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J. G. Smith

Abstract

In this thesis we classify all of the special function solutions to Painlevé

equations and all their associated equations produced using their Hamilto-

nian structures. We then use these special solutions to highlight the connec-

tion between the Painlevé equations and the coefficients of some three-term

recurrence relations for some specific orthogonal polynomials. The key idea

of this newly developed method is the recognition of certain orthogonal

polynomial moments as a particular special function. This means we can

compare the matrix of moments with the Wronskian solutions, which the

Painlevé equations are famous for. Once this connection is found we can

simply read off the all important recurrence coefficients in a closed form. In

certain cases, we can even improve upon this as some of the weights allow a

simplification of the recurrence coefficients to polynomials and with it, the

new sequences orthogonal polynomials are simplified too.
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J. G. Smith

1 Introduction

1.1 General Introduction

In this thesis we will discuss the following orthogonal polynomials: various de-

formed Laguerre polynomials, Pollaczek-Jacobi polynomials, time-dependent Ja-

cobi polynomials, some polynomials on the unit circle and some deformed Jacobi

polynomials. Once the logarithmic derivative of Hankel and Wronskian deter-

minants are taken it can be compared directly to one of the Painlevé equations

special function solutions [17]. Our goal in this thesis is to explore a new method

of computing the recurrence coefficients for specific orthogonal polynomial weights

using the comparison we mentioned above.

Some of the solutions to the Painlevé equations comprise of classical special

functions, such as the Bessel functions, the Airy function, the Legendre functions

and the confluent hypergeometric function. Recently [18] there has been much

interest in the relationship between semi-classical orthogonal polynomials and

these integrable equations. This relationship dates back to work by Shohat [62]

in 1939. It took until 1995, in a paper by Magnus [44], to establish that these

integrable equations were actually Painlevé equations. These relationships extend

to many of the Painlevé equations. For example, see [1, 2, 7, 11, 17, 18, 21, 23,

25, 69]. The purpose of this thesis is to explore and clarify this connection.

The thesis is organised into the following sections:

• Introduction to Painlevé and all the material we will be using, including the

vital Hamiltonian structures.

• Introduction to the special function solutions and how they are related to

12



1.2 Painlevé equations J. G. Smith

the Painlevé equations PII − PV I .

• Introduce the idea of rational function solutions. Some of these solutions

can be shown to be special cases of the special function solutions which we

will see in more detail later.

• The applications of the special function and rational function solutions and

how they relate explicitly to certain orthogonal polynomials. This is chapters

5, 6, 7 and 8 of the thesis and contains most of the original work. We will

be applying a new method to some previously known orthogonal polynomial

weights.

1.2 Painlevé equations

The six Painlevé equations (PI − PV I) were first discovered approximately 100

years ago by Painlevé and his colleagues whilst investigating ordinary differential

equations of the form

d2w

dz2
= F

(
z;w,

dw

dz

)
,

where F is rational in dw
dz

and w is analytic in z. They possess the property

that their solutions have no movable essential singularities. Alternatively, the

locations of multi-valued singularities of any of the solutions are independent of

the particular solutions chosen and so are dependent only on the equation. This

is now known to be the Painlevé property. Painlevé, Gambier and their colleagues

managed to show that there are 50 canonical equations with this property up to

a Möbius (bilinear rational) transformation

W (ζ) =
a(z)w + b(z)

c(z)w + d(z)
, ζ = φ(z),

13



1.2 Painlevé equations J. G. Smith

where a(z), b(z), c(z), d(z) and φ(z) are locally analytic functions. Contained

inside these 50 equations are the six Painlevé equations. The remaining 44 equa-

tions can either be reduced to linear equations and solved in terms of elliptic

functions, or can be reduced to ordinary differential equations satisfied by the

transcendental solutions. The solutions of (PI−PV I) are called the Painlevé tran-

scendents and the general solutions of the Painlevé equations are transcendental.

This means they are irreducible; they cannot be expressed in terms of previously

known functions, such as rational functions, elliptic functions or special functions.

The Painlevé equations have a plethora of interesting properties, some of which

will be investigated in this thesis. Some of these properties include:

• Bäcklund transformations. These transformations relate one solution (from

within a hierarchy) to another solution.

• Special function solutions (which are also known as one parameter solutions).

Painlevé equations can be thought of as nonlinear analogues of the classical

special function solutions and these solutions play a vital role in this thesis.

• Rational function solutions are found for PII−PV I and are sometimes formed

as a subset of the special function solutions. However, this is not the case

for all Painlevé equations. For example, PIV (1.1d) has its rational function

solutions formed as a subset of the special function solutions of PV I (1.1d).

However, PIII (1.1c) has some rational solutions that cannot be produced

from the special function solutions of PIII (1.1c).

• Painlevé asymptotics. These leading order asymptotics are a useful way for

determining (from an applied point of view) which equation a suspected

14



1.2 Painlevé equations J. G. Smith

exact Painlevé solution belongs to and where exactly it appears in the hier-

archy.

The Painlevé equations arise in a large number of applications, for example; ran-

dom matrix theory, the asymptotic theory of orthogonal polynomials, self-similar

solutions of integrable equations, tiling problems as well as many more [20]. The

six Painlevé equations (PI−PV I) are the nonlinear ordinary differential equations

defined below.

d2w

dz2
= 6w2 + z, (1.1a)

d2w

dz2
= 2w3 + zw + A, (1.1b)

d2w

dz2
=

1

w

(
dw

dz

)2

− 1

z

dw

dz
+
Aw2 +B

z
+ Cw3 +

D

w
, (1.1c)

d2w

dz2
=

1

2w

(
dw

dz

)2

+ 3
2
w3 + 4zw2 + 2(z2 − A)w +

B

w
, (1.1d)

d2w

dz2
=

(
1

2w
+

1

w − 1

)(
dw

dz

)2

− 1

z

dw

dz
+

(w − 1)2

z2

(
Aw +

B

w

)

+
Cw

z
+
Dw(w + 1)

w − 1
, (1.1e)

d2w

dz2
=

1

2

(
1

w
+

1

w − 1
+

1

w − z

)(
dw

dz

)2

−

(
1

z
+

1

z − 1
+

1

w − z

)
dw

dz

+
w(w−1)(w−z)

z2(z − 1)2

{
A+

Bz

w2
+
C(z − 1)

(w − 1)2
+
Dz(z − 1)

(w − z)2

}
. (1.1f)

where A,B,C and D are arbitrary constants.

15



1.3 Hamiltonian structure J. G. Smith

1.3 Hamiltonian structure

Each Painlevé equation has its own Hamiltonian structure and system to explore.

The Painlevé system associated with PJ is, by definition, the Hamiltonian system

δJq =
∂HJ

∂p
, δJp = −∂HJ

∂q
, (1.2)

where δ is the operator associated with that Painlevé equation for a unique Hamil-

tonian function HJ [57] and is given for each case by

δ =
d

dz
for J = I, II, IV, (1.3)

δ = z
d

dz
for J = III,V, (1.4)

δ = z(z − 1)
d

dz
for J = VI, (1.5)

where the Hamiltonian functions HJ are given by

HI(q, p, z) = 1
2
p2 − 2q3 − zq, (1.6a)

HII(q, p, z) = 1
2
p2 − (q2 + 1

2
z)p− (α + 1

2
)q, (1.6b)

HIII(q, p, z) = q2p2 − zpq2 − (λ0 − 1)pq + zp+ 1
2
(λ0 − 2− λ∞)zq, (1.6c)

HIV (q, p, z) = 2qp2 − (q2 + 2zq + 2κ0)p+ κ∞q, (1.6d)

HV (q, p, z) = q(q − 1)2p2 − {(β + ϑ)q2 − (2β + ϑ− z)q + β}p

− 1
4
{α2 − (β + ϑ)2}q, (1.6e)

HV I(q, p, z) = q(q − 1)(q − z)p2 −
{
ϑ4(q − 1)(q − z) + ϑ3q(q − z)

+ (ϑ0 − 1)q(q − 1)
}
p+ ϑ2(ϑ1 + ϑ2)(q − z), (1.6f)

where α, β, ϑ, ϑ0, ϑ1, ϑ2, ϑ3, ϑ4, ϑ∞, λ0, λ∞, κ0 and κ∞ are arbitrary constants. To

elaborate, the function σn = HJ + L(z) where L(z) is a linear correction term
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1.3 Hamiltonian structure J. G. Smith

will satisfy a non-linear second-order, second-degree ordinary differential equation

(ODE), often referred to as the Painlevé σ-equation.

It is also interesting to note that PV (1.1e) has the option of using either the

delta operator as δ = d
dz

or δ = z d
dz

. We will discuss this unique feature of PV

(1.1e) in chapter 2.

Remark 1.1. Each Hamiltonian function σ = HJ satisfies a second-order second-

degree ordinary differential equation whose solutions are in a correspondence with

solutions of the associated Painlevé equation through (1.2) since

q = FJ

(
σ,
dσ

dz
,
d2σ

dz2
, z

)
, p = GJ

(
σ,
dσ

dz
,
d2σ

dz2
, z

)
,

for suitable functions FJ
(
σ, dσ

dz
, d

2σ
dz2
, z
)

and GJ

(
σ, dσ

dz
, d

2σ
dz2
, z
)
. Thus, given q and p,

one can determine σ and conversely, given σ, one can determine q and p. This

will be shown in detail later.

The six Painlevé σ-equations (SI−SV I) are the nonlinear ordinary differential

17



1.3 Hamiltonian structure J. G. Smith

equations defined below:(
d2σ

dz2

)2

+ 4

(
dσ

dz

)3

+ 2z
dσ

dz
− 2σ = 0, (1.7a)(

d2σ

dz2

)2

+ 4

(
dσ

dz

)3

+ 2
dσ

dz

(
z
dσ

dz
− σ

)
= 1

4
(α + 1

2
)2, (1.7b)(

z
d2σ

dz2
− dσ

dz

)2

+ 4

(
dσ

dz

)2(
z
dσ

dz
− 2σ

)
+ 4zϑ∞

dσ

dz
= z2

(
z
dσ

dz
− 2σ + 2ϑ0

)
,

(1.7c)(
d2σ

dz2

)2

− 4

(
z
dσ

dz
− σ

)
+ 4

(
dσ

dz
+ 2ϑ0

)(
dσ

dz
+ 2ϑ∞

)
= 0, (1.7d)(

z
d2σ

dz2

)2

=

[
2

(
z
dσ

dz

)2

− zdσ
dz

+ σ

]2

− 4
3∏
j=0

(
dσ

dz
+ κj

)
, (1.7e)

dσ

dz

(
z(z − 1)

d2σ

dz2

)2

+

(
dσ

dz

{
2σ − (2z − 1)

dσ

dz

}
+ κ1κ2κ3κ4

)2

=
4∏
j=1

(
dσ

dz
+ κ2

j

)
,

(1.7f)

where β, ϑ0, ϑ∞ and κ0, ..., κ4 are arbitrary constants.

In the following sections we will derive all of the σ-equations (SI − SV I) that

we will need in this thesis. The Hamiltonian functions σ = HJ frequently arise

in applications, e.g: random matrix theory and orthogonal polynomials. It is this

connection with the orthogonal polynomial applications which make the deriva-

tions of each σ-equation fundamentally important. All of the calculation in the

following section can be found on the USB flash drive in its appropriate folder.

1.3.1 Hamiltonian structure for the first Painlevé equation PI

The Hamiltonian associated with PI (1.1a) is

HI(q, p, z) = 1
2
p2 − 2q3 − zq, (1.8)
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1.3 Hamiltonian structure J. G. Smith

where Hamilton’s equations (1.2) yield the following system, which p and q satisfy:

dq

dz
=p, (1.9a)

dp

dz
=6q2 + z. (1.9b)

Eliminating p in (1.9a) then q = w satisfies PI (1.1a).

Theorem 1.1. The Hamiltonian function

σ(z) = HI(q, p, z), (1.10)

with HI(q, p, z) given by (1.8), satisfies the second-order, second-degree equation(
d2σ

dz2

)2

+ 4

(
dσ

dz

)3

+ 2z
dσ

dz
− 2σ = 0,

which is SI (1.7a). Conversely, if σ(z) satisfies SI (1.7a) then the solutions of the

Hamiltonian system (1.9) are given by

q(z) = −σ′, p(z) = −σ′′, ′ =
d

dz
. (1.11)

Proof. Substituting (1.8) into (1.10) and differentiating twice followed by substi-

tuting (1.9a) and (1.9b) where possible yields

dσ

dz
= −q, (1.12a)

d2σ

dz2
= −p. (1.12b)

Then, solving (1.12a) and (1.12b) simultaneously gives (1.11). Substituting (1.11)

into HI (1.8) we can generate SI (1.7a) multiplied by some other expression. Also

see Okamoto [54, 59] and Forrester and Witte [27].
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1.3 Hamiltonian structure J. G. Smith

1.3.2 Hamiltonian structure for the second Painlevé equation PII

The Hamiltonian associated with PII (1.1b) is the following:

HII(q, p, z) = 1
2
p2 − (q2 + 1

2
z)p− (α + 1

2
)q, (1.13)

where Hamilton’s equations (1.2) yield the following system, which p and q satisfy:

dq

dz
=p− q2 − 1

2
z, (1.14a)

dp

dz
=2qp+ α + 1

2
. (1.14b)

Eliminating p in (1.14a) then q = w satisfies PII (1.1b). Whilst eliminating q

yields

p
d2p

dz2
= 1

2

(
dp

dz

)2

+ 2p3 − 2p2 − 1
2
(α + 1

2
)2, (1.15)

which is known as P34.

Theorem 1.2. The Hamiltonian function

σ(z) = HII(q, p, z), (1.16)

with HII(q, p, z) given by (1.13), satisfies a second-order, second-degree equation(
d2σ

dz2

)2

+ 4

(
dσ

dz

)3

+ 2
dσ

dz

(
z
dσ

dz
− σ

)
= 1

4
(α + 1

2
)2,

which is SII (1.7b). Conversely, if σ(z;α) satisfies SII (1.7b) then the solutions

of the Hamiltonian system (1.14) are given by

q(z) =
4σ′′ + 2α + 1

8σ′
, p(z) = −2σ′, ′ =

d

dz
. (1.17)
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1.3 Hamiltonian structure J. G. Smith

Proof. Substituting (1.13) into (1.16) and differentiating twice followed by sub-

stituting (1.14a) and (1.14b) where possible yields

dσ

dz
= −1

2
p, (1.18a)

d2σ

dz2
= −qp− 1

2
α− 1

4
. (1.18b)

Then, solving (1.18a) and (1.18b) simultaneously gives (1.17). Substituting (1.17)

into HII (1.13) we can generate SII (1.7b) multiplied by some other expression.

Also see Okamoto [54, 59] and Forrester and Witte [27].

1.3.3 Hamiltonian structure for the third Painlevé equation PIII

The Hamiltonian associated with PIII (1.1c) is the following:

HIII(q, p, z) = q2p2 − zpq2 − (λ0 − 1)qp+ zp+ 1
2
(λ0 − 2− λ∞)zq, (1.19)

with λ0 and λ∞ parameters, where Hamilton’s equations (1.2) yield the following

system, which p and q satisfy:

z
dq

dz
= 2pq2 − zq2 − (λ0 − 1)q + z, (1.20a)

z
dp

dz
= −2qp2 + 2zpq + (λ0 − 1)p− 1

2
(λ0 − 2− λ∞)z. (1.20b)

See Okamoto [53, 59]. Eliminating p in (1.20a) then q = w satisfies PIII (1.1c).

Theorem 1.3. The Hamiltonian function

σ(z;λ0, λ∞) = 1
2
HIII(q, p, z) + 1

2
pq + 1

8
(λ0 − 2)2 − 1

4
z2, (1.21)

with HIII(q, p, z) given by (1.19), satisfies the second-order, second-degree equation(
z
d2σ

dz2
− dσ

dz

)2

+ 4

(
dσ

dz

)2(
z
dσ

dz
− 2σ

)
+ 4zϑ∞

dσ

dz
= z2

(
z
dσ

dz
− 2σ + 2ϑ0

)
,
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1.3 Hamiltonian structure J. G. Smith

which is SIII (1.7c) with the parameters

{ϑ0, ϑ∞} = {−1
4
λ∞(λ0 − 2), 1

8
(λ2
∞ + (λ0 − 2)2)}.

Conversely, if σ(z;λ0, λ∞) satisfies SIII (1.7c) then the solutions of the Hamilto-

nian system (1.20) are given by

q(z) =
2zσ′′ + 2(1− λ0)σ′ − λ∞z

z2 − 4(σ′)2
, p(z) = σ′ + 1

2
z, ′ =

d

dz
. (1.22)

Proof. Substituting (1.19) into (1.21) and differentiating twice followed by sub-

stituting (1.20a) and (1.20b) where possible yields

dσ

dz
= p− 1

2
z, (1.23a)

d2σ

dz2
=

1

2z
(4qp(z − p) + 2pλ0 − z(λ0 − λ∞ − 1)− 2p). (1.23b)

Then, solving (1.23a) and (1.23b) simultaneously gives (1.22). Substituting (1.22)

into HIII (1.19) we can generate SIII (1.7c) multiplied by some other expression.

Also see Okamoto [55, 59] and Forrester and Witte [27].

1.3.4 Hamiltonian structure for the third Painlevé equation PIII′

An alternative form of PIII (1.1c), due to Okamoto [54, 55, 59], is obtained by

making the transformation w(z) = u(t)/
√
t, with t = 1

4
z2 in PIII (1.1c) giving

d2u

dt2
=

1

u

(
du

dt

)2

− 1

t

du

dt
+
u2

2t2
(A+ 2u) +

B

2t
− 1

u
, (1.24)

which is well known to be PIII′ (1.24). The Hamiltonian associated with PIII′

(1.24) is the following:

HIII′(q, p, t) = q2p2 −
(
q2 + ϑ0q − t

)
p+ 1

2
(ϑ0 + ϑ∞)q, (1.25)
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1.3 Hamiltonian structure J. G. Smith

with ϑ0 and ϑ∞ parameters, where Hamilton’s equations (1.2) yield the following

system, which p and q satisfy:

t
dq

dt
= 2q2p− q2 − ϑ0q + t, (1.26a)

t
dp

dt
= −2qp2 + 2qp+ ϑ0p− 1

2
(ϑ0 + ϑ∞). (1.26b)

See Okamoto [54, 55, 59]. Eliminating p in (1.26a) then q = w satisfies PIII (1.1c)

with parameters (A,B) = (−2ϑ∞, 2(ϑ0 + 1)). Eliminating q in (1.26b) then p

satisfies

d2p

dt2
=

1

2

(
1

p
+

1

p− 1

)(
dp

dt

)2

− 1

t

dp

dt
− 2p(p− 1)

t

+
1

8t2

{
4ϑ0ϑ∞ −

(ϑ0 + ϑ∞)2

p
− (ϑ0 − ϑ∞)2

p− 1

}
. (1.27)

Making the transformation p(t) = 1/[1− w(z)], with z = t in (1.27) yields

d2w

dz2
=

(
1

2w
+

1

w − 1

)(
dw

dz

)
−1

z

dw

dz
+

(w − 1)2

z2

{
(ϑ0 + ϑ∞)2w

8
−(ϑ0 − ϑ∞)2

8w

}
−2w

z
,

which is PV (1.1e) with parameters

{A,B,C,D} = {1
8
(ϑ0 + ϑ∞)2,−1

8
(ϑ0 − ϑ∞)2,−2, 0}.

This is precisely the well known connection between PIII (1.24) and PV (1.1e)

when D = 0.

Theorem 1.4. The Hamiltonian function

σ(z;ϑ0, ϑ∞) = tHIII′(q, p, t)− 1
2
t+ 1

4
ϑ2

0, (1.28)

with HIII′(q, p, z) given by (1.25) satisfies the second-order, second-degree equation(
t
d2σ

dt2

)2

+

{
4

(
dσ

dt

)2

− 1

}(
t
dσ

dt
− σ

)
+ ϑ0ϑ∞

dσ

dt
= 1

4
(ϑ2

0 + ϑ2
∞). (1.29)
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1.3 Hamiltonian structure J. G. Smith

Conversely, if σ(z;ϑ0, ϑ∞) satisfies SIII′ (1.29) then the solutions of the Hamilto-

nian system (1.26) are given by

q(t) =
2tσ′′ − 2ϑ0σ

′ + ϑ∞
1− 4(σ′)2

, p(t) = σ′ + 1
2
, ′ =

d

dt
. (1.30)

Proof. Substituting (1.25) into (1.28) and differentiating twice followed by sub-

stituting (1.26a) and (1.26b) where possible yields

dσ

dt
= p− 1

2
, (1.31a)

d2σ

dt2
=

1

2t
(4qp(1− p) + 2ϑ0p− ϑ0 − ϑ∞). (1.31b)

Then, solving (1.31a) and (1.31b) simultaneously gives (1.30). Substituting (1.30)

into HIII′ (1.25) we can generate SIII′ (1.29) multiplied by some other expression.

Also see Okamoto [55, 59] and Forrester and Witte [26].

1.3.5 Hamiltonian structure for the fourth Painlevé equation PIV

The Hamiltonian associated with PIV (1.1d) is the following:

HIV (q, p, z) = 2qp2 − (q2 + 2zq + 2κ0)p+ κ∞q, (1.32)

with κ0, κ∞ parameters, where Hamilton’s equations (1.2) yield the following

system, which p and q satisfy:

dq

dz
= 4qp− q2 − 2zq − 2κ0, (1.33a)

dp

dz
= −2p2 + 2pq + 2zp− κ∞. (1.33b)

Eliminating p then q = w satisfies PIV (1.1d) with the following parameters:

{A,B} = {1 − κ0 + 2κ∞,−2κ2
0}. Whilst eliminating q, then w = −2p satisfies

PIV (1.1d) with the following parameters: {A,B} = {2κ0 − κ∞ − 1,−2κ2
∞}. As
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1.3 Hamiltonian structure J. G. Smith

in the usual case for Painlevé equations, this Hamiltonian equation satisfies a

second-order, second-degree equation.

Theorem 1.5. The Hamiltonian function

σ(z;κ0, κ∞) = HIV (q, p, z), (1.34)

with HIV (q, p, z) given by (1.32) satisfies the second-order, second-degree equation(
d2σ

dz2

)2

− 4

(
z
dσ

dz
− σ

)
+ 4

(
dσ

dz
+ 2ϑ0

)(
dσ

dz
+ 2ϑ∞

)
= 0,

which is SIV (1.7d) with the parameters

{ϑ0, ϑ∞} = {κ0, κ∞}.

Conversely, if σ(z;κ0, κ∞) satisfies SIV (1.7d) then the solutions of the Hamilto-

nian system (1.33) are given by

q(z) =
σ′′ − 2zσ′ + 2σ

2(σ′ + 2κ∞)
, p(z) =

σ′′ + 2zσ′ − 2σ

4(σ′ + 2κ0)
, ′ =

d

dz
. (1.35)

Proof. Substituting (1.32) into (1.34) and differentiating twice followed by sub-

stituting (1.33a) and (1.33b) where possible yields

dσ

dz
= −2qp, (1.36a)

d2σ

dz2
= −4qp2 + (4κ0 − 2q2)p+ 2κ∞q. (1.36b)

Then, solving (1.32), (1.36a) and (1.36b) simultaneously gives (1.35). Substitut-

ing (1.35) into HIV (1.32) we can generate SIV (1.7d) multiplied by some other

expression. Also see Jimbo and Miwa [36] and Okamoto [58].
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1.3 Hamiltonian structure J. G. Smith

1.3.6 Hamiltonian structure for the fifth Painlevé equation PV

The Hamiltonian associated with PV (1.1e) is the following:

HV (q, p, z) = q(q−1)2p2−{(b+ϑ)q2−(2b+ϑ−z)q+b}p− 1
4
{a2−(b+ϑ)2}q, (1.37)

with a, b and ϑ as parameters and where Hamilton’s equations (1.2) yield the

following system, which p and q satisfy:

z
dq

dz
= 2q(q − 1)2p− (b+ ϑ)q2 + (2b+ ϑ− z)q − b, (1.38a)

z
dp

dz
= −(3q − 1)(q − 1)p2 + 2(b+ ϑ)qp− (2b+ ϑ− z)p+ 1

4
{a2 − (b+ ϑ)2}.

(1.38b)

Proof. See Jimbo and Miwa [36] Okamoto [54, 55, 57].

Eliminating p then q = w satisfies (1.1e) with the following parameters:

{A,B,C} = {1
2
a2,−1

2
b2,−ϑ − 1}. As in the usual case for Painlevé equations,

this Hamiltonian equation satisfies a second-order, second-degree equation.

Theorem 1.6. The Hamiltonian function

σ(z; a, b, ϑ) = HV (q, p, z) + 1
4
(2b+ ϑ)z − 1

8
(2b+ ϑ)2, (1.39)

with HV (q, p, z) given by (1.37), satisfies the second-order, second-degree equation(
z
d2σ

dz2

)2

=

[
2

(
z
dσ

dz

)2

− zdσ
dz

+ σ

]2

− 4
3∏
j=0

(
dσ

dz
+ κj

)
,

which is SV (1.7e) with the parameters

{κ0, κ1, κ2, κ3} =
{

1
4
(ϑ+ 2a), 1

4
(ϑ− 2a),−1

4
(ϑ+ 2b), 1

4
(2b− ϑ)

}
.
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Conversely, if σ(z; a, b, ϑ) satisfies (1.7e) then the solutions of the Hamiltonian

system (1.38) are given by

q(z) =
zσ′′ + 2(σ′)2 − zσ′ + σ

2(σ′ + 1
4
ϑ− 1

2
a)(σ′ + 1

4
ϑ+ 1

2
a)
, p(z) =

zσ′′ − 2(σ′)2 + zσ′ − σ
2(σ′ − 1

4
ϑ+ 1

2
b)

, ′ =
d

dz
.

(1.40)

Proof. Substituting (1.37) into (1.39) and differentiating twice followed by sub-

stituting (1.38a) and (1.38b) where possible yields

dσ

dz
= 1

4
(2b+ ϑ)− qp, (1.41a)

d2σ

dz2
=

1

z
(q3p2 − (b+ ϑ)q2p− (1

4
(a+ b+ ϑ)(a− b− ϑ) + p2)q + bp). (1.41b)

Solving (1.39), (1.41a) and (1.41b) simultaneously gives (1.40). Substituting

(1.40) into HV (1.37) we can generate SV (1.7e) multiplied by some other ex-

pression. Also see Jimbo and Miwa [36] and Okamoto [55, 59].

1.3.7 Hamiltonian structure for the sixth Painlevé equation PV I

The Hamiltonian associated with PV I (1.1f) is the following:

HV I(q, p, z) = q(q − 1)(q − z)p2 −
{
ϑ4(q − 1)(q − z) + ϑ3q(q − z)

+ (ϑ0 − 1)q(q − 1)
}
p+ ϑ2(ϑ1 + ϑ2)(q − z), (1.42)

where ϑ0, ϑ1,ϑ2 and ϑ3 are parameters and are related in the following way:

ϑ0 + ϑ1 + 2ϑ2 + ϑ3 + ϑ4 = 1,
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1.3 Hamiltonian structure J. G. Smith

where Hamilton’s equations (1.2) yield the following system, which p and q satisfy:

z(z − 1)
dq

dz
= −3p2q2 +

{
(2z + 2)p2 + (2ϑ0 + 2ϑ3 + 2ϑ4 − 2)p

}
q

− zp2 − (+zϑ3 + zϑ4 + ϑ0 + ϑ4 − 1) p− ϑ2 (ϑ1 + ϑ2) , (1.43a)

z(z − 1)
dp

dz
= 2pq3 − (2pz + 2p+ ϑ0 + ϑ3 + ϑ4 − 1) q2

+
{

(2p+ ϑ3 + ϑ4)z + ϑ0 + ϑ4 − 1
}
q − zϑ4. (1.43b)

Proof. See Jimbo and Miwa [36] and Okamoto [54, 55, 57].

