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Abstract

In this thesis we classify all of the special function solutions to Painlevé
equations and all their associated equations produced using their Hamilto-
nian structures. We then use these special solutions to highlight the connec-
tion between the Painlevé equations and the coefficients of some three-term
recurrence relations for some specific orthogonal polynomials. The key idea
of this newly developed method is the recognition of certain orthogonal
polynomial moments as a particular special function. This means we can
compare the matrix of moments with the Wronskian solutions, which the
Painlevé equations are famous for. Once this connection is found we can
simply read off the all important recurrence coefficients in a closed form. In
certain cases, we can even improve upon this as some of the weights allow a
simplification of the recurrence coefficients to polynomials and with it, the

new sequences orthogonal polynomials are simplified too.
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J. G. Smith

1 Introduction

1.1 General Introduction

In this thesis we will discuss the following orthogonal polynomials: various de-
formed Laguerre polynomials, Pollaczek-Jacobi polynomials, time-dependent Ja-
cobi polynomials, some polynomials on the unit circle and some deformed Jacobi
polynomials. Once the logarithmic derivative of Hankel and Wronskian deter-
minants are taken it can be compared directly to one of the Painlevé equations
special function solutions [17]. Our goal in this thesis is to explore a new method
of computing the recurrence coefficients for specific orthogonal polynomial weights
using the comparison we mentioned above.

Some of the solutions to the Painlevé equations comprise of classical special
functions, such as the Bessel functions, the Airy function, the Legendre functions
and the confluent hypergeometric function. Recently [18] there has been much
interest in the relationship between semi-classical orthogonal polynomials and
these integrable equations. This relationship dates back to work by Shohat [62]
in 1939. It took until 1995, in a paper by Magnus [44], to establish that these
integrable equations were actually Painlevé equations. These relationships extend
to many of the Painlevé equations. For example, see [1, 2, 7, 11, 17, 18, 21, 23,
25, 69]. The purpose of this thesis is to explore and clarify this connection.

The thesis is organised into the following sections:

e Introduction to Painlevé and all the material we will be using, including the

vital Hamiltonian structures.

e Introduction to the special function solutions and how they are related to

12



1.2 Painlevé equations J. G. Smith

the Painlevé equations Pr; — Pyy.

e Introduce the idea of rational function solutions. Some of these solutions
can be shown to be special cases of the special function solutions which we

will see in more detail later.

e The applications of the special function and rational function solutions and
how they relate explicitly to certain orthogonal polynomials. This is chapters
5, 6, 7 and 8 of the thesis and contains most of the original work. We will
be applying a new method to some previously known orthogonal polynomial

weights.

1.2 Painlevé equations

The six Painlevé equations (P; — Pyy) were first discovered approximately 100

years ago by Painlevé and his colleagues whilst investigating ordinary differential

d*w dw
Pl w2
dz? (Z’ s )’

equations of the form

where F' is rational in Cfl—f and w is analytic in z. They possess the property
that their solutions have no movable essential singularities. Alternatively, the
locations of multi-valued singularities of any of the solutions are independent of
the particular solutions chosen and so are dependent only on the equation. This
is now known to be the Painlevé property. Painlevé, Gambier and their colleagues

managed to show that there are 50 canonical equations with this property up to

a Mobius (bilinear rational) transformation



1.2 Painlevé equations J. G. Smith

where a(z), b(z), ¢(z), d(z) and ¢(z) are locally analytic functions. Contained
inside these 50 equations are the six Painlevé equations. The remaining 44 equa-
tions can either be reduced to linear equations and solved in terms of elliptic
functions, or can be reduced to ordinary differential equations satisfied by the
transcendental solutions. The solutions of (P; — Py ) are called the Painlevé tran-
scendents and the general solutions of the Painlevé equations are transcendental.
This means they are irreducible; they cannot be expressed in terms of previously
known functions, such as rational functions, elliptic functions or special functions.
The Painlevé equations have a plethora of interesting properties, some of which

will be investigated in this thesis. Some of these properties include:

e Bicklund transformations. These transformations relate one solution (from

within a hierarchy) to another solution.

e Special function solutions (which are also known as one parameter solutions).
Painlevé equations can be thought of as nonlinear analogues of the classical

special function solutions and these solutions play a vital role in this thesis.

e Rational function solutions are found for Pr;— Py; and are sometimes formed
as a subset of the special function solutions. However, this is not the case
for all Painlevé equations. For example, Py (1.1d) has its rational function
solutions formed as a subset of the special function solutions of Py, (1.1d).
However, Pr;; (1.1c¢) has some rational solutions that cannot be produced

from the special function solutions of Py (1.1c).

e Painlevé asymptotics. These leading order asymptotics are a useful way for

determining (from an applied point of view) which equation a suspected

14



1.2 Painlevé equations J. G. Smith

exact Painlevé solution belongs to and where exactly it appears in the hier-

archy.

The Painlevé equations arise in a large number of applications, for example; ran-
dom matrix theory, the asymptotic theory of orthogonal polynomials, self-similar
solutions of integrable equations, tiling problems as well as many more [20]. The

six Painlevé equations (P; — Py ) are the nonlinear ordinary differential equations

defined below.

d?w

72 = 6w’ + z, (1.1a)

6571; = 2w + 2w + A, (1.1b)
2

6577“;) = %(2—?)2+%w3+42w2+2(22—A)w+g, (1.1d)

dQ_w— L_}_; d_w 2_1d_w_|_M Aw+§
dz2 \ 2w w-1 dz zdz 22 w

Cw  Dw(w+ 1)
_|_

. o1 (1.1e)
Pw 1111 (a1, 1 e
d?2 2\w w—-1 w—z)\dz z z—1 w—2z)dz
w(w—1)(w—=z) Bz C(z—1) Dz(z—-1)
A+— . 1.1f
* 22(z —1)? +w?—{—(w—l)f{—(w—z)2 (1.15)

where A, B, C' and D are arbitrary constants.

15



1.3 Hamiltonian structure J. G. Smith

1.3 Hamiltonian structure

Each Painlevé equation has its own Hamiltonian structure and system to explore.

The Painlevé system associated with P; is, by definition, the Hamiltonian system

Oty oMy

a_pa 6Jp: 8(] ; (12>

d7q =

where ¢ is the operator associated with that Painlevé equation for a unique Hamil-

tonian function H; [57] and is given for each case by

5=— for J =111V, (1.3)
d
o= i for J=1II,V, (1.4)
d
d=2(z—1)— for J = VI, (1.5)

dz

where the Hamiltonian functions H; are given by

Hi(q,p,z) = 3p° — 2¢° — 2q, (1.6a)
Hir(q,p,2) = 5p° = (¢ + 52)p — (a + 3)q, (1.6b)

Hirr(g.p.2) = ¢p° — 2p° — Mo — L)pg+ 2p+ 2 (Ao — 2= A)zq,  (1.6¢)

Hiv(g,p,2z) = 2qp° — (¢* + 22q + 2K0)p + Kooqs (1.6d)
Hy(q,p,2) = qlg —1)°p* = {(B+0)¢" — (26 + 0 — z)q + B}p

—i{e® = (B+9)%}q, (1.6¢)
Hyi(q:p,2) = alg — 1)(q — 2)p* — {Va(g — 1)(q — 2) + V3q(q — 2)

+ (Yo — D)g(qg — 1) }p + 92(91 + Ua)(q — 2), (1.6f)

where «, 3,17, Vg, V1, V2, U3, Vs, Voo, Aoy Moo, Ko and ko are arbitrary constants. To

elaborate, the function o, = H; + L(z) where L(z) is a linear correction term

16



1.3 Hamiltonian structure J. G. Smith

will satisfy a non-linear second-order, second-degree ordinary differential equation
(ODE), often referred to as the Painlevé o-equation.
It is also interesting to note that Py (1.1e) has the option of using either the

4 or § = 24, We will discuss this unique feature of Py

delta operator as § = + iz

(1.1e) in chapter 2.

Remark 1.1. Each Hamiltonian function o = Hj satisfies a second-order second-
degree ordinary differential equation whose solutions are in a correspondence with

solutions of the associated Painlevé equation through (1.2) since

do d?c do d?c
= F - — .
q J<U7 dZ7dz27Z)7 b GJ(O', dZ’dZ2JZ)’

. . 2 2 .
for suitable functions F; (0‘, ‘;—‘Z’, ‘;7‘;, z) and G (J, ‘;—‘;, 27‘2’, z) Thus, given q and p,

one can determine o and conversely, given o, one can determine q and p. This

will be shown in detail later.

The six Painlevé g-equations (S; — Sy ) are the nonlinear ordinary differential

17



1.3 Hamiltonian structure J. G. Smith

equations defined below:

P\’ do\® _ d
(d—;) + 4(d—‘:> + 22d—z 20 =0, (1.7a)
Ao do\? do [ do
(@) + 4(%> +2- (z% — a) = o +3)% (1.7b)
Po  do\’ do\*( do do  ,( do
(1.7¢)
2o\’ do do do
T9) 4 - 4 1290 ) (Z2 420 ) =0, 1.7d
(dz2) (Zdz 0>+ (dz+ 0)((12+ ) (1.7d)
20\ ? do\? do 2 > (do
(z@) = [2 (ZE) i + CT:| — 4};% (% + K)j), (1.7¢)
do o d do 2 S de
E(z(z — 1)@) <E{2U — (22 — 1)%} + l€1l€2l€3f€4) = ]1_[1 (% + lij),
(1.7f)

where 3,7,V and Ky, ..., k4 are arbitrary constants.

In the following sections we will derive all of the o-equations (S; — Sy ) that
we will need in this thesis. The Hamiltonian functions ¢ = H; frequently arise
in applications, e.g: random matrix theory and orthogonal polynomials. It is this
connection with the orthogonal polynomial applications which make the deriva-
tions of each g-equation fundamentally important. All of the calculation in the

following section can be found on the USB flash drive in its appropriate folder.

1.3.1 Hamiltonian structure for the first Painlevé equation P;

The Hamiltonian associated with P; (1.1a) is

Hilg,p.2) = 2p® — 2¢° — zq, (1.8)

18



1.3 Hamiltonian structure J. G. Smith

where Hamilton’s equations (1.2) yield the following system, which p and ¢ satisfy:

dg _

_ 1.9
7 =P (1.9a)
dp 9

G, . 1.9b
7 =00 + 2 (1.9b)

Eliminating p in (1.9a) then ¢ = w satisfies Py (1.1a).

Theorem 1.1. The Hamiltonian function

o(z) = Mi(q,p, 2), (1.10)

with Hy(q, p, z) given by (1.8), satisfies the second-order, second-degree equation

o\ > do\?® d
(d—;) +4(d—z> +2zd—Z—2a:0,

which is Sy (1.7a). Conversely, if o(z) satisfies Sy (1.7a) then the solutions of the

Hamiltonian system (1.9) are given by

q(z) = —0d', pz)=-0", '=—. (1.11)

Proof. Substituting (1.8) into (1.10) and differentiating twice followed by substi-

tuting (1.9a) and (1.9b) where possible yields

do
—_— == 1.12
d*c

Then, solving (1.12a) and (1.12b) simultaneously gives (1.11). Substituting (1.11)
into H; (1.8) we can generate S; (1.7a) multiplied by some other expression. Also

see Okamoto [54, 59] and Forrester and Witte [27]. O

19



1.3 Hamiltonian structure J. G. Smith

1.3.2 Hamiltonian structure for the second Painlevé equation P;;

The Hamiltonian associated with Py; (1.1b) is the following:

Hir(g,p.2) =ip" — (@ +L12)p— (a+ 1), (1.13)

where Hamilton’s equations (1.2) yield the following system, which p and ¢ satisfy:

dq
P — %z, (1.14a)
dp
7 =2qp + o + 3. (1.14b)

Eliminating p in (1.14a) then ¢ = w satisfies Py (1.1b). Whilst eliminating ¢
yields
d*p 1 ap ’ 3 2_ 1 1)2
pﬁzi - +2p _2p _§<04+§) ) (115>

which is known as Ps4.

Theorem 1.2. The Hamiltonian function

o(2) = Hilgp, 2), (1.16)

with Hyr(q,p, z) given by (1.13), satisfies a second-order, second-degree equation

20\ > do\? do ( do
(@> +4<E) —I—ZE(zE—U) =1(a+1)

which is Sp; (1.7b). Conversely, if o(z; ) satisfies Sy (1.7b) then the solutions

of the Hamiltonian system (1.14) are given by

40" +2a+1

S , plz)=-20", '=—. (1.17)

q(z)

20



1.3 Hamiltonian structure J. G. Smith

Proof. Substituting (1.13) into (1.16) and differentiating twice followed by sub-

stituting (1.14a) and (1.14b) where possible yields

do

= — 3D, (1.18a)
d’c
S =-w-ta-t (1.18b)

Then, solving (1.18a) and (1.18b) simultaneously gives (1.17). Substituting (1.17)
into Hyy (1.13) we can generate Sy; (1.7b) multiplied by some other expression.
Also see Okamoto [54, 59] and Forrester and Witte [27]. O

1.3.3 Hamiltonian structure for the third Painlevé equation Pj;;

The Hamiltonian associated with Pjry (1.1c) is the following:
Hirr(q,p,2) = ¢°p* — 2pg* — (Mo — Dagp + 2p+ 5(Mo — 2 = A)zq,  (1.19)

with g and A\, parameters, where Hamilton’s equations (1.2) yield the following

system, which p and ¢ satisfy:

d
zd—q =2p¢® — 2¢° — (Ao — 1)q + 2, (1.20a)
z
dp . 2 1
S —2qp” + 2zpq + (Ao — 1)p — 3(Xo — 2 — Ao) . (1.20b)

See Okamoto [53, 59]. Eliminating p in (1.20a) then ¢ = w satisfies Pr;r (1.1c).

Theorem 1.3. The Hamiltonian function
O'(Z, )‘0’ )‘OO) = %HIII(Qapa Z) + %pq + %(/\0 - 2)2 - %227 (121)

with Hrrr(q,p, z) given by (1.19), satisfies the second-order, second-degree equation

o do\? do\?/ do do do
_ - 4| — — =92 4 1900— = 22 — =2 29
(Z dz? dz> i <dz) <Z dz J) e T2 <Z R 0> ’



1.3 Hamiltonian structure J. G. Smith

which is Srpp (1.7¢) with the parameters
{00,950} = {—=3Ac (X0 — 2), s (A% + (M0 — 2)*)}.

Conversely, if 0(z; Mo, Aso) satisfies Styp (1.7¢c) then the solutions of the Hamilto-

nian system (1.20) are given by

220" 4 2(1 = N)o' — Az I , d
= 2 1(0)? , o p(z)=0"+352, "= o (1.22)

q(2)

Proof. Substituting (1.19) into (1.21) and differentiating twice followed by sub-

stituting (1.20a) and (1.20b) where possible yields

do

% =p— %Z, (123&)
d*c 1
e 2—Z(4qp(z —p)+2pro — 2(Ag — Ao — 1) — 2p). (1.23b)

Then, solving (1.23a) and (1.23b) simultaneously gives (1.22). Substituting (1.22)
into Hyyr (1.19) we can generate Syrr (1.7¢) multiplied by some other expression.

Also see Okamoto [55, 59] and Forrester and Witte [27]. O

1.3.4 Hamiltonian structure for the third Painlevé equation P;;

An alternative form of Py (1.1c), due to Okamoto [54, 55, 59|, is obtained by

making the transformation w(z) = u(t)/v/t, with ¢ = 12? in Py (1.1c) giving

du_ YAty 422 1.24
dt2  wu\ dt +op(At2u)+ u’ ( )

Py 1/ du\® ldu 2 B 1
t dt 22 2t

which is well known to be Pr;p (1.24). The Hamiltonian associated with Pjrp

(1.24) is the following:
Hirr(g,p.t) = ¢p° — (¢ +Yoq — t) p+ (9o + Yoo, (1.25)
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1.3 Hamiltonian structure J. G. Smith

with Jy and 9, parameters, where Hamilton’s equations (1.2) yield the following

system, which p and ¢ satisfy:

d

td—z =2¢°p — ¢* — Voq + t, (1.26a)
d

td_]t? = —2qp* + 2qp + Vop — %(190 + Vo). (1.26b)

See Okamoto [54, 55, 59]. Eliminating p in (1.26a) then ¢ = w satisfies Py (1.1c)
with parameters (A, B) = (—20,2(¢y + 1)). Eliminating ¢ in (1.26b) then p

satisfies

@A(g ! )(@)2_1@_%@—1)
2

a2 2\p p—1)\dt tdt t
1 (Yo + Vsc)? (P — V)?
— 4000 — — . 1.27
+8t2{ " P p—1 (1.27)

Making the transformation p(t) = 1/[1 —w(z)], with z = ¢ in (1.27) yields

d*w (1 1 )(dw) 1dw (w—l)Q{(190+1900)2w (190—1900)2} 2w

dz2 dz

8 8w

2w w—1

z dz 22

which is Py (1.1e) with parameters

{A,B,C,D} = {1(¥y + V), =2 (Vo — U)?, —2,0}.

1
8

This is precisely the well known connection between Pry; (1.24) and Py (1.1le)

when D = 0.

Theorem 1.4. The Hamiltonian function
0(/2;79077900) :tHIII/((Lpat) - %t+iﬁ37 (128)
with Hirp(q,p, z) given by (1.25) satisfies the second-order, second-degree equation

o\ > do\? do do
(tw> + {4($) — 1} <t% — a) + oo = T +9%).  (1.29)
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1.3 Hamiltonian structure J. G. Smith

Conversely, if 0(z; 99, Vs) satisfies Sy (1.29) then the solutions of the Hamilto-

nian system (1.26) are given by

2to” — 2090’ + Vs
q(t) = —
1—4(c")

plty=0"+3, '=—. (1.30)

Proof. Substituting (1.25) into (1.28) and differentiating twice followed by sub-
stituting (1.26a) and (1.26b) where possible yields

do

- =P~ (1.31a)
d*o 1

27 = o (ap(L = p) + 200p — o — ). (1.31b)

Then, solving (1.31a) and (1.31b) simultaneously gives (1.30). Substituting (1.30)
into Hyrp (1.25) we can generate Sy (1.29) multiplied by some other expression.

Also see Okamoto [55, 59] and Forrester and Witte [26]. O

1.3.5 Hamiltonian structure for the fourth Painlevé equation P;y

The Hamiltonian associated with Py (1.1d) is the following:
Hiv(a,p,2) = 2qp° — (4" + 22q + 260)p + Ko, (1.32)

with kg, Koo parameters, where Hamilton’s equations (1.2) yield the following

system, which p and ¢ satisfy:

d—z = 4qp — q2 — 2zq — 2Ky, (1.33&)
d

d—p — 2% + 2pq + 22p — Koo (1.33b)
2

Eliminating p then ¢ = w satisfies Ppy (1.1d) with the following parameters:
{A,B} = {1 — Ko + 2Koo, —2k3}. Whilst eliminating ¢, then w = —2p satisfies
Pry (1.1d) with the following parameters: {A, B} = {2kg — koo — 1, —2K%}. As
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1.3 Hamiltonian structure J. G. Smith

in the usual case for Painlevé equations, this Hamiltonian equation satisfies a

second-order, second-degree equation.

Theorem 1.5. The Hamiltonian function

O-(Z;K'Oy'%oo) :HIV(Qap7 Z)a (134)

with Hrv(q,p, z) given by (1.32) satisfies the second-order, second-degree equation

o\ > do do do
— | -4 z— — 4 — +2 — 42 =
(sz) (Zdz a) + (dz + 190> (dz + 1900) 0,

which is Spy (1.7d) with the parameters

{7907 1900} = {FLU? ’%OO}'

Conversely, if 0(z; ko, kao) satisfies Spy (1.7d) then the solutions of the Hamilto-

nian system (1.33) are given by

0" —2z0' + 20 o"4+2z0' —20 , d

o+ 2n) p(z) = , == (1.35)

a(z) = 4(0" + 2ky) dz

Proof. Substituting (1.32) into (1.34) and differentiating twice followed by sub-

stituting (1.33a) and (1.33b) where possible yields

do

—~ =_9 1.

7 qp; (1.36a)
d?*c 9 9
FEh —4qp” + (4ko — 2¢7)p + 2Koq. (1.36b)

Then, solving (1.32), (1.36a) and (1.36b) simultaneously gives (1.35). Substitut-
ing (1.35) into Hyy (1.32) we can generate Sy (1.7d) multiplied by some other

expression. Also see Jimbo and Miwa [36] and Okamoto [58]. O
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1.3 Hamiltonian structure J. G. Smith

1.3.6 Hamiltonian structure for the fifth Painlevé equation Py

The Hamiltonian associated with Py (1.1e) is the following:
Hyv(q.p,2) = a(q—1)"p* —{(b+)q* — (2b+0—2)g+b}p—3{a’— (b+1)"}q, (1.37)

with a, b and ¥ as parameters and where Hamilton’s equations (1.2) yield the

following system, which p and ¢ satisfy:

z% =2q(q—1)°’p— (b+9)g* + (2b+ 9 — 2)q — b, (1.38a)
2 (39— 1)~ )+ 200+ Dap — (2b+ 0~ 2)p+ a® — (b4 9)?),

(1.38h)

Proof. See Jimbo and Miwa [36] Okamoto [54, 55, 57]. O

Eliminating p then ¢ = w satisfies (1.le) with the following parameters:

{A,B,C} = {3a%,—3b%,—9 — 1}. As in the usual case for Painlevé equations,

this Hamiltonian equation satisfies a second-order, second-degree equation.
Theorem 1.6. The Hamiltonian function
o(z;a,0,9) =Hy(q,p,2) + 1(2b+ V)2 — 2(2b + 9)?, (1.39)

with Hy (g, p, z) given by (1.37), satisfies the second-order, second-degree equation

d?o\ do\? do 2 > do

J=

which is Sy (1.7e) with the parameters

{Klo, K1, /€2,H3} = {Z—ll(ﬁ + 2@), }1(19 - 2@), —i(ﬁ + 2b>, %1(21) — 79)}
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1.3 Hamiltonian structure J. G. Smith

Conversely, if o(z;a,b,9) satisfies (1.7e) then the solutions of the Hamiltonian

system (1.38) are given by

20" +2(0")? —zo' + o 20" —2(0") +z20' -0 , d
vV 732 VT3 VT3 (1.40)

Proof. Substituting (1.37) into (1.39) and differentiating twice followed by sub-

stituting (1.38a) and (1.38b) where possible yields

do

== 2(2b+ ) — qp, (1.41a)
d20 1 3 9 2 1 2
5 = (@ = 0+ )e’p— (Gla+b+9)(a—b—9) +p*)g+bp).  (141b)

Solving (1.39), (1.41a) and (1.41b) simultaneously gives (1.40). Substituting
(1.40) into Hy (1.37) we can generate Sy (1.7¢) multiplied by some other ex-
pression. Also see Jimbo and Miwa [36] and Okamoto [55, 59]. O

1.3.7 Hamiltonian structure for the sixth Painlevé equation Py,

The Hamiltonian associated with Py (1.1f) is the following:

Hyi(g,p,2) = q(qg — 1) (g — 2)p* — {¥4(q — 1)(q — 2) + V3q(q — 2)

+ (o — D)glg — 1) }p + D291 + 92)(q — 2), (1.42)
where g, 91,9 and 13 are parameters and are related in the following way:

Do+ 01 + 209 + 5 + 0y = 1,
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1.3 Hamiltonian structure J. G. Smith

where Hamilton’s equations (1.2) yield the following system, which p and ¢ satisfy:

d
2(z — 1)d—z = =3p°¢* + { (22 + 2)p* + (200 + 205 + 204 — 2)p}q

— 2p? — (4295 + 204 + 0o + V4 — 1) p— U (V1 +92),  (1.43a)
d
z(z — 1)d—]: =2p¢° — (2pz + 2p+ Yo + U5+ 94 — 1) ¢

+{@2p+ V3 +Va)z + Vg + Vs — 1}q — 204 (1.43b)
Proof. See Jimbo and Miwa [36] and Okamoto [54, 55, 57]. O
Eliminating p then ¢ = w satisfies (1.1f) with the following parameters:
(4,B,C, D} = {10%, —L0%, 103, 21 — ).

