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The cellular structure of wreath product algebras

Reuben Mark Green

February 18, 2016

Abstract

We review the definitions and basic theory of cellular algebras as
developed in the papers of Graham and Lehrer and of Konig and Xi.
We then introduce a reformulation of the concept of an iterated inflation
of cellular algebras (a concept due originally to Konig and Xi), which
we use to show that the Brauer algebra is cellular (following the work
of K6nig and Xi). We then review the notion of the wreath product of
an algebra with a symmetric group, and apply our work on iterated
inflations to prove that the wreath product of a cellular algebra with a
symmetric group is in all cases cellular, and we obtain a description of

the cell modules of such a wreath product.
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Introduction

The main topics of this thesis are cellular algebras and wreath products of
algebras with symmetric groups. Cellular algebras are a class of algebras
first introduced by Graham and Lehrer in [5], and subsequently studied by
many other authors; in the original definition, a cellular algebra is defined
to be an associative, unital algebra over a commutative ring R equipped
with an R-linear bijection on the algebra with certain properties, called an
anti-involution, and an R-basis, called a cellular basis, which interacts in an
especially simple and convenient way with the multiplication of the algebra
and the anti-involution. The wreath product of an algebra with a symmetric
group S, is a well-known construction which arises, for example, in the study
of the representation theory of symmetric groups, and which may be regarded
in some sense as a generalisation of the more familiar wreath product of
groups. Informally, if n is a positive integer, and A an algebra over a field k,
then the wreath product of A with .S,, is the vector space tensor product of
one copy of the group algebra of S,, and n copies of A, with multiplication
based on the natural “placewise” definition of multiplication in a tensor
product, but “twisted” by the natural action of S, on the n copies of A by
place permutations. The main result presented in this thesis is a proof that
if A is a cellular algebra over a field k, then the wreath product of A with .S,
is also a cellular algebra; this proof uses the concept of an iterated inflation
of cellular algebras, which was introduced by Koénig and Xi in [9].

Graham and Lehrer showed in [5] that a number of interesting algebras
admit such a cellular structure, for example the Brauer algebra and the
Temperley-Lieb algebra, and also certain kinds of Hecke algebra, including as
a special case the group ring R.S,, of the symmetric group S,,. Graham and
Lehrer also showed how the existence of a cellular structure on an algebra
allows us to study its representation theory, especially in the case where the

underlying ring R is in fact a field. For any cellular algebra, we may define a



family of modules called the cell modules, and if R is a field then the simple
modules of the algebra may be obtained as quotients of the cell modules in a
standard way which is to some extent independent of the field R.

Ko6nig and Xi then gave an alternative, but equivalent, definition of
cellular algebras in [§]; this definition avoided the use of a basis, and instead
characterised cellular algebras in terms of a chain of ideals whose quotients
possess certain properties involving the anti-involution, so that we may simply
speak of an algebra being cellular with respect to some anti-involution, rather
than with respect to an anti-involution and a particular basis. Subsequently,
in the papers [9], [10], and [15], Ko6nig and Xi developed the notion of an
iterated inflation of cellular algebras, a construction by which known cellular
algebras may be combined to produce new cellular algebras. By showing that
a given algebra may be constructed as such an iterated inflation of cellular
algebras, one can conclude that this algebra is itself cellular, and moreover
one may obtain information about its cellular structure and its cell modules.
Konig and Xi used this method in [10] to give another proof that the Brauer
algebra is cellular, and Xi applied the method to the partition algebra in
[15]. The concept of an iterated inflation of cellular algebras has since been
used by a number of authors.

The wreath product of a cellular algebra with a symmetric group has been
studied by Geetha and Goodman in [4], where in particular they drew on the
work of Dipper, James, and Mathas in [3] and of Murphy in [14] to show that
if we make the extra assumption that every cell module of the cellular algebra
A is cyclic (they define the term cyclic cellular to describe such an algebra),
then the wreath product of A and S, is again cellular (and moreover is again
cyclic cellular). The proof of this result is quite combinatorial in nature, and
does not make use of iterated inflations of cellular algebras.

In this thesis, we shall only consider cellular algebras where the underlying

ring is in fact a field. In Chapter 1 we review some of the basic theory of



cellular algebras over a field, drawing mainly on [5] and [8], while in Chapter
2 we shall study iterated inflations of cellular algebras, and in particular their
application to proving that the Brauer algebra is cellular. In Chapter 3, we
review the definition of the wreath product of an algebra with a symmetric
group, and then prove that the wreath product of a cellular algebra with a
symmetric group may be exhibited as an iterated inflation of cellular algebras.

Chapter 1 begins by considering the original definition of a cellular algebra
from [5] (our Definition in Section 1.1, and giving some well-known
examples to illustrate it, including the algebra M, (k) of n x n matrices
over a field k and the Temperley-Lieb algebra TLy(r,0), for which we give a
detailed definition. In Section 1.2 we continue to review the ideas in [5] by
constructing the cell modules of a cellular algebra, which are fundamental to
the representation theory of cellular algebras. Next, Section 1.3 gives the
basis-free definition of a cellular algebra introduced by Kénig and Xi in [§]
(our Definition , and a proof that the two definitions of a cellular algebra
are equivalent. Section 1.4 briefly outlines (without proofs) how a complete
set of non-isomorphic simple modules of a cellular algebra may be obtained
as certain quotients of the cell modules, as explained in [5]. In Section 1.5,
we show that the tensor product of two (or more) cellular algebras is again
cellular, and describe its cell modules (these results will be used in Chapter
3); all of this was given by Geetha and Goodman in [4].

