described in this thesis is about hierarchical feature selection, which

is a relatively new research subarea in machine learning/data mining. In this the-

sis, we proposed four hierarchical feature selection algorithms (three filter feature

selection algorithms and one embedded feature selection algorithm), plus two net-

work topology construction algorithms for Bayesian Network Augmented Naïve

Bayes classifier based on the features selected by different feature selection algo-

rithms (including conventional flat feature selection algorithms and the proposed

hierarchical feature selection algorithms). All those algorithms have been em-

pirically evaluated on datasets about the biology of ageing, and two of the best

performing hierarchical feature selection algorithms have been applied to rank

biological features in decreasing order of relevance for predicting ageing-related

classes. Therefore, this research made contributions to both areas of machine

learning/data mining and the biology of ageing.

Overall, the newly proposed hierarchical feature selection algorithms, which

have been shown to be able to improve the predictive performance of Bayesian

network classifiers, work with datasets where the features are hierarchically or-

ganised. In terms of those algorithms’ application in this thesis, the objects be-

ing classified are genes, and the classes to be predicted indicate whether a gene

has a “pro-longevity” or “anti-longevity” effect on an organism. Gene Ontology

171
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(GO) terms are used as predictive features. These terms describe the functions of

genes, and they are structured as a hierarchy (more precisely, a Directed Acyclic

Graph (DAG)). Within the DAG, most of the GO terms follow a generalisation-

specialisation relationship, which leads to redundancy between GO terms. There-

fore, the proposed hierarchical feature selection methods aim at removing the

redundancy within the hierarchy in order to improve the predictive performance

of classifiers.

This chapter is organised as follows. In Section 7.1, the contributions of this

thesis will be reviewed by summarising the newly proposed hierarchical feature

selection algorithms and their use for ranking GO terms. In Section 7.2, future

research directions will be proposed.

7.1 Contributions

The thesis made contributions to two areas, with the primary contributions be-

ing in the area of machine learning/data mining and secondary contribution to

the biology of ageing. As mentioned at the beginning of this chapter, this the-

sis proposed four novel hierarchical feature selection algorithms and two network

construction algorithms for Bayesian Network Augmented Naïve Bayes classifiers

based on the features selected by either flat or hierarchical feature selection algo-

rithms. Among those proposed algorithms, the two best performing hierarchical

feature selection algorithms were used to rank GO terms (predictive features) in

our ageing-related datasets.

7.1.1 Three Filter Hierarchical Feature Selection Algorithms

In Chapter 4, we proposed three hierarchical feature selection algorithms, namely

select Hierarchical Information-Preserving (HIP) features, select Most Relevant

(MR) features, and the hybrid select Hierarchical Information-Preserving and Most

Relevant (HIP–MR) features. The HIP method eliminates all hierarchical redun-

dancy by only selecting the features which retain all the hierarchical information on

each individual path in the feature DAG; the MR method eliminates all hierarchi-

cal redundancy by only selecting the features which have the maximum relevance
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value on each individual path; and the HIP–MR method merely alleviates (but

does not completely eliminate) the hierarchical redundancy, since it removes the

features whose relevance values are smaller than or equal to the relevance value of

their corresponding ancestors or descendants. As shown in Table 7.1, which con-

tains a summary on the merits and drawbacks of the three proposed algorithms,

the HIP method eliminates hierarchical redundancy and selects a feature subset

that retains all hierarchical information, whereas it ignores the relevance of indi-

vidual features - since it does not consider any measure of association between a

feature and the class attribute. The MR method eliminates hierarchical redun-

dancy and selects features by considering both the hierarchical information and

the features’ relevance, but the selected features might not retain the complete hi-

erarchical information. The HIP-MR method avoids the risk of losing hierarchical

information and also considers the features’ relevance, but it can merely alleviate

(and not completely eliminate) hierarchical redundancy. In terms of the number

of selected features, HIP selects the fewest, MR selects more, and HIP–MR selects

the most. All those methods were evaluated by working with the Naïve Bayes

classifier in Chapter 4.

