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Abstract

Contagion has been described as the spread of idiosyncratic shocks from one mar-

ket to another in times of financial turmoil. In this work, contagion has been

modelled using a global factor to capture the general market movements and

idiosyncratic shocks are used to capture co-movements and volatility spill-over

between markets. Many previous studies have used pre-specified turmoil and

calm periods to understand when contagion occurs. We introduce time-varying

parameters which model the volatility spillover from one country to another. This

approach avoids the need to pre-specify particular types of periods using external

information. Efficient Bayesian inference can be made using the Kalman filter in

a forward filtering and backward sampling algorithm. The model is applied to

market indices for Greece and Spain to understand the effect of contagion dur-

ing the European sovereign debt crisis 2007-2013 (Euro crisis) and examine the

volatility spillover between Greece and Spain. Similarly, the volatility spillover

from Hong Kong to Singapore during the Asian financial crisis 1997-1998 has also

been studied.

After a review of the research work in the financial contagion area and of the

definitions used, we have specified a model based on the work by Dungey et al.

(2005) and include a world factor. Time varying parameters are introduced and

Bayesian inference and MCMC simulations are used to estimate the parameters.

This is followed by work using the Normal Mixture model based on the paper by

Kim et al. (1998) where we realised that the volatility parameters results depended
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on the value of the ‘mixture offset’ parameter. We propose method to overcome

the problem of setting the parameter value.

In the final chapter, a stochastic volatility model with with heavy tails for the

innovations in the volatility spillover is used and results from simulated cases and

the market data for the Asian financial crisis and Euro crisis are summarised.

Briefly, the Asian financial crisis periods are identified clearly and agree with

results in other published work. For the Euro crisis, the periods of volatility

spillover (or financial contagion) are identified too, but for smaller periods of

time.

We conclude with a summary and and outline of further work.
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Chapter 1

Introduction

This section covers a description of financial contagion, a review of definitions

of financial contagion, a description of two recent financial crises, an overview of

some statistical methods used in financial contagion studies and a description of

the dynamic factor model.

1.1 Financial contagion

Financial contagion is the spread of adverse financial or economic conditions from

one country to another. This is the commonly understood meaning and in a

general sense, the contagion effects can be seen in increased volatility in the equity

or bond markets. There is no clear agreement how the contagion effects are defined

or measured (Forbes & Rigobon 2000). There are different types of financial

crises. For example a currency crisis caused by an exchange rate pegged to an

internationally accepted strong currency. If the economic fundamentals do not

justify the exchange rate, a speculative attack on the currency will cause a drain

on the resources of a country in trying to defend the exchange rate. Another
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type of financial crisis results from high national deficits and the govenment is

forced to borrow at a higher interest rate, reduce state sector spending and reduce

investment which eventually leads to an economic downturn. Another example

of a financial crisis is when a sudden rise in commodity prices (for example oil

or fuel prices) leads to an economic downturn in a number of industries and may

spread to other countries. A financial crisis in the banking sector caused by

liquidity problems or a poorly performing loan portfolio can spread to housing

and manufacturing industries through reduction in funds available for investment

in these sectors. The cause and spread of the financial crisis is difficult to identify

clearly. Financial contagion is generally interpreted as the spread of financial

problems from one country to another or from one asset class to another. Given the

various types of financial crises, it is understandable that different measures have

been used to identify the spread of contagion effects for different cases. Generally,

spread of volatility and changes in correlation have been used to study contagion

effects.

The US depression of 1930s, the stock market crash 1987, US subprime lending

crisis 2007-2008 and the sovereign debt and banking problems 2008-2013 in the

Eurozone area are some examples of financial crises where the impact of economic

problems have spread to other countries. The spread of the crises is through

channels like trade, financial investments and services. Trade channels may be

the physical export or import of goods and also through companies with a global

presence. Financial channels would be banking, investments in equity markets,

in bonds and in options and insurance markets. Funding from a common lender

to multiple countries and the withdrawal or reduction of the borrowing facilities

from several countries which have similar economic conditions can have detrimen-

tal effect in a number of countries at the same time (Dornbusch et al. 2000). A

downturn in one market in the service sector (e.g. tourism) can lead to unem-

ployment in related industries in other countries and lead to the movement of

2



employees between countries. The transmission rates for different channels are

different. Trade and service sector changes take place over a longer period, possi-

bly months. However, for the integrated financial sector, the changes to the equity

markets take place over a short period of time.

The prospects or fear of an adverse economic outcome in one region leads to

movements of financial assets out of that region. Sales of assets in a falling market

causes further reduction in prices and results in sharp declines in asset prices. If

a country has previously attracted capital investment, then a loss of confidence

in that country will lead to sudden reversal of capital flows and volatile markets

(often referred to as flight to quality, the move to less risky assets). Herd behaviour

as discussed by Pericoli & Sbracia (2003a) in uncertain times when investors follow

the actions of others (believing the other investors have better information or

from the fear of holding a position contrary to the other investors) causes further

movement of assets out of the country, possibly weakening the currency. Investors

may also believe that other countries with similar economic fundamentals would

face similar economic problems and may withdraw assets from that country.

A number of well known crises have had major economic impact across multiple

countries. Pericoli & Sbracia (2003b) have reviewed the issues that have been dis-

cussed in contagion literature over the previous thirty years. Financial contagion

studies have addressed asset classes like currency, equity markets and property.

The triggers and spread of a financial crisis appear to be different for each crisis.

Bernanke (1994) concludes that the return to the gold standard after the war

and the resulting monetary contraction (the currency had to be backed by gold

reserves) caused the US Depression in the 1930s. This was followed by lower

consumer expenditure and concerns over employment prospects. Through trade

links and bank failures the crisis spread world wide and the impact persisted into

the 1930s. For the Stock Market crash in 1987, there was a period of rising equity
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prices in the preceding months and fears of an overvalued market (and possible

threats to oil supply routes). This resulted in a lack of confidence in the markets

and then the sudden fall propagated by automated algorithm trading, systems

unable to cope with the volume of trades and asset sales in a falling market. The

market crash spread from the USA to European and Far Eastern markets. The

UK Crisis in 1992 is an example of a currency crisis where an attempt was made

by the UK government to maintain the Sterling exchange rates within a narrow

band of rates against the European currencies in the European Exchange Rate

Mechanism (ERM) with the aim of exchange rate stability and the reduction in the

rate of inflation (effectively following the German Mark with low interest rates and

low inflation). When interest rates rose in Germany after the reunification, UK

interest rates were kept low to protect the private housing sector interest payments

on mortgages. The market believed that Sterling was overvalued in the ERM and

Sterling came under speculative attack. In an attempt to defend the exchange

rate within the ERM, the government used reserves to defend sterling and raised

overnight interest rates to stem the outflow of Sterling. The interest rates could

not be raised long term because the interest rates would damage the industrial

and housing sectors. In the end, the UK had to give up the attempts to maintain

an exchange rate in ERM band of exchange rates. France continued to peg the

exchange rate and went through a slow economic recovery. The UK economy

performed better and recovered more quickly (Mishkin 1999, Masson 1995). This

is an example of a trigger (German reunification) and related economic problems

spreading to neighbouring countries.

The 2007-08 Financial Market Crisis (US subprime lending) was caused by mort-

gage lending to subprime borrowers and the collapse in the value of the mortgage

backed securities. Credit default derivatives led to margin calls which resulted in

liquidity problems and financial institution failures. The financial crises became

a global crisis resulting in the failure of large financial institutions and the need
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for state intervention to support failing banks.

The European sovereign debt crisis 2007-13, resulted from some Eurozone coun-

tries running unsustainable deficits (for example, mounting Greek sovereign debt)

or through banking sector problems (Spanish bank mortgage lending to property

developers, Cypriot banks lending to Greece). In an attempt to support the coun-

tries in difficulty, a Eurozone bailout fund was created. The uncertainty over the

progress of the bailout negotiations for Greece and the ability of the government

to implement austerity measures continued to make the European markets volatile

for a long period. The market volatility spread to Spain, Ireland and Portugal

where investors feared similar financial difficulties.

A common theme running through these crises is debt (for example, private sector

borrowing to finance property purchases or state sector borrowing) and the failure

to service the debt and repay the loans when there is an economic downturn. This

failure weakens the financial institutions like banks and puts at risk the public

savings. This leads to the reduciton in investment in manufacturing and service

sectors and leads to reduced consumption. The spread of uncertainty (volatility)

may be between asset classes and between countries. In recent years, the use of

electronic trading, integrated markets and derivative based trading has increased

the scale and speed of the spread of contagion to other countries. The financial

crises around pegged exchange rates is explained differently - an overvalued asset

(the currency) is sold by speculators (speculative attack on the currency) until

the country cannot defend the currency. The currency is then devalued and the

speculators profit from the situation. It could be argued that the one factor to

trigger the crises is the perceived end of the growth cycle and a downturn in the

economy in a country with a pegged exchange rate.
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1.2 Contagion definitions

A number of definitions are used to identify financial contagion (Pericoli & Sbra-

cia 2003b). One group of definitions is based on correlation changes. There is

normal level of ‘comovement’ (correlation) in equity markets and a change in the

correlation between two markets is used to indicate the spread of contagion. Cor-

relation change is then interpreted as the propagation of a country specific shock

(an adverse outcome in one country) to one or more countries. Correlation change

definitions are used to study the contagion spread between equity markets. An-

other group of definitions is based on ‘equilibrium shift’. This assumes that the

economy is in one equilibrium state and moves to another equilibrium state under

contagion conditions. The equilibrium shift definition is used to study the proba-

bility of a move from one pegged exchange rate to another pegged exchange rate

(generally a devaluation) given that a currency crisis in a neighbouring country

has resulted in a currency devaluation. Financial contagion studies use appropri-

ate definitions to study the contagion effects for specific asset classes like equity,

bonds and currency exchange rates.

In financial markets, there is a normal level of correlation between markets in

related countries. During periods of uncertainty, the volatility in one market may

increase. For the ‘volatility spillover’ definition, contagion is used to mean the

volatility spillover from one country to another, additional to the normal level of

comovement (Corsetti et al. 2001). Forbes & Rigobon (2002) describe contagion

as a ‘significant change in market comovement after a shock to one country’.

Polson & Scott (2012) use the definition ‘excess correlation in the residuals from

a factor model incorporating global and regional market risk factors’. Given that

volatility is a measure of uncertainty, the volatility spillover definition can be

interpreted as ‘the spread of uncertainty across international financial markets’

(Pericoli & Sbracia 2003b). ‘Contagion is a significant increase in comovements of
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prices across markets, conditional on a crisis occurring in one market or group of

markets’ (Pericoli & Sbracia 2003b). This definition also refers to an increase in

comovements compared to a normal level. The significant increase is interpreted

along the same lines as excessive comovement.

‘Contagion occurs when cross-country comovements of asset prices cannot be ex-

plained by fundamentals’. Pericoli & Sbracia (2003b) use this definition if the

econmomy can be assumed to be in multiple equilibrium states and moves from

one equilibrium state to another (where the shift cannot be explained by eco-

nomic criteria). This definition can also be used for the volatility spillover from

one country to another (the volatility change in the affected country cannot be

explained by the fundamental economic factors in that country).

Contagion is also defined as ‘shocks that result in discontinuity in the data gener-

ating process’. This approach is used in multiple equlibria case and the definition

is used to interpret the switch from one equilibrium state to another. For a stock

market crisis, this can also be interpreted as a “sharp fall in the stock market

index, with an upsurge in the volatility of asset prices”. For a banking crisis, this

can be used used to study the change in “ the ratio of non-performing assets to

total assets” (Pericoli & Sbracia 2003b).

‘Contagion is a significant increase in the probability of a crisis in one country,

conditional on a crisis occurring in another country’ (Pericoli & Sbracia 2003b).

This definition has been applied in the study of currency crises based on multiple

equilibrium states. Eichengreen et al. (1996) study currency crises and use the

definition ‘probability of a crisis in a country at a point in time is correlated with

the incidence of crises in other countries’. Investors assume an equilibrium state

based on economic fundamentals for the pegged currency and attempt a specula-

tive attack on a pegged currency rate if the fundamental economic factors change.
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‘Shift contagion occurs when the transmission channel intensifies or, more gener-

ally, the transmission channel changes after a shock in one market’. Pericoli &

Sbracia (2003b) indicate that this can be used to measure jumps between multi-

ple equilibria or for discontinuity in economic variables, using the ‘transmission

channel’ as an example.

In order to identify a crisis, some event such as an increase in volatility or the

volatility exceeding a threshold level, is required to determine the crisis period.

This is subjective and leads to loss of information (Eichengreen et al. 1996). The

‘change in the correlation’ definitions also require the prior identification of calm

and crises periods. This method too becomes subjective and relies on an event or

change in volatility to determine tranquil and calm periods in the markets.

The World Bank uses a ‘Broad definition’ for shock transmission across countries,

a ‘Restrictive definition’ for transmission of shocks to other countries or change

the cross-country correlation beyond any fundamental link among the countries

and effectively measuring excess co-movement, a ‘Very Restrictive definition’ to

measure a change in the transmission mechanism and also to mean an increase in

the cross-country correlations during crisis periods compared to tranquil periods

(Billio & Pelizzon 2003).

We attempt to move away from the prior need to identify crisis periods. The

approach used in this study is to examine the development of time varying param-

eters that describe the volatility of the returns process and the volatility spillover.

This approach would then identify the changes in the model parameters over time

(say, changes in variances, covariances or volatility spillover) without the need for

prior identification of the volatile and tranquil periods.
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1.3 Stylised facts

We outline some commonly known results relating to the spread of contagion,

the decline of equity indices and the changes in volatility derived from financial

contagion studies. Negative adverse shocks spread from larger to smaller regions,

the reverse impact is not significant (Corsetti et al. 2001). This is explained by the

fact that trade, services and financial investments of a small country would have a

smaller impact on a larger country and would be difficult to detect. The decline of

an index is sharper compared to a similar rise in the market. This is referred to as

the gain/loss asymmetry (Cont & Tankov 2003). This is partly explained by herd

behavior in turbulent times and the sale of assets in a falling market as the market

participants try to reduce the possibility of financial losses. The increase in the

volatility of returns is greater after a fall in the market compared to the change

in the volatility after a similar rise in the market (Cont & Tankov 2003). During

financial crises, stock market returns have heavy tails, that is, the frequency of

extreme values is higher than would be predicted by a Normal distribution.

Polson & Scott (2012) explain contagion shock clustering as “time series clus-

tering” meaning that large shocks today correlate with large shocks tomorrow,

“cross-sectional clustering” meaning that large shocks in one country correlate

with large shocks in another country and “directional clustering” meaning that

shocks show a directional (positive or negative) bias in country level returns. The

results are expressed in terms of variances, covariances and correlation of returns.

Bailouts have a positive impact on the receiving country with a possibility of

negative impact on the funding nations. This is a reasonable conclusion given

that the funding countries are acting as lenders to a country already in difficulty.

In the case of the Euro crisis, with Germany being the largest of the fund providers,

there was a fall in equity markets in Germany when the first Greek bailout was
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agreed.

Market integration, automated or algorithm based trading, complex derivatives

and leveraged trading are important factors which have changed the speed and

extent of the spread of contagion on equity and currency markets.

1.4 Two cases of financial crises

Two financial crisis which have been discussed widely in recent financial contagion

studies are outlined below. The data from these two crisis periods have been used

in this study.

1.4.1 European sovereign debt crisis 2007-2013

After the setting up of the common currency, each Eurozone country continued

to regulate its own financial sectors (Lane 2012) . The countries were set a state

sector deficit limit as a proportion of the GDP and the total national debt not

to exceed a proportion of the GDP. A no bailout condition meant that there

could be sovereign default if a country failed to meet its loan repayments. During

periods of economic downturn, the state sector deficit limits would be breached

if the GDP declined and the state sector deficit remained the same. As the

countries retained banking supervision powers, failures of the bank and any state

support could result in the country breaching the Eurozone financial constraints.

On the other hand, being part of the Eruozone meant the banks could borrow

from external sources within the Eurozone without the exchange rate risks. In a

period of low interest rates (2000-2007), the high level of bank lending resulted in

consumption growth and increase in lending to the building industry. During that

period, Greece, Spain and Portugal were running high current account deficits.
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There were private capital inflows into Greece over that period. Merler & Pisani-

Ferry (2012) point out that the banks in those countries were holding a large

portfolio of sovereign debt (bonds) and a sovereign debt crisis would result in a

banking crisis. The start of the European sovereign debt crisis 2007-2013 (also

referred to as the Euro crisis in this document) can be linked to the global financial

crisis 2007-2008 which was triggered by the subprime lending in USA leading to a

period of recession and banking sector crisis in the European countries. Reduction

in funding to (or even the withdrawal from) the perceived high risk countries

resulted in financial difficulties, the need for sovereign guarantees and then the

need for bailout assistance from external sources (ECB, IMF, World Bank) to the

countries in difficulty. This assistance came with reform conditions which made

the situation more difficult in the short term. In Spain, in 2009 the property

prices declined leading to banking sector defaults and a reduction in the GDP

resulted in a higher current account deficit (reduced tax revenues, increased social

spending as the unemployment levels rose). In Greece, the revision of previous

years current account deficits to much higher levels and the forecast deficit for the

following year to much higher levels than permitted by the Eurozone rules marked

the beginning of the crisis for Greece. There was a period of large private capital

outflows from Greece. Merler & Pisani-Ferry (2012) point out that current account

deficit alone is not a good indicator, private capital flows have to be considered.

Ireland and Portugal suffered similarly and sovereign debt spreads rose compared

to the German yields.

In the periods following that, the Euro crisis has been characterised by discussions

about bailout funds, conditions attached to the bailout funds, market anticipa-

tion of the bailout levels and the actual announcement of the bailout agreements

(following discussions in Eurozone funding countries and the IMF) which resulted

in volatile markets in the European countries. Possible Greek exit from the Eu-

rozone and growing resistance in Greece to the austerity conditions and external
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monitoring which was part of the bailout funding conditions continued to cause

financial market turmoil in Greece which spread to the other European countries.

The plots in Figure 1.4.1 show the decline in the equity indices and the volatility

in the daily log returns for Greece, Spain and the Eurostoxx index during the

financial crisis in the Eurozone countries.
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Figure 1.4.1: Stock market indices and daily log returns for Greece, Spain and Eu-

rostoxx 2007-2013.
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Figure 1.4.2: Variances using daily log returns for Greece, Spain and Eurostoxx (2007-

2013). Correlations Greek - Spain using daily data, calculated using 10 day intervals.

The variances and correlations are calculated using the daily log returns over the

previous 10 days. For Greece, Spain and the Eurostoxx returns, the variance

(volatility) is high during the crisis periods. The Greece-Spain correlations are

also high around the crisis periods.