Eliminating p then q = w satisfies (1.1f) with the following parameters:

{A,B,C,D} = {1
2
ϑ2

1,−1
2
ϑ2

4,
1
2
ϑ2

3,
1
2
(1− ϑ2

0)}.

As in the usual case for Painlevé equations, this Hamiltonian equation satisfies a

second-order, second-degree equation.

Theorem 1.7. The Hamiltonian function

σ(z;α, β, ϑ) = HV I + (κ1κ3 + κ1κ4 + κ3κ4)z − 1
2

∑
1≤i<j≤4

κiκj, (1.44)

with HV I(q, p, z) given by (1.42), satisfies the second-order, second-degree equation

dσ

dz

(
z(z − 1)

d2σ

dz2

)2

+

(
dσ

dz

{
2σ − (2z − 1)

dσ

dz

}
+ κ1κ2κ3κ4

)2

=
4∏
j=1

(
dσ

dz
+ k2

j

)
,

which is SV I (1.7f) with the parameters

{κ1, κ2, κ3, κ4} = {−1
2
(ϑ3 + ϑ4), 1

2
(ϑ4 − ϑ3),−1

2
(ϑ0 + ϑ1 − 1), 1

2
(ϑ0 − ϑ1 − 1)}.
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Conversely, if σ(z;κ1, κ2, κ3, κ4) satisfies (1.7e) then the solutions of the Hamil-

tonian system (1.43) are given by

q =
(κ3 + κ4)z(z − 1)σ′′ + 2z(σ′)2 − A1σ

′ + 2σκ1κ2κ3 − κ2A2

2
{

(σ′)2 + (κ2
3 + κ2

4)σ′ + κ2
3κ

2
4

} ,

q(q − 1)p =
(σ′ +B1)z(z − 1)σ′′ + (2B2x−B3)(σ′)2 − (B2σ +B4)σ′ +B5

2
{

(σ′)2 + (κ2
3 + κ2

4)σ′ + κ2
3κ

2
4

} ,

(1.45)

where ′ = d
dz

.

Proof. Substituting (1.42) into (1.44) and differentiating twice followed by sub-

stituting (1.43b) and (1.43a) where possible yields

d

dz
σ = −q(q − 1)p2 +

{
(2q − 1)ν1 − ν2

}
p− ν2

1 . (1.46)

If we then compute σ − z d
dz
σ, substituting (1.46) where possible yields the first

expression here. Differentiating again and substituting (1.43b), (1.43a) and (1.46)

where possible yields the second

σ − zdσ
dz

=

(
B1 −

dσ

dz

)
q − (κ3 + κ4)q(q − 1)p− 1

2

∑
1≤i<j≤4

κiκj, (1.47a)

z(z − 1)
d2σ

dz2
=2

(
B2
dσ

dz
− κ1κ2κ3

)
q + 2

(
κ3κ4 −

dσ

dz

)
q(q − 1)p−B3

dσ

dz
+ C1.

(1.47b)
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where

A1 = 2σ + 2κ3κ4z + κ1κ2 − κ2
3 − κ3κ4 − κ2

4,

A2 = κ2
1κ

2
3 + κ2

1κ3κ4 + κ2
1κ

2
4 + κ1κ

2
3κ4 + κ1κ3κ

2
4 + κ2

3κ
2
4,

B1 = κ1κ3 + κ1κ4 + κ3κ4,

B2 = κ1 + κ3 + κ4,

B3 = κ1 + κ2 + κ3 + κ4,

B4 = 2κ1κ2κ3 + κ2
1κ2 + κ1κ3κ4 − κ1κ

2
3 − κ2κ

2
4,

B5 = 2σκ1κ3κ4 − κ2(κ2
1κ

2
3 + κ2

1κ3κ4 + κ2
1κ

2
4 + κ1κ

2
3κ4 + κ2

3κ
2
4),

C1 = κ4(κ1κ2 + κ1κ3 + κ2κ3) + κ1κ2κ3.

Solving (1.47a) and (1.47b) simultaneously gives (1.45). Then, solving (1.45) for q

and p and substituting these into HV I (1.42) we can generate SV I (1.7f) multiplied

by some other expression. Also see [56].

1.3.8 Summary

Now that we have derived all the σ-equations we need to re-classify the special

function and rational function solutions that solve both the Painlevé equations

(PII−PV I) and the σ-equations (SII−SV I). This is so that we can compare these

results with the Hankel determinants of orthogonal polynomial weights.
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2 Special function solutions

2.1 Bounded solutions

The conditions that allow bounded special function solutions of the Painlevé equa-

tions are going to be of much interest in this thesis. In the following chapter, we

will discuss the conditions that the are necessary for bounded solutions with re-

spect to all of the special function solutions to all the Painlevé equations and their

associated Hamiltonian equation. The reason we are interested in the bounded

special function solutions is because these are the types of solution that arise

when discussing the connections to orthogonal polynomials. Generally speaking,

the bounded solutions tend to be the solutions that have the physical relevance.

Despite the obvious importance of the locations of the bounded special function

solutions, to the best of my knowledge, it seems as if this work has not been com-

pleted before. There is in fact very little information in the literature regarding

the classification of the bounded Painlevé type solutions.

When it comes to the rational solutions, the locations of the bounded solutions

are very easy to write down. This is because all the rational solutions to the

Painlevé equations are always logarithmic derivatives of polynomials. So assuming

we know the roots of these polynomials it just remains to classify the conditions

that allow no real roots. Then as long as the asymptotic behaviour around ±∞

is bounded as well, we will have bounded solutions. In summary, for both the

rational and special function solutions, we are looking for the conditions that give

no poles on the real line.

Consider the following polynomials:
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2.1 Bounded solutions J. G. Smith

(a) H5,5 has real roots (b) H6,6 has no real roots

Figure 2.1: Roots of the generalised Hermite polynomials Hm,n, which we will

formally define in section 3.1.3

As H5,5 has real roots it is impossible for a solution containing the logarithmic

derivative of H5,5 to be bounded. As H6,6 has no real roots it is possible for the

logarithmic derivative of H6,6 to be bounded.

Another interesting property of Painlevé equations is the fact that the form of

the general solution of the Painlevé solutions are slightly different when compared

with the form of the general solution of the associated Hamiltonian equations.

The Painlevé type solutions always take the form of a logarithmic derivative of a

ratio of functions. Regardless of the type of Painlevé solution we are discussing,

be it polynomials or special functions. Whereas the Hamiltonian type solutions

always take the form of logarithmic derivatives of a single function, not a ratio

[56, 57, 58]. This highlights one of the main reasons that the Hamiltonian systems

play such a vital role. They are easier to work with in this sense and all the

applications in orthogonal polynomials involve only a logarithmic derivatives of a
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2.2 Special functions J. G. Smith

single function. In most cases the solutions are just linear transformations away

from the logarithmic derives of the matrix of moments. It’s this fact alone that

motivates this thesis.

2.2 Special functions

The Painlevé equations PII − PV I possess hierarchies of solutions expressible in

terms of classical special functions and for particular values of the parameters

they satisfy an associated Riccati equation:

dw

dz
= p2(z)w2 + p1(z)w + p0(z), (2.1)

where p2(z), p1(z) and p0(z) are rational functions. Hierarchies of solutions, which

are often referred to as one-parameter solutions, are generated from seed solutions

derived from the Riccati equation using the associated Backlund transformation.

The special function solutions of PII (1.1b) are given in terms of Airy functions

Ai(z), Bi(z); of PIII (1.1c) and PIII′ (1.24) are given in terms of Bessel func-

tions Jν(z) and Yν(z); of PIV (1.1d) are given in terms of parabolic cylinder

functions Dν(z); of PV (1.1e) are given in terms of Kummer functions F (a, b; z)

and U(a, b; z); and of PV I (1.1f) are given in terms of the general hypergeometric

equation F (a, b, c; z).
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Table 2.1: Special function solutions of PII − PV I

p2(z) p1(z) p0(z) Conditions on parameters

PII ε 0 1
2ε A = 1

2ε

PIII ε1
A−ε1
ε1z

ε2 ε1A+ ε2B = 4n+ 2

PIII′ ε1
ν
z ε2 ε1A+ ε2B = 4n+ 2

PIV ε1 2εz 2ν B = −2(2n+ 1 + εA)2, or − 2n2

PV
α
z ε3 − α−β

z −βz α+ β + ε3C = 2n+ 1, or (α− n)(β − n) = 0

PV I
a

z(z−1)
(b+1−a)z−c
z(z−1)

c−b−1
z−1 ε1

√
2A+ ε2

√
−2B + ε3

√
2C + ε4

√
1− 2D = 2n+ 1

2.2.1 The Airy function

Definition 2.1. The Airy function is the solution to Airy’s equation

d2w

dz2
= zw, (2.2)

where all solutions are entire functions of z [60, §9.2(i)].

Figure 2.2: Plot of Airy functions Ai(z) and Bi(z) which are solutions to the Airy

equation (2.2).

2.2.2 The Bessel function

Definition 2.2. The Bessel function is the solution to Bessel’s equation

z2d
2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0. (2.3)
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This differential equation has a regular singularity at z = 0 with indices ±ν and

an irregular singularity at z =∞ of rank 1 [60, §10.2(i)].

Definition 2.3. The Modified Bessel functions (z → ±iz) have the following

relations to other functions [60, §10.39]:

I1/2(z) =

(
2

πz

)1/2

sinh(z), (2.4a)

I−1/2(z) =

(
2

πz

)1/2

cosh(z). (2.4b)
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2.2 Special functions J. G. Smith

(a) ν = 20, (b) ν = 10,

(c) ν = 0, (d) ν = −10,

(e) ν = −20, (f) ν = −30,

Figure 2.3: Plot of Bessel functions of the first and second kind Jν(z), Yν(z), Iν(z)

and Kν(z) which are solutions to the Bessel equation (2.3).
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2.2.3 The Parabolic cylinder functions

Definition 2.4. The parabolic cylinder functions ψ are solutions of the differential

equation

d2ψ

dz2
+

(
az2 + bz + c

)
ψ = 0. (2.5)

The parabolic cylinder functions ψ have the three distinct standard forms [60,

§12.2(i)]

d2U(−a)

dz2
−
(

1
4
z2 + a

)
U(−a) = 0, (2.6a)

d2W (a)

dz2
+
(

1
4
z2 − a

)
W (a) = 0, (2.6b)

d2Dν

dz2
−
(

1
4
z2 − ν − 1

2

)
Dν = 0. (2.6c)

Each of these equations is, of course, transformable into the others. All solutions

are entire functions of z and entire functions of a or ν. The form that we will be

concerned with here is the Dν type where

Dν = U(−1
2
− ν, z).

Definition 2.5. The parabolic cylinder function Dν has the following relations to

Hermite polynomials [60, §12.7(i)]:

U(−1
2
, z) = D0(z) = exp(1

4
z2), (2.7a)

U(n− 1
2
, z) = Dn(z) = exp(−1

4
z2)Hen(z) = 2−n/2 exp(−1

4
z2)Hn(1

2

√
2z), (2.7b)

V (n+ 1
2
, z) =

√
2
π

exp(1
4
z2)(−i)nHen(iz) =

√
2
π

exp(1
4
z2)(−i)n2−n/2Hn(1

2

√
2iz),

(2.7c)

where Hn(z), Hen(z) are both Hermite polynomials, but Hen(z) refers to the

slightly unusual weight of w(x) = e−
1
2
x2.
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(a) ν = 11
2 (b) ν = − 11

2

Figure 2.4: Plot of parabolic cylinder functions Dν(z), Dν+1(z), Dν+2(z) and

Dν+3(z) which are solutions to the parabolic cylinder equation (2.5).

2.2.4 The confluent Hypergeometric function

Definition 2.6. A Kummer function is a solution to Kummer’s equation [60,

§13.2(i)]

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0.

This has two linearly independent solutions M(a, b, z) and U(a, b, z).

Both of these solutions will be of fundamental importance throughout this

thesis.

Definition 2.7. The first two standard solutions are [60, §13.2(i)]

M (a, b, z) =
∞∑
s=0

(a)s
(b)ss!

zs and M(a, b, z) =
∞∑
s=0

(a)s
Γ(b+ s)s!

zs. (2.8)

where Γ(a) is the Gamma function and (a)n is the Pochhammer symbol which is

define by

(a)n :=
Γ(a+ n)

Γ(a)
.
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Definition 2.8. The Kummer functions M(a, b, z) and U(a, b, z) have the follow-

ing integral representations [60, §13.4(i)]:

M(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

euzua−1(1− u)b−a−1 du, (2.9a)

U(a, b, z) =
1

Γ(a)

∫ ∞
0

e−uzua−1(1 + u)b−a−1 du. (2.9b)

Definition 2.9. The Kummer functions M(a, b, z) and U(a, b, z) satisfy the fol-

lowing transformations [60, §13.2(vii)]:

M(a, b, z) = ezM(b− a, b,−z), (2.10a)

U(a, b, z) = z1−bU(a− b+ 1, 2− b, z). (2.10b)

Definition 2.10. The Kummer functions M(a, b, z) and U(a, b, z) satisfy the fol-

lowing differentiation formula [60, §13.3(ii)]:

dn

dzn
M(a, b, z) =

(a)n
(b)n

M(a+ n, b+ n, z), (2.11a)

dn

dzn

[
e−zU(a, b, z)

]
= (−1)ne−zU(a, b+ n, z), (2.11b)

dn

dzn

[
e−zM(a, b, z)

]
= (−1)n

(b− a)n
(b)n

e−zM(a, b+ n, z), (2.11c)

dn

dzn

[
U(a, b, z)

]
= (−1)n(a)nU(a+ n, b+ n, z). (2.11d)

Definition 2.11. The Kummer functions M(a, b, z) and U(a, b, z) have the fol-

lowing relation to Laguerre polynomials when n ∈ N [60, §13.6(v)]:

U(−n, a+ 1, z) = (−1)n(a+ 1)nM(−n, a+ 1, z) = (−1)nn!L(a)
n (z), (2.12)

where L
(a)
b is a associated Laguerre polynomial [60, §18.3].
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2.2.5 The general Hypergeometric function

The hypergeometric function F (a, b, c; z) is a solution of Euler’s hypergeometric

differential equation

z(1− z)
d2w

dz2
+ [c− (a+ b+ 1)z]

dz

dw
− abw = 0, (2.13)

which has three regular singular points: 0, 1 and ∞.

Definition 2.12. The general hypergeometric function F (a, b, c; z) is defined by

the Gauss series [60, §15.2(i)]

F (a, b, c; z) =
∞∑
s=0

(a)s(b)s
(c)ss!

zs = 1 +
ab

c
z +

a(a+ 1)b(b+ 1)

c(c+ 1)2!

=
Γ(c)

Γ(a)Γ(b)

∞∑
s=0

Γ(a+ s)Γ(b+ s)

Γ(c+ s)s!
zs,

on the disk |z| < 1.

Definition 2.13. The general hypergeometric function F (a, b, c; z) has the follow-

ing integral representation [60, §15.6.1(i)]:

F (a, b, c; z) =
Γ(a)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− zt)a
dt. (2.14)

Definition 2.14. The general hypergeometric function F (a, b, c; z) satisfies the

following differential formula [60, §15.5]:

dn

dzn

{
zc−1(1−z)a+b−cF (a, b, c; z)

}
=(c−n)nz

c−n−1(1−z)a+b−c−nF (a−n, b−n, c−n;z).

(2.15)

Definition 2.15. The general hypergeometric function F (a, b, c; z) has the follow-

ing relation to Jacobi polynomials [60, §15.9]:

(α + 1)n
n!

F
(
− n, n+ α + β + 1, α + 1; 1

2
(1− z)

)
= P (α,β)

n (z), (2.16)
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where P
(α,β)
n (x) is the Jacobi polynomial.

2.3 Special function solutions to the Painlevé equations

2.3.1 The second Painlevé equation PII

To obtain a special function solution of a PII (1.1b) one supposes that w(z) satisfies

the Riccati equation (2.1) for some functions p2(z), p1(z) and p0(z). Differentiating

(2.1) yields

d2w

dz2
=
dp2

dz
w2 + 2p2w

dw

dz
+
dp1

dz
w + p1

dw

dz
+
dp0

dz

=
dp2

dz
w2 +

dp1

dz
w +

dp1

dz
+ (2p2w + p1)(p2w

2 + p1w + p0)

=2p2
2w

3 +

(
dp2

dz
+ 3p1p2

)
w2 +

(
dp1

dz
+ 2p0p2 + p2

1

)
w +

dp0

dz
+ p1p0. (2.17)

Substituting this into PII (1.1b) gives

2(p2−1)(p2+1)w3+

(
3p2p1+

dp2

dz

)
w2+

(
2p2p0+p2

1+
dp1

dz
−z
)
w+p1p0+p0−A = 0.

Equating powers of w and solving gives

p2(z) = ε, p1(z) = 0, p0(z) = 1
2
εz, ε2 = 1,

with parameter A = 1
2
ε. PII has solutions expressible in terms of solutions of the

Riccati

ε
dw

dz
= w2 + 1

2
z. (2.18)

To solve (2.18) we have to make the following transformation:

w(z) = −ε d
dz

lnψ(z),

then ψν(z) satisfies the Airy equation, with ψ(z) = C1Ai(ζ) + C2Bi(ζ), where

Ai(ζ) and Bi(ζ) are the Airy functions. PII (1.1b) has solutions expressible in

terms of Airy functions if and only if A = n+ 1
2

for n ∈ Z.
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Theorem 2.1. Let τn(z, ε) be the bi-directional Wronskian determinant given by

τn(z) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ δ(ψ) . . . δ(n−1)(ψ)

δ(ψ) δ(2)(ψ) . . . δ(n)(ψ)

...
...

. . .
...

δ(n−1)(ψ) δ(n)(ψ) . . . δ(2n−2)(ψ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ =

d

dz
.

Then for n ≥ 0 the special function solutions for PII (1.1b) in the form w(z;A),

are given by the following:

w(z;A) =
d

dz

(
τn(z)

τn+1(z)

)
,

for the parameters A = n+ 1
2
, where ζ = −2−1/3z. Also note that w(z;−n− 1

2
) =

−w(z;n+ 1
2
).

Proof. See Okamoto [58].

2.3.2 The zeros of the Airy functions

It is interesting to note that these special functions will have no bounded solutions

regardless of the choice of C1 and C2. This is important from an application point

of view because the non-linear ODE’s that arise in the applications are almost

always the bounded type. The bounded Painlevé solutions usually tend to be the

solutions that have the physical relevancy. The lack of bounded solutions is easy

to spot from the fact that the solutions can always be written in partial fractions

with respect to the logarithmic derivative and this clearly shows singularities at

z = 0 for all solutions in the hierarchy. This can also be easily seen by studying

the zeros of the Airy type plots in figure 2.2.
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2.3.3 The third Painlevé equation PIII

Without loss of generality we can set C = −D = 1 by rescaling w and z if

necessary.

Theorem 2.2. PIII (1.1c) has solutions expressible in terms of Bessel functions

if and only if

ε1A+ ε2B = 4n+ 2,

with n ∈ Z, ε1 = ±1, ε2 = ±1 independently.

Proof. See Gromak [33], Mansfield and Webster [45] and Umemure H and Watan-

abe H [65].

To obtain a special function solution of a PIII (1.1c) we need to substitute

(2.17) into PIII (1.1c). This yields

z(1− p2
2)w4 +

(
A− p2 −

dp2

dz
z − p1p2z

)
w3 −

(
dp1

dz
z + p1

)
w2

+

(
B + p1p0z −

dp0

dz
z − p0

)
w + z(p2

0 − 1) = 0.

Equating powers of w and solving gives

p2(z) = ε1, p1(z) =
A− ε1

ε1z
, p0(z) = ε2, ε2

1 = ε2
2 = 1,

with parameter B = ε1ε2(2ε1 − A). So, for PIII (1.1c) the associated Riccati

equation is

dw

dz
= ε1w

2 +
Aε1 − 1

z
w + ε2. (2.19)

To solve (2.19) we have to make the following transformation:

w(z) = −ε1z
d

dz
lnψν(z),
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then ψν(z) satisfies

z
d2ψν
dz2

+ (1− ν)
dψν
dz

+ ε1ε2ψν = 0, (2.20)

we have the following solution for the Riccati:

ψν(z) =



zν
{
C1Jν

(
z
)

+ C2Yν
(
z
)}
, if ε1 = 1, ε2 = 1,

z−ν
{
C1Jν

(
z
)

+ C2Yν
(
z
)}
, if ε1 = −1, ε2 = −1,

zν
{
C1Iν

(
z
)

+ C2Kν

(
z
)}
, if ε1 = 1, ε2 = −1,

z−ν
{
C1Iν

(
z
)

+ C2Kν

(
z
)}
, if ε1 = −1, ε2 = 1,

with C1 and C2 arbitrary constants and where Jν(z), Yν(z), Iν(z) and Kν(z) are

Bessel functions.

Theorem 2.3. Let Fn(f) be the determinant given by

Fn(ψ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ δ(ψ) . . . δ(n−1)(ψ)

δ(ψ) δ(2)(ψ) . . . δ(n)(ψ)

...
...

. . .
...

δ(n−1)(ψ) δ(n)(ψ) . . . δ(2n−2)(ψ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ = z

d

dz

and Kn(ψν) be the determinant given by

Kn(ψν)=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψν ψν−1 ... ψν−n+1

ψν+1 ψν ... ψν−n+2

...
...

. . .
...

ψν+n−1 ψν+n ... ψν

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then for n ≥ 0 the special function solutions of PIII (1.1c) in the form

w[N ]
ν,n (z;A[N ], B[N ], C [N ], D[N ], ε1, ε2),
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for N = 1, ..., 4, are given by the following:

w[1]
ν,n(A[1], B[1], C [1], D[1], 1, 1) = n

z
− d

dz
ln
Fn+1(ψν)

Fn(ψ′)
= − d

dz
ln
Kn+1(ψν)

Kn(ψν−1)
,

w[2]
ν,n(A[2], B[2], C [2], D[2],−1, 1) = −n

z
+

d

dz
ln
Fn+1(ψν)

Fn(ψ′)
=

d

dz
ln
Kn+1(ψν)

Kn(ψν+1)
,

w[3]
ν,n(A[3], B[3], C [3], D[3], 1,−1, ) = n

z
− d

dz
ln
Fn+1(ψν)

Fn(ψ′)
= − d

dz
ln
Kn+1(ψν)

Kn(ψν−1)
,

w[4]
ν,n(A[4], B[4], C [4], D[4],−1,−1) = −n

z
+

d

dz
ln
Fn+1(ψν)

Fn(ψ′)
=

d

dz
ln
Kn+1(ψν)

Kn(ψν+1)
,

for the parameters

{A[1], B[1], C [1], D[1]} = {2(ν + n), 2(n− ν + 1), 1,−1},

{A[2], B[2], C [2], D[2]} = {2(ν − n), 2(n+ ν + 1), 1,−1},

{A[3], B[3], C [3], D[3]} = {2(ν + n),−2(n− ν + 1), 1,−1},

{A[4], B[4], C [4], D[4]} = {2(ν − n),−2(n+ ν + 1), 1,−1},

with ′ = d
dt
.

Proof. See Okamoto [58]; also Forrester and Witte [26].

2.3.4 The zeros of the Bessel functions

The special function solutions of PIII (1.1c) are only bounded when ε1 = −1,

ν > 0 and C1C2 > 0, for all n, where n is the number of the solution in the

hierarchy. The alternative case is when ε2 = 1, ν < 0 and C1C2 > 0, for all n,

where n is the number of the solution in the hierarchy.

2.3.5 The associated third Painlevé equation PIII′

Without loss of generality we can set C = −D = 1 by rescaling w and z, if

necessary.
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Theorem 2.4. PIII′ (1.24) has solutions expressible in terms of Bessel functions

if and only if

ε1A+ ε2B = 4n+ 2,

with n ∈ Z, ε1 = ±1 and ε2 = ±1 independently.

Proof. See Gromak [33], Mansfield and Webster [45] and Umemure H and Watan-

abe H [65].

To obtain a special function solution of a PIII′ (1.24) we need to substitute

(2.17) into PIII′ (1.24). This yields

t(1− p2
2)u4 +

(
A− p2 −

dp2

dt
t− p1p2t

)
u3 −

(
dp1

dt
t+ p1

)
u2

+

(
B + p1p0t−

dp0

dt
t− p0

)
u+ t(p2

0 − 1) = 0.

Equating powers of w and solving gives

p2(t) = ε1, p1(t) =
ν

t
, p0(t) = ε2, ε2

1 = ε2
2 = 1.

with parameters A = ε1(ν+1) and B = ε2(1−ν). So for PIII (1.1c) the associated

Riccati equation is

du

dt
= ε1u

2 +
νu

t
+ ε2. (2.23)

To solve (2.23) we have to make the following transformation:

u(t) = −ε1t
d

dt
lnψν(t),

then ψν(z) satisfies

t
d2ψν
dt2

+ (1− ν)
dψν
dt

+ ε1ε2ψν = 0. (2.24)
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We have the following solution for the Riccati:

ψν(t) =



tν/2
{
C1Jν

(
2
√
t
)

+ C2Yν
(
2
√
t
)}
, if ε1 = 1, ε2 = 1,

t−ν/2
{
C1Jν

(
2
√
t
)

+ C2Yν
(
2
√
t
)}
, if ε1 = −1, ε2 = −1,

tν/2
{
C1Iν

(
2
√
t
)

+ C2Kν

(
2
√
t
)}
, if ε1 = 1, ε2 = −1,

t−ν/2
{
C1Iν

(
2
√
t
)

+ C2Kν

(
2
√
t
)}
, if ε1 = −1, ε2 = 1,

with C1 and C2 arbitrary constants and where Jν(2
√
t), Yν(2

√
t), Iν(2

√
t) and

Kν(2
√
t) are Bessel functions.

Theorem 2.5. Let Fn(f) be the determinant given by

Fn(ψ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ δ(ψ) . . . δ(n−1)(ψ)

δ(ψ) δ(2)(ψ) . . . δ(n)(ψ)

...
...

. . .
...

δ(n−1)(ψ) δ(n)(ψ) . . . δ(2n−2)(ψ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ = z

d

dz

and Kn(ψν) be the determinant given by

Kn(ψν)=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψν ψν−1 ... ψν−n+1

ψν+1 ψν ... ψν−n+2

...
...

. . .
...

ψν+n−1 ψν+n ... ψν

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then for n ≥ 0 the special function solutions of PIII′ (1.24) in the form

u[N ]
ν,n(z;A[N ], B[N ],C[N ],D[N ]

, ε1, ε2),
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for N = 1, ..., 4, are given by the following:

u[1]
ν,n(A[1], B[1], C [1], D[1], 1, 1) = n

2
− t d

dt
ln
Fn+1(ψν)

Fn(
√
tψ′)

= −z d
dt

ln
Kn+1(ψν)

Kn(ψν−1)
,

u[2]
ν,n(A[2], B[2], C [2], D[2],−1, 1) = −n

2
+ t

d

dt
ln
Fn+1(ψν)

Fn(
√
tψ′)

= z
d

dt
ln
Kn+1(ψν)

Kn(ψν+1)
,

u[3]
ν,n(A[3], B[3], C [3], D[3], 1,−1) = n

2
− t d

dt
ln
Fn+1(ψν)

Fn(
√
tψ′)

= −z d
dt

ln
Kn+1(ψν)

Kn(ψν−1)
,

u[4]
ν,n(A[4], B[4], C [4], D[4],−1,−1) =−n

2
+t

d

dt
ln
Fn+1(ψν)

Fn(
√
tψ′)

=z
d

dt
ln
Kn+1(ψν)

Kn(ψν+1)
,

for the parameters

{A[1], B[1], C [1], D[1]} = {2(ν + n), 2(n− ν + 1), 1,−1},

{A[2], B[2], C [2], D[2]} = {2(ν − n), 2(n+ ν + 1), 1,−1},

{A[3], B[3], C [3], D[3]} = {2(ν + n),−2(n− ν + 1), 1,−1},

{A[4], B[4], C [4], D[4]} = {2(ν − n),−2(n+ ν + 1), 1,−1},

with ′ = d
dt
.