Table 7.1 Summary on Proposed Hierarchical Feature Selection Methods

Hierarchical Feature
Merits Drawbacks Feature Selectivity

Selection Algorithms

HIP
Eliminate hierarchical redundancy;

Ignore relevance of features;
Select the smallest

Retain all hierarchical information number of features

MR
Eliminate hierarchical redundancy; Might lead to loss of Select more features than HIP,

Select highly relevant features hierarchical information less than HIP-MR

HIP–MR
Avoid loss of Retain some redundancy Select the largest

hierarchical information among features number of features

In details, we firstly proposed those three algorithms and evaluated them on

datasets with ageing-related genes from four different model organisms, using as

predictive features different combinations of three types of GO terms, namely bi-

ological process, molecular function and cellular component terms. Overall, those

three proposed hierarchical feature selection methods improve the predictive per-

formance of the Naïve Bayes classifier. In addition, for the purpose of further

evaluating the predictive performance of the proposed algorithms, we conducted
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comparisons between the two best performing algorithms (i.e. HIP and MR) and

three conventional “flat” feature selection methods, namely Correlation-based fea-

ture selection (CFS), Entropy-based feature selection and Relevance-based feature

selection, plus Naïve Bayes without feature selection. The experimental results

reveal that HIP outperforms all other feature selection algorithms in terms of

predictive accuracy, whereas MR’s predictive accuracy does not show significant

difference by comparison with other algorithms, except that MR significantly out-

performs the Entropy-based feature selection.

We also further evaluated the performance of the HIP and MR methods from

the perspective of robustness to imbalanced class distributions. The outcomes of

this evaluation are that HIP is more robust than MR on dealing with the imbal-

anced class distribution issue, since the features selected by HIP tend to obtain

relatively high values of both sensitivity and specificity; whereas MR tends to ob-

tain much higher predictive accuracy when classifying the instances of the majority

class than when classifying instances of the minority class, resulting in substan-

tially imbalanced values of sensitivity and specificity.

Both these hierarchical feature selection algorithms, HIP and MR, were also

further evaluated by using other types of Bayesian network classifiers, i.e. Tree

Augmented Naïve Bayes Classifier and Bayesian Network Augmented Naïve Bayes

Classifier in Chapter 5 and 6 respectively, as discussed below.

In addition, we also evaluated the computational running time for all proposed

feature selection algorithms. In the experiments reported in this thesis the com-

putational times were not large in general, mainly because, although the datasets

had a large number of features, they had a relatively small number of instances.

However, there are applications of feature selection and classification methods

to protein function prediction problems where the number of instances is much

larger (in addition to also having a large number of features). In such applica-

tions the issue of runtime of the proposed methods would be more relevant. In

particular, Radivojac, et al. [100] discuss the results of a large-scale evaluation of

computational protein function prediction methods, which was performed in the

first international competition in this area, called Critical Assessment of protein

Function Annotation (CAFA). As the number of organisms with known genome

sequence keeps increasing, the number of corresponding proteins in databases like

Uniprot keeps increasing too, and so the number of instances used in the datasets
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of these international CAFA competitions (which are expected to continue to be

held in the future) will also keep increasing.

7.1.2 An Embedded Hierarchical Feature Selection Algo-

rithm for the Tree Augmented Naïve Bayes Classifier

In Chapter 5, we proposed one new embedded hierarchical feature selection method

based on the Tree Augmented Naïve Bayes (TAN) Classifier, namely Hierarchi-

cal Redundancy Elimination-Tree Augmented Naïve Bayes (HRE–TAN). Briefly,

this method removes the hierarchically redundant features during the processes

of building the Maximum Spanning Tree, which is the main procedure used for

building the Tree Augmented Naïve Bayes classifier.

We also conducted an empirical evaluation of this newly proposed algorithm

on the datasets consisting of different combinations of the three types of GO terms

mentioned earlier. Other compared algorithms evaluated in the experiments were

the same methods adopted in Chapter 4, i.e. HIP, MR, CFS, Entropy-based and

Relevance-based feature selection methods. We also compared those feature se-

lection methods with the TAN classifier without any feature selection method.