Section 2.1 begins by briefly introducing the symmetric group S,, and
some associated combinatorics, and then explains how the group algebra k.S,
(where k is any field) may be exhibited as a cellular algebra (see Theorem [2.1));
we do not give any proofs, but rather rely on the work of Mathas in [12].
Section 2.2 gives a well-known construction of the Brauer algebra as a
diagram algebra, and then gives a decomposition of the Brauer algebra as
a direct sum of vector spaces, used by Konig and Xi in [9], where each

subspace has a natural decomposition as a tensor product of two copies of a



certain vector space and one copy of a group algebra of a symmetric group.
In Section 2.3, we study iterated inflations of cellular algebras; the results
given in this section are a reformulation of the work of Konig and Xi. In
particular, Theorem provides the definition of an iterated inflation of
cellular algebras which we shall use in this thesis; essentially, Theorem [2.2]
allows us to show that an algebra with a subspace decomposition like the one
given for the Brauer algebra in Section 2.2 is cellular with respect to some
anti-involution, provided that certain conditions governing the interaction
between the decomposition, the multiplication, and the anti-involution are
satisfied. In Section 2.4, we apply Theorem [2.2]to complete our proof that the
Brauer algebra is cellular, while in Section 2.5 we show how the cell modules
of an iterated inflation may be obtained from the subspace decomposition
which exhibits it as an iterated inflation (Corollary , and apply this to
the Brauer algebra; this result is implied in the work of Koénig and Xi.
Section 3.1 recalls the notion of the opposite algebra of an associative
unital algebra over a field, and proves that the opposite algebra of a cellular
algebra is again cellular; we need to make use of opposite algebras in order
to overcome some technical differences between our definition of the wreath
product in Section 3.2 and the definition used in much of the literature.
Section 3.2 defines the wreath product of an algebra with a symmetric group.
As noted above, this definition is different from the definition used in much
of the literature, for example in [I] and [11]; this difference occurs because
we have adopted different conventions on the symmetric group .5, in order
that our work on the Brauer algebra in Chapter 2 agrees with the work
of Konig and Xi. However, there is a straightforward connection between
the two versions of the wreath product, as Section 3.2 explains. Section 3.3
reviews some standard combinatorics related to the symmetric group, in
particular Young subgroups. Section 3.4 then describes a well-known method

of obtaining modules for the wreath product from modules of the algebra



and certain symmetric groups; the description is based closely on Section
3 of [I]. Section 3.5 shows how the wreath product of a cellular algebra
and a symmetric group may be exhibited as an iterated inflation of cellular
algebras, and hence proved to be cellular, and Section 3.6 explains how the
cell modules of such a wreath product may be constructed from the cell
modules of the original cellular algebra and the Specht modules of certain
symmetric groups using the method of Section 3.4.

In [15], Xi gave a lemma characterising iterated inflations of cellular
algebras, which has since been used by a number of authors. However, this
lemma is in fact incorrect, and in Appendix A we give a counterexample to
demonstrate this.

At the end of each chapter, I have included a brief paragraph indicating
which results from that chapter are “new”. When I claim that a result is
new, I mean that I have obtained it myself and that, as far as I know, it has
not previously been published.

Throughout this thesis, except where otherwise indicated, k will denote
an arbitrary field. By an algebra over k, we shall always mean an associative
unital k-algebra unless stated otherwise, and in fact all of the algebras
we shall consider will be finite-dimensional over k. We shall usually write
the multiplicative identity element of a k-algebra as 1, and further we shall
demand that 1 # 0 in our algebras; thus our k-algebras must have k-dimension

at least one.

A remark about tensor products

In this thesis, we shall often need to consider the tensor products of various
algebraic structures, for example k-algebras or modules for k-algebras. In all
cases the objects whose tensor product is being taken have the underlying
structure of a vector space over the field k, and in almost all cases the desired

tensor product is constructed by taking the tensor product of the two objects



as vector spaces over k, and then equipping the resulting k-vector space with
whatever additional operations are required. As an example, let A and B be
finite-dimensional k-algebras. Then the tensor product algebra of A and B is
defined to be the k-vector space tensor product A ® B of A and B, which is
made into an algebra over k by equipping it with the multiplication defined

by the formula

(a1 ®y b1)(az @y b2) = (a1az) @ (b1b2) (0.1)

where a1, as € A and by, by € B. For convenience, we shall in this thesis adopt
the convention that the plain symbol ® always denotes a tensor product ®j
taken over the field k; tensor products over any other ring R will be indicated
as usual by a subscript, as ® z. However, there is an important issue to be
considered in Formula (0.1): well-definedness. Indeed, the elements a ® b
of A® B where a € A and b € B, called pure tensors, do not (except in
trivial cases) form a basis of A ® B, and not all elements of A ® B are pure
tensors. Thus it is not immediate that Formula does yield a well-defined
operation on A ® B, nor that this operation is k-bilinear. In the case of a
tensor product over an arbitrary commutative ring R, one would have to
justify the definition given in Formula by appealing to the universal
property of the tensor product; however, since we are working with tensor
products over a field, there is a simpler justification. Let a1,...,a, be a
k-basis of A and 34,..., B, a k-basis of B. Then the pure tensors o; ® 3;
foralli=1,...,nand all j =1,...,m form a k-basis for A ® B. We then
replace the pure tensors in Formula with elements of this basis, to

obtain the formula

(i @ Bj)(ap @ By) = (i) @k (8505) (0.2)

where i,p € {1,...,n} and j,q € {1,...,m}. Now since the pure tensors
a; ® f; are a k-basis of A® B, it is immediate that Formula (0.2 does yield

a well-defined k-bilinear operation on A ® B when it is extended k-bilinearly



to the whole of A ® B; further, it is trivial to show that this multiplication
does indeed satisfy Formula for all a1,a9 € A and by,bs € B, and so we
conclude that Formula does yield a well-defined k-bilinear operation on
A ® B after all.

In the course of this thesis, we shall on numerous occasions define op-
erations, actions, functions, etc. on tensor products over k via formulae
like Formula which give a definition “on pure tensors” (for example,
Section [3.4] contains several such definitions). Formally, such definitions must
be justified via an argument similar to the one given above; however, all of
these arguments are indeed very similar to the one given above, and their
inclusion would be both tedious and unnecessary. Thus we shall just give the
formulae involving pure tensors, and state that the operation (or whatever
it is) which is being defined is indeed “well-defined”; in all such cases it
is possible to prove that this is so by taking bases over k and applying an
argument like the one above.

The only place where we shall work with tensor products over a ring
which is not a field is in the proof of Proposition and separate arguments

will be provided there.
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1 Cellular algebras

Let k be any field. The following standard definition is fundamental to all of

the material in this thesis:

Definition 1.1. Let A be an associative unital k-algebra. An anti-involution
on A is a k-linear map ¢ : A — A, such that ¢(ab) = ¢(b)t(a) for all a,b € A
and (2 =id4.