As in the usual case for Painlevé equations, this Hamiltonian equation satisfies a

second-order, second-degree equation.

Theorem 1.7. The Hamiltonian function
o(z;a, 8,9) = Hyr + (Kiks + K1Ka + K3kg)z — %mej, (1.44)
1<i<j<4

with Hy1(q, p, z) given by (1.42), satisfies the second-order, second-degree equation

do 20\ * do do 2 L (do
% (Z(Z — 1)@) + (%{2(7 — (22 — 1)@} + :‘i1/€2/€3/€4> = H <E + ]%2),

which is Sy (1.7f) with the parameters

{K“la K2, K3, ’%4} = {_%(193 + 294)7 %(194 - 193); _%(190 + 191 - ]-)7 %(190 - 191 - 1)}
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1.3 Hamiltonian structure J. G. Smith

Conversely, if o(z; k1, ks, k3, ka) Ssatisfies (1.7e) then the solutions of the Hamil-

tonian system (1.43) are given by

(ks + Ka)z(z — 1)0” +22(0")? — A1o' + 20K Koks — Ko Ay
= 2{(c0")? + (k3 + K3)o’ + K3K3}
olg — 1)p =T B2 = o+ 2Baz — By)(o')” — (Byo + Bu)o' + Bs
2{(0")? + (K3 + K)o’ + K3Ki}

Y

?

(1.45)

where =&,

Proof. Substituting (1.42) into (1.44) and differentiating twice followed by sub-
stituting (1.43b) and (1.43a) where possible yields

d

0= —q(q—1)p* + {(2q — 1y — Vg}p — i (1.46)
If we then compute o — zd%a, substituting (1.46) where possible yields the first
expression here. Differentiating again and substituting (1.43b), (1.43a) and (1.46)

where possible yields the second

do do
O'—ZE:<31—E>(]—(/€3+I€4 (g—1)p Zmln], (1.47a)
1<i<j<4
d*o do do do
z(z — 1)? =2 (BQE — I{1H2H3)q + 2(/i3/i4 — E)q(q —1p— Bgd + .

(1.47D)
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1.3 Hamiltonian structure J. G. Smith

where

Al =20 + 2K3K42 + K1Kg — /i?,) — Kgkg — /@21,
2.2 2 2.2 2 2 2.2

Ay = KiK3 + K1K3k4 + K1K] + K1K3K4 + K1K3Ky + K3K],
Bl = K1K3 + K1K4 + K3ky,
BQZK,1+K,3+/€4,
B3 = k1 + Ko + K3 + Ky,
B, =9 2 2 2

4 = 2K1KaK3 + K]K2 + K1K3K4 — K1K3 — KoKy,

Bs = 20K k3ky — ka(KiK3 + KiKsky + K1K; + K1K3ka + K3K7),
Cl = /€4<l€1/€2 + R1K3 -+ /€2K,3) + R1RoK3.
Solving (1.47a) and (1.47b) simultaneously gives (1.45). Then, solving (1.45) for ¢

and p and substituting these into Hy; (1.42) we can generate Sy (1.7f) multiplied

by some other expression. Also see [56]. O

1.3.8 Summary

Now that we have derived all the o-equations we need to re-classify the special
function and rational function solutions that solve both the Painlevé equations
(Prr— Pyr) and the o-equations (S;; — Syy). This is so that we can compare these

results with the Hankel determinants of orthogonal polynomial weights.
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2 Special function solutions

2.1 Bounded solutions

The conditions that allow bounded special function solutions of the Painlevé equa-
tions are going to be of much interest in this thesis. In the following chapter, we
will discuss the conditions that the are necessary for bounded solutions with re-
spect to all of the special function solutions to all the Painlevé equations and their
associated Hamiltonian equation. The reason we are interested in the bounded
special function solutions is because these are the types of solution that arise
when discussing the connections to orthogonal polynomials. Generally speaking,
the bounded solutions tend to be the solutions that have the physical relevance.
Despite the obvious importance of the locations of the bounded special function
solutions, to the best of my knowledge, it seems as if this work has not been com-
pleted before. There is in fact very little information in the literature regarding
the classification of the bounded Painlevé type solutions.

When it comes to the rational solutions, the locations of the bounded solutions
are very easy to write down. This is because all the rational solutions to the
Painlevé equations are always logarithmic derivatives of polynomials. So assuming
we know the roots of these polynomials it just remains to classify the conditions
that allow no real roots. Then as long as the asymptotic behaviour around +oo
is bounded as well, we will have bounded solutions. In summary, for both the
rational and special function solutions, we are looking for the conditions that give
no poles on the real line.

Consider the following polynomials:
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® o @0 0 O
® 6 060 0 O
[ )
=3
e © 060 0 O

o © 060 0 O
® © 6,06 0 O
u

(a) Hs s has real roots (b) Hge has no real roots

Figure 2.1: Roots of the generalised Hermite polynomials H,,,, which we will

formally define in section 3.1.3

As Hj 5 has real roots it is impossible for a solution containing the logarithmic
derivative of Hs5 to be bounded. As Hgg has no real roots it is possible for the
logarithmic derivative of Hgg to be bounded.

Another interesting property of Painlevé equations is the fact that the form of
the general solution of the Painlevé solutions are slightly different when compared
with the form of the general solution of the associated Hamiltonian equations.
The Painlevé type solutions always take the form of a logarithmic derivative of a
ratio of functions. Regardless of the type of Painlevé solution we are discussing,
be it polynomials or special functions. Whereas the Hamiltonian type solutions
always take the form of logarithmic derivatives of a single function, not a ratio
[56, 57, 58]. This highlights one of the main reasons that the Hamiltonian systems
play such a vital role. They are easier to work with in this sense and all the

applications in orthogonal polynomials involve only a logarithmic derivatives of a
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2.2 Special functions J. G. Smith

single function. In most cases the solutions are just linear transformations away
from the logarithmic derives of the matrix of moments. It’s this fact alone that

motivates this thesis.

2.2 Special functions

The Painlevé equations Pr; — Py possess hierarchies of solutions expressible in
terms of classical special functions and for particular values of the parameters

they satisfy an associated Riccati equation:

(fl_z,: = pa(2)w?® 4 pr(2)w + po(2), (2.1)
where ps(2), p1(z) and po(2) are rational functions. Hierarchies of solutions, which
are often referred to as one-parameter solutions, are generated from seed solutions
derived from the Riccati equation using the associated Backlund transformation.
The special function solutions of Py; (1.1b) are given in terms of Airy functions
Ai(z), Bi(z); of Prr (1.1c) and Pryp (1.24) are given in terms of Bessel func-
tions J,(z) and Y,(2); of Pry (1.1d) are given in terms of parabolic cylinder
functions D, (z); of Py (1.1e) are given in terms of Kummer functions F(a, b; z)

and Ul(a, b; z); and of Py (1.1f) are given in terms of the general hypergeometric

equation F'(a,b,c; z).
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2.2 Special functions J. G. Smith

Table 2.1: Special function solutions of P;; — Py

p2(2) p1(2) po(z) Conditions on parameters
Py € 0 %5 A= %5
Prir €1 A= €2 g1A+ B = 4n + 2
Prrp €1 g €9 e1A+eaB=4n+2
Pry €1 2ez 2u B=-22n+1+¢e4)?% or —2n?
Py 2 63—a;ﬁ —g a+pf+esC=2n+1, or (a—n)(B—n)=0
Py Z(Za_l) (btl(;f)lz)ic c;ﬁ;l £1V2A 4 e9v/—2B 4 e3v2C + €4/1 - 2D = 2n + 1

2.2.1 The Airy function

Definition 2.1. The Airy function is the solution to Airy’s equation
d*w
dz?

where all solutions are entire functions of z [60, §9.2(i)].

= zw, (2.2)

Figure 2.2: Plot of Airy functions Ai(z) and Bi(z) which are solutions to the Airy

equation (2.2).

2.2.2 The Bessel function

Definition 2.2. The Bessel function is the solution to Bessel’s equation

Pt z—+ (2 = P)w = 0. (2.3)
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This differential equation has a reqular singularity at z = 0 with indices £v and

an irreqular singularity at z = oo of rank 1 [60, §10.2(1)].

Definition 2.3. The Modified Bessel functions (z — =iz) have the following

relations to other functions [60, §10.539]:

T2

T,(2) = (3)1/2 sinh(2), (2.42)
T 1a(z) = <3>1/2 cosh(2). (2.4b)

T2
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2.2 Special functions J. G. Smith
(c) v=0, (d) v = —10,
' AN AL AV
4 20 07 2 l V —W -20 07 20 \W\W\
(e) v =—-20, (f) v = =30,

Figure 2.3: Plot of Bessel functions of the first and second kind .J,(z),

and K, (z) which are solutions to the Bessel equation (2.3).
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2.2 Special functions J. G. Smith

2.2.3 The Parabolic cylinder functions

Definition 2.4. The parabolic cylinder functions 1 are solutions of the differential
equation

—— + (az2 + bz + c>1p = 0. (2.5)

The parabolic cylinder functions 1 have the three distinct standard forms [60,

d*U(—a)
g (322 +a)U(—a) =0, (2.6a)

d*W (a)
— (i —a)W(a) =0, (2.6Db)

d’D,
T2 (2z>—v-1D,=0. (2.6¢)

Each of these equations is, of course, transformable into the others. All solutions
are entire functions of z and entire functions of a or v. The form that we will be

concerned with here is the D, type where
D, =U(-%-v,2).

Definition 2.5. The parabolic cylinder function D, has the following relations to
Hermite polynomials [60, §12.7(i)]:

U(—3,2) = Do(z) = exp(32?), (2.7a)

Un —4,.2) = Dul2) = exp(—122) Hey(2) = 27/ exp(~ 12 H, (5v/22), (2.7D)

Vint+4.2) = \/Zexp(322) (i) Hey(iz) = /2 exp(22)(—i)2 /2 H, (1/2iz),
(2.7¢)

where H,(z), He,(z) are both Hermite polynomials, but He,(z) refers to the
12

slightly unusual weight of w(zx) = e~ 2" .
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0.10“

0.02

Figure 2.4: Plot of parabolic cylinder functions D,(z), D,.1(z), D,y2(z) and

D, 5(z) which are solutions to the parabolic cylinder equation (2.5).

2.2.4 The confluent Hypergeometric function

Definition 2.6. A Kummer function is a solution to Kummer’s equation [60,

§13.2(i)]
d*w dw
zij(b—z)%—aw—O.

This has two linearly independent solutions M (a,b, z) and U(a,b, z).

Both of these solutions will be of fundamental importance throughout this

thesis.

Definition 2.7. The first two standard solutions are [60, §13.2(1)]

M(a,b,z) = Z (a>5'zs and M(a,b,2) = Z F(b(aT)Z)s!ZS' (2.8)

where I'(a) is the Gamma function and (a), is the Pochhammer symbol which is

define by
I'(a+mn)

=T
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Definition 2.8. The Kummer functions M(a,b, z) and U(a,b, z) have the follow-

ing integral representations [60, §13.4(i)]:

o F<b) ! uz,,a—1 b—a—1
M(a,b,z) = Wbo;a)/o e ut (1 —w) du, (2.9a)
Ula,b,z) = F(la) /0 e u (1 +u)* " du. (2.9b)

Definition 2.9. The Kummer functions M(a,b, z) and U(a,b, z) satisfy the fol-

lowing transformations [60, §13.2(vii)]:

M(a,b,z) =eM((b—a,b,—z), (2.10a)

Ula,b,z) = 2""U(a —b+1,2 -, 2). (2.10D)

Definition 2.10. The Kummer functions M (a,b, z) and U(a,b, z) satisfy the fol-
lowing differentiation formula [60, §13.3(ii)):

d" _ (a)n
@M(ale Z) = (b)nM(a+n,b+n,z), (2.11&)
% [Q_ZU(C% b,z)| = (=1)"e*U(a,b+n, z), (2.11Db)
% |:€—Z]\4(a7 b, z): = (=) (b(;)j)ne_zM(a, b+n,2), (2.11¢)
% {U(a, b,2)| = (=1)"(a),U(a+n,b+n,z). (2.11d)

Definition 2.11. The Kummer functions M(a,b, z) and U(a,b, z) have the fol-
lowing relation to Laguerre polynomials when n € N [60, §15.6(v)]:
U(-n,a+1,2) = (=1)"(a+1),M(-n,a+1,2) = (=1)"n! L9 (2), (2.12)
(a)

where L, is a associated Laguerre polynomial [60, §18.3].
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2.2.5 The general Hypergeometric function

The hypergeometric function F'(a,b,c;z) is a solution of Euler’s hypergeometric

differential equation
dz
z(l—z)——i—[c—(a—i—b—l—l)z]d——abw:O, (2.13)
z
which has three regular singular points: 0,1 and oo.

Definition 2.12. The general hypergeometric function F(a,b,c; z) is defined by
the Gauss series [60, §15.2(i)]

Fla.b.c.) = (a)s(b)s y _1+a_b _I_a(a—i—l)b(b—i—l)
— (c)ss! c(e+1)2!
c) T(a+s)T(b+s)
—~  D(c+s)s! ’

on the disk |z| < 1.

Definition 2.13. The general hypergeometric function F(a, b, c; z) has the follow-

ing integral representation [60, §15.6.1(1)]:

. B F(CL) 1 tb_1<1 _ t)c_b_l
F(a,b,c;2) = NOINCED) / 1=ty dt. (2.14)

Definition 2.14. The general hypergeometric function F(a,b,c;z) satisfies the

following differential formula [60, §15.5]:
dn

Fr {2‘31 (1—2)""~F(a, b, c; z)}: (c=n)nz" " (1—=2)" = "F(a—n, b—n, c—n;z).
Zn

(2.15)

Definition 2.15. The general hypergeometric function F(a,b, c; z) has the follow-
ing relation to Jacobi polynomials [60, §15.9]:

(a+1),

' F(-nn+a+p+1, a—l—l—(l—z)):PT(La’B)(z), (2.16)
n!
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where Pr(ba’ﬁ)(x) is the Jacobi polynomial.

2.3 Special function solutions to the Painlevé equations

2.3.1 The second Painlevé equation P;;

To obtain a special function solution of a Py; (1.1b) one supposes that w(z) satisfies
the Riccati equation (2.1) for some functions ps(z), p1(z) and po(z). Differentiating

(2.1) yields

Pw d dw d dw d
=P + 2pow—— + Py +p1i—5—+ o
dz dz

E dz dz dz
d d d
_P2y2 B P L 9w + ) (o + prw + po)

dz dz dz
d d d
:2p§w3 + &Pz + 3pips W + h + 2pop2 + pf w + 4P + pipo. (2.17)
dz dz dz
Substituting this into Pj; (1.1b) gives
d d
2(po—1)(p2+ 1w+ <3p2p1+f) w?+ <2p2po+pf+%—2*) w+p1po+po—A = 0.

Equating powers of w and solving gives

pQ(Z) =&, pl(z) = Oa pO(Z) = %527 52 = 1a

with parameter A = %8. P;; has solutions expressible in terms of solutions of the
Riccati
dw _ 241 (2.18)
e— =w" + 2. )
dz 2

To solve (2.18) we have to make the following transformation:

w(z) = = Iny(2),
then 1, (z) satisfies the Airy equation, with ¥ (z) = C1Ai(¢) + C3Bi((), where
Ai(¢) and Bi(() are the Airy functions. Pj; (1.1b) has solutions expressible in

terms of Airy functions if and only if A =n + % for n € Z.
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2.3 Special function solutions to the Painlevé equations J. G. Smith

Theorem 2.1. Let 7,(z,€) be the bi-directional Wronskian determinant given by

¥ 0W) .. 8"V()
0@W) D) ... () d

5@-1)(@ (5(n)(¢) 5(2”_2)(1@

Then for n > 0 the special function solutions for Pr; (1.1b) in the form w(z; A),

are given by the following:

o= 4(25)

for the parameters A = n + %, where ( = —27Y3z. Also note that w(z; —n — 3) =

—w(z;n+3).

Proof. See Okamoto [58]. O

2.3.2 The zeros of the Airy functions

It is interesting to note that these special functions will have no bounded solutions
regardless of the choice of C; and C5. This is important from an application point
of view because the non-linear ODE’s that arise in the applications are almost
always the bounded type. The bounded Painlevé solutions usually tend to be the
solutions that have the physical relevancy. The lack of bounded solutions is easy
to spot from the fact that the solutions can always be written in partial fractions
with respect to the logarithmic derivative and this clearly shows singularities at
z = 0 for all solutions in the hierarchy. This can also be easily seen by studying

the zeros of the Airy type plots in figure 2.2.

42



2.3 Special function solutions to the Painlevé equations J. G. Smith

2.3.3 The third Painlevé equation Pjj;

Without loss of generality we can set C' = —D = 1 by rescaling w and z if

necessary.

Theorem 2.2. Pj;; (1.1¢) has solutions expressible in terms of Bessel functions
if and only if
8114 + €QB = 4n + 2,

with n € Z,e, = £1,e9 = £1 independently.

Proof. See Gromak [33], Mansfield and Webster [45] and Umemure H and Watan-
abe H [65]. O

To obtain a special function solution of a Pr;; (1.1c) we need to substitute

(2.17) into Pyyr (1.1c). This yields

d d
2(1— py)w* + (A — P2 — %z - p1p2z> w® — (%z +p1> w?

I
e

dp,
+ (B + PiPoz — d—ZOZ —po)w +2(p5 — 1)
Equating powers of w and solving gives

A—El

E1z

pa(z) =e1, pi(z) = , po(z) =6, ei=e3=1,

with parameter B = e1e9(2e; — A). So, for Pr;; (1.1c) the associated Riccati

equation is

d Ag; —1
—w:51w2+ .

dz z

W + €. (219)

To solve (2.19) we have to make the following transformation:

w(z) = —e1z o Inv,(2),
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2.3 Special function solutions to the Painlevé equations J. G. Smith

then 1, (z) satisfies

d*y,

Z—
dz?

di,
+ (1 - V)d—i +e182, = 0, (2.20)

we have the following solution for the Riccati:

(

z2Y {ClJl,(z) + CQYV(Z)} , if e1=1, &=1,
z7Y {C’lJl,(z) + CQYV(Z)}, if e1=—-1, g9 =-1,

zv {Clly(Z) + CQKV(Z)} s if &1 = 1, E9 = —]_,

\z_” {C’lL,(z) + CgKy(z)} , if ey =—1, 9 =1,

with C} and Cy arbitrary constants and where J,(z), Y, (z), I,(z) and K,(z) are

Bessel functions.
Theorem 2.3. Let F,(f) be the determinant given by

¥ 0W) ... "I (y)
o) dP) ... () d

V() M () ... @D (y)

and IC,(1,) be the determinant given by

wl/ 1/}1/—1 cee 7vbu—n+1
q7Z)V+1 77ZJV ¢u—n+2

qurnfl 2[)1/4»11 cee wu

Then for n > 0 the special function solutions of Prrr (1.1¢) in the form

wl[/],\g(za A[N]a B[N}a C[N]7 D[N]7 €1, 52);
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2.3 Special function solutions to the Painlevé equations J. G. Smith

_n d ‘Fn-i-l(wl/) _ d 1 Icn+1(¢u)

1 _ __ 4 K@)
Yo & TFRW) T A Kt
d }—n (%) d ICn 1(¢u)
2l (A2l gl o2l pl2l 1 1y = —n 4 D Znftiv) g, DAY
w ) 7 Y ) ) n n )
Vm( ) ? dz ]:n(l/}/) dz Kn(¢v+1)
d ]:n (wu) d ICn 1(%)
8 (48 gl o8 pBl 1 1 y—n_ Ly Fenl)  d ) Ken(W)
B A - ) R P e O
Wil (4l gl ol pil _y _py = —a g @y Fen() o d o Kaia ()

ode T F(W) dr Ka(Yu)
for the parameters

(AW g ¢l DY = £9(y 4 n),2(n — v +1),1, -1},

{AP B ¢ DB = [2(v —n),2(n+ v +1),1, -1},

{AB] BB CBl DB} = {2(v 4+ n), —2(n — v +1),1, -1},

(AW W ¥ DU — {2y —n), —2(n+ v+ 1),1, -1},
with ' = 4

dt’

Proof. See Okamoto [58]; also Forrester and Witte [26]. O

2.3.4 The zeros of the Bessel functions

The special function solutions of Pr;; (1.1c¢) are only bounded when g, = —1,
v > 0 and C;Cy > 0, for all n, where n is the number of the solution in the
hierarchy. The alternative case is when 5 = 1, v < 0 and C,Cy > 0, for all n,

where n is the number of the solution in the hierarchy.

2.3.5 The associated third Painlevé equation Py

Without loss of generality we can set ' = —D = 1 by rescaling w and z, if

necessary.

45



2.3 Special function solutions to the Painlevé equations J. G. Smith

Theorem 2.4. Py (1.24) has solutions expressible in terms of Bessel functions
if and only if
8114 + 623 = 4n + 2,

with n € Z,e, = £1 and €5 = 1 independently.

Proof. See Gromak [33], Mansfield and Webster [45] and Umemure H and Watan-
abe H [65]. O

To obtain a special function solution of a Py (1.24) we need to substitute

(2.17) into Py (1.24). This yields

d d
t(1 — p2)ut + (A — Py — %t — p1p2t> u® — (%t +p1)u2

d
+ (B + pipot — %t—m)wt(pﬁ— 1) =0.

Equating powers of w and solving gives

1%
p(t) =c1, pi(t) = e po(t) =9, €]

with parameters A = g1(v+1) and B = e9(1—v). So for Pry; (1.1¢) the associated
Riccati equation is

d
d_?: — o + Vt—“ te (2.23)

To solve (2.23) we have to make the following transformation:

d
u(t) = —5115% In,(t),
then 1, (z) satisfies
d*, diby
tW + (1 — IJ)E + 5162'¢,, =0. (224)
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2.3 Special function solutions to the Painlevé equations J. G. Smith

We have the following solution for the Riccati:

,
PG N EVD), I a=1 a=
PR OV T YV}, I =1, e =L
P{OLVE + GR VDY, I a=1 e=-L

(HOL V) + G2V} i e =1 s =1

,[7Z}I/ (t) =X

with C; and Cy arbitrary constants and where J,,(Q\/E), YZ,(Q\/Z), I,,(Q\/Z) and
K, (2V/t) are Bessel functions.