According to the comparison results, HIP again shows the best predictive per-

formance and significantly outperforms all other feature selection methods except

CFS when working with the TAN classifier. Analogously to HIP, MR significantly

outperforms all compared feature selection methods except CFS and HIP.

In terms of the evaluation of robustness against imbalanced class distributions,

when working with the TAN classifier, HIP again tends to obtain high values of

both sensitivity and specificity simultaneously, whereas MR again tends to obtain

much higher predictive accuracy when classifying the instances of the majority

class than when classifying instances of the minority class.
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7.1.3 Two Network Topology Construction Algorithms for

Gene Ontology-Based Bayesian Network Augmented

Naïve Bayes

In Chapter 6, we proposed two network topology construction algorithms for the

Gene Ontology-based Bayesian Network Augmented Naïve Bayes (GO–BAN) clas-

sifier, based on the features selected by either flat or hierarchical feature selection

methods. The first algorithm was proposed for GO–BAN working with a Flat

Feature Selection method, and it is named FFS+GO–BAN; the second algorithm

was proposed for GO–BAN working with a Hierarchical Feature Selection method,

and it is named HFS+GO–BAN. Briefly, both these algorithms use the features

which have already been selected by the corresponding feature selection methods,

and they construct the dependencies (network edges) between those selected fea-

tures according to the pre-defined dependencies on the GO DAG.

We conducted an empirical evaluation of the two proposed algorithms by using

different feature selection methods, i.e. the hierarchical HIP and MR methods,

the flat CFS method, and the GO–BAN classifier without any feature selection

method, as a baseline. The results have shown that HIP+GO–BAN significantly

outperforms all other GO–BAN methods.

In Chapter 6, we also conducted a further comparison involving all hierarchical

feature selection methods proposed in Chapter 4, 5 and 6; combining them with

different Bayesian network classifiers, i.e. NB, TAN and GO–BAN, from the per-

spective of their GMean values. The outcomes of this experimental comparison

revealed that HIP+NB and HIP+GO–BAN significantly outperformed MR+GO–

BAN, HIP+TAN, MR+NB, MR+TAN and HRE–TAN. It can be concluded that

HIP is overall the best hierarchical feature selection method (among the meth-

ods evaluated in this thesis) for improving the predictive accuracy of two types of

Bayesian network classifiers (i.e. NB and GO–BAN), when working with the data

where the features are hierarchically organised.
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7.1.4 Ageing-Related Dataset Creation and Ageing-Related

GO Terms’ Ranking

In terms of contributions to the biology of ageing, firstly, we created a set of ageing-

related datasets referring to four model organisms, where genes are classified into

pro-longevity or anti-longevity ones, using Gene Ontology (GO) terms as predic-

tive features. This set of datasets is freely available for other researchers from [5].

Secondly, as another contribution of this thesis, we discovered some potentially

interesting ageing-related patterns based on the proposed feature selection meth-

ods. In details, we created two rankings of GO terms in decreasing order of their

usefulness for predicting the pro-longevity or anti-longevity class of a gene, for

each model organism. The two rankings were mainly based on the frequency of

selection of GO terms (features) by two hierarchical feature selection methods,

i.e. HIP and MR. More precisely, for the GO terms selected by MR, we adopted

the ranking criteria of selection frequency (as the main criterion) and statistical

significance level (used as a tie-breaking criterion). For the GO terms selected by

HIP working with the TAN classifier, we adopted as the main ranking criterion

the selected frequency, and as a tie-breaking criterion the frequency of occurrence

in the edges of the TAN classifier. Both ranking lists provide potentially insightful

information about ageing research.

7.1.5 Computational Materials

The implementation of all proposed feature selection methods algorithms and clas-

sifiers was programmed in Java and Eclipse integrated development environment.

Weka (Java-based source code) was used as a third-party source in the experiments

using the correlation-based feature selection algorithm as a baseline method. Most

experiments were run on a computer cluster generously provided by the School

of Computing, University Kent. I acknowledge the support of concurrence re-

searchers at Kent for access to the ‘CoSMoS’ cluster, funded by EPSRC grants

EP/E049419/1 and EP/E053505/1.