Proof. See Okamoto [58]; also Forrester and Witte [26]. Then, using the transfor-

mation from PIII (1.1c) to PIII′ (1.24), we can simply read off the special function

solutions from the previous section.

The special function solutions of PIII′ (1.24) are only bounded when ε1 = −1,

ν > 0 and C1C2 > 0, for all n, where n is the number of the solution in the

hierarchy. The alternative case is when ε2 = 1, ν < 0 and C1C2 > 0, for all n,

where n is the number of the solution in the hierarchy.
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2.3 Special function solutions to the Painlevé equations J. G. Smith

2.3.6 The fourth Painlevé equation PIV

Theorem 2.6. PIV has solutions expressible in terms of parabolic cylinder func-

tions if and only if either:

B = −2(2n+ 1 + εA)2,

or

B = −2n2,

with n ∈ Z, ε = ±1.

Proof. See [31, 32, 34, 35, 40, 42].

To obtain a special function solution of a PIV (1.1d) we need to substitute

(2.17) into PIV (1.1d). This yields

3(p2 − 1)(p2 + 1)w4 +

(
4p2p1 + 2

dp2

dz
− 8z

)
w3

+

(
2p2p0 + p2

1 − 4z2 + 2
dp1

dz
+ 4A

)
w2 + 2

dp0

dz
w − p2

0 − 2B = 0.

Equating powers of w and solving gives

p2(z) = ε, p1(z) = 2εz, p0(z) = 2ν, ε2 = 1.

So for PIV (1.1d) the associated Riccati equation is

dw

dz
= ε(w2 + 2zw) + 2ν, ε2 = 1, (2.27)

with parameters A = −ε(ν + 1) and B = −2ν2. To solve (2.27) we make the

transformation w(z) = d
dz

lnψ(z) and this yields

d2ψν
dz2

− 2εz
dψν
dz

+ 2ενψν = 0. (2.28)

The solution of (2.28) depends on whether ν ∈ Z or ν 6∈ Z. The different solutions

are characterised in the following [18]:
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i) If ν 6∈ Z then (2.28) has solutions

ψν(z; ε) =


{C1Dν(

√
2z) + C2Dν(−

√
2z)} exp(1

2
z2), if ε = 1,

{C1D−ν−1(
√

2z) + C2D−ν−1(−
√

2z)} exp(−1
2
z2), if ε = −1,

with C1 and C2 arbitrary constants.

ii) If ν = 0 then (2.28) has solutions

ψ0(z; ε) =


C1 + C2erfi(z), if ε = 1,

C1 + C2erfc(z), if ε = −1,

with C1 and C2 arbitrary constants, erfc(z) is the complementary error func-

tion and erfi(z) is the imaginary error function, respectively defined by

erfi =
2√
π

∫ ∞
z

exp(−t2) dt, erfc =
2√
π

∫ ∞
0

exp(t2) dt. (2.29)

iii) If ν = m, for m ≥ 1, then (2.28) has solutions

ψm(z; ε) =



C1Hm(z)

+C2 exp(z2)
dm

dzm
{erfi(z) exp(−z2)}, if ε = 1,

C1(−i)mHm(iz)

+C2 exp(−z2)
dm

dzm
{erfc(z) exp(z2)}, if ε = −1,

with C1 and C2 arbitrary constants and Hn(z) is the Hermite polynomial

defined by

Hm(z) = (−1)m exp(z2)
dm

dzm
exp(−z2). (2.30)
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iv) If ν = −m, for m ≥ 1, then (2.28) has solutions

ψ−m(z; ε) =



C1(−i)m−1Hm−1(iz) exp(z2)

+C2
dm−1

dzm−1
{erfc(z) exp(z2)}, if ε = 1,

C1Hm(z) exp(−z2)

+C2
dm−1

dzm−1
{erfi(z) exp(−z2)}, if ε = −1,

with C1 and C2 arbitrary constants.

Theorem 2.7. Let τn,ν(z, ε) be the bi-directional Wronskian determinant given

by

τn,ν(z, ε) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ δ(ψ) . . . δ(n−1)(ψ)

δ(ψ) δ(2)(ψ) . . . δ(n)(ψ)

...
...

. . .
...

δ(n−1)(ψ) δ(n)(ψ) . . . δ(2n−2)(ψ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ =

d

dz
.

Then for n ≥ 0 the special function solutions of PIV (1.1d) in the form

w[N ](z;A[N ], B[N ]),

for N = 1, 2, 3, are given by the following:

w[1](z;A[1], B[1]) = −2z + ε
d

dz
ln
τn+1,ν(z; ε)

τn,ν(z; ε)
,

w[2](z;A[2], B[2]) = ε
d

dz
ln

τn,ν(z; ε)

τn,ν−1(z; ε)
,

w[3](z;A[3], B[3]) = ε
d

dz
ln
τn,ν−1(z; ε)

τn+1,ν(z; ε)
,

for the parameters

{A[1], B[1]} = {ε(2n− ν),−2(ν + 1)2},

{A[2], B[2]} = {ε(2ν − n+ 1),−2n2},

{A[3], B[3]} = {ε(n+ ν + 1),−2(ν − n)2},
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2.3 Special function solutions to the Painlevé equations J. G. Smith

where τn,ν−1 =W( d
dz
ψ, d

2

dz2
ψ, ..., d

n

dzn
ψ) because d

dz
ψν = ψν−1.

Proof. See Okamoto [58]; also Forrester and Witte [26].

2.3.7 The zeros of the parabolic cylinder function

The parabolic cylinder function Dν(z) has no real zeros if ν < 0, so ψν(z) has no

real zeros if ν < 0 and C1C2 > 0 when ε = 1 or ν > −1 and C1C2 > 0 when

ε = −1 [60, §12.11]. The special function solutions of PIV (1.1d) are only bounded

solutions from the first hierarchy in the following two cases:

• ε = 1, ν < 0, C1C2 > 0,

• ε = −1, ν > 1, C1C2 > 0.

These are both the bounded situations for all n.
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2.3 Special function solutions to the Painlevé equations J. G. Smith

(a) n = 0 (b) n = 1

(c) n = 2 (d) n = 3

Figure 2.5: Parabolic cylinder function solution plots of w[1](z; ν=−3
2
), w[1](z; ν=

−5
2
), w[1](z; ν=−7

2
), w[1](z; ν=−9

2
) with C1 = C2 = 1 and ε = 1.

The number of turning points in these plots is dictated by 2(n+ 1).
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2.3 Special function solutions to the Painlevé equations J. G. Smith

(a) n=0, C1 =1, C2 ={10,20,30,40} (b) n=0, C2 =1, C1 ={10,20,30,40}

(c) n=1, C1 =1, C2 ={10,20,30,40} (d) n=1, C2 =1, C1 ={10,20,30,40}

(e) n=2, C1 =1, C2 ={10,20,30,40} (f) n=2, C2 =1, C1 ={10,20,30,40}

Figure 2.6: Parabolic cylinder function solution plots of w[1](z; ν=−3
2
, ε = 1).
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2.3.8 The fifth Painlevé equation PV

Theorem 2.8. Equation PV (1.1e) has solutions expressible in terms of Kummer

functions if and only if

a+ b+ ε3C = 2n+ 1, or (a− n)(b− n) = 0,

where n ∈ N, a = ε1

√
2A and b = ε2

√
−2B, with ε1 = ±1, j = 1, 2, 3 indepen-

dently.

Proof. See Okamoto [57], Masuda [46] and Watanabe [68]; also [34, §40].

To obtain a special function solution of a PV (1.1e) we need to substitute (2.17)

into PV (1.1e) which yields a rather large expression. However, equating powers

of w and solving gives

p2(z) = a
z
, p1(z) = ε3 − a−b

z
, p0(z) = − b

z
, ε2

3 = 1,

with parameters A = 1
2
a2, B = −1

2
b2, C = ε3(1− a− b) and D = −1

2
. So for PV

(1.1e) the associated Riccati equation is

z
dw

dz
= aw2 + (b− a+ ε3z)w − b. (2.33)

To solve (2.33) we make the transformation w(z) = − z
a
d
dz

lnφ(z) and this yields

z2d
2φ

dz2
+ z(a− b− ε3z)

dφ

dz
− abφ = 0, (2.34)

which has solutions

φ(z) =


zb{C1M(b, 1 + a+ b, z) + C2U(b, 1 + a+ b, z)}, if ε3 = 1,

zb exp(−z){C1M(a+ 1, a+ b+ 1, z)

+C2U(a+ 1, a+ b+ 1, z)}, if ε3 = −1,

(2.35)
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with C1 and C2 arbitrary constants and where M(α, β, z) and U(α, β, z) are Kum-

mer functions. The special function solutions of (1.1e) and (1.7e) are given by the

following theorem:

Theorem 2.9. Let Fn(ψ) be the determinant given by

Fn(ψ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ δ(ψ) . . . δ(n−1)(ψ)

δ(ψ) δ(2)(ψ) . . . δ(n)(ψ)

...
...

. . .
...

δ(n−1)(ψ) δ(n)(ψ) . . . δ(2n−2)(ψ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ = z

d

dz
,

τn(f) be the bi-directional Wronskian determinant given by

τn(ψ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ δ(ψ) . . . δ(n−1)(ψ)

δ(ψ) δ(2)(ψ) . . . δ(n)(ψ)

...
...

. . .
...

δ(n−1)(ψ) δ(n)(ψ) . . . δ(2n−2)(ψ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ =

d

dz

and

ψa,b(z; a, b) = C1M(a, b, z) + C2U(a, b, z), (2.36)

with C1 and C2 arbitrary constants.

Then for n ≥ 0 the special function solutions of PV (1.1e) in the form

w[N ]
n (z;A[N ], B[N ], C [N ], D[N ], ε3),
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for N = 1, 2, are given by the following:

w[1]
n (z;A[1], B[1], C [1], D[1], 1) = 1 +

1

α− β − n

{
β + z + z

d

dz
ln
Fn+1(e−zψα,β+1)

Fn(e−zψα,β)

}
= 1 +

1

α− β − n

{
β + n+ z

d

dz
ln
τn+1(ψα−n+1,β−n+2)

τn(ψα−n+1,β−n+1)

}
,

w[2]
n (z;A[2], B[2], C [2], D[2],−1) = 1 +

1

α + n

{
z − β − z d

dz
ln
Fn+1(ψα+1,β+1)

Fn(ψα,β)

}
= 1 +

1

α + n

{
z − β − n− z d

dz
ln
τn+1(ψα+1,β−n+1)

τn(ψα,β−n+1)

}
,

for the parameters

{A[1], B[1], C [1], D[1]} = {1
2
(−α + β + n)2,−1

2
α2, 1 + n− β,−1

2
}, (2.37a)

{A[2], B[2], C [2], D[2]} = {1
2
(α + n)2,−1

2
(β − α)2, β − n− 1,−1

2
}. (2.37b)

Proof. These results can be inferred from previous work done by Forrester and

Witte [27] and Okamoto [59].

2.3.9 The zeros of the Kummer functions

If a − b 6= 0,−1,−2, ... then φ has infinitely many zeros in C. When a, b ∈ R

the number of real zeros is finite [60, §13.9(i)]. The special function solutions of

PV (1.1e) are only bounded when a = 0,−1,−2, ... and n is even; this applies to

both of the hierarchies here. This is no coincidence either as this is precisely the

condition in the rational solutions when the polynomial roots that comprise the

solutions are not sitting on the real line.
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2.3 Special function solutions to the Painlevé equations J. G. Smith

(a) w
[2]
2 (z;α = −5, β) (b) w

[2]
3 (z;α = −6, β)

(c) w
[2]
4 (z;α = −7, β) (d) w

[2]
5 (z;α = −8, β)

(e) w
[2]
6 (z;α = −9, β) (f) w

[2]
7 (z;α = −10, β)

Figure 2.7: Kummer function solution plots to PV (1.1e) with β =

{−30,−40,−50}.
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2.3.10 The sixth Painlevé equation PV I

Theorem 2.10. Equation PV I (1.1f) has solutions expressible in terms of hyper-

geometric functions if and only if

h1 + h2 + h3 + h4 = 2n+ 1,

with εj = ±1, j = 1, 2, 3, 4, independently where h1 = ε1

√
2A, h2 = ε2

√
−2B,

h3 = ε3

√
2C, h4 = ε4

√
1− 2D.

Proof. See Fokas and Yortsos [22], Lukashevich and Yablonskii [43], Okamoto [56]

and also Gromak, Laine and Shimomura [34].

To obtain a special function solution of a PV I (1.1f) we need to substitute

(2.17) into PV I (1.1f) which yields a rather large expression. However, by equating

powers of w and solving gives

p2(z) =
a

z(z − 1)
, p1(z) =

(b+ 1− a)z − c
z(z − 1)

, p0(z) =
c− b− 1

z − 1
, ε2

3 = 1,

with parameters A = 1
2
a2, B = −1

2
(b+ 1− c)2, C = 1

2
(c− a)2 and D = 1

2
(1− b2).

So for PV I (1.1f) the associated Riccati equation is

z(z − 1)
dw

dz
= aw2 +

(
(b+ 1− a)z − c

)
w − z(b+ 1− c). (2.38)

To solve (2.38) we have to make the following transformation:

w(z) =
1

a

{
c− (b+ 1)z − z(z − 1)

d

dz
lnψ

}
.

This yields

z(z − 1)
d2ψ

dz2
+ (c+ 1− (a+ b+ 3)z)

dψ

dz
− (a+ 1)(b+ 1)ψ = 0, (2.39)

where ψ is the general hypergeometric function F (a+ 1, b+ 1, c+ 1; z).
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Theorem 2.11. Let τn(ψa,b,c) be the determinant given by

τn
(
ψa,b,c

)
:= |τ̂n

(
ψa,b,c

)
| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψa,b,c δ(ψa,b,c) . . . δ(n−1)(ψa,b,c)

δ(ψa,b,c) δ(2)(ψa,b,c) . . . δ(n)(ψa,b,c)

...
...

. . .
...

δ(n−1)(ψa,b,c) δ(n)(ψa,b,c) . . . δ(2n−2)(ψa,b,c)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(2.40)

δ = z(z − 1) d
dz

. Define

Wn

(
ψa,b,c

)
:= zn(1−n−2b)/2(z − 1)n(1−n)/2τn

(
ψa,b,c

)
. (2.41)

Then for n ≥ 0 the special function solutions for PV I (1.1f) in the form

wn(z;A,B,C,D),

are given by the following:

wn(z;A,B,C,D) =
1

a

{
n+ c− (2n+ b+ 1)z− z(z−1)

d

dz
ln
Wn+1

(
ψa+1,b+1,c+1

)
Wn

(
ψa−1,b+1,c

) }
,

for the parameters

{A,B,C,D} = {1
2
a2,−1

2
(b− c+ n+ 1)2, 1

2
(a− c− n)2, 1

2
(1− b2)},

with ψa,b,c the hypergeometric function and a polynomial of degree b

ψa,b,c =2F1(a, b, c; z)zb,

Proof. See Okamoto [56] and Forrester and Whitte [28].

2.3.11 The zeros of the hypergeometric function

Consider the hypergeometric function F (a, b, c; z). If a, b, c are real, a, b, c−a, c−b

6= 0,−1,−2, ..., b ≥ a and c ≥ a+ b then the hypergeometric function has no real
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zeros when a > 0. The special function solutions to PV I (1.1f) have no bounded

solutions due to the fact that the asymptotic behaviour around ±∞ is linear.

However, if an appropriate linear transformation is made we can have bounded

solutions. This is precisely when a > −1, assuming that all the conditions above

have been met.

2.4 Special function solutions to the σ-equations

In the following section we shall we defining all the special function solutions to

all the Painlevé equations associated sigma equations.

2.4.1 The second Painlevé σ-equation

Theorem 2.12. Let τn,ν(z, ε) be the bi-directional Wronskian determinant given

by

τn(z) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ δ(ψ) . . . δ(n−1)(ψ)

δ(ψ) δ(2)(ψ) . . . δ(n)(ψ)

...
...

. . .
...

δ(n−1)(ψ) δ(n)(ψ) . . . δ(2n−2)(ψ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ =

d

dz
.

Then for n ≥ 0 the special function solutions for SII (1.7b) in the form σ(z;α),

are given by the following:

σ(z;α) =
d

dz
ln τn+1(z), (2.42)

for the parameter α = n + 1
2
, where ψ(z) = C1Ai(ζ) + C2Bi(ζ), with Ai(ζ) and

Bi(ζ) Airy functions and ζ = −2−1/3z. Also note that σ(z;−n− 1
2
) = σ(z;n+ 1

2
).

Proof. See Okamoto [58].
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As with the Painlevé case it is interesting to note that these special functions

will have no bounded solutions. The lack of bounded solutions is evident because

the solutions can always be written in partial fractions with respect to the loga-

rithmic derivative; this clearly shows an infinite number of singularities at z = 0

for all solutions in the hierarchy. Studying the zeros of the Airy type plots in

figure 2.2 yields the same conclusion. However, there is one exception to this rule

which allows the removal of all possibilities for poles on the real line. This can be

done by restricting n to be odd and the constants C1 = cos(ϑ) and C2 = sin(ϑ)

where ϑ is 0 or π.

Figure 2.8: Special function solutions to SII (1.1b) with n = 1, C1 = C2 = π/2.
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2.4.2 The third Painlevé σ-equation

Theorem 2.13. Let Fn(f) be the determinant given by

Fn(ψ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ δ(ψ) . . . δ(n−1)(ψ)

δ(ψ) δ(2)(ψ) . . . δ(n)(ψ)

...
...

. . .
...

δ(n−1)(ψ) δ(n)(ψ) . . . δ(2n−2)(ψ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ = z

d

dz

and Kn(ψν) be a determinant given by

Kn(ψν)=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψν ψν−1 ... ψν−n+1

ψν+1 ψν ... ψν−n+2

...
...

. . .
...

ψν+n−1 ψν+n ... ψν

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

with δ(f) = z d
dz
f .

Then for n ≥ 0 the special function solutions of SIII (1.7c) in the form

σ[N ]
ν,n (z;ϑ

[N ]
0 , ϑ[N ]

∞ , ε1, ε2),

for N = 1, ..., 4, are given by the following:

σ[1]
ν,n(z;ϑ

[1]
0 , ϑ

[1]
∞, 1, 1) = F + z

d

dz
lnFn(ψν) = F +n(n− 1)+z

d

dz
lnKn(ψν),

σ[2]
ν,n(z;ϑ

[2]
0 , ϑ

[2]
∞,−1, 1) = F + z

d

dz
lnFn(ψν) = F +n(n− 1)+z

d

dz
lnKn(ψν),

σ[3]
ν,n(z;ϑ

[3]
0 , ϑ

[3]
∞, 1,−1) = F + z

d

dz
lnFn(ψν) = F +n(n− 1)+z

d

dz
lnKn(ψν),

σ[4]
ν,n(z;ϑ

[4]
0 , ϑ

[4]
∞,−1,−1) = F + z

d

dz
lnFn(ψν)=F+n(n− 1)+z

d

dz
lnKn(ψν),
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2.4 Special function solutions to the σ-equations J. G. Smith

for the parameters

{ϑ[1]
0 , ϑ

[1]
∞} = {ν2 + n2, ν2 − n2},

{ϑ[2]
0 , ϑ

[2]
∞} = {ν2 + n2, n2 − ν2},

{ϑ[3]
0 , ϑ

[3]
∞} = {ν2 + n2, n2 − ν2},

{ϑ[4]
0 , ϑ

[4]
∞} = {ν2 + n2, ν2 − n2},

where F = 1
2
(ε1ε2z

2/2 + ν2 − 2ε1nν − n(n− 1))

for

ψν(z) =



zν
{
C1Jν

(
z
)

+ C2Yν
(
z
)}
, if ε1 = 1, ε2 = 1,

z−ν
{
C1Jν

(
z
)

+ C2Yν
(
z
)}
, if ε1 = −1, ε2 = −1,

zν
{
C1Iν

(
z
)

+ C2Kν

(
z
)}
, if ε1 = 1, ε2 = −1,

z−ν
{
C1Iν

(
z
)

+ C2Kν

(
z
)}
, if ε1 = −1, ε2 = 1.

Proof. See Okamoto [58]; also Forrester and Witte [26].

Then for n ≥ 0 the special function solutions of SIII′ in the form

σ[N ]
ν,n (z;ϑ

[N ]
0 , ϑ[N ]

∞ , ε1, ε2),

for N = 1, ..., 4, are given by the following:

σ[1]
ν,n(z;ϑ

[1]
0 , ϑ

[1]
∞, 1, 1) = F + t

d

dz
lnFn(ψν) = F + n

2
(n− 1) + t

d

dz
lnKn(ψν),

σ[2]
ν,n(z;ϑ

[2]
0 , ϑ

[2]
∞,−1, 1) = F + t

d

dz
lnFn(ψν) = F + n

2
(n− 1) + t

d

dz
lnKn(ψν),

σ[3]
ν,n(z;ϑ

[3]
0 , ϑ

[3]
∞, 1,−1) = F + t

d

dz
lnFn(ψν) = F + n

2
(n− 1) + t

d

dz
lnKn(ψν),

σ[4]
ν,n(z;ϑ

[4]
0 , ϑ

[4]
∞,−1,−1)=F + t

d

dz
lnFn(ψν) = F + n

2
(n− 1) + t

d

dz
lnKn(ψν),
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2.4 Special function solutions to the σ-equations J. G. Smith

for the parameters

{ϑ[1]
0 , ϑ

[1]
∞} = {ν + n, ν − n},

{ϑ[2]
0 , ϑ

[2]
∞} = {ν + n, n− ν},

{ϑ[3]
0 , ϑ

[3]
∞} = {ν + n, n− ν},

{ϑ[4]
0 , ϑ

[4]
∞} = {ν + n, ν − n},

where F = 1
2
(ε1ε2t+ ν2/2 + n(1− ε1ν)− n2/2) for

ψν(t) =



tν/2
{
C1Jν

(
2
√
t
)

+ C2Yν
(
2
√
t
)}
, if ε1 = 1, ε2 = 1,

t−ν/2
{
C1Jν

(
2
√
t
)

+ C2Yν
(
2
√
t
)}
, if ε1 = −1, ε2 = −1,

tν/2
{
C1Iν

(
2
√
t
)

+ C2Kν

(
2
√
t
)}
, if ε1 = 1, ε2 = −1,

t−ν/2
{
C1Iν

(
2
√
t
)

+ C2Kν

(
2
√
t
)}
, if ε1 = −1, ε2 = 1.

Proof. See Okamoto [58]; also Forrester and Witte [26].

The special function solutions to SIII (1.1c) and SIII′ (1.24) have no bounded

solutions due to the fact that the asymptotic behaviour around ±∞ is quadratic.

However, if an appropriate quadratic transformation is made we can have bounded

solutions. This is precisely when ε1 = −1, ν > 0 and C1C2 > 0, for all n, where

n is the number of the solution in the hierarchy. The alternative case is when

ε2 = 1, ν < 0 and C1C2 > 0, for all n, where n is the number of the solution in

the hierarchy.
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2.4 Special function solutions to the σ-equations J. G. Smith

2.4.3 The fourth Painlevé σ-equation

Theorem 2.14. Let τn,ν(z, ε) be the bi-directional Wronskian determinant given

by

τn,ν(z, ε) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ δ(ψ) . . . δ(n−1)(ψ)

δ(ψ) δ(2)(ψ) . . . δ(n)(ψ)

...
...

. . .
...

δ(n−1)(ψ) δ(n)(ψ) . . . δ(2n−2)(ψ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ =

d

dz
.

Then for n ≥ 0 the special function solutions of SIV (1.7d) in the form

σ[N ]
n,ν (z;ϑ

[N ]
0 , ϑ[N ]

∞ ),

for N = 1, 2, 3, are given by the following:

σ[1]
n,ν(z;ϑ

[1]
0 , ϑ

[1]
∞) =

d

dz
ln τν,n(z; ε), (2.47a)

σ[2]
n,ν(z;ϑ

[2]
0 , ϑ

[2]
∞) =

d

dz
ln τν,n(z; ε)− 2εnz, (2.47b)

σ[3]
n,ν(z;ϑ

[3]
0 , ϑ

[3]
∞) =

d

dz
ln τν,n(z; ε) + 2ε(ν − n+ 1)z. (2.47c)

for the parameters

{ϑ[1]
0 , ϑ

[1]
∞} = {ε(ν − n+ 1),−εn},

{ϑ[2]
0 , ϑ

[2]
∞} = {εn, ε(ν + 1)},

{ϑ[3]
0 , ϑ

[3]
∞} = {−ε(ν + 1),−ε(ν − n+ 1)},

Proof. See Okamoto [58]; also Forrester and Witte [26].

The special function solutions of SIV (1.7d) are only bounded when either:

ν < 0 and C1C2 > 0 when ε = 1 or ν > −1 and C1C2 > 0 when ε = −1 [60,

§12.11].
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2.4 Special function solutions to the σ-equations J. G. Smith

(a) n=2, C1 =1, C2 ={10,20,30,40} (b) n=2, C2 =1, C1 ={10,20,30,40}

(c) n=3, C1 =1, C2 ={10,20,30,40} (d) n=3, C2 =1, C1 ={10,20,30,40}

(e) n=4, C1 =1, C2 ={10,20,30,40} (f) n=4, C2 =1, C1 ={10,20,30,40}

Figure 2.9: Parabolic cylinder function solution plots of σ[2](z; ν=−3
2
, ε = 1).
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2.4 Special function solutions to the σ-equations J. G. Smith

(a) n=2, ν=1, C1 =1, C2 ={1,2,3,4} (b) n=2, ν=1, C2 =1, C1 ={1,2,3,4}

(c) n=3, ν=2, C1 =1, C2 ={1,2,3,4} (d) n=3, ν=2, C2 =1, C1 ={1,2,3,4}

(e) n=4, ν=3, C1 =1, C2 ={1,2,3,4} (f) n=4, ν=3, C2 =1, C1 ={1,2,3,4}

Figure 2.10: Error function solution plots of σ
[1]
n,ν(z;n− ν − 1, n).
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2.4 Special function solutions to the σ-equations J. G. Smith

(a) n=5, ν=4, C1 =1, C2 ={1,2,3,4} (b) n=5, ν=4, C2 =1, C1 ={1,2,3,4}

(c) n=6, ν=5, C1 =1, C2 ={1,2,3,4} (d) n=6, ν=5, C2 =1, C1 ={1,2,3,4}

(e) n=7, ν=6, C1 =1, C2 ={1,2,3,4} (f) n=7, ν=6, C2 =1, C1 ={1,2,3,4}

Figure 2.11: Error function solution plots of σ
[1]
n,ν(z;n− ν − 1, n).
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2.4 Special function solutions to the σ-equations J. G. Smith

2.4.4 The fifth Painlevé σ-equation

Theorem 2.15. Let Fn(ψ) be the determinant given by

Fn(ψ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ δ(ψ) . . . δ(n−1)(ψ)

δ(ψ) δ(2)(ψ) . . . δ(n)(ψ)

...
...

. . .
...

δ(n−1)(ψ) δ(n)(ψ) . . . δ(2n−2)(ψ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ = z

d

dz
,

τn(ψ) be the bi-directional Wronskian determinant given by

τn(ψ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ δ(ψ) . . . δ(n−1)(ψ)

δ(ψ) δ(2)(ψ) . . . δ(n)(ψ)

...
...

. . .
...