Theorem 2.5. Let F,,(f) be the determinant given by

¥ o) ... 60D

) 5@ D)
Fo() = (:@D) :w) ) :(@D) ,5:zi

0D () () .. 8P TI()
and IC,,(1,) be the determinant given by

%j %/71 cee wufnJrl
wu—s—l wzx 7~p1/—n—|—2

wr/—i—n—l wu—i-n cee wu

Then for n > 0 the special function solutions of Prrp (1.24) in the form

u[j,\g(z;A[N],B[NLC{NLD[N]’&’@)’
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2.3 Special function solutions to the Painlevé equations J. G. Smith

for N =1,...,4, are given by the following:

. il ]CnJrl(wu)

d . Fnyi()
(1] A[l}’B[1]70[1]7D[1]7171 —n gy 2\ ’
ul/,n( ) 2 dt n]—"n(\/f@/)’) dt Kn(@/h/—l)
(

W2, (A, B, 0P DB 1 1) = 1 ¢ 4o FonW) o dy Ken(¥)

)

dt ]:n \/&/},) dt Kn(¢u+1)’

al (A gl ot pBlq _py —n Ly @) dy Ken($))
v,n 2 dt Fn(\/zw/) )
fn+1 (2/11/) o d 1 ]CnJrl(wu)

d
4 AW pHl ol pll 1 _y=—n44_p it
U ? ? Y Y Y n z n Y
V,ﬂ( ) 2 dt Fn<\/g¢/) dt ]Cn (wl/+1>

for the parameters

(AU B ¢l DY — £9(y 4+ n),2(n —v +1),1, -1},
{AP BP, O DPI} = (2(v — n),2(n + v +1),1, -1},
{AP], BB OV DB} = (2(v 4 n), =2(n — v+ 1),1, -1},

{AW, B, W DM} = (2(v = n), =2(n + v+ 1),1, -1},

. r__d
with =

Proof. See Okamoto [58]; also Forrester and Witte [26]. Then, using the transfor-

mation from Pjy; (1.1c) to Py (1.24), we can simply read off the special function

solutions from the previous section. O

The special function solutions of Py (1.24) are only bounded when e, = —1,
v > 0 and C;Cy > 0, for all n, where n is the number of the solution in the
hierarchy. The alternative case is when 5 = 1, v < 0 and C;Cy > 0, for all n,

where n is the number of the solution in the hierarchy.
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2.3 Special function solutions to the Painlevé equations J. G. Smith

2.3.6 The fourth Painlevé equation P;y

Theorem 2.6. Py has solutions expressible in terms of parabolic cylinder func-

tions if and only if either:

or
B = —2n?,

with n € Z,e = +£1.

Proof. See [31, 32, 34, 35, 40, 42]. ]

To obtain a special function solution of a Py (1.1d) we need to substitute

(2.17) into Py (1.1d). This yields

d
3(pa — 1)(pa + D' + <4P2p1 + 2% — 82) w®

d d
+ 2P2po+p%—422+2ﬂ+414 w2+2ﬂw—p§—2B:0.
dz dz
Equating powers of w and solving gives
p2(2) =&, p(2) =2z, po(z) =2v, &*=1.

So for Pry (1.1d) the associated Riccati equation is
dw
dz

with parameters A = —g(v + 1) and B = —2v2. To solve (2.27) we make the

=e(w? + 2zw) + 2, &% =1, (2.27)

transformation w(z) = -4 In¢(z) and this yields
d*y, dip,
o~ 2e2 L+ 2ev, =0, (2.28)

The solution of (2.28) depends on whether v € Z or v ¢ Z. The different solutions

are characterised in the following [18]:
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2.3 Special function solutions to the Painlevé equations J. G. Smith

i) If v ¢ Z then (2.28) has solutions

b(zie) = {C1D,(V22) + C2D, (—V22)} exp(327), it e=1,
| {CID—V—I(\/QZ) + CQD_V_l(—\/iZ)}eXp<—%22)’ 1f £ = _17

with C and Cs arbitrary constants.

ii) If v = 0 then (2.28) has solutions

Ci + Coerfi(z), if e=1,
Yo(2;€) =
C) + Ceerfe(z), if = -1,

with C and Cj arbitrary constants, erfc(z) is the complementary error func-

tion and erfi(z) is the imaginary error function, respectively defined by
fio 2 /OO (—t?) dt f 2 /OO (t%) dt (2.29)
erfi=— exp(— , erfc=— exp . .
ﬁ z ﬁ 0

iii) If v = m, for m > 1, then (2.28) has solutions

(Cle(Z)
dm
C 2)—{erfi =22}, if e=1,
(i) = +C5 exp(z )dzm{er (z)exp(—z7)}, if e
C1(—9)™H,,(iz)

+Cgexp(—22)ci/—m{erfc(z)exp(zz)}, if e=-1,

with C; and Cy arbitrary constants and H,(z) is the Hermite polynomial

defined by
dm
Hy(z)=(-1)™ exp(z2)dz—m exp(—2?). (2.30)
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2.3 Special function solutions to the Painlevé equations J. G. Smith

iv) If v = —m, for m > 1, then (2.28) has solutions

C1(=1)" " Hpn1(iz) exp(2?)

m—1
+Cy———{erfe(z) exp(2?)}, if =1,
Vom(zi6) = dzm~
C1H,,(2) exp(—2?)
dm—l N ]
+C’2W{erﬁ(z) exp(—z7)}, if e=-1,

with C and Cs arbitrary constants.

Theorem 2.7. Let 7,,(z,€) be the bi-directional Wronskian determinant given

by
Y 6() ... §I(y)
o) 6P(Y) .. dM(y) d

Tn,l’(z7€> = . . ) 5 5 = —.

s D) 6M(y) ... 8PA(y)
Then for n > 0 the special function solutions of Pry (1.1d) in the form

wN (z; AN, BINTY,
for N =1,2,3, are given by the following:

d . Tar1u(z5€)
W, Al glly = _9 = p pHlA =)
w(z; A% BY) z+edz n Py F

Y

wl?)(z; AP, iy — L4 Taw(#E) |
d Tnw—1(2;€)

z
Wz A, gy = o Ly T (E8).
dz Tn—l—l,u(Z; 5)

for the parameters
{AM, B} = {e(2n —v), —2(v + 1)},
[A®), B2} = {e(20 — 0+ 1), —2n?),

{AB BB} = {e(n+ v+ 1), —2(v — n)?},
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2.3 Special function solutions to the Painlevé equations J. G. Smith

2
where T, ,—1 = W(d%ﬂ)a j?¢a ceey céiz_nnw) because d%@Z)V = Y1

Proof. See Okamoto [58]; also Forrester and Witte [26]. O

2.3.7 The zeros of the parabolic cylinder function

The parabolic cylinder function D, (z) has no real zeros if v < 0, so ¥, (z) has no
real zeros if v < 0 and C;Cy > 0 when ¢ = 1 or v > —1 and C;Cy > 0 when
e = —1160, §12.11]. The special function solutions of Ppy (1.1d) are only bounded

solutions from the first hierarchy in the following two cases:
o 821,7/<0,0102>0,
° 82—1,l/>1,0102>0.

These are both the bounded situations for all n.
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2.3 Special function solutions to the Painlevé equations J. G. Smith

(c)n=2 (d)n=3

Figure 2.5: Parabolic cylinder function solution plots of w!!l(z; v = —32’), whl(z;v=

—2), wll(zv==1), wll(z;v=-9) with C; = Cy =1 and € = 1.

The number of turning points in these plots is dictated by 2(n + 1).
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3

(c) n=1, C1 =1, C5={10,20,30,40} (d) n=1, C=1, C; ={10,20,30,40}

37 37

(e) n=2, Cy =1, C,={10,20,30,40} (f) n=2, Ca=1, Cy ={10,20,30,40}

Figure 2.6: Parabolic cylinder function solution plots of wl!l(z;v=—3 ¢ = 1).
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2.3 Special function solutions to the Painlevé equations J. G. Smith

2.3.8 The fifth Painlevé equation Py

Theorem 2.8. Equation Py (1.1e) has solutions expressible in terms of Kummer

functions if and only if
a+b+e3C=2n+1, or (a—n)(b—n)=0,

where n € N, a = e1vV2A and b = g9/ —2B, with ¢ = +1, j = 1,2,3 indepen-

dently.
Proof. See Okamoto [57], Masuda [46] and Watanabe [68]; also [34, §40]. O

To obtain a special function solution of a Py (1.1e) we need to substitute (2.17)
into Py (1.1e) which yields a rather large expression. However, equating powers

of w and solving gives

pa(2) =% pi(z) =e3— 2, po(2) = -4 =1,

with parameters A = 1a?, B = —3b%, C =e3(1 —a —b) and D = —3. So for Py
(1.1e) the associated Riccati equation is

dw

= aw® + (b —a + e32)w — b. (2.33)
2
To solve (2.33) we make the transformation w(z) = —2- In¢(z) and this yields
d? d
22£ +z(a—b— €3Z>d—f —abp = 0, (2.34)

which has solutions

(

PO M(b,1+a+b,2)+CoU(b,1 +a+b,2)}, if e3=1,

¢(2) = { 2Pexp(—=2){CiM(a+1,a+b+1,2) (2.35)

+CU(a+ 1,a+b+1,2)}, if e5=—1,

55



J. G. Smith

2.3 Special function solutions to the Painlevé equations

with C} and Cy arbitrary constants and where M («, 3, z) and U(a, 3, z) are Kum-
mer functions. The special function solutions of (1.1e) and (1.7¢) are given by the

following theorem:

Theorem 2.9. Let F,,(¢) be the determinant given by

W o(v) 3" (4)
2 (n)
| W AP )|
dz
8" (y) () a2 ()
To(f) be the bi-directional Wronskian determinant given by
¥ o(v) ()
s @) L s y
Tn(lp) = s 6 = E
00D () 6M(W) ... EA(Y)

and

Yap(z;a,0) = C1M(a,b, z) + CoU(a, b, z), (2.36)

with Cy and Cy arbitrary constants.

Then for n > 0 the special function solutions of Py (1.1e) in the form
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2.3 Special function solutions to the Painlevé equations J. G. Smith

for N =1,2, are given by the following:

1 d «Fn (€_Z¢a 1)
(. Al gl ol pll 1y =74+ — Ip T Sehx
Wy, (Z, ) ) ) ) ) +O{—B—TL /B_’_Z_’_Zdz n fn(eizq/Joc,B)

1 d n a—n -n
:1+—{ﬁ+n—|—z—lnT+lw +1,8-n+2)

a—pf—n dz Tn(Va—nt1,6-n+1)
d n (wa 1 1)
Py, AR BRI o DRI 1) =1 N e (RN
wn (= AT, BE, OF, DF, =) +Oz+n 2= F e Fn(a,p)

~1 —B—n—2—1
+a+n{z 6 " Zdz ! Tn(¢a,ﬁ—n+1)

for the parameters

(AW BW ol DUy = (L(—a + B+ n)%, Lo 1+n—B,-1},  (237a)

{AR BRI ¢l pP = {{a+n)? -L(B-a)?B-n—-1-1}. (2.37b)

Proof. These results can be inferred from previous work done by Forrester and

Witte [27] and Okamoto [59]. O

2.3.9 The zeros of the Kummer functions

If a—b# 0,—1,—2,... then ¢ has infinitely many zeros in C. When a,b € R
the number of real zeros is finite [60, §13.9(i)]. The special function solutions of
Py (1.1e) are only bounded when a = 0,—1, —2,... and n is even; this applies to
both of the hierarchies here. This is no coincidence either as this is precisely the
condition in the rational solutions when the polynomial roots that comprise the

solutions are not sitting on the real line.

o7

Tn+1 <¢a+1,,8—n+1) }
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2.3 Special function solutions to the Painlevé equations J. G. Smith

(e) wf[jz](z;a =-97) () w[72](z;a =-10,5)

Figure 2.7: Kummer function solution plots to P, (1l.le) with § =
{—30, 40, —50}.
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2.3 Special function solutions to the Painlevé equations J. G. Smith

2.3.10 The sixth Painlevé equation Py

Theorem 2.10. Fquation Py (1.1f) has solutions expressible in terms of hyper-

geometric functions if and only if
h1+h2+h3+h4:2n+1,

with e; = £1, j = 1,2,3,4, independently where hy = e1V2A, hy = g2/ —28,
hg = &3V 20, ]’L4 = &4V 1-2D.

Proof. See Fokas and Yortsos [22], Lukashevich and Yablonskii [43], Okamoto [56]

and also Gromak, Laine and Shimomura [34]. O

To obtain a special function solution of a Py (1.1f) we need to substitute
(2.17) into Py (1.1f) which yields a rather large expression. However, by equating
powers of w and solving gives

a b+1—a)z—c c—b—1

Pl =y ne =Ty P = s =t

with parameters A = 1a?, B=—1(b+1—¢)?, C = 1(c—a)? and D = $(1 —b?).
So for Py (1.1f) the associated Riccati equation is

dw

z(z —1) 7

=aw’+ ((b+1—a)z —c)w—=z2(b+1—c). (2.38)
To solve (2.38) we have to make the following transformation:

1 d
= e (br1)z—2(2—1)—Ine .
w(z) a{c (b+ 1)z — 2(z )dz nw}
This yields

z(z — 1)% +(c+1—(a+b+ 3)2)% —(a+1)(b+ 1)y =0, (2.39)

where 9 is the general hypergeometric function F(a + 1,6+ 1,c+ 1; 2).
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2.3 Special function solutions to the Painlevé equations J. G. Smith

Theorem 2.11. Let 7,,(¢qy.) be the determinant given by

7wba,b,c 5(wa,b,c) s 5(71—1) (wa,b,c)
N 6(¢a,b,c) 5(2) (wa,b,c> cee 6(n) (wa,b,c)
Tn <¢a,b,c) = |Tn (¢a,b,c)| = . ) ) . )
5(71—1) (wa,b,c) 6(n) (wa,b,c> cee 5(2n—2) (wa,b,c)
(2.40)
6 = z(z —1)<L. Define
Wa (Yape) = "0 02 (2 — 1)nmmP2r (4,0, (2.41)

Then for n > 0 the special function solutions for Py (1.1f) in the form
wy(z; A, B,C, D),

are given by the following:

1 d . Waet(Yatr1611,041)
(A, B,C,D) = - —@n4b+)z—2(z—1)21 bitert) |
wy(z C,D) a{nJrc (2n+b+1)z—2(z )dz n W (e oirs)

for the parameters
{A,B,C,D} ={ia® —3(b—c+n+1)*i(a—c—n)* 11—V},
with Vg the hypergeometric function and a polynomial of degree b
Vape =2F1(a, b, ¢; Z)Zb,

Proof. See Okamoto [56] and Forrester and Whitte [28]. O

2.3.11 The zeros of the hypergeometric function

Consider the hypergeometric function F'(a, b, c; z). If a, b, c are real, a, b, c—a, c—b

#0,—1,—-2,..., b > a and ¢ > a + b then the hypergeometric function has no real
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2.4 Special function solutions to the o-equations J. G. Smith

zeros when a > 0. The special function solutions to Py (1.1f) have no bounded
solutions due to the fact that the asymptotic behaviour around 4oo is linear.
However, if an appropriate linear transformation is made we can have bounded
solutions. This is precisely when a > —1, assuming that all the conditions above

have been met.

2.4 Special function solutions to the o-equations

In the following section we shall we defining all the special function solutions to

all the Painlevé equations associated sigma equations.

2.4.1 The second Painlevé o-equation

Theorem 2.12. Let 7,,,(z,€) be the bi-directional Wronskian determinant given
by

(& o) ... 80D
I I R R
0" (y) 8 () ... 6CR(Y)

Then for n > 0 the special function solutions for Sy (1.7b) in the form o(z;a),

are given by the following:
d
o(z;a) = 7 In7,41(2), (2.42)

for the parameter o = n + £, where ¥(2) = C1Ai(C) + CoBi(¢), with Ai(¢) and

27

Bi(C) Airy functions and ¢ = =273z, Also note that o(z;—n—1) = o(z;n+1).

Proof. See Okamoto [58]. O
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2.4 Special function solutions to the o-equations J. G. Smith

As with the Painlevé case it is interesting to note that these special functions
will have no bounded solutions. The lack of bounded solutions is evident because
the solutions can always be written in partial fractions with respect to the loga-
rithmic derivative; this clearly shows an infinite number of singularities at z = 0
for all solutions in the hierarchy. Studying the zeros of the Airy type plots in
figure 2.2 yields the same conclusion. However, there is one exception to this rule
which allows the removal of all possibilities for poles on the real line. This can be
done by restricting n to be odd and the constants C; = cos(¥) and Cy = sin(v)

where ¥ is 0 or 7.

0.7H
0.6
0.5H
0.41
031 n
0.2

0.1H

10 20 30

-0.1¥

Figure 2.8: Special function solutions to Sy; (1.1b) with n =1, C} = Cy = 7/2.
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2.4 Special function solutions to the o-equations J. G. Smith

2.4.2 The third Painlevé o-equation

Theorem 2.13. Let F,(f) be the determinant given by

" 5() ... 5D (y)
0W)  6Pw) ... () d

SD(p) () ... 52D (y)

and IC, (1) be a determinant given by

wu 7~/)1/—1 wu—n—l-l
77ZJV+1 wu e ¢V—n+2

2/}Ij—l—n—l ¢1/+n wzx
with §(f) = zLf.

Then for n > 0 the special function solutions of Sy (1.7¢) in the form

U[V{\Q(Z;ﬁ([)N]7q9g]7€17€2);

for N =1,...,4, are given by the following:

d d
ol (ol 9l 1,1) = F + e InF,(¥,) = F +n(n — 1)+zd— In K, (1),
s z VA

0 Y000 o
2] 2 2] d d
O-V,n(z;ﬁ() 719007 _17 1) =F+ ZE lnfn(wl/) =F +n(n - 1>+Z% hllcn(i/fu)y
0 Yooy

d d
ol (0 9B 1, —1) = F + e I Fu () = Fn(n—1)+z -l Ku(9,),
’ Z z

d d
ol (2ol 9l 1, 1) = F + el Fu(¥y)=F+n(n — 1)+zd— In K, (1,,),
’ Z VA
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2.4 Special function solutions to the o-equations J. G. Smith

for the parameters

(ol 9l = (12 42 1% — n?),

(9 9} = (12 + 02 n? — V7,

0 Yoo

(0, 0%} = {12 + n?,n® — 2},

0 Yoo

{19[4] 19[4]} = {1/2 +n? % — n2},

0 7Yoo

where F = §(e1602% /2 + 1V? — 2eynv — n(n — 1))

for
(
2 {C’lJ,,(z) + C’QY,,(,Z)}, if e9=1, &=1,
z7v {C’lJl,(z) + Cng(z)} , if e =—1, g9 =—1,
Yu(z) =
z2Y {Clll,(z) + CQKV(Z)} , if 1 =1, egy=-1,
\Zﬁy {Clly(Z) + CQKV(Z)} , if g1 = —1, gy = 1.
Proof. See Okamoto [58]; also Forrester and Witte [26]. O

Then for n > 0 the special function solutions of Sy in the form

) oo 7

al[,{\g(z;ﬁgN] I g1, e9),
for N =1,....4, are given by the following:

d d
a,[j]n(z;ﬁg],ﬂg, 1,1)=F + taln}'ﬂ(wy) =F+3(n—-1)+ t@ IniC,, (¥,),

JLZL(z;ﬁEQ],ﬂEJ, —1,1)=F +t—j InF, () = F+ 5(n—1) +t—j In KC,, (),
k] Z Z

a?ll(z;ﬁg?’],ﬁg, 1,-1)=F +t—j InF,(v,) = F + %(n - 1) +t—j InKC,, (),
k] z Z

aﬂxzﬂﬂﬁﬂgﬁq—U:F+¢anfﬂ¢ﬁ:;F+§Ur—D+¢§%nKA¢»,
f z Z
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2.4 Special function solutions to the o-equations J. G. Smith

for the parameters

(o5 9y = (v +n,v —n},
(5 98y = (v +n,n — v},
{79%3]7791[5;]} = {V+n7n_ V}7

{05, 05} = {v +n,v —n},
where F' = L(e1eat + 12/2 + n(1 — e1v) — n?/2) for
(
20T, (2VE) + Y, (2VE) ), i er =1, e =1,
t{C1T, (2VE) + CoY, (2VE) ), if e =1, e =1,

PP{OLV + GR VDY, T a=1 e=-L

[P {CL(2VE) + G (2VE) ), i er= 1, e =1

Proof. See Okamoto [58]; also Forrester and Witte [26]. O

The special function solutions to S;; (1.1¢) and Sy (1.24) have no bounded
solutions due to the fact that the asymptotic behaviour around +oo is quadratic.
However, if an appropriate quadratic transformation is made we can have bounded
solutions. This is precisely when ¢; = —1, v > 0 and C,C5 > 0, for all n, where
n is the number of the solution in the hierarchy. The alternative case is when
gy =1, v <0 and C1C; > 0, for all n, where n is the number of the solution in

the hierarchy.
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2.4.3 The fourth Painlevé o-equation

Theorem 2.14. Let 7,,,(z,¢) be the bi-directional Wronskian determinant given

by
(0 o) ... §¢I(y)
o) 6P(Y) .. dM(y)

Tono(2,€) 1= _ . . . 0= —.

5(n71)(¢) 5(")(1/;) 5(2n72)(¢)

Then for n > 0 the special function solutions of Sy (1.7d) in the form

ot (2 0, 9,

0 »Yoo
for N =1,2,3, are given by the following:

d
05],,(2;195”,19%) =7 InT,.(2;¢),

d
UEL(Z; 19%2]’19[023) = In7,,(z;6) — 2enz,

d
O'E]V(Z; 19%3171952) = In7,,(z;6) +2e(v —n+1)z.

for the parameters

{79%11779&]} = {€<V —n—+ 1)7 —ETL},
(95,02} = {en,e(v + 1)},

B 9B = {—e(v + 1), —e(v —n+ 1)},

Proof. See Okamoto [58]; also Forrester and Witte [26].

(2.47a)
(2.47b)

(2.47¢)

]

The special function solutions of Sy (1.7d) are only bounded when either:

v < 0and C;Cy > 0 when e = 1 or v > —1 and C1Cy > 0 when ¢ = —1 [60,

§12.11).
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2.4 Special function solutions to the o-equations J. G. Smith

(c) n=3, Cy =1, C2={10,20,30,40} (d) n=3, C3=1, C; ={10,20,30,40}

49 49

(e) n=4, Cy =1, C,={10,20,30,40} (f) n=4, Cy=1, Cy ={10,20,30,40}

Figure 2.9: Parabolic cylinder function solution plots of o?(z;v=—3¢ = 1).
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(a) n=2,v=1,C1 =1, C,={1,2,34} (b) n=2,v=1, Co=1, C; ={1,2,3,4}

39 39

(c) n=3,v=2,C1=1, C,={1,2,34} (d) n=3,v=2, Co=1, C; ={1,2,3,4}

37 37

(e) n=4,v=3,C1=1, C,={1,2,34} (f) n=4, v=3, C,=1, C; ={1,2,3,4}

Figure 2.10: Error function solution plots of ohl,(2;n — v — 1,n).
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2.4 Special function solutions to the o-equations

] 5]
2 4 -4 -2 0
z

(a) n=5,v=4, Cy =1, C,={1,2,34} (b) n=5, v=4, Co=1, C; ={1,2,3,4}

34

y ﬁ
2 4
-

(¢) n=6,v=>5,C1=1, C,={1,2,34} (d) n=6, v=>5, Co=1, C; ={1,2,3,4}

34

F

34

-4 -

y
1
‘2 o

34

, ¥
2 4 -4 ) 0

(e) n=7,v=6, C1 =1, C,={1,2,34} (f) n="7, v=6, Cy=1, C; ={1,2,3,4}

Figure 2.11: Error function solution plots of ohl,(2;n — v — 1,n).
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2.4.4 The fifth Painlevé o-equation

Theorem 2.15. Let F,(v) be the determinant given by

0 o) ... 80D
Fay=| @@ 0w joat
S D() 6M() L. 5 ()
(1) be the bi-directional Wronskian determinant given by
0 o) ... 0TIy
2 (n)
() = 5<?w> 0 ;w) ::: 5 E(zm | 6:%
V() §() ... ()
and
Yap(2;a,b) = C1M(a,b, z) + CoU(a, b, z), (2.49)

with C1 and Cy arbitrary constants.