1.4.2 Asian financial crisis (1997-1998)

In 1997, a number of Far East countries with pegged currency exchange rates

which were not consistent with fundamental economic criteria came under spec-

ulative attack and were forced to abandon the pegged exchange rates. This was

followed by a period of volatile stock markets and economic downturn spread-

ing to a number of countries in the region. It resulted in IMF intervention and

measures to reduce the state deficits (Jang & Sul 2002). There are conflicting

beliefs regarding the cause of the crisis. Corsetti et al. (1999) believe that the
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cause was the ‘moral hazard’ in lending to high risk projects with the knowl-

edge that the governments would support the companies in case of failure. In

supporting the companies to repay the loans denominated in foreign currencies,

the currency reserves of the countries were depleted, government current account

deficits increased, capital investment levels dropped, the currencies weakened and

the governments could not sustain the pegged exchange rates. An alternative view

is that the underlying problems can be explained by the high level of borrowings

by banks (loans denominated in foreign currencies without hedging the currency

risks) and the banks lending to local companies for projects that were not prof-

itable. In an economic downturn, non performing loans caused financial difficulties

in a country and the problems then spread to the countries in the region.

In July 1997, Thailand was forced to abandon the Baht pegged exchange rate, the

equity market declined and Thailand turned to the IMF for bailout assistance. In

September, similar events happened in Indonesia and was followed by Korea in

November 1997. This could also be explained as the loss of investor confidence in

Thailand that resulted in pulling out investments in the other South East Asian

countries and triggered a volatile period in the markets. The crisis also spread

to Hong Kong, Singapore, Japan and other countries in the region. This crisis

has been studied as a change in comovements between the countries (Jang & Sul

2002), who also use the Granger causality test to conclude that the crisis spread

between the economically integrated Far East countries. Studies by Malliaris

& Urrutia (1992) detect correlation changes during the crisis period compared

to the period before and after the crisis. Baig & Goldfajn (1998) control for

news in origin country and affected country using daily news reports and create

dummy variables to represent the good and bad news for each country. They use

Vector Autoregression (VAR) method to look at the comovements in the markets

during the crisis period and find evidence of financial contagion in the currency

and equity markets. If the markets are correlated and there is sharp change in
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one market followed by an expected level of change in another market, it is seen

as markets responding to each other. If the correlations change significantly, it

is interpreted as contagion. Baig & Goldfajn (1998) investigate the correlation

changes using exchange rates, equity markets and sovereign risk spreads. They

detect a higher level of correlations during the crisis period using the sovereign

risk spreads (compared to a control group of European countries) and leads them

to conclude that there was contagion, possibly explained as the foreign investors

treating all the countries in the crisis region as having similar risks. The general

conclusion in their work is that in crisis periods, market participants tend to move

together across the related countries and shocks in one market are transmitted to

other countries as evidenced by correlation increase during crisis periods.

The plots in Figure 1.4.3 show the decline in the equity indices (left hand plot)

and the volatile periods using the daily log returns for Hong Kong, Singapore and

Japan (right hand plot) during the Asian financial crisis 1997-1998.
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Figure 1.4.3: Stock market indices and daily log returns for Hong Kong, Singapore and

Japan 1997-1998.
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Figure 1.4.4: Variances using daily log returns for Hong Kong, Singapore and Japan

(1997-1998). Correlations Hong Kong and Singapore using daily data, calculated using

10 day intervals.

The variances and correlations are calculated over a 10 day period. The results

show the high volatility during the crisis periods from November 1997 to February

1998 for Hong Kong and Singapore. There was also a volatile period in the

Japanese markets in the last quarter of 1998. The Hong Kong and Singapore

markets are highly correlated except for a few small periods when they show low

or negative correlations.
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1.4.3 Contagion summary

There is normally an economic event to trigger a financial crisis in a country.

Through trade and financial channels, the negative impact on the financial mar-

kets and increased volatility spread to related countries. As the markets are largely

integrated, there is a normal level of correlation (comovement) under normal cir-

cumstances. In times of crisis in one country, there is volatility spillover to other

countries and the correlations change. The aim of the contagion studies is to de-

tect changes in the correlations or to detect volatility spillover from one country

to another.

Intervention (say by the IMF, World Bank, ECB) provides short term liquid-

ity assistance and longer term funding as bailout. The bailout conditions and

monitoring the implementation of economic changes gives some confidence to the

markets and withdrawal of assets (capital outflow) may be at a slower pace and

more orderly. Strict financial constraints imposed by the bailout funds on the

government spending may lead to public sector unemployment and reduction in

social care programs. Similarly, strict capital requirements on banks could reduce

corporate lending and investment in industries

The next section outlines the statistical methods used to study financial contagion.

1.5 Statistical analysis of contagion

In the statistical studies of financial contagion, the main methods that have been

used are Regression analysis (using predefined volatile periods or using extreme

values of the returns), Markov switching models (jumps from one equilibrium

state to another) and Jump Diffusion models (propagation of price changes). The

methods and applications are outlined below.
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1.5.1 Regression and Correlation models

In the early work, correlation changes for predefined calm and volatile periods

were used to study contagion effects (King & Wadhwani 1990). However, Forbes

& Rigobon (2002) show that cross market correlations increase when the variance

in one market increases even when there is no change in the relationship between

the two markets. In crisis periods, when volatility is high, correlation estimates

tend to increase and are biased upwards. After allowing for a correction for this

bias and using the corrected correlation tests Forbes & Rigobon (2002) do not

find evidence of contagion in certain cases. The tests rely on the ‘conditional

correlation’, meaning that the correlation periods need prior identification using

other information. Dungey et al. (2005) use a latent factor model of contagion and

show that the correlation tests used in a number of contagion studies are similar.

Factor models are used with common shocks and idiosyncratic shocks to explain

the asset returns. The models can be extended by including lagged variables and

including autoregressive dynamics for the variance and covariance terms. In an

evaluation of contagion tests, Dungey et al. (2005) show that the Dungey test and

Forbes Rigobon (adjusted) correlation test are similar. And they also show that

the ‘Exchange Market Pressure’ method used by Eichengreen et al. (1996) can be

interpreted as identifying a change in the correlation. For methods that rely on

threshold values (Eichengreen et al. (1996) ’Exchange Market Pressure’, Bae et al.

(2003) ‘Co-exceedances’) there is loss of information and the sample size may be

small.

Eichengreen et al. (1996) use a binary probit model to look at the probability of a

currency crisis in a country given that there is a currency crisis in another country.

They use market variables like changes in exchange rate and interest rate to calcu-

late the ‘exchange market pressure’ (EMP) index which is used to indicate a crisis
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if the EMP values exceed a threshold. The crisis indicator is modeled against vari-

ables like the presence of crisis in another country, international reserves, domestic

credit, inflation, output, employment and current account surplus to calculate the

parameter to indicate the transmission of the currency crisis from one country to

another. The tests are based on the significance of the transmission parameter.

Bae et al. (2003) use a different approach to measuring financial contagion, using

the count of the extreme returns (returns below the 5th quantile or above 95th

quantile) and then using ’co-exceedances’ (extreme returns in multiple countries

at the same time). Using the co-exceedances, the contagion effect is analysed by

seeing how markets move together in crisis periods. Their argument is that a

large number of days with small shocks means that a few days with large shocks

are hidden in a correlation measure. Their data shows co-exceedances for extreme

negative values are more likely than co-exceedances for positive values.

They use the count of the co-exceedances in a multinomial logistic model (positive

and negative extreme values are analysed separately) to estimate the probability

of co-exceedances. Part of the extreme returns that are not explained by a re-

gion’s own covariates (interest rates, exchange rates, market volatility) but are

explained by the extreme returns in another region is termed as contagion. They

conclude that exchange rate changes are significant but interest rate changes less

so. Extreme returns in Asia can be used to explain extreme returns in S. America.

Like other methods that use dummy variables (based on exceeding a certain level),

this method depends on the selected threshold value and suffers from information

loss.

Favero & Giavazzi (2002) consider how the propagation of financial shocks is

modified during periods of crisis and conclude that the use of full information

models (which avoids the problems of having small samples for high volatility

observations exceeding a threshold) is more efficient in detecting non linearities
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(sudden increase or decrease in correlations compared to normal times) in the

transmission process. They use local and global information shocks in a VAR

model for interest rate spreads. They conclude that country specific shocks change

the correlations between countries (including a change in the sign). Similarly,

international shocks can also change the correlations between other countries.

1.5.2 Markov Switching models

When contagion is defined as discontinuity in the process generating the data,

Markov Switching models can be used to model jumps between multiple equilib-

rium states. The economy switches from one equilibrium state to another state

during a crisis period. The number of equilibrium states (regimes) has to be de-

termined exogenously and usually a fixed small number of states is used. This

approach may not be useful in explaining the fundamental economic changes that

lead to the financial contagion.

Jeanne & Masson (2000) use Markov Switching models to study currency devalu-

ation probability. They present arguments for the existence of multiple equilibria.

The Markov Switching model represents transition between multiple equilibrium

states. The net benefit of maintaining the currency peg is based on economic

fundamentals (variables) and the probability of devaluation. At a given benefit

threshold, the decision maker will devalue. The economic variables are treated

as exogenous variables. In the 2 state case, the Markov process transition prob-

abilities are estimated using economic fundamentals and investor expectations

of devaluation. The Hamilton (1994) EM algorithm is used for the maximum

likelihood estimates for the parameters.

Billio & Caporin (2005) describe contagion (not interdependence) to mean that the

transmission mechanism is discontinuous. In a multivariate GARCH model, they
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allow the parameters and the dynamic conditional covariance matrix to depend

on a state which follows a latent Markov process (thus allowing for discontinuities

in the correlations and in the parameters). A modified Hamilton filter is used to

update the correlation matrix and includes steps to update the transition matrix.

Based on the earlier work of Hamilton who outlined the Markov Switching model,

Fratzscher (2003) attempts to explain discontinuities (or abrupt changes) in cur-

rency exchange rates. The exchange rate is expressed as a function of lagged

variables and the variance conditional on the Markov state. The lagged variables

include real and financial variables to take into account trade and financial links

with other countries. A Markov Switching VAR model is estimated using the EM

algorithm. The model is used to study a currency crisis. Using Markov Switching

models, Fratzscher (2003) concludes that there is evidence of financial contagion

in the Southeast Asian markets.

1.5.3 Jump Diffusion Model

Aı̈t-Sahalia et al. (2015) observe that large price drops affect other markets (asset

returns across regions) and large price changes happen in succession (clustering)

which is unlikely under Standard Brownian Motion. The aim is to model this

propagation of price changes in the markets. They use a ‘Hawkes Jump Diffu-

sion’ model (mutually exciting jump process with continuous Brownian Motion

component). The jump intensity follows a stochastic process. When a jump oc-

curs, the intensity of the jumps increases, but is mean reverting to a steady state.

The parameters are estimated using the Generalised Method of Moments. The

model is applied to market returns and they find evidence of self-excitation in the

US market and cross-excitation from US to UK market (but the reverse is less

pronounced).
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1.5.4 Summary

The regression and correlation methods have relied on prior identification of cri-

sis and tranquil periods using subjective criteria or knowledge of other financial

events at the time. When using dummy variables, there is loss of information

and reduced sample size. The Markov Switching models explain the timing of

the jumps between multiple equilibria but do not help to explain the role of the

fundamental economic factors in the spread of the contagion. The Jump Diffusion

model allows for the economic outcomes in tranquil periods and also allows for

sudden changes during volatile periods.

1.6 Factor model and data

The Factor Model, where observed variables (e.g. asset returns) are expressed

as a function of other variables (e.g. output, interest rates etc, called common

factors) and an error term (idiosyncratic shock), was outlined by Sargent et al.

(1977) and Engle et al. (1990). It was initially used for Asset Pricing and portfolio

management in order to understand the relationships between economic variables.

For these models, there is evidence that variances and covariances are time varying

(Ng et al. 1992) hence it is necessary to model the parameters as time varying

and to allow for cross correlation in the idiosyncratic shocks.

The dynamic factor model with N asset returns yit for i = 1, . . . , N is written as

yi,t = βi,tft + εi,t,

where yi,t (N x 1) is the return for asset i at time t, βt (N x K) is the factor

loading at time t and βi,t is the row of factor loadings for asset i, ft (K x 1) are

the factors and εi,t (N x 1) are the error terms. In the analysis of economic time
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series, the factors used may be global or country specific factors and may include

lagged variables. Depending on the covariance dynamics for the error term, the

model can be evaluated using Maximum Likelihood or Least Squares methods or

under the GARCH framework (Santos & Moura 2014). More complicated models

for which analytical methods are difficult to apply can be estimated using Bayesian

inference and MCMC simulations.

Data

Equity market indices reflect the general level of economic activity and confidence

in the future performance of all the business sectors combined. The pricing of

equity takes into account the income (profits, dividends and the confidence level

associated with the income stream), the discount rate and the inflation rate. Any

fear of changes in these factors leads to an adjustment of equity prices. Rebalanc-

ing of equity portfolios, moves to other asset classes and possible movements of

investments to other countries are also reflected in the equity markets. Hence the

equity index for each country has been used as a factor in the contagion model.

For the Asian financial crisis 1997-1998, Hong Kong (Hang Seng), Singapore (STI),

Japan (Nikkei) daily close index values have been used from the Yahoo Finance

data. The indices have been converted to a common currency (USD) and then

the daily log returns have been calculated. For the European sovereign debt crisis

2007-2013, Greek TM, Spain 30 and Eurostoxx TM indices (all in Euros) have

been used from the Eurostoxx data to calculate the daily log returns. When one

country has a holiday, the returns from the other 2 countries are omitted.
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1.7 Constant parameter results

Asian financial crisis 1997-1998

The model described in Chapter 2 is used with constant volatility parameters

for the Asian financial crisis and the results are shown below. Three periods are

analysed, namely, the full period of the data (7 Jan 1997 - 30 Dec 1998), selected

tranquil period (7 Jan 1997 - 24 Mar 1997) and selected volatile period (9 Oct

1997 - 30 Dec 1997, Hong Kong dollar under speculative attack). The volatility

spillover parameter γ is described in more detail in Chapter 2.
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Figure 1.7.1: Posterior density for the volatility spillover parameter γ, all data, tranquil

period and volatile period.

Period γ Posterior mean 95 % credible interval

Full data 0.0123 (0.0103, 0.0144)

Tranquil period 0.0051 (-0.0013, 0.0120)

Volatile period 0.0121 (0.0037, 0.0210)

Table 1: Posterior mean and 95% credible interval for γ.

The results in Table 1 show the posterior mean and 95% credible interval for the

spillover parameter γ. When all the data is used, the results show a positive

value for the volatility spillover. When just the tranquil period is used the results
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include zero in the credible interval (indicating no contagion effect). For the

volatile period, γ shows a positive value and indicates contagion effect. This

shows the need for prior identification of volatile periods if constant parameters

are used to study contagion periods.

European sovereign debt crisis 2007-2013

Similarly, the sampler with constant volatility parameters is used for the Euro

crisis data and the results are shown below. Three periods are analysed, namely,

the full period of the data (2 Jan 2007 - 23 Apr 2013), selected tranquil period (2

Jan 2007 - 31 Jul 2007) and selected volatile period (11 Sept 2009 - 4 Feb 2010,

Greek bailout by ECB/IMF).
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Figure 1.7.2: Posterior density for γ, all data, tranquil period and volatile period.)

Period γ Posterior mean 95 % credible interval

Full data -0.000175 (-0.000546, 0.000173)

Tranquil period 0.000401 (-0.001300, 0.002100)

Volatile period -0.000509 (-0.002700, 0.001700)

Table 2: Posterior mean and 95% credible interval for γ.

The results in Table 2 show the posterior mean and 95% credible interval for

the spillover parameter γ. For all the 3 selected periods, the credible interval
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includes zero (indicating no contagion effect). This is a limitation of using constant

volatility parameters, even when the selected intervals are used if the contagion

effect is short lived (over a few days at a time).

The two examples above show that by using constant parameter values, if a long

period of market returns is analysed as a single period, the contagion periods

are not identified. By using external events to identify high volatility periods, the

constant parameter model shows higher values of the volatility spillover parameter

but can miss short lived volatility spillover (contagion) periods and is subjective

in the selection of high volatility periods.

1.8 Outline of following chapters

The objective is to model the volatility spillover from one country to another using

time varying parameters. A global factor is used to explain the general market

movements between two countries and the volatility spillover from one country

to another. Chapter 2 looks at the time varying parameter model, Chapter 3

looks at the difficulty of setting a mixture offset value when a Normal Mixture

is used to express the model in linear State Space form and Chapter 4 looks at

the Stochastic Volatility model with normal and heavy tailed distributions for the

innovations in the volatility spillover. Bayesian inference and MCMC simulations

are used to estimate the parameters. A number of tests are carried out using

simulated data and then results from the the Asian financial crisis and Euro crisis

are described in Chapter 4. The work is summarised at the end with an outline

of further work.
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Chapter 2

Factor models and financial

contagion

Economic factors can be used to explain the behaviour of asset returns. The

Dynamic Linear Model which is used to express financial returns as a function

of global and local economic factors is introduced with the dynamics of the co-

variance used to model volatility spillover. The model is also referred to as a

‘factor model’ (Harvey et al. 1992) or as a ‘latent factor model’ or ‘dynamic linear

model’. Dungey et al. (2005) use a factor model with constant parameters and a

decomposition of the covariance to test the significance of the volatility spillover

parameter. We add time varying parameters which follow an AR(1) process and

use Bayesian inference and MCMC methods to identify the credible intervals for

the spillover parameter. The sampler is tested using simulated data and then

results for the Asian financial crisis and Euro crisis are shown at the end.
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2.1 Factor model for financial contagion

According to the Asset Pricing Model (Fama & French 2004), asset returns depend

on global factors (diversifiable risk) and idiosyncratic factors (non-diversifiable

risk). The returns on an asset are expressed as a function of returns on a set of

other assets (may include lagged values of the assets). The Asset Pricing Model is

used as a dynamic factor model by Dungey et al. (2005) for a 2 country example,

y1,t = ftθ1 + δ1ν1,t, (2.1.1)

y2,t = ftθ2 + δ2ν2,t, (2.1.2)

where y1,t and y2,t are the log returns for countries 1 and 2 at time t = 1, . . . , T ;

ft is a global factor which affects the returns on all assets; θ1, θ2 are the factor

loadings; ν1,t, ν2,t are error terms (idiosyncratic shocks); νi,t ∼ (0, 1), representing

zero mean and unit variance without specifying the distribution, for i = 1, 2; δ1, δ2

are the loadings which determine the contribution of the idiosyncratic shocks. The

error terms and the global returns are uncorrelated,

E[νi,t, νj,t] = 0, ∀i 6= j,

E[νi,t, ft] = 0, ∀i.

In finance literature, volatility of an asset is measured either by using the standard

deviation or the variance of the returns for the asset. It is a measure of the

uncertainty of the returns for an asset. Uncertain periods in the financial markets

are associated with crisis periods (or periods of high risk from the investment

perspective). In crisis periods, the volatility of asset returns spreads from one

asset to another (or from one country to another or from one region to another).

This spread of volatility from one country to another is termed volatility spillover.