δ(n−1)(ψ) δ(n)(ψ) . . . δ(2n−2)(ψ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ =

d

dz

and

ψa,b(z; a, b) = C1M(a, b, z) + C2U(a, b, z), (2.49)

with C1 and C2 arbitrary constants.

Then for n ≥ 0 the special function solutions of SV (1.7e) in the form

σ[N ]
n (z;κ

[N ]
0 , κ

[N ]
1 , κ

[N ]
2 , κ

[N ]
3 , ε3),

for N = 1, 2 are given by the following:
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2.4 Special function solutions to the σ-equations J. G. Smith

σ[1]
n (z;κ

[1]
0 , κ

[1]
1 , κ

[1]
2 , κ

[1]
3 , 1) = z

d

dz
lnFn+1(e−zψα,β) + 1

4
(2α + 1 + β + 3z) (n+ 1)

− 5
8

(n+ 1)2 + 1
8

(2α + 1− β) (−2α− 1− 2 z + β)

= z
d

dz
ln τn+1(ψα−n,β−n) + 1

4
(2α− 1 + β − z) (n+ 1)

− 1
8

(n+ 1)2 + 1
8

(2α + 1− β) (−2α− 1− 2 z + β) ,

σ[2]
n (z;κ

[2]
0 , κ

[2]
1 , κ

[2]
2 , κ

[2]
3 ,−1) = z

d

dz
lnFn(zλψα+1,β+1) + 1

4
(3β + 2− 2α− 3z − 4λ)n

− 5
8
n2 − 1

8
(2α− β) (2α + 2 z − β) (2.50a)

= z
d

dz
ln τn(ψα+1,β−n+2) + 1

4
(3β − 2α− 3z)n

− 1
8
n2 − 1

8
(2α− β) (2α + 2 z − β) , (2.50b)

for the parameters

{κ[1]
0 , κ

[1]
1 , κ

[1]
2 , κ

[1]
3 } = 1

4
{2α− β + n+ 2, n+ 2− 2α− β, 2α− β − 3n− 2, 3β + n

− 2α− 2)}, (2.51a)

{κ[2]
0 , κ

[2]
1 , κ

[2]
2 , κ

[2]
3 } = −1

4
{2α + β + n, β − 3n− 2α, n+ 2α− 3β, β + n− 2α}.

(2.51b)

Proof. These results can be inferred from previous work done by Forrester and

Witte, [27] and Okamoto [59].

It is interesting to note there is a mapping between the parameters (2.51a)

and (2.51b) which gives rise to the following corollary:

Corollary 2.1. The two determinants Fn(ψa,b) and Fn(e−zψc,d) have the following

relation:

d

dz
lnFn(ψν,µ) = nz +

d

dz
lnFn(e−zψν+n−1,µ). (2.52)
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2.4 Special function solutions to the σ-equations J. G. Smith

We can also utilise the fact that (2.50b) is equal to (2.50a) which gives rise to

the following corollary:

Corollary 2.2. The two determinants Fn(ψa,b) and τn(ψc,d) have the following

relation:

d

dz
lnFn(ψa,b) =

d

dz
ln τn(ψa,b+1−n)− n

2z
(1− n) . (2.53)

Corollary 2.3. The two determinants τn(Ψ) and τn(e−zΨ) have the following

relation:

τn(Ψe−z) = τn(Ψ)e−nz. (2.54)

The special function solutions to SV (1.1e) have no bounded solutions due

to the fact that the asymptotic behaviour around ±∞ is linear. However, if an

appropriate linear transformation is made we can have bounded solutions. This

is precisely when a = 0,−1,−2,−3, ... and n is even.
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2.4 Special function solutions to the σ-equations J. G. Smith

(a) σ
[2]
2 (z;α = −4, β) (b) σ

[2]
2 (z;α = −6, β)

(c) σ
[2]
2 (z;α = −8, β) (d) σ

[2]
2 (z;α = −10, β)

(e) σ
[2]
2 (z;α = −12, β) (f) σ

[2]
2 (z;α = −14, β)

Figure 2.12: Some special function solutions to SV (1.7e) with β = {20, 30, 40}.
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2.4 Special function solutions to the σ-equations J. G. Smith

It is interesting to note that the number of “kinks” in the solutions is equal to

−α− n− 1.

2.4.5 The sixth Painlevé σ-equation

Theorem 2.16. Let τn(ψa,b,c) be the determinant given by

τn
(
ψa,b,c

)
:= |τ̂n

(
ψa,b,c

)
| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψa,b,c δ(ψa,b,c) . . . δ(n−1)(ψa,b,c)

δ(ψa,b,c) δ(2)(ψa,b,c) . . . δ(n)(ψa,b,c)

...
...

. . .
...

δ(n−1)(ψa,b,c) δ(n)(ψa,b,c) . . . δ(2n−2)(ψa,b,c)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

δ = z(z − 1) d
dz

. Define

Wn

(
ψa,b,c

)
:= zn(1−n−2b)/2(z − 1)n(1−n)/2τn

(
ψa,b,c

)
.

Then for n ≥ 0 the special function solutions for SV I (1.7f) in the form

σn(z;κ1, κ2, κ3, κ4),

are given by the following:

σn(z;κ1, κ2, κ3, κ4) = 1
4

(n+ 1) (4 az − a+ b− 2 c+ 1)− 1
4

(a− b+ 1)2 z

+ 1
4

(
a2 + a+ b2 − b− ac− bc

)
+ z(z − 1)

d

dz
lnWn+1(ψa,b,c),

for the parameters

{κ1, κ2, κ3, κ4} = {−1
2
(a−b−2n−1), 1

2
(a+b−2c+1),−1

2
(a−b+1), 1

2
(a+b−1)}.

Proof. See Okamoto [56] and Forrester and Whitte [28].
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2.4 Special function solutions to the σ-equations J. G. Smith

The special function solutions to PV I (1.1f) have no bounded solutions due

to the fact that the asymptotic behaviour around ±∞ is linear. However, if an

appropriate linear transformation is made we can have bounded solutions. This

is precisely when a > 0, assuming all the conditions we set before in the section

“The zeros of the hypergeometric function”.
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J. G. Smith

3 Rational function solutions

In the following section we will define the rational function solutions to the

Painlevé equations and their associated sigma equations. However, first we must

define some new polynomials that we will need.

3.1 Special polynomials

Now we will define all the special polynomials that we need in order to define the

rational solutions themselves.

3.1.1 The Yablonskii-Vorob’ev polynomials

The Yablonskii-Vorob’ev polynomials are defined to be the solutions to the differential-

difference equation

Qn+1Qn−1 = zQ2
n − 4

[
Qn

d2Qn

dz2
−
(
dQn

dz

)2]
, (3.1)

with Q0(z) = 1 and Q1(z) = z. The Yablonskii-Vorob’ev polynomials are monic

polynomials with degree 1
2
n(n + 1). A table of The Yablonskii-Vorob’ev polyno-

mials is shown below.
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3.1 Special polynomials J. G. Smith

Table 3.1: Table of the Yablonskii-Vorob’ev polynomials

Q2(z) = z3 + 4

Q3(z) = z6 + 20z3 − 80

Q4(z) = (z9 + 60z6 + 11200)z

Q5(z) = z15 + 140 z12 + 2800 z9 + 78400 z6 − 3136000 z3 − 6272000

Q6(z) = z21 + 280 z18 + 18480 z15 + 627200 z12 − 17248000 z9

+1448832000 z6 + 19317760000 z3 − 38635520000

Q7(z) = (z27 + 504 z24 + 75600 z21 + 5174400 z18 + 62092800 z15 + 13039488000 z12

−828731904000 z9 − 49723914240000 z6 − 3093932441600000)z

Some root plots of The Yablonskii-Vorob’ev polynomials are shown below.
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3.1 Special polynomials J. G. Smith

(a) Q4(z) (b) Q5(z)

(c) Q6(z) (d) Q7(z)

(e) Q8(z) (f) Q9(z)

Figure 3.1: Roots of some Yablonskii-Vorob’ev polynomials.
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3.1 Special polynomials J. G. Smith

The following remarks are based on observations:

Remark 3.1.

i) The Yablonskii-Vorob’ev polynomials always have real roots, regardless of n. This

will be an important point later in this thesis.

ii) The Yablonskii-Vorob’ev polynomials take the form of “triangles”, though these

are only approximate triangles since the roots lie on arcs rather than straight lines.

iii) The Yablonskii-Vorob’ev polynomials have degree equal to 1
2
n(n+ 1).

iv) The Yablonskii-Vorob’ev polynomials always have 1
2
n(n+ 1) roots.

3.1.2 The generalised associated Laguerre with δ = d2

dz2

Suppose that τµ,n(z) satisfies the recursion relation

(2n+1)τµ,n+1τµ,n−1 = −z
[
τµ,n

d2τµ,n
dz2

−
(
dτµ,n
dz

)2]
− τµ,n

dτµ,n
dz

+(z+µ)τ 2
µ,n, (3.2)

with τµ,−1(z) = τµ,0(z) = 1. It is interesting to note that setting µ = 1 recovers

the Laguerre polynomials. A table and root plots of τµ,n(z) polynomials is shown

below.
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3.1 Special polynomials J. G. Smith

Table 3.2: The generalised associated Laguerre with δ = d2

dz2

τ1(z;µ) = z + µ

τ2(z;µ) = −1
3

{
(z + µ)3 − µ

}
τ3(z;µ) = − 1

32.5

{
(z + µ)6 − 5µ (z + µ)3 + 9µ (z + µ)− 5µ2

}
τ4(z;µ) = 1

33.52.7

{
(z + µ)10 − 15µ (z + µ)7 + 63µ (z + µ)5 − 225µ (z + µ)3

+315µ2 (z + µ)2 − 175µ3 (z + µ) + 36µ2
}

τ5(z;µ) = 1
34.53.72.9

{
(z + µ)15 − 35µ (z + µ)12 + 252µ (z + µ)10 + 175µ2 (z + µ)9

−2025µ (z + µ)8 + 945µ2 (z + µ)7 − 1225µ (µ− 3) (µ+ 3) (z + µ)6

−26082µ2 (z + µ)5 + 33075µ3 (z + µ)4 − 350µ2 (35µ2 + 36) (z + µ)3

+11340µ3 (z + µ)2 − 225µ2 (7µ− 6) (7µ+ 6) (z + µ)

+7µ3 (875µ2 − 828)
}

The polynomials τµ,n(z) also have a determinantal representation

τµ,n(z) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψµ,n δ2(ψµ,n) . . . δ(2n−2)(ψµ,n)

δ(ψµ,n) δ(3)(ψµ,n) . . . δ(2n−1)(ψµ,n)

...
...

. . .
...

δ(n−1)(ψµ,n) δ(n+1)(ψµ,n) . . . δ(3n−3)(ψµ,n)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ =

d

dz
.

where ψµ,n = L2n−1
µ+1−2n(−z) and where Lab is an associated Laguerre polynomial.

Some roots plots for τµ,n(z) are shown below.
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3.1 Special polynomials J. G. Smith

(a) τ10,3(z) (b) τ10,4(z)

(c) τ10,5(z) (d) τ10,6(z)

(e) τ10,7(z) (f) τ10,8(z)

Figure 3.2: Roots of τ10,n(z) polynomials.
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3.1 Special polynomials J. G. Smith

(a) τ−10,3(z) (b) τ−10,4(z)

(c) τ−10,5(z) (d) τ−10,6(z)

(e) τ−10,7(z) (f) τ−10,8(z)

Figure 3.3: Roots of τ−10,n(z) polynomials.
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3.1 Special polynomials J. G. Smith

Note that by varying the parameter µ we can animate these roots. See the

“Animations” folder on the supplied USB flash drive.

The following remarks are based on observations:

Remark 3.2.

i) The τµ,n(z) polynomials always have real roots, regardless of n.

ii) The τµ,n(z) polynomials take the form of “triangles”, though these are only

approximate triangles since the root “columns” lie on arcs rather than straight

lines.

iii) The τµ,n(z) polynomials have degree equal to 1
2
n(n+ 1).

iv) The τµ,n(z) polynomials always have 1
2
n(n+ 1) roots.

v) The τµ,n(z) polynomials have the property that τµ,n(z) = τ−µ,n(−z).

Note again that the τµ,n(z) polynomials always have real roots therefore re-

moving the chance for bounded solutions. The τµ,n(z) polynomials are very similar

to the Umemura polynomials, which Clarkson in [15] essentially redefined so they

were no longer polynomials in 1/z but in z. We will define these polynomials now.

Suppose that Sn(z;µ) satisfies the recursion relation

Sn+1Sn−1 = −z
[
Sn
d2Sn
dz2

−
(
dSn
dz

)]
− Sn

dSn
dz

+ (z + µ)S2
n, (3.3)

with S−1(z;µ) = S0(z;µ) = 1. These polynomials are related to our τµ,n(z)

polynomials in the following way:

τµ,n(z) =
n∏
j=1

{ j∏
i=1

(2i− 1)

}
Sn. (3.4)

The similarity is highlighted when comparing the polynomials directly with the

following:

83



3.1 Special polynomials J. G. Smith

Table 3.3: The Sn(z;µ) polynomials

S1(z;µ) = z + µ

S2(z;µ) = (z + µ)3 − µ

S3(z;µ) = (z + µ)6 − 5µ (z + µ)3 + 9µ (z + µ)− 5µ2

S4(z;µ) = (z + µ)10 − 15µ (z + µ)7 + 63µ (z + µ)5 − 225µ (z + µ)3

+315µ2 (z + µ)2 − 175µ3 (z + µ) + 36µ2

S5(z;µ) = (z + µ)15 − 35µ (z + µ)12 + 252µ (z + µ)10 + 175µ2 (z + µ)9

−2025µ (z + µ)8 + 945µ2 (z + µ)7 − 1225µ (µ− 3) (µ+ 3) (z + µ)6

−26082µ2 (z + µ)5 + 33075µ3 (z + µ)4 − 350µ2 (35µ2 + 36) (z + µ)3

+11340µ3 (z + µ)2 − 225µ2 (7µ− 6) (7µ+ 6) (z + µ)

+7µ3 (875µ2 − 828)

3.1.3 The generalised Hermite polynomials

Here we consider the generalised Hermite polynomials Hm,n which are defined by

the following differential recurrence relations:

2mHm+1,nHm−1,n = Hm,n
d2Hm,n

dz2
−
(
dHm,n

dz

)2

+ 2mH2
m,n, (3.5a)

2nHm,n+1Hm,n−1 = −Hm,n

d2H ′′m,n
dz2

−
(
dH ′m,n
dz

)2

+ 2nH2
m,n, (3.5b)

with H0,0 = H0,1 = H1,0 = 1 and H1,1 = 2z. The polynomials Hm,n de-

fined by (3.5b) are known to be the generalised Hermite polynomials Hm,n since

Hm,1(z) = Hm(z) and H1,m(z) = i−mHm(iz), where Hm(z) is the well known

Hermite polynomial defined by

Hm(z) = (−1)m exp(z2)
dm

dzm
{exp(−z2)}.
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3.1 Special polynomials J. G. Smith

A table of generalised Hermite polynomials Hm,n and various root plots are shown

below.

Table 3.4: Table of the generalised Hermite polynomials Hm,n.

H2,1 = 4 z2 − 2

H2,2 = 16 z4 + 12

H3,2 = 64 z6 − 96 z4 + 144 z2 + 72

H3,3 = 512 z9 + 2304 z5 − 4320 z

H4,3 = 4096 z12 − 12288 z10 + 46080 z8 − 30720 z6 − 57600 z4 − 172800 z2

+43200

H4,3 = 65536 z16 + 983040 z12 − 1843200 z8 + 32256000 z4 + 6048000

H5,5 = 33554432 z25 + 1258291200 z21 + 3303014400 z17 + 115605504000 z13

−2059223040000 z9 − 3413975040000 z5 + 2133734400000 z

Some roots plots for generalised Hermite polynomials Hm,n are shown below.
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3.1 Special polynomials J. G. Smith

(a) H5,5 (b) H6,6

(c) H7,7 (d) H8,8

(e) H9,9 (f) H10,10

Figure 3.4: Roots of the generalised Hermite polynomials Hm,n.
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The generalised Hermite polynomials Hm,n can also be expressed in determi-

nantal form

Hm,n = cm,n

∣∣∣∣∣∣∣∣∣∣∣∣∣

Hm+n−1 H ′m+n−1 . . . H
(n−1)
m+n−1

H ′m+n−1 H ′′m+n−1 . . . H
(n)
m+n−1

...
...

. . .
...

H
(n−1)
m+n−1 H

(n)
m+n−1 . . . H

(2n−2)
m+n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, ′ =

d

dz
,

where Hn(z) is the nth Hermite polynomial and cm,n is a constant.

The following remarks are based on observations:

Remark 3.3.

i) The generalised Hermite polynomials Hm,n take the form of m× n “rectangles”,

though these are only approximate rectangles since the roots lie on arcs rather

than straight lines. The parameters m and n govern the number of “columns” and

“rows” of the roots, respectively.

ii) The generalised Hermite polynomials Hm,n will only have real roots when n is

an odd integer. This is due to the symmetry in the root formation.

iii) The generalised Hermite polynomials Hm,n have degree equal to mn.

iv) The generalised Hermite polynomials Hm,n always have mn roots.
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(a) H1,4 (b) H2,5

(c) H3,6 (d) H4,7

(e) H5,8 (f) H6,10

Figure 3.5: Roots of the generalised Hermite polynomials Hm,n.
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(a) H4,1 (b) H5,2

(c) H6,3 (d) H7,4

(e) H8,5 (f) H10,6

Figure 3.6: Roots of the generalised Hermite polynomials Hm,n.
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It is also interesting to note that due to the symmetric nature of these roots it

is easy to see the conditions when we have real roots. This is precisely when the

number of rows, n, is odd.

3.1.4 The generalised Okamoto polynomials

Here we consider the generalised Okamoto polynomials Qm,n, which are defined

by the following differential recurrence relations:

Qm+1,nQm−1,n = 9
2

{
Qm,n

d2Qm,n

dz2
− (Qm,n)2

}
+ {2z2 + 3(2m+ n− 1)}Q2

m,n,

(3.6a)

Qm,n+1Qm,n−1 = 9
2

{
Qm,n

d2Qm,n

dz2
− (Qm,n)2

}
+ {2z2 + 3(1−m− 2n)}Q2

m,n.

(3.6b)

with Q0,0 = Q1,0 = 1 and Q1,1 =
√

2z [52].

Table 3.5: Table of the generalised Okamoto polynomials Qm,n

Q2,1 = 4 z4 + 12 z2 − 9

Q2,2 = 16
7

(16 z8 − 504 z4 − 567)

Q3,1 = 4
35
z (16 z8 + 192 z6 + 504 z4 − 2835)

Q3,2 = − 128
1225

(128 z14 + 1344 z12 − 6048 z10 − 75600 z8 − 158760 z6

+238140 z4 − 1071630 z2 − 535815)

Q4,2 = 512
2786875

(2048 z22 + 64512 z20 + 483840 z18 − 3144960 z16

−61689600 z14 − 297198720 z12 − 445798080 z10 + 1114495200 z8

−5851099800 z6 − 43883248500 z4 − 13164974550 z2 − 19747461825)
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(a) Q5,5 (b) Q6,6

(c) Q7,7 (d) Q8,8

(e) Q9,9 (f) Q10,10

Figure 3.7: Roots of generalised Okamoto polynomials Qm,n.
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The following remarks are based on observations:

Remark 3.4.

i) The generalised Okamoto polynomials Qm,n take the form of m×n “rectangles”

with an “equilateral triangle” which either have m−1 or n−1 roots on each of the

four sides. These are only approximate rectangles and triangles since the roots lie

on arcs rather than straight lines. The parameters m and n govern the number of

“columns” and “rows” of the rectangle, respectively.

ii) The generalised Okamoto polynomials Qm,n will only have a real root when n is

an odd integer. This is due to the symmetry in the root formation.

iii) The generalised Okamoto polynomials Qm,n have degree equal to m2+n2+mn−

m− n.

iv) The generalised Okamoto polynomials Qm,n always have m2 +n2 +mn−m−n

roots.
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3.1 Special polynomials J. G. Smith

(a) Q1,3 (b) Q2,4

(c) Q3,5 (d) Q4,6

(e) Q5,7 (f) Q6,8

Figure 3.8: Roots of generalised Okamoto polynomials Qm,n.
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(a) Q3,1 (b) Q4,2

(c) Q5,3 (d) Q6,4

(e) Q7,5 (f) Q8,6

Figure 3.9: Roots of generalised Okamoto polynomials Qm,n.
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The generalised Okamoto polynomials Qm,n can also be expressed in determi-

nantal form

Qm,n =cm,n

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 ψ4 . . . ψ3m+3n−5 ψ2 ψ5 . . . ψ3n−4

ψ′1 ψ′4 . . . ψ′3m+3n−5 ψ′2 ψ′5 . . . ψ′3n−4

...
...

. . .
...

...
...

. . .
...

ψ
(n−1)
1 ψ

(n−1)
4 . . . ψ

(n−1)
3m+3n−5 ψ

(n−1)
2 ψ

(n−1)
5 . . . ψ

(n−1)
3n−4

∣∣∣∣∣∣∣∣∣∣∣∣∣
and

Q−m,−n =c̃m,n

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 ψ4 . . . ψ3n−2 ψ2 ψ5 . . . ψ3m+3n−1

ψ′1 ψ′4 . . . ψ′3n−2 ψ′2 ψ′5 . . . ψ′3m+3n−1

...
...

. . .
...

...
...

. . .
...

ψ
(n−1)
1 ψ

(n−1)
4 . . . ψ

(n−1)
3n−2 ψ

(n−1)
2 ψ

(n−1)
5 . . . ψ

(n−1)
3m+3n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where ′ = d
dz

, ψn(z) = (−3)n/2Hn(1
3

√
3iz) and c̃m,n, cm,n are constants [52].

3.1.5 The generalised associated Laguerre with δ = z d
dz

Here we consider the generalised Laguerre polynomials L̃(n)
α,β, which are defined by

the following differential recurrence relation:

4z2L̃(n)
α,β

d2L̃(n)
α,β

dz2
− 4z3

(
dL̃(n)

α,β

dz

)2

− 4z(n2z − n2 − nz − z2 + n)L̃(n)
α,β

dL̃(n)
α,β

dz

−n(z − 1)(n− 1)(n2 − n− 2z − 2)
(
L̃(n)
α,β

)2 − 4z2L̃(n+1)
α,β L̃

(n−1)
α,β , (3.7)

where L̃(−1)
α,β = 0, L̃(0)

α,β = 1.
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3.1 Special polynomials J. G. Smith

Table 3.6: Table of the generalised associated Laguerre polynomials L̃(n)
α,β

L̃(1)
−1,β = β − z

L̃(1)
−2,β = 1

2

(
β2 − 2 β z + z2 + β − 2 z

)
L̃(2)
−2,β = −1

2
(β + 1) (β2 − 2 β z + z2 + β)

L̃(2)
−3,β = − 1

12
(β + 2) (β4 − 4 β3z + 6 β2z2 − 4 β z3 + z4 + 4 β3 − 12 β2z

+12 β z2 − 4 z3 + 5 β2 − 8 β z + 6 z2 + 2 β)

L̃(3)
−3,β = −1

6
(β + 1) (β + 2)2 (β3 − 3 β2z + 3 β z2 − z3 + 3 β2 − 3 β z + 2 β)
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3.1 Special polynomials J. G. Smith

(a) L̃(4)
−7,30 (b) L̃(5)

−9,30

(c) L̃(4)
−7,30 (d) L̃(5)

−9,30

(e) L̃(6)
−11,30 (f) L̃(7)

−13,30

Figure 3.10: Roots of some generalised associated Laguerre polynomials L̃(n)
α,β.
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3.1 Special polynomials J. G. Smith

(a) L̃(2)
−3,−30 (b) L̃(3)

−5,−30

(c) L̃(4)
−7,−30 (d) L̃(5)

−9,−30

(e) L̃(6)
−11,−30 (f) L̃(7)

−13,−30

Figure 3.11: Roots of some generalised associated Laguerre polynomials L̃(n)
α,β.

98



3.1 Special polynomials J. G. Smith

Note that by varying the parameter β we can animate these roots. See the

“Animations” folder on the supplied USB flash drive.

They also have the following determinantal representation:

L̃(n)
α,β := z

n
2

(1−n)

∣∣∣∣∣∣∣∣∣∣∣∣∣

Lβ−1
−α δ(Lβ−1

−α ) . . . δ(n−1)(Lβ−1
−α )

δ(Lβ−1
−α ) δ(2)(Lβ−1

−α ) . . . δ(n)(Lβ−1
−α )

...
...

. . .
...

δ(n−1)(Lβ−1
−α ) δ(n)(Lβ−1

−α ) . . . δ(2n−2)(Lβ−1
−α )

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ = z

d

dz
,

(3.8)

where Lab is the associated Laguerre polynomial. Using the corollary 2.1 we can

write down an entirely new formulation of these polynomials in an alternative

form to this determinantal representation which will be useful when we look at

the rational function solutions to PV (1.1e) and SV (1.7e).

L̃(n)

α,β,e−z := z
n
2

(1−n)

∣∣∣∣∣∣∣∣∣∣∣∣∣

Lβ−1
−α e

−z δ(Lβ−1
−α e

−z) . . . δ(n−1)(Lβ−1
−α e

−z)

δ(Lβ−1
−α e

−z) δ(2)(Lβ−1
−α e

−z) . . . δ(n)(Lβ−1
−α e

−z)

...
...

. . .
...

δ(n−1)(Lβ−1
−α e

−z) δ(n)(Lβ−1
−α e

−z) . . . δ(2n−2)(Lβ−1
−α e

−z)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(3.9)

where Lab is again the associated Laguerre polynomial and δ = z d
dz

.

The following remarks are based on observations:

Remark 3.5.

i) The generalised associated Laguerre polynomials take the form of m×n “trapez-

iums”, though these are only approximate trapeziums since the roots lie on arcs

rather than straight lines. The parameters α and n govern the number of “columns”
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3.1 Special polynomials J. G. Smith

and “rows” of the roots in the following ways:

columns→ 1− α− n, rows→ n for β > 0,

columns→ n, rows→ 1− α− n for β < 0.

ii) The generalised associated Laguerre polynomials will have a real root when the

number of rows is an odd integer. This is due to the symmetry in the root forma-

tion. This is precisely when

n is odd for 0 < β,

whenever α + 1 ≤β ≤ 0,

1− α− n is odd for β < α + 1.

Note that it is possible for all of these cases to be satisfied for all β.

iii) The generalised associated Laguerre polynomials have degree equal to n(1−α−

n).

iv) The generalised associated Laguerre polynomials always have n(1−α−n) roots.

These polynomials are closely related to another type of polynomial that satisfy

L(n+1)
α,β L

(n−1)
α,β +

(
dL(n)

α,β

dz

)2

=

(
d2L(n)

α,β

dz2

)
,

with the following determinantal representation:

L(n)
α,β :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

Lβ−1
−α δ(Lβ−1

−α ) . . . δ(n−1)(Lβ−1
−α )

δ(Lβ−1
−α ) δ(2)(Lβ−1

−α ) . . . δ(n)(Lβ−1
−α )

...
...

. . .
...

δ(n−1)(Lβ−1
−α ) δ(n)(Lβ−1

−α ) . . . δ(2n−2)(Lβ−1
−α )

∣∣∣∣∣∣∣∣∣∣∣∣∣
, δ =

d

dz
. (3.10)
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Theorem 3.1. The two determinants L̃(n)
α,β and L(n)

α,β have the following relation:

d

dz
ln L̃(n)

α,β =
d

dz
lnL(n)

α,β+1−n −
n

2z
(1− n) . (3.11)

Proof. This result can be shown by using both of these determinantal represen-

tations in our rational solutions. We can therefore combine them and simplify to

acquire this relation exactly.