Then for n > 0 the special function solutions of Sy (1.7e) in the form
[N] [N] _[N] _[N] )

Nl(,.
Uf[z]<za’%0 yK1 ,Re ,Rg ,€3),

for N = 1,2 are given by the following:
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2.4 Special function solutions to the o-equations J. G. Smith

d
oll(z; /séu, R 5[31], 1) = i InFri1(e *ap) + 1 (2a+1+ B +32) (n+1)

—3mn+1)+1iC2a+1-8)(—2a—1-2z+p)
= e W T (acngn) 3 (20— 146 = 2) (04 1)
~im+1)?+1C2a+1-8)(-2a—1-22+p),

d
o?(z; /f([)z], K2R /4:%2], —1) = z— I Fp(eMbas1p41) + T (38+2—2a — 3z —4\)n

dz

—in?-l2a-p)(2a+2z—p) (2.50a)
= o T (s pones) + (38— 20— 32)m

— 12120 —pB)2a+22- ), (2.50D)

for the parameters

{K([)uﬂl’@’,{?)]}_ﬁga B+n+2n+2—-2a—pF2a—F-3n—2,30+n
90— 9)}, (2.51a)

(2 kPGP By = —H2a+B4+n,8—3n—2a,n+ 20— 38,8 +n — 2a}.
(2.51b)

Proof. These results can be inferred from previous work done by Forrester and

Witte, [27] and Okamoto [59]. O

It is interesting to note there is a mapping between the parameters (2.51a)

and (2.51b) which gives rise to the following corollary:

Corollary 2.1. The two determinants F,,(¢ayp) and F, (e *1cq) have the following

relation:

d d .
= In 7, (¢,,) = nz + = In (e Yusn—1,u)- (2.52)
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2.4 Special function solutions to the o-equations J. G. Smith

We can also utilise the fact that (2.50b) is equal to (2.50a) which gives rise to

the following corollary:

Corollary 2.2. The two determinants F,(Vap) and 7,(1cq) have the following

relation:

d d n

I Fy(p) = = T (Yupirn) = 5= (L= ). (2.53)

Corollary 2.3. The two determinants 7,,(¥) and 7,(e”*¥) have the following
relation:

To(Ve™?) = 7,(¥)e ™. (2.54)

The special function solutions to Sy (1.le) have no bounded solutions due
to the fact that the asymptotic behaviour around +oo is linear. However, if an
appropriate linear transformation is made we can have bounded solutions. This

is precisely when a = 0, —1,—2,—3, ... and n is even.
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807 80
60 60
v 40 V40

-20 -204

-404 -404
(a) o2 (z;00 = —4, B) (b) o (z;a = —6,)

80 80

60 601

,h 60 80 100 120 -20 S 60 80 100 120

(c) o)z = —8, ) (@) o5 (2500 = —10, )

y 40 y 40

204 204

-204 -204

-404 -404
(e) 052] (z;a0 = —12,0) () 0'£2] (z;a0=—14,5)

Figure 2.12: Some special function solutions to Sy (1.7e) with g = {20, 30,40}.
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2.4 Special function solutions to the o-equations J. G. Smith

It is interesting to note that the number of “kinks” in the solutions is equal to

—a—n—1.

2.4.5 The sixth Painlevé o-equation

Theorem 2.16. Let 7,(Yqp.) be the determinant given by

wa,b,c 5(2/10,,1),0) v 5(71—1) Wa,b,c)
§(Vape 6P (Wape) - 0 (Yape
Tn (wa,b,c) = |7A_n (wa,b,c)’ = (w.# ) (¢ ’ ) ) (w ' ) )
5(n_1)<wa,b,c) 5(71) (wa,b,c> oo 5(2n—2) (wa,b,c>

6 = z(z — 1)L, Define
W, (1[)(171776) = = )/2 (1 yn-n)/2, (¢a,b,c)-
Then for n > 0 the special function solutions for Sy (1.7f) in the form
on(2; K1, K2, K3, Ka),
are given by the following:

on(2; K1, Koy ks, ka) = 3 (n+ 1) (daz —a+b—2c+1) — 5 (a—b+1)°2

d
+1i(@®+a+b—b—ac—bc) +z(z — 1)£1an+1(¢a7b,C),
for the parameters
{k1, ko, k3, ka} = {—3(a—b—2n—1),2(a+b—2c+1),—3(a—b+1),5(a+b—1)}.

Proof. See Okamoto [56] and Forrester and Whitte [28]. O
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2.4 Special function solutions to the o-equations J. G. Smith

The special function solutions to Py (1.1f) have no bounded solutions due
to the fact that the asymptotic behaviour around +oo is linear. However, if an
appropriate linear transformation is made we can have bounded solutions. This
is precisely when a > 0, assuming all the conditions we set before in the section

“The zeros of the hypergeometric function”.
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3 Rational function solutions

In the following section we will define the rational function solutions to the
Painlevé equations and their associated sigma equations. However, first we must

define some new polynomials that we will need.

3.1 Special polynomials

Now we will define all the special polynomials that we need in order to define the

rational solutions themselves.

3.1.1 The Yablonskii-Vorob’ev polynomials

The Yablonskii-Vorob’ev polynomials are defined to be the solutions to the differential-

difference equation

d? Q. \’
Qun@r =02 - 1|05 % - () | (3.1)

with Qo(z) = 1 and @;(z) = z. The Yablonskii-Vorob’ev polynomials are monic
polynomials with degree %n(n + 1). A table of The Yablonskii-Vorob’ev polyno-

mials is shown below.
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Table 3.1: Table of the Yablonskii-Vorob’ev polynomials

Qa(2) =23+ 4

25 4+202% — 80

O

3\ 2

)
(2)
4(2) = (27 4 602° + 11200) 2
(2)
(2)

O

219 +140 212 + 2800 22 + 78400 2° — 3136000 2* — 6272000

O

z

5

6(2) = 221 + 280 2% + 18480 2'° + 627200 2% — 17248000 2°

O

+1448832000 2° + 19317760000 2* — 38635520000

Q7(2) = (227 + 504 2%* + 75600 22 + 5174400 2'® + 62092800 2'5 + 13039488000 z'2

—828731904000 22 — 49723914240000 2% — 3093932441600000)z

Some root plots of The Yablonskii-Vorob’ev polynomials are shown below.
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Special polynomials

3.1

10

104

-10

10

-10

-104

(b) Qs(2)

(a) Qa(2)

10

‘5
e © 06 0 0 0 o
e © /0 o o
= - ® ° o 2
. @ ®|e o ,
e O o
®[®
[ ]
=
(e
L
e © 0 . 0 o o
e © O o o
S "~ @ O|® @ © 2
T e @ e
® | O
Lo
[ ]

-10

(d) Q7(2)

(c) Qs(2)

10

e © © 0 0 0 o o
...%...
S tookdoﬁ
e © ® o
e © 0 o
e 0 o
)

~104

104

~104

(f) Qo(2)

(e) Qs(z)

Figure 3.1: Roots of some Yablonskii-Vorob’ev polynomials.
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The following remarks are based on observations:

Remark 3.1.

i) The Yablonskii- Vorob’ev polynomials always have real roots, regardless of n. This

will be an important point later in this thesis.

it) The Yablonskii- Vorob’ev polynomials take the form of “triangles”, though these

are only approrimate triangles since the roots lie on arcs rather than straight lines.
iti) The Yablonskii- Vorob’ev polynomials have degree equal to sn(n + 1).

iv) The Yablonskii-Vorob’ev polynomials always have %n(n + 1) roots.

3.1.2 The generalised associated Laguerre with § = %

Suppose that 7, ,(2) satisfies the recursion relation

d’7, dT,n 2 dT,n
@04 DTt = == un 5 = (2 ) | = n T b ) (32

with 7, _1(2) = 7,0(2) = 1. It is interesting to note that setting y = 1 recovers
the Laguerre polynomials. A table and root plots of 7, ,(z) polynomials is shown

below.
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Table 3.2: The generalised associated Laguerre with § = %

=~ { G+’ —5pu (24 p)’ +9p (z+p) — 542}

= {2+ ) = 15p (2 4+ p)" + 63 (2 4+p)” — 2250 (2 + p)°
+315 12 (2 + ) — 17543 (2 + p) + 36 1}

T5(2 1) = gzl 2+ =350 (2 4+ ) + 2524 (2 4+ )" + 175 4% (2 + p)
—2025 11 (2 + p1)° + 945 12 (2 4+ p)" — 1225 (0 — 3) (u +3) (2 + p)°
—26082 11 (z + p1)” + 33075 12 (2 + pu)* — 350 p2 (35 412 + 36) (2 + p)?
+11340 1% (24 p)* — 225 2 (T — 6) (T + 6) (2 + p)

+7 p® (875 p* — 828) }

9

The polynomials 7, ,(z) also have a determinantal representation

¢u,n 62 (¢un) oG (1/%71)

6 (Ypun) 0O (Wym) o 0PI (W) d

ran(9)i=| el T e =
8" D (Wyn) 8T (Wyn) o 3T (hy0)

where 9, , = Lff_fll_%(—z) and where Lj is an associated Laguerre polynomial.

Some roots plots for 7, ,(z) are shown below.
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15 15
10 10
y y
5 ° 5
°
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z o z
5 [ ] 5
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15 15
(a) T10,3(2) (b) T10,4(2)
15 15
10 10
y P y
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° ]
5 5
® ° ° PS
° e ®
) ® o _o
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15 @0 @5 5 10 15 & 1@ .’ 5 10 15
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° | 10 [ J o | 10
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Figure 3.2: Roots of 719 ,(z) polynomials.
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15 15
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Figure 3.3: Roots of 7_10,(2) polynomials.
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Note that by varying the parameter u we can animate these roots. See the
“Animations” folder on the supplied USB flash drive.

The following remarks are based on observations:

Remark 3.2.
i) The 7,,(2) polynomials always have real roots, regardless of n.

i) The 7,,(2) polynomials take the form of “triangles”, though these are only
approximate triangles since the root “columns” lie on arcs rather than straight

lines.
iii) The 7,,,(z) polynomials have degree equal to sn(n + 1).

w) The 7,,(2) polynomials always have 3n(n + 1) roots.

v) The 7,,(%) polynomials have the property that 7,,(2) = 7, .(—2).

Note again that the 7, ,(2) polynomials always have real roots therefore re-
moving the chance for bounded solutions. The 7, ,(z) polynomials are very similar
to the Umemura polynomials, which Clarkson in [15] essentially redefined so they
were no longer polynomials in 1/z but in z. We will define these polynomials now.

Suppose that S, (z; p) satisfies the recursion relation

d*S,  (dS, dSn 2
Sn+1sn,1 = —Z {Snﬁ — ( Az ):| — Sn Az + (Z + /,L)Sn, (33)

with S_i(z;u) = So(z;4) = 1. These polynomials are related to our 7,,(2)
polynomials in the following way:

Tun(2) = H1 { ;1(22' - 1)}sn. (3.4)

J

The similarity is highlighted when comparing the polynomials directly with the

following;:
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Table 3.3: The S, (z; 1) polynomials

Si(zp) =2+ p

So(zip) = (2 + p)* — o

Ss(zip) = (24 1) =5p (24 p)° +9p (24 p) =542

Sa(zip) = (z+m)"" =150 (z+p)" +63p (2 +p)° —225p (24 p)°

+315 42 (2 4 p)* — 175 13 (2 + p) + 36 2

Ss(z01) = (24 1)"” =350 (2 4+ )" + 2521 (2 + p)"" + 175 4% (2 + p)”
—2025 1 (2 + p1)® + 945 1% (2 + )" — 1225 (pn — 3) (1 + 3) (2 + p)°
—26082 1% (2 + p1)” + 33075 1% (2 + )" — 350 2 (35 12 + 36) (2 + p)°
+11340 1% (24 p)* — 225 2 (T — 6) (T + 6) (2 + p)
+7 113 (875 2 — 828)

3.1.3 The generalised Hermite polynomials

Here we consider the generalised Hermite polynomials H,,,, which are defined by

the following differential recurrence relations:

2H dHpmn\>
2mH i1 nHyn 1. = Hypp— 2 — n omH? . 3.5
m +1, 1, ) dz2 ( dz ) +2m m,n ( a)
d2H// dH/ 2
2nH pyni1 Hopn1 = —Hyppp——2 — mn 2nH? . 5b
n ;n+1 n—1 ) dz2 < dz > +2n m,n (35 )

with H070 = HO,I = Hl,O = 1 and Hl,l = 2z. The polynomials Hm,n de-
fined by (3.5b) are known to be the generalised Hermite polynomials H,,,, since
Hy1(2) = Hy(z) and Hyp(2) = i ™H,,(i2), where Hp,(z) is the well known

Hermite polynomial defined by



3.1 Special polynomials J. G. Smith

A table of generalised Hermite polynomials H,,, and various root plots are shown

below.

Table 3.4: Table of the generalised Hermite polynomials H,, .

Hyy =4 22 -2

Hyp =162 + 12

Hso = 6426 — 96 24 + 144 2% + 72

Hs 3 =5122% + 2304 2° — 4320 2

Hy 3 = 4096 2'2 — 12288 2! + 46080 2® — 30720 25 — 57600 2* — 172800 2>
+43200

Hy 3 = 65536 2% + 983040 22 — 1843200 2® 4 32256000 z* + 6048000

Hj 5 = 33554432 2%° + 1258291200 2! + 3303014400 2'7 + 115605504000 23
—2059223040000 2° — 3413975040000 25 + 2133734400000 2

Some roots plots for generalised Hermite polynomials H,,,, are shown below.
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Figure 3.4: Roots of the generalised Hermite polynomials H,, .
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The generalised Hermite polynomials H,,, can also be expressed in determi-

nantal form

n—1
Hm+n—1 H7,7’L+n—1 s Hﬁn—l—n)—l
H — ¢ H;nJrnfl Hrlwlwrnfl ce Hr(:j-n—l o i
m,n m,n . . . . ; dZ,
n—1 n 2n—2
Hr(n—l—n)—l Hﬁn—?—n—l ce Hr(n—l—n—)l

where H,(z) is the nth Hermite polynomial and ¢, is a constant.

The following remarks are based on observations:

Remark 3.3.

i) The generalised Hermite polynomials H,,, take the form of m x n “rectangles”,
though these are only approrimate rectangles since the roots lie on arcs rather
than straight lines. The parameters m and n govern the number of “columns”™ and

“rows” of the roots, respectively.

ii) The generalised Hermite polynomials H,, , will only have real roots when n is

an odd integer. This is due to the symmetry in the root formation.
iii) The generalised Hermite polynomials H,, ,, have degree equal to mn.

iv) The generalised Hermite polynomials Hy, , always have mn roots.
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Figure 3.5: Roots of the generalised Hermite polynomials H,, .
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It is also interesting to note that due to the symmetric nature of these roots it
is easy to see the conditions when we have real roots. This is precisely when the

number of rows, n, is odd.

3.1.4 The generalised Okamoto polynomials

Here we consider the generalised Okamoto polynomials @, ,, which are defined

by the following differential recurrence relations:

2
Qerl,anfl,n = %{Qm,n% - (Qm,n)Q} + {222 + 3(2m +n— 1)}Q$n,n7
(3.6a)
9 d2Qm,n 2 2 2
Qm,n+1Qm,n—l = §{Qm,n d22 - (Qm,n) } + {22 + 3(1 —m — 2”)}Qm,n

(3.6b)
Wlth Q0,0 = QLO = 1 and QLl = \/§Z [52]

Table 3.5: Table of the generalised Okamoto polynomials @y,

Qo1 =42 +1222 -9

Qa2 =

Q31 =

Q30 = — 22 (128 21 4 1344 212 — 6048 210 — 75600 2* — 158760 25
+238140 2* — 1071630 2% — 535815)

2 (16 2% — 504 2* — 567)
4
3

L 2 (162 + 192 25 4 504 2* — 2835)

Qu2 = 32— (2048 222 + 64512 220 + 483840 2'® — 3144960 2'°

—61689600 24 — 297198720 2'2 — 445798080 21 + 1114495200 z°
—5851099800 2% — 43883248500 2* — 13164974550 2% — 19747461825)
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3.1 Special polynomials J. G. Smith

(e) Qo9 (f) Q10,10

Figure 3.7: Roots of generalised Okamoto polynomials @y,
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3.1 Special polynomials J. G. Smith

The following remarks are based on observations:

Remark 3.4.

i) The generalised Okamoto polynomials Q.. take the form of m x n “rectangles”
with an “equilateral triangle” which either have m—1 or n—1 roots on each of the
four sides. These are only approrimate rectangles and triangles since the roots lie
on arcs rather than straight lines. The parameters m and n govern the number of

“columns” and “rows” of the rectangle, respectively.

ii) The generalised Okamoto polynomials Q, , will only have a real root when n is

an odd integer. This is due to the symmetry in the root formation.

ii) The generalised Okamoto polynomials Q. ., have degree equal to m?*-+n?-+mn—

m—n.

w) The generalised Okamoto polynomials Q... always have m?+n*+mn—m—n

r0018.
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Figure 3.8: Roots of generalised Okamoto polynomials @y,
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Figure 3.9: Roots of generalised Okamoto polynomials Q.
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The generalised Okamoto polynomials @, ,, can also be expressed in determi-

nantal form

(3 Yy o U3masns Yo Ys  o.. U3na
O e | T s W W Y
n—1 n—1 n—1 n—1 n—1 n—1
SR G ORI e ) e T O
and
¢1 ¢4 cee w3n72 % % cee w3m+3n71
Q _C/\_, 1/}1 1/}4,1 cee wéan ?/fé ?/fé te wéerSnfl
n—1 n—1 n—1 n—1 n—1 n—1
S R - 7 N O ) e S

where ' = 4 4, (2) = (—=3)"/?H,(3v/3i2) and ¢y, G are constants [52].

3.1.5 The generalised associated Laguerre with § = zdiz

Here we consider the generalised Laguerre polynomials E&"%, which are defined by

the following differential recurrence relation:

_ dQZ(n) dZ(n) 2 _ dZ(”)
422£gf)5 dz(;’ — 423 (—dzﬁ) —4z(n*z —n? —nz — 22+ n)Lg%—dZ’ﬁ

—n(z—1)(n—1)(n* —n —2z — 2)(/32%)2 — 4z2£N((:;1)£~$6_>1), (3.7)

where Z&_ﬁl) =0, Zg))ﬁ = 1.
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3.1 Special polynomials J. G. Smith

Table 3.6: Table of the generalised associated Laguerre polynomials £

~

a,
B, = (28442

LY, =—1(B+1)(B*—282+ 22+ P)

L8 = —5(B+2) (B 455 +66%2 — 4825 + 21 4455 — 1262
+12822 —423 4532 -8B2+622+20)

£ = —L(B+1)(B+2) (B —382%+3822— 2 +382 —382+2p)
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Figure 3.10: Roots of some generalised associated Laguerre polynomials Zg%
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Figure 3.11: Roots of some generalised associated Laguerre polynomials Zg%
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Note that by varying the parameter [ we can animate these roots. See the
“Animations” folder on the supplied USB flash drive.

They also have the following determinantal representation:

L} S(LPY L s O(LPLh
s maew| SR SR L (LR s_.d
a,B ; )
dz

RN 0 ol B LOT0 Vo ISR LC T 0 Vi)

(3.8)
where Lj is the associated Laguerre polynomial. Using the corollary 2.1 we can
write down an entirely new formulation of these polynomials in an alternative
form to this determinantal representation which will be useful when we look at

the rational function solutions to Py (1.1e) and Sy (1.7e).

Lo e S(LPte=) ... s D(LPte?)
L0 =50 oL ey (L ey L (L e
DL teF) SM(LPtems) L. §Cn(LP o)

(3.9)

where L is again the associated Laguerre polynomial and 6 = z%.

The following remarks are based on observations:

Remark 3.5.

i) The generalised associated Laguerre polynomials take the form of m xn “trapez-
wms”, though these are only approximate trapeziums since the roots lie on arcs

rather than straight lines. The parameters a and n govern the number of “columns”
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3.1 Special polynomials J. G. Smith

and “rows” of the roots in the following ways:

columns - 1 — a —n, TOWS — n for £ >0,

columns — n, rows - 1 —a—n for 8 < 0.

ii) The generalised associated Laguerre polynomials will have a real root when the
number of rows is an odd integer. This is due to the symmetry in the root forma-

tion. This is precisely when

n is odd for 0<p,
whenever a+1<5<0,
1—a—nis odd for g <a+l.

Note that it is possible for all of these cases to be satisfied for all (3.

iii) The generalised associated Laguerre polynomials have degree equal to n(l—a —

iv) The generalised associated Laguerre polynomials always have n(1—a—n) roots.

These polynomials are closely related to another type of polynomial that satisfy

L) pln-) Loy (PLY
of  To.B dz dz2 )’

with the following determinantal representation:

L} S(LAY Lo (LAY
S(LPY sty Lo (LA d
n) . « o @ _ v
Ly = o= (3.10)
R LCoT0 ol B LOT0 Vo ISR LC ¥ Vi)
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Theorem 3.1. The two determinants Zg% and £g% have the following relation:

d S(n) n
Elnﬁaﬁ— dzl ‘Ca,6’+1 "5, (1—n). (3.11)

Proof. This result can be shown by using both of these determinantal represen-
tations in our rational solutions. We can therefore combine them and simplify to

acquire this relation exactly. O]

3.1.6 The generalised Jacobi polynomials

Here we consider the generalised Jacobi polynomials 7", () 5 which are defined by

the following differential recurrence relation:

j(n) 2 22 (Z _ 1)2 d_Qj(n) + j(n) 2 p (22 B 1) (Z _ 1) ij(n)
a,be ~2 a,b,c a,b,c dz ab.e
— T T = (3.12)
where fa(z =g n) Zm1/2n(1on=2b) (5 _ 1)~ L/2n-m),

Table 3.7: Table of the generalised Jacobi polynomials ja(z)c

T =42t 41222 -9
T, = —1152 2% + 20 28 — 1206

ja e = 36?64 5 + 98304 27 8122 29 4+ 41472 2
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Figure 3.12: Roots of some generalised Jacobi polynomials fj’g)c
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Figure 3.13: Roots of some generalised Jacobi polynomials fj’g)c
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Figure 3.14: Roots of some generalised Jacobi polynomials fj’g)c
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Note that by varying the parameter ¢ we can animate these roots. See the
“Animations” folder on the supplied USB flash drive.

They also have the following determinantal representation:

P S(P) ... 6 H(P)

~() s(P) @) ... s(P)
ja,b,c ’

s=N(P)y §(P) ... 6@ A(P)

where § = 2(z — 1)L and P = plertetb=aq _ 9z,

The following ¢ line describes the roots of the generalised Jacobi polynomials

ja(,?),)c as ¢ changes.

a+b+1 b+n—1 24+a—n 0
S OO D) @00
a+b+2 34+a—n
c c

The following remarks are based on observations:

Remark 3.6.

i) When ¢ < a+b+1 or 0 < ¢ the generalised Jacobi polynomials ja(rg)c roots
take the form of —a x n “axe”. The parameters —a and n govern the number of
“columns” and “rows” of the roots, respectively. If ¢ < a + b+ 1 then the “axe”
will have its longer side directed to the right. However, if 0 < c¢ then the longer

side of the “axe” will be directed to the left.

it) When the generalised Jacobi polynomials ja(z)c roots
take the form of n X —a “double axe”. The parameters n and —a govern the

number of “columns” and “rows” of the roots, respectively.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

i) Whenc={a+b+1,a+b+2,...,b0+n—1} orc={2+a+n,3+a+n,..,0} the
generalised Jacobi polynomials ja(z)c will have at least double roots. For example:
Take a = =5, b = —14, n = 5. The collision points (at least double roots) are
c={-18,—-17,..,—10} and ¢ = {—8,—7,..,0}. If ¢ is inside these sets of points

we know the roots will form the shapes we saw in figure 3.12.
iv) The generalised Jacobi polynomials ja(?,)c have degree equal to —an.

v) The generalised Jacobi polynomials ja(z)c always have —an roots.