Notice that the requirement that (> = id4 implies that ¢ is a bijection.
Further, if ¢+ is an anti-involution on the associative unital k-algebra A, we
may easily show that

ar(l) =1(la=a

for any a € A, and hence, by uniqueness of the multiplicative identity element
of A, we have ((1) = 1.
Note that some authors, in particular Konig and Xi, often use the term

inwvolution instead of anti-involution.

1.1 First definition and examples

We begin with the original definition of a cellular algebra.

Definition 1.2. (Graham and Lehrer — Definition 1.1 in [5]) A cellular
algebra over the field k is an associative unital k-algebra A equipped with

a tuple (A, M, C,.) of cellular data, such that

(C1) The set A is finite and non-empty, with a partial order <, and for
each A € A, M()) is a finite set. Further, C' is a family of mappings
C?, indexed by the elements A of A, such that

Cr: M\ x M(\) — A

and such that the collection of all elements C*(S,T) for all A € A and
all S,T € M()) is a basis of A. We shall henceforth write the image
of (S,T) € M(X\) x M(\) under C* as CQ,T.

11



(C2) The map ¢ is an anti-involution on A, and we have L<C§7T) = C%,S for

all \ € A and all S,T € M(\).

(C3) For any a € A and any basis element CQ’T we have

aCir= Y 71U, S)Chr + L
UeM())

where the coefficients r,(U, S) € k are independent of T', and L is

a k-linear combination of basis elements C{; ;. where y < X and

V,W e M(u).

Note that Graham and Lehrer did not explicitly require that the set A
be finite or non-empty. However, our convention that a k-algebra must have
k-dimension at least one implies that A is non-empty. Further, since we shall
only be interested in finite-dimensional k-algebras, we lose no generality by
assuming A to be finite (indeed, Konig and Xi introduced this requirement
when they recalled this definition in [§]). Also, Graham and Lehrer write
their anti-involution as * : a — a*.

If A is as in Definition then the basis of A consisting of all elements
ngT is called a cellular basis of A. We shall presently illustrate this
somewhat technical-looking definition with examples, but first we shall follow
Graham and Lehrer in [5] and give an equation describing products of the
form ng‘yTa which parallels the equation in (C3) for products aCéT. Let A
be a cellular algebra as in Definition [1.2} Let a € A, A € A and S,T € M(X).

By the properties of ¢ given in (C2), we have
C’é\j’a =2 (Cé\,Ta)
= () C25)

=u| Y reUDChs + L'
UeM(N\)

by (C3), where L' is a k-linear combination of basis elements C{;y;, for p1 < A

12



and V,W € M (p). Therefore,
Cira= Y rUT)Csy + t(L).

UeM())
Now by the linearity of ¢ and the fact that, for any u € A and V,W € M (u),
we have ¢ <C"F/L’W> = C’{,‘VVV, we see that ¢ (L') is again a k-linear combination
of basis elements C\lj,W for p < Xand V,W € M(u). We have thus proved
that, for any a € A, A € A and S,T € M()\), we have

(C3)  Cira= > r,)UT)Cy + L
UeM()

where L is a k-linear combination of basis elements C‘l},W with 4 < A and
V,W € M(p) (which will in general be different from the element L in the
expansion of the product anT given by (C3)). Notice that the coefficients
7(a)(U, T) are independent of S.

We shall now give some well-known examples of cellular algebras. We
begin with a trivial example: the field k is a cellular algebra over itself
with respect to the tuple of data (A, M, C, ), where A = {1}, M (1) = {1},
01171 = 1 and ¢ is the identity map on k. We shall call this the trivial
cellular algebra over k.

Our second example of a cellular algebra is the algebra M, (k) of nxn

matrices over k. We define:
e the set A to be {n} with the trivial ordering;
e the set M(n) to be {1,...,n};

e the matrix C7'; (where 7,j € {1,...,n}) to be the elementary n x n

matrix F; ; which has (4, j)-th entry 1 and all other entries 0;
e the map ¢ to take a matrix to its transpose.

Proposition 1.3. M, (k) is a cellular algebra with respect to the data
(A, M, C,0).

13



Proof. Condition (C1) is immediate, and (C2) follows by well-known proper-

ties of the transpose matrix. To prove (C3), we first recall that
EimEij = 0miki;

for any I, m,i,j € {1,...,n} (where d,,; is the Kronecker delta). Let X be a
matrix in My, (k) and 7,5 € {1,...,n} = M(n). Then we have

n n

X = Z Z xl,mEl,m

=1 m=1

where the coefficient x; ., € k is the (I, m)-th entry of X. Thus,
XCP = XE,;

n n
= (Z Z -’El,mEl,m> Ei,j

=1 m=1

n n
:Z E xl,mEl,mEi,j

=1 m=1

n n
= Z Z xl,m6miEl,j

=1 m=1

n
= E z1: B
=1
mn
- Z -’I;l,iCl’j

leM(n)
which is of the form required by (C3), because the coefficients z;; are

independent of j. O

Our third example of a cellular algebra, the Temperley-Lieb algebra,
has a rather more interesting cellular structure. Before we can define this
well-known algebra, we must define the notion of a planar diagram.

Let r be a positive integer. A planar diagram with 2r nodes consists
of two rows of r nodes, one above the other, and exactly r edges between
the nodes, such that each node is connected via an edge to exactly one other

node (which may be either on the same row or the other row), with the

14



additional restrictions that no two edges are allowed to cross, and the edges
must lie entirely within the rectangular area between the rows. For example,

the following are all planar diagrams, with r = 4,5,5, and 6, respectively:

e e

15



since the first has edges which cross, the second contains nodes which are not
connected to any other nodes, the third contains nodes which are connected
to more than one other node, and the fourth has an edge which passes
outside the area between the rows. Because each node of a planar diagram is
connected to exactly one other node, any planar diagram defines a partition
of its nodes into pairs. We consider any two planar diagrams with the same
number of nodes to be equal if they define the same partition of their nodes,
regardless of the exact shape of their edges. Intuitively, we only care about
which nodes of a planar diagram are connected, not about the path taken by

the edges between them. Thus, for example, the planar diagrams

= ]|

are considered to be equal.



Now fix a positive integer r and some 0 € k, and let TL (7, J) denote the
k-vector space with basis the set of all planar diagrams with 2r nodes. To
define a multiplication on TLg(r,d), it is enough to define the product of
any pair of planar diagrams in TLy(r,J).