3.1.6 The generalised Jacobi polynomials

Here we consider the generalised Jacobi polynomials J (n)
α,β which are defined by

the following differential recurrence relation:

(
Ĵ (n)
a,b,c

)2

z2 (z − 1)2 d2

dz2
Ĵ (n)
a,b,c +

(
Ĵ (n)
a,b,c

)2

z (2 z − 1) (z − 1)
d

dz
Ĵ (n)
a,b,c

− Ĵ (n+1)
a,b,c Ĵ

(n−1)
a,b,c = 0, (3.12)

where Ĵ (n)
a,b,c = J (n)

a,b,cz
−1/2n(1−n−2 b) (z − 1)−1/2n(1−n).

Table 3.7: Table of the generalised Jacobi polynomials Ĵ (n)
a,b,c

Ĵ (n)
a,b,c = 4 z4 + 12 z2 − 9

Ĵ (n)
a,b,c = −1152 z4 + 256

7
z8 − 1296

Ĵ (n)
a,b,c = −36864

5
z5 + 98304

35
z7 − 8192

35
z9 + 41472 z

101



3.1 Special polynomials J. G. Smith

(a) n = 2, φ(z;−2,−15,−8) (b) n = 3, φ(z;−3,−14,−8)

(c) n = 4, φ(z;−4,−13,−8) (d) n = 5, φ(z;−5,−14,−9)

(e) n = 6, φ(z;−6,−19,−12) (f) n = 7, φ(z;−7,−20,−13)

Figure 3.12: Roots of some generalised Jacobi polynomials Ĵ (n)
a,b,c.
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(a) n = 2, φ(z;−2,−15,−51) (b) n = 3, φ(z;−3,−15,−51)

(c) n = 4, φ(z;−4,−15,−51) (d) n = 5, φ(z;−5,−15,−51)

(e) n = 6, φ(z;−6,−15,−51) (f) n = 7, φ(z;−7,−15,−51)

Figure 3.13: Roots of some generalised Jacobi polynomials Ĵ (n)
a,b,c.
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(a) n = 2, φ(z;−2,−15, 30) (b) n = 3, φ(z;−3,−15, 30)

(c) n = 4, φ(z;−4,−15, 30) (d) n = 5, φ(z;−5,−15, 30)

(e) n = 6, φ(z;−6,−15, 30) (f) n = 7, φ(z;−7,−15, 30)

Figure 3.14: Roots of some generalised Jacobi polynomials Ĵ (n)
a,b,c.
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Note that by varying the parameter c we can animate these roots. See the

“Animations” folder on the supplied USB flash drive.

They also have the following determinantal representation:

Ĵ (n)
a,b,c :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

P δ(P ) . . . δ(n−1)(P )

δ(P ) δ(2)(P ) . . . δ(n)(P )

...
...

. . .
...

δ(n−1)(P ) δ(n)(P ) . . . δ(2n−2)(P )

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where δ = z(z − 1) d
dz

and P = P
(c−1,a+b−c)
−a (1− 2z).

The following c line describes the roots of the generalised Jacobi polynomials

Ĵ (n)
a,b,c as c changes.

a+ b+ 1

a+ b+ 2

b+ n− 1 2 + a− n

3 + a− n

0

c

←

c

→

The following remarks are based on observations:

Remark 3.6.

i) When c < a + b + 1 or 0 < c the generalised Jacobi polynomials Ĵ (n)
a,b,c roots

take the form of −a × n “axe”. The parameters −a and n govern the number of

“columns” and “rows” of the roots, respectively. If c < a + b + 1 then the “axe”

will have its longer side directed to the right. However, if 0 < c then the longer

side of the “axe” will be directed to the left.

ii) When b+ n− 1 < c < 2 + a− n the generalised Jacobi polynomials Ĵ (n)
a,b,c roots

take the form of n × −a “double axe”. The parameters n and −a govern the

number of “columns” and “rows” of the roots, respectively.
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iii) When c = {a+b+1, a+b+2, ..., b+n−1} or c = {2+a+n, 3+a+n, .., 0} the

generalised Jacobi polynomials Ĵ (n)
a,b,c will have at least double roots. For example:

Take a = −5, b = −14, n = 5. The collision points (at least double roots) are

c = {−18,−17, ..,−10} and c = {−8,−7, .., 0}. If c is inside these sets of points

we know the roots will form the shapes we saw in figure 3.12.

iv) The generalised Jacobi polynomials Ĵ (n)
a,b,c have degree equal to −an.

v) The generalised Jacobi polynomials Ĵ (n)
a,b,c always have −an roots.

3.2 Rational function solutions to the Painlevé equations

In this section the solutions that are of real interest are the bounded solutions.

This is because the applications involving orthogonal always involve the bounded

solutions. These bounded solutions are easy to find if we think about the real roots

of the polynomials that comprise them. The following theorem explains that a

real root, a, in our polynomial solutions, regardless of its order, will result in an

explosion at x = a. Assuming there is no common root between the comprising

polynomials, there is no way in which the logarithmic derivative can cancel with

the corresponding root.

Theorem 3.2. Given a solution of the form

w = A(z) +B(z)
d

dz
ln
C(z)

D(z)
,

where A(z), B(z), C(z) and D(z) are polynomials in z. If there exists a real root

of C(z) or D(z) we will have an unbounded solution along the real axis, assuming

the root is not common between them.
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Proof. The first thing to consider is that the solution can be rewritten as

w = A(z) +B(z)
d

dz

(
lnC(z)− lnD(z)

)
,

Then we assume (x − a)n divides C(z) or D(z). Does this imply (z − a) divides

d
dz

lnC(z)? This implies that C(z) can be written in the form C(z) = (z−a)ng(z).

Differentiating yields

dC(z)

dz
= n(z − a)n−1g(z) + (z − a)n

dg(z)

dz
.

So,

d

dz
lnC(z) =

n(z − a)n−1g(z) + (z − a)n dg(z)
dz

(z − a)ng(z)
(3.13)

=
n

z − a
+

d

dz
ln g(z). (3.14)

This implies that the order n of a root is not important and that if a real root

exists the root cannot vanish with the logarithmic derivative. If there is a single

uncommon real root the solution will not be bounded. Some of the root plots that

follow show some unbounded solutions, however, this is purely an illustration that

these cases are easily identifiable using the associated root plots.

3.2.1 The second Painlevé equation

Theorem 3.3. The rational solutions to PII (1.1b) exist if and only if A = n ∈ Z,

which are unique. Suppose Qn(z) is the Yablonskii-Vorob’ev polynomial defined by

(3.1), then the rational solutions of PII (1.1b) in the form wn(z;A) are given by

the following:

wn(z;A) =
d

dz

{
ln

[
Qn−1(z)

Qn(z)

]}
, (3.15)

for the parameter A = n.

107



3.2 Rational function solutions to the Painlevé equations J. G. Smith

Proof. See [67, 70, 30, 64].

The rational solutions to PII (1.1b) have no bounded solutions due to the

polynomials that generate them always having real roots. This can be seen clearly

in the following plots.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

(a) w3, (b) w4,

(c) w5, (d) w6,

(e) w7, (f) w8,

Figure 3.15: Some rational solutions to PII (1.1b) super imposed with the complex

roots of the corresponding Yablonskii-Vorob’ev polynomials which comprise the

solutions.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

3.2.2 The third Painlevé equation

The locations of the rational solutions of PIII (1.1c) solutions are stated the fol-

lowing theorem:

Theorem 3.4. PIII (1.1c) with γ = −δ = 1, has rational solutions if and only if

α + εβ = 4n, with n ∈ Z and ε = ±1. These rational solutions have the form

w =
Pm(z)

Qm(z)
,

where Pm(z), Qm(z) are polynomials of degree m with no common roots.

Proof. See Lukashevich [41]; also Milne, Clarkson and Bassom [49] and Murata

[51].

Suppose τa,b(z) is the generalised associated Laguerre polynomial defined by

(3.2), then the rational solutions of PIII (1.1c) in the form

w[N ]
n (z;A[N ], B[N ], C [N ], D[N ]),

for N = 1, .., 4 are given by the following:

w[1]
n (z;A[1], B[1], C [1], D[1]) = 1− d

dz
ln
τµ+1,n+1(z)

τµ,n(z)
, (3.16a)

w[2]
n (z;A[2], B[2], C [2], D[2]) = 1 +

d

dz
ln
τµ,n+1(z)

τµ+1,n(z)
, (3.16b)

for the parameters

{A[1], B[1], C [1], D[1]} = {2(n+ µ) + 3, 2(n− µ) + 1, 1,−1}, (3.17a)

{A[2], B[2], C [2], D[2]} = {−2(n− µ)− 1,−2(n+ µ)− 3, 1,−1}. (3.17b)
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

These rational solutions are identical to the Umemura rational solutions. How-

ever, the Umemura polynomials are actually polynomials in 1/z rather than poly-

nomials in z. Clarkson in [15] determined special polynomials associated with

the rational solutions of PIII (1.1c), which were polynomials in z. The rational

solutions are shown below in terms of these polynomials.

Theorem 3.5. Suppose Sn(z;µ) is the Umemura polynomial defined by

Sn+1Sn−1 = −z
[
Sn
d2Sn
dz2

−
(
dSn
dz

)2]
− Sn

dSn
dz

+ (z + µ)S2
n

with S−1(z;µ) = S0(z;µ) = 1 [15] (but with the transformation z → 1/z) then the

rational solutions of PIII (1.1c) are the following:

wn = w(z;A[1], B[1], C [1], D[1]) = 1 +
d

dz

{
ln

[
Sn−1(z;µ− 1)

Sn(z;µ)

]}
(3.18a)

=
Sn(z;µ− 1)Sn−1(z;µ)

Sn(z;µ)Sn−1(z;µ− 1)
, (3.18b)

ŵn = w(z;A[2], B[2], C [2], D[2]) = 1 +
d

dz

{
ln

[
Sn−1(z;µ)

Sn(z;µ− 1)

]}
(3.18c)

=
Sn(z;µ)Sn−1(z;µ− 1)

Sn(z;µ− 1)Sn−1(z;µ)
, (3.18d)

for the parameters

{A[1], B[1], C [1], D[1]} = {2n+ 2µ− 1, 2n− 2µ+ 1, 1,−1}, (3.19a)

{A[2], B[2], C [2], D[2]} = {−2n+ 2µ− 1,−2n− 2µ+ 1, 1,−1}. (3.19b)

Proof. See [15], which generalizes the work of Kajiwara and Masuda [37].

The rational solutions of PIII have no bounded solutions due to the polynomi-

als that generate them always having real roots. This can be seen clearly in the

following plots:
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

(a) w
[1]
3 (z;µ = −10) (b) w

[1]
4 (z;µ = −10)

(c) w
[1]
5 (z;µ = −10) (d) w

[1]
6 (z;µ = −10)

Figure 3.16: Some rational solutions to PIII (1.1c) with the complex roots of the

corresponding generalised associated Laguerre polynomials which comprise the

solutions.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

(a) w
[1]
3 (z;µ = 10) (b) w

[1]
4 (z;µ = 10)

(c) w
[1]
5 (z;µ = 10) (d) w

[1]
6 (z;µ = 10)

Figure 3.17: Some rational solutions to PIII (1.1c) super imposed with the com-

plex roots of the corresponding generalised associated Laguerre polynomials which

comprise the solutions.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

3.2.3 The fourth Painlevé equation

Theorem 3.6. PIV has rational solutions if and only if the parameters A and B

are given by

A = m, B = −2(2n−m+ 1)2, (3.20)

or

A = m, B = −2(2n−m+ 1
3
)2, (3.21)

with m, n ∈ Z.

Proof. See Lukashevich [42], Gromak [32] and Murata [50]; also see Bassom, Clark-

son and Hicks [5], Gromak, Laine and Shimomura [34], Umemura and Watanabe

[66].

Theorem 3.7. Suppose Hm,n(z) is the generalised Hermite polynomial defined by

(3.5b), then the rational solutions of PIV (1.1d) in the form

w[N ]
m,n = w(z;A[N ], B[N ]),

for N = 1, 2, 3 are given by the following:

w[1]
m,n = w(z;A[1], B[1]) =

d

dz
ln

(
Hm+1,n(z)

Hm,n(z)

)
,

w[2]
m,n = w(z;A[2], B[2]) =

d

dz
ln

(
Hm,n(z)

Hm,n+1(z)

)
,

w[3]
m,n = w(z;A[3], B[3]) = −2z +

d

dz
ln

(
Hm,n+1(z)

Hm+1,n(z)

)
.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

for the parameters

{A[1], B[1]} = {2m+ n+ 1,−2n2},

{A[2], B[2]} = {−(m+ 2n+ 1),−2m2},

{A[3], B[3]} = {n−m,−2(m+ n+ 1)2}.

Proof. See Noumi and Yamada [52]; and also Theorem 3.1 in Clarkson [16].

All the rational solutions of PIV (1.1d) with parameters given by (3.20) can

be expressed in terms of determinants whose entries are Hermite polynomials.

The generalised Hermite polynomials rational solutions of PIV (1.1d) have

bounded solutions when n is even. However, they are only bounded from the first

hierarchy w[1] due to the formation of the root structures. From the other two

hierarchies you cannot get real roots simultaneously from both the polynomials

in the rational functions.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

(a) w[1](z;m = 2, n = 2) (b) w[1](z;m = 4, n = 4)

(c) w[1](z;m = 6, n = 6) (d) w[1](z;m = 8, n = 8)

(e) w[1](z;m = 10, n = 10) (f) w[1](z;m = 12, n = 12)

Figure 3.18: Some rational solutions to PIV (1.1d) super imposed with the complex

roots of the corresponding generalised Hermite polynomials which comprise the

solutions.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

Now we consider the generalised Okamoto polynomials.

Theorem 3.8. Suppose Qm,n(z) is the generalised Okamoto polynomial defined

by (3.6b), then the rational solutions of PIV (1.1d) in the form

ŵ[N ]
m,n = w(z;A[N ], B[N ]),

are the following:

ŵ[1]
m,n = w(z;A[1], B[1]) = −2

3
z +

d

dz

(
Qm+1,n(z)

Qm,n(z)

)
,

ŵ[2]
m,n = w(z;A[2], B[2]) = −2

3
z +

d

dz

(
Qm,n(z)

Qm,n+1(z)

)
,

ŵ[3]
m,n = w(z;A[3], B[3]) = −2

3
z +

d

dz

(
Qm,n+1(z)

Qm+1,n(z)

)
,

for the parameters

{A[1], B[1]} = {2m+ n,−2(n− 1
3
)2},

{A[2], B[2]} = {−m− 2n,= −2(m− 1
3
)2},

{A[3], B[3]} = {n−m,= −2(m+ n+ 1
3
)2}.

Proof. See Noumi and Yamada [52]; and also Theorem 4.1 in Clarkson [16].

The generalised Okamoto rational solutions of PIV (1.1d) have no bounded

solutions due to the polynomials that generate them always having real roots.

This can be seen clearly in the following plots:
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

(a) ŵ[1](z;m = 2, n = 2) (b) ŵ[1](z;m = 3, n = 3)

(c) ŵ[1](z;m = 4, n = 4) (d) ŵ[1](z;m = 5, n = 5)

Figure 3.19: Some rational solutions to PIV (1.1d) super imposed with the complex

roots of the corresponding generalised Okamoto polynomials which comprise the

solutions.

3.2.4 The fifth Painlevé equation

Theorem 3.9. PV (1.1e) has rational solutions if and only if one of the following

holds with m,n ∈ Z and ε = ±1:
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

i) A = 1
2
(m+ ε)2 and B = −1

2
n2, where n > 0, m+ n is odd and A 6= 0 where

|m| < n,

ii) A = 1
2
n2 and B = −1

2
(m+ ε)2, where n > 0, m+ n is odd and B 6= 0 when

|m| < n,

iii) A = 1
2
a and B = −1

2
(a + n)2 and C = m, where m + n is even and a

arbitrary,

iv) A = 1
2
(b+n), B = −1

2
(b)2 and C = m, where m+n is even and b arbitrary,

v) A = 1
8
(2m+ 1)2 and B = −1

8
(2n+ 1)2.

Proof. See Kitaev, Law and McLeod [39]; also Gromak and Lukashevich [35];

Gromak, Laine and Shimomura [34].

Theorem 3.10. Suppose L̃(n)
α,β(z), L̃(n)

α,β,e−z(z) and L(n)
α,β(z) are the generalised as-

sociated Laguerre polynomials defined by (3.8), (3.9) and (3.10) then the rational

solutions of PV (1.1e) in the form w
[N ]
n (z;A[N ], B[N ], C [N ], D[N ], ε3) for N = 1, 2
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

are given by the following:

w[1]
n (z;A[1], B[1], C [1], D[1], 1) = 1 +

1

α− β − n

{
β + z + z

d

dz
ln
L̃ (n+1)

α,β+1,e−z(z)

L̃ (n)

α,β,e−z(z)

}

= 1 +
1

α− β − n

{
β + z

d

dz
ln
L̃ (n+1)
α−n,β+1(z)

L̃ (n)
α−n+1,β(z)

}

= 1 +
1

α− β − n

{
β + n+ z

d

dz
ln
L (n+1)
α−n+1,β−n+2(z)

L (n)
α−n+1,β−n+1(z)

}
,

w[2]
n (z;A[2], B[2], C [2], D[2],−1) = 1 +

1

α + n

{
z − β − z d

dz
ln
L̃ (n+1)
α+1,β+1(z)

L̃ (n)
α,β (z)

}

= 1 +
1

α + n

{
2z − β − z d

dz
ln
L̃ (n+1)

α+n+1,β+1,e−z(z)

L̃ (n)

α+n−1,β,e−z(z)

}

= 1 +
1

α + n

{
z − β − n− z d

dz
ln
L (n+1)
α+1,β−n+1(z)

L (n)
α,β−n+1(z)

}
,

for the parameters

{A[1], B[1], C [1], D[1]} = {1
2
(−α + β + n)2,−1

2
α2, 1 + n− β,−1

2
}, (3.27a)

{A[2], B[2], C [2], D[2]} = {1
2
(α + n)2,−1

2
(β − α)2, β − n− 1,−1

2
}. (3.27b)

Proof. Taking α to be a negative integer we can apply the polynomial reduction

of U(a, b; z) and M(a, b; z) the Kummer functions (2.12), to the special function

solutions of PV with a suitable transformation of the parameters yields the rational

solutions:

The rational solutions to PV (1.1e) have bounded solutions from the second

hierarchy precisely when 1 + α− n is even for β < 0 with C1 = 0 or C2 = 0. This

is the exact condition which removes the possibility for real roots.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

(a) w
[2]
2 (z;α = −5, β = −30) (b) w

[2]
3 (z;α = −6, β = −30)

(c) w
[2]
4 (z;α = −7, β = −30) (d) w

[2]
5 (z;α = −8, β = −30)

(e) w
[2]
6 (z;α = −9, β = −30) (f) w

[2]
7 (z;α = −10, β = −30)

Figure 3.20: Some rational solutions to PV (1.1e) super imposed with the complex

roots of the corresponding generalised Laguerre polynomials which comprise the

solutions.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

3.2.5 The sixth Painlevé equation

Theorem 3.11. PV I (1.1f) has rational solutions if and only if

h1 + h2 + h3 + h4 = 2n+ 1,

with εj = ±1, j = 1, 2, 3, 4 independently where h1 = ε1

√
2A, h2 = ε2

√
−2B,

h3 = ε3

√
2C, h4 = ε4

√
1− 2D and a ∈ Z.

Proof. See Mazzocco [47]. These are special cases of the special function solutions

which we discussed earlier.

Suppose Ĵ (n)
a,b,c(z) is the generalised Jacobi polynomial defined by (3.12), then

the rational solutions of PV I (1.1f) in the form wn(z;A,B,C,D) are given by the

following:

wn(z;A,B,C,D) =
1

a

{
n+ c− (2n+ b+ 1)z − z(z − 1)

d

dz
ln
J (n+1)
a+1,b+1,c+1(z)

J (n)
a−1,b+1,c(z)

}
,

for the parameters

{A,B,C,D} = {a2
2
,−1

2
(b− c+ n+ 1)2, 1

2
(a− c− n)2, 1

2
(1− b2)},

with

J (n)
a,b,c = zn/2(1−n−2b)(z − 1)n(1−n)/2Ĵ (n)

a,b,c.
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3.2 Rational function solutions to the Painlevé equations J. G. Smith

(a) w4(z; a=−7, b=−16, c=−11)− L(z) (b) w5(z; a=−9, b=−18, c=−13)− L(z)

(c) w6(z; a=−11, b=−20, c=−15)− L(z) (d) w7(z; a=−13, b=−22, c=−17)− L(z)

Figure 3.21: Some rational solutions to PV I (1.1f) super imposed with the complex

roots of the corresponding generalised Jacobi polynomials which comprise the

solutions, where L(z) is the asymptotic behaviour around ±∞.

The rational solutions to PV I have bounded solutions precisely when b+n−1 <
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3.3 Rational function solutions to the σ-equations J. G. Smith

c < 2 + a − n and −a is even. This is exactly the condition that removes the

possibility for real roots.

3.3 Rational function solutions to the σ-equations

3.3.1 The second Painlevé σ-equation

Theorem 3.12. Suppose Qn(z) is the Yablonskii-Vorob’ev polynomial defined by

(3.1), then the rational solutions of SII (1.7b) in the form σn(z;α) are given by

the following:

σn(z;α) = −1

8
z2 +

d

dz
lnQn(z), (3.28)

for the parameter α = n.

Proof. See [34].

The rational solutions to SII (1.7b) have no bounded solutions due to the

polynomials that generate them always having real roots.
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3.3 Rational function solutions to the σ-equations J. G. Smith

(a) σ3, (b) σ4,

(c) σ5, (d) σ6,

(e) σ7, (f) σ8,

Figure 3.22: Some rational solutions to SII (1.7b) super imposed with the complex

roots of the corresponding Yablonskii-Vorob’ev polynomials which comprise the

solutions.
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3.3 Rational function solutions to the σ-equations J. G. Smith

3.3.2 The third Painlevé σ-equation

Theorem 3.13. Suppose τa,b(z) is the generalised associated Laguerre polynomial

defined by (3.2), then the rational solutions of SIII (1.7c) in the form σµ,n(z;ϑ0, ϑ∞)

are given by the following:

σµ,n(z;ϑ0, ϑ∞) = −1

4
z2 − µz +

1

8
+ z

d

dz
ln τµ,n(z), (3.29)

for the parameters

{ϑ0, ϑ∞} = {µ2 + (n+ 1
2
)2, µ2 − (n+ 1

2
)2}.

Proof. These results can be inferred from the work of Clarkson in [15].

The rational solutions to SIII (1.7c) have no bounded solutions due to the

polynomials that generate them always having real roots and their symmetric

triangular structure.
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3.3 Rational function solutions to the σ-equations J. G. Smith

(a) σ3,10(z) (b) σ3,−10(z)

(c) σ4,10(z) (d) σ4,−10(z)

(e) σ5,10(z) (f) σ5,−10(z)

Figure 3.23: Some rational solutions to SIII (1.7c) super imposed with the complex

roots of the corresponding generalised associated Laguerre which comprise the

solutions. 127



3.3 Rational function solutions to the σ-equations J. G. Smith

3.3.3 The fourth Painlevé σ-equation

Theorem 3.14. Suppose Hm,n(z) is the generalised Hermite polynomial defined

by (3.5b), then the rational solutions of SIV (1.7d) in the form σ
[N ]
m,n(z;ϑ

[N ]
0 , ϑ

[N ]
∞ )

for N = 1, 2, 3 are given by the following:

σ[1]
m,n(z;ϑ

[1]
0 , ϑ

[1]
∞) =

d

dz
lnHm,n(z), (3.30a)

σ[2]
m,n(z;ϑ

[2]
0 , ϑ

[2]
∞) =

d

dz
lnHm,n(z)− 2nz, (3.30b)

σ[3]
m,n(z;ϑ

[3]
0 , ϑ

[3]
∞) =

d

dz
lnHm,n(z) + 2mz, (3.30c)

for the parameters

{ϑ[1]
0 , ϑ

[1]
∞} = {−n,m}, (3.31a)

{ϑ[2]
0 , ϑ

[2]
∞} = {n,m+ n}, (3.31b)

{ϑ[3]
0 , ϑ

[3]
∞} = {−m,−m− n}. (3.31c)

Proof. Taking ν to be an integer, m, we can apply the polynomial reduction

of Dν(z) the parabolic cylinder function (2.7a), (2.7b) and (2.7c) to the special

function solutions of SIV with a suitable transformation of the parameters yields

the rational solutions: Also see Okamoto [58]; also Forrester and Witte [26].

The rational solutions to SIV have bounded solutions precisely when n is even.

However, only (3.31c) omits bounded solutions due to the linear component can-

celling out the asymptotic behaviour around ±∞.
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3.3 Rational function solutions to the σ-equations J. G. Smith

(a) σ[1](z;m = 2) (b) σ[1](z;m = 4)

(c) σ[1](z;m = 6) (d) σ[1](z;m = 8)

(e) σ[1](z;m = 10) (f) σ[1](z;m = 12)

Figure 3.24: Some rational solutions to SIV (1.7d) super imposed with the complex

roots of the corresponding generalised Hermite polynomials which comprise the

solutions, with n = {2, 4, 6, 8}.
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3.3 Rational function solutions to the σ-equations J. G. Smith

It is interesting to note that the number of ”kinks” in these solutions is equal

to m− 1.

(a) σ[1](z;m = 2, n = 2) (b) σ[1](z;m = 4, n = 4)

(c) σ[1](z;m = 6, n = 6) (d) σ[1](z;m = 8, n = 8)

Figure 3.25: Some rational solutions to SIV (1.7d) super imposed with the complex

roots of the corresponding generalised Hermite polynomials which comprise the

solutions.
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3.3 Rational function solutions to the σ-equations J. G. Smith

Theorem 3.15. Suppose Qm,n(z) is the generalised Okamoto polynomial defined

by (3.6b), then the rational solutions of SIV (1.7d) in the form σ
[1]
m,n(z;ϑ

[1]
0 , ϑ

[1]
∞)

for N = 1, 2, 3 are given by the following:

σ[1]
m,n(z;ϑ

[1]
0 , ϑ

[1]
∞) = 4

27
z3 + 2

3
(n−m)z +

d

dz
lnQm,n(z), (3.32a)

σ[2]
m,n(z;ϑ

[2]
0 , ϑ

[2]
∞) = 4

27
z3 − 2

3
(m+ 2n− 1)z +

d

dz
lnQm,n(z), (3.32b)

σ[3]
m,n(z;ϑ

[3]
0 , ϑ

[3]
∞) = 4

27
z3 + 2

3
(2m+ n− 1)z +

d

dz
lnQm,n(z), (3.32c)

for the parameters

{ϑ[1]
0 , ϑ

[1]
∞} = {m− 1

3
, 1

3
− n}, (3.33a)

{ϑ[2]
0 , ϑ

[2]
∞} = {n− 1

3
,m+ n− 2

3
}, (3.33b)

{ϑ[3]
0 , ϑ

[3]
∞} = {2

3
−m− n, 1

3
−m}. (3.33c)

Proof. These solutions can be inferred from the PIV (1.1d) Okamoto rational

function solutions using the Hamiltonian structure of PIV (1.1d).