3.2 Rational function solutions to the Painlevé equations

In this section the solutions that are of real interest are the bounded solutions.
This is because the applications involving orthogonal always involve the bounded
solutions. These bounded solutions are easy to find if we think about the real roots
of the polynomials that comprise them. The following theorem explains that a
real root, a, in our polynomial solutions, regardless of its order, will result in an
explosion at x = a. Assuming there is no common root between the comprising
polynomials, there is no way in which the logarithmic derivative can cancel with

the corresponding root.

Theorem 3.2. Given a solution of the form

w=A(z) + B(z)diz In %,

where A(z), B(z), C(z) and D(z) are polynomials in z. If there exists a real Toot

of C(z) or D(z) we will have an unbounded solution along the real axis, assuming

the root is not common between them.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

Proof. The first thing to consider is that the solution can be rewritten as
d
w= A(z) + B(z)d— (th’(z) - lnD(z)),
2z

Then we assume (z — a)" divides C'(2) or D(z). Does this imply (z — a) divides
4 1nC(z)? This implies that C(z) can be written in the form C(z) = (z—a)"g(z).

Differentiating yields

dCdEj) — (s — a)"g(z) + (5 — “)ndiz(;)
So,
a _n(z—a)"lg(z) + (z — a)"
- InC(z) = G- a0 (3.13)
= Zﬁa+dizlng(z). (3.14)

This implies that the order n of a root is not important and that if a real root
exists the root cannot vanish with the logarithmic derivative. If there is a single
uncommon real root the solution will not be bounded. Some of the root plots that
follow show some unbounded solutions, however, this is purely an illustration that

these cases are easily identifiable using the associated root plots. O]

3.2.1 The second Painlevé equation

Theorem 3.3. The rational solutions to Pry (1.1b) exist if and only if A =n € Z,
which are unique. Suppose Q,(z) is the Yablonskii- Vorob’ev polynomial defined by

(3.1), then the rational solutions of Pry (1.1b) in the form w,(z; A) are given by

wa(z; A) = di{ In [Q"1<Z>] } (3.15)

the following:

z

for the parameter A = n.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

Proof. See [67, 70, 30, 64]. H

The rational solutions to P;; (1.1b) have no bounded solutions due to the
polynomials that generate them always having real roots. This can be seen clearly

in the following plots.
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(e) Wr, (f) ws,

Figure 3.15: Some rational solutions to Pr; (1.1b) super imposed with the complex
roots of the corresponding Yablonskii-Vorob’ev polynomials which comprise the

solutions.
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3.2.2 The third Painlevé equation

The locations of the rational solutions of Py (1.1c) solutions are stated the fol-

lowing theorem:

Theorem 3.4. Pj;; (1.1c) with v = —6 = 1, has rational solutions if and only if

a+ef =4n, withn € Z and € = 1. These rational solutions have the form

v — P(2)
Qmn(2)’

where Pp(z), Qum(2) are polynomials of degree m with no common roots.

Proof. See Lukashevich [41]; also Milne, Clarkson and Bassom [49] and Murata
[51]. O

Suppose T, (%) is the generalised associated Laguerre polynomial defined by

(3.2), then the rational solutions of Pr; (1.1c¢) in the form
Wi (2 AN BN GV DIV,

for N =1,..,4 are given by the following:

wE](z;A[l], Bm’ 0[1]’D[1]) —1_ ilnmlv”—“(z), (3.16a)
dz Tun(2)

wE](z;Am, B2 O[Zl’D[Z]) -1+ iln M, (3.16D)
dz Tu+1 n('z)

for the parameters

{AY, BY, G DWY = {2(n + ) +3,2(n — p) + 1,1, -1}, (3.17a)

{AP], B CPL DRIy = {—2(n — ) =1, =2(n+ p) = 3,1,—1}.  (3.17b)
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

These rational solutions are identical to the Umemura rational solutions. How-
ever, the Umemura polynomials are actually polynomials in 1/z rather than poly-
nomials in z. Clarkson in [15] determined special polynomials associated with
the rational solutions of Pj;; (1.1¢), which were polynomials in z. The rational

solutions are shown below in terms of these polynomials.

Theorem 3.5. Suppose S, (z; ) is the Umemura polynomial defined by

d2S,  (dS,\’ ds, )

with S_1(z; ) = So(z; 1) = 1 [15] (but with the transformation z — 1/z) then the

rational solutions of Prrr (1.1¢) are the following:

d Sn-1(z3 1 — 1)
— wiz AN gl ol pily—q1 4% ok L 1
w, = w(z; A, BY CH DM + dz{ In [ AET }} (3.18a)

~ Salzip = 1)Sn-a(z5 )

_ 7 3.18b
Sn(2; 1) S (2 — 1) )
A d Sn-1(2; )
= w(z AP BE OB DRy = 1 ¢ — 3 In | T 18
W w(z, ) ) ? ) + dz " Sn('z;lu - 1) ( C)
NS (2 — 1
 Su(zp)Saa (3 )’ (3.18d)
Sn(z;p—1)S,-1(z; )
for the parameters
{AY, B, W, DY = {2n + 2u — 1,20 — 2u + 1,1, -1}, (3:192)
Proof. See [15], which generalizes the work of Kajiwara and Masuda [37]. N

The rational solutions of P;;; have no bounded solutions due to the polynomi-
als that generate them always having real roots. This can be seen clearly in the

following plots:
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

(c) wil(z; 1 = —10) (d) wil(z; 0 = —10)

Figure 3.16: Some rational solutions to Py (1.1c) with the complex roots of the
corresponding generalised associated Laguerre polynomials which comprise the

solutions.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

157 I 154

101 101

(d) whl(z; 0 = 10)

Figure 3.17: Some rational solutions to Py;; (1.1c¢) super imposed with the com-
plex roots of the corresponding generalised associated Laguerre polynomials which

comprise the solutions.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

3.2.3 The fourth Painlevé equation

Theorem 3.6. Py has rational solutions if and only if the parameters A and B
are given by

A=m, B=-2(2n—m+1)? (3.20)
or

A=m, B=-202n—m+ 1) (3.21)

with m, n € Z.

Proof. See Lukashevich [42], Gromak [32] and Murata [50]; also see Bassom, Clark-
son and Hicks [5], Gromak, Laine and Shimomura [34], Umemura and Watanabe

[66). 0

Theorem 3.7. Suppose H,, () is the generalised Hermite polynomial defined by

(3.5b), then the rational solutions of Pry (1.1d) in the form

W] — (2 AN BIND).

m,n

for N =1,2,3 are given by the following:

w[l] — 'lU(Z, A[l],B[l]) _ iln <F117’L+17n(2f>>7

m,n dz Hmm(z)
d Hyn(2)
21 _ A[?] B[2] _ 1 m,n
W = wlz AT B dz (Hm,nﬂ(z))’
d H, (2)
] . A[3] B[3] - _9 1 m,n+1 .
W = 0EAT D =2 G H(2)
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

for the parameters

{AN BUY = fom +n + 1, —2n2},
(AR BB} = {—(m + 2n + 1), —2m?},

{AB BB} = {n —m, —2(m +n + 1)}
Proof. See Noumi and Yamada [52]; and also Theorem 3.1 in Clarkson [16]. [

All the rational solutions of Ppy (1.1d) with parameters given by (3.20) can
be expressed in terms of determinants whose entries are Hermite polynomials.

The generalised Hermite polynomials rational solutions of Ppy (1.1d) have
bounded solutions when n is even. However, they are only bounded from the first
hierarchy w!!l due to the formation of the root structures. From the other two
hierarchies you cannot get real roots simultaneously from both the polynomials

in the rational functions.
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3.2 Rational function solutions to the Painlevé equations

J. G. Smith

Vo4

(e) wi(z;m = 10,n = 10)

81

6

y 4

2
e0 o0

_44

oo oo *

Ak

A
N

lee ®0 ®0 00 0000
_4

~64

_g4

(f) wil(z;m = 12,n = 12)

Figure 3.18: Some rational solutions to Py (1.1d) super imposed with the complex

roots of the corresponding generalised Hermite polynomials which comprise the

solutions.



3.2 Rational function solutions to the Painlevé equations J. G. Smith

Now we consider the generalised Okamoto polynomials.

Theorem 3.8. Suppose Qmn(z) is the generalised Okamoto polynomial defined

by (3.6b), then the rational solutions of Pry (1.1d) in the form

BN — (2 AN BINT).

m,n

are the following:

. 2 d ([Q (2)

1 _ Al gl 4 a m+1,n
) w(z, ) 32+ dz( Qm,n(z) ,
. 2 d [ Qun(2)

2] _ . Al2] 2] _~“ “ m,n
Wy, = w(z; A%, BP) 37t o <Qm,n+1(z))7
. 2 d ([Q (2)

B] _ . A[S] B (3] _ “ m,n+1
W w(z; ) 37+ o (Qm+1,n(z) ,

for the parameters

{A[l]7 B[l]} ={2m+mn,—-2(n — %)2}7
{AP BB} = {—m — 2n,= —2(m — 1)},

(A9, B} = {n—m, = ~2(m +n + 1)%).
Proof. See Noumi and Yamada [52]; and also Theorem 4.1 in Clarkson [16]. [

The generalised Okamoto rational solutions of Py, (1.1d) have no bounded
solutions due to the polynomials that generate them always having real roots.

This can be seen clearly in the following plots:
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

(c) WM (z;m =4,n = 4) (d) wM(z;m = 5,n = 5)

Figure 3.19: Some rational solutions to Py (1.1d) super imposed with the complex
roots of the corresponding generalised Okamoto polynomials which comprise the

solutions.

3.2.4 The fifth Painlevé equation

Theorem 3.9. Py (1.1e) has rational solutions if and only if one of the following
holds with m,n € Z and € = £1:
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

i) A= i(m+¢)? and B = —in? wheren >0, m+n is odd and A # 0 where

Im| < n,

it) A=1in? and B = —3(m+¢)?, where n >0, m+n is odd and B # 0 when

Im| <n,
iti) A = 1a and B = —1(a +n)? and C = m, where m + n is even and a
arbitrary,
w) A= 3(b+n), B=—1(b)* and C =m, where m+n is even and b arbitrary,
v) A=£(2m+1)? and B =—£(2n+1)%.

Proof. See Kitaev, Law and McLeod [39]; also Gromak and Lukashevich [35];

Gromak, Laine and Shimomura [34]. O

Theorem 3.10. Suppose Z&ng(z), £

ape-(2) and E&ng(z) are the generalised as-

sociated Laguerre polynomials defined by (3.8), (3.9) and (3.10) then the rational
solutions of Py (1.1e) in the form wLN](z;A[N],B[N],C’[N],D[N],ag) for N = 1,2

119



3.2 Rational function solutions to the Painlevé equations J. G. Smith

are given by the following:

~ (n+1)
will(z; AN, B ] pliT 1y =1 + %{/@ - zi . Lo (2) }
a—p—n

& L5 (2)
~ (n+1)
1 d L z
=1+ —{,8+ 2 In S 7)“5“( ) }
a—pF—n dz gaanﬁ(z)
(n+1)
1 d a—n —n Z
:1+—{6+n+zd—ln (n)+1,ﬁ 1o )}’
a- B -n z ‘CafnJrl,BfnJrl(z)

» (n+1)
1 {z - B - zi In —EaH’ﬁH(z) }
n

° = L3
7 (nt1)
1 d. L _.(z
=1+ {2z — = 2o In ST ) }
“ " dz ‘Ca:n—l,ﬁ,e*Z (Z)

=1+ {z—ﬁ—n—zd—ln—az’)ﬁ nH()},
o ‘Caﬂ—n—l-l(Z)

for the parameters

{A B cW DM} = {3(—a + B+n)*, -3 1+n—B,-1},  (3.27a)

{AB BB B DB} = (Lo +n)?, —1(B—a)’,B—n—1,-1}. (3.27b)

Proof. Taking a to be a negative integer we can apply the polynomial reduction
of U(a,b; z) and M (a,b; z) the Kummer functions (2.12), to the special function
solutions of Py with a suitable transformation of the parameters yields the rational

solutions: O

The rational solutions to Py (1.1e) have bounded solutions from the second
hierarchy precisely when 14 a —n is even for § < 0 with C} = 0 or Cy = 0. This

is the exact condition which removes the possibility for real roots.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

30 30
20 20
y v
[ J [ J

® 10 ° . 10

® .0 L I

R Winge o/ T =
- - - 0] - - 0
70 60 50 2.30. .8) 10 70 60 50\.404 :(b.“ 10
[ J

° 10 10

[ J ) b
20 -201
30 -30

21/, _ _ 2l,.  _ _
(a) ws (7,0 = =5, 8 = —30) (b) wy ' (z;0 = —6,8 = —30)
30 30
20 201
[ J Y [ J

L [ 10 ® [ ] ° 10

o I l
.O.QO’Q‘}. .....’Q‘%_
R —wo..ébo 00 W{.g}..“ .: o 0
[ J
[ J

° ® 109 . o ® -10

(c) wLQ](z;a =-7,8=-30) (d) wé2}(z7a = —8,8=—30)
[ ] y [ J b

® e 10 ® o ° 0

() wil(zra ==9,8==30) () wfl(z:0=—-10,8 = —30)

Figure 3.20: Some rational solutions to Py (1.1e) super imposed with the complex
roots of the corresponding generalised Laguerre polynomials which comprise the

solutions. 121



3.2 Rational function solutions to the Painlevé equations J. G. Smith

3.2.5 The sixth Painlevé equation

Theorem 3.11. Py; (1.1f) has rational solutions if and only if
h1+h2—|—h3+h4:2n+1,

with €; = £1, j = 1,2,3,4 independently where hy = €1V2A, hy = 27/ —2D,
hg 263\/207 h4 IE4\/1—2D and a € 7.

Proof. See Mazzocco [47]. These are special cases of the special function solutions

which we discussed earlier. O

Suppose ja(z)c(z) is the generalised Jacobi polynomial defined by (3.12), then
the rational solutions of Py (1.1f) in the form w,(z; A, B, C, D) are given by the

following;:

1 d_Juy z
wn(2; A, B,C, D) = —{n +c—2n+b+1)z — z(z — 1)d— In ati’)bﬂ’c“( ) ,
¢ “ ~7a—1,b+1,c(z)

for the parameters
{A,B,C,D} = {a2_27 _%(b —c+n+ 1>27 %(CL —Cc— n)27 %(1 - b2)}?

with
j(vz?c _ zn/?(l—n—Zb)(Z _ 1)n(1_n)/2jcfz,)c'
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

(¢) we(z;a=—11,b=—-20,c=—15) — L(z) (d) wr(z;a=—-13,b=—-22,c=—17) — L(2)

Figure 3.21: Some rational solutions to Py (1.1f) super imposed with the complex
roots of the corresponding generalised Jacobi polynomials which comprise the

solutions, where L(z) is the asymptotic behaviour around +oo.

The rational solutions to Py/; have bounded solutions precisely when b+n—1 <
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3.3 Rational function solutions to the o-equations J. G. Smith

c <2+ a—mnand —a is even. This is exactly the condition that removes the

possibility for real roots.

3.3 Rational function solutions to the o-equations

3.3.1 The second Painlevé s-equation

Theorem 3.12. Suppose Q,(z) is the Yablonskii- Vorob’ev polynomial defined by
(3.1), then the rational solutions of Sr; (1.7b) in the form o,(z;«) are given by
the following:

d

on(z; ) = —%22 + o InQ,(2), (3.28)

for the parameter o = n.

Proof. See [34]. O

The rational solutions to Sy; (1.7b) have no bounded solutions due to the

polynomials that generate them always having real roots.
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3.3 Rational function solutions to the o-equations J. G. Smith

10
]
5

[ J
ole
@
ole
-20 0 |@ '. 10 20
° z
-50.
-10

(e) 07, (f) 08,

Figure 3.22: Some rational solutions to Sy; (1.7b) super imposed with the complex

roots of the corresponding Yablonskii-Vorob’ev polynomials which comprise the

solutions.
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3.3 Rational function solutions to the o-equations J. G. Smith

3.3.2 The third Painlevé o-equation

Theorem 3.13. Suppose 7,,(%) is the generalised associated Laguerre polynomial
defined by (3.2), then the rational solutions of Sy (1.7¢) in the form o, ,(2; Yo, Vo)

are given by the following:

1 1 d
Oun (200, Vo) = —122 — pz+ 3 +ao In7,,(2), (3.29)

for the parameters
{V0, 0} = {p* + (n+3)% 1" = (n +3)"}-
Proof. These results can be inferred from the work of Clarkson in [15]. O]

The rational solutions to Sy;; (1.7¢) have no bounded solutions due to the
polynomials that generate them always having real roots and their symmetric

triangular structure.
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3.3 Rational function solutions to the o-equations J. G. Smith

[ ] [ ]
25 20 15 "lfb 5 0- 5 5 5 .10 15 20 25
®
5 5
-104 10
15- 15
(a) 03,10(2) (b) 03,-10(2)

[ ] [ ]
"25 "20 "15 .,_ -10 o - 0; 5‘ "5 0 ) 1‘5 20 25
[ ] 5 5 [}
10 10
15 15
(c) o4,10(2) (d) o4,-10(2)
/_J 159 15 R
104 10
y
[ ]
° {\J > * V} °
® [
[ ] ) ) [ ]
225 20 1 @0 | @5 0 s s @ ™ Is 20 25
¢ p < q
[ ] s 5 [ ]
[ ] [ ]
10 10
15 -15
() 05,10(2) (f) o5,-10(2)

Figure 3.23: Some rational solutions to Sy;; (1.7¢) super imposed with the complex
roots of the corresponding generalised associated Laguerre which comprise the

solutions. 197



3.3 Rational function solutions to the o-equations J. G. Smith

3.3.3 The fourth Painlevé o-equation

Theorem 3.14. Suppose H,,,(z) is the generalised Hermite polynomial defined

by (3.5b), then the rational solutions of Sy (1.7d) in the form aw%(z;ﬁgN],ﬁg])

for N =1,2,3 are given by the following:

d
0'7[711]771(2; 19%1]7 19<[>1c]) = E In Hm,n(z)a (330&)

d
UL%],n(Z; 19%2],195]) = In Hy,n(2) — 20z, (3.30b)
ol (=05, o) = d% In Hyo(2) + 22, (3.30¢)

for the parameters

{0, 9%} = {=n,m}, (3.31a)
(950,92} = {n,m +n}, (3.31b)
(05", 9%} = {=m,—m —n}. (3.31c)

Proof. Taking v to be an integer, m, we can apply the polynomial reduction
of D,(z) the parabolic cylinder function (2.7a), (2.7b) and (2.7c) to the special
function solutions of Sy with a suitable transformation of the parameters yields

the rational solutions: Also see Okamoto [58]; also Forrester and Witte [26]. [

The rational solutions to Sry have bounded solutions precisely when n is even.
However, only (3.31¢) omits bounded solutions due to the linear component can-

celling out the asymptotic behaviour around +oo.
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3.3 Rational function solutions to the o-equations J. G. Smith

201 201

10 10
204 20 {

(a) eM(z;m = 2) () olll(z;m = 4)
10 10

(c) ol(z;m = 6) (d) ot (z;m =8)
204 204

(e) ol(z;m = 10) (f) olt(z;m = 12)

Figure 3.24: Some rational solutions to Sy (1.7d) super imposed with the complex
roots of the corresponding generalised Hermite polynomials which comprise the

solutions, with n = {2, 4, 6, 8}.
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3.3 Rational function solutions to the o-equations J. G. Smith

It is interesting to note that the number of "kinks” in these solutions is equal

tom — 1.
8 8
6 6
y 44 y 4
2 2
(A
et eoge
8 6 )@ 2 4 6 8 6 4 20 ¢lo e 4 6 8
z [ JC N
by hd
-4 4
6 -6 1
8 8
(a) oll(z;m =2,n =2) (b) oM(z;m =4,n = 4)
8 8
6
Y49
cocodeo < .
[ X N ) ( ® ®
(XX XX [ ) [ )
8 6 s 00¢eoe 4 6 8 [3 ® M
{ o0 0 : :
opo0OO ° °
4]
_6,
-8 -8
(c) oM(z;m =6,n = 6) (d) oM(z;m =8,n =8)

Figure 3.25: Some rational solutions to Sy (1.7d) super imposed with the complex
roots of the corresponding generalised Hermite polynomials which comprise the

solutions.
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3.3 Rational function solutions to the o-equations J. G. Smith

Theorem 3.15. Suppose Qp.n(2) is the generalised Okamoto polynomial defined
by (3.6b), then the rational solutions of Spy (1.7d) in the form 07[}1]7”(2;19([)1],19@)

for N =1,2,3 are given by the following:

d
o500 = 20 3+ Q) (3320
d
o (0002 = £ = A 2= Dt L nQu(2).  (332)
’ Z
d
ag}’n(z; 19([)3], 19[035) = 2%23 + %(Qm +n—1)z+ e In Qmn(2), (3.32¢)

for the parameters

{08 0 = {m = 5,5 - n}. (3:332)
WF 9 = {n— L m+n— 2}, (3.33b)

(O 9By = (2 —m —n, L —m). (3.33¢)

1
3

Proof. These solutions can be inferred from the Py (1.1d) Okamoto rational

function solutions using the Hamiltonian structure of Py (1.1d). ]

3.3.4 The fifth Painlevé o-equation

Theorem 3.16. Suppose E&"%(z), Eg%, - (2) and ﬁg%(z) are the generalised as-

sociated Laguerre polynomials defined by (3.8), (3.9) and (3.10), then the rational

solutions of Sy (1.7e) in the form o,(z; /{EN],/{[IN],/{[QN],/{EN},@) for N = 1,2 are
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3.3 Rational function solutions to the o-equations J. G. Smith

given by the following:

d
Jm(z lio,/{[l],/-@g],/ig], )—zd ln[,an;i .(2) —g(n+1)2+}1(2a+1+ﬁ—|—32)
z

(n+1)— s (2a—-1+p0)(-2a—-1-22+p)

—zdizlnﬁ (z)—%(n+1)2+}1(2a—1—|—5—z)

(n+1)— s (2a—-1+p0)(-2a—-1-22+0),
d
o2 (z; lio,li[f},lig],/ig], -1)= i lnﬁallﬁﬂ(z) —In*+1(38+2-2a-32)n
—%(2@-5)(2044—22—5)
d

_Zd_lncoﬁzlﬁ nt2(? )_% +3(B8-2a—-32)n

—5(2a-p)(2a+22-6),
for the parameters

{K,([)l],lil ,/12 , 3]} =H{2a-B+n+2,n+2-2a—-p3,20—5-3n—-2,33+n
— 20— 2)}, (3.35a)

{I{E],Iil ,Ii2 ,113]} = 4{2a+ﬁ+n B —3n—2a,n+2a—33,0+n—2a}.
(3.35b)
Proof. Taking a to be a negative integer we can apply the polynomial reduction
of U(a,b; z) and M(a,b; z) the Kummer functions (2.12), to the special function

solutions of Sy, with a suitable transformation of the parameters yields the rational

solutions: O

The rational solutions of Sy have no bounded solutions due to the asymptotic
behaviour around +oo being linear. However, if an appropriate linear transfor-

mation is made we can have bounded solutions and this is precisely when the
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3.3 Rational function solutions to the o-equations J. G. Smith

polynomials have no real roots. The conditions for this are specified in the gener-

alised associated Laguerre polynomials chapter with C; = 0 or Cy = 0.