In equations 2.1.1 and 2.1.2, the returns y1,t and y2,t are independently distributed

and there is no volatility spillover from country 1 to country 2.
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The variance of the returns for country 2 and the covariance of the returns for the

2 countries are,

Var(y2) = θ22σ
2
f + δ22,

Cov(y1, y2) = θ1θ2σ
2
f ,

where σ2
f is the variance of the global returns ft.

In equation (2.1.1), ν1,t represents the idiosyncratic shock which results in the

volatility of country 1 with a loading δ1. To model the spread of volatility from

country 1 to country 2, the same idiosyncratic shock ν1,t adds to the shock in the

returns for country 2 with a loading γ. In times of crisis, the returns for the 2

countries are written as,

y1,t = ftθ1 + δ1ν1,t, (2.1.3)

y2,t = ftθ2 + γν1,t + δ2ν2,t, (2.1.4)

where γ is the volatility spillover parameter and the volatility spillover from coun-

try 1 to country 2 is represented by γν1,t. The variance of the returns for country

2 and the covariance of the returns for the 2 countries are now given by,

Var(y2) = θ22σ
2
f + δ22 + γ2,

Cov(y1, y2) = θ1θ2σ
2
f + γδ1.

When the spillover from country 1 to country 2 is included in the model, the

change in the covariance of y1 and y2 is γδ1. As δ1 > 0 by definition, a value of

γ > 0 is interpreted as an increase in covariance when there is volatility spillover.

A value of γ < 0 is seen as a decrease in covariance between the returns for the

2 countries. In both these cases, the change in the correlation arising from the

volatility spillover is used to conclude the presence of contagion effects. A value

of γ = 0 is then interpreted as no evidence of volatility spillover (or contagion)
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between the 2 countries.

The change in the variance of y2 between the contagion and no contagion cases is

γ2. Dungey et al. (2005) break down the total variance of y2 into contribution by

the global factor, the idiosyncratic factor and volatility spillover as

θ22σ
2
f

θ22σ
2
f + δ22 + γ2

,
δ22

θ22σ
2
f + δ22 + γ2

,
γ2

θ22σ
2
f + δ22 + γ2

.

These 3 terms can be used to measure the relative strength of the contagion effect.

The Dungey et al. (2005) model can be extended to include lagged values of the

returns, lagged values of the world factor and autoregressive error terms. Following

on from the method outlined by them, the approach has been used in a number

of volatility and contagion studies. A few of the studies have been summarised

below and show the areas that the model has been applied to and how it can be

improved. At the end, we summarise how we have used the model to include time

varying parameters.

Bekaert et al. (2009) use factor model with world and regional shocks to model

the returns and examine the effect of world and country-industry factors. They

recognise the need for time varying parameters and re-estimate the parameters at

six month intervals. They conclude that country factors are more relevant than

industry factors and that there is an upward trend in return correlations in the

European stock markets because of increasing economic and financial integration.

Caporin et al. (2013) use Bayesian quantile regression methods and credit default

swaps (CDS) and bond price data and conclude that risk spillover is not affected

by the size of the shock. They notice a change in the intensity of the propagation

of shocks in the 2003-2006 pre-crisis period compared to the 2008-2011 global

financial crisis period. The increase in the correlations arises from ‘larger shocks

and heteroskedasticity in the data, not from similar shocks propagated with higher

30



intensity’.

Pesaran & Pick (2007) use a contagion model to ‘distinguish between contagion

and interdependence’. They examine correlations in tranquil and crisis periods

and use higher correlations during crises periods to indicate contagion. They high-

light that the correlations methods used in the literature rely on identification of

crisis and non crisis periods which would need sufficiently long periods to estimate

the parameters reliably. They also identify the need to include country specific

regressors and the need to use high frequency data (daily data).

Dungey & Martin (2007) aim to model financial crises across asset classes and

countries by using equity and currency markets and include common and idiosyn-

cratic factors. They use the term spillover to mean the transmission of shocks

and contagion to mean the transmission of unexpected shocks (by which they

mean the residual transmission after allowing for all other sources of shocks). For

the currency returns, they model the spillover from a world factor, asset market

factor and country factor and contagion from an idiosyncratic shock. The model

also allows for a country specific shock applied to all assets for the country. They

conculde that equity market shocks are significant for 3-4 days and dissipate after

that.

Markwat et al. (2009) model the domino effect from local to global crashes and

model the probability of crash (for example a global crash), given a regional crash.

Their method relies on prior identification of periods with and without crashes.

They say ‘interdependence exists at all times, contagion is a form of dependence

that does not exist during tranquil periods’. They define extreme drops in the

returns to indicate a crash in a country or a region and a global crash if the

extreme returns are for a group of large markets. They use a regression model to

estimate the probability of a global crash. They find evidence of domino effect,

as local crashes precede a global crash.
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The Dungey et al. (2005) model has constant parameters and uses significance

tests for the presence of contagion. This approach needs to identify crisis and

non crisis periods using external information and is subjective. It would also be

difficult to identify short lived contagion periods.

We use country equity index returns and a regional index returns (or the index

returns of a large country in the region) in our study. Our approach has modified

the Dungey et al. (2005) model to include time varying loadings for the global

factor which explains the changes which affect all the countries in a region and

to use time varying parameters for the spillover effect and idiosyncratic volatility.

Using time varying parameters avoids the need for prior identification of volatile

and tranquil periods by using external events to determine the periods. From other

financial market studies, it is known that the relationships to the global factor

and the volatility spillover change over time. By using time varying parameters,

short periods of contagion would be identified more easily, something that could

be missed if the tranquil and crisis periods are defined using external events.

The dynamics of the load factors and spillover parameter have been added to

represent the model in state space form. Using time varying parameters also

permits Bayesian inference with MCMC simulations to sample the parameters

and determine the credible intervals used to identify non-zero (or large) values of

the spillover parameter. And by using Bayesian methods, more complex dynamics

and relationships can be modeled more easily.

The objective of using time varying parameters is to overcome the limitations of

a constant parameter model.
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2.2 Factor Model with time varying parameters

Changing the model in 2.1.3 and 2.1.4 to include time varying factor loadings,

time varying loadings for the idiosyncratic shocks and the volatility spillover, the

2 country volatility spillover model in state space form is written as

 y1,t

y2,t

 =

 ft 0 1 0

0 ft 0 1




θ1,t

θ2,t

θ3,t

θ4,t


+

 δ1,t 0

γt δ2,t

 ν1,t

ν2,t

 , (2.2.1)


θ1,t

θ2,t

θ3,t

θ4,t


=


θ1,t−1

θ2,t−1

θ3,t−1

θ4,t−1


+


w1,t

w2,t

w3,t

w4,t


(2.2.2)

where y1,t, y2,t are the daily log returns for country 1 and country 2, a global

factor ft (observed data) is used to explain the market movements affecting both

countries. An intercept has also been added (we do not assume that the intercept

is zero). The spillover parameter γt is a time varying parameter. The volatility

spillover from country 1 to country 2 is then represented by γtν1,t; θ1,t and

θ2,t are the regression coefficients for the global factor ft; θ3,t and θ4,t are the

regression intercept terms and δ21,t and δ22,t are the conditional volatility parameters

for countries 1 and 2. The error terms ν1,t and ν2,t are independently distributed

as N(0, 1). Log returns yi,t and global parameter ft are observations at times

t = 1, . . . , T and i = 1, 2. Equation 2.2.2 is the state evolution equation for the

regression parameters and θi,t are independently distributed for i = 1, . . . , 4 and

conditionally independent. The conditional covariance matrix W of θ is defined
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to be a diagonal matrix with elements w2
i,i for i = 1, . . . , 4. And conditional on

θt = (θ1,t, θ2,t, θ3,t, θ4,t)
′, the covariance matrix for the returns y1,t and y2,t is

Vt =

 δ21,t δ1,tγt

δ1,tγt δ22,t + γ2t

 .

The volatility spillover parameter γt and the variance parameters δ1,t, δ2,t are time

varying parameters. An AR(1) process is used for the log volatility and for the

spillover parameter γt with normal error terms. Heavy tailed distributions are

introduced later for errors in the AR(1) process that is used for the volatility

spillover parameter γt.

For the volatility parameters, the notation is changed to that which is commonly

used for Stochastic Volatility models

δ1,t = exp

(
h1,t
2

)
,

δ2,t = exp

(
h2,t
2

)
.

Hence

h1,t = log δ21,t,

h2,t = log δ22,t.

The likelihood function is

p(ỹt|h1,t, h2,t, θ, γ) ∝ |Vt|−
1
2 exp

(
−1

2
(ỹ
′

tV
−1
t ỹt)

)
, (2.2.3)

where

ỹt =

 y1,t − ftθ1,t − θ3,t

y2,t − ftθ2,t − θ4,t


and the covariance matrix is

Vt =

 eh1,t γte
h1,t/2

γte
h1,t/2 γ2t + eh2,t

 . (2.2.4)
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Prior distributions

The aim of selecting an appropriate prior distribution for a parameter is to select

a distribution so that the ‘true’ value of the parameter is within the values per-

mitted for the distribution. If possible, a conjugate (or conditionally conjugate)

density is used to enable easier sampling from the posterior density. A non infor-

mative prior or an improper prior is used if it leads to a proper posterior density

for the parameter to be sampled. The objective is to ensure that the posterior

density is not strongly influenced by the prior density, hence allowing the posterior

density to depend more clearly on the information in the data (Andrew Gelman

& Rubin 2004). The parameters (often called the hyper parameters) for the prior

distribution can be set as constants so the the prior is non informative or the

parameters can be estimated from the data or prior distributions can also be used

for the hyper parameters and this allows more flexibility.

Regression parameters have Normally distributed errors, θi,t|θi,t−1 ∼ N(θi,t−1, w
2
i,i)

and the prior density for w2
i,i is IG(0.001, 0.001) so that the posterior density de-

pends largely on the data. For the volatility parameter h1,t and h2,t, a conditional

Normal (as an AR(1) process) is used but the posterior distribution cannot be

recognised as a standard distribution. For the volatility parameter γ an AR(1)

process γt = µ3 + φ3(γt−1 − µ3) + ση3ηt with Normally distributed error terms is

used and standard results for the Kalman Filter with Normal errors can be used.

For the AR(1) process parameters, the priors used by Kim et al. (1998) have

been used (an improper prior for µ with proper posterior density; a Beta prior

for φ with parameters such that the prior mean is around 0.86 which is close to

the volatilty persistence value found in financial data and an IG(5, 0.05) for the

variance parameter σ2
η).
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2.3 Sampler

The regression parameters θ, the volatility parameters h1,t and h2,t, for t = 1, . . . , T ,

the volatility spillover γt, for t = 1, . . . , T and the covariance matrix W are up-

dated using filtering methods, full conditional distributions or posterior densities.

Updating θ

We use the Forward Backward Sampling method (Carter & Kohn 1994) to sample

the values of θt. Backward Sampling uses Bayes theorem to update the distribu-

tion of θt−1 conditional on θt as,

p(θt−1|θt) ∝ p(θt|backward distribution)p(θt−1|forward distribution)

where the first of the two terms on the right is the likelihood of θt and the second

term is the prior density of θt−1. The aim is to derive the forward distribution

at time T , using all the information up to time T . Then sample θT and update

the distributions for t = T − 1, T − 2, . . . , 1 which means that all the distributions

have been derived using all the available information up to time T

To derive the forward distributions, conditional on the world factor ft, the model

in equations (2.2.1) and (2.2.2) which is in linear State Space form for θ with

normally distributed errors is used. The Kalman Filter prediction and updating

steps (Meinhold & Singpurwalla 1983) are used to derive the forward distributions

for θt for t = 1, . . . , T . The distribution at time T is the result of using all the

observations y1,t and y2,t for t = 1, . . . , T . For the Backward Sampling, we use

the decomposition

p(θ1, θ2, . . . , θT |y1, y2, . . . , yt =
T∏
i=1

p(θT−i+1|θT−i+2, . . . , θT , y1, y2, . . . , yT ).
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Backward Sampling starts by sampling θT and the distribution for θT−1 is updated

conditional on the sampled value of θT . Then θT−1 is sampled from the updated

density at time T − 1 and the process is repeated to have a sample θt for t =

1, . . . , T .

Denoting the forward distribution results from the Kalman Filter step as θt−1|y1:t−1 ∼

N(θ̂t−1, Σ̂t−1), the backward distribution for θt−1 is given by

(θt−1|θt:T , y) ∼ N(µt−1, Ct−1),

µt−1 = (W−1 + Σ̂−1t−1)
−1(W−1θt + Σ̂−1t−1θ̂t−1),

Ct−1 = (W−1 + Σ̂−1t−1)
−1

where W is the covariance matrix for the state equation for θ and θt:T are the

backward samples {θt, θt+1, . . . , θT}. The process of Forward filtering using the

Kalman Filter and Backward sampling is referred to as ‘Forward Filtering Back-

ward Sampling (FFBS)’.

Updating W

Using a conjugate Inverse Gamma prior for w2
i,i,

w2
i,i ∼ IG(α, β),

the full conditional density for updating w2
i,i given θi,t, i = 1, . . . , 4, t = 1, . . . , T is

w2
i,i|θit ∼ IG(A,B)

where

A =

(
α +

T − 1

2

)
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and

B =

(
β +

∑t=T
t=2 (θi,t − θi,t−1)2

2

)
.

To make the prior for w2
i,i non informative, the parameters for the prior distribu-

tion of w2
i,i are set to α = 0.001 and β = 0.001.

Updating volatility parameter h1

From equation 2.2.3 the joint density for ỹt = (ỹ1,t, ỹ2,t)
′ is

p(ỹt|h1,t, h2,t, θ, γ) ∝ |Vt|−
1
2 exp

(
−1

2
(ỹ
′

tV
−1
t ỹt)

)
,

and using an AR(1) process for h1,t

h1,t = µ1 + φ1(h1,t−1 − µ1) + ση1η,

the density for h1,t, using the results from Kim et al. (1998), is

h1,t|h1,t−1, h1,t+1 ∼ N(µ1 +
φ1(h1,t−1 − µ1) + (h1,t+1 − µ)

1 + φ2
1

,
σ2
η1

1 + φ2
1

),

where µ1 is the long term mean for h1, φ1 is the volatility persistence parameter

for h1, σ
2
η1

is the variance for h1. The posterior density for h1,t is

p(h1,t|ỹt, θ, µ1, φ1, σ
2
η1
, h2,t) ∝ p(h1,t|h1,t−1, h1,t+1, µ1, φ1, ση1) p(ỹt|h1,t, h2,t, θ, γ).

As Vt has terms in h1,t, it is not possible to recognise this as a standard density

for h1,t. A symmetric random walk is used to propose h
′
1,t and an Adaptive

Metropolis-Hastings (Griffin & Stephens (2013), Haario et al. (2001)) step is used
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to obtain an acceptance rate of around 20%. The proposed h
′
1,t is

h
′

1,t = h1,t + N(0, σ2
h1,t

),

and the M-H ratio is

a = min

(
p(h

′
1,t|ỹt)p(ỹt|h

′
1,t)q(h

′
1,t, h1,t)

p(h1,t|ỹt)p(ỹt|h1,t)q(h1,t, h
′
1,t)

)
.

A symmetric random walk is used to propose h
′
1,t and hence the q terms cancel out

in the M-H ratio. The proposed move is accepted with probability a. An Adaptive

M-H step is used to update σ2
h1,t

, the variance term for the random walk.

The parameters φ1, µ1, σ
2
η1

for the AR(1) process for h1 are updated as below,

using the results from Kim et al. (1998)

Updating µ1

Using a diffuse prior for µ1, so that µ1 ∝ 1 and the full conditional density is

p(µ1|h1,1, . . . , h1,T ) ∼ N(µ̂1, σ
2
µ1

),

where

µ̂1 = σ2
µ1

(
(1− φ2

1)

σ2
η1

h1,1 +
(1− φ1)

σ2
η1

T−1∑
t=1

(h1,t+1 − φ1h1,t)

)
and

σ2
µ1

= σ2
η1

(
(T − 1)(1− φ1)

2 + (1− φ2
1)
)−1

.

Updating φ1

Using φ1 = 2φ∗ − 1, and φ∗ with a Beta(a,b) prior distribution

π(φ1) ∝
(

1 + φ1

2

)a−1(
1− φ1

2

)b−1
,

the posterior density for φ1 is

p(φ1|h1,1, . . . , h1,T ) ∝ π(φ1)f(h1|µ1, φ1, σ
2
η1

)
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and the log of the posterior density is

logf(h1|µ1, φ1, σ
2
η1

) ∝− (h1 − µ1)
2(1− φ2

1) +
1

2
log(1− φ2

1)

−
T−1∑
t=1

((h1,t+1 − µ1)− φ1(h1,t − µ1))
2

2σ2
η1

.

The range of φ1 is −1 < φ1 < 1 and the parameters for the prior density are

a = 20, b = 1.5 which gives a prior mean of 0.86. The parameter is sampled from

a Truncated Normal density to ensure that −1 < φ1 < 1 and Adaptive M-H is

used to get acceptance rates of around 20% for the proposed values.

Updating σ2
η1

Using an Inverse Gamma prior density σ2
η1
∼ IG

(
σr
2
, Sσ

2

)
, the full conditional

distribution is σ2
η1
|h1, φ1, µ1 ∼ IG(A,B) where the parameters A and B are

A =
T + σr

2

and

B =
Sσ + (h1,1 − µ1)

2(1− φ2
1) +

∑T−1
t=1 ((h1,t+1 − µ1)− φ1(h1,t − µ1))

2

2
.

The parameters for the prior density are σr = 5, Sσ = 0.01σr.

Updating h2,t and AR(1) parameters for h2,t

For the parameter h2, an AR(1) process has been used. The sampling for h2 and

the AR parameters µ2, φ2, σ
2
η2

is similar to that for h1 and the AR parameters

µ1, φ1, σ
2
η1

. One at a time sampling is used for h2. A simple random walk is

used to propose h
′
2,t with an Adaptive Metropolis-Hastings step to obtain 20%

acceptance rates.

Updating γ and AR(1) parameters for γ

Rearranging equation 2.2.1,

ν1,t =
y1,t − ftθ1,t − θ3,t

eh1,t/2
.
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Substituting ν1,t, in 2.2.2,

y2,t = f2,tθ2,t + θ4,t +

(
y1,t − ftθ1,t − θ3,t

eh1,t/2

)
γt + eh2,t/2ν2,t, (2.3.1)

and using an AR(1) process for γ,

γt = µ3 + φ3(γt−1 − µ3) + ση3ηt, (2.3.2)

ηt ∼ N(0, 1),

means that equations (2.3.1) and (2.3.2), given the parameters θ, h1,t, h2,t and ft,

and y1,t, are in linear State Space form for γ with normally distributed errors.

Hence we can use the FFBS method to sample γt in a similar way to the steps

described for θt above. The sampling for the parameters µ3, φ3 and σ2
η3

for the

AR(1) process for γ is similar to that for the AR(1) parameters for h1.