3.3.4 The fifth Painlevé σ-equation

Theorem 3.16. Suppose L̃(n)
α,β(z), L̃(n)

α,β,e−z(z) and L(n)
α,β(z) are the generalised as-

sociated Laguerre polynomials defined by (3.8), (3.9) and (3.10), then the rational

solutions of SV (1.7e) in the form σn(z;κ
[N ]
0 , κ

[N ]
1 , κ

[N ]
2 , κ

[N ]
3 , ε3) for N = 1, 2 are
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given by the following:

σ[1]
n (z;κ0, κ

[1]
1 , κ

[1]
2 , κ

[1]
3 , 1) =z

d

dz
ln L̃(n+1)

α,β,e−z(z)− 5
8

(n+ 1)2 + 1
4

(2α + 1 + β + 3z)

(n+ 1)− 1
8

(−2α− 1 + β) (−2α− 1− 2 z + β)

=z
d

dz
lnL(n+1)

α−n,β−n(z)− 1
8

(n+ 1)2 + 1
4

(2α− 1 + β − z)

(n+ 1)− 1
8

(−2α− 1 + β) (−2α− 1− 2 z + β) ,

σ[2]
n (z;κ0, κ

[2]
1 , κ

[2]
2 , κ

[2]
3 ,−1) =z

d

dz
ln L̃(n)

α+1,β+1(z)− 5
8
n2 + 1

4
(3β + 2− 2α− 3z)n

− 1
8

(2α− β) (2α + 2 z − β)

=z
d

dz
lnL(n)

α+1,β−n+2(z)− 1
8
n2 + 1

4
(3β − 2α− 3z)n

− 1
8

(2α− β) (2α + 2 z − β) ,

for the parameters

{κ[1]
0 , κ

[1]
1 , κ

[1]
2 , κ

[1]
3 } = 1

4
{2α− β + n+ 2, n+ 2− 2α− β, 2α− β − 3n− 2, 3β + n

− 2α− 2)}, (3.35a)

{κ[2]
0 , κ

[2]
1 , κ

[2]
2 , κ

[2]
3 } = −1

4
{2α + β + n, β − 3n− 2α, n+ 2α− 3β, β + n− 2α}.

(3.35b)

Proof. Taking α to be a negative integer we can apply the polynomial reduction

of U(a, b; z) and M(a, b; z) the Kummer functions (2.12), to the special function

solutions of SV with a suitable transformation of the parameters yields the rational

solutions:

The rational solutions of SV have no bounded solutions due to the asymptotic

behaviour around ±∞ being linear. However, if an appropriate linear transfor-

mation is made we can have bounded solutions and this is precisely when the
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polynomials have no real roots. The conditions for this are specified in the gener-

alised associated Laguerre polynomials chapter with C1 = 0 or C2 = 0.

(a) σ
[1]
4 (z;α=−8, β=20)−A− n

2 (3n− 1) (b) σ
[1]
4 (z;α=−8, β=−30)−A− n

2 (3n−1)

(c) σ
[1]
6 (z;α=−12, β=20)−A− n

2 (3n− 1) (d) σ
[1]
6 (z;α=−12, β=−30)−A− n

2 (3n−1)

Figure 3.26: Some rational solutions to SV (1.7e) super imposed with the com-

plex roots of the corresponding generalised associated Laguerre polynomials which

comprise the solutions, where
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A = −5
8

(n+ 1)2 + 1
4

(2α + 1 + β + 3z) (n+ 1)

− 1
8

(−2α− 1 + β) (−2α− 1− 2 z + β) .

3.3.5 The sixth Painlevé σ-equation

Theorem 3.17. Suppose J (n)
a,b,c(z) is the generalised Jacobi polynomial defined by

(3.12), then the rational solutions of SV I (1.7f) in the form σ(z;κ1, κ2, κ3, κ4) are

given by the following:

σ(z;κ1, κ2, κ3, κ4) = 1
4

(n+ 1) (4 az − a+ b− 2 c+ 1)− 1
4

(a− b+ 1)2 z

+ 1
4

(
a2 + a+ b2 − b− ac− bc

)
+ z(z − 1)

d

dz
lnJ (n+1)

a,b,c (z),

for the parameters

{κ1, κ2, κ3, κ4} = {−1
2
(a−b−2n−1), 1

2
(a+b−2c+1),−1

2
(a−b+1), 1

2
(a+b−1)}.

Proof. Taking a to be a negative integer we can apply the polynomial reduction

of the general hypergeometric function F (a, b, c; z) via an appropriate choice of

the parameters. Applying this to the special function solutions of SV I (1.7f) gives

the desired result.

The rational solutions of SV I have no bounded solutions due to the asymptotic

behaviour around ±∞ being linear. However, if an appropriate linear transfor-

mation is made we can have bounded solutions and this is precisely when the

polynomials have no real roots. The conditions for this are specified in the gener-

alised Jacobi polynomials chapter.
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(a) σ̃2(a=−2, b=−15, c=−8) (b) σ̃4(a=−4, b=−13, c=−8)

(c) σ̃3(a=−3, b=−14, c=30) (d) σ̃3(a=−3, b=−14, c=−50)

(e) σ̃5(a=−5, b=−12, c=30) (f) σ̃5(a=−5, b=−12, c=−50)

Figure 3.27: Some rational solutions to SV I (1.7f) super imposed with the complex

roots of the corresponding generalised Jacobi polynomials which comprise the

solutions, with σ̃n(z) = σn(z)− A(z), where A(z) is the asymptotic expansion of

the solution around ±∞. 135
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4 Monic orthogonal polynomials

In the following chapter we will be introducing the concept of monic orthogonal

polynomials. We will also be discussing classical and semi-classical orthogonal

polynomials and their differences.

4.1 Continuous orthogonal polynomials

Monic orthogonal polynomials are a certain type of polynomial pn(x), defined over

a range [a, b], that satisfy an orthogonality relation∫ b

a

w(x)pm(x)pn(x) dx = hnδmn, hn > 0,

with n ∈ N, δmn the Kroneker delta and pn(x) an orthogonal polynomial of degree

n with respect to a positive weight w(x). An important property of orthogonal

polynomials is that they must satisfy a three term recurrence relation of the

following form:

xpn(x) = pn+1(x) + αnpn(x) + βnpn−1(x),

where the coefficients αn and βn are given by

αn =
1

hn

∫ b

a

xp2
n(x)w(x) dx, βn =

1

hn−1

∫ b

a

xpn−1(x)pnw(x) dx,

with p−1 = 0 and p0 = 1. One of our aims in this thesis is to find an alternative

method for calculating these coefficients using determinants of moments that are

produced from our associated orthogonal polynomial weight. The coefficients αn

and βn can be rewritten in the following way:

αn =
∆̃n+1

∆n+1

− ∆̃n

∆n

, βn =
∆n+1∆n−1

∆2
n

, (4.1)
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where ∆n and ∆̃n are the determinants given by

∆n :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
...

...
. . .

...

µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1, (4.2)

∆̃n :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−2 µn

µ1 µ2 . . . µn−1 µn+1

...
...

. . .
...

...

µn−1 µn . . . µ2n−3 µ2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1, (4.3)

and the initial states are ∆0 = 1 and ∆−1 = ∆̃0 = 1. The individual moments

can be calculated as follows:

µk =

∫ b

a

xkw(x) dx. (4.4)

We remark that the Hankel determinant ∆n(z) (4.2) also has the integral repre-

sentation

∆n(x) =
1

n!

∫ b

a

. . .

∫ b

a

n∏
l=1

w(xl)
∏

1≤j<k≤n

(xj − xk)2dx1, ..., dxn, n ≥ 1. (4.5)

This arises in Random matrix theory as the partition function for the unitary

ensemble with eigenvalue distribution. See Mehta [48] for full details.

It is a well known fact that the monic polynomial pn(x) can be uniquely ex-
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pressed as the following:

pn(x) =
1

∆n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
...

...
. . .

...

µn−1 µn . . . µ2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1 (4.6)

and the normalisation constant is

hn =
∆n+1

∆n

, h0 = ∆1 = µ0.

Now suppose the weight has the following form:

w(x; z) = w0(x) exp(xz), (4.7)

where z is a parameter with finite moments for all z ∈ R. If the weight has the

form (4.7) then suddenly the polynomials pn(x), the recurrence coefficients αn and

βn, the determinants ∆n, ∆̃n and the moments µk are all now functions of z. For

certain weights, a consequence of (4.7) is the following:

µk = ± d

dz
µk±1 (4.8)

and the recurrence relation has the form

xpn(x; z) = pn+1(x; z) + αn(z)pn(x; z) + βn(z)pn−1(x; z). (4.9)

The implementation of (4.8) in the determinants ∆n and ∆̃n given by (4.2) has

the following effect:

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ′0 . . . µ
(n−1)
0

µ′0 µ′′0 . . . µ
(n)
0

...
...

. . .
...

µ
(n−1)
0 µ

(n)
0 . . . µ

(2n−2)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣
, ′ =

d

dz
,
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∆̃n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ′0 . . . µ
(n−2)
0 µ

(n)
j

µ′0 µ′′0 . . . µ
(n−1)
0 µ

(n+1)
0

...
...

. . .
...

...

µ
(n−1)
0 µ

(n)
0 . . . µ

(2n−3)
0 µ

(2n−1)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣
, ′ =

d

dz
.

Hence we can construct the following theorem:

Theorem 4.1. As before, we will denote τn as the bi-directional Wronskian

τn(f) =W
(
f,
df

dz
, ...,

dn−2f

dzn−2
,
dn−1f

dzn−1

)
. (4.10)

If the moment µk(z) has the form (4.8) then the determinants ∆n and ∆̃n can be

written in the form

∆n(z) = τn(µ0), ∆̃n(z) =
d

dz
τn(µ0). (4.11)

Proof. See [17, 38, 59, 63].

Also, since µk =
dkµj
dzk

, the determinants ∆n(z) and ∆̃n(z) can be written in
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the form

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
...

...
. . .

...

µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
=W

(
µ0,

d

dz
µ0, ...,

dn−1µ0

dzn−1

)

= τn(µ0),

∆̃n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−2 µn

µ1 µ2 . . . µn−1 µn+1

...
...

. . .
...

...

µn−1 µn . . . µ2n−3 µ2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=W

(
µ0,

d

dz
µ0, ...,

dn−2µ0

dzn−1
,
dnµ0

dzn

)

=
d

dz
W
(
µ0,

d

dz
µ0, ...,

dn−2µ0

dzn−1
,
dn−1µ0

dzn−1

)
=

d

dz
τn(µ0).

Theorem 4.2. The Hankel determinant ∆n(z) given by (4.2) satisfies the Toda

equation

d2

dz2
ln ∆n(z) =

∆n+1(z)∆n−1(z)

∆2
n(z)

. (4.12)

Proof. See [12, 61, 63].

Theorem 4.3. As long as the condition (4.8) is satisfied the recurrence coeffi-

cients αn(z) and βn(z) in (4.9) can be expressed in the form

αn(z) =
d

dz
ln

(
τn+1(µ0)

τn(µ0)

)
, βn(z) =

d2

dz2
ln{τn(µ0)}. (4.13)

Proof. The proof is actually straightforward; applying the theorem 4.1 to (4.1)

and using that ∆n satisfies the Toda equation (4.12) gives the desired result. This

is shown in detail below.
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Recall that αn(z) and βn(z) are defined by

αn =
∆̃n+1

∆n+1

− ∆̃n

∆n

, βn =
∆n+1∆n−1

∆2
n

,

where ∆n(z) and ∆̃n(z) are defined by (4.2) and (4.3). Using (4.11) and (4.12)

we can deduce the following:

αn(z) =
∆̃n+1(z)

∆n+1(z)
− ∆̃n(z)

∆n(z)
=

1

∆n+1(z)

d∆n+1(z)

dz
− 1

∆n(z)

d∆n(z)

dz

=
d

dz
ln ∆n+1(z)− d

dz
ln ∆n(z)

=
d

dz

{
ln ∆n+1(z)− ln ∆n(z)

}
=

d

dz
ln

∆n+1(z)

∆n(z)
,

βn(z) =
∆n+1∆n−1

∆2
n

=
d2

dz2
ln ∆n(z),

as required.

Some motivation for this work is that the recurrence coefficients of semi-

classical orthogonal polynomials can often be expressed in terms of solutions of the

Painlevé equations. For example; all the recurrence coefficients can be expressed

in terms of solutions of PII (1.1b) for semi-classical orthogonal polynomials with

respect to an Airy weight

w(x; z) = exp(1
3
x3 + zx), x3 < 0, (4.14)

with z ∈ R a parameter [44]. In terms of solutions of PIII (1.1c) for the deformed

Laguerre weight

w(x; z) = xα exp(−x− z/x), x ∈ R+,
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with α > 0 and z ∈ R+ parameters [10]. In terms of solutions of PV (1.1e) for the

weights

w(x; z) = (1− x)α(1 + x)βe−zx, x ∈ [−1, 1],

w(x; z) = xα(1− x)βe−z/x, x ∈ [0, 1],

w(x; z) = xα(x+ z)βe−x, x ∈ R+,

with α, β > 0 and t ∈ R+ parameters [2, 20, 11, 13, 29]. In terms of solutions of

PV I (1.1f) for the weight

w(x; z) = xα(1− x)β(z − x)γ, x ∈ [0, 1],

with α, β, γ > 0 and z ∈ R+ parameters [3, 13, 19, 44].

4.1.1 Example - Hermite polynomials

Hermite polynomials are orthogonal with respect to the weight

w(x) = exp(−x2), x ∈ R.

In this case

µ2k =

∫ ∞
−∞

x2k exp(−x2) dx =

√
π(2k)!

22kk!
, µ2k+1 =

∫ ∞
−∞

x2k+1 exp(−x2) dx = 0,

(4.15)

so

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
...

...
. . .

...

µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (1

2
)n(n−1)/2

n−1∏
k=1

(k!), ∆̃n = 0
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and therefore the recurrence coefficients are the following:

αn = 0, βn =
∆n+1∆n−1

∆2
n

= 1
2
n,

which gives the three-term recurrence relation

pn+1(x) = xpn(x)− 1
2
npn−1(x),

where

pn(x) = 2−nHn(x),

with Hn(x) the Hermite polynomial.

4.1.2 Example - Associated Laguerre polynomials

Associated Laguerre polynomials are orthogonal with respect to the weight

w(x) = xν exp(−x), x ∈ R+, ν > −1.

In this case

µk =

∫ ∞
0

xk+ν exp(−x) dx = Γ(k + ν + 1), (4.16)

so

∆n =
n∏
j=1

(j − 1)!Γ(ν + j), ∆̃n = n(n+ ν)
n∏
j=1

(j − 1)!Γ(ν + j)

and therefore the recurrence coefficients are the following:

αn =
∆̃n+1

∆n+1

− ∆̃n

∆n

= 2n+ ν + 1, βn =
∆n+1∆n−1

∆2
n

= n(n+ ν),

which gives the three-term recurrence relation

pn+1(x) = (x− 2n− 1− ν)pn(x)− n(n+ ν)pn−1(x),

where

pn(x) = (−1)nn!L(ν)
n (x),

with L
(ν)
n (x) the associated Laguerre polynomial.
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4.2 Semi-classical orthogonal polynomials

Suppose pn(x), for n ∈ N, is a sequence of classical orthogonal polynomials; such

as Hermite, Laguerre and Jacobi polynomials; then pn(x) is a solution of a second-

order, ordinary differential equation of the form

σ(x)
d2pn
dx2

+ τ(x)
dpn
dx

= λnpn, (4.17)

where τ(x) is a polynomial with degree 1, σ(x) is a monic polynomial with degree

≤ 2 and λn is a real number which is related to the polynomials. A condition

on the weights of classical orthogonal polynomials is that they must satisfy the

Pearson equation

d

dx
[σ(x)w(x)] = τ(x)w(x), (4.18)

where τ(x) and σ(x) are the same polynomials as above. However, if we look

at the semi-classical case the weight function still satisfies the Pearson equation

(4.18), with one of the following true: Either the degree of σ(x) is > 2 or the

degree of τ(x) is > than 1.

• Classical orthogonal polynomials: σ(x) and τ(x) are polynomials with deg(σ) ≤

2 and deg(τ) = 1.

w(x) σ(x) τ(x)

Hermite exp(−x2) 1 −2x

Associated Laguerre xν exp(−x) x 1 + ν − x

Jacobi (1− x)α(1 + x)β 1− x2 β − α− (2 + α+ β)x

• Semi-classical orthogonal polynomials: σ(x) and τ(x) are polynomials with

either deg(σ) > 2 or deg(τ) > 1.
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w(x) σ(x) τ(x)

semi-classical Laguerre xν exp(−x2 + zx) x 1 + ν + tx− 2x2

Freud exp(− 1
4x

4 − zx2) 1 −2zx− x3

4.2.1 Example - Semi-classical Hermite Weight

Consider the semi-classical Hermite weight [18]

w(x; z) = |x|ν exp(−x2 + zx), x ∈ R, ν > −1.

The moment µk(z; ν) is given by

µk(z; ν) =

∫ ∞
−∞

xk|x|ν exp(−x2 + zx) dx (4.19)

=
dk

dzk

(∫ ∞
−∞
|x|ν exp(−x2 + zx) dx

)
=
dkµ0

dzk
. (4.20)

The Hankel determinant ∆n(z) is given by

∆n(z) = det
[
µj+k(z)

]n−1

j,k=0
=W

(
µ0,

dµ0

dz
, . . . ,

dn−1µ0

dzn−1

)
,

where

µ0(z; ν) =



Γ(ν+1) exp(
1
8
t2)

2ν+1/2

{
D−ν−1(−1

2

√
2z) +D−ν−1(1

2

√
2z)
}
, if ν /∈ N,

√
π(−1

2
i)2NH2N(1

2
iz) exp(1

4
z2), if ν = 2N,

√
π d2N+1

dz2N+1{erf(1
2
z) exp(1

4
z2)}, if ν = 2N + 1.
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5 Painlevé V and continuous orthogonal poly-

nomials

5.1 Time-dependent Jacobi application

The Jacobi polynomials are a class of classical orthogonal polynomials. They are

orthogonal with respect to the weight

w0(x) = (1− x)a(1 + x)b.

The Jacobi polynomials can be found in the study of rotation groups; they are

also found to be the solutions of equations of motion of the symmetric top. In this

case, however, we are not going to explore the original Jacobi polynomials weight

but w0(x)e−tx instead. This deformation will allow the recurrence relations αn and

βn to become time-dependent and therefore will depend on t. This means that the

all important recurrence coefficients are now dependent on t and can be related

explicitly to solutions of SV (1.7e). So, the time-dependent Jacobi polynomials

are a class of semi-classical orthogonal polynomials which are orthogonal with

respect to the weight

w(x; t) = (1− x)a(1 + x)be−tx, (5.1)

on the interval [−1, 1] where a, b > −1. This weight satisfies the Pearson equation

(4.18) with the following σ(x) and τ(x):

σ(x) = −x3 + x, τ(x) = tx3 − (a+ b+ 3)x2 − (a+ t− b)x+ 1.

Previously, this weight was explored by Basor, Chen and Ehrhardt in [2]. The

methods used in this paper are known to be the ladders methods; which are longer
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and more convoluted than the direct method that we are going to use here. The

key idea of the method that we are about to explore is the recognition of the

initial moment as a special function via the appropriate integral representation

and also that the following moments are differential variants of the initial one.

This in turn makes it possible to write the matrix of moments as a bi-directional

Wronskian which we can then compare easily and directly with the special function

solutions of SV (1.7e). Establishing this connection means we can simply read off

the recurrence coefficients and therefore calculate new sequences of orthogonal

polynomials quickly with little time complexity. For the time-dependent Jacobi

polynomial weight (5.1), using (4.4), the general moment µk is given by

µk(t) =

∫ 1

−1

xk(1− x)a(1 + x)b exp(−tx) dx. (5.2)

First we obtain explicit expressions for the moment µ0(t).

Theorem 5.1. For the time-dependent Jacobi polynomial weight (5.1) the initial

moment µ0(t) is given by

µ0(t) = 2a+b+1 Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)
exp(−t)M(a+ 1, a+ b+ 2, 2t).

Proof. Using (2.9a), (2.10a) and the substitution x = 2u − 1 we can calculate

µ0(t) in terms of Kummer functions

µ0 =

∫ 1

−1

(1− x)a(1 + x)b exp(−xt) dx

= 2a+b+1 exp(t)

∫ 1

0

(1− u)aub exp(−2ut) du

= 2a+b+1 Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)
exp(−t)M(a+ 1, a+ b+ 2, 2t).
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Theorem 5.2. For the time-dependent Jacobi polynomial weight (5.1) the general

moment µk(t) can be given by

µk(t) = 2a+b+1Γ (a+ 1) et
k∑
r=0

(
k

r

)
(−1)k−r 2rM̂(b). (5.3)

where M̂(b) is defined as the following:

M̂(b) :=
M (b+ r + 1, a+ b+ r + 2, − 2t)Γ (b+ r + 1)

Γ (a+ b+ r + 2)
.

Proof. This result can be produced by making a suitable transformation in (5.2),

then using the binomial expansion formula to then use (2.9a). This gives the

desired result.

Theorem 5.3. For the time-dependent Jacobi polynomial weight (5.1) the general

moment µk(t) can also be given by

µk(t) = (−1)k
dk

dtk
µ0, k = 0, 1, 2, 3, ...

Proof. This result can be shown by differentiating (5.3), using (2.11a), then show-

ing this is exactly equal to −µk+1.

dµk
dt

= 2a+b+1Γ (a+ 1) et
k∑
r=0

{(
k

r

)
(−1)k−r 2rM̂(b)

−
(
k

r

)
(−1)k−r 2r+1M̂(b+ 1)

}
.

Expanding both parts inside this sum and comparing term by term directly with

−µk+1 we can see they are, in fact, equal.

This is the point when we branch away from the work done previously by

Basor, Chen and Ehrhardt in [2] and some original research is conducted.
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We have µk in the form (4.8). Using theorem (4.1) we can make the following

simplifications inside the Hankel determinant and begin to write ∆n in the form

of a bi-directional Wronskian.

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
...

...
. . .

...

µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ′0 . . . µ
(n−1)
0

µ′0 µ′′0 . . . µ
(n)
0

...
...

. . .
...

µ
(n−1)
0 µ

(n)
0 . . . µ

(2n−2)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣
, ′ =

d

dt
.

Therefore we can write ∆n = τn(µ0), where

µ0(t) = 2a+b+1 Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)
exp(−t)M(a+ 1, a+ b+ 2, 2t).

We now have ∆n in the form that is similar to our special function solutions of

SV (1.7e). This means we can write down exact expressions for the recurrence

coefficients αn(z) and βn(z).

Theorem 5.4. The function

Hn(t; a, b) =t
d

dt
ln τn(µ0), (5.4)

with τn given by (4.10) and ∆n given by (4.2), satisfies the second-order, second-

degree equation(
t
d2Hn

dt2

)2

= 4

{
1

2
(a+ 2n+ b+ 2t)

dHn

dt
− n(a+ n)−Hn

}2

− 8
dHn

dt

(
t
dHn

dt
−Hn

)(
b+

1

2

dHn

dt

)
. (5.5)

Proof. Equation (5.5) is equivalent to SV (1.7e) through the linear transformation

Hn(t; a, b) = σ(z)− 1
2
n2 + 1

4
(a− b+ 2n)t− 1

2
(a+ b) + 1

8
(a− b)2, (5.6)
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where t→ z/2, for the parameters

{κ0, κ1, κ2, κ3} = {1
4
(a−2n−b), 1

4
(3b+a+2n), 1

4
(a+2n−b),−1

4
(b+3a+2n)}. (5.7)

This is easily verified by comparing (5.6) (withHn given by (5.4)) with (2.50b).

Remark 5.1.

• If we consider the solution to SV (1.7e) using the corollary (2.3)

σ(z; a, b) =z
d

dz
ln τn(M(a+ 1, a+ b+ 2, z))− nz

+ 1
2
n2 − 1

4
(a− b+ 2n)t+ 1

2
(a+ b)− 1

8
(a− b)2,

for the parameters (5.7). These parameters can be mapped to our original

set of parameters (2.51b) by the mapping a → α − 1 and b → β − α − n.

Due to the symmetric form of (1.7e) the choice of κ1, κ2, κ3 and κ4 is not

unique.

• In terms of Hn(t; a, b) given by (5.4), the coefficients αn(t) and βn(t) in the

recurrence relation (4.9) have the form

αn(t) =
1

t

{
Hn+1 −Hn

}
, βn(t) =

1

t2

{
t
dHn

dt
−Hn

}
.

5.2 Pollaczek-Jacobi type polynomials

The Pollaczek-Jacobi type polynomials are similar to the time-dependent Jacobi

polynomials in that they are deformations of the classical Jacobi polynomials.

Pollaczek-Jacobi type polynomials are a class of semi-classical orthogonal polyno-

mials. They are orthogonal with respect to the weight

w(x; z) = exp(−z/x)xa(1− x)b, (5.8)
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on the interval [0, 1] with a, b > 0. This weight satisfies the Pearson equation

(4.18) with the following σ(x) and τ(x):

σ(x) = x4 + x3 − 2x2,

τ(x) = (a+ b+ 4)x3 + (z + a+ 2 b+ 3)x2 + (z − 2 a− 4)x− 2 z.

Previously this weight was explored by Chen and Dai in [11] and they conclude

that the logarithmic derivative of ∆n satisfies a second-order, non-linear ODE. As

before, the methods used in this paper are known to be the ladders methods

which, as we said, are longer and more convoluted than the direct method that

we are going to use here. The key idea of the method that we are about to

explore is the recognition of the initial moment as a special function via the

appropriate integral representation and that the following moments are differential

variants of the initial one. Just as we did with the previous weight, this makes

it possible to write the matrix of moments as a bi-directional Wronskian which

we can then compare easily and directly with the special function solutions of

SV (1.7e). Again, establishing this connection means we can simply read off

the recurrence coefficients and therefore calculate new sequences of orthogonal

polynomials quickly with little time complexity.

For the Pollaczek-Jacobi type polynomial weight (5.8), using (4.4) the general

moment µk(z) is given by

µk(z) =

∫ 1

0

xk exp(−z/x)xa(1− x)bdx.

First we obtain explicit expressions for the moment µ2n−2(z).

Theorem 5.5. For the Pollaczek-Jacobi type polynomial weight (5.8), the last

moment µ2n−2(z) is given by

µ2n−2(z) = Γ(b+ 1)e−zU(b+ 1, 2− a− 2n, z).
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Proof. Using (2.9b) and the substitution x = 1
u+1

we can calculate µ2n−2(z) in

terms of Kummer functions.

µ2n−2 =

∫ 1

0

exp(−z/x)xa+2n−2(1− x)b dx

=

∫ ∞
0

e−ze−uz(u+ 1)−a−2n

(
u

u+ 1

)b
du

= e−zΓ(b+ 1)U(b+ 1, 2− a− 2n, z).

Theorem 5.6. For the Pollaczek-Jacobi type polynomial weight (5.8), the general

moment µk(z) can be given by

µk(z) = Γ(b+ 1)e−zU(b+ 1,−a− k, z). (5.9)

Proof. This result can be obtained by setting k = 2n−2 in the calculation above.

Theorem 5.7. For the Pollaczek-Jacobi type polynomial weight (5.8), the general

moment µk(z) can also be given by

µ2n−2−k(z) =
dk

dzk
µ2n−2(z), k = 0, 1, 2, 3, ...

Proof. This result can be shown directly by (2.11b) and (5.9).

This is the point when we branch away from the work done previously by Chen

and Dai in [11] and some original research is conducted.

We have µk in the form (4.8) with only one slight difference in that the dif-

ferentiation steps down k rather than up. Using theorem (4.1) we can make the
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5.2 Pollaczek-Jacobi type polynomials J. G. Smith

following simplifications inside the Hankel determinant and begin to write ∆n in

the form of a bi-directional Wronskian.

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
...

...
. . .

...

µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ2n−2 µ′2n−2 . . . µ
(n−1)
2n−2

µ′2n−2 µ′′2n−2 . . . µ
(n)
2n−2

...
...

. . .
...

µ
(n−1)
2n−2 µ

(n)
2n−2 . . . µ

(2n−2)
2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
, ′ =

d

dz
.