We shall first give an example of how such a product is computed, which
will hopefully clarify the subsequent formal definition. So take r = 8 and let
d1 be the diagram

and ds be the diagram

To compute the product dids, we first concatenate the two planar diagrams
into a single diagram with three rows of 8 nodes, by first drawing d; and
then drawing ds immediately below it, using the nodes on the bottom row
of dq as the nodes of the top row of dy. We thus obtain the concatenated
diagram
N \v o
[ J : [ \:\/. [ ) - [ ] [ J
/—: K/—x/

We now modify this concatenated diagram by firstly deleting each of the
nodes on the middle row and joining together the two ends of the edges which

meet at that node, and secondly removing the two “closed loops” which are

17



thus formed. The diagram we obtain is equivalent to the planar diagram

which we shall call p. Thus we have taken our two planar diagrams d; and
ds, and combined them to produce a third planar diagram p. However, we
do not wish to completely ignore the two closed loops in the concatenated
diagram, and so we define the product d;dy to be the scalar multiple §%p of p
in TLy(r, §), with the factor 62 occurring because we have two closed loops.

Returning to the general case, let d; and dy be planar diagrams with 2r
nodes. To compute the product dids, we follow the procedure described in
the above example. We concatenate the two planar diagrams into a single
concatenated diagram with three rows of r nodes, by first drawing d; and
then drawing ds immediately below it, using the nodes on the bottom row of
d1 as the nodes of the top row of do. We may consider the edges and nodes
in this concatenated diagram to be grouped together to form paths, each of
which consists of one or more edges linked end-to-end with nodes between
them; these paths may be open paths with two “ends”, each consisting of
a node connected to only one edge, or else they may be closed loops where
each node is connected to exactly two edges (for example, the concatenated
diagram has two closed loops and eight open paths). Next we modify
the concatenated diagram: firstly we remove the closed loops, and then for
each open path we replace all the edges and nodes of the path, except the
two end nodes, with a single edge. We thus obtain a diagram with two rows
of r nodes and r edges connecting them, which we may see must in fact be a
planar diagram. As above, we shall call this planar diagram p. We define
the product dids to be 6™p, where n > 0 is the number of closed loops in
the concatenated diagram (and where §° is to be interpreted as 1 for any

value of ¢ in k).

18



The product which we have now defined on TLy(r, §) may easily be seen
to be associative on planar diagrams, and hence on the whole of TLg(r,d).
Further, let e be the planar diagram where each node in the top row is
connected to the node directly below it on the bottom row, so that for

example if r = 5 then e is

It is easy to see that e is a two-sided identity for the multiplication on
TLg(r, ). We have now established that TLy(r,d) is an associative, unital
k-algebra when equipped with this multiplication, which we shall call the
Temperley-Lieb algebra with parameters r and §. Note that TLg(r,d) is
not commutative for r > 3.

We shall next equip TLg(r,d) with a cellular structure. In order to do
this, we shall first introduce some further definitions and ideas about the
structure of planar diagrams.

Firstly, a through string of a planar diagram is an edge which connects

a node in the top row to a node in the bottom row. For example, the planar

diagram
[ ] [ [ ] [ ] [ [ ]
RQ//
[ ] - [ [ J [ - [ ] [ ]

has two through strings. If s is a through string of some planar diagram d,
connecting the node x on the top row of d to the node y on the bottom row,
then we shall call z and y the northern node and the southern node of
s, respectively. Any edge in a planar diagram which is not a through string

will be called a horizontal edge.

19



Next, consider the planar diagram

If we erase the through strings of this planar diagram, we obtain a new

diagram

which consists of two rows of nodes, where some of the nodes in each row
are linked together in pairs by horizontal edges. However, we may recover
the original planar diagram from the “erased” diagram by simply
drawing the through strings back in again; the restriction that no two edges
may cross in a planar diagram means that there is only one way of drawing
four through strings into the diagram to yield a valid planar diagram.
Thus we may regard the operation of erasing the through strings of a planar
diagram as a way of “splitting” it into two “half planar diagrams” ( each
consisting of a single row of nodes where some of the nodes are connected
in pairs by horizontal edges); these “half planar diagrams” may then be
“reconnected” by drawing in through strings in a unique way to yield the
original planar diagram. We shall now state these ideas more precisely.
Formally, if r is a positive integer and [ is an integer with 0 <[ < r such
that r — [ is even, then a half planar diagram with r nodes and [ free
nodes is a row of r nodes and exactly %l edges between the nodes, such
that each node is the end point of at most one edge; it follows that exactly [
of the nodes are not an end point of any edge — we shall call these nodes
the free nodes of the half planar diagram. Further, we require that no two

edges may cross, that two nodes may not be connected if there is a free node
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between them, and that no edge may cross the (infinitely extended) line
defined by the row of nodes. So for example, the following are not valid half

planar diagrams:

.¥.><:/. *

Indeed, the first diagram has edges which cross; in the second diagram, the
first and fifth node are connected by an edge, but the second node, which is
free, lies between them; the third diagram contains an edge which crosses the
line defined by the row of nodes. As with planar diagrams, we consider two
half planar diagrams with the same number of nodes and the same number
of free nodes to be equal if their free nodes are in the same positions and
the edges of both half planar diagrams give rise to the same partition into
pairs of their non-free nodes: the exact shape of the edges is not important.
In particular, we are free to draw the edges of a half planar diagram either

above or below the row of nodes, so that for example

[ ] [ ] [ [ ] [ ] [ ) [
\_>£/ ~  —
and
P S —
[ ] [ ] [ ] [ ] [ ] [ ] [ ]

are considered to be the same half planar diagram; we shall make frequent

use of this freedom below.
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Returning to our above idea of splitting a planar diagram into two half
planar diagrams, we see that indeed if we take a planar diagram d and delete
its through strings, then we shall obtain two half planar diagrams, one from
the top row of d (and its associated horizontal edges), and one from the
bottom. We define the half diagrams so formed to be the top and bottom

of d, respectively. For example, the planar diagram

[ ] - [ ] [} [ ] [ ]

[ J [ ] /._/_/\. [
has top

[ - [ ] [} [} [ ]
and bottom

[} [ ] [ ] - [} [}

Note that the number of free nodes in both the top and bottom of a planar
diagram will always be equal to the number of through strings of the planar
diagram.