30 1 30 1

(¢) ol (z;a=—12,8=20) — A= 2(3n — 1) (d) o{!(z;0=—12,8=—30)— A—2(3n—1)

Figure 3.26: Some rational solutions to Sy (1.7e) super imposed with the com-
plex roots of the corresponding generalised associated Laguerre polynomials which

comprise the solutions, where
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3.3 Rational function solutions to the o-equations J. G. Smith

A=— (n+1)2+i(2a+1+ﬂ+32)(n+1)

oot

H—2a-1+p)(—2a—-1-22+0).

3.3.5 The sixth Painlevé o-equation

Theorem 3.17. Suppose J(l(z)c(z) 1s the generalised Jacobi polynomial defined by
(3.12), then the rational solutions of Sy (1.7f) in the form o(z; k1, ke, K3, k4) are

giwen by the following:

o(z; k1, Ko, kg, k) = 2 (n+1) (daz —a+b—2c+1)— 1 (a—b+1)%z

d
+i(@®+a+b—b—ac—bc) +z(z — 1)d—1n[7;7;t1)(2),
Z "

for the parameters
{K1, K2, ks, ka} = {—3(a—b—2n—1),3(a+b—2c+1),-L(a—b+1),3(a+b—1)}.

Proof. Taking a to be a negative integer we can apply the polynomial reduction
of the general hypergeometric function F(a,b,c; z) via an appropriate choice of
the parameters. Applying this to the special function solutions of Sy (1.7f) gives

the desired result. O

The rational solutions of Sy ; have no bounded solutions due to the asymptotic
behaviour around +oo being linear. However, if an appropriate linear transfor-
mation is made we can have bounded solutions and this is precisely when the
polynomials have no real roots. The conditions for this are specified in the gener-

alised Jacobi polynomials chapter.
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3.3 Rational function solutions to the o-equations J. G. Smith

/&\. .

N o o .\i'/q -1 0
P

14 o4

(a) o2(a=—-2,b=-15,¢c=—-8)  (b) g4(a=—4,b=-13,c=-8)

6 64

(¢) o3(a=-3,b=—14,¢=30) (d) o3(a=-3,b=—14,c=-50)

-20 -20-

(e) o5(a=—b5,b=—12,¢=30) (f) o5(a=—5,b=—12,c=—50)

Figure 3.27: Some rational solutions to Sy (1.7f) super imposed with the complex
roots of the corresponding generalised Jacobi polynomials which comprise the
solutions, with o,(z) = 0,(2) — A(z), where A(z) is the asymptotic expansion of

the solution around Zoo. 135



J. G. Smith

4 Monic orthogonal polynomials

In the following chapter we will be introducing the concept of monic orthogonal
polynomials. We will also be discussing classical and semi-classical orthogonal

polynomials and their differences.

4.1 Continuous orthogonal polynomials

Monic orthogonal polynomials are a certain type of polynomial p,(x), defined over

a range [a, b], that satisfy an orthogonality relation

b
/ W(T) P ()P () dx = hyyOp, h,, > 0,

with n € N, d,,,, the Kroneker delta and p,(z) an orthogonal polynomial of degree
n with respect to a positive weight w(x). An important property of orthogonal
polynomials is that they must satisfy a three term recurrence relation of the
following form:

TP () = Por1(2) + anpn(x) + Bopn-i(z),
where the coefficients «,, and (3, are given by

1 /P 1 b
o, = h_/ xpi(x)w(x) dz, B = - / Tpn_1(x)ppw(x) dz,
n Ja n—1 Ja

with p_; = 0 and py = 1. One of our aims in this thesis is to find an alternative
method for calculating these coefficients using determinants of moments that are
produced from our associated orthogonal polynomial weight. The coefficients «,

and 3, can be rewritten in the following way:

ﬁnﬂ zn o An+1An—1

An+1 - A_n’ ﬁn - A?L )

a, = (4.1)
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4.1 Continuous orthogonal polynomials J. G. Smith

where A,, and Zn are the determinants given by

Mo H1 oo Hp—1
A, = /”L:l %2 “:” L n> 1, (4.2)
Hn—1 Hn ... Hon-2
Ho M1 .. HUp—2 Hn
zn - M1 M2 ... fp_1 Hpga >, (4.3)
HUn—1 Hn .- Ho2p—-3 H2n-—1

and the initial states are Ag = 1 and A_; = KU = 1. The individual moments

can be calculated as follows:

Mk:/ a*w(z) de. (4.4)

We remark that the Hankel determinant A, (2) (4.2) also has the integral repre-
sentation
Ay = / / Hw x) x] — xp)?dxy, ..., dx,, n>1. (4.5)
@ = 1<j<k<n
This arises in Random matrix theory as the partition function for the unitary
ensemble with eigenvalue distribution. See Mehta [48] for full details.

It is a well known fact that the monic polynomial p,(z) can be uniquely ex-
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4.1 Continuous orthogonal polynomials J. G. Smith

pressed as the following:

Mo M1 .. Hp—1
By p2ooee. M
pn(x):Ain Cn>1 (4.6)
Hn—1 Hn .. Hop—1
1 x ... z"

and the normalisation constant is

An—l—l

hn = )
A,

ho = Ay = pyp.
Now suppose the weight has the following form:
w(z; z) = wo(z) exp(xz), (4.7)

where z is a parameter with finite moments for all z € R. If the weight has the
form (4.7) then suddenly the polynomials p,(z), the recurrence coefficients «a;,, and
B, the determinants A,,, ﬁn and the moments p are all now functions of z. For

certain weights, a consequence of (4.7) is the following:

d
i = i@ﬂkil (4.8)

and the recurrence relation has the form
xpn(x; Z) = Pn41 (;E; Z) + an(z)pn@j; Z) + Bn(z)pnfl(x; Z). (49>

The implementation of (4.8) in the determinants A,, and A, given by (4.2) has

the following effect:

po o Hh ps Y
A | s ,d
n . ) dz7
T O
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J. G. Smith
n—2 n
po oy oo opy Y ul
n—1 n+1
x| Moo T e N |
n . . ) dz
n—1 n 2n—3 2n—1
N L S

Hence we can construct the following theorem:

Theorem 4.1. As before, we will denote 1, as the bi-directional Wronskian

dz’ 7 dzn27 dxnt

T (f) =W(f,ﬁ i M) (4.10)

If the moment py(z) has the form (4.8) then the determinants A, and A, can be
written in the form

(4.11)

Proof. See [17, 38, 59, 63]. ]

k. ~
Also, since py, = ddz—“,j, the determinants A, (z) and A,(z) can be written in
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4.1 Continuous orthogonal polynomials J. G. Smith

the form
HBo M1 - Hp-d
n—1
A= g S
-1 Hn - H2n—2
= Tu(tho),
Ho M1 .. Hn—2 Hn
~ M1 o e Mp1 Mt d d" 2y d*
Hn—1 Hn ... H2p—3 Hon—1
d d d"2py d" g
= (b ot )
_d%Tn(/vbo)

Theorem 4.2. The Hankel determinant A,(z) given by (4.2) satisfies the Toda

equation

(4.12)
Proof. See [12, 61, 63]. O

Theorem 4.3. As long as the condition (4.8) is satisfied the recurrence coeffi-
cients o, (2) and Bn(z) in (4.9) can be expressed in the form
d Tn+1 (MO) d2
a(2) = —In [ 222, (2) = —In{7, : 4.13
o) = o (256 = D). (13
Proof. The proof is actually straightforward; applying the theorem 4.1 to (4.1)
and using that A,, satisfies the Toda equation (4.12) gives the desired result. This

is shown in detail below.
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4.1 Continuous orthogonal polynomials J. G. Smith

Recall that a,,(z) and f,,(z) are defined by
znJrl zn An+1Anfl

An+1 - A_n’ Bn = A% )

oy =

where A, (z) and A,(z) are defined by (4.2) and (4.3). Using (4.11) and (4.12)

we can deduce the following:

on(2) = Apii1(z) B A, (z) 1 dApyi(z) 1 dAy(2)
Apia(z)  Aplz)  App(z)  dz A, (z) dz
= diz InA,1(z) — % InA,(2)
= diz{ InA,+1(z) —In An(z)}
arve
o) = 22— D),
as required. O

Some motivation for this work is that the recurrence coefficients of semi-
classical orthogonal polynomials can often be expressed in terms of solutions of the
Painlevé equations. For example; all the recurrence coefficients can be expressed
in terms of solutions of Py; (1.1b) for semi-classical orthogonal polynomials with

respect to an Airy weight

w(z; 2) = exp(32° + zz), 2° <0, (4.14)

with z € R a parameter [44]. In terms of solutions of Py (1.1c) for the deformed
Laguerre weight

w(z;z) = 2%exp(—x — z/x), =z €RY,
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4.1 Continuous orthogonal polynomials J. G. Smith

with @ > 0 and z € Rt parameters [10]. In terms of solutions of Py, (1.1e) for the

weights

w(w;z) = (1 —2)*1+2)%e™, zel-11],
w(z;z) = z%(1 —x)Pe™*,  xe€l0,1],

w(z;z) = 2%(x + 2)’e™®, zeRF,

with a, § > 0 and t € R* parameters [2, 20, 11, 13, 29]. In terms of solutions of

Py (1.1f) for the weight
w(r;2) =21 —2)’(z —2)?, 2€l0,1],
with «, 3,7 > 0 and z € R parameters [3, 13, 19, 44].
4.1.1 Example - Hermite polynomials
Hermite polynomials are orthogonal with respect to the weight
w(z) = exp(—2?), xR
In this case

o 2k)! >
fok = / z** exp(—a?) dv = &7 H2kt1 = / v exp(—a?) dz = 0,

. 22k k| .
(4.15)
SO
Po 1 --. ot
n—1
1251 Mo ... M, n(n— —
Ap=|"~ . = ()T, An=0
. . . : k=1
Hn—1 Hn .. H2p—2
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4.1 Continuous orthogonal polynomials J. G. Smith

and therefore the recurrence coefficients are the following:

o o AnJrlAnfl 1
Op = 07 Bn - A2 - 5”7
n

which gives the three-term recurrence relation

pn+1(£) = xpn(m) - %?”Lpn,1<I),

where
pu(z) =27"H, (),

with H,(x) the Hermite polynomial.

4.1.2 Example - Associated Laguerre polynomials
Associated Laguerre polynomials are orthogonal with respect to the weight
w(z) = 2" exp(—x), zeRY v>-1

In this case

i = / 2" exp(—2)de = T(k + v + 1), (4.16)
0
SO
An=T]G - DT +3), Au=nn+v)][(- DT +7)
j=1 Jj=1
and therefore the recurrence coefficients are the following:
Ar A, ApirA,
an:Anii_A_nzzn—i_y_'_l’ Bn:$:n(n+y)u

which gives the three-term recurrence relation

P (@) = (# = 2n = 1 = v)pu () — n(n + v)pn (),

where
pu(z) = (=1)"nILY (x),

with Lq(f)(x) the associated Laguerre polynomial.
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4.2 Semi-classical orthogonal polynomials J. G. Smith

4.2 Semi-classical orthogonal polynomials

Suppose p,(x), for n € N, is a sequence of classical orthogonal polynomials; such
as Hermite, Laguerre and Jacobi polynomials; then p,(z) is a solution of a second-

order, ordinary differential equation of the form

d*pn dpn
o(x) 702 + T(l’)% = A\nDns (4.17)

where 7(x) is a polynomial with degree 1, o(x) is a monic polynomial with degree
< 2 and )\, is a real number which is related to the polynomials. A condition
on the weights of classical orthogonal polynomials is that they must satisfy the

Pearson equation

Llow()] = r()u(), (4.18)
where 7(z) and o(z) are the same polynomials as above. However, if we look
at the semi-classical case the weight function still satisfies the Pearson equation
(4.18), with one of the following true: Either the degree of o(x) is > 2 or the
degree of 7(x) is > than 1.

e Classical orthogonal polynomials: o(z) and 7(z) are polynomials with deg(o) <

2 and deg(7) = 1.

w(zx) o(x) 7(x)
Hermite exp(—2?) 1 —2z
Associated Laguerre ¥ exp(—x) x 1+v—=x
Jacobi A—2)*1+2)f |1-2? | f—a—-(2+a+pB)r

e Semi-classical orthogonal polynomials: o(z) and 7(z) are polynomials with

either deg(o) > 2 or deg(1) > 1.
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4.2 Semi-classical orthogonal polynomials J. G. Smith

w(z) o(z) 7(x)
semi-classical Laguerre | z¥exp(—2? + zx) x 1+v+tr — 222
Freud exp(—ga? — zz?) 1 —2zx — a3

4.2.1 Example - Semi-classical Hermite Weight

Consider the semi-classical Hermite weight [18]
w(z;z) = |z  exp(—2* + zx), z€R, v>-1.

The moment py,(2;v) is given by

up(z;v) = / 2¥|z] exp(—2? + zz) da (4.19)
dk 00 dk
= (/ |z|” exp(—2* + zx) dm) = WAZO. (4.20)

The Hankel determinant A, (z) is given by

e du dn_lﬂ
An(z) :det |:/J/J+k3(z)i|]7ki0 :W(luov dZO’“.’ O>7

dzn—1
where
(%{D—u 1( \/§ )+ D_pi(3 \/52’)}, if v¢N,
po(z;v) = V(—31)*N Hyy(iz) exp(32?), if v=2N,
jjﬁvﬂ {erf( )exp(}lZQ)}, if v=2N+1.
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5 Painlevé V and continuous orthogonal poly-

nomials

5.1 Time-dependent Jacobi application

The Jacobi polynomials are a class of classical orthogonal polynomials. They are

orthogonal with respect to the weight
wo(z) = (1 —2)*(1 + 2)°.

The Jacobi polynomials can be found in the study of rotation groups; they are
also found to be the solutions of equations of motion of the symmetric top. In this
case, however, we are not going to explore the original Jacobi polynomials weight
but wy(z)e " instead. This deformation will allow the recurrence relations «,, and
[, to become time-dependent and therefore will depend on ¢. This means that the
all important recurrence coefficients are now dependent on ¢ and can be related
explicitly to solutions of Sy (1.7e). So, the time-dependent Jacobi polynomials
are a class of semi-classical orthogonal polynomials which are orthogonal with

respect to the weight
w(r;t) = (1 —2)*(1 4 z)’e™™, (5.1)

on the interval [—1, 1] where a,b > —1. This weight satisfies the Pearson equation

(4.18) with the following o(x) and 7(z):
o(x) = -2’ +x, 7(x)=ta®—(a+b+3)2” = (a+t—-bx+1L

Previously, this weight was explored by Basor, Chen and Ehrhardt in [2]. The

methods used in this paper are known to be the ladders methods; which are longer
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5.1 Time-dependent Jacobi application J. G. Smith

and more convoluted than the direct method that we are going to use here. The
key idea of the method that we are about to explore is the recognition of the
initial moment as a special function via the appropriate integral representation
and also that the following moments are differential variants of the initial one.
This in turn makes it possible to write the matrix of moments as a bi-directional
Wronskian which we can then compare easily and directly with the special function
solutions of Sy (1.7¢). Establishing this connection means we can simply read off
the recurrence coefficients and therefore calculate new sequences of orthogonal
polynomials quickly with little time complexity. For the time-dependent Jacobi
polynomial weight (5.1), using (4.4), the general moment gy, is given by

uk(t):/_ (1= 2)°(1 + 2)" exp(—tz) da. (5.2)

1

First we obtain explicit expressions for the moment i (¢).

Theorem 5.1. For the time-dependent Jacobi polynomial weight (5.1) the initial

moment po(t) is given by

s llat DI+ 1)
['(a+b+2)

o (%) exp(—t)M(a+ 1,a+ b+ 2,2t).

Proof. Using (2.9a), (2.10a) and the substitution z = 2u — 1 we can calculate
o(t) in terms of Kummer functions

o = /_11(1 —2)%(1 + ) exp(—axt) dv

1
= 2070 oxp(t) / (1 — u)u’ exp(—2ut) du
0

_ 2a+b+1f(a +1DI'(b+1)
I'(a+b+2)

exp(—t)M(a+ 1,a + b+ 2,2t).

147



5.1 Time-dependent Jacobi application J. G. Smith

Theorem 5.2. For the time-dependent Jacobi polynomial weight (5.1) the general

moment i (t) can be given by

k
pr(t) = 27T (a4 1) ey (r> )2 M(b). (5.3)

where 1\7[(b) is defined as the following:

fi(b) = Mb+r+1,a+b+r+2 —200(b+7+1)
T F'a+b+r+2) '
Proof. This result can be produced by making a suitable transformation in (5.2),

then using the binomial expansion formula to then use (2.9a). This gives the

desired result. ]

Theorem 5.3. For the time-dependent Jacobi polynomial weight (5.1) the general
moment pu(t) can also be given by

dk
:uk(t) = (_]‘>kﬁuov k= 07 17 27 37

Proof. This result can be shown by differentiating (5.3), using (2.11a), then show-

ing this is exactly equal to —pxy1.

k
dlj“k a+b+1 t k ror
= =2 I'(a+1)e E 2"M(b)

— (k (—1)’“‘7" 2" IM(b + 1)}.

r

Expanding both parts inside this sum and comparing term by term directly with

— k11 we can see they are, in fact, equal. O

This is the point when we branch away from the work done previously by

Basor, Chen and Ehrhardt in [2] and some original research is conducted.
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5.1 Time-dependent Jacobi application J. G. Smith

We have py, in the form (4.8). Using theorem (4.1) we can make the following
simplifications inside the Hankel determinant and begin to write A,, in the form

of a bi-directional Wronskian.

Mo M1 - Hp—1 Lo 77— uénq)

A — L ¥ R _ 1l uloo M(()n) ,:i

! . b) dt .
/’l‘nfl ,L[/n o . MZTL*Q u(()nil) //L(()n) o u(()2n72)

Therefore we can write A,, = 7,,(10), where

_ 2a+b+1f(a +1I'(b+1)
Ia+b+2)

fo(t) exp(—t)M(a+ 1,a+ b+ 2,2t).

We now have A, in the form that is similar to our special function solutions of
Sy (1.7e). This means we can write down exact expressions for the recurrence

coefficients a,(z) and 3,(2).

Theorem 5.4. The function

H,(t;a,b) :t% In 7, (o), (5.4)

with 1, given by (4.10) and A, given by (4.2), satisfies the second-order, second-

degree equation

d*H,\> 1 dH, 2
(t dt?) :4{§(a+2n+b+2t) p” —n(a—i—n)—Hn}

dH, ( dH, 1dH,
—8— <t - —Hn)<b+5 - > (5.5)

Proof. Equation (5.5) is equivalent to Sy (1.7e) through the linear transformation
H,(t;a,b) = o(z) — in® + (a — b+ 2n)t — S(a+b) + £ (a — b)*, (5.6)
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5.2 Pollaczek-Jacobi type polynomials J. G. Smith

where t — z/2, for the parameters
{Ko, K1, Ko, K3} = {3(a—2n—=b), 1(3b+a+2n), : (a+2n—>), =3 (b+3a+2n)}. (5.7)
This is easily verified by comparing (5.6) (with H,, given by (5.4)) with (2.50b). [
Remark 5.1.
o [f we consider the solution to Sy (1.7e) using the corollary (2.3)
d
o(z;a,b) =z Int,(M(a+1,a+b+2,z)) —nz
z
+in® — Ha—b+2n)t+ 3(a+b) — i(a—b)?,

for the parameters (5.7). These parameters can be mapped to our original
set of parameters (2.51b) by the mapping a — o — 1 and b —  — o — n.
Due to the symmetric form of (1.7e) the choice of ki, ks, k3 and Ky is not

unique.

o [n terms of H,(t;a,b) given by (5.4), the coefficients a,,(t) and B,(t) in the

recurrence relation (4.9) have the form

dH,
an<t) = %{Hn+l - Hn}> ﬁn(t) = t%{t (Z - Hn}

5.2 Pollaczek-Jacobi type polynomials

The Pollaczek-Jacobi type polynomials are similar to the time-dependent Jacobi
polynomials in that they are deformations of the classical Jacobi polynomials.
Pollaczek-Jacobi type polynomials are a class of semi-classical orthogonal polyno-

mials. They are orthogonal with respect to the weight

w(r;2) = exp(—z/x)z"(1 — z)°, (5.8)
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5.2 Pollaczek-Jacobi type polynomials J. G. Smith

on the interval [0,1] with a,b > 0. This weight satisfies the Pearson equation
(4.18) with the following o(z) and 7(x):

o(z) =a' +2° — 22

@) =(a+b+4)2°+(z+a+2b+3) 2+ (2 —2a—4)z -2z

Previously this weight was explored by Chen and Dai in [11] and they conclude
that the logarithmic derivative of A,, satisfies a second-order, non-linear ODE. As
before, the methods used in this paper are known to be the ladders methods
which, as we said, are longer and more convoluted than the direct method that
we are going to use here. The key idea of the method that we are about to
explore is the recognition of the initial moment as a special function via the
appropriate integral representation and that the following moments are differential
variants of the initial one. Just as we did with the previous weight, this makes
it possible to write the matrix of moments as a bi-directional Wronskian which
we can then compare easily and directly with the special function solutions of
Sy (1.7e). Again, establishing this connection means we can simply read off
the recurrence coefficients and therefore calculate new sequences of orthogonal
polynomials quickly with little time complexity.

For the Pollaczek-Jacobi type polynomial weight (5.8), using (4.4) the general

moment i (z) is given by
1
pr(z) = / 2* exp(—z/z)2(1 — x)°dz.
0
First we obtain explicit expressions for the moment g, 2(2).

Theorem 5.5. For the Pollaczek-Jacobi type polynomial weight (5.8), the last

moment fio, 2(z) is given by
pon—o(2) =T(b+1)e*U(b+ 1,2 —a —2n, 2).
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5.2 Pollaczek-Jacobi type polynomials J. G. Smith

Proof. Using (2.9b) and the substitution z = ULH we can calculate g, o(2) in

terms of Kummer functions.

1
panea = [ expl(—2 /a1~ o) da

0

0o u b
— -z, —uz 1 —a—2n( % d

/0 e Fe " (u+1) (u—l—l) u
=e ‘TO+1)UDb+1,2—a—2n,z).
[

Theorem 5.6. For the Pollaczek-Jacobi type polynomial weight (5.8), the general

moment pux(2) can be given by
pe(z) =T+ D)e UMb+ 1,—a—k,z2). (5.9)

Proof. This result can be obtained by setting & = 2n — 2 in the calculation above.

[]

Theorem 5.7. For the Pollaczek-Jacobi type polynomial weight (5.8), the general

moment px(2) can also be given by

dkz
ﬂ2n727k(2> = @M2n72(2)7 k= 0,1,2,3,..

Proof. This result can be shown directly by (2.11b) and (5.9). O

This is the point when we branch away from the work done previously by Chen
and Dai in [11] and some original research is conducted.
We have py in the form (4.8) with only one slight difference in that the dif-

ferentiation steps down k rather than up. Using theorem (4.1) we can make the
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5.2 Pollaczek-Jacobi type polynomials J. G. Smith

following simplifications inside the Hankel determinant and begin to write A,, in

the form of a bi-directional Wronskian.