Therefore, we can write ∆n = τn(µ2n−2) where

µ2n−2(z) = Γ(b+ 1) exp(−z)U(b+ 1,−a− 2n+ 2, z).

We now have ∆n in the form that is similar to our special function solutions of

SV (1.7e). This means we can write down exact expressions for the recurrence

coefficients αn(z) and βn(z).

Theorem 5.8. The function

Hn(z; a, b) =z
d

dz
ln τn(µ2n−2), (5.10)

with τn given by (4.10), satisfies the second-order, second-degree equation(
z
d2Hn

dz2

)2

=

[
n(n+a+b)−Hn+(a+z)

dHn

dz

]2

+4
dHn

dz

(
z
dHn

dz
−Hn

)(
b− dHn

dz

)
.

(5.11)

Proof. Equation (5.11) is equivalent to SV (1.7e) through the linear transforma-

tion

Hn(z; a, b) = σ + n2 + (b+ a)n+ 1
8
(2b+ a)(a+ 2z + 2b), (5.12)

for the parameters

{κ0, κ1, κ2, κ3} = {−1
4
(4n+ 3a+ 2b), 1

4
(4n+ a+ 2b), 1

4
(a+ 2b), 1

4
(a− 2b)}. (5.13)
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This is easily verified by comparing (5.12) (with Hn given by (5.10)) with (2.50b).

Remark 5.2.

• If we consider the solution to SV (1.7e) using the corollary (2.3)

σn(z; a, b) = −n2 − (b+ a+ z)n− 1
8
(2b+ a)(a+ 2z + 2b)

+ z
d

dz
τn(U(b+ 1,−a+ 2− 2n, z)),

for the parameters (5.13). These parameters can be mapped to our original

set of parameters (2.51b) by the mapping a → 1 − β − n and b → α − 1.

Due to the symmetric form of (1.7e) the choice of κ1, κ2, κ3 and κ4 is not

unique.

• In terms of Hn(z; a, b) given by (5.10), the coefficients αn(z) and βn(z) in

the recurrence relation (4.9) have the form

αn(z) =
1

z

{
Hn+1 −Hn

}
, βn(z) =

1

z2

{
z
dHn

dz
−Hn

}
.

5.3 Deformed Laguerre polynomials

The Deformed Laguerre polynomials are a class of semi-classical, orthogonal poly-

nomials which are orthogonal with respect to the weight

w(x; z) = xa(x+ z)be−x, (5.14)
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on the interval [0,∞) for a > −1. This weight satisfies the Pearson equation

(4.18) with the following σ(x) and τ(x):

σ(x) =
1

a+ 1

{
(az + z − 1)x3

z2
+ x2 + x

}
,

τ(x) = 1 +

{
1

z2(a+ 1)
− 1

z

}
x3 +

{
a+ b+ 3

z
− a+ b+ 3

z2(a+ 1)
− 1

}
x2

+

{
a2 + 3 a+ 1

a+ 1
+

b

z(a+ 1)

}
x.

This weight was previously explored by Chen, Basor and McKay in [20] and

by Chen and McKay in [13]. It is interesting to note that if b = 0 we will get

back to the classical Laguerre weight. Again, the methods used are convoluted

compared with the direct method that will follow shortly.

For the polynomial weight (5.14), the general moment µk is given by

µk(z) =

∫ ∞
0

xa+k(x+ z)be−xdx. (5.15)

First we obtain explicit expressions for the moment µ0(z).

Theorem 5.9. For the deformed Laguerre polynomial weight (5.14) the initial

moment µ0(z) is given by

µ0(z) = za+b+1Γ(a+ 1)U(a+ 1, a+ b+ 2, z). (5.16)

Proof. Using (2.9a) and the substitution x = uz we can calculate µ0(z) in terms

of Kummer functions

µ0 =

∫ ∞
0

xa(x+ z)be−xdx

= za+b+1

∫ ∞
0

ua(u+ 1)be−zudu

= za+b+1Γ(a+ 1)U(a+ 1, a+ b+ 2, z).
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Theorem 5.10. For the deformed Laguerre polynomial weight (5.14), the general

moment is given by

µk(z) = za+b+k+1Γ(a+ k + 1)U(a+ k + 1, a+ b+ k + 2, z). (5.17)

Proof. The result can be inferred by repeating the above calculation with b =

b+ k.

Theorem 5.11. For the deformed Laguerre polynomial weight (5.14), the general

moment µk(z) can also be given by

µk(z) =
dk

dzk
{
µ0/z

a+b+1
}
za+b+k+1, k = 0, 1, 2, 3, ...

Proof. This result can be shown directly from (2.11d) and (5.17).

This is the point when we branch away from the work done previously by

Chen, Basor and McKay in [20] and by Chen and McKay in [13] and some original

research is conducted.

Define

Ψ :=
µ0

z(a+b+1)
= Γ(a+ 1)U(a+ 1, a+ b+ 2, z).

As the moment here is not in the form (4.8) we must write ∆n in the form of the

following Wronskian by factoring out appropriate powers of z. Our goal here is
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to write ∆n in the form of a bi-directional Wronskian.

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
...

...
. . .

...

µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣

= zn(a+b+n)

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0/z
(a+b+1) µ1/z

(a+b+2) . . . µn−1/z
(a+b+n)

µ1/z
(a+b+2) µ2/z

(a+b+3) . . . µn/z
(a+b+n+1)

...
...

. . .
...

µn−1/z
(a+b+n) µn/z

(a+b+n+1) . . . µ2n−2/z
(a+b+2n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= zn(a+b+n)

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ψ Ψ′ . . . Ψ(n−1)

Ψ′ Ψ′′ . . . Ψ(n)

...
...

. . .
...

Ψ(n−1) Ψ(n) . . . Ψ(2n−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, ′ =

d

dz
.

Therefore, we can write

∆n = τn(Ψ)zn(a+b+n). (5.18)

We now have ∆n in the form that is similar to our special function solutions of

SV (1.7e). This means we can write down exact expressions for the recurrence

coefficients αn(z) and βn(z).

Theorem 5.12. The function

Hn(z) = z
d

dz
ln τn(Ψ)zn(a+b+n), (5.19)
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with τn given by (4.10), satisfies the second-order, second-degree equation(
z
d2Hn

dz2

)2

=

{
Hn + n(a+ n)− (a+ b+ 2n+ z)

dHn

dz

}2

− 4
dHn

dz

(
z
dHn

dz
−Hn

)(
b+

dHn

dz

)
. (5.20)

Proof. Equation (6.7) is equivalent to SV (1.7e) through the linear transformation

Hn(z; a, b) = σ − 1
2
n2 + 1

2
(z − a− b)n+ 1

8
(a− b) (a− b+ 2z), (5.21)

for the parameters

{κ0, κ1, κ2, κ3} = {1
4
(a− b− 2n), 1

4
(3b+ a+ 2n), 1

4
(a− b+ 2n),−1

4
(3a+ b+ 2n)}.

(5.22)

This is easily verified by comparing (6.8) (with Hn given by (5.19)) with (2.50b).

Remark 5.3.

• If we consider the solution to SV (1.7e)

σ(z; a, b) =z
d

dz
ln τn(U(a+ 1, a+ b+ 2, z)) + 1

2
n2 − 1

2
(z − a− b)n

− 1
8

(a− b) (a− b+ 2z),

for the parameters (5.22). These parameters can be mapped to one of our

original set of parameters (2.51b) by the mapping a → α − 1, and b →

β−α−n. Due to the symmetric form of (1.7e) the choice of κ1, κ2, κ3 and

κ4 is not unique.

• As ∆̃n 6= d
dz

∆n we need to calculate the recurrence coefficients directly using

(4.1). This can be done by substituting (5.18) into (4.1), as follows:
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Note that:

∆̃n = −τn(Ψ)zn(a+b+n)+1. (5.23)

So, to find an expression ∆̃n in terms of ∆n and its derivatives it just re-

mains to differentiate (5.18)

d

dz
∆n =

d

dz
τn(Ψ)zn(a+b+n) + n(a+ b+ n)zn(a+b+n)−1τn(Ψ) (5.24)

= ∆̃n + n(a+ b+ n)∆n. (5.25)

Rearranging this gives

∆̃n = −z d
dz

∆n + n(a+ b+ n)∆n,

substituting this and (5.19) into (4.1) yields αn(z) and βn(z) in terms of

Hn(z; a, b):

αn(z) = Hn−Hn+1+a+b+2n+1, βn(z) = n(a+b+n)+z
dHn

dz
−Hn. (5.26)

• If we consider the original weight (5.14) again but with b ∈ Z there is an

interesting simplification to note

∆n = [(−1)bb!Γ(a+ 1)za+b+n]nτn

(
z−(a+b+1)L

(−a−b−1)
b

)
, (5.27)

where L
(b)
a is an associated Laguerre polynomial. This result can be applying

(2.12) to (5.18). This simplifies the coefficients αn(z) and βn(z) to Laguerre

polynomials

αn(z) = z
d

dz
ln

[ τn

(
z−(a+b+1)L

(−a−b−1)
b

)
τn+1

(
z−(a+b+1)L

(−a−b−1)
b

)],
βn(z) = z2 d

2

dz2
ln

[
τn

(
z−(a+b+1)L

(−a−b−1)
b

)]
.

159



5.3 Deformed Laguerre polynomials J. G. Smith

Proof. This result can be shown by applying (5.27) to (5.19) to obtain

Hn = n(a+ b+ n) + z
d

dz
ln τn(Ψ), (5.28)

and then applying this to (5.26).

With this result we can now generate entirely new sequences of orthogonal

polynomials using αn(z) and βn(z). Notice that they are polynomials in x with

rational coefficients in z.

Table 5.1: Table of new orthogonal polynomials pn(α, β;x)

p2(1, 0;x) = x2 − 4x− 2 z−2

p2(1, 1;x) = x2 − 4(z3+9 z2+21 z+15)x
(z2+6 z+6)(z+2)

− 2 z2+6 z+6
(z+2)z3

p3(1, 0;x) = x3 − 10x2 + 18x+ −2x+12
z2

p3(3, 0;x) = x3 − 2
(5 z4+75 z3+336 z2+552 z+288)x2

(z3+12 z2+36 z+24)(z+2)

+
2(9 z7+144 z6+683 z5+1134 z4+534 z3−312 z2−360 z−144)x

(z3+12 z2+36 z+24)(z+2)z3

+12 z
5+19 z4+124 z3+348 z2+408 z+168

(z3+12 z2+36 z+24)(z+2)z3
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(a) z = 2

(b) z = 1

(c) z = −1

Figure 5.1: Plots of new orthogonal polynomials p2(1, 1; z), p3(1, 1; z), p4(1, 1; z),

p5(1, 1; z), p6(1, 1; z).

It is interesting to note that the polynomials interlace as we would expect from
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orthogonal polynomials.

(a) z = 2

(b) z = 1

(c) z = −1

Figure 5.2: Plots of new orthogonal polynomials p2(1, 1; z), p3(1, 1; z), p4(1, 1; z),

p5(1, 1; z), p6(1, 1; z), p7(1, 1; z).
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6 Painlevé V and discontinuous orthogonal poly-

nomials

In this section will be exploring the connection between discontinuous orthogonal

polynomial weight and SV (1.7e). This particular weight has been separated into

a different chapter because of the Heaviside function which is 1 for y > 0.

6.1 Deformed Laguerre polynomials

The Laguerre polynomials are a class of classical orthogonal polynomials which

are orthogonal with respect to the weight

w0(x) = e−xxb.

However, here we will be looking at the deformed Laguerre polynomials. This

weight was previously explored by Forrester and Ormerod in [23]. Again, the

methods used are convoluted compared with the direct method that will follow

shortly. These are a class of semi-classical orthogonal polynomials which are

orthogonal with respect to the weight

w(x; z) = [1− ζϑ(x− z)](x− z)axbe−x, (6.1)

on the interval [0,∞), with a, b > 0 and where ϑ(y) is the Heaviside function

ϑ(y) = 1 for y > 0, otherwise ϑ(y) = 0. In fact, if we set ζ = 0 and a = 0 we

get straight back to the Laguerre polynomial weight. This weight satisfies the
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Pearson equation (4.18) with the following σ(x) and τ(x):

σ(x) =
(x− z)x

{
(b+ x+ 3) z + (x+ 1) (a+ b+ 3)

}
z2 + (2 a+ b+ 3) z + (a+ b+ 3) (a+ b+ 2)

,

τ(x) =
1

z2 + (2 a+ b+ 3) z + (a+ b+ 3) (a+ b+ 2)

{
− (a+ b+ z + 3)x3

+
(
z2 + (2 a+ b+ 3) z + (a+ b+ 3) (a+ b+ 2)

)
x2

+
(
z2 + (2 a+ b+ 3) z + (a+ b+ 3) (a+ b+ 2)

)
x

− (b+ 3) (b+ 1) z2 − (b+ 1) (a+ b+ 3) z

}
.

For the deformed Laguerre polynomial weight (6.1), using

µk(z) =

∫ b

a

xkw(x; z)dx.

the general moment µk is given by

µk(z) =

∫ ∞
0

xk[1− ζϑ(x− z)](x− z)axbe−xdx. (6.2)

First we obtain explicit expressions for the moment µ0(z).

Theorem 6.1. For the deformed Laguerre polynomial weight (6.1), the initial

moment, µ0, is given by

µ0 = Γ(a+ 1)za+b+1e−z
{

Γ(b+1)
Γ(a+b+2)

M(a+ 1, a+ b+ 2, z)

+ (1− ζ)U(a+ 1, a+ b+ 2, z)

}
. (6.3)

Proof. Consider

µ0(z) =

∫ ∞
0

[1− ζϑ(x− z)](x− z)axbe−xdx.

This can be separated out into two integrals that will be much easier to deal with

µ0 =

∫ ∞
0

[1− ζϑ(x− z)](x− z)axbe−xdx

=

∫ z

0

(x− z)axbe−xdx+ (1− ζ)

∫ ∞
z

(x− z)axbe−xdx.
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Now we make the substitutions x = z(1− u) and x = z(u+ 1).

µ0 =

∫ z

0

(x− z)axbe−xdx+ (1− ζ)

∫ ∞
z

(x− z)axbe−xdx

=e−zza+b+1

∫ 1

0

(1− u)aube−uzdu+ (1− ζ)e−zza+b+1

∫ ∞
0

ua(1 + u)be−uzdu

=Γ(a+ 1)za+b+1e−z
{

Γ(b+1)
Γ(a+b+2)

M(a+ 1, a+ b+ 2, z)

+ (1− ζ)U(a+ 1, a+ b+ 2, z)

}
.

Theorem 6.2. For the deformed Laguerre polynomial weight (6.1), the general

moment is given by

µk(z) = Γ(a+ 1)za+b+k+1e−z
{

Γ(b+k+1)
Γ(a+b+k+2)

M(a+ 1, a+ b+ k + 2, z)

+ (1− ζ)U(a+ 1, a+ b+ k + 2, z)

}
. (6.4)

Proof. The result can be inferred by repeating the above calculation with b =

b+ k.

Theorem 6.3. For the deformed Laguerre polynomial weight (6.1), the general

moment µk(z) can also be given by

µk(z) =
dk

dzk
{
µ0/z

a+b+1
}
za+b+k+1, k = 0, 1, 2, 3, ...

Proof. This result can be shown directly from from (2.11c), (2.11d) and (6.4).

This is the point when we branch away from the work done previously by

Forrester and Ormerod in [23] and some original research is conducted.
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Define

Ψ : =
µ0

z(a+b+1)
= Γ(a+ 1)e−z

{
Γ(b+1)

Γ(a+b+2)
M(a+ 1, a+ b+ 2, z)

+ (1− ζ)U(a+ 1, a+ b+ 2, z)

}
.

As the moment here is not in the form µk = dk

dzk
µ0 we have to write ∆n in the

form of the following Wronskian by factoring out appropriate powers of z. Our

goal here is to write ∆n in the form of a bi-directional Wronskian.

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
...

...
. . .

...

µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣

= zn(a+b+n)

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0/z
(a+b+1) µ1/z

(a+b+2) . . . µn−1/z
(a+b+n)

µ1/z
(a+b+2) µ2/z

(a+b+3) . . . µn/z
(a+b+n+1)

...
...

. . .
...

µn−1/z
(a+b+n) µn/z

(a+b+n+1) . . . µ2n−2/z
(a+b+2n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= zn(a+b+n)

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ψ Ψ′ . . . Ψ(n−1)

Ψ′ Ψ′′ . . . Ψ(n)

...
...

. . .
...

Ψ(n−1) Ψ(n) . . . Ψ(2n−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, ′ =

d

dz
.

Therefore, we can write

∆n = τn(Ψ)zn(a+b+n). (6.5)

We now have ∆n in the form that is similar to our special function solutions of
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SV (1.7e). This means we can write down exact expressions for the recurrence

coefficients αn(z) and βn(z).

Theorem 6.4. The function

Hn(z; a, b) =z
d

dz
ln τn(Ψ)zn(a+b+n), (6.6)

satisfies the second-order, second-degree equation(
z
d2Hn

dz2

)2

=

[
(z − a− b− 2n)

dHn

dz
− n(n+ b)−Hn

]2

+ 4
dHn

dz

(
z
dHn

dz
−Hn

)(
a− dHn

dz

)
. (6.7)

Proof. Equation (6.7) is equivalent to SV (1.7e) through the linear transformation

Hn(z; a, b) = σ − 1
2
n2 − 1

2
(a+ b+ z)n+ 1

8
(a− b)(a− b+ 2z), (6.8)

for the parameters

{κ0, κ1, κ2, κ3} = {1
4
(a−b−2n), 1

4
(3b+a+2n), 1

4
(a−b+2n),−1

4
(3a+b+2n)}. (6.9)

This is easily verified by comparing (6.8) (withHn given by (6.6)) with (2.50b).

Remark 6.1.

• If we consider the solution to SV (1.7e) using the corollary (2.3)

σ(z; a, b) = 1
2
n2 + 1

2
(a+ b− z)n− 1

8
(a− b) (a− b+ 2z) + z

d

dt
ln τn(ezΨ),

for the parameters (6.9). These parameters can be mapped to one of our

original set of parameters (2.51b) by the mapping a → α − 1, and b →

β−α−n. Due to the symmetric form of (1.7e) the choice of κ1, κ2, κ3 and

κ4 is not unique.
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• As ∆̃n 6= d
dz

∆n we need to calculate what the recurrence coefficients are

directly using (4.1). This is done by substituting (6.5) into (4.1) as follows.

Note that:

∆̃n = −τn(Ψ)zn(a+b+n)+1. (6.10)

Then, to find an expression ∆̃n in terms of ∆n and its derivatives it just

remains to differentiate (6.5)

d

dz
∆n =

d

dz
τn(Ψ)zn(a+b+n) + n(a+ b+ n)zn(a+b+n)−1τn(Ψ) (6.11)

= ∆̃n + n(a+ b+ n)∆n. (6.12)

Rearranging this gives

∆̃n = −z d
dz

∆n + n(a+ b+ n)∆n,

substituting this and (6.6) into (4.1) yields αn(z) and βn(z) in terms of

Hn(z; a, b):

αn(z) = Hn−Hn+1−z+a+b+2n+1, βn(z) = n(a+b+n)+z
dHn

dz
−Hn.
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7 Orthogonal polynomials on the unit circle

Now we are going to look at a slight variation in orthogonal polynomials. Rather

than working with polynomials over the real line we are going to be working with

polynomials over the unit circle. That is, we are now integrating around the unit

circle rather than over the real line [60, §18.33].

A sequence of polynomials φn(z), n = 0, 1, . . . , where φn(z) is of degree n, is

orthonormal on the unit circle with respect to the weight function w(z) (> 0) if

[60, §18.33]

1

2πix

∫
|z|=1

φn(z)φm(z)w(z)z−1 dz = δm,n.

For a simplified evaluation of certain weights, we can make an appropriate trans-

formation back to the real line, thus making the implementation of the integral

representation far easier.

Consider the following weight

w(x; z) = (1 + x)b(1 + 1/x)aezx. (7.1)

We will now consider orthogonal polynomials with respect to a complex weight

function. This polynomial weight defines a class of semi-classical orthogonal poly-

nomials with general moment µk, given by

µk =

∫
T

1

2πix
xkw(x) dx, (7.2)

where T denotes the unit circle |x| = 1, appropriately deformed in order to not

cross the cut and x = e2iϑ, ϑ ∈ (−π/2, π/2]. This weight satisfies the Pearson
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equation (4.18) with the following σ(x) and τ(x)

σ(x) =
x

a− 1

{
ax2 + (a− 1)x− 1

}
,

τ(x) =
1

a− 1

{
azx3 + (ba+ za+ 3 a− z)x2 − (a2 − 2 a+ b+ z + 2)x+ a− 1

}
.

For the polynomial weight (7.1), using (7.2), the general moment µk is given by

µk =

∫
T

1

2πix
xk(1 + x)b(1 + 1/x)aezx dx.

This weight was previously explored by Forrester and Witte in [25, 24]. In this

paper Forrester and Witte explain that this weight can be evaluated as an 1F1

function which is equivalent to a Kummer function. They then conclude that this

satisfies a second-order ODE using a logarithmic derivative. Again, the methods

used are convoluted compared with the direct method. First we obtain explicit

expressions for the moment µ0(z).

Theorem 7.1. For the polynomial weight (7.1) the initial moment µ0(z) is given

by

µ0(z) =
Γ(a+ b+ 1)

Γ(a+ 1)Γ(b+ 1)
M(−a, b+ 1,−z).

Proof. By expanding the exponential term in the polynomial weight, noting the

identity

Γ(1− z)Γ(z) =
π

sin(πz)
,

using (2.8) and∫ π

0

(sin t)a−1eibt dt =
π

2a−1

eiπb/2

aB(1
2
(a+ b+ 1), 1

2
(a− b+ 1))

,

where B(a, b) is the beta function, we can calculate µ0(z) in terms of Kummer
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functions

µ0 =

∫
T

1

2πix
(1 + x)b(1 + 1/x)aezx dx

=
1

π

∫ π
2

−π
2

(1 + e2iϑ)b(1 + e−2iϑ)a exp(ze2iϑ) dϑ

=
1

π

∞∑
n=0

zn

n!

∫ π
2

−π
2

(2 cos(ϑ))a+beiϑ(b−a+2n) dϑ

=
2a+b

π

∞∑
n=0

zne−πi(b−a+2n)/2

n!

∫ π

0

sina+b(ϑ̃)eiϑ̃(b−a+2n) dϑ̃, ϑ = ϑ̃+ π
2

=
∞∑
n=0

znΓ(a+ b+ 2)

n!(a+ b+ 1)Γ(a− n+ 1)Γ(b+ n+ 1)

=
∞∑
n=0

znΓ(a+ b+ 1)

n!Γ(a− n+ 1)Γ(b+ n+ 1)

=
∞∑
n=0

znΓ(a+ b+ 1)Γ(n− a)

n!Γ(a− n+ 1)Γ(b+ n+ 1)Γ(n− a)

=
∞∑
n=0

znΓ(a+ b+ 1)Γ(n− a) sin(π(n− a))

n!Γ(b+ n+ 1)π

=
∞∑
n=0

(−1)nznΓ(a+ b+ 1)Γ(n− a)

n!Γ(b+ n+ 1)Γ(−a)Γ(a+ 1)

=
Γ(a+ b+ 1)

Γ(a+ 1)Γ(b+ 1)

∞∑
n=0

(−1)nznΓ(n− a)Γ(b+ 1)

n!Γ(b+ n+ 1)Γ(−a)

=
Γ(a+ b+ 1)

Γ(a+ 1)Γ(b+ 1)

∞∑
n=0

(−z)n(−a)n
n!(b+ 1)n

=
Γ(a+ b+ 1)

Γ(a+ 1)Γ(b+ 1)
M(−a, b+ 1,−z).

Theorem 7.2. For the polynomial weight (7.1) the general moment µk(z) can be

given by

µk(z) =
Γ(a+ b+ 1)

Γ(a− k + 1)Γ(b+ k + 1)
M(−a+ k, b+ k + 1,−z). (7.3)
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Proof. The result can be inferred by repeating the above calculation with a = a−k

and b = b+ k.

Theorem 7.3. For the polynomial weight (7.1), the general moment µk(z) can

also be given by

µk(z) =
dk

dzk
µ0, k = 0, 1, 2, 3, ...

Proof. This result can be shown directly from from (2.10a), (2.11c) and (8.3).

This is the point when we branch away from the work done previously by

Forrester and Witte in [25, 24] and some original research is conducted.

We have µk in the form (4.8). Using theorem (4.1) we can make the following

simplifications inside the Hankel determinant. Our goal here is to write ∆n in the

form of a bi-directional Wronskian.

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
...

...
. . .

...

µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ′0 . . . µ
(n−1)
0

µ′0 µ′′0 . . . µ
(n)
0

...
...

. . .
...

µ
(n−1)
0 µ

(n)
0 . . . µ

(2n−2)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣
, ′ =

d

dz
.

Therefore, we can write

∆n = τn(µ0), (7.4)

where

µ0(z) =
Γ(a+ b+ 1)

Γ(a+ 1)Γ(b+ 1)
M(−a, b+ 1,−z).

Theorem 7.4. We now have ∆n in the form that is similar to our special function

solutions of PV (1.1e). This means we can write down exact expressions for the

recurrence coefficients αn(z) and βn(z). The function

Hn(z; a, b) =z
d

dz
ln τn(µ0), (7.5)
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with τn given by (4.10), satisfies the second-order, second-degree equation(
z
d2Hn

dz2

)2

=

{
Hn − n(a+ 1− n) + (2n− z + b− 1)

dHn

dz

}2

+ 4
dHn

dz

(
z
dHn

dz
−Hn

)(
b+ a− dHn

dz

)
. (7.6)

Proof. Equation (7.6) is equivalent to SV (1.7e) through the linear transformation

Hn(z; a, b) = σ − 1
2
n2 + 1

2
(1− b− z)n+ 1

4
(a+ b+ 1) + 1

8
(2a+ b+ 1)2, (7.7)

for the parameters

{κ0, κ1, κ2, κ3} = 1
4
{2a−2n+b+1, 1−3b−2a−2n, 2a+1+b+2n, b+2n−2a−3}.

(7.8)

This is easily verified by comparing (7.7) (withHn given by (7.5)) with (2.50b).

Remark 7.1.

• If we consider the solution to SV (1.7e) using transformation (2.10a) and

the corollary (2.3)

σ(z; a, b) =z
d

dz
ln τn(M(a+ b+ 1, b+ 1, z)) + 1

2
n2 − 1

2
(1− b+ z)n

− 1
4
(a+ b+ 1)− 1

8
(2a+ b+ 1)2,

for the parameters (7.8). These parameters can be mapped to our original

set of parameters (2.51b) by the mapping a→ α+n−β− 1 and b→ β−n.

Due to the symmetric form of (1.7e) the choice of κ1, κ2, κ3 and κ4 is not

unique.

• In terms of Hn(z; a, b) given by (7.5), the coefficients αn(z) and βn(z) in the

recurrence relation have the form

αn(z) =
1

z

{
Hn+1 −Hn

}
, βn(z) =

1

z2

{
z
dHn

dz
−Hn

}
.
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• If we consider the original weight (7.1) again but with a ∈ Z there is an

interesting simplification to note:

∆n(z) =

[
a!

Γ(a+ 1)

]n
τn
(
L(b)
a (−z)

)
, (7.9)

where L
(b)
a is an associated Laguerre polynomial. This result can be shown if

(2.12) is applied to (7.4). This simplifies the coefficients αn(z) and βn(z) to

Laguerre polynomials

αn(z) =
d

dz
ln
τn+1

(
L

(b)
a (−z)

)
τn
(
L

(b)
a (−z)

) , βn(z) =
d2

dz2
ln τn

(
L(b)
a (−z)

)
.

Proof. This result can be shown by applying (7.9) to (4.13).