Conversely, if we are given a pair of half planar diagrams with the same
number of nodes and the same number of free nodes, we may place one of
them above the other and then connect them by drawing in through strings
to form a single planar diagram. For example, consider the half planar
diagrams obtained in the previous example, and for convenience let us call

them S and T, say

S=e__ o ° ° °

and
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We can combine them together by first drawing S above T'

and then (going along the two rows of nodes from left to right) adding edges
to join the first free node of S to the first free node of T', the second free
node of S to the second free node of T, and so on, until each free node of
S is joined via an edge to the corresponding free node of T', thus forming a

planar diagram:

= |

Note that, due to the restriction that edges may not cross in a planar diagram,
this is the unique planar diagram with top .S and bottom T'; there is no other
way to draw in three through strings linking the free nodes of S to the free
nodes of T" without violating this restriction. Of course, the planar diagram
we have obtained is the same as the original planar diagram which we split
above to obtain S and T’; notice too that if we had started by drawing T
above S, we would have obtained a different planar diagram. It is easy to see
how the above procedure may be applied to any pair of half planar diagrams
to yield a unique planar diagram, provided that they have the same number
of nodes and the same number of free nodes; the number of through strings
in the resulting planar diagram is clearly the same as the number of free
nodes in each of the initial half planar diagrams. Further, it is clear that
the two operations of splitting a planar diagram into its top and bottom on
the one hand, and connecting two half planar diagrams to yield a planar

diagram on the other, are mutually inverse. We summarise this in a lemma:
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Lemma 1.4. Let r be a positive integer, and | an integer 0 < [ < r such
that r — 1 is even. Then there is a bijective correspondence between planar
diagrams with 2r nodes and | through strings on the one hand, and pairs
of half planar diagrams with v nodes and | free nodes on the other. This
correspondence is witnessed by the operation of splitting a planar diagram
with 2r nodes and | through strings into its top and bottom, and by its inverse
operation of connecting two half planar diagrams with v nodes and | free

nodes (in a unique way) to yield a planar diagram.

The next result explains how through strings of planar diagrams interact

with the operation of multiplication on TLg(r, ).

Lemma 1.5. Let d; and ds be planar diagrams in TLy(r,0) with 1 and ls
through strings respectively, and let p be the planar diagram formed when
computing the product dids, as explained above, so that dide = 6"p for some
non-negative integer n. Then the number of through strings in p is at most
min(ly,l2), and furthermore this number depends only on the bottom of dy
and the top of do: if dy and dfy are planar diagrams such that the bottom of
d} equals the bottom of di and the top of dy equals the top of da, then the
number of through strings in the planar diagram p’ formed when computing

the product d\d., is equal to the number of through strings in p.

Proof. Recall from the above definition of the product dyds that each edge in
the planar diagram p arises from an open path in the concatenated diagram
formed by placing d; above ds. It is easy to see that each through string of
p must arise from an open path with a through string of d; at one end and
a through string of do at the other, and that any through string of either
di or dy can be part of at most one such open path. Thus p has at most
min(ly,l2) through strings. Further, any given pair of through strings s; in
d1 and s9 in dy form the ends of such an open path if and only if, in the

concatenated diagram, the southern node of s; is linked via a “chain” of
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horizontal edges to the northern node of sy (note that this “chain” will be
empty if the southern node of s; equals the northern node of s3). Thus
the number of through strings of p depends only on the arrangement of the
southern nodes of the through strings of d;, the arrangement of the northern
nodes of the through strings of ds, and the arrangement of the horizontal
edges on the bottom row of d; and the top row of ds; it is clear that all of

these are completely determined by the bottom of di and the top of do. [

Next, let us note that if d is any planar diagram then the diagram formed
by reflecting d in the line parallel to and halfway between its two rows of
nodes is again planar; let us henceforth refer to this operation as “flipping d

upside-down”. For example, if d is

\>:—//\

Il

Finally, for any positive integer r let us define I, to be the set
{r,r—2,7r—4,...,10r 0}

with the natural order. In other words, I, is the set of all [ with 0 <[ <r
such that r — [ is even.

We can now define a cellular structure on the Temperley-Lieb algebra

TLk(r,d) as follows:
e let A be I,;
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e for each [ € A, let M(l) be the set of all half planar diagram with r

nodes and [ free nodes;

e for each | € A and each pair of half diagrams S,T € M(l), let C’éj
to be the unique planar diagram formed by putting S above T and
connecting them as in Lemma (notice that CIS7T thus has exactly [

through strings);

e let ¢ be the k-linear map defined on TLg(r, §) by mapping each planar
diagram d to the planar diagram obtained by flipping d upside down,

as explained above.

Proposition 1.6. (Graham and Lehrer — Ezample 1.4 in [5]) The data
(A, M, C, ) exhibits TLg(r,d) as a cellular algebra.

Proof. We must check conditions (C1), (C2) and (C3).

(C1): We need only show that the collection of all elements CE?,T for
Il € Aand S,T € M(l) is a basis of TLi(r,d). Indeed, it is the set of all
planar diagrams in TLg(r,d), by Lemma

(C2): It is immediate from the definition of ¢ that (?(d) = d for any
planar diagram d, and hence that 2 is the identity map on TLy(r,d). This in
turn implies that ¢ must be a bijection. The fact that ¢(d1d2) = ¢(d2)c(dy) for
any planar diagrams d; and ds follows from the definition of the product of
planar diagrams: flipping the 3-row concatenated diagram formed by placing
di above do upside down yields the same result as flipping both d; and ds
upside down and then concatenating them in reverse order. Finally, we see
from the definition of C ;. that ¢ (Ch ) = Ch.

(C3): The fact that planar diagrams form a basis of TLg(r,d) means
that it is enough to prove that the product

dCY

has the required form for any Cng and any planar diagram d. Indeed, let d

have m through strings. Since C’IST is a planar diagram, we know from the
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definition of multiplication in TLy(r,d) that
dCh = 8"p

for some n > 0 and some planar diagram p. From the proof of (C1) above,

it follows that p = C%, ;, for some I’ € A and some S',T" € M(I'), so that
dC‘lS’T == 6anI’T/‘

Since [’ is the number of through strings of C’l/,m, we have by Lemma
that I’ <[, and moreover that I’ depends only on the bottom of d and the
top of C’éT, which is of course S. So I’ is independent of T'. We consider the
cases I' < | and I’ = [ separately. If I’ < [ then we set r4(U, S) = 0 for all
U € M(l) and we define

L — dC’éT — 5"C§/7T/.