2.4 Results

Simulated data with known parameters is used to understand how the sampler

performs. The sampler described in section 2.3 is written in Matlab and 25000

iterations are used as burn in period, followed by a further 25000 iterations and

the samples are thinned to 1 in 5. Following that, the Asian financial crisis and

Euro crisis data are analysed and the results shown below.
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2.4.1 Simulated data

Parameter Initial value (µ, σ2)

θ1 0.7 (0, 10−4)

θ2 0.5 (0, 10−4)

θ3 0.0 (0, 10−5)

θ4 0.0 (0, 10−5)

Parameter µ φ σ2
η

h1 -5 0.95 0.022

h2 -5 0.95 0.022

γ 10−4 0.60 0.012

Table 3: Parameters used to simulate the data

Using the initial value of θi as in Table 3 above, θit is generated as θit = θi,t−1 +

N(µ, σ2), for i = 1, . . . , 4, t = 2, . . . , T . The initial value of the parameter h1 is

sampled from the steady state distribution N(µ,
σ2
η

1−φ2 ) and then the AR(1) process

h1,t = µ+ φ(h1,t−1− µ) + N(0, σ2
η), for t = 2, . . . , T , is used to generate the values

of h1,t. The parameters h2,t and γt are generated similarly using the values in

Table 3 above. The log returns for world factor ft are generated independently

from N(0, 0.0162). The log returns y1,t and y2,t are then simulated using equation

2.2.1.
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2.4.2 Results, simulated data
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Figure 2.4.1: Simulated value, posterior mean and 95 % credible interval for the re-

gression parameter θ.

The posterior means for the regression parameters closely follow the simulated

values and the 95% credible interval for the posterior mean includes the simulated

values.
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Figure 2.4.2: Simulated value, posterior mean and 95 % credible interval for h1, h2.
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The posterior mean for the volatility parameters h1 and h2 are close to the simu-

lated values. The simulated values are within the 95% credible interval.
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Figure 2.4.3: Posterior mean and simulated γ (left plot), posterior mean and 95 %

credible interval for γ (right plot).

The sampler estimates the spillover parameter quite well, the posterior mean gen-

erally follows the simulated values (left hand side plot). The 95% credible interval

and the posterior mean are shown in the right hand side plot. The simulated line

is not shown in the plot to keep the plot readable. Using other plots not shown

here, it has been checked that the simulated values are within the credible interval

(which shows that the sampler performs well for the spillover parameter).
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AR Parameter results
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Figure 2.4.4: 95 % Posterior distributions for the AR(1) parameters (µ, φ, σ2η) for

h1 (left column), h2 (middle column) and γ (right column).

The trace plots for the parameters show that the values converge quite quickly

and a burn in period of 25000 iterations is sufficient. The posterior densities are

shown in the above plots.
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Parameter Simulated Posterior 95% Credible

value mean Interval

µ1 -5 -4.9884 (-5.1183, -4.8816 )

φ1 0.9500 0.8074 (0.4692, 0.9411 )

σ2
η1

0.0004 0.0126 (0.0037, 0.0319 )

µ2 -5 -4.9823 (-5.1888, -4.7974 )

φ2 0.9500 0.7731 ( 0.4680, 0.9322 )

σ2
η2

0.0004 0.0150 (0.0037, 0.0403 )

µ3 0.0001 0.0221 (-0.0043, 0.0482 )

φ3 0.6000 0.5919 (0.5919, 0.8076 )

σ2
η3

0.0100 0.0072 (0.0049, 0.0099 )

Table 4: Simulated value, posterior mean and 95% credible interval, AR(1) parameters

µ, φ and σ2η for h1, h2 and γ.

The values for µ1, µ2, µ3 and φ1, φ2, φ3 are close to the parameters used to generate

the simulated data or the 95% credible interval for the posterior mean includes

the values used to generate the simulate the data. The results of the variance

parameters σ2
η1
, σ2

η2
for the AR processes for h1 and h2, are higher than the values

used to simulate the data. This could be explained by the fact that the regression

parameters θ are also simulated with error terms and the sampler would not be

able to accurately estimate the variances for h1, h2 and θ. The variance σ2
η3

for

the innovations of the spillover parameter is estimated better, the posterior mean

is closer to the simulated value.
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Simulated spillover parameter and credible interval
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Figure 2.4.5: Simulated γ and 95 % credible interval

One of the main parameters of interest is the volatility spillover parameter. From

the simulated data, we know the nonzero values γt. But the 95% credible interval

includes zero except for a few periods in the above plot and hence we cannot con-

clude that γt is nonzero for the other periods from the above results. Hence, when

the results for spillover parameter clearly show nonzero values, we can conclude

volatility spillover or contagion effect. In this sense, this is a conservative result.

2.4.3 Results, Asian financial crisis 1997-1998

The results below are from running the MCMC simulations for 50000 iterations

(the first 25000 used as a burn in period) and thinning the samples to 1 in 5.

Overall Covariance

Using equation (2.2.1) and treating the global returns ft as a variable, θ as a

known parameter, the overall covariance between the countries (Hong Kong and
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Singapore) is

Cov(y1,t, y2,t) = E[y1,ty2,t]− E[y1,t]E[y2,t]

= θ1,tθ2,tVar(ft) + δ1,tγt

= θ1,tθ2,tVar(ft) + eh1,t/2γt (2.4.1)
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Figure 2.4.6: Overall covariances Hong Kong - Singapore 1997-1998.
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Figure 2.4.7: Covariance decomposition, world factor and spillover related covariance

for Asian financial crisis.
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Looking at the covariance decomposition (the two terms in equation (2.4.1)) as

shown in Figure (2.4.7), the world factor contribution is very small compared to

the volatility spillover part. The overall covariance results in Figure (2.4.6) show

the sharp increase in covariances for the Asian financial crisis periods in Hong

Kong during October 1997 and January 1998. This period of crisis is described in

more detail with the volatility spillover (credible interval) results below. Pericoli

& Sbracia (2003b) list some of the contagion definitions in use and one of them

‘contagion is the significant increase in comovements of prices and quantities across

markets.... ’ could be used to conclude contagion effect shown by the increase in

the covariances above.

Baur & Fry (2009) use equity returns to study the Asian financial crisis of 1997–1998

and find that ‘interdependencies are substantially more important than contagion’

meaning that the markets are highly correlated and excess correlation is difficult

to detect. However, they find short periods of positive and negative results. They

conclude that ‘in comparison to other Asian crisis countries, Hong Kong is the

main driver of contagion in the crisis’.

There is also another period of high covariances in the above results. The events

related to these periods are described in the volatility spillover results below.
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Volatility spillover
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Figure 2.4.8: 95 % Credible interval and posterior mean γ, volatility spillover Asian

financial crisis

The plot shows the posterior mean and the 95% credible interval for the volatility

spillover parameter. Generally the credible interval includes zero and we cannot

conclude that financial contagion from Hong Kong to Singapore took place. How-

ever, there are 2 specific periods when the volatility spillover is non zero. The

Hong Kong dollar was pegged to the US dollar and came under speculative at-

tack in October 1997. The stock markets were volatile and the overnight interest

rates were raised to defend the Hong Kong dollar. At the time of the Asian fi-

nancial crisis, the Hong Kong Monetary Authority had to intervene in the stock

markets and purchased large quantity of equities to halt the decline in the prices.

The volatility spilled over into neighbouring countries and the effect shows in the

above plot around October 1997. The results are shown in more detail in the

plots below (with the dates and events at the time) and we can conclude that

there is evidence of volatility spillover or contagion from Hong Kong to Singapore

at certain times.
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Figure 2.4.9: 95 % Credible interval and posterior mean γ.

Chiang et al. (2007) use correlation analysis and find evidence of financial conta-

gion during October 1997 and January 1998. They also identify contagion between

Hong Kong and Singapore during the crisis period and detect four contagion peri-

ods. The time varying model we have used also shows contagion effects in October

and November 1997 which is similar to the results in Chiang et al. (2007). The

data we have used is daily returns and the results show contagion periods from

17 October 1997 to 31 October 1997 (excluding the weekends, period of the Hong

Kong stock market crash) followed by a few days in November (4, 11, 20 Novem-

ber 1997) when the Japanese bank Hokkaido Takushoku closed because of bad

loans. We could interpret this volatility spillover from Hong Kong to Singapore

as the spread of contagion from Japan to Hong Kong and then to Singapore.
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Figure 2.4.10: 95 % Credible interval and posterior mean γ.

This shows the volatile period around January 1998 when Peregrine Investment

based in Hong Kong collapsed and the Hong Kong Index (Hang Seng) dropped

over 8% in a short period of time. There was a period of rising unemployment and

large companies (for example, Cathay Pacific, Peregrine) had to lay off staff (Sek-

Hong & Lee 1998). The plot above shows the volatility spillover being significant

in December 1997 - February 1998 period. The result for January 1998 is similar

to the results in Chiang et al. (2007). Jang & Sul (2002) find evidence of contagion

between Hong Kong and Singapore at the same time In more detail, using the time

varying parameters model, the days identified as contagion days are December

1997 (3 days), January 1998 (8 days) and February 1998 (3 days). The January

dates are around 16 January, when the Japanese government approved a 228 bn

US dollar stabilisation package.

There are further periods of volatility spillover in from August 1998 - November

1998, related to serious Japanese economic problems.
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2.4.4 Results, European sovereign debt crisis 2007-2013

The results below are shown for 50000 iterations with a 25000 burnin period and

samples thinned to 1 in 5. The overall covariances are calculated as in equation

(2.4.1).

Overall Covariance

Apr−08 Aug−09 Dec−10 May−12

−4

−2

0

2

4

6

x 10
−4 Overall covariances Greece−Spain

Figure 2.4.11: Overall covariances Greece and Spain.
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Figure 2.4.12: Covariance decomposition, world factor related and spillover related

covariance for Euro crisis.
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Looking at the decomposition of the overall covariance (the two terms in equation

2.4.1) as shown in Figure 2.4.12, the world factor covariance is of the same scale

as the spillover component. The spillover component is much smaller than the

spillover component for the Asian financial crisis (Figure 2.4.7), by a factor of 10.

This may explain the difficulty in identifying the spillover non zero values in the

later chapters.

Using more detailed plots (not included here), it can be seen that the periods

of high covariances (positive or negative) are related to events during the Euro

crisis. For example, in October 2008 a general election was planned in Greece,

amid allegations of over spending by the previous government; December 2009,

Greece admits debts have reached 300 bn Euros which was 113 % of the GDP;

February-June 2010, EU tells Greece to make further cuts in spending and emer-

gency loans and 110 bn Euro bailout package for Greece; January-February 2012

S&P downgrades the credit ratings for 9 Eurozone countries, debt write off talks

with Greece and lenders demand more austerity measures from Greece; May-June

2012 Spanish banks ask the government for assistance and Spain requests bailout

support for 100 bn Euros form the EU.

Volatility spillover

For the Euro crisis, the volatility spillover parameter is shown below. The spillover

parameter shows non zero values (using a 95% credible interval) indicating finan-

cial contagion. The volatility spillover is over short periods of time and can be

seen in the more detailed plots.
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Figure 2.4.13: 95 % Credible interval and posterior mean γ, volatility spillover Euro

crisis.

The markets in the Eurozone area are highly integrated and the changes in one

market are quickly reflected in the other markets. Additional volatility spillover

can be detected for small time intervals. As Forbes & Rigobon (2002) and Missio

& Watzka (2011) explain, the short lived spillover is termed contagion - a longer

term change in the correlation would be interpreted as a result of a long term

change in the interdependence between the two countries. The scale in the above

plot does not allow the results to be viewed easily. Below, the volatility spillover

is shown over a few days for the volatile periods during the Euro crisis.
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Figure 2.4.14: 95 % Credible interval and posterior mean γ.
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At the time of the global financial crisis in 2007-2008, the markets were volatile

in all the European countries. Greece experienced more difficulties because of its

reliance on shipping and tourism. The government increased spending in an at-

tempt to manage the economic downturn but the sovereign debt increased rapidly

as a proportion of the GDP. The may explain the volatility spillover, 7 days in

the period October 2007 - March 2008.
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Figure 2.4.15: 95 % Credible interval and posterior mean γ.

April-August 2010 was a turbulent time in Greece. Austerity measures were an-

nounced in Greece, there were protests against the austerity measures and an

election was announced and Spain had a banking crisis while an IMF bailout

was being considered for Spain. Using bond spreads between Greece and the

benchmark German yields, Missio & Watzka (2011) use a GARCH and Dynamic

Conditional Correlation (DCC) model and conclude there is contagion effect in the

summer of 2010 (meaning there is excess correlation between Greece and Spain,

beyond the normal level and anything that can be explained by the fundamentals

in Spain). Using equity indices and the time varying parameter model with volatil-

ity spillover shows similar results to those obtained by Missio & Watzka (2011). In

detail, the time varying model shows specific dates as 3, 4, 24, 26 February 2010,
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28-29 April 2010, 25 May 2010, 5 days in June 2010, 3 days in July). June 2010

was a turbulent time for the Eurozone countries with Greece, Spain and Portugal

experiencing financial difficulties and bank share prices declined amid fears of a

Greek default.
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Figure 2.4.16: 95 % Credible interval and posterior mean γ.

In July 2011, all 3 credit rating agencies (S&P, Moody’s, Fitch) cut Greek credit

rating, 109 billion Euros bailout fund was arranged through the European Finan-

cial Stability Fund and in October 2011, 50 % debt write off was agreed for Greece

and further austerity measures were announced. There was an announcement of

a referendum on the austerity and reform package. This was a turbulent time for

the Greek markets. The above results did not identify any significant periods of

spillover except for just one day in June 2011. This may be due to the awareness

in the financial markets of the of the bailout discussions and of the possible credit

rating downgrades before the actual announcements were made.
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Figure 2.4.17: 95 % Credible interval and posterior mean γ.

February-July 2012 was a period of market volatility after the breakdown in talks

between Greece and its creditors (Reuters, 16 June 2012) and fears that Greece

could crash out of the Euro (Financial Times, 20 June 2012). Spain and Cyprus

both requested financial support from the ECB (ECB announcements, 27 June

2012). There was pressure on the Greek government to deepen the cuts (Financial

Times, 12 July 2012) and the ECB suspended Greek bonds as collateral (20 July

2012). The uncertainty caused by these events made the markets volatile and

resulted in volatility spillover to other countries. However, the results above detect

a few dates when volatility spillover is identified (15 Feb 2012, 9 March 2012, 20

July 2012).
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Figure 2.4.18: 95 % Credible interval and posterior mean γ.

In January 2013, the unemployment level in Greece reached 26.8%, the highest

rate in the EU and in April 213, youth unemployment climbed to almost 60%.

The detailed dates showing volatility spillover are 30,31 January 2013; 20 Feb

2013; 1,7, 25 March 2013 and 4,8 April 2013. This is just a continuation of the

uncertain periods in the Greek economy.

2.5 Conclusion

The model estimates the simulated parameters reasonably well. For the Asian

financial crisis, the volatility spillover (contagion) is identified quite well (pos-

sibly because the events had significant or unexpected economic impact). The

volatility spillover for the European sovereign debt crisis is identified for short

intervals during some of the volatile periods (possibly because the markets are

highly integrated in a single currency area, there were ongoing financial bailout

discussions and markets are better informed and factor in the implications over a

longer period of time).
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Chapter 3

Mixture Offset Parameter

3.1 Introduction

This chapter looks at setting the value of the mixture offset parameter used when

a stochastic volatility model with Normal error term is expressed in linear State

Space form for the volatility parameter and the error term is approximated by a

Normal Mixture. A ‘mixture offset’ parameter c is used to make the approximation

robust for small values of the log returns. When MCMC methods are used for the

Normal Mixture model, the posterior results for the volatility parameter depend

on the value of the offset parameter used. A method is proposed to standardise

the residuals which makes the results less dependent on the value of the offset

parameter used. To check the proposed method, simulated data with known

parameters have been used. Results from using the method on Eurostoxx daily

log returns are shown at the end.

It is known that the volatility of asset price returns varies over time. Over the long

term, the volatility of equity returns may appear to be stable but usually there are

periods of high volatility and calm market periods when the volatility may be low
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(Enders 2004). For the analysis of economic time series, Engle (1982) has used

ARCH models. The volatility is modeled as a function of the lagged values of the

asset returns. This allows the estimation of the time varying volatility process

parameters using least squares regression methods. This was further developed

into the GARCH process which treats the variance as a latent variable that is

modeled separately as an AR process (Bollerslev 1987, Taylor 2007). Method

of Moments and Maximum Likelihood methods have been used to estimate the

model parameters. To allow for heavy tailed distributions, this has been extended

to model the log of the volatility as a separate AR process. This formulation

results in the returns process with time varying log volatility as in Jacquier et al.

(1995) and Chib et al. (2002). The asset returns may be expressed as function

of past returns or other economic variables and the log volatility is modeled as

a separate AR process. Expressed in State Space form, a form of the Stochastic

Volatility model is written as

yt = eht/2νt, (3.1.1)

ht = µ+ φ(ht−1 − µ) + σηηt,

where yt is the log return at time t (may be expressed as percentage log return),

νt is the error term distributed as N(0, 1), ht is the log variance which follows

an AR(1) process with parameters µ, φ, ση and the error terms ηt ∼ N(0, 1). The

error terms νt and ηt are uncorrelated. This is not in linear State Space form for

ht and does not permit the straightforward use of Forward Filtering Backward

Sampling techniques. One at a time sampling would need to be used to sample

from the posterior density for the volatility parameters ht for t = 1, . . . , T , where

T is the number of observations. Equation (3.1.1) is written as log y2t = ht+log ν2t

and the error term is then approximated by a Normal Mixture distribution (Kim

et al. 1998). Conditional on the mixture state, the model is in linear State Space
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form with Normal errors for the volatility parameter ht. In order to make the

approximation robust for small values of yt, a small offset parameter c is used

and the approximated model is expressed as log(y2t + c) = ht + log ν2t . The value

used for the offset parameter can play an important part in the final results and

if the value is not chosen carefully, it can lead to incorrect results. We propose a

method which overcomes the problem of selecting the offset parameter parameter

value.

The remainder of this chapter covers the Kim et al. (1998) method to linearise the

log volatility model (section 3.2) and an explanation of sampling for the mixture

state from the full conditional density. In section 3.3 the use of Forward Filtering

Backward Sampling (FFBS) with an additional Metropolis-Hastings (M-H) step

to sample the proposed volatility parameter ht is shown. This is followed by the

full conditionals for the AR(1) volatility process parameters. In section 3.4, the

difficulty of using an appropriate value of the offset parameter c is highlighted

and this is followed by a proposed method to overcome the problem of selecting

a value of the offset parameter (section 3.5). Results using simulated data and

Eurostoxx daily log returns are discussed at the end.

3.2 Normal Mixture Method

The early work on Bayesian analysis of Stochastic Volatility models was carried

out by Jacquier et al. (1995) using rejection sampling. Kim et al. (1998) proposed

an improved rejection sampling method using the nonlinear model in (3.1.1) with

a bounded function for p(yt|ht) to sample ht from the posterior density. This is a

simple approach to implement, but it leads to one at a time sampling for ht and

poor mixing when sampling correlated values of ht (Chib & Carlin 1999). In order

to overcome this, the observations in the SV model in (3.1.1) are transformed (Kim
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et al. 1998) and the error term is approximated by a Normal Mixture density.