/ (n—1)
Mo M1 - Hn-1 H2n—2  Hap—2 - Hop—2
A 1 M2 . g B Won_o Moy g - Mg;b)ﬂ ,_ d
n . . ) ’ dz’
n—1 n 2n—2
Hn—1 HMn .. Hop—2 :uén—Q) /l’gn)—2 e N;n—z :

Therefore, we can write A,, = 7,,(ft2,_2) where
fon—2(2) =T(b+ 1) exp(—2)U(b+1,—a — 2n+ 2, 2).

We now have A, in the form that is similar to our special function solutions of
Sy (1.7e). This means we can write down exact expressions for the recurrence

coefficients a,(z) and 3,(2).
Theorem 5.8. The function
d
H,(z;a,b) :zd— In 7, (t2n—2), (5.10)
z

with 7, given by (4.10), satisfies the second-order, second-degree equation

d?H,\? dH,1®> dH, [ dH, dH,,
— ) 4 —H — .
(z e ) {n(n+a+b) nt+(a+2) 7 1 + e <z 7 n) (b 7 )

(5.11)

Proof. Equation (5.11) is equivalent to Sy (1.7e) through the linear transforma-
tion

H,(z;a,0) =0 +n*+ (b+a)n + £(2b+ a)(a + 2z + 2b), (5.12)
for the parameters
{Ko, K1, Ko, K3} = {—1(4n+ 3a+2b), 1 (4n + a+2b), 1 (a + 2b), 3 (a — 2b)}. (5.13)
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5.3 Deformed Laguerre polynomials J. G. Smith

This is easily verified by comparing (5.12) (with H,, given by (5.10)) with (2.50Db).

[]

Remark 5.2.
o [f we consider the solution to Sy (1.7e) using the corollary (2.3)

on(z;0,0) = —n* — (b+a+ z)n — 1(2b+ a)(a + 2z + 2b)

d
+ Zd—Tn(U(b +1,—a+2—2n,z2)),
2

for the parameters (5.13). These parameters can be mapped to our original
set of parameters (2.51b) by the mappinga — 1 — —n and b — o — 1.

Due to the symmetric form of (1.7e) the choice of k1, ka, k3 and k4 is not

unique.

e In terms of H,(z;a,b) given by (5.10), the coefficients a,,(z) and 5,(2) in

the recurrence relation (4.9) have the form

e ) e L)

22 dz

5.3 Deformed Laguerre polynomials

The Deformed Laguerre polynomials are a class of semi-classical, orthogonal poly-

nomials which are orthogonal with respect to the weight

w(r;2) = 2%(z + 2)’e, (5.14)
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5.3 Deformed Laguerre polynomials J. G. Smith

on the interval [0,00) for a > —1. This weight satisfies the Pearson equation

(4.18) with the following o(z) and 7(x):

1 ((az+z—12%
a(x):a+1{ = +x* 4z,
1 1 a+b+3 at+b+3
=1 - = 3 . -1 2
() +{,22(a—|—1) z}x +{ z 22(a+1) }x

. aQ—i-3a+1+ b
x.
a+1 z(a+1)

This weight was previously explored by Chen, Basor and McKay in [20] and
by Chen and McKay in [13]. It is interesting to note that if b = 0 we will get
back to the classical Laguerre weight. Again, the methods used are convoluted
compared with the direct method that will follow shortly.

For the polynomial weight (5.14), the general moment gy, is given by
pr(z) = / 2 (r + 2)e dx. (5.15)
0
First we obtain explicit expressions for the moment p(2).

Theorem 5.9. For the deformed Laguerre polynomial weight (5.14) the initial

moment io(z) is given by
po(2) = 2@+ )U(a+ 1,a + b+ 2, 2). (5.16)

Proof. Using (2.9a) and the substitution x = uz we can calculate po(z) in terms

of Kummer functions
po = / 2%z + 2)’e "dx
0
— Za+b+1/ ua(u T 1)befzudu
0

= 2" (a 4+ 1)U(a+ 1,0 +b+2, 2).
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Theorem 5.10. For the deformed Laguerre polynomial weight (5.14), the general

moment is given by
pp(2) = 2T @+ k 4+ D)U(a+k+1La+b+k+2,2). (5.17)

Proof. The result can be inferred by repeating the above calculation with b =

b+ k. ]

Theorem 5.11. For the deformed Laguerre polynomial weight (5.14), the general

moment ju(2) can also be given by
dk
pi(2) = {2 L R =0,1,2,3, .
2
Proof. This result can be shown directly from (2.11d) and (5.17). O

This is the point when we branch away from the work done previously by
Chen, Basor and McKay in [20] and by Chen and McKay in [13] and some original
research is conducted.

Define

Ho
P o— T = Fla+1)U(a+1,a+b+2,2).

As the moment here is not in the form (4.8) we must write A,, in the form of the

following Wronskian by factoring out appropriate powers of z. Our goal here is
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to write A,, in the form of a bi-directional Wronskian.

Ho [ R A |
A, = U1 f2 ... Uy
,unfl /-Ifn e /LQn,Q
Lo 2 OTIED g etk (kb
_ nla+btn) /~L1/z(a+b+2) ug/z(a+b+3) o Mn/z(a+b+n+l)
Mnil/z(a—l—b-‘rn) Mn/z(a+b+n+1) o /L2n72/z(a+b+2n—l)
v v gD
! " (n)
— Zn(aerJrn) v v ce g /L i
: S : ’ dz
ph-1) gn) p@n-2)
Therefore, we can write
A, = 7, (W) znetbtn), (5.18)

We now have A, in the form that is similar to our special function solutions of
Sy (1.7e). This means we can write down exact expressions for the recurrence
coefficients a,(z) and f,,(2).
Theorem 5.12. The function

H,(z) = BN T (W) Zrlatbtm), (5.19)

dz
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with 7, given by (4.10), satisfies the second-order, second-degree equation

2H,\* dH,
<z sz) —{Hn+n(@+n)—(a+b—l—2n+z) dz}

dH, ( dH, dH,
—4 <z e —Hn) <b+ e ) (5.20)

Proof. Equation (6.7) is equivalent to Sy (1.7e) through the linear transformation

Ho(za,b) =0 —3n°+1(z—a—b)n+ £ (a—b)(a—b+22), (5.21)

for the parameters

{Ko, K1, ko, K3} = {3(a—b—2n),1(3b+ a+2n), 3(a — b+ 2n), —1(3a + b+ 2n)}.
(5.22)

This is easily verified by comparing (6.8) (with H,, given by (5.19)) with (2.50b).
[l

Remark 5.3.

o [f we consider the solution to Sy (1.7e)

o(z;a,b) :zdilnTn(U(a—i-1,a+b+2,z))+%n2—%(z—a—b)n
2

—s(a—b)(a—b+2z),
for the parameters (5.22). These parameters can be mapped to one of our
original set of parameters (2.51b) by the mapping a — « — 1, and b —

B —a—n. Due to the symmetric form of (1.7e) the choice of k1, k2, k3 and

K4 1S Mot unique.

o As A, #+ d%An we need to calculate the recurrence coefficients directly using

(4.1). This can be done by substituting (5.18) into (4.1), as follows:
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5.3 Deformed Laguerre polynomials J. G. Smith

Note that:

A, = =7, (W) zratbrmF (5.23)

So, to find an expression Avn in terms of A, and its derivatives it just re-

mains to differentiate (5.18)

d d
%An = aTn(\D)z"(“H") +n(a+ b+ n)MeFE=L () (5.24)
= A, +nla+b+n)A,. (5.25)

Rearranging this gives

&; = —zdiAn +n(a+b+n)A,,
z

substituting this and (5.19) into (4.1) yields a,(z) and B,(z) in terms of
H,(za,b):

dH,
an(2) = Hy—Hpi1+a+b+2n+1,  B,(z) = n(a+b+n)+z - —H,. (5.26)

o [f we consider the original weight (5.14) again but with b € Z there is an

interesting simplification to note
A, = [(=1)°!T(a + 1)z, <z—<a+b+1>Lg‘“‘b‘”) , (5.27)

where LY is an associated Laguerre polynomial. This result can be applying
(2.12) to (5.18). This simplifies the coefficients o, (2) and B,(2) to Laguerre

polynomials

Y

; T <z(“+b+1)Lé_a_b_l))
—In

Tnal (z_(CH-ZH-l) L}()—a—b—l))

d2
_ 2 —(a+b+1) y (ma=b=1)
Bn(z) =z szln [Tn(z (atbt1) 1€ )]

159



5.3 Deformed Laguerre polynomials J. G. Smith

Proof. This result can be shown by applying (5.27) to (5.19) to obtain
d
H,=n(a+b+n) +zd—ln7'n(\1/), (5.28)
2
and then applying this to (5.26). O]

With this result we can now generate entirely new sequences of orthogonal
polynomials using «,(z) and f3,,(z). Notice that they are polynomials in = with

rational coefficients in z.

Table 5.1: Table of new orthogonal polynomials p,(«, 3; x)

p2(1,07l’) = 33'2 — 4z — 22’72
N 9 4(z3+9z2+21 z+15)3; 246246
pa(1,12) = 2% — e — 2
p3(1,0;z) = 2 — 102? + 18z + =25H2
(3. 011) = o _ 7T )
3 5 3 = J—

(23412 22436 2+24)(2+2)
2(9 274144 25+683 254+1134 24 +534 23—312 22—360 2—144)$
+ (2341222436 2+24) (2+2)23

+12 25419 244124 23 +348 224408 2+168
(23412 22436 2+24) (2+2) 23
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5.3 Deformed Laguerre polynomials J. G. Smith

20

20

20

(¢) z=-1

Figure 5.1: Plots of new orthogonal polynomials po (1, 1; 2), p3(1,1;2), pi(1. 1:2),

])5(17 l* Z)a p6(17 1; Z)

It is interesting to note that the polynomials interlace as we would expect from
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5.3 Deformed Laguerre polynomials J. G. Smith

orthogonal polynomials.

N W B

20

20

Figure 5.2: Plots of new orthogonal polynomials po(1, 1; 2), p3(1,1; 2), pi(1. 1;2),

1)5(1«, 1* Z)u pﬁ(]-‘/ 1* Z)? 1)7(1’ L; :>
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6 Painlevé V and discontinuous orthogonal poly-
nomials

In this section will be exploring the connection between discontinuous orthogonal
polynomial weight and Sy (1.7e). This particular weight has been separated into

a different chapter because of the Heaviside function which is 1 for y > 0.

6.1 Deformed Laguerre polynomials

The Laguerre polynomials are a class of classical orthogonal polynomials which

are orthogonal with respect to the weight

However, here we will be looking at the deformed Laguerre polynomials. This
weight was previously explored by Forrester and Ormerod in [23]. Again, the
methods used are convoluted compared with the direct method that will follow
shortly. These are a class of semi-classical orthogonal polynomials which are

orthogonal with respect to the weight
w(x; z) = [1 — (I(x — 2)](x — )%, (6.1)

on the interval [0,00), with a,b > 0 and where 9J(y) is the Heaviside function
Y(y) = 1 for y > 0, otherwise ¥(y) = 0. In fact, if we set ( = 0 and a = 0 we

get straight back to the Laguerre polynomial weight. This weight satisfies the
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6.1 Deformed Laguerre polynomials J. G. Smith

Pearson equation (4.18) with the following o(z) and 7(x):
(z—2)a{(b+x+3)z+(z+1)(a+b+3)}
o(z) = —;
22+ 2a+b+3)z+(a+b+3)(a+b+2)

1
— - b 3) 2’
() 22—|—(2a—|—b—|—3)z—|—(a+b+3)(a+b+2){ (a+b+z+3)a

)

+(*+(2a+b+3)z+(a+b+3)(a+b+2)2”
+(°+(2a+b+3)z+(a+b+3)(a+b+2))x
—(b+3)b+1) 22— (b+1) (a+b+3)z}.
For the deformed Laguerre polynomial weight (6.1), using
p(z) = /b o w(x; 2)de.
the general moment p; is given by
up(z) = /00 2*[1 — Iz — 2)|(z — 2)*2be"dx. (6.2)
0
First we obtain explicit expressions for the moment pg(2).

Theorem 6.1. For the deformed Laguerre polynomial weight (6.1), the initial

moment, iy, 1S given by

po =T'(a+ 1)z“+b+16_z{rfa(ﬂ?2)M(a +1,a+b+2z2)

+(1—C)U(a+1,a+b+2,z)}‘ (6.3)
Proof. Consider

po(z) = /000[1 — 9z — 2)|(x — 2)*a’e "dx.

This can be separated out into two integrals that will be much easier to deal with
Lo :/ [1— 9z — 2)]|(x — 2)*a e "da
0

= /Z(x — 2)%be™dx 4+ (1 — ¢) /Oo(x — 2)%2be " dx.
0 z
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6.1 Deformed Laguerre polynomials J. G. Smith

Now we make the substitutions z = z(1 — u) and x = z(u + 1).

o = /Oz(m — )% dx + (1 — () /Oo(x — 2)%e " dx

1 0o
:ezZaerJrl/ (1 _ u)“ube*“’zdu + (1 _ C)ezzaerJrl/ ua<1 4 u)befuzdu
0 0

=I'(a + 1)z“+b+162{ F(F(I(i’;i)z)M(a +1,a+b+2,2)
+(1—()U(a+1,a+b+2,z)}.
[

Theorem 6.2. For the deformed Laguerre polynomial weight (6.1), the general
moment is given by
pr(z) =T(a+ 1)z“+b+k+1e—2{%M(a +1la+b+k+22)
+(1—§)U(a+1,a+b+k+2,z)}. (6.4)

Proof. The result can be inferred by repeating the above calculation with b =

b+ k. ]

Theorem 6.3. For the deformed Laguerre polynomial weight (6.1), the general

moment () can also be given by
dk
pi(z) = S {2 L B =0,1,2,3,
z
Proof. This result can be shown directly from from (2.11c), (2.11d) and (6.4). O

This is the point when we branch away from the work done previously by

Forrester and Ormerod in [23] and some original research is conducted.
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6.1 Deformed Laguerre polynomials J. G. Smith

Define

. Ho —z) T+
\II—W—F(G+1)€ {mM(a-l—l,a—l—b-FQ,z)

+ (1 —C)U(a+1,a+b+2,z)}.
As the moment here is not in the form p = %Mo we have to write A, in the

form of the following Wronskian by factoring out appropriate powers of z. Our

goal here is to write A,, in the form of a bi-directional Wronskian.

Ho M1 - HUn—1
A, = H1 Mo ... Ln
lunfl //Ln e /,112”,2
f1g/ 2(at+t+D) Y G I I P C )
_ _n(atbin) f11/ 2@ttt fg )2ty (et )
,un—l/z(a—i—b—i-n) Mn/z(a—i-b—&-n—&-l) o N2n—2/Z(a+b+2n_1)
v v plD)
! " (n)
— Zn(a+b+n) v v BN )\ - i
’ dz
Ppn=1) ) p(2n—2)
Therefore, we can write
A, = 7, (W), (6.5)

We now have A, in the form that is similar to our special function solutions of

166



6.1 Deformed Laguerre polynomials J. G. Smith

Sy (1.7e). This means we can write down exact expressions for the recurrence

coefficients a,(z) and 3,(2).

Theorem 6.4. The function
d n(a+b+n)
Hn(z, a,b) :Z% lnTn(\D)Z s (66)

satisfies the second-order, second-degree equation

*H,\? dH, ?
(z dz2) —{(z—a—b—Zn) 7 —n(n—l—b)—Hn]
dH, ( dH, dH,
4 — —H — : .
* dz <Z dz n) (a dz ) (6.7)

Proof. Equation (6.7) is equivalent to Sy (1.7e) through the linear transformation

Hy(za,b) =0 —$n° — $(a+ b+ 2)n+ £(a — b)(a — b+ 22), (6.8)

for the parameters

{Ko, 1, K2, K3} = {3(a—b—2n), 1(3b+a+2n), ;(a—b+2n), —1(3a+b+2n)}. (6.9)
This is easily verified by comparing (6.8) (with H,, given by (6.6)) with (2.50b). O
Remark 6.1.

o If we consider the solution to Sy (1.7e) using the corollary (2.3)

d
U(z;a,b):%n2+%(a—|—b—z)n—%(a—b)(a—b—i—Zz)—i—zElnTn(ez‘I/),

for the parameters (6.9). These parameters can be mapped to one of our
original set of parameters (2.51b) by the mapping a — o — 1, and b —
B —a—mn. Due to the symmetric form of (1.7e) the choice of k1, k2, k3 and

Kq 18 Not unique.
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6.1 Deformed Laguerre polynomials J. G. Smith

o As En #* %An we need to calculate what the recurrence coefficients are

directly using (4.1). This is done by substituting (6.5) into (4.1) as follows.

Note that:

—~

A, = =7, (W) ettt +L (6.10)

Then, to find an expression E; in terms of A, and its derivatives it just

remains to differentiate (6.5)

d d
%An = aTn(\D)z"(“H") +n(a+ b+ n)MetE1L () (6.11)

—~

=A,+n(a+b+n)A,. (6.12)

Rearranging this gives

—~ d
z

substituting this and (6.6) into (4.1) yields a,(z) and B,(z) in terms of

H,(z;a,b):

dH,,
oan(2) = Hy—Hyppy—z+a+b+2n+1, B,(2) =n(a+b+n)+z 7 —H,.
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7 Orthogonal polynomials on the unit circle

Now we are going to look at a slight variation in orthogonal polynomials. Rather
than working with polynomials over the real line we are going to be working with
polynomials over the unit circle. That is, we are now integrating around the unit
circle rather than over the real line [60, §18.33].

A sequence of polynomials ¢,,(z), n = 0,1,..., where ¢,(2) is of degree n, is
orthonormal on the unit circle with respect to the weight function w(z) (> 0) if

(60, §18.33]
1

2mix

/ On(2)m(2)w(2) 2™ dz = Gy .

|z|=1

For a simplified evaluation of certain weights, we can make an appropriate trans-
formation back to the real line, thus making the implementation of the integral
representation far easier.

Consider the following weight
w(r; 2) = (14 2)°(1+ 1/2)%*. (7.1)

We will now consider orthogonal polynomials with respect to a complex weight
function. This polynomial weight defines a class of semi-classical orthogonal poly-

nomials with general moment uy, given by

uk:/T 1, a*w(r) dr, (7.2)

where T denotes the unit circle |x| = 1, appropriately deformed in order to not

cross the cut and z = ¢*¥ ¢ € (—n/2,7/2]. This weight satisfies the Pearson
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equation (4.18) with the following o(z) and 7(x)

X

o(z) = 1{am2 +(a— 1)z — 1},

a —

1
() = 1{azx3+(ba+za+3a—z):x2—(a2—2a+b—|—z+2)$—|—a—1}-
a_

For the polynomial weight (7.1), using (7.2), the general moment py is given by

1
Ui = /T zmxmk(l +2)°(1 + 1/2)%* du.

This weight was previously explored by Forrester and Witte in [25, 24]. In this
paper Forrester and Witte explain that this weight can be evaluated as an | F}
function which is equivalent to a Kummer function. They then conclude that this
satisfies a second-order ODE using a logarithmic derivative. Again, the methods
used are convoluted compared with the direct method. First we obtain explicit

expressions for the moment fi(2).

Theorem 7.1. For the polynomial weight (7.1) the initial moment po(2) is given

by
I'la+b+1)
I'la+1DI(b+1)

po(z) = M(—a,b+1,—2).

Proof. By expanding the exponential term in the polynomial weight, noting the

identity
™

[(1—2)T(z2) =

sin(7z)’
using (2.8) and

T eiﬂb/Q
“laB(3(a+b+1),3(a—b+1))

/ (sint)*te® dt =
0 2

where B(a,b) is the beta function, we can calculate p(z) in terms of Kummer
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functions

1
Lo = /T 27rz'x(1 +2)°(1 + 1/2)%* do

_ 1 / ? (14 )P (1 + ¢ exp(ze27) df

1 (2 }
—— Z Z_'/ (2 COS(ﬁ))a+b€Zﬂ(b_a+2n) do
m 0 n: 7%

9a+b 0 Zne—ﬂ'i(b—a-i-Qn)/Q & +b N i 9 9
_ . a 9 i9(b—a+2n) d19, Y=9+Z
- ; o /0 sin®’(d)e 2
—Si 2"T(a+b+2)

—pllat+b+ DI a—n+1I(b+n+1)

_n On'F(a—n—l— DI'(b+n+1)

g |

B Z"T(a+b+1)I'(n —a)
Z nl'(a—n+1)T'b+n+ 1I'(n—a)
2"T(a+ b+ 1)I'(n — a)sin(r(n — a))
nll'(b+n+ 1w

n=0
00

= )"2"(a+b+1)I'(n—a)
*anr b+n+1DI(—=a)T(a+1)

o0

~ Tla+b+1)
C Tla+1T(b+1)

(=1)"2"I'(n —a)['(b+1)
n‘F(b +n+1)[(—a)

(]

n=0
oo

- F(a+b+ Z
C Tla+1)P(b+1) & nb+1
(

 T(a+b+1)
C T(a+1DI(b+1)

—a,b+1,—2).
]

Theorem 7.2. For the polynomial weight (7.1) the general moment py(z) can be

given by

B I'a+b+1)
x(z) = Ta—k+1D)D(b+k+1)

M(—a+kb+k+1,—2). (7.3)
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Proof. The result can be inferred by repeating the above calculation with a = a—k

and b=b+ k. O

Theorem 7.3. For the polynomial weight (7.1), the general moment p(z) can
also be given by

dk
pr(z) = JHo k=0,1,2,3, ...

Proof. This result can be shown directly from from (2.10a), (2.11c) and (8.3). O

This is the point when we branch away from the work done previously by
Forrester and Witte in [25, 24] and some original research is conducted.

We have py, in the form (4.8). Using theorem (4.1) we can make the following
simplifications inside the Hankel determinant. Our goal here is to write A,, in the

form of a bi-directional Wronskian.

/ (n—1)
o M1 --v Hn—1 Ho Ho -+ Ho
/ " (n)

A = N O R | B0 Ko - Mo ,_d
n . ) - . ) ) T de

n—1 n 2n—2

MBn—1 Hn .. H2p—2 Mé ) Mé b M(() :

Therefore, we can write
Ap = Ta(ko), (7.4)

where
I'la+b+1)
I'(a+1DI'(b+1)

po(z) = M(—a,b+1,—2).

Theorem 7.4. We now have A,, in the form that is similar to our special function
solutions of Py (1.1e). This means we can write down exact expressions for the

recurrence coefficients o, (z) and B,(z). The function

H,(z;a,b) :z% In7,(po), (7.5)
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with 7, given by (4.10), satisfies the second-order, second-degree equation

d*H,\’ dH, >
(z dz2) :{Hn—n(a+1—n)+(2n—z+b—1) }

dz
dH,, [ dH, dH,
+4 (z —Hn) (b—i—a— ) (7.6)

dz dz dz

Proof. Equation (7.6) is equivalent to Sy (1.7¢) through the linear transformation
Hy(za,b) =0 —n*+ 311 —-b—2)n+1(a+b+ 1)+ t2a+b+ 1) (7.7)

for the parameters

{Ko, K1, K2, K3} = }1{2a—2n+b+1, 1—-3b—2a—2n,2a+1+b+2n,b+2n—2a—3}.