If I’ = [, then T is a half planar diagram with [ free nodes, and further by
considering the edges between nodes on the bottom row of the concatenated
diagram formed by joining d above C’fg’T, we see that every edge in T" must
be “inherited” by T, and hence we must have T = T”, since T also has
[ free nodes. Further, the index n is the number of closed loops in the
concatenated diagram formed from d and Cfg’T, and the edges contained in
such closed loops come solely from the bottom of d and the top of Cé,T’ SO
n is independent of T. Thus for the case I’ = [, we define L = 0 and for each
Ue M(l) we let
o ifu=9

Td(U7 S) =
0  otherwise.

With the above definitions, we see that for any value of I’, we have

dCsr= Y ra(U,S)Chr + L
UeM(l)

and moreover that the coefficients r4(U, S) are indeed independent of 7. [
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1.2 Cell modules and the structure of a cellular algebra

We shall now continue to review the work of Graham and Lehrer in [5] by
defining the cell modules of a cellular algebra.

Let A be as in Definition For each \ € A, we define
A(N) = spany {Cg 7 : S, T € M(A)},

a vector subspace of A. From (C1), we have

A= AN,

AEA

([B], Lemma 2.2, (ii)) and so we see that the cellular structure affords a
decomposition of the cellular algebra as a k-vector space. For example, in
the case of the Temperley-Lieb algebra TLi(r,d), recall that A is the set I;
for each [ € A, A(l) is then the k-span of all planar diagrams with exactly [
through strings.

However, as A is not just a vector space, but rather an algebra, we are
more interested in ideals of A than subspaces. In general, A()) is not an
ideal of A for A € A. However, we can associate two two-sided ideals of A to
each A € A. Indeed, for each X € A, let

A< N =D A
729
and

A(SN) =A< M)BA(N).
Then we have
A< \) = spank{C’}’ﬁ’Q <A P,Qe M(p)}

and

A< ) = span{Clhg < A, P.Q € M(w).
Further, from (C3) and (C3)" above, we see that A(< \) and A(< \) are
two-sided ideals of A ([5], Lemma 1.5). For example, in TLg(r, ), A(< 1)
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is the k-span of all planar diagrams with at most [ through strings, while
A(< 1) is the k-span of all planar diagrams with strictly fewer than [ through
strings. Now, for any subspace V of the algebra A and a,b € A, let us
introduce the notation

a=b (mod V)

to mean that a — b € V (in other words, the cosets a + V and b+ V are
equal); it is easy to show that this is an equivalence relation on A. We may

thus restate (C3) and (C3)’ as follows:

(C3) For any a € A and any basis element ng‘,T we have

aClir= > r(U,S)Chr  (mod A(< X))
UeM()\)

where the coefficients 7,(U, S) € k are independent of T'.
(C3)" For any a € A and any basis element Cfg‘,T we have
Cira= Y r@UT)Csy  (mod A(< V).

We shall make frequent use of these restatements below. Further, from the

fact that ¢ (C’g’j) = C’%,S for all S, T € M(\), we note that

for all A € A, and hence that
(A( V) = A= N)

and

L(A(< X)) = A(< N,

that is, the subspace A(\) and the ideals A(< \) and A(< \) are c-invariant
for all A € A.

Now for any A € A, we have
A< A) C AL N,
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and so the quotient A(< A)/A(< A) is a two-sided ideal of the quotient
algebra A/A(< A), and hence an A-bimodule, which we shall denote by Q(\)
([5], Definition 1.6). Notice that Q(\) is thus isomorphic as a k-vector space

to A()\), via the linear map given by

AN — QN

Cor— Cp+ A(< N).

Let us now fix some A € A, and examine the structure of Q(\) in more
detail. We shall first show how Q(\) may be decomposed as a left A-module
into a direct sum of isomorphic copies of a particular left A-module. For
a € A, let us write @ for the element a + A(< A) of the quotient algebra
AJA(< A). By the definition of A()\), we know that

AN = @D span{Cly: S e MO}
TEM(N)

and so

QN = @ A\ (14)

TeM(N)

where
ANT) = spany {Cap: S € M(\)}.
Recall from (C3) above that for any a € A and any S,T € M () we have
anT = Z ra(U, S)C’()}vT (mod A(< X))

UeM(X)
where the coefficients 7,(U, S) € k are independent of T'. So for the left
action of A on Q()), we have

aég’T = Z rq(U, S)@?LT (1.5)

UeM(N)

and so each ANT) is a left A-submodule of Q()). Further, the fact that the
coefficients r, (U, S) are independent of T implies that for any 7,7 € M(\),
the k-linear bijection from A*T) to AMT") induced by mapping

A A
CS,T ; CS,T/
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for each S € M () is in fact an isomorphism of left A-modules, and so the
modules ANT) for T € M()) are all mutually isomorphic as left A-modules.
To emphasise the fact that the isomorphism type of AT) is independent
of T, let us define A* to be the k-vector space with a basis consisting of

symbols Cg for all S € M()), with a left action of A on A* given by

aCs = Y r(U,8)Cy (1.6)
UeM(\)

for a € A. Then A* is a left A-module, and we have A* = ANT) for all
T € M()). This module A* is called the cell module labelled by A. Note
that in [5], Graham and Lehrer denote this module by W () (5], Definition
2.1); our notation A* is based on that of Kénig and Xi in [§].

These cell modules A* for A € A play a fundamental role in the rep-
resentation theory of the cellular algebra A, and we shall make extensive
use of them below. For the moment, notice that we have shown that, as a
left A-module, Q()) is a direct sum of |M(\)| isomorphic copies of A* ([8],
Proposition 3.3). We shall next show that there is a corresponding decom-
position of Q(A) as a right A-module. From the fact that the ideal A(< \)
is invariant under ¢, we see that ¢ induces a well-defined anti-involution on
the quotient algebra A/A(< X), which we shall also call ¢; from the fact that

L (C§7T> = C%,S’ this new map ¢ has the property that
A A
L (CS,T) =Crgs (L.7)
for all S,T € M(X). We apply this map ¢ to (1.4]) to find that

QW) = @ (a%9).