From equation (3.1.1),

log y2t = ht + log ν2t , (3.2.1)

which is now linear in ht. The error term log ν2t has a log χ2
1 density. This

is approximated by a Normal Mixture density. To make the Normal Mixture

approximation robust for small or zero values of yt, a small value offset parameter

c is used (Fuller 2009) and equation (3.2.1) is replaced by

log y∗t = ht + log ν2t (3.2.2)

where

y∗t = y2t + c.

Writing zt = log ν2t , the logχ2
1 density is approximated as

p(zt) =
7∑
i=1

qifN(zt|mi − 1.2704, v2i )

where fN(x|µ, σ2) is the Normal density with mean µ and variance σ2. Using

numerical methods, Kim et al. (1998) estimate the probabilities qi, means (mi −

1.2704) and the variances v2i for the 7 component Mixture Normal to closely

approximate the logχ2
1 density. Using a mixture state st = i, for i = 1, . . . , 7 and

p(st = i) = qi, the mixture model can also be written as

zt|st = i ∼ N(mi − 1.2704, v2i ),

p(st = i) = qi.

Using the above Normal Mixture approximation, equation (3.2.2) is written as

log y∗t |st = i ∼ N(ht +mi − 1.2704, v2i ), (3.2.3)

p(st = i) = qi.
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Kim et al. (1998) use the Normal Mixture approximation to write the model in lin-

ear State Space form and block sample the volatility parameter h = (h1, h2, . . . , hT )

using the ‘simulation signal smoother’ (De Jong & Shephard 1995). To use the

Normal Mixture approximation, Kim et al. (1998) use c = 0.001 for the Mixture

Offset parameter, but state that ‘it is possible to let c depend on the values taken

by y2t ’.

When using this approximation, we found that the value of offset parameter c that

is used for the MCMC simulations changes the sampled results quite significantly,

especially in a model with many parameters. We propose a method to overcome

the problem of selecting the value of the offset parameter c.

3.3 Parameter sampler

The aim is to sample the volatility parameter ht for t = 1, . . . , T and to sample

the AR(1) parameters θ = {µ, φ, ση} using an MCMC sampler.

The joint posterior density for h and θ is given by

p(h, θ|y) =
p(y|h, θ)p(h|θ)p(θ)

p(y)
.

Kim et al. (1998) use an approximate density for p(y|h, θ) and we denote this by

p̃(y|h, θ) (the tilde indicates approximate densities using the Normal Mixture),

p̃(yt|ht, θt) =
∑
st

p̃(yt|ht, θt, st)p̃(st),

≈ p(yt|ht, θt).
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Here, p̃(yt|ht, θt, st) ∼ N(ht + mi − 1.2704, v2i ) and p̃(st = i) for i = 1, . . . , 7 as in

the 7 component Normal Mixture calculated by Kim et al. (1998).

The approximate posterior for h = (h1, h2, . . . , hT ) is given by

p̃(h, θ, s|y) =
T∏
t=1

p̃(yt|ht, θ, st)p̃(st)p(ht|θ)p(θ)
p̃(yt)

.

The marginal distribution of ht, summing over st = i, for i = (1, 2, . . . , 7) is

p̃(ht, θ|yt) =
∑
s

p̃(ht, θ, st|yt),

∝
∑
s

p̃(yt|ht, θ, st)p̃(s)p(ht|θ)p(θ),

≈ p(yt|ht, θ)p(ht|θ)p(θ),

∝ p(ht, θ|yt).

We use an augmented posterior so that we can block sample the volatility param-

eter,

pq(ht, θ, st|yt) ∝ p(yt|ht, θ)p(ht|θ)p(θ)g(st|ht, θ). (3.3.1)

If
∑

s g(s|ht, θ) = 1, i.e. g is a probability mass function,

pq(ht, θ|yt) =
∑
s

pq(ht, θ, st|yt)

∝ p(yt|ht, θ)p(ht|θ)p(θ)

= p(ht, θ|yt)
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Define g(s|h, θ) as

g(s|h, θ) =
p̃(y|h, θ, s)p̃(s)

p̃(y|h, θ)
(3.3.2)

∝
T∏
t=1

p̃(yt|ht, θt, st)p̃(st)
p̃(yt|ht, θ)

which is the full conditional of s using the Kim et al. (1998) approximation.

MCMC sampling

Using a Normal Mixture model in (3.2.3) above and the AR(1) process for ht from

equation 3.1.1

log(y∗t |st = i) = ht +mi − 1.2704 + νt, (3.3.3)

p(st = i) = qi,

ht = µ+ φ(ht−1 − µ) + σηηt

where the error term νt ∼ N(0, v2i ) and ηt ∼ N(0, 1) and νt and ηt are inde-

pendently distributed. We use the sampling sequence s|θ, h, y, then h|θ, s, y and

θ|h, y. Using the model in (3.3.3) we use the Kalman Filter and Backward Sam-

pling method (also referred to as Forward Filtering Backward Sampling method,

FFBS, (Carter & Kohn 1994)) to propose ht for t = 1, . . . , T . A Metropolis-

Hastings step as described below is used to accept the proposed values of h.

With Normally distributed errors for ht in (3.1.1), appropriate priors are used for

the parameters µ and σ2
η. This results in full conditional distributions in closed

form allowing the parameters to be sampled conveniently. For φ, the posterior

cannot be recognised as a standard density and Adaptive Metropolis-Hastings
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(Griffin & Stephens 2013, Haario et al. 2001) sampling is used.

Updating Mixture Indicator s

Using equation (3.3.2), the posterior density for s = (s1, s2, . . . , sT ) is given by

g(s|h, θ, y) =
T∏
t=1

p̃(log(y∗t )|ht, θ, st = i)p̃(st = i)∑j=7
j=1 p̃(log(y∗t )|ht, θ, st = j)p̃(st = j)

.

FFBS and a Metropolis-Hastings step are used to sample ht.

The calculation of the mean and variance for the backward distribution (µB,t, σ
2
B,t)

is explained below. Conditioning on st = i, log(y∗t ) is Normally distributed.

Given the current values of µ, φ, σ2
η, use the Kalman Filter steps to calculate

the distributions for ht, t = 1, 2, . . . , T. For the Backward Sampling, update the

distribution at t− 1 as below,

σ2
B,t−1|h

′

t:T , h =

(
1

σ2
t−1

+
φ2

σ2
η

)−1
,

µB,t−1|h
′

t:T , h =

(
1

σ2
t−1

+
φ2

σ2
η

)−1(
µt−1
σ2
t−1

+
φht

′ − φµ(1− φ)

σ2
η

)
,

where µt−1 and σ2
t−1 are the forward distribution mean and variance at time t−1,

ht
′ is the sample value at time t. B in the subscript indicates the Backward distri-

bution parameter. µ, φ, σ2
η are the current values of the AR process parameters.

The updated parameters σ2
B,t−1 and µB,t−1 are then used to propose h

′
t−1 at time

t− 1.

A Metropolis-Hastings step is used to sample the proposed h
′
t = (h

′
1, h

′
2, . . . , h

′
T )

drawn using the FFBS step above.
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The M-H ratio for accepting the proposed h
′

with probability a is

a = min

(
1,
pq(h

′
, θ, s|y)

pq(h, θ, s|y)

q(h|h′ , θ, y, s)
q(h′|h, θ, y, s)

)
,

using equation (3.3.1),

= min

(
1,
p(y|h′ , θ)p(h′|θ)g(s|h′ , θ, y)

p(y|h, θ)p(h|θ)g(s|h, θ, y)

q(h|h′ , θ, y, s)
q(h′ |h, θ, y, s)

)
.

The calculation of the transition probabilities q(h
′|h, θ, y, s) and q(h|h′ , θ, y, s) is

explained further. The probability q(h
′ |h, θ, y, s) is calculated using the FFBS

step (without resampling h
′
) where the distribution of y is calculated given h.

Similarly, the probability q(h|h′ , θ, y, s) is calculated using the FFBS step (without

resampling h) where the distribution of y is calculated given h
′
.

Updating µ

Using a diffuse prior for µ, µ ∝ 1, the full conditional density for µ is

p(µ|h, y) ∼ N(µ̂, σ2
µ),

where

µ̂ = σ2
µ

(
(1− φ2)

σ2
η

h1 +
(1− φ)

σ2
η

t=T−1∑
t=1

(ht+1 − φht)

)
,

and

σ2
µ = σ2

η

(
(T − 1)(1− φ)2 + (1− φ2)

)−1
.

Updating φ

Using φ = 2φ∗ − 1, and φ∗ with a Beta(a,b) prior distribution
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π(φ) ∝
(

1 + φ

2

)a−1(
1− φ

2

)b−1
,

the full conditional distribution for φ is

p(φ|h, y) ∝ π(φ)p(h|µ, φ, σ2
η)

and the log of the full conditional distribution is

logf(h|µ, φ, σ2
η) ∝ −(h1 − µ)2(1− φ2)

+
1

2
log(1− φ2)

−
t=T−1∑
t=1

((ht+1 − µ)− φ(ht − µ))2

2σ2
η

.

The range of φ is −1 < φ < 1 and the parameters for the prior density are

a = 20, b = 1.5 which gives a prior mean of 0.86. For the results shown below,

sampling from a truncated Normal is used to ensure φ in the permitted interval

and an Adaptive Metropolis-Hastings (Griffin & Stephens 2013, Haario et al. 2001)

method is used to get an acceptance rate of about 20% of the proposed values.

Updating σ2
η

Using a prior density σ2
η ∼ Inverse Gamma

(
σr
2
, Sσ

2

)
, the posterior density σ2

η|h, φ, µ ∼

Inverse Gamma(a, b) where the parameters a and b are

a =
T + σr

2

and

b =
Sσ + (h1 − µ)2(1− φ2) +

∑t=T−1
t=1 ((ht+1 − µ)− φ(ht − µ))2

2
.

The parameters for the prior density are σr = 5, Sσ = 0.01σr The AR(1) process

parameters µ, φ and ση are sampled from the correct posterior distributions (as

shown above and described in Kim et al. (1998)) and do not directly depend on

the approximation introduced by the Normal Mixture.
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3.4 Results

3.4.1 Simulated data

Test data is generated using the correct model in (3.1.1) above with known pa-

rameters so that the sampled parameter values from the MCMC simulations can

be validated against the values used to generate the data. To generate the data,

the error terms νt and ηt are sampled independently from N(0, 1) and ht calculated

using the AR parameters µ = −10, φ = 0.95 and σ2
η = 0.012. To start generating

the simulated data, h0 is sampled from the steady state distribution N(µ,
σ2
η

1−φ2 ).

600 observations for the daily log returns are simulated and used for the tests. A

second test data set is generated with µ = 0, φ = 1 giving E[h] = 0 and resulting

in yt samples close to a Standard Normal density .

3.4.2 Results using simulated data

The samples of simulated observations above (2 simulated data sets) have been

used for the results in Table 5 below. The effect of the offset parameter can be seen

by calculating the sample mean and sample variance of (log(y2t + c)− ht), for t =

1, 2 . . . , T . This should result in an approximate sample mean of -1.2704 and

variance of 4.93 if the data came from a log(χ2
1) distribution.
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c = 10−n

n Sample Sample

mean variance

2 3.4358 0.0033

3 1.3474 0.0804

4 -0.1277 0.7304

5 -0.8329 2.1094

6 -1.0801 3.2750

7 -1.1551 3.9135

8 -1.1818 4.2797

9 -1.1947 4.5248

10 -1.2012 4.6796

c = 10−n

n Sample Sample

mean variance

2 -1.1151 2.8937

3 -1.2941 4.0771

4 -1.3585 4.7792

5 -1.3812 5.1255

6 -1.3892 5.2833

7 -1.3915 5.3368

8 -1.3918 5.3453

9 -1.3918 5.3462

10 -1.3918 5.3463

Table 5: Sample mean and variance when h is simulated using µ = −10, φ = 0.95, σ2η =

0.012 (left hand table) and when h is simulated using µ = 0, φ = 1, σ2η = 0.012 , using

different values of the offset parameter c.

As the calculation shows, when the data does not come from a Standard Normal

distribution, Table 5 (left hand table), c needs to be near 10−9 for the mean and

variance of the sample to be close to the logχ2
1 mean and variance. When the

data is from a Standard Normal distribution, Table 5 (right hand table), c needs

to be near 10−3 for the sample mean and variance to be near the the logχ2
1 mean

and variance. In a model with more variables, for example in a regression setting

yt is modelled as a function of other parameters and possibly its own lags and

we need to estimate the volatility parameters, the residuals would depend on the

MCMC samples of a number of parameters. In this case, it is difficult to set one

value of c and expect that the mean and variance of the residuals will be close to

the mean and variance of logχ2
1 as the values of the other parameters change over
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the MCMC iterations.

3.4.3 Results using different values of c

Using the KSC Normal Mixture model in equation (3.3.3) and the sampler sum-

marised in section 3.3, MCMC iterations are used for the model parameters using

different values of the mixture offset parameter c. From the sample paths for

the prameters, it can be seen that the algorithm converges relatively quickly. A

number of different starting values of the parameters have been used to check that

the method converges to the same values. An initial 20000 iterations are used as

a burn in period followed by a further 20000 iterations which are thinned to 1

in 5 to sample the parameters. The parameter samples are used to calculate the

Effective Sample Size results using the methods in Sokal (1997) and Gamerman

& Lopes (2006).

As the results in Table 6 show, the posterior mean for the AR parameter, µ,

is -9.6107 when using the offset parameter c = 10−4 and -10.1112 when using

c = 10−6, compared to the value of µ = −10 used to create the simulated data.

When c = 10−6 is used, the values of the volatility persistence parameter φ and

the variance parameter σ2
η are estimated slightly better.
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c = 10−4 c = 10−6

Parameter Posterior mean (credible interval) Posterior mean (credible interval)

µ (-10) -9.6107 ( -9.6523, -9.5663) -10.1112 ( -10.2353, -9.9982)

φ (0.95) 0.7728 ( 0.6968, 0.8339) 0.7980 ( 0.5645, 0.9464)

σ2
η (0.012) 0.0133 ( 0.0114, 0.0154) 0.0081 ( 0.0032, 0.0215)

Table 6: Posterior mean and 95 % credible intervals for the AR(1) parameters

µ, φ and σ2η when using different values of the offset parameter, residuals not standard-

ised.
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Figure 3.4.1: Volatility parameter ht and AR(1) parameter µ, φ, and σ2η posterior

distributions, left column using c = 10−4, right column using c = 10−6, residuals not

standardised.

We can see in the above plots that the value of the offset parameter that is used

to linearise the model, changes the sampled results for the volatility parameter
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ht, (Figure 3.4.1 plots, first row) and the AR(1) parameter µ (second row) . The

AR(1) persistence parameter φ results are less dependent on the offset parameter

values. In both cases, the variance parameter results are higher than the simulated

value. If we continue to use smaller values of the offset parameter, for example,

c = 10−7 or smaller, then the volatility parameter is sampled correctly and the

results are close to the values used to simulate the data.

Importance Sampling

As an alternative to the M-H step to accept the proposed values, ht is proposed

using FFBS and then an Importance Sampling step is used for the volatility pa-

rameter h. Kim et al. (1998), use ratio of the correct density and the approximate

density to calculate the weights as

w(θ, h) = log f(θ, h|y)− log k(θ, h|y)

= const + log f(y|h)− log k(y∗|h),

f(y|h) =
t=T∏
t=1

fN(yt|0, ht),

k(y∗|h) =
t=T∏
t=1

i=7∑
i=1

qikN(y∗t |ht +mi− 1.2704, v2i ),

log f(y|h) =
t=T∑
t=1

(
−ht

2
− 1

2
y2t exp(−ht)

)
,

log k(y∗|h) =
t=T∑
t=1

log

(
i=7∑
i=1

qi
1

vi
exp(−1

2

(y∗t − (ht +mi − 1.2704))2

v2i
)

)
.

Using the above weights, Importance Sampling is used and the results for the

credible interval for h are compared to the M-H sampler.
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Figure 3.4.2: Volatility parameter posterior mean and credible interval, using c = 10−3,

residuals not standardised using M-H to sample ht (left plot), and Importance Sampling

(right plot).

The results for the volatility parameter do not improve by using importance sam-

pling (in this case, the ht was simulated using µ = −10). The results continue to

depend on the value of the offset parameter used. To overcome the problem of

sampling the volatility parameter, we propose below a method which overcomes

the difficulty of selecting an appropriate value of the offset parameter c.

3.5 Standardisation approach

3.5.1 Method

As we see from the results above, the value used for the offset parameter c influ-

ences the posterior mean of the volatility parameter. The problem arises from the

assumption in the application of the mixture model that the error term for the

log returns has a Standard Normal distribution and the square of the error term

is then approximated with a Normal Mixture for logχ2
1. We propose a method so
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that the error term in equation (3.1.1) is standardised as

νt =
yt
eht/2

,

log(ν2t + c) = log

(
y2t
eht

+ c

)
= log(y2t + ceht)− ht.

Rearranging the above and writing the AR(1) process for ht, the model in becomes

log(y2t + ceht) = ht + log(ν2t ),

ht = µ+ φ(ht−1 − µ) + σηηt,

where νt ∼ N(0, 1) and the Normal Mixture approximation for logχ2
1 can be

used. Conditioning on the mixture indicator st = i, this can be expressed with

Normal errors and FFBS method described above can be used to sample and

accept proposed values of ht as in section 3.3. For log(y2t + ceht) we use log(y2t +

ceh
(n)
t ) where h

(n)
t is the value of h at the previous iteration n of the MCMC

sampling. Using simulated data, the MCMC model is run without standardising

the error term and with standardising the error term. The results are shown in

the next section.

3.5.2 Results

Figure 3.5.1 below shows the results obtained for the volatility parameter ht when

the offset parameter c = 10−4 is used without standardising and when using the

the same value of c with standardising. When the error term is standardised, the

volatility parameter results are much closer to the simulated volatility values.
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Figure 3.5.1: Posterior mean of the volatility parameter ht using offset c = 10−4 without

standardising the residuals, and with standardising the residuals.

The plots below, Figure 3.5.2, show the parameter results with the error term

standardised, using c = 10−4 (left column) and c = 10−6 (right column).
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Figure 3.5.2: Volatility parameter ht and AR(1) parameters µ, φ andσ2η posterior dis-

tributions, left column using c = 10−4 and right column using c = 10−6, residuals

standardised
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As the results in the plots in Figure 3.5.2 show, when using the standardised

method, the value of the offset parameter that is used has a much smaller effect

on sampling the volatility parameter ht. The results from using 2 different off-

set values on the simulated data set for the AR(1) process parameters and the

volatility parameter ht are the same (for both cases, µ is close to −10, the value

used to simulate the data) as in Table 7.

c = 10−4 c = 10−6

Parameter Posterior mean (credible interval) Posterior mean (credible interval)

µ (-10) -10.1064 (-10.2305, -9.9757 ) -10.1084 (-10.2334, -9.9829)

φ (0.95) 0.7762 (0.4621, 0.9390) 0.7716 (0.5130, 0.9369)

σ2
η (0.012) 0.0095 (0.0031, 0.0246) 0.0102 (0.0032, 0.0328)

Table 7: Posterior mean and 95 % credible interval for the AR(1) parameters µ, φ, σ2η

using different values of the offset parameter, residuals standardised.