(7.8)
This is easily verified by comparing (7.7) (with H,, given by (7.5)) with (2.50b). O

Remark 7.1.
o [f we consider the solution to Sy (1.7e) using transformation (2.10a) and
the corollary (2.3)
d
o(z;a,b) :zd—lnrn(M(a +b+1,0+1,2)+in" =11 -b+2)n
z
—Ya+b+1)—-L(2a+b+1)
for the parameters (7.8). These parameters can be mapped to our original
set of parameters (2.51b) by the mappinga — a+n—LF—1 and b — 5 —n.

Due to the symmetric form of (1.7e) the choice of ki, ks, k3 and Ky is not

unique.

o In terms of H,(z;a,b) given by (7.5), the coefficients a,(z) and B,(2) in the

recurrence relation have the form

an(z) = E{Hn_i'_l — Hn}, Bn(z) = %{zdcgn — Hn}.

z
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o If we consider the original weight (7.1) again but with a € Z there is an

interesting simplification to note:

8e) = |y | B0 2) 79

where LY is an associated Laguerre polynomial. This result can be shown if
(2.12) is applied to (7.4). This simplifies the coefficients o, (2) and 5,(2) to

Laguerre polynomaials

(b) 2
an(z) - % In T, (L((lb)<—z>) ) ﬁn(’z) - @ In Tn (La (_Z))
Proof. This result can be shown by applying (7.9) to (4.13). O

With this result we can now generate entirely new sequences of orthogonal
polynomials using «,(z) and f,(z). Notice that they are polynomials in = with

rational coefficients in z.

Table 7.1: Table of new orthogonal polynomials p,(«, ;)

pa(l, hiw) = 2% + 5 + 57
c) — 2 12(3+2)z 2246 2412
P2(2,1,%) = 2° + g treare) T 2006
. 3 2(4+42)z> (22+8z+22)x 2(4+2)
P3(2,2%) = 2+ 5y T o moery T mr0GD
ps(3,2:0) = 2* + 60(2°+15 22475 24120
39y 4

(23415 22490 24210) (23+15 22+60 2-+60)
<z7+35 284540 2544746 24425620 23484600 22+158040 z+ 131400)x
2(23415 22490 2+210) (22415 22+60 2+60)

+ 28430 254420 2443480 23417100 22445000 z+46800
2(23+415 22490 2+210) (23415 22460 2+60)
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8 Painlevé VI and continuous orthogonal poly-

nomials

8.1 Deformed Jacobi polynomials

The Jacobi polynomials are a class of classical orthogonal polynomials which are

orthogonal with respect to the weight
wo(z) = (1 — 2)*(1 4 z)°.

However, here we will be studying the semi-classical deformed Jacobi polynomials

with respect to the weight
w(z; 2) = (v — 2)72°F(1 — 2)”, (8.1)

on the interval (0,1), with a, 8 > 0, z < 0 and v € R. In 2010 Dai and Zhang
showed in [19] that the A, generated by the matrix of moments satisfies the sixth

Painlevé equation in the following way:

Hy(z):=z(z — 1)%lnAn —nz((n+a+pB+7)— a+p8)?)

+i{2n(n+a+B+7)+ Bla+B) —y(a-0)}.

Then H,(z) satisfies
bzl 2H,\’ il bzl ?
dH, (z(z — 1)d n) + (u{ﬂqﬂ — (22— 1)%} + 1/11/21/3V4>
z

dz dz? dz
4
_ H dH,, 9
: dz )7
7=1

with parameters

{vi, 0,8, u} = {5(a + B), 5(8 — a), 52n +a+ f),5(2n + a + B+ 27)}.
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As before, the methods used in this paper are known to be the ladders methods
which, as we said, are longer and more convoluted than the direct method that
we are going to use here. The key idea of the method that we are about to
explore is the recognition of the initial moment as a special function via the
appropriate integral representation and that the following moments are differential
variants of the initial one. Just as we did with the previous weight, this makes
it possible to write the matrix of moments as a bi-directional Wronskian which
we can then compare easily and directly with the special function solutions of
Sy (1.7e). Again, establishing this connection means we can simply read off
the recurrence coefficients and therefore calculate new sequences of orthogonal
polynomials quickly and with little time complexity. Lets compare A, with our
special function solutions.

For the deformed Jacobi polynomial weight (8.1), using
b
(2) = [ au() s
the general moment py is given by
1
we(2) = / (x — 2)72°™(1 — )’ d. (8.2)
0

Rather than obtaining explicit expressions for p, this time we will calculate ug(z)

first. This can be done easily using the integral representation.

Theorem 8.1. For the polynomial weight (8.1) the general moment puy(z) can be

given by
pe = (—1)Bla+k+ 1,8+ 1)2"F(—y,a+k+1,a+ 8+ k+2;1/2). (8.3)
Proof. The result can be inferred by applying (2.14) to (8.2). O
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Theorem 8.2. The general moment ug(z) given by (8.3) satisfies the following
second-order ODE.

d
+(a+’y+k—z(a+ﬁ+k+2’y))$+”y(04+5+/f+’7+1)/% =0. (8.4)

&
dz?

z2(z—1)
Proof. The result can be inferred by applying (8.3) to (2.13). O

This is the point when we branch away from the work done previously by Dai

and Zhang showed in [19] and some original research is conducted.

8.1.1 Hypergeometric relations

In this section we will prove some of the essential hypergeometric relations that

we will need for some of the proofs later in this thesis.

Theorem 8.3. Given the hypergeometric function F(a,b,c;z), the following re-

currence relation holds:
(b—c+1)F(a,b,c;2) + (c—1)F(a,b,c —1;2) —bF(a,b+ 1,¢;z) = 0.
Proof. Consider [60, §15.5.12] and [60, §15.5.15].

(b—a)F(a,b,c;z) +aF(a+1,b,¢;2) —bF(a,b+1,¢;2) =0, (8.5a)

(c—a—1)F(a,b,c;z) +aF(a+1,b,¢;2) — (c—1)F(a,b,c —1;z) = 0. (8.5b)
Computing (8.5a)-(8.5b) gives

(b—c+1)F(a,b,c;2) + (c—1)F(a,b,c—1;2) —bF(a,b+ 1,¢;2) = 0.
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Theorem 8.4. Given the hypergeometric function F(a,b,c;z) the following dif-

ferential relation holds:

d
a(F(a, b,c;2)2") = bF(a,b+1,¢;2)2" . (8.6)
Proof. Consider [60, §15.5.4]

d
E(ZcilF(CL, bc;2) = (c— 1)z *F(a,b,c — 1; 2)). (8.7)

Then compute the following using (8.7) and theorem 8.3:

d%(F (a,b,¢;2)2") = %(ZHF(@, b, c; 2)2bcH)
= 22(c—1)F(a,b,c — 1; 2)2"°H!
+ 2 F(a,b,¢;2)(b— e+ 1)2"¢
=2""((c=1)F(a,b,c — 1;2) + F(a,b,¢;z)(b— c+ 1))
= bF(a,b+1,¢;2)2"7".

]

In order to compare A, with something similar to our Py ; special function
solutions we need control of o and g within ;. To do this we will make the

following transformation of parameter inside py:

{a, 8,7} = {a+1—c—n,c—b—n,—a},
where the inverse transformation, simply for completeness, is

{a,b,c}:—{7,a+6+7+2n—|—1,a+7+n—1}.
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We now have direct control of n and k. Alternatively, we can think of s, as the

kth moment in a matrix of size n. This means p, ; now takes the following form:

un’k:(—1)‘“3(2—c—n+a+k,c+1—b—n)z_a (88)

x Fla,2—c—n+a+ka+k+3—-b—2n;1/z2). (8.9)

Theorem 8.5. The following differential recurrence equation holds for 41, and

,un,nfl ;
dﬂn-‘,—l,n d2ﬂn,n—1

(b+n—c) = o5 AT (b+n)tnn-1- (8.10)

Proof. Substituting what we have for p, ; into theorem 8.4 we get the following:

d
(b +n — C)Mn+1,n = d_(ﬂn,n—12b+n_1)22_b_n
z
Aty
_ < Hn, L btn—1 o (b+n— 1)Mn,n—12’b+n_2) S2—b-n
dz
_ d,un,n—l

P +(b4+n—1)nn-1.
Finally, differentiating the last line yields the desired result. O

Theorem 8.6. Consider the recurrence relation for [i,

P — Hnkt1 — Pn—1k-1 = 0. (8.11)

Proof. Substituting what we have for p,, , into theorem 8.3 gives the desired result.

]

In the next section we want to show that A, (z) is directly equal to 7,(¥p.c)
multiplied by some other matrices. We are going to show this in a very “brute

force” way by showing the equivalence of each individual matrix entry.
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8.1.2 Proof of main theorem

Theorem 8.7. Suppose the following is true:

An = |’Pn7in(wa,b,c)5ngn|7 (812)
where T, (Vape) is given by (2.40),
1 0 0 0 0
b b0 0 0
Ppi=| Mgh zbl -2 0 0o |,
T V= YO
L T(0)z»—1 T()zn—1 - T(n—1)zn"1 |
1 0 0 0
0 S(1,1) S(2,1) ... S(n—2,1)
E=10 0 922 ... Snh-22) :
0 0 0 oo Sin—2,n—-2)
where S(m,n) are the Stirling numbers of the first kind and
1 0 0 0 0
b(n—2,n—1) 1
(c—b—1)(z—1) 1) 0 0 0
. b(n—3,n—1) b(n—3,n—2) 1
Qn ) (c—b—1)2(2—1)2 (c—b—2)(2—1)? (z—1)2 0 0 !
b(1,n—1) b(1,n—2) b(1,1) 1
[ (c=b—1)p_1(z—1)"1  (c=b—1)p_2(z—1)"—1 (c=b—1)(z—1)»—1  (z—1)n—1 |
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where (a),, is the Pochhammer symbol.

In order to prove that these matrices are indeed equal we must first look at

the very top right hand corner of (8.12).

8.1.3 Step1

Proof. Multiplying out the general form of the right hand side of (8.12) yields

n—1

Cn(An)l,an = Cn,un,nflzb = (Z - 1)7171 Z S(n - 17 k)é(k)¢a (813>

k=1

where (), = ((:)13: ((b)1—a(@ —b—mn+2),_2). It will be useful to note that

Cn+1

. =b+n-—c

Applying induction to (8.13), where the base case is trivial, we can show that
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this result is true

Cn-i—lﬂn-f—l,nzb - (Z - 1)_n S(”? k‘)(s(k)¢

+0S(n—1,0)—S(n—1,n—1)6M¢ + 5“%}

n—1
(z—1) —
(n—1) b - b -1
— _ N 3 — 1" 3 —1)»
Cn o 1)lmn1? + (2 —=1)7"q Cppinpn-12"(z — 1)
(n—1) b 1-n ) Qlnn—1 -1
= - . —)tnd SHmnsLobe,
C, = 1);1”’” 127+ Crz(z — 1) e 2°(z —1)

+ bﬂn,nflzbiwz - 1)7171 + Mn,n712b<n - 1)(Z - 1>n2}’
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then dividing both sides by z°

d n,n— — —
Crtiflntin = an{% + bily 12 Ly tnn-1(n—1)(z —1) 1}

(n—1)

- Cnm/lfn,n—l

dfln - —
- Cn{z Iudiz : + by’n,n—l + (n - 1)(2 - 1) lun,n—l(z - 1)}

d,unnfl
=C, : nn—1(b —1);.
{Z 1z + Hnn—1(b+n )}

Differentiation of the last line shows

d,unJrl n d2ﬂn n—1 d,un n—1
C’n ) — Cn ) ) b
T dz {Z dz? * dz (b+n)

and finally the division by C),

d,un—}-l,n o Zdzﬂn,n—l + d,un,n—l

(b+n—c) dz dz? dz

(b+n).

Implementing (8.10) gives the desired result.
This proves that the top right hand corner of the matrix A, (2) is always equal
to the right hand corner of (8.12) for all n. Mathematically speaking this can be

written down in the following way:

n—1

Cn(An)anb = Cnunm,lzb =(z—1)"" Z S(n—1, k)é(k)gb. (8.14)

k=1
Now we need to extend this to show the matrices are equal everywhere.
8.1.4 Step 2

The following formula gives the (n — 1 — j)th entry in the first row. Again, we are

simply trying to show the equivalence of he individual matrix entries once all the
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multiplication of the right hand side of (8.12) has been computed:

Dnj(An)12" = Dy jp(n,n+j = 2)2°

B i b(j—1,i— 1)(z — 1= S0 50 §(n i — j — 1, k)
B (c—b—n—i+j+1)i

)

i=1
with D, ; = % It is worth noting that
D1 _ -1
Dn—l,j
and
Dnj .
——=b+n—c—7. 8.15
Dot J (8.15)

Setting n :=n + ¢ — j in (8.14) gives

Fiti—j—1
Chpimjltirijarioj12 = (z — 1)1 Z Sh+i—j—1,k)06"¢
=1
= (z =)™y S +i— - 1,k)8Me,
1

—_

B
Il

where S(n+i—j —1,k) =0 when k >n+1i—75—1 (i < j). This transforms
(8.14) into

i:bj — 1,0 = D)0 jftntijmyij12" (8.16)
(c=b—n—i+j+1) . |

Dn,jﬂn,n—i—j—?
i=1
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Applying induction to (8.16), where the base case is trivial, we can show that this

result is true
j+1
b
Dn,j+1,un,n+j—12 = g

=1

b(j,% — 1)Crimj—1fnti—j—1ntimj—27"
(c—b—n—z+j+2)z_1

j . b
b(J, 1) Crizjlinti—jmntioj—12
| ' 4 b , n+i—jMn+i—jn+i—j
= Un—jln—jn—j—1% ; (c=b—mn—i+j+1)

n—jln—jn—j-1%

+ Xj: {b(j - 1vl - 1) + b(] - 17 Z')}C’n—i—i—j:un—i—i—j,n-i-i—j—lzb
c—b—mn—i+j5+1);

Dn,j/ln,n-‘,—j—sz

(c=b—n+}j)

_ b
= Cn—jln—jn—j-12" +

+ zj: b(j -1, Zl)Canj/Lanj,anjleb
— (c=b—n—i+j+1),
Dn,jﬂn,nJrijZb

_ b 1
= Un—jln—jn—j—1% + (C— b_ n+]> - n—jy’nfj,nfjflz

b

n i b(j — 1,0 — 1)Criimjo1flntiojt ipioj—22"
(c—b—n—2+j+2)z_1

=1

D i ; Zb

b n,jMnn+j—2 b

= —jHn—jn—j—1% + - +D —1,jMn-1, i_3%
n—jMn—jn—j (C b n ]) n—1,7Mn—1n+j

— Crmjlin—jn—j-12""
It therefore suffices to show

Dy jiipinntj—1 =(c—b—n+ j)ian,jﬂn,nfjfZ + Dyt jn—1,n+j—3

which is easily verified using g"’—jfl, =—1, DD"’lj -=b+n—c—jand (8.11).
n—1,7 n—1,3

8.1.5 Step 3

We now have to show that the matrix moments of A,, and the right hand column

of (8.12) are equal when we move in the downwards direction from the top right
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hand corner.

j 1 dhl n-1 i ;
E (A ) .Zb = F . .zb — . <WW(b)j—l)(Zi:1 5(k+ I)S(n - 1’2))
n,J n)n,n—j n,jMn,n—j P (Z _ 1)77,712:]'71 ’

where E, ; = C(n)(c — a);—1. It also is useful to note that

Enjt

E, =c—a+j—1

We can also remove this double sum here by making use of the identity we have

already proved (8.13)

B, = o (B 0) (S 80500 1,0)
n,j% Mnn—j = 2 (Z — 1)71—12]’—1
J 1 1 dk! - . L
=2 1z — 1) (F(k;) b1 (b)ﬂ'—l)5( )(Cottnnr2(z = 1)"7Y),

£
Il

1

(8.17)
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Applying induction to (8.17), where the base case is trivial, we can show that this

result is true

b
En,j-{—lz MHnn—j—1 =

J+1 | g
. (F(kz) dbk—1 (b)j) §tk=1) (Cnunm_lzb(z _ 1y

=23 (2 —1 1)n—1 (F(lk) jbk_—l (b)J) (OF D (Coptnp-12"(z — 1))

1 d? .
: — (5) ;1109
zﬂ(z—l)"—ll“(j—i—l)dbﬂ( )10 finn

J _
1 k—1

d

k—?
+(k d J 1}) ( ntn,n— 1Zb(z_1)n_1)

dbk 2
C’n(S ),un,n—l
2i(z — 1)1
J _

. _ 1 (k—1) dF2

_ —1NE. b1 . : -
b+ VB2 tnn J+; 2 (z — 1)n71( (k) dbka(b)J 1)

Cn(s(j),un,nfl
2i(z — 1)1

, 1 ’ 1 d"t

§k=1) (Cnun,n,lzb(z — 1)”_1) +

(5(k71)0n,un,n712b(2 . 1>n71)
:(b+]_1)En]Z Mnn]

1 g .
+ Zj(z_—UHCS (Bngz"7H 2 = 1" tnny)

:(b—i—j—l)Emz unn _;

1 d b+j5—1 n—1
T 1)n_2£(En,jZ = )" ).

So it just remains to show

. d n.n—17 .
(c—a+j—Dpppj1=(2—1) #d’z L+ (0+j+n—2)pnnj-
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Using [60, §15.5.1] and substituting p, & into [60, §15.5.13] this result is verified.
0

We have now shown that each element of A,, and the right hand side of (8.12)
are in fact equal and therefore (8.1.3) has been proved. Now we can continue with

simplifying A,, in the following way:

An :|Pn7:n(wa,b,c>5ngn|
:’Pn"%n<¢a,b,C)H5nHQn’
:ann(l—n—Qb)/QTn (wa b c))(z o 1)n(1—n)/2

=C Wi, (¢a,b,c) ’

where C,, is irrelevant due to the logarithmic derivative and W, (@/)a,b,c) is given

by (2.41).

Theorem 8.8. We now have A,, in the form that is similar to our special function
solutions of Sy (1.7f). This means we can write down exact expressions for the

recurrence coefficients o, (z) and B,(z). The function

H,(z) = z(z — 1)6% In W, (Yape), (8.18)

satisfies the second-order, second degree equation

2 \(d S (dH
-1 —=H,| |—H,+A)— S+ A+l
“z=1) dz? dz + 31:[1 dz tATY

2
+ iHn—i—A ZHn+2Az—|—ZB—(2z—1) iHn—i—A + sl
dz dz

(8.19)

where A = an—1(a—b+1)? and B = 1(n(1+b—a—2c)+a*—ac+b*—bc+a—b+c).
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Proof. Equation (8.19) is equivalent to Sy (1.7f) through the linear transforma-
tion

H,(z;a,b,c) =0 — Az — B, (8.20)
for the parameters

{Vl,l/g,l/3,l/4} = {%(1 —b—2n+(1),—%(1—20+b+&),%(14‘&—6),%(1—@—[))}
(8.21)
[l

Now we must calculate A in terms of A,, and its derivatives. In order to do
this we must use the following theorem:
Theorem 8.9. The function py has the following differential relation:
1SR (2 — 1)BH = 50 (142C (2 — 1)B),
whereézk_(z:—;ziﬂd%, C=n+c—2,and B=a—n—c+ 2.

Proof. This can be shown easily using [60, §15.5(ii)]. O

Theorem 8.10. The function A, (z) is related to Ay (2) in the following way:

~ 1 dA,
A, = m{A,m(l+C’—n—z(B+C)) 5 z2(z — 1)}

Proof. Using theorem 8.9 we can see that
A, = 2"=CD (o - =By 4020 (2 — 1)), (8.22)

where

600 . )
S| 00 9 . )

5(n—1)(¢) 5(n)(¢) 5(2"_2)(¢)
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and from this we can write down an expression for A,

~ 1 d ~
_ n(n—C-1)+1/, _ 1\n(l—B—n)+1 Cr, __1\B
A, 1—%° (z—1) —dZHn(uoz (z—1)7). (8.23)

Rearranging (8.22) for H,,(1102C(z — 1)B), substituting into (8.23) and simplifying

gives the desired result. O

8.1.6 The recurrence coefficients

Theorem 8.11. In terms of H,, given by (8.18) the recurrence coefficients o, (z)

and B, (2) have the following form:

an(2)=C—-2n—2(B+C)+ Hyy1 — Hy,

1 , ,[dH,
-1
(2—b—2n)(3—b—2n){z(z ){dz

+n(BzQ+sz—C+n—1)}.

Pn(z) =

+2Hn}
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Proof. Substituting (8.22) and (8.23) into «, and f,, gives

o :AnJrl_ﬁ
" An—i—l An
A/
—m+1D(C=n—2(B+0C)) —z2(z—1)-—2 _—n(1+C-n—-2(B+C
A
n+1
—i—z(z—l)A—n
o d An-i—l
=C—-2n—2(B+C)+z2(z 1)51 A
=C —-2n—2(B+C)+ Hyy1 — Hy,
An—i—lAn—l
BnZA—%
_ZQﬁnJrlﬁnfl

(z—1)2(H,)’

: d d n(n—C— n
:(2—b—2n)(3—b—2n)£{(2_1)2£ln(A"z (n—C 1)(2 1) (1-B ))}
22 d L, d
—(z=1)*(5-1
(2—b—2n)(3_b_2n>dz{(z 1) (dZ nA\,
— % In( n(n—C—l)(Z_l)n(l—B—n))}
22 d d : ) ]
(2—b—2n)(3—b_2n —{ (2=1)*(Hy = = In(z"" Oz = 1707 ))}

d
_ 2
_(2—b—2n 3—0b—2n) {Z(Z Y {

+n(BzZ+CzQ—C+n—1)}.
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9 Conclusion

In this thesis we have new formulations for the special function solutions in order
for them to be viewed and used in a more manageable form. This new formulation
meant we could improve upon some previous work; specifically we have improved
upon the “ladder methods”, as they are known in the literature. Along side this
new formulation we also included the rational function solutions. As we have
seen, some of the rational function solutions form a subset of the special function
solutions. This reduction of some of the special functions to polynomials gives
the applications we looked at much more usability and diversity with regards to
plotting and analysis.

This thesis not only re-formulates the special function solutions, but also
utilises these new solution forms in order to simplify the overall comparison be-
tween the Painlevé equations and orthogonal polynomials. We have seen this
explicitly for various cases involving P, (1.1e) and one non-trivial example con-
necting Py (1.1f) with orthogonal polynomials. In all of these cases we have been
able to generate new orthogonal polynomials with coefficients that are special
functions.

In certain cases we have been able to improve upon this even further with the
reduction of the special functions to polynomials, in the case of Py, (1.1e) this was
to Laguerre polynomials and in the case of Py, (1.1f) this is Jacobi polynomials.
This provided a computationally beneficial simplification of the special function
solutions and meant we could analyse them quickly and efficiently by computing
plots and comparing different aspects of the polynomials, such as the interlacing

root properties etc. This thesis has also given us an efficient way of generating
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new orthogonal polynomials.

This thesis has answered a lot of questions that I originally wanted to an-
swer concerning the already well known connection between Painlevé equations
and orthogonal polynomials. However, during the study of this connection I have
also uncovered numerous branches of mathematics that I still wish to investigate
further. Some of these areas include some unknown root structure that the ra-
tional function solutions posses; for example: In the limiting case, the corners of
Yablonskii-Vorob’ev polynomials tends towards a finite angle. Recently there was
some research carried out into this by Buckingham, Miller, Bertola and Bothner
in 2014 [6, 8, 9]; this result could easily be applied to the remaining polynomials
that comprise the rational function solutions of the Painlevé equations. This is
just one area of the root structure that we could investigate; there is also the
unanswered question of why these polynomial roots actually form these patterns
with such structure. This is a question I have given a lot of thought but, so far, I

have been unable to answer.
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