SeM()N)

where the sum of the subspaces ¢ (A*(S)) must indeed be a direct sum

because ¢ is a bijection. Now from the definition of Q(\), we may see that



and so

Now by (7,
A A
. (A (S)) — span {Cyp: T € M(V)},
and from (C3), we know that any a € A, A € A and S,T € M()\), we have

Cera= Z rua) (U, T)C3 1y (mod A(< \))
UeM(X)

where the coefficients r,(,) (U, T') are independent of S. So for the right action
of A on Q()\), we have

—=A —=A
CS,TG’ = Z TL((J,)(U7 T)CS,U' (18)
UeM(X)

Hence, each ¢ (A*S)) is a right A-submodule of Q()\). Further, each
¢ (AMS)) is isomorphic to the right A-module which can be defined as
the k-vector space with a basis consisting of symbols Cp for all T' € M (\)
and a right action of A given by

Cra = Z Tb(a)(U,T)CU (1.9)
UeM(\)

for a € A. By an abuse of notation, we shall denote this right A-module by
L (A)‘) (again, this is based on the notation of Konig and Xi in [§]; in [5],
Graham and Lehrer denote this module by W (A)*). We have shown that, as
a right A-module, Q () is a direct sum of [M ()| isomorphic copies of ¢ (A%).
Note that while A* and ¢ (A/\) are formally equal as k-vector spaces (since
we used the same basis to define both of them), their respective actions of A
do mot in general commute and so we have not defined an A-bimodule.
Now if we have a left A-module X, then for any a € A and any = € X, let
us define za to be the element t(a)z of X; it is easy to use the fact that ¢ is

an anti-involution on A to show that this defines a right A-module structure

32



on X, and we shall denote this right A-module by ¢(X). It is now easy to
show that this definition agrees with our above definition of ¢ (A’\), in the

sense that ¢ (AA) is exactly the right A-module obtained from A* by defining
za = t(a)x (1.10)

for any a € A and any = € A*. Conversely, it is also easy to see that A* may
be considered to be the left A-module obtained from the right A-module
L (A)‘) by defining

ar = zi(a) (1.11)

for any a € A and any x € ¢ (A’\).

We have now produced decompositions of Q(\) as both a left and a right
A-module. But Q()\) is an A-bimodule, and we would like a decomposition
of Q(A) which respects this. Such a decomposition is provided by the next
proposition, which will also help to motivate the second definition of a
cellular algebra (due to Konig and Xi) which will be given in the next section.
Firstly, note that the k-vector space tensor product A* @ ¢ (AA) is an A-
bimodule, with left and right actions of A well-defined on pure tensors by
a(r®y) = (azx) @y and (z @ y)a = = ® (ya) for any a € A, any z € A* and

any y € ¢ (A)‘) (and recall that we are writing ® for ®y).

Proposition 1.7. Let A be a cellular algebra as in Definition[I.3. For each
A €A, the k-linear map

a:Q\) — AY@. (AA>
given by
a:€g7T|—>Cs®C'T
is an isomorphism of A-bimodules (Graham and Lehrer, [5], Lemma 2.2, (i)).

Further, recall that A and ¢ (AA) are equal as vector spaces, so that for any
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pure tensor x @y in AN ® ¢ (A/\), the pure tensor y ® x is also an element

of AN®1 (AA). We may show that the map
QS:A)‘@L(A)‘) —>N®L(N)
defined on pure tensors by
¢ xRY — YRx

1s indeed a well-defined k-linear map. Then the diagram

Q) L AN (AY)
L ¢
QN T~ A @ (AY)

commutes (Kénig and Xi, in Section 3 of [§]).

Proof. Since the collection of all elements 6g7T for all S,T € M()) is a basis
of Q()), and the set of all symbols Cs for S € M()) is a basis of both A
and ¢ (A)‘), we see at once that « is a k-linear bijection. The fact that «
preserves both the left and right actions of A on Q(\) follows from Equations

(3. (.8). (.8 and [L9).

To prove that the diagram

Q) L~ A @ (AN
z ¢
Q) LA @ (AN

commutes, it is enough to prove that
0(o(C5r)) = (+(C50))
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for all S, T € M()). Indeed,

1.3 An alternative definition of cellular algebras

We now turn to a second definition of a cellular algebra, which was introduced
by Konig and Xi in [§], and proved to be equivalent to the definition of
Graham and Lehrer. We shall give a slightly more detailed proof of this
equivalence than that given in [§].

First, let A be a cellular algebra as in Definition [I.2] Now any partial
order on a finite set may be extended (in general non-uniquely) to a total
order. Thus we may assume without loss of generality that the order on A is

in fact a total order. So we may list the elements of A in order as
AM <A< <A\

where n = |A|, and the two-sided ideals A(< \;) for i = 1,...,n now form a

chain

0CAS M) CAK ) C...CALA,) = A (1.12)

For example, in the case of TLk(r,0), the ideals A(< [) for [ € I, form a

chain

0CAL0)or A1) C...CAKr—2)CAKLnr =4

where, as noted above, A(< 1) is the k-span of all planar diagrams with at

most [ through strings.

35



We now give a definition which captures the structural properties of the

ideal Q(\) expressed in Proposition

Definition 1.8. (Konig and Xi — Definition 3.2 in [§]) Let A be a finite-
dimensional associative unital algebra over k and let ¢ be an anti-involution
on A. A cell ideal of A with respect to ¢ is a two-sided ideal J of A such that
t(J) = J, equipped with a left ideal A of A contained in J (which implies
that ¢(A) C J, where ¢(A) must be a right ideal of A by the properties of ¢)
and an isomorphism

a:J— A uA)

of A-bimodules which makes the diagram

J L o A®u(A)
L 2@y — (y)Ru(x)
J L > Acu(A)

commute; note that the formula
@y — 1(y)Ru(x)

for z € A and y € ¢(A) does indeed yield a well-defined k-linear map from
ARu(A) to itself.

Proposition 1.9. Let A be a cellular algebra with cellular data (A, M,C, 1),
as in Definition . Let A € A and fix an element X € M(\). Then, with
respect to the anti-involution ¢ induced on AJA(< X) by the anti-involution ¢
on A, Q(N) is a cell ideal of the quotient algebra AJ/A(< \) when equipped
with the left ideal AN X) and the k-linear map o from Q(\) to

ANX) @ (A"(X))

given by

—A —A —=A
Q CS,T — CS,X & CX,T
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where, as above, we have written @ for the coset a + A(< \) of a € A in

AJA(< N).