Mean Square Error of the parameters

The results in the plots in Figures 3.5.1 and 3.5.2 above can also be interpreted

using the MSE for the parameters. When error term is not standardised, the MSE

for h depends on the mixture offset parameter c as in Table 8 and is high when

c = 10−3 is used. For the standardised method, Table 9, the MSE for h does not

depend on the value of c. For both cases, the MSE for the other parameters does

not depend on c and the MSE results are closer to the case when very small values

of c are used.
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c = 10n

n MSE h MSE φ MSE µ MSE σ2
η

-1 47.7370 0.0778 47.7952 0.00007

-2 19.1030 0.2165 19.1506 0.00006

-3 5.1416 0.0814 5.1644 0.00002

-4 0.0164 0.0327 0.1520 0.00002

-5 0.0161 0.0383 0.0172 0.00002

-6 0.0149 0.0337 0.0164 0.00009

-7 0.0151 0.0432 0.0165 0.00014

-9 0.0149 0.0399 0.0166 0.00014

-11 0.0153 0.0474 0.0167 0.00016

-13 0.0162 0.0444 0.0178 0.00013

Table 8: Mean Square Error when posterior mean of the parameter is compared to the

simulated value, residuals not standardised.
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c = 10n

n MSE h MSE φ MSE µ MSE σ2
η

-1 0.0143 0.0390 0.0157 0.00012

-2 0.0158 0.0404 0.0172 0.00013

-3 0.0146 0.0391 0.0169 0.00012

-4 0.0140 0.0459 0.0155 0.00013

-5 0.0160 0.0393 0.0173 0.00013

-6 0.0145 0.0448 0.0158 0.00002

-7 0.0164 0.0432 0.0179 0.00015

-9 0.0157 0.0356 0.0175 0.00016

-11 0.0151 0.0562 0.0170 0.00015

-13 0.0159 0.0482 0.0170 0.00013

Table 9: Mean Square Error, when posterior mean of the parameter is compared to

the simulated value, residuals standardised.

3.6 Using Eurostoxx Index

The example below uses Eurostoxx daily log returns calculated from the index

closing values from January 2007 to April 2013. The stochastic volatility model

is used to sample the volatility and the AR parameters. A value of c = 10−3 was

used for the mixture offset parameter and the error term was standardised for the

MCMC iterations.
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Figure 3.6.1: Eurostoxx daily log returns, European sovereign debt crisis 2007-2013.

80



3.6.1 Results

The results below show the mean value of the volatility parameter ht and the

95% credible interval. The other plots show the posterior distributions of the

parameters µ, φ, σ2
η.
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Figure 3.6.2: Volatility parameter with 95% credible interval and posterior distribution

for the AR(1) process parameters µ, φ and σ2η using c = 10−3, residuals standardised.

The volatility parameter shows higher values during the crisis periods which show

as volatility clusters on the log returns plot in Figure (3.6.1). The volatility

persistence paramter φ is high, around 0.98, similar to values seen in other financial

studies (Mahieu & Schotman 1998).

3.6.2 Effective Sample Size

The MCMC samples from the Eurostoxx data have been used to calculate the

effective sample size (Gamerman & Lopes 2006). In order to check that the burn

in period is adequate, the trace plots have been checked to see that the values

have converged. To check that the results converge to the same results, different
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initial values for the volatility parameter (ht) and the mixture indicator (st) have

been used (Sokal 1997) to initialise the iterations.

Bartlet’s test is used to calculate the standard error at lag k as

SE(rk) =

√
1 + 2

∑i=k−1
i=1 r2i

N
for k > 1

where ri is the correlation at lag i, N is the number of samples. The standard error

is then used to calculate a 95% confidence interval used to determine the number

of non-zero correlation coefficients which are used to calculate the Effective Sample

Size.

The Effective Sample Size (ESS) is calculated as

ESS =
N

1 + 2
∑j

i=1 ri

here N is the number of samples from the iterations and ri is the correlation

coefficient at lag i and j is the count of the non-zero correlation coefficients.

For the ht samples for the Eurostoxx data (using the MCMC results when c = 10−3

and yt is standardised) the effective sample size is around 1700 for ht (as in the

plot below), 300 for φ and about 3800 for µ. The correlations are calculated using

the Matlab function autocorr.
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Figure 3.6.3: ACF plot for ht (left plot) and Effective Sample Size for ht (right plot),

using c = 10−3, residuals standardised.
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For example, at t = 100, the left plot shows the ACF values for the ht samples.

The plot also shows the bounds for 2 standard deviations (approximately 95%

confidence interval for the ACFs). The ACFs decay quickly (generally, the values

are not significant beyond 6 lags for other values of t).

Effective Sample Size, Eurostoxx daily returns

c = 10n

n ESS h ESS φ ESS µ

-0 (c=1) 57.0 2600 3891

-1 38.3 20.5 14.5

-2 29.6 24.8 21.0

-3 36.4 28.5 16.8

-4 365 124 3932

-5 757 105 3404

-6 1887 271 3908

-7 2006 288 3609

-9 1512 223 3709

-11 1644 279 3985

-13 1491 195 3781

c = 10n

n ESS ht ESS φ ESS µ

-0 (c=1) 18.5 25.9 34.9

-1 27.8 88.1 3564

-2 266 42.4 3830

-3 1709 321 3864

-4 1490 242 3875

-5 1720 202 3794

-6 1237 177 3837

-7 1772 218 3399

-9 1254 122 3817

-11 945 216 4226

-13 466 167 3926

Table 10: Effective sample size, residuals not standardised (left table), residuals stan-

dardised (right table), results for different values of the offset parameter.

For the not standardised case, the ESS values for ht, φ and µ, stabilise as c gets

smaller than 10−4. For the not standardised case, when c is large (10−2 or 10−1)

relative to y, log(y2t + c) distorts the data and the sampler is not able to estimate

the parameters correctly. In this sense, ESS is meaningless, but has been shown

for completeness.
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Using the standardised method, Table 10 (right table), the ESS results are stable

for all the parameters when c < 10−2. For c = 10−1 and 10−2, the ESS results for

φ and µ are better than the not standardised case. For the other values of c, the

results are similar.

The MCMC results are from running 40000 iterations (first 20000 as a burn in pe-

riod) and samples are thinned to 1/5 resulting in 4000 samples for each parameter.

MATLAB has been used for writing the MCMC sampler.
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Figure 3.6.4: Effective Sample Size for φ (left plot) and µ (right plot) comparing results

when residuals are not standardised and when standardised.

In the left plot in Figure (3.6.4), the ESS for φ is low for both the standardised

and not standardised cases (except when c = 10−0 i.e. c = 1) which distorts the

data. The results for µ, right plot in Figure (3.6.4), shows larger values of the ESS

when the standardised method is used. Once much smaller values of c are used,

the ESS for µ is similar for both the cases. This indicates that the standardising

method performs better without having to rely on setting an appropriate “small”

value of the offset parameter.
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3.7 Conclusion

When the SV model is expressed in linear State Space form using a Normal Mix-

ture model, the value of the offset parameter used for the MCMC sampling can

lead to incorrect results for the volatility parameter. To overcome this, the error

term is standardised with an added Metropolis-Hastings step to accept the pro-

posed volatility parameter samples from the Forward Filtering Backward Sampling

distributions. This approach gives good results for the volatility parameter using

any small value of the offset parameter.

The Effective Sample Size for the volatility parameter and the AR process param-

eters is higher when the standardised approach is used, indicating that this is a

better sampling procedure. The MSE for the volatility parameter also indicates a

better result for the volatility parameter when the standardised approach is used.
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Chapter 4

Normal Mixture Samplers

4.1 Introduction

In Chapter 2, for the posterior inference, one at a time sampling was used for

the volatility parameter h2. In this chapter, multiple values of the volatility pa-

rameter are sampled using the FFBS method with the aim of improving the slow

convergence when sampling autocorrelated values. This is achieved by using a

Normal Mixture estimate for the error term for the log returns and this allows the

returns and the volatility parameter h2 to be expressed in linear State Space form

with Normal errors. As explained in Chapter 3, the error term for state evolution

equation is standardised to overcome the problem of setting a value for the mix-

ture offset parameter c when the MCMC sampler is used to infer the parameter

values. The standardised method with c = 10−6 has been used for the MCMC

simulations.

For the innovations in the volatility spillover parameter γ, 3 different prior den-

sities are used. First a Normal prior is used, followed by a Student-t prior and

then a Normal-Gamma prior density is used. The objective is to evaluate the use
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of heavy tailed distributions to identify the extreme values when the spillover has

larger jumps.

The 3 samplers are described below. This is followed by the results of using the

samplers on simulated data, first using the simulated spillover and daily returns

for 3 countries to check how well the parameters are estimated. Then, different

levels (known values) of the spillover parameter are used to evaluate the perfor-

mance of the samplers for estimating the spillover. The evaluation is based on the

number of days (using the credible interval) of spillover identified under different

conditions and also using the ‘root mean squared error’ (RMSE) to see how well

the spillover parameter is estimated. Then the samplers are used for the Asian

financial crisis 1997-1998 and European sovereign debt crisis 2007-2013 and the

results are discussed below.

4.2 Sampler

The same volatility spillover model as in section 2.2 is used in this chapter

 y1,t

y2,t

 =

 ft 0 1 0

0 ft 0 1




θ1,t

θ2,t

θ3,t

θ4,t


+

 δ1,t 0

γt δ2,t

 ν1,t

ν2,t

 , (4.2.1)


θ1,t

θ2,t

θ3,t

θ4,t


=


θ1,t−1

θ2,t−1

θ3,t−1

θ4,t−1


+


w1,t

w2,t

w3,t

w4,t


. (4.2.2)
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The model parameters and prior distributions are the same as in section 2.3 where

we used one at a time sampling for the volatility parameter h2t.

Updating volatility parameter h2

Using equations (4.2.1, 4.2.2), and using δ1,t = exp(h1,t
2

) and δ2,t = exp(h2,t
2

), y2,t

can be expressed as

y2,t − (ftθ2,t + θ4,t)− γt
y1,t − ftθ1,t − θ3,t

eh1,t/2
= eh2,t/2ν2,t (4.2.3)

and the state equation for h2,t as h2,t = µ2 + φ(h2,t−1 − µ2) + ση2ηt.

This is not in linear State Space form for h2t. We linearise the above by using Nor-

mal Mixture density as in Kim et al. (1998). Conditioning on the mixture state,

the observation equation has Normally distributed error terms. The evolution

equation for the volatility parameter also has Normally distributed errors. This

allows the use of the standard results for the Kalman Filter and Backward Sam-

pling (or FFBS) to propose the volatility parameter and then use the Metropolis-

Hastings method to sample the proposed values.

The LHS in equation 4.2.3 is the residual and we define the LHS as r2t. Conditional

on y1 and the parameters θ, h1t, γt,

r2,t|y1, θ, δ1, γ ∼ N(0, h2,t),

r2,t = e
h2,t
2 ν2,t,

ν2,t ∼ N(0, 1)

and

log(r22,t + c) = h2,t + log ν22,t

where c is a small offset parameter used to make the model robust for small values

of r2,t. The term log ν22,t has a logχ2
1 density. Kim et al. (1998) approximate the

logχ2
1 density with a 7 component Normal Mixture density and estimate the

parameters qi,mi, v
2
i , 1.2704 for i = 1, . . . , 7 for the Normal Mixture density using
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numerical methods so that the Normal Mixture closely approximates the logχ2
1

density.

Using the Normal Mixture approximation, and an AR(1) process for h2t with

Normal errors

log(r22,t + c)|st = i = h2,t +mi − 1.2704 + νt,

p(st = i) = qi,

h2,t = µ2 + φ(h2,t−1 − µ2) + ση2ηt,

where the error terms νt ∼ N(0, v2i ) and ηt ∼ N(0, 1) are independently distributed.

This is in linear State Space form for h2,t.

The State Space equation for h2,t is now in the same form as that for ht used in

the Chapter 3 for the mixture offset parameter. Using the method in Chapter 3,

the error term is standardised and Forward Filtering Backward Sampling method

is used to propose the values of h2t, t = 1, . . . , T . A Metropolis-Hastings step as

described in Section 3.3 is used to accept the proposed values. Conditional on h2,

the posterior inference for the AR(1) parameters for h2 is the same as shown in

Section 2.3.
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4.3 Spillover parameter

4.3.1 Normal prior

The spillover parameter γ follows an AR(1) process with the Normal errors. From

equations 2.3.1 and 2.3.2,

y2,t − ftθ2,t − θ4,t =

(
y1,t − ftθ1,t − θ3,t

eh1,t/2

)
γt + eh2,t/2ν2,t,

γt = µ3 + φ3(γt−1 − µ3) + ση3ηt,

ηt ∼ N(0, 1).

Given the parameters θ, h1t, h2t and ft, and the returns y1,t, y2,t, these equations

are in linear State Space form for γ with normally distributed errors. Hence

we can use the FFBS method to sample γt. The sampling for the parameters

µ3, φ3 and σ2
η3

for the AR(1) process for γ is similar to that for the AR(1) param-

eters for h1 as described in section 2.3

4.3.2 Student-t prior

In this section, the Student-t distribution is used as a prior density for the inno-

vations in the volatility spillover. The aim is to see whether this helps to identify

the extreme values of the spillover. We use the result that the ratio of a variable

with a Standard Normal density and the square root of a variable with Gamma

density with location and scale parameters both equal to ν
2

results in Student-t

distribution with ν degrees of freedom. The parameter ν is inferred from the data.
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State Space equations for γ.

From equations (2.2.1, 2.2.2),

(y2,t − ftθ2,t − θ4,t) =

(
y1,t − ftθ1,t − θ3,t

eh1,t/2

)
γt + eh2,t/2ν2,t. (4.3.1)

We use an AR(1) process for γ,

γt = µ3 + φ3(γt−1 − µ3) + ση3
ηt√
wt
, (4.3.2)

where ηt ∼ N(0, 1) and wt has a Gamma distribution G(ν
2
, ν
2
). Conditional on

y1, h1 and the AR parameters, equations (4.3.1 and 4.3.2) are in linear State Space

form for γ. Conditioning on wt, results in γ with Normally distributed errors with

conditional distribution γt|γt−1, wt ∼ N(µ3 +φ3(γt−1−µ3), σ
2
η/wt). FFBS method

as described in section (2.3) is used to sample γ with a Metropolis-Hastings step

to accept the proposed values.

Conditional on γ and the AR parameters for γ, updating the model parameters

θ,W, h1, h2 and the related AR(1) parameters for h1 and h2 remains the same as

in section (2.3). The changes when using a Student-t prior distribution is used

for updating γ and the AR(1) parameters for γ are summarised below.

Backward Sampling

Using the the Forward Filtering Backward Sampling method, the distribution for

γt−1 is given by

γt−1|γ
′

t:T , γ, wt ∼ N(µB,t−1, σ
2
B,t−1),

σ2
B,t−1 =

(
φ2
3

σ2
η3
/wt

+
1

σ2
t−1

)−1
,

µB,t−1 =

(
φ2
3

σ2
η3
/wt

+
1

σ2
t−1

)−1(
φ3γ

′
t − φ3µ3(1− φ3)

σ2
η3
/wt

+
µt−1
σ2
t−1

)
,

91



where γ
′
t is the backward sample at time t, wt is the sampled value at time t, φ3,

µ3 and σ2
η3

are the AR process parameters and µt−1 and σ2
t−1 are the mean and

variance for the forward distributions using the Kalman Filter.

AR parameters for γ with Student-t errors

Updating µ3

Using a diffuse prior for µ3, so that µ3 ∝ 1 the full conditional density is µ3 ∼

N(µ̂3, σ
2
µ3

) where

σ2
µ3

= σ2
η3

(
(1− φ2

3)

1/w1

+
t∑
t=2

(1− φ3)
2

1/wt

)−1
,

µ̂3 =
σ2
µ3

σ2
η3

(
γ1(1− φ2

3)

1/w1

+ (1− φ3)
t∑

k=2

(γk − φ3γk−1)

1/wk

)
.

Updating φ3

Using φ3 = 2φ∗ − 1, and φ∗ with a Beta(a,b) prior distribution

π(φ3) ∝
(

1 + φ3

2

)a−1(
1− φ3

2

)b−1
,

and posterior density of φ3 given γ1:T is

p(φ3|γ1:T ) ∝ p(φ3)p(γ1|ση3 , w1)
t=T∏
t=2

p(γt|γt−1, wt−1)

∝
(

1 + φ3

2

)φ3−1(1− φ3

2

)φ3−1
e
− 1

2
(γ1−µ3)

2

σ2η3
/w1

)

T∏
t=2

(
σ2
η3

wt

)− 1
2

e
− 1

2

((γt−µ3)−φ3(γt−1−µ3))
2

σ2η3
/wt
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Updating σ2
η3

Using an Inverse Gamma prior density σ2
η3
∼ IG

(
σr
2
, Sσ

2

)
, the full conditional

distribution is σ2
η3
|γ, φ3, µ3 is

IG

(
σr + T

2
,
Sσ
2

+
1

2

(γ1 − µ3)
2(1− φ2

3)

1/w1

+
1

2

T∑
t=2

((γt − µ3)− φ3(γt−1 − µ3))
2

1/wk

)
.

The parameters for the prior density are σr = 5, Sσ = 0.01σr.

Updating wt

The prior density for wt is wt ∼ G
(
ν
2
, ν
2

)
and the full conditional density for wt

give γt is

p(wt|γt) ∼ G(α, β)

α =
ν + 1

2

β =
1

2

(
ν +

(
γt − µ3(1− φ3)− φ3γt−1

ση

)2
)
.

Updating ν degrees of freedom

The prior density for ν is ν ∼ G(α, β) is (α = 1, β = 0.1)

p(ν) =
βα

Γ(α)
να−1e−βν .

Likelihood for wt|ν ∼ G
(
ν
2
, ν
2

)
is

p(wt|ν) =
(ν
2
)
ν
2

Γ(ν
2
)
w

( ν
2
−1)

t e−
ν
2
wt .
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Hence the posterior density is

p(ν|w) ∝ βα

Γ(α)
να−1e−βν

T∏
t=1

(ν
2
)
ν
2

Γ(ν
2
)
w

( ν
2
−1)

t e−
ν
2
wt .

The posterior density cannot be recognised as a standard density. The log of the

posterior density, keeping only the terms in ν is

log(p(ν|w)) = (α− 1)log(ν)− βν +
T∑
t=1

(ν
2

log(
ν

2
)− log(Γ(

ν

2
)) + (

ν

2
− 1)log(wt)−

ν

2
wt

)
.

A truncated Normal is used to propose ν (to ensure that ν > 0) and an Adaptive

Metropolis-Hastings step is used to obtain acceptance rates of around 20%.