The cluster was equipped with 12 nodes, each consists of two four-core Xeon
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E5520 processors (16 hardware threads in total) and 12 GiB of RAM. The operat-

ing system used by the cluster was Ubuntu 12.04LTS. Very few experiments were

run on an iMac equipped with one 2.9 GHz Intel Core i5 CPU, 2×4 GB 1600 MHz

DDR3 memory, one Macintosh hard drive and OS X (version 10.8.2) operating

system.

The datasets used in the experiments reported in Chapter 4 are available for

downloading from the link: <http://www.cs.kent.ac.uk/people/staff/aaf/

pub_papers.dir/IEEE_TCCB_Wan_Ageing_Datasets.zip>. The datasets used in

the experiments reported in Chapters 5 and 6 are available from the author by

request. The method used for generating all datasets is mentioned in Chapters 4

and 5, in pages 69, 88 and 119, respectively.

7.2 Future Research Directions

The future research directions suggested in this thesis can be categorised into six

types. The first type includes research directions that are direct extensions of

the work described in this thesis. In details, those proposed hierarchical feature

selection methods can be further evaluated by combining them with other (non-

Bayesian) types of lazy learning-based classifiers, e.g. Nearest Neighbour [108,123],

lazy Decision Tree [40], etc. Actually, we have already performed some prelimi-

nary experiments evaluating HIP and MR with Nearest Neighbour classifiers, as

reported in [123]; but these experiments involve only biological process GO terms.

More experiments, with other types of GO terms (molecular function and cellular

component terms), should also be performed.

Going beyond GO terms, the proposed hierarchical feature selection meth-

ods are generic enough to be applicable to any dataset with hierarchically or-

ganised features, as long as the hierarchical relationships represent generalisation-

specialisation relationships. Hence, the proposed hierarchical methods should be

further evaluated in other types of datasets too. For instance, these methods can

be evaluated in text mining datasets, where instances represent documents, fea-

tures typically represent the presence or absence of words in a document, and

classes represent, for instance, the topic or subject of the document. Words also

obey hierarchical, generalisation-specialisation relationships (as captured e.g. in

<http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/IEEE_TCCB_Wan_Ageing_Datasets.zip>
<http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/IEEE_TCCB_Wan_Ageing_Datasets.zip>
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the WordNet system [31]), making text mining another natural application do-

main for the proposed hierarchical feature selection methods.

The second type of future research direction consists of proposing new em-

bedded hierarchical feature selection methods based on lazy learning versions of

other types of Bayesian network classifiers. For example, as mentioned in Chapter

2, the AODE classifier can be adapted to perform embedded hierarchical fea-

ture selection in order to alleviate hierarchical redundancy among features. More

precisely, hierarchically redundant features can be removed for each individual

One-Dependent Estimator (ODE) during the training phase of AODE. Then the

classification phase of the conventional AODE classifier remains the same, i.e. the

class predictions computed by the set of ODEs will be used for classifying a new

testing instance.

The third type of future research direction consists of proposing a new lazy

version of the CFS method [48], and then further extend lazy CFS to eliminate

the hierarchical redundancy according to the pre-defined DAG in a way analogous

to HIP and MR. In order to design lazy CFS, the calculation of the correlation

coefficient between a pair of features, or between a feature and the class variable

can be adapted for only considering the actual values of features on the current

testing instance. Then, in order to incorporate hierarchical redundancy elimina-

tion into Lazy-CFS, during the stage of heuristic search for the most appropriate

subset of features, the search space can be substantially reduced by removing hi-

erarchically redundant features with respect to features in the current candidate

feature subset.

The fourth type of future research directions consists of proposing other hier-

archical feature selection methods that can be combined with eager learning-based

classifiers, rather than only working with lazy learning-based classifiers. For exam-

ple, one possible method would be firstly rank all features according to a certain

eager learning-based measure of feature quality, and then remove features from

the top to the bottom of the ranking, according to pre-defined hierarchical de-

pendencies. Another possible method would be based on relaxing the definition

of hierarchical redundancy, by measuring the degree of hierarchical redundancy

between pairs of features. This could be measured by the degree of co-occurrence

of pairs of features in the training set as a whole, from an eager learning perspec-

tive. Then a threshold could be chosen for deciding whether or not the degree of
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co-occurrence is high enough to be considered a case of hierarchical redundancy.