With this result we can now generate entirely new sequences of orthogonal

polynomials using αn(z) and βn(z). Notice that they are polynomials in x with

rational coefficients in z.

Table 7.1: Table of new orthogonal polynomials pn(α, β;x)

p2(1, 1;x) = x2 + x
2+z

+ 1
2+z

p2(2, 1;x) = x2 + 12(3+z)x
(z2+6 z+12)(z2+6 z+6)

+ z2+6 z+12
z2+6 z+6

p3(2, 2;x) = x3 + 2(4+z)x2

(z+6)(z+2)
+

(z2+8 z+22)x
(z+6)(z+2)

+ 2(4+z)
(z+6)(z+2)

p3(3, 2;x) = x3 +
60(z3+15 z2+75 z+120)x2

(z3+15 z2+90 z+210)(z3+15 z2+60 z+60)

+
(z7+35 z6+540 z5+4746 z4+25620 z3+84600 z2+158040 z+131400)x

2(z3+15 z2+90 z+210)(z3+15 z2+60 z+60)

+ z6+30 z5+420 z4+3480 z3+17100 z2+45000 z+46800
2(z3+15 z2+90 z+210)(z3+15 z2+60 z+60)
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8 Painlevé VI and continuous orthogonal poly-

nomials

8.1 Deformed Jacobi polynomials

The Jacobi polynomials are a class of classical orthogonal polynomials which are

orthogonal with respect to the weight

w0(x) = (1− x)α(1 + x)β.

However, here we will be studying the semi-classical deformed Jacobi polynomials

with respect to the weight

w(x; z) = (x− z)γxα+k(1− x)β, (8.1)

on the interval (0,1), with α, β > 0, z < 0 and γ ∈ R. In 2010 Dai and Zhang

showed in [19] that the ∆n generated by the matrix of moments satisfies the sixth

Painlevé equation in the following way:

Hn(z) : = z(z − 1)
d

dz
ln ∆n − nz

(
(n+ α + β + γ)− 1

4
(α + β)2

)
+ 1

4

{
2n(n+ α + β + γ) + β(α + β)− γ(α− β)

}
.

Then Hn(z) satisfies

dHn

dz

(
z(z − 1)

d2Hn

dz2

)2

+

(
dHn

dz

{
2Hn − (2z − 1)

dHn

dz

}
+ ν1ν2ν3ν4

)2

=
4∏
j=1

(
dHn

dz
+ ν2

j

)
,

with parameters

{ν1, ν2, ν3, ν4} = {1
2
(α + β), 1

2
(β − α), 1

2
(2n+ α + β), 1

2
(2n+ α + β + 2γ)}.
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As before, the methods used in this paper are known to be the ladders methods

which, as we said, are longer and more convoluted than the direct method that

we are going to use here. The key idea of the method that we are about to

explore is the recognition of the initial moment as a special function via the

appropriate integral representation and that the following moments are differential

variants of the initial one. Just as we did with the previous weight, this makes

it possible to write the matrix of moments as a bi-directional Wronskian which

we can then compare easily and directly with the special function solutions of

SV (1.7e). Again, establishing this connection means we can simply read off

the recurrence coefficients and therefore calculate new sequences of orthogonal

polynomials quickly and with little time complexity. Lets compare ∆n with our

special function solutions.

For the deformed Jacobi polynomial weight (8.1), using

µk(z) =

∫ b

a

xkw(x) dx,

the general moment µk is given by

µk(z) =

∫ 1

0

(x− z)γxα+k(1− x)β dx. (8.2)

Rather than obtaining explicit expressions for µ0, this time we will calculate µk(z)

first. This can be done easily using the integral representation.

Theorem 8.1. For the polynomial weight (8.1) the general moment µk(z) can be

given by

µk = (−1)γB(α + k + 1, β + 1)zγF (−γ, α + k + 1, α + β + k + 2; 1/z). (8.3)

Proof. The result can be inferred by applying (2.14) to (8.2).
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Theorem 8.2. The general moment µk(z) given by (8.3) satisfies the following

second-order ODE.

z(z−1)
d2µk
dz2

+(α+γ+k−z(α+β+k+2γ))
dµk
dz

+γ(α+β+k+γ+1)µk = 0. (8.4)

Proof. The result can be inferred by applying (8.3) to (2.13).

This is the point when we branch away from the work done previously by Dai

and Zhang showed in [19] and some original research is conducted.

8.1.1 Hypergeometric relations

In this section we will prove some of the essential hypergeometric relations that

we will need for some of the proofs later in this thesis.

Theorem 8.3. Given the hypergeometric function F (a, b, c; z), the following re-

currence relation holds:

(b− c+ 1)F (a, b, c; z) + (c− 1)F (a, b, c− 1; z)− bF (a, b+ 1, c; z) = 0.

Proof. Consider [60, §15.5.12] and [60, §15.5.15].

(b− a)F (a, b, c; z) + aF (a+ 1, b, c; z)− bF (a, b+ 1, c; z) = 0, (8.5a)

(c− a− 1)F (a, b, c; z) + aF (a+ 1, b, c; z)− (c− 1)F (a, b, c− 1; z) = 0. (8.5b)

Computing (8.5a)-(8.5b) gives

(b− c+ 1)F (a, b, c; z) + (c− 1)F (a, b, c− 1; z)− bF (a, b+ 1, c; z) = 0.
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Theorem 8.4. Given the hypergeometric function F (a, b, c; z) the following dif-

ferential relation holds:

d

dz
(F (a, b, c; z)zb) = bF (a, b+ 1, c; z)zb−1. (8.6)

Proof. Consider [60, §15.5.4]

d

dz
(zc−1F (a, b, c; z) = (c− 1)zc−2F (a, b, c− 1; z)). (8.7)

Then compute the following using (8.7) and theorem 8.3:

d

dz
(F (a, b, c; z)zb) =

d

dz
(zc−1F (a, b, c; z)zb−c+1)

= zc−2(c− 1)F (a, b, c− 1; z)zb−c+1

+ zc−1F (a, b, c; z)(b− c+ 1)zb−c

= zb−1
(
(c− 1)F (a, b, c− 1; z) + F (a, b, c; z)(b− c+ 1)

)
= bF (a, b+ 1, c; z)zb−1.

In order to compare ∆n with something similar to our PV I special function

solutions we need control of α and β within µk. To do this we will make the

following transformation of parameter inside µk:

{α, β, γ} =
{
a+ 1− c− n, c− b− n,−a

}
,

where the inverse transformation, simply for completeness, is

{a, b, c} = −
{
γ, α + β + γ + 2n+ 1, α + γ + n− 1

}
.
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We now have direct control of n and k. Alternatively, we can think of µn,k as the

kth moment in a matrix of size n. This means µn,k now takes the following form:

µn,k = (−1)−aB(2− c− n+ a+ k, c+ 1− b− n)z−a (8.8)

× F (a, 2− c− n+ a+ k, a+ k + 3− b− 2n; 1/z). (8.9)

Theorem 8.5. The following differential recurrence equation holds for µn+1,n and

µn,n−1:

(b+ n− c)dµn+1,n

dz
=
d2µn,n−1

dz2
z + (b+ n)µn,n−1. (8.10)

Proof. Substituting what we have for µn,k into theorem 8.4 we get the following:

(b+ n− c)µn+1,n =
d

dz
(µn,n−1z

b+n−1)z2−b−n

=

(
dµn,n−1

dz
zb+n−1 + (b+ n− 1)µn,n−1z

b+n−2

)
z2−b−n

=
dµn,n−1

dz
z + (b+ n− 1)µn,n−1.

Finally, differentiating the last line yields the desired result.

Theorem 8.6. Consider the recurrence relation for µn,k

µn,k − µn,k+1 − µn−1,k−1 = 0. (8.11)

Proof. Substituting what we have for µn,k into theorem 8.3 gives the desired result.

In the next section we want to show that ∆n(z) is directly equal to τn(ψa,b,c)

multiplied by some other matrices. We are going to show this in a very “brute

force” way by showing the equivalence of each individual matrix entry.
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8.1.2 Proof of main theorem

Theorem 8.7. Suppose the following is true:

∆n = |Pnτ̂n(ψa,b,c)EnQn|, (8.12)

where τ̂n(ψa,b,c) is given by (2.40),

Pn :=



1 0 0 0 0

b
z

z−1 0 0 0

b(b+1)
z2

2 b+1
z2

z−2 0 0

...
...

...
. . .

...

(b)n−1

Γ(0)xn−1

d
db

(b)n−1

Γ(1)xn−1 . . .
dn−1

dbn−1 (b)n−1

Γ(n−1)xn−1 z1−n


,

En :=



1 0 0 . . . 0

0 S(1, 1) S(2, 1) . . . S(n− 2, 1)

0 0 S(2, 2) . . . S(n− 2, 2)

...
...

...
. . .

...

0 0 0 . . . S(n− 2, n− 2)


,

where S(m,n) are the Stirling numbers of the first kind and

Qn :=



1 0 0 0 0

b(n−2,n−1)
(c−b−1)(z−1)

1
(z−1)

0 0 0

b(n−3,n−1)
(c−b−1)2(z−1)2

b(n−3,n−2)
(c−b−2)(z−1)2

1
(z−1)2

0 0

...
...

...
. . .

...

b(1,n−1)
(c−b−1)n−1(z−1)n−1

b(1,n−2)
(c−b−1)n−2(z−1)n−1 . . . b(1,1)

(c−b−1)(z−1)n−1
1

(z−1)n−1


,
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where (a)n is the Pochhammer symbol.

In order to prove that these matrices are indeed equal we must first look at

the very top right hand corner of (8.12).

8.1.3 Step 1

Proof. Multiplying out the general form of the right hand side of (8.12) yields

Cn(∆n)1,nz
b = Cnµn,n−1z

b = (z − 1)n−1

n−1∑
k=1

S(n− 1, k)δ(k)φ, (8.13)

where Cn = (−1)n

(c)−a
((b)1−a(a− b− n+ 2)n−2). It will be useful to note that

Cn+1

Cn
= b+ n− c.

Applying induction to (8.13), where the base case is trivial, we can show that
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this result is true

Cn+1µn+1,nz
b = (z − 1)−n

n∑
k=1

S(n, k)δ(k)φ

= (z − 1)−n

{
n−1∑
k=1

S(n, k)δ(k)φ+ S(n, n)δ(n)φ

}
,
(
S(n, n) = 1

)
= (z − 1)−n

{
n−1∑
k=1

{
S(n− 1, k − 1)− (n− 1)S(n− 1, k)

}
δ(k)φ+ δ(n)φ

}
,

as S(n, k) = S(n− 1, k − 1)− (n− 1)S(n− 1, k)

= −Cn
(n− 1)

(z − 1)
µn,n−1z

b + (z − 1)−n

{
n−1∑
k=1

S(n− 1, k − 1)δ(k)φ+ δ(n)φ

}

= −Cn
(n− 1)

(z − 1)
µn,n−1z

b + (z − 1)−n

{
δ
n−1∑
k=1

S(n− 1, k)δ(k)φ

+ δS(n− 1, 0)− S(n− 1, n− 1)δ(n)φ+ δ(n)φ

}

= −Cn
(n− 1)

(z − 1)
µn,n−1z

b + (z − 1)n

{
δ
n−1∑
k=1

S(n− 1, k)δ(k)φ

}

= −Cn
(n− 1)

(z − 1)
µn,n−1z

b + (z − 1)−n

{
Cnδµn,n−1z

b(z − 1)n−1

}

= −Cn
(n− 1)

(z − 1)
µn,n−1z

b + Cnz(z − 1)1−n

{
dµn,n−1

dz
zb(z − 1)n−1

+ bµn,n−1z
b−1(z − 1)n−1 + µn,n−1z

b(n− 1)(z − 1)n−2

}
,
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then dividing both sides by zb

Cn+1µn+1,n = Cnz

{
dµn,n−1

dz
+ bµn,n−1z

−1 + µn,n−1(n− 1)(z − 1)−1

}

− Cn
(n− 1)

(z − 1)
µn,n−1

= Cn

{
z
dµn,n−1

dz
+ bµn,n−1 + (n− 1)(z − 1)−1µn,n−1(z − 1)

}

= Cn

{
z
dµn,n−1

dz
+ µn,n−1(b+ n− 1)

}
.

Differentiation of the last line shows

Cn+1
dµn+1,n

dz
= Cn

{
z
d2µn,n−1

dz2
+
dµn,n−1

dz
(b+ n)

}

and finally the division by Cn

(b+ n− c)dµn+1,n

dz
= z

d2µn,n−1

dz2
+
dµn,n−1

dz
(b+ n).

Implementing (8.10) gives the desired result.

This proves that the top right hand corner of the matrix ∆n(z) is always equal

to the right hand corner of (8.12) for all n. Mathematically speaking this can be

written down in the following way:

Cn(∆n)1,nz
b = Cnµn,n−1z

b = (z − 1)n−1

n−1∑
k=1

S(n− 1, k)δ(k)φ. (8.14)

Now we need to extend this to show the matrices are equal everywhere.

8.1.4 Step 2

The following formula gives the (n− 1− j)th entry in the first row. Again, we are

simply trying to show the equivalence of he individual matrix entries once all the
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multiplication of the right hand side of (8.12) has been computed:

Dn,j(∆n)1,jz
b = Dn,jµ(n, n+ j − 2)zb

=

j∑
i=1

b(j − 1, i− 1)(z − 1)j+1−i−n∑n−1
k=1 δ

(k)S(n+ i− j − 1, k)

(c− b− n− i+ j + 1)i−1

,

with Dn,j = C(n)
(1−b−n+c)j−1

. It is worth noting that

Dn,j+1

Dn−1,j

= −1

and

Dn,j

Dn−1,j

= b+ n− c− j. (8.15)

Setting n := ñ+ i− j in (8.14) gives

Cñ+i−jµñ+i−j,ñ+i−j−1z
b = (z − 1)ñ+i−j−1

ñ+i−j−1∑
k=1

S(ñ+ i− j − 1, k)δ(k)φ

= (z − 1)ñ+i−j−1

ñ−1∑
k=1

S(ñ+ i− j − 1, k)δ(k)φ,

where S(n + i − j − 1, k) = 0 when k > n + i − j − 1 (i < j). This transforms

(8.14) into

Dn,jµn,n+j−2z
b =

j∑
i=1

b(j − 1, i− 1)Cn+i−jµn+i−j,n+i−j−1z
b

(c− b− n− i+ j + 1)i−1

. (8.16)
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Applying induction to (8.16), where the base case is trivial, we can show that this

result is true

Dn,j+1µn,n+j−1z
b =

j+1∑
i=1

b(j, i− 1)Cn+i−j−1µn+i−j−1,n+i−j−2z
b

(c− b− n− i+ j + 2)i−1

= Cn−jµn−j,n−j−1z
b +

j∑
i=1

b(j, i)Cn+i−jµn+i−j,n+i−j−1z
b

(c− b− n− i+ j + 1)i

= Cn−jµn−j,n−j−1z
b

+

j∑
i=1

{b(j − 1, i− 1) + b(j − 1, i)}Cn+i−jµn+i−j,n+i−j−1z
b

(c− b− n− i+ j + 1)i

= Cn−jµn−j,n−j−1z
b +

Dn,jµn,n+j−2z
b

(c− b− n+ j)

+

j∑
i=1

b(j − 1, i)Cn+i−jµn+i−j,n+i−j−1z
b

(c− b− n− i+ j + 1)i

= Cn−jµn−j,n−j−1z
b +

Dn,jµn,n+j−2z
b

(c− b− n+ j)
− Cn−jµ−1

n−j,n−j−1z
b

+

j∑
i=1

b(j − 1, i− 1)Cn+i−j−1µn+i−j−1,ñ+i−j−2z
b

(c− b− n− i+ j + 2)i−1

= Cn−jµn−j,n−j−1z
b +

Dn,jµn,n+j−2z
b

(c− b− n+ j)
+Dn−1,jµn−1,n+j−3z

b

− Cn−jµn−j,n−j−1z
b.

It therefore suffices to show

Dn,j+1µn,n+j−1 = (c− b− n+ j)−1Dn,jµn,n+j−2 +Dn−1,jµn−1,n+j−3,

which is easily verified using
Dn,j+1

Dn−1,j
= −1,

Dn,j
Dn−1,j

= b+ n− c− j and (8.11).

8.1.5 Step 3

We now have to show that the matrix moments of ∆n and the right hand column

of (8.12) are equal when we move in the downwards direction from the top right
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hand corner.

En,j(∆n)n,n−jz
b = En,jµn,n−jz

b =

j∑
k=1

(
1

Γ(k)
dk−1

dbk−1 (b)j−1

)(∑n−1
i=1 δ

(k+i−1)S(n− 1, i)
)

(z − 1)n−1zj−1
,

where En,j = C(n)(c− a)j−1. It also is useful to note that

En,j+1

En,j
= c− a+ j − 1.

We can also remove this double sum here by making use of the identity we have

already proved (8.13)

En,jz
bµn,n−j =

j∑
k=1

(
1

Γ(k)
dk−1

dbk−1 (b)j−1

)(∑n−1
i=1 δ

(k+i−1)S(n− 1, i)
)

(z − 1)n−1zj−1

=

j∑
k=1

1

zj−1(z − 1)n−1

(
1

Γ(k)

dk−1

dbk−1
(b)j−1

)
δ(k−1)

(
Cnµn,n−1z

b(z − 1)n−1
)
,

(8.17)
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Applying induction to (8.17), where the base case is trivial, we can show that this

result is true

En,j+1z
bµn,n−j−1 =

j+1∑
k=1

1

zj(z − 1)n−1

(
1

Γ(k)

dk−1

dbk−1
(b)j

)
δ(k−1)

(
Cnµn,n−1z

b(z − 1)n−1
)

=

j∑
k=1

1

zj(z − 1)n−1

(
1

Γ(k)

dk−1

dbk−1
(b)j

)
(δ(k−1)

(
Cnµn,n−1z

b(z − 1)n−1
)

+
1

zj(z − 1)n−1Γ(j + 1)

dj

dbj
(b)j+1δ

(j)µn,n−1

=

j∑
k=1

1

zj(z − 1)n−1

(
1

Γ(k)

{
(b+ j − 1)

dk−1

dbk−1
(b)j−1

+(k − 1)
dk−2

dbk−2
(b)j−1

})
δ(k−1)

(
Cnµn,n−1z

b(z − 1)n−1
)

+
Cnδ

(j)µn,n−1

zj(z − 1)n−1

= (b+ j − 1)En,jz
b−1µn,n−j+

j∑
k=1

1

zj(z − 1)n−1

((k − 1)

Γ(k)

dk−2

dbk−2
(b)j−1

)
δ(k−1)

(
Cnµn,n−1z

b(z − 1)n−1
)

+
Cnδ

(j)µn,n−1

zj(z − 1)n−1

= (b+ j − 1)En,jz
b−1µn,n−j+

1

zj(z − 1)n−1
δ

j∑
k=1

(
1

Γ(k)

dk−1

dbk−1
(b)j−1

)
(
δ(k−1)Cnµn,n−1z

b(z − 1)n−1
)

= (b+ j − 1)En,jz
b−1µn,n−j

+
1

zj(z − 1)n−1
δ
(
En,jz

b+j−1(z − 1)n−1µn,n−j
)

= (b+ j − 1)En,jz
b−1µn,n−j

+
1

zj−1(z − 1)n−2

d

dz

(
En,jz

b+j−1(z − 1)n−1µn,n−j
)
.

So it just remains to show

(c− a+ j − 1)µn,n−j−1 = (z − 1)
dµn,n−j
dz

+ (b+ j + n− 2)µn,n−j.
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Using [60, §15.5.1] and substituting µn,k into [60, §15.5.13] this result is verified.

We have now shown that each element of ∆n and the right hand side of (8.12)

are in fact equal and therefore (8.1.3) has been proved. Now we can continue with

simplifying ∆n in the following way:

∆n =|Pnτ̂n(ψa,b,c)EnQn|

=|Pn||τ̂n(ψa,b,c)||En||Qn|

=Cnz
n(1−n−2b)/2τn(ψa,b,c))(z − 1)n(1−n)/2

=CnWn

(
ψa,b,c

)
,

where Cn is irrelevant due to the logarithmic derivative and Wn

(
ψa,b,c

)
is given

by (2.41).

Theorem 8.8. We now have ∆n in the form that is similar to our special function

solutions of SV I (1.7f). This means we can write down exact expressions for the

recurrence coefficients αn(z) and βn(z). The function

Hn(z) := z(z − 1)
d

dz
lnWn

(
ψa,b,c

)
, (8.18)

satisfies the second-order, second degree equation

z2(z − 1)2

(
d2

dz2
Hn

)2(
d

dz
Hn + A

)
−

4∏
j=1

(
dHn

dz
+ A+ ν2

j

)

+

{(
d

dz
Hn + A

)[
2Hn + 2Az + 2B −

(
2 z − 1

)( d

dz
Hn + A

)]
+ ν1ν2ν3ν4

}2

,

(8.19)

where A = an− 1
4
(a−b+1)2 and B = 1

4
(n(1+b−a−2c)+a2−ac+b2−bc+a−b+c).
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Proof. Equation (8.19) is equivalent to SV I (1.7f) through the linear transforma-

tion

Hn(z; a, b, c) = σ − Az −B, (8.20)

for the parameters

{ν1, ν2, ν3, ν4} =
{

1
2
(1− b− 2n+ a),−1

2
(1− 2c+ b+ a), 1

2
(1 + a− b), 1

2
(1− a− b)

}
.

(8.21)

Now we must calculate ∆̃ in terms of ∆n and its derivatives. In order to do

this we must use the following theorem:

Theorem 8.9. The function µk has the following differential relation:

µkz
C−k(z − 1)B+k = δ(k)(µ0z

C(z − 1)B),

where δ = (z−1)2

k−b−2n+2
d
dz

, C = n+ c− 2, and B = a− n− c+ 2.

Proof. This can be shown easily using [60, §15.5(ii)].

Theorem 8.10. The function ∆̃n(z) is related to ∆n(z) in the following way:

∆̃n =
1

b− 1

{
∆nn

(
1 + C − n− z(B + C)

)
− d∆n

dz
z(z − 1)

}
.

Proof. Using theorem 8.9 we can see that

∆n = zn(n−C−1)(z − 1)n(1−B−n)H̃n(µ0z
C(z − 1)B), (8.22)

where

H̃n(φ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ δ(φ) . . . δ(n−1)(φ)

δ(φ) δ(3)(φ) . . . δ(n)(φ)

...
...

. . .
...

δ(n−1)(φ) δ(n)(φ) . . . δ(2n−2)(φ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
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and from this we can write down an expression for ∆̃n

∆̃n =
1

1− b
zn(n−C−1)+1(z − 1)n(1−B−n)+1 d

dz
H̃n(µ0z

C(z − 1)B). (8.23)

Rearranging (8.22) for H̃n(µ0z
C(z−1)B), substituting into (8.23) and simplifying

gives the desired result.

8.1.6 The recurrence coefficients

Theorem 8.11. In terms of Hn given by (8.18) the recurrence coefficients αn(z)

and βn(z) have the following form:

αn(z) = C − 2n− z(B + C) +Hn+1 −Hn,

βn(z) =
1

(2− b− 2n)(3− b− 2n)

{
z2(z − 1)2

[
dHn

dz
+ 2Hn

]
+ n(Bz2 + Cz2 − C + n− 1)

}
.
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Proof. Substituting (8.22) and (8.23) into αn and βn gives

αn =
∆̃n+1

∆n+1

− ∆̃n

∆n

=(n+ 1)
(
C − n− z(B + C)

)
− z(z − 1)

∆′n+1

∆n+1

− n
(
1 + C − n− z(B + C)

)
+ z(z − 1)

∆′n
∆n

=C − 2n− z(B + C) + z(z − 1)
d

dz
ln

∆n+1

∆n

=C − 2n− z(B + C) +Hn+1 −Hn,

βn =
∆n+1∆n−1

∆2
n

=
z2H̃n+1H̃n−1

(z−1)2
(
H̃n

)2

=
z2

(2− b− 2n)(3− b− 2n)

d

dz

{
(z−1)2 d

dz
ln
(
∆nz

−n(n−C−1)(z − 1)−n(1−B−n)
)}

=
z2

(2− b− 2n)(3− b− 2n)

d

dz

{
(z−1)2

( d
dz

ln ∆n

− d

dz
ln(zn(n−C−1)(z−1)n(1−B−n)

)}
=

z2

(2− b− 2n)(3− b− 2n)

d

dz

{
(z−1)2

(
Hn −

d

dz
ln(zn(n−C−1)(z − 1)n(1−B−n)

)}
=

1

(2− b− 2n)(3− b− 2n)

{
z2(z−1)2

[
dHn

dz
+ 2Hn

]
+ n(Bz2 + Cz2 − C + n− 1)

}
.
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9 Conclusion

In this thesis we have new formulations for the special function solutions in order

for them to be viewed and used in a more manageable form. This new formulation

meant we could improve upon some previous work; specifically we have improved

upon the “ladder methods”, as they are known in the literature. Along side this

new formulation we also included the rational function solutions. As we have

seen, some of the rational function solutions form a subset of the special function

solutions. This reduction of some of the special functions to polynomials gives

the applications we looked at much more usability and diversity with regards to

plotting and analysis.

This thesis not only re-formulates the special function solutions, but also

utilises these new solution forms in order to simplify the overall comparison be-

tween the Painlevé equations and orthogonal polynomials. We have seen this

explicitly for various cases involving PV (1.1e) and one non-trivial example con-

necting PV I (1.1f) with orthogonal polynomials. In all of these cases we have been

able to generate new orthogonal polynomials with coefficients that are special

functions.

In certain cases we have been able to improve upon this even further with the

reduction of the special functions to polynomials, in the case of PV (1.1e) this was

to Laguerre polynomials and in the case of PV I (1.1f) this is Jacobi polynomials.

This provided a computationally beneficial simplification of the special function

solutions and meant we could analyse them quickly and efficiently by computing

plots and comparing different aspects of the polynomials, such as the interlacing

root properties etc. This thesis has also given us an efficient way of generating
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new orthogonal polynomials.

This thesis has answered a lot of questions that I originally wanted to an-

swer concerning the already well known connection between Painlevé equations

and orthogonal polynomials. However, during the study of this connection I have

also uncovered numerous branches of mathematics that I still wish to investigate

further. Some of these areas include some unknown root structure that the ra-

tional function solutions posses; for example: In the limiting case, the corners of

Yablonskii-Vorob’ev polynomials tends towards a finite angle. Recently there was

some research carried out into this by Buckingham, Miller, Bertola and Bothner

in 2014 [6, 8, 9]; this result could easily be applied to the remaining polynomials

that comprise the rational function solutions of the Painlevé equations. This is

just one area of the root structure that we could investigate; there is also the

unanswered question of why these polynomial roots actually form these patterns

with such structure. This is a question I have given a lot of thought but, so far, I

have been unable to answer.
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[1] Basor E and Chen Y 2009 Painlevé V and the distribution function of a discon-

tinuous linear statistic in the Laguerre unitary ensembles J. Phys. A: Math.

Theor. 42 320-337.

[2] Basor E, Chen Y and Ehrhardt T 2010 Painlevé V and time-dependent Jacobi
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Painlevé III equation Phys. Lett. A260 462-467.

[38] Kajiwara K, Masuda T, Noumi M, Ohta Y and Yamada Y 2001 Determinant

formulas for the Toda and discrete Toda equations Funkcial. Ekvac. 44 291-

307.

[39] Kitaev A V, Law C K and McLeod J B 1994 Rational solutions of the fifth
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[44] Magnus G 1995 Painlevé -type differential equations for the recurrence coef-

ficients of semi-classical orthogonal polynomials Compt. Appl. Math. 57 215-

237.

198



REFERENCES J. G. Smith

[45] Mansfield E L and Webster H N 1998 On one-parameter families of Painlevé
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