4.3.3 Normal-Gamma prior

In this section, the Normal-Gamma density (Griffin & Brown 2010) is used as a

prior for the spillover parameter γ. The aim is to use a heavy tail distribution

and see whether this identifies the extreme values of the spillover parameter better

compared to the other priors described above. The parameters for the the Gamma

distribution are inferred from the data.

The volatility parameter γ follows an AR(1) process as

γt = µ3 + φ3(γt−1 − µ3) + ση3
√
wtηt, ηt ∼ N(0, 1),

wt|λ ∼ G(λ, λ),

λ ∼ Exp(1).

Conditional on the AR(1) process parameters and wt, the distribution for γt is

γt|µ3, φ3, ση3 , wt ∼ N
(
µ3 + φ3(γt−1 − µ3), wtσ

2
η3

)
.
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Updating AR(1) parameters for γ

Conditional on wt, the variance of the distribution of γt changes as below,

γt|wt, µ3, φ3, ση3 ∼ N(µ3 + φ3(γt−1 − µ3), σ
2
η3
wt).

This changes the variance term used in the inference for the AR(1) parameters.

Updating the AR(1) process parameters remains similar to that used in section

4.3.2 for the Student-t prior distribution case with a change for the variance term.

Updating wt

The prior density for wt is

wt|λ ∼ G(λ, λ)

and the parameter λ follows an Exponential distribution

λ ∼ Exp(1), p(λ) = e−λ, λ > 0.

The posterior density for wt is

p(wt|γt, λ) ∼ p(γt|wt, λ)p(wt|λ)p(λ),

=
1

ση3
√
wt

e
− 1

2 (γt−(µ3+φ3(γt−1−µ3)))
2

ση3wt
λλ

Γ(λ)
wλ−1t e−λwte−λ,

(λ, µ3, φ3, ση3 are known, keeping only the terms in wt)

∝ w
λ−1− 1

2
t e

− 1
2

(
2λwt+

(γt−(µ3+φ3(γt−1−µ3)))
2

ση3wt

)
.

The posterior density cannot be recognised as standard density. Hence, a sym-

metric random walk is used to propose wt and an Adaptive M-H step is used to

obtain about 20 % moves.

Updating λ

The posterior density for λ is

p(λ|w) = p(w|λ)p(λ)

=

(
t=T∏
t=1

λλ

Γ(λ)
wλ−1t e−λwt

)
e−λ.

This cannot be recognised as a standard density. A Truncated Normal is used to
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propose values of λ and an Adaptive M-H step is used to obtain moves of around

20 %.

4.4 Simulated data results

In this section, 2 types of simulated data are used. For one case, the data is sim-

ulated using the model, with the spillover γ following an AR(1) process. For the

second case, the spillover has known values (a background level as small value,

with sudden jumps of different magnitudes). The parameters for simulating the

data are based on the results from the Asian financial crisis (with jump sizes based

on the results) and another set of data is generated using the parameter results

from the Euro crisis results (with jump sizes based on the results). The variances

of the other parameters (for example, regression parameters, volatility parame-

ters, the daily returns for the world factor) are increased and the MCMC results

are compared to see how well the spillover is identified under ‘noise’ conditions.

Another test is also performed using shorter spillover periods.

4.4.1 Parameter γ simulated using an AR(1) process

The simulated data as used in tests in section 2.4.1 has been used here. The sim-

ulated data is used to check the ability of the sampler to infer the true parameter

values. The results shown below are for the Normal Mixture with the Normal

errors for the spillover innovations (other samplers also give similar results).

96



100 200 300 400 500 600

0

0.5

1

1.5

 θ
1
 

100 200 300 400 500 600
−2

−1

0

1

2

θ
2

100 200 300 400 500 600

−0.1

−0.05

0

0.05

 θ
3
 

100 200 300 400 500 600
−0.1

0

0.1

θ
4
 

 

 

Simulated
Posterior mean
Credible interval

Figure 4.4.1: 95 % Credible interval and posterior mean for regression parameter θ,

using simulated data.

The posterior mean for the θ values is close to the simulated values and the

simulated value is within the 95% credible interval.
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Figure 4.4.2: Posterior mean, simulated and 95 % credible interval for the volatility

parameters h1 and h2, using simulated data.

The posterior means for the volatility parameters h1 and h2 are close to the

simulated values. Compared to the one at time sampler in Chapter 2, the 95%

credible interval for h2 is slightly larger, the posterior mean has a greater variance

when the Normal Mixture is used.
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Figure 4.4.3: Volatility spillover γ, simulated and posterior mean (left plot), posterior

mean and 95% credible interval (right plot).

The posterior mean for the spillover parameter γ closely follows the simulated

values as in the left plot. The 95% credible interval for the posterior mean of

the spillover γ shows a few non zero values in right plot. As can be seen on the

simulated data plot these are the larger values for the simulated spillover. For

the smaller values of the simulated spillover values, the non zero values are not

identified.
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Figure 4.4.4: Posterior distributions for the AR(1) parameters µ, φ and σ2η.

For h1, h2 and γ, the AR(1) parameters µ, φ are estimated well as shown by the

posterior distribution plots above. The variance results σ2
η for h1 and h2 are higher
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than the values used to simulate the data. The credible interval for the variance

for the spillover parameter includes the value used to simulate the data.

Parameter Simulated Posterior 95% Credible

value mean Interval

µ1 -5 -4.9489 (-5.1051, -4.8009)

φ1 0.9500 0.8449 (0.5752, 0.9486)

σ2
η1

0.0004 0.0116 (0.0041, 0.0312)

µ2 -5 -5.0318 (-5.3093, -4.7814)

φ2 0.9500 0.8308 (0.5409, 0.9686)

σ2
η2

0.0004 0.0121 (0.0038, 0.0341)

µ3 0.0001 0.0226 (-0.0042, 0.0494)

φ3 0.6000 0.6977 (0.5869, 0.8024)

σ2
η3

0.0100 0.0078 (0.0052, 0.0110)

Table 11: Simulated mean, posterior mean and 95% credible interval for the AR(1)

parameters µ, φ and σ2η.

These results in Table 11 are similar to the results obtained using one at a time

sampling as in Table 4. For this sampler, Normal Mixture approximation has

been used for the error term for h2. AR(1) parameter φ2 is estimated better, the

credible interval for µ2 is slightly larger and the credible interval for σ2
η2

is slightly

smaller.

4.4.2 Simulated data, known γ values

In this section, we evaluate the performance of the 4 different samplers (sampler

S1, one at a time sampling with a Normal prior for the spillover parameter γ;

sampler S2, Mixture Normal for parameter h2 with Normal prior for the spillover
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parameter γ; sampler S3, Mixture Normal for parameter h2 with Student-t prior

for the spillover parameter γ and sampler S4, Mixture Normal for parameter

h2 with a Normal-Gamma prior for the spillover parameter γ) in detecting the

volatility spillover under different simulated conditions.

For the simulated data, the spillover parameter γ has low values ±0.0005 for most

of the time as background spillover level and followed by sudden jumps in spillover

for 5 or 10 days. Different sizes of jumps based on results from the Asian financial

crisis and Euro crisis are used. The variance of the regression parameter θ (which

represents the relationship between the country returns and the world factor) is

increased in order to test how well the spillover is identified when the relationship

with the world factor is volatile. The volatility of the country returns is also

increased for some tests. Cases with high volatility for the world factor returns

are also used. All the simulated cases have 600 observations. The MCMC results

for the 4 samplers are obtained using 25000 iterations (initial 12500 iterations as

burn in) and the samples are thinned to 1 in 5.

Two measures are used to see how well the samplers perform. One, to identify

when zero is not in the credible interval for γ, thus indicating that a positive or

negative value of γ has been identified (that is, there is volatility spillover) and the

number of days where the value is identified as non zero are counted. The second

aim is to see how well the parameter γ has been estimated for the 4 samplers.

RMSE is calculated using the posterior mean of γ and the simulated value of γ.

The RMSE is calculated for the whole period (600 days) and also for each period

when the spillover level is set to specific values (for example, ±0.04)).

Denoting the credible interval as CI, the correctly identified spillover days (for
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spillover level 0.10) are counted as,

if 0 ∈ CI, then d
(0.10)
t = 0,

0 /∈ CI, then d
(0.10)
t = 1,

which can be used to see how well the sampler performs in identifying the spillover

days for a given level of spillover.

To see how well the posterior mean estimates the simulated value (for example, a

spillover level l), when γt = l,

rmse(γt = l) =

√∑n
t=1(γ̂t − l)2

n
,

where γ̂t is the posterior mean at time t, γt = l is the simulated value at time t

and n is the number of periods when the simulated spillover level is l.

Another approach for checking how well the samplers perform is to count the num-

ber of days when the posterior mean of the spillover γ̂t exceeds a given threshold

β,

αt(β) = 1 if |γ̂t| > β,

= 0 if |γ̂t| < β.

This gave very similar results to the RMSE results and only the RMSE results

have been used below.

Using the model in section 4.2, and the parameters described below for each

case, the daily log returns are simulated. The value of the spillover parameter

is set at known levels with jumps as described above. First, the simulated data

is based on the parameters results from the Asian financial crisis data. This is

used as base case and cases with higher variance of the regression parameters
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θ, increased variance of the volatility parameters h1,t, h2,t, increased variance of

the world factor and then the spillover reduced from 10 days to 5 days are used.

Each test is referenced by a letter, for example (K), to group the results from a

particular test case.

Parameter µ φ σ2
η

θ1 0.35 1.0 0.5 x 10−3

θ2 0.30 1.0 0.5 x 10−3

θ3 0.0 1.0 5 x 10−5

θ4 0.0 1.0 5 x 10−5

h1 -8.0 0.93 0.402

h2 -12.0 0.85 0.142

Table 12: Parameter values used to simulate the data (K).

The daily returns for the world factor ft are simulated from N(0, 0.022). In this

case, the spillover jump values (±0.01,±0.02,±0.04,±0.06) are used for specific

times and a background spillover level of ±0.0005 at other times. These jump

values are similar in size to the results from the Asian financial crisis data. The

spillover jumps are used for 10 days for each level of jump (except one test at the

end where 5 days are used to see the results using a smaller spillover period).
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Figure 4.4.5: Simulated and posterior mean for γ using 4 samplers (K).
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Figure 4.4.6: Posterior mean and 95 % credible interval for γ using 4 samplers (K).

γ 0.01 0.02 0.04 0.06 -0.01 -0.02 -0.04 -0.06

S1 1 2 4 9 2 3 7 7

S2 1 2 4 9 2 3 9 8

S3 1 3 4 9 2 8 9 8

S4 1 5 4 9 2 3 4 4

Table 13: Number of days volatility spillover identified from 10 days using 4 samplers

and different jump levels (K).
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Figure 4.4.7: Proportion of spillover days identified and RMSE using 4 samplers and

different jump levels (K).

In Figure 4.4.5, the posterior mean of the spillover is shown with the simulated

values. The jump values are estimated well by all the 4 samplers. For the larger

jumps (±0.06), the samplers with the normal prior (samplers S1 and S2) underes-

timate the value. The samplers with the heavy tails (samplers S3 with a Student-t

prior, S4 with a Normal-Gamma prior) estimate the values better. In Figure 4.4.6,

the 95% credible interval for the posterior mean of the spillover is shown. The

aim is to identify the cases when zero is not in the credible interval (that is, non

zero values of the spillover). In Table 13, the count of the number of days when

the non zero values of the spillover have been identified are shown. The larger

spillover values are better identified except for Sampler S4 (for level −0.06).The

results show that the smaller spillovers would be difficult to detect. In Figure

4.4.7, the left hand plot shows the proportion of days identified for each spillover

level (using only the the positive values of the spillover) and shows that the larger

spillovers are better identified compared to the smaller spillovers. The right hand

side plot shows the RMSE results. The error is smaller for the smaller spillover

values. In this sense, the smaller values are better estimated. But for the smaller

values, the non zero values of the spillover are not identified using the credible

interval.
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In case (M), the variance of the regression parameters is increased (for θ1, in-

creased from 0.5 x 10−3 to 1 x 10−3 and similarly for θ2). This would represent a

more rapidly changing relationship with the world factor. The results from the 4

samplers are shown below.
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Figure 4.4.8: Simulated and posterior mean for γ using 4 samplers (M).
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Figure 4.4.9: Posterior mean and 95 % credible interval for γ using 4 samplers (M).
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γ 0.01 0.02 0.04 0.06 -0.01 -0.02 -0.04 -0.06

S1 1 2 4 9 2 3 7 7

S2 1 0 3 9 2 3 9 8

S3 1 0 4 9 2 4 10 8

S4 1 0 4 8 2 3 8 5

Table 14: Number of days volatility spillover identified from 10 days using 4 samplers

and different jump levels (M).
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Figure 4.4.10: Proportion of spillover days identified and RMSE using 4 samplers

and different jump levels (M).

As the results in Figure 4.4.8 show, the posterior mean of the spillover still esti-

mates the simulated values well. In Figure 4.4.9, the credible interval continues

to identify the larger values well. Compared to the base test (K), the number

of days identified (Table 14) for the smaller spillover value 0.02 are fewer. This

can be explained as when the regression parameters have a higher variance, the

regression parameters are estimated less well and hence would be difficult to iden-

tify the small spillover values. In Figure 4.4.10, the RMSE values are higher for

the small jump (0.02) compared to the RMSE values in the base test (K).
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In case (O), the variance of the volatility parameters is increased, for h1 increased

from 0.42 to 0.62 and similarly for h2 increased from 0.142 to 0.22. This would

represent more volatile markets in the country where the contagion originates and

the country where the volatility spills over to. The other parameters remain the

same as for the base test (K). The results from the 4 samplers are shown below.

γ 0.01 0.02 0.04 0.06 -0.01 -0.02 -0.04 -0.06

S1 1 0 4 9 2 3 7 7

S2 1 0 3 9 2 3 9 5

S3 1 1 4 9 2 3 9 7

S4 1 1 4 8 2 3 7 6

Table 15: Number of days volatility spillover identified from 10 days using 4 samplers

and different jump levels (O).
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Figure 4.4.11: Proportion of spillover days identified and RMSE using 4 samplers

and different jump levels (O).

The posterior mean and the credible interval plots are not shown (they look similar

to earlier results). Comparing the days identified in Table 15, to the results for

the base case (K), the number of days identified for spillover level ±0.02 is lower.

Again, if the volatility parameter has a high variance, the parameters would be

estimated less well it would be difficult to detect the spillover (the credible interval

would be larger in the presence of other noise).
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In case (Q), the variance of the world factor is increased from 0.022 to 0.042. This

would represent more volatile markets in the world factor (or a large country in

the region). The other parameters remain the same as for the base test (K). The

results from the 4 samplers are shown below.

γ 0.01 0.02 0.04 0.06 -0.01 -0.02 -0.04 -0.06

S1 1 0 4 9 2 3 7 7

S2 1 1 4 9 2 3 7 5

S3 1 2 4 9 2 3 7 5

S4 1 3 3 8 2 4 10 6

Table 16: Number of days volatility spillover identified from 10 days using 4 samplers

and different jump levels (Q).
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Figure 4.4.12: Proportion of spillover days identified and RMSE using 4 samplers

and different jump levels (Q).

The posterior mean and the credible interval plots are not shown (they look similar

to earlier results). Comparing the days identified in Table 16, to the results for the

base case (K), the number of days identified level ±0.02 is lower. This can also be

explained along similar lines as the above results. In the presence of high volatility

of the world factor, the regression parameters and the spillover parameter would

be estimated less accurately. Is this case, sampler S4 (with the Normal-Gamma

prior) performs slightly better.
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In case (S), the spillover days are reduced from 10 to 5. This would represent

short lived spillover effect. The other parameters remain the same as for the base

test (K). The results from the 4 samplers are shown below.

γ 0.01 0.02 0.04 0.06 -0.01 -0.02 -0.04 -0.06

S1 0 1 2 4 2 2 3 2

S2 0 2 2 4 2 2 3 2

S3 0 1 2 5 2 3 3 2

S4 0 2 2 4 2 2 3 2

Table 17: Number of days volatility spillover identified from 5 days using 4 samplers

and different jump levels (S).
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Figure 4.4.13: Proportion of spillover days identified and RMSE using 4 samplers

and different jump levels (S).

Again, the posterior mean and the credible interval plots are not shown. Com-

paring the days identified in Table 17 to the results for the base case (K), the

proportion of days identified is similar. This result indicates that small periods of

spillover would also be detected by the samplers. For the simulated tests based on

the Asian financial crisis parameters, all the 4 samplers perform similarly. In the

presence of other noise, fewer number of spillover days are identified. The larger

spillovers are identified better (similar to the results for the real data, 0.06 level is

identified well). The RMSE does not change much between the tests, indicating

that the posterior mean continues to be identified well.
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In the next group of tests, the simulated data is based on parameters results from

the Euro crisis. This is used as base case and then cases with higher variance of the

regression parameters θ, increased variances of the volatility parameters h1,t, h2,t,

increased variance of the world factor and then the spillover reduced from 10 days

to 5 days are used.

Parameter µ φ σ2

θ1 0.60 1.0 1 x 10−3

θ2 1.20 1.0 0.4 x 10−3

θ3 0.0 1.0 2 x 10−5

θ1 0.0 1.0 1 x 10−5

h1 -8.0 0.97 0.222

h2 -14.0 0.98 0.552

Table 18: AR(1) process parameter values (L)

The daily returns for the world factor ft are simulated from N(0, 0.01582). In

this case, the spillover jump values (+0.0025,±0.005,±0.01,±0.02) are used for

specific times and a background spillover level of ±0.0005 at other times. These

jump values are similar in size to the results from the Euro crisis. The spillover

jumps are used for 10 days for each level of jump.
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Figure 4.4.14: Simulated and posterior mean for γ using 4 samplers (L)
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Figure 4.4.15: Posterior mean and 95 % credible interval for γ using 4 samplers (L)

γ 0.0025 0.005 0.01 0.02 -0.005 -0.01 -0.02

S1 1 0 2 4 2 1 6

S2 2 0 2 4 3 2 6

S3 1 0 4 4 3 1 6

S4 1 0 2 4 3 2 7

Table 19: Number of days volatility spillover identified from 10 days using 4 samplers

and different jump levels (L).
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Figure 4.4.16: Proportion of spillover days identified and RMSE using 4 samplers

and different jump levels (L).