This new approach could be somehow integrated with the pre-defined hierarchical

dependencies between features and then exploited by conducting hierarchical fea-

ture selection.

The fifth type of future research directions is an extension of the scenario when

the classes or feature values are non-binary. The proposed hierarchical feature se-

lection methods can be directly adopted for the multi-class classification task,

where there are more than two class values. However, the performance of the pro-

posed methods on this scenario still needs to be evaluated. In terms of the scenario

of non-binary feature values, the proposed hierarchical feature selection methods

cannot be directly adopted, since the definition of hierarchical redundancy in this

thesis relies on binary feature values. Hence, new types of hierarchical feature

selection methods should be developed, based on an extended definition of hierar-

chical feature redundancy for non-binary feature values.

The sixth type of future research directions is evaluating the usefulness of a

feature hierarchy as a form of pre-defined expert knowledge, in the context of the

classification task. As an example, in order to evaluate the usefulness of the Gene

Ontology as a feature hierarchy, the proposed hierarchical feature selection meth-

ods could be applied to randomly generated variations of the feature hierarchy,

e.g. randomly permuting the dependencies between GO terms.

In addition, in terms of future research direction on the application of hierar-

chical feature selection methods to the biology of ageing, it is suggested to create

other datasets that contain other types of hierarchical features of genes or proteins,

such as ageing-related pathway information by integrating data from the KEGG

(Kyoto Encyclopedia of Genes and Genomes) database [67], Reactome [25], etc.



References

[1] A chain of amino acids. [online] Available at:<http://myhome.sunyocc.

edu/~weiskirl/amino_acids_proteins.htm>, 2002. [Accessed on 11 Au-

gust 2013].

[2] Fundamentals of protein structure, cs597a. [online] Available

at:<http://www.cs.princeton.edu/courses/archive/fall07/cos597A/

lectures/fundamentals.pdf>, 2007. [Accessed on 11 August 2013].

[3] Astbury in retrospect. [online] Available at:<http://www.leeds.ac.uk/

heritage/hpsmuseum/astburyretro.htm>, 2011. [Accessed on 11 August

2013].

[4] Gene2go file. [online] Available at:<ftp://ftp.ncbi.nlm.nih.gov/gene/

DATA/gene2go.gz>, 2012. [Accessed on 13 December 2012].

[5] Ageing-related genes datasets. [online] Available at:<http://www.

cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/IEEE_TCCB_Wan_

Ageing_Datasets.zip>, 2014.

[6] D. W. Aha. Lazy Learning. Kluwer Academic Publishers, Norwell, MA,

1997.

[7] A. Al-Shahib, R. Breitling, and D. Gilbert. Feature selection and the class

imbalance problem in predicting protein function from sequence. Applied

Bioinformatics, 4(3):195–203, 2005.

[8] A. Al-Shahib, R. Breitling, and D. Gilbert. Franksum: new feature selection

method for protein function prediction. International Journal of Neural

Systems, 15(4):259–275, 2005.

181

http://myhome.sunyocc.edu/~weiskirl/amino_acids_proteins.htm
http://myhome.sunyocc.edu/~weiskirl/amino_acids_proteins.htm
http://www.cs.princeton.edu/courses/archive/fall07/cos597A/lectures/fundamentals.pdf
http://www.cs.princeton.edu/courses/archive/fall07/cos597A/lectures/fundamentals.pdf
http://www.leeds.ac.uk/heritage/hpsmuseum/astburyretro.htm
http://www.leeds.ac.uk/heritage/hpsmuseum/astburyretro.htm
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/IEEE_TCCB_Wan_Ageing_Datasets.zip
http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/IEEE_TCCB_Wan_Ageing_Datasets.zip
http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/IEEE_TCCB_Wan_Ageing_Datasets.zip


Reference 182

[9] A. Alexa, J. Rahnenführer, and T. Lengauer. Improved scoring of func-

tional groups from gene expression data by decorrelating GO graph struc-

ture. Bioinformatics, 22(13):1600–1607, Apr. 2006.