In Figure 4.4.14, the posterior mean of the spillover is shown with the simulated

values. The jump values are estimated well by all the 4 samplers. For the larger

jumps (±0.02), all the 4 samplers estimate the values well. In Figure 4.4.15, the

95% credible interval for the posterior mean of the spillover is shown. As before,

the aim is to identify the cases when zero is not in the credible interval (that

is, non zero values of the spillover). As the results in Table 19 show, even the

larger spillover values are identified about half the time. The smaller values are

poorly identified . This shows that the spillovers would be difficult to detect for

the Euro crisis data. In Figure 4.4.16, the left hand plot shows the proportion

of days identified for each spillover level (for the positive values of the spillover)

and shows that the larger spillovers are better identified compared to the smaller

spillovers. The right hand side plots show the RMSE results. Again, the error is

smaller for the smaller spillover values. In this sense, the smaller values are better

estimated. But for the smaller values, the non zero values of the spillover are not

identified using the credible interval.
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For case (N), the variance of the regression parameters is increased (for θ1, in-

creased from 1 x 10−3 to 2 x 10−3 and similarly for θ2, increased from 0.4 x 10−3

to 0.8 x 10−3). This would represent a more rapidly changing relationship with

the world factor. The results from the 4 samplers are shown below (the posterior

mean and credible interval plots are not shown, the results are summarised in the

counts table and RMSE plots).

γ 0.0025 0.005 0.01 0.02 -0.005 -0.01 -0.02

S1 1 0 2 4 2 1 6

S2 2 0 2 4 2 1 7

S3 2 0 2 4 3 1 6

S4 1 0 2 5 3 2 7

Table 20: Number of days volatility spillover identified from 10 days using 4 samplers

and different jump levels (N).
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Figure 4.4.17: Proportion of spillover days identified and RMSE using 4 samplers

and different jump levels (N).

Even the larger spillover values are identified about half the time and the smaller

values are poorly identified (Table 20). In Figure 4.4.17, the left hand plot shows

the proportion of days identified for each spillover level (for the positive values of

the spillover) and shows that the larger spillovers are better identified compared to

the smaller spillovers. The right hand side plot shows the RMSE results. Again,

the RMSE is lower for the smaller spillover values. The results for case (N) with

the higher variance for the regression parameters are very similar to the base case

(L).
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For case (P), the variance of the volatility parameters is increased, for h1, increased

from 0.222 to 0.42 and similarly for h2, increased from 0.552 to 0.92. This would

represent more volatile markets in the country where the contagion originates and

the country where the where the volatility spills over to. The other parameters

remain the same as for the base test (L). The results from the 4 samplers are

shown below (the posterior mean and credible interval plots are not shown, the

results are summarised in the counts table and RMSE plots).

γ 0.0025 0.005 0.01 0.02 -0.005 -0.01 -0.02

S1 1 0 1 4 2 0 6

S2 2 0 3 5 2 1 6

S3 2 0 4 4 2 1 6

S4 2 0 3 5 3 1 6

Table 21: Number of days volatility spillover identified from 10 days using 4 samplers

and different jump levels (P).
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Figure 4.4.18: Proportion of spillover days identified and RMSE using 4 samplers

and different jump levels (P).

The larger spillover values are identified about half the time and the smaller

values are poorly identified (Table 21). Figure 4.4.18, the left hand plot shows the

proportion of days identified for each spillover level (for the positive values of the

spillover) and shows that the larger spillovers are better identified compared to

the smaller spillovers. Again, the RMSE is lower for the smaller spillover values.

For case P with the higher variance for the volatility parameters, the results are

very similar to the base case (L).
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For case (R), the variance of the world factor is increased from 0.01582 to 0.042.

This would represent more volatile markets in the world factor (or large country

in the region). The other parameters remain the same as for the base test (L).

The results from the 4 samplers are shown below (the posterior mean and credible

interval plots are not shown, the results are summarised in the counts table and

RMSE plots).

γ 0.0025 0.005 0.01 0.02 -0.005 -0.01 -0.02

S1 1 0 2 4 2 1 6

S2 2 0 2 3 2 2 7

S3 2 0 2 4 3 1 7

S4 2 0 2 4 3 1 7

Table 22: Number of days volatility spillover identified from 10 days using 4 samplers

and different jump levels (R)
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Figure 4.4.19: Proportion of spillover days identified and RMSE using 4 samplers

and different jump levels (R).

The results remain similar to the base case (L). The larger spillover values are

identified about half the time and the smaller values are poorly identified (Table

22). Figure 4.4.19, shows the proportion of days identified and the RMSE results.
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For case (T), the spillover days are reduced from 10 to 5. This would represent

short lived spillover effect. The other parameters remain the same as for the base

test (L). The results from the 4 samplers are shown below.

γ 0.0025 0.005 0.01 0.02 -0.005 -0.01 -0.02

S1 0 0 1 1 2 0 4

S2 0 0 1 1 2 0 4

S3 0 0 2 1 2 0 4

S4 0 0 0 1 2 0 4

Table 23: Number of days volatility spillover identified from 5 days using 4 samplers

and different jump levels (T).
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Figure 4.4.20: Proportion of spillover days identified and RMSE using 4 samplers

and different jump levels (T).

Comparing the days identified in Table 23, to the results for the base case (L), the

proportion of days identified for the spillover levels 0.02, 0.01 and −0.01 is lower.

The proportion of days for the −0.02 spillover is slightly higher. For the smaller

spillovers, the proportion of days generally lower than the base case (L).

For the simulated data based on the Euro crisis parameters, the spillover jumps

are lower compared to the simulated data based on the Asian financial crisis

parameters and hence a lower proportion of the days are identified as non zero.
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Even for the larger jumps based on the Euro crisis data, only about half the

days are identified as spillover days. In the presence of other noise, the results

do not change much. When fewer days of spillover are used (5 days), fewer days

are identified compared to the simulated data based on the Asian financial crisis

parameters.

4.4.3 Conclusion, simulated data

Using simulated data, all the 4 samplers identify the spillover days with the larger

spillovers well. The simulated spillover value is estimated well by the posterior

mean using all the 4 samplers.

When the simulated data is based on the Asian financial crisis parameters, for

the larger spillover values, (Figure 4.4.5), the posterior mean is lower than the

simulated values when the Normal prior is used for the spillover (for the spillover

0.06, samplers S1 and S2 use a Normal prior). When the heavy tailed distributions

are used (samplers S3 and S4, using Student-t and Normal-Gamma priors), the

posterior mean values are larger and estimate the larger simulated values better

(for the spillover 0.06). But the number of days identified as volatility spillover

days and the RMSE error for the 4 samplers are very similar when the spillover

values are large. As the values of the spillover get smaller, a smaller proportion

of the spillover days are identified in the simulation tests. Similarly, as the noise

level from the other parameters increases, the spillover days are identified less well.

Generally, samplers S1 and S2 (with the Normal priors) have the lower RMSE.

When the simulated data is based on the Euro crisis parameters (spillover jumps

are smaller), the proportion of spillover days that are identified is lower than for

the Asian financial crisis. As the jump values are small, the posterior mean values

for all the 4 samplers are similar for even the larger jump (0.02). Generally, the
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samplers S1 and S2 (Normal prior) have lower RMSE compared to the heavy

tailed priors.

The overall conclusion for the simulated data tests is that the 4 samplers per-

form similarly and the larger spillovers are identified better. In the presence of

other noise (increased variance of other parameters), the number of days identified

decreases. And when the spillover is for a shorter period, fewer days are identi-

fied, especially for the lower jump levels. The posterior mean of the spillover is

identified well under all the test cases above.
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4.5 Market data results

4.5.1 Asian financial crisis 1997-1998

This section uses the Hong Kong, Singapore and Japan returns data (1997-98).

The results for the volatility and AR(1) parameters are similar to the results for

the one at a time sampler (S1) and are not repeated here. In this section, the

volatility spillover results for the 4 samplers are discussed.
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Figure 4.5.1: Volatility spillover γ, posterior mean and credible interval for the Asian

financial crisis using 4 samplers.

All the 4 samplers identify the main crisis periods for the Asian financial crisis,

when zero is not in the 95% credible interval for the posterior mean of the spillover

parameter γ. For samplers S1 and S2 both using the Normal prior for the spillover,

the results are very similar. When the heavy tailed prior distributions are used

for γ, the posterior mean of γ is larger (for sampler S3 using a Student’s-t prior,

the values are larger than the Normal prior results) and when the sampler S4

(Normal-Gamma prior) is used, the posterior mean values are larger than the

results for sampler S3.

In Figure 4.5.1, the results are shown for the full period of the data. The plot
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below, Figure 4.5.2, shows the posterior mean of γ with the spillover days marked

with a red circle. These show other spillover days which are difficult to see in

Figure 4.5.1. The detailed periods of volatility spillover are discussed below.

Posterior mean of γ, spillover days, 4 samplers
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Figure 4.5.2: Volatility spillover days for the Asian financial crisis using 4 samplers.

Below, a few of the spillover periods are shown in more detail using smaller time

periods on the plots, with a brief discussion of the economic events at the time.
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Figure 4.5.3: γ credible interval using 4 samplers.

In March 1997, Figure 4.5.3, the volatility spillover shows non zero values for 21,

22 March 1997 for 4 the samplers. In other studies, the Asian Financial Crisis

1997-1998 only the period July 1997 to October 1998 is included (which was the
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currency crisis period). Around 21 March 1997, there were fears of an interest rate

rise and the Hong Kong index dropped 2.1% during the week and on the news

of worse than expected export figures the Singapore index dropped 1.2% (The

Financial Times, 21 March 1997). This may explain the the volatility spillover

result (or a case of both the markets moving down for unrelated reasons).
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Figure 4.5.4: γ credible interval using 4 samplers.

July 1997 was the start of the Asian financial crises with the devaluation of the

Thai baht in July 1997 and similar problems in Malaysia. The Japanese banks

called in the loans from the countries affected by the crisis and this was a volatile

period in Hong Kong and then the spillover to Singapore, Figure 4.5.4). The

October 1997 period is Hong Kong crisis period, shown here more clearly (7 days

in October, 3 days in November 1997), as described in the results for Figure

2.4.9. The heavy tailed distributions (samplers S3, S4) identify 2 more days in

the October, November period.
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Figure 4.5.5: γ credible interval using 4 samplers.

The results in this case , Figure 4.5.5, identify the spillover periods in January 1998

when the Hang Seng index dropped over 8% and the volatility spread to Singapore.

The results from the 4 samplers identify similar periods of volatility spillover

during January, February and March 1999. For sampler S4, the (absolute) values

of the spillover are larger when spillover is identified and show the contagion days

more clearly. Samplers S1 and S2 identify 3 days, sampler S3 identifies 4 days

and sampler S4 identifies 6 days.
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Figure 4.5.6: γ credible interval using 4 samplers.

September 17 1998, the Japanese stock market fell sharply and this resulted in

sharp declines in Hong Kong, European and U.S markets. There was general panic
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in the financial markets with the collapse of Long Term Capital Management, a

large hedge fund in the US (September 1998). September 28 1998, Japan Leasing

Corporation, a large leasing company filed for bankruptcy protection. On October

3 1998, Japan announced a USD 30 billion aid package to support economies in

the Southeast Asian region. There were no specific events in Singapore, hence

spillover result in Figure 4.5.6 can be interpreted as the spillover of volatility from

Hong Kong to Singapore (after allowing for the volatile returns in the world factor,

in this case Japan). Samplers S1, S2 identify 7 days, samplers S3, S4 identify 8

days spillover during September 1998.
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Figure 4.5.7: γ credible interval using 4 samplers.

Again, the 4 samplers show similar results, Figure 4.5.7. Sampler S4 identifies the

spillover period more clearly (the posterior mean shows a larger value). In October

1998, there were fears of a global economic crisis. The US Federal Reserve cut

interest rates to help the financial markets. The Russian central bank was required

to print money to rescue the banks and Brazil announced austerity measures to

secure IMF funding. There are no clear events directly related to Hong Kong or

Singapore. The spillover may be due to Hong Kong links to the world markets

and then the spread of the volatility from Hong Kong to Singapore. Samplers S1,

S2 identify 4 days, samplers S3, S4 identify 5 days in October 1998.
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4.5.2 European sovereign debt crisis 2007-2013

This section uses the Greece and Spain and Eurostoxx data (2007-2013). The

results for the volatility and AR parameters are similar to the results for sampler

S1 as in Section 2.4.4 and are not repeated here. In this section, the volatility

spillover results using the 4 samplers are summarised.
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Figure 4.5.8: Volatility spillover γ posterior mean and credible interval for the Euro

crisis using 4 samplers.

The 4 samplers show similar results for the posterior mean of the spillover pa-

rameter γ as in Figure 4.5.8. The 95% credible interval results are also similar

for the 4 samplers. Sampler S4 (Normal-Gamma prior case) samples larger (ab-

solute) values of the parameter but the credible intervals are similar to the other

3 samplers.
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Posterior mean of γ, spillover days, 4 samplers
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Figure 4.5.9: Volatility spillover days for the Euro crisis using 4 samplers.

Figure 4.5.9 shows the posterior mean of the spillover and the red circles indicate

the spillover days. The main periods of the Greek crisis and spillover to Spain are

identified well. This is discussed below in detailed plots for shorter intervals.
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Figure 4.5.10: γ credible interval using 4 samplers.

A short period in March 2008 in Figure 4.5.10 is identified as a spillover period by

the 4 samplers - this was the time of the pension reforms, mass protests, public

sector strikes and volatile periods in the Greek stock market (reference BBC Greek

debt time line). Samplers S1, S2 identify 2 days, samplers S3, S4 identify 3 days

in the February-March 1998 period.
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Figure 4.5.11: γ credible interval using 4 samplers.

The posterior mean results for γ in Figure 4.5.11 are similar for the 4 samplers

and identify some volatility spillover days. During April-August 2010 there were

fears of a possible default on Greek debt, trade unions had called for a general

strike and the markets were volatile as described with Figure 2.4.15. The number

of days identified by samplers S1, S2, S3 and S4 are 12, 16, 16 and 14.

May−11 Jul−11 Sep−11
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Sampler S1, Credible Interval γ

May−11 Jul−11 Sep−11
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Sampler S2, Credible Interval γ

May−11 Jul−11 Sep−11
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Sampler S3, Credible Interval γ

May−11 Jul−11 Sep−11
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Sampler S4, Credible Interval γ

Figure 4.5.12: γ credible interval using 4 samplers.

The posterior mean results for γ, 4.5.12, are similar for the 4 samplers and iden-

tify some volatility spillover days and the posterior mean of γ is just non zero.

In July 2011, all 3 main credit rating agencies cut Greek credit rating (details
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with 2.4.16), 109 billion Euro bailout fund was arranged through the European

Financial Stability Fund and in October 2011, 50 % debt write off was agreed for

Greece, and further austerity measures were announced). There was an announce-

ment of a referendum on the austerity and reform package. This was a turbulent

time in the Greek markets. The above plots show very small periods of volatility

spillover, possibly because the bailout agreement had been anticipated had been

under discussion for some time. Samplers S1, S2, S3 and S4 identify 2, 3, 3 and

1 day in the period May-September 2011.
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Figure 4.5.13: γ credible interval using 4 samplers.

Again, the 4 samplers perform similarly, Figure 4.5.13. In January 2013 the

unemployment level in Greece reached nearly 27% and in April 2013, youth un-

employment reached nearly 60%. It appears a continuation of the uncertain times

for the Greek economy with volatility spillover to Eurozone countries. In the

January-March 2013 period, samplers S1, S2, S3 and S4 identified 6, 5, 6 and 5

days.
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4.5.3 Conclusion, market data

For the Asian financial crisis, when the real data is used, the spillover (and con-

tagion) is identified quite well in the sense of comparing the spillover days to the

economic events at the time. The periods that are identified for the Asian finan-

cial crisis are similar to those in other studies. The spillover parameter values

are higher for the Asian financial crisis compared to the Euro crisis results. The

number of days identified as volatility spillover is slightly higher when the heavy

tailed priors (samplers S3, S4) are used.

The results for the Euro crisis match the times of financial difficulties in Greece.

The values of the spillover parameter are lower and hence difficult to identify the

spillover days. In this case, all the 4 samplers identify a similar number of days.

128



Chapter 5

Conclusions and further work

5.1 Conclusions

The work started with the question ‘what is financial contagion’? And then it

progressed to the question, can we use a method to identify financial contagion

without the need to identify volatile and tranquil periods? A number of definitions

have been used in the studies on financial contagion and the definitions are based

on correlations and volatility spillover. We adopted the volatility spillover defini-

tion for this study. Models for statistical analysis of financial contagion relied on

prior identification of the tranquil and volatile periods using external information

and the use of some measure to identify a volatile period. The method would

also need to include sufficiently long periods of data to estimate the parameters

reliably. Our approach was to introduce time varying parameters and Bayesian

methods with MCMC simulations to sample the posterior distributions of the pa-

rameters and use the significant values of the spillover parameter to identify the

presence of financial contagion without the prior need to identify tranquil and

volatile periods.
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Dynamic Factor model, with time varying parameters allowed us to explain the

daily log returns using time varying relationship with a world factor and then

model the volatility spillover using the model described by Dungey et al. (2005),

but using time varying parameters and without the need to identify tranquil and

volatile periods. The volatility parameter for the first country was sampled one

period at a time and this worked well for the volatility parameter. For the second

country volatility parameter, we attempted block sampling using FFBS methods.

This needed a step to approximate the log χ2
1 density using a Normal Mixture

density. Kim et al. (1998) use an ‘offset parameter’ c to make the approximation

robust for small values of the residuals. In using this method, we realised that the

residual may not have a Standard Normal density (especially in case where the

regression step is used to relate the country returns and the world factor). Our

results depended on the value of the offset parameter used in the MCMC simula-

tions. We propose a method to standardise the residuals within the MCMC steps

so that the results are much less dependent on the value of the offset parameter.

Use of Bayesian and MCMC methods (Forward Filtering Backward Sampling,

Adaptive Metropolis-Hastings method to accept proposed samples) have worked

well to sample the parameter values. Tests on simulated data using heavy tailed

distributions (Student-t and Normal-Gamma priors) for the innovations in the

spillover did not give significantly better results (in identifying the spillover days)

compared to the Normal distributions case.

We used the model and the method successfully to identify the volatility spillover

periods (contagion periods) for the Asian financial crisis and found similar periods

to other previous research using classical statistics. Some periods during the

financial turmoil in Greece (European sovereign debt crisis) identified the spillover

of volatility from Greece to Spain. The periods identified are shorter, possibly

because the markets are already very closely integrated, possibly because there
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was a period of banking related financial crisis in Spain for a period of the time.

5.2 Further work

In this study, a two country case with a world factor was used. This model can be

extended to include multiple countries, possibly including an intermediate country

as well. For the factor model, further parameters could be added to the world

factor (for example interest rates, employment levels, investment flows in and out

of a country) if the information is available at the same frequency as the daily

returns.

We attempted to linearise the model (using a Taylor series expansion) and express

the model in bivariate linear State Space form. This approximation was developed

as an MCMC program but the results were not successful. Further work could

be done to understand why this approach did not work well and possibly find a

method to improve the results. When using this approximation, the acceptance

rates for the proposed values were low. We attempted to sample for shorter periods

(period length selected using a Poisson distribution) to improve the acceptance

rates. The results of the volatility parameters when using this approach were not

successful and there was not enough time to explain this or to improve the method

and conclude the work.

This study used the country level market indices to study the contagion effect.

The model and methods can also be used to study spread of volatility for other

cases (for example, volatility spillover within a country, from property to the

equity market; the spread of volatility from the property market in one country

to the property market in another country).
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