[10] C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos.

Local causal and Markov blanket induction for causal discovery and feature

selection for classification part i: Algorithms and empirical evaluation. The

Journal of Machine Learning Research, 11:171–234, 2010.

[11] D. G. Altman and J. M. Bland. Diagnostic tests. 1: Sensitivity and speci-

ficity. BMJ: British Medical Journal, 308(6943):1552, June 1994.

[12] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic

local alignment search tool. Journal of Molecular Biology, 215(3):403–410,

1990.

[13] S. N. Austad. Retarded senescence in an insular population of virginia opos-

sums (Didelphis virginiana). Journal of Zoology, 229(4):695–708, 1993.

[14] J. Bacardit, P. Widera, A. Márquez-Chamorro, F. Divina, J. S. Aguilar-Ruiz,

and N. Krasnogor. Contact map prediction using a large-scale ensemble of

rule sets and the fusion of multiple predicted structural features. Bioinfor-

matics, 28(19):2441–2448, 2012.

[15] Z. Barutcuoglu, R. E. Schapire, and O. G. Troyanskaya. Hierarchical multi-

label prediction of gene function. Bioinformatics, 22(7):830–836, 2006.

[16] D. A. Benson, M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J. Lipman,

J. O. J, and E. W. Sayers. Genbank. Nucleic Acids Research, 41:D36–D42,

2013.

[17] N. Bhardwaj, R. E. Langlois, G. Zhao, and H. Lu. Kernel-based machine

learning protocol for predicting DNA-binding proteins. Nucleic Acids Re-

search, 33(20):6486–6493, 2005.

[18] C. Bielza and P. Larrañaga. Discrete Bayesian network classifiers: A survey.

ACM Computing Surveys (CSUR), 47(1):5, July 2014.



Reference 183

[19] S. R. Bolsover, J. S. Hyams, S. Jones, E. A. Shephard, and H. A. White.

From Genes to Cells. Wiley-Liss, New York, 1997.

[20] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J.

Smola, and H. P. Kriegel. Protein function prediction via graph kernels.

Bioinformatics, 21(suppl 1):i47–i56, Mar. 2005.

[21] A. Brazma, H. Parkinson, T. Schlitt, and M. Shojatalab. A quick intro-

duction to elements of biology-cells, molecules, genes, functional genomics,

microarrays. [online] Available at:<http://www.ebi.ac.uk/microarray/

biology-intro.html>, 2001. [Accessed on 11 November 2012].

[22] J. Campisi and F. D. A. di Fagagna. Cellular senescence: when bad things

happen to good cells. Nature Reviews Molecular Cell Biology, 8(9):729–740,

2007.

[23] J. Cheng and R. Greiner. Comparing Bayesian network classifiers. In Pro-

ceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,

pages 101–108, Stockholm, Sweden, 1999.

[24] T. Craig, C. Smelick, R. Tacutu, D. Wuttke, S. H. Wood, H. Stanley,

G. Janssens, E. Savitskaya, A. Moskalev, R. Arking, and J. P. de Magalhães.

The digital ageing atlas: integrating the diversity of age-related changes into

a unified resource. Nucleic Acids Research, 43:D873–D878, 2015.

[25] D. Croft, G. O’Kelly, G. Wu, R. Haw, M. Gillespie, L. Matthews, ..., and

L. Stein. Reactome: a database of reactions, pathways and biological pro-

cesses. Nucleic Acids Research, 39:D691–D697, 2011.

[26] J. P. de Magalhães. Programmatic features of aging originating in develop-

ment: aging mechanisms beyond molecular damage? The FASEB Journal,

26(12):4821–4826, Dec. 2012.

[27] J. P. de Magalhães, A. Budovsky, G. Lehmann, J. Costa, Y. Li, V. Fraifeld,

and G. M. Church. The human ageing genomic resources: online databases

and tools for biogerontologists. Aging Cell, 8(1):65–72, Feb. 2009.
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