Proof. This is immediate from Proposition and the fact that A* and
¢ (A*) are isomorphic to A*X) and ¢ (A*(X)) respectively, via the maps
given by

CS — 6g,X
and

A
CT — CX,T’

We now introduce the second definition of a cellular algebra.

Definition 1.10. (K6nig and Xi — Definition 3.2 in [§]) A finite-dimensional
unital associative k-algebra A with an anti-involution ¢ is cellular with

respect to ¢ if it can be equipped with a decomposition
n
_ !/
A=PDJj
j=1

of A as a direct sum of vector subspaces J; such that ¢(J}) = J} for each j,

and such that if we let J; = {:1 J] then
0=JhChC...CJ,=A

is a chain of two-sided ideals of A, and for each j = 1,...,n, the quotient
Jj/Jj—1 (which is isomorphic as a vector space to J}) is a cell ideal of A/J;_;
with respect to the anti-involution induced by ¢. Such a chain of ideals is

called a cell chain for A.

We shall prove that Definition [1.10] is equivalent to the definition of

Graham and Lehrer. One direction is now almost immediate.

Theorem 1.11. (Kénig and Xi, in Section 3 of [§]) Let A be a cellular
algebra with cellular data (A, M, C, 1), as in Definition . Extend the partial
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order on A to a total order as above, so that we may list the elements of A

n order as

M < A<...< A\

where n = |A|. Then A is a cellular algebra with respect to v in the sense of

Definition [1.10 when equipped with the subspace decomposition
n
A=PAN).
j=1

Proof. We have noted above that ¢ (A();)) = A();) for all A; € A. Further,
we have by the definition of the two-sided ideal A(< A;) that

J
A 3) =P AN,
=1
and so by (1.12)) we have the required chain of two-sided ideals, where each
quotient is indeed a cell ideal by Proposition [T.9] O

It remains only to prove the other direction of the equivalence.

Theorem 1.12. (Kénig and Xi, in Section 3 of [8]) Suppose that A is a cel-
lular algebra in the sense of Definition[I.10] with respect to an anti-involution
L, so that in particular A is equipped with a direct sum decomposition into

vector subspaces
n
-y
j=1
such that «(J}) = Ji. Then there exists a tuple of data (A, M,C,t) which
exhibits A as a cellular algebra in the sense of Definition [1.9, where in

particular ¢ is the original anti-involution and A is the set {1,...,n} with

the natural order.

Proof. For each j € {1,...,n}, let J; = {:1 J/. Then by Deﬁnitionm

we have a chain of two-sided ideals of A,
0=JyC 1 C...CJ, =A,
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and for each j = 1,...,n, we have a finite-dimensional left ideal A; of A/.J;_;

such that A; C J;/J;_1 and also an isomorphism
aj: Jj/Jji1 — Bj@u(4;)

of (A/Jj—1)-bimodules which gives a commutative diagram as in Defini-
tion LY

Let A be {1,...,n} with the natural ordering. We shall now define the
elements M and C of the tuple (A, M,C, ). Indeed, for each j € A, let us
write the coset a + Jj_1 of a € Ain A/J;_; as @, so that in particular the

map a — a is a k-linear bijection from J]’~ to Jj/J;j—1. Now choose elements

JoJ J
T15Ts 5 Ty,
of A such that
.
T, T Ty,

is a basis of A; (where m; is the k-dimension of Aj). Then let M(j) be
{1,2,...,m;}, and for all pairs s,t € M(j) let C“;t be an element of J]/- such
that

We now check that conditions (C1), (C2), and (C3) of Definition [1.2| hold.
(C1): We need only check that the collection of all elements C‘z’t for all

j € A and all s,t € M(j) is a basis of A. Indeed, for any j € A, it is clear

that the collection of all elements Cit for s,t € M(j) is a basis of J}, and

since
n
- A
A= @ JJ
Jj=1

as a vector space, we see that the elements Cit do indeed form a basis of A.

(C2): It suffices to check that L(Cit) = C’g;s for all j € A and all
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s,t € M(j). Indeed, we know that the diagram

Jj/Jj1 AjRu(Aj)
L ¢ x@y — 1(y)Ru(x)
o
Jj/ i1 T Aj@u(A)

commutes. So

and since «; is a bijection and «(a) = ¢(a) for any a € A, it follows that
c(¢4)) =
(C3): Let j € A, s,t € M(j) and a € A. Now Aj is a left ideal of
A/Jj—1. So we have
azl = Z ra(u, s)T
ueM(j)

for some elements 7, (u, s) € k, which are of course independent of ¢t. Then

we have
aCl, =aa;" (fﬁ@n(i{))
— o;! (@a)eua))
= 3 ra(u,s)a; (fz;@(f{))

u€M(j)
= Z Ta (U, s)éi’t,
u€M(j)

from which it follows that

aC:Z,t = Z Ta(u, 3)05775 (mod Jj_1>7
u€M(5)

as required. O
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1.4 Bilinear forms and the simple modules of a cellular alge-

bra

In [5], Graham and Lehrer define a symmetric bilinear form on each cell
module of a cellular algebra, and then use this to obtain a complete classifi-
cation of the simple modules of the cellular algebra. We shall now review
the definition of these symmetric bilinear forms (for use in the next chapter),
and then briefly describe how they may be used to find the simple modules.
Recall that the cell module A associated to A can be considered to be
the k-vector space with a basis consisting of symbols Cg for all S € M ().
Thus we may define a k-valued bilinear form (-,-) on A* by simply giving
the value of (Cg, Cr) for each pair S,T € M(A). Indeed, choose S, T € M())
and let ¢ = C%’ g- Then on the one hand, we have by (C3) that
C75Cts = Z re(U,T)Cps  (mod A(< A)),
UeM())
while on the other hand, we have by (C3)" that
CrsCrs= D, ru(U.8)Cry  (mod A(< ).
UeM())

Comparing these two equivalences, we see that we must have
C3.5Cps = (Cs,Cr)Cpg  (mod A(< N)),

where (Cg,Cr) € k is defined to be the common value of r.(7,7T) and
Ty(e) (S, 5); from these values (Cs, Cr) we may now define our bilinear form
on A*. Further, if we choose any pair of elements X,Y of M()), then by
applying the above argument using (C3) and (C3)’ to the product Cﬁ‘g SC%W

we may see that
CxsCry = (Cs,Cr)Cxy (mod A(< A)). (1.13)

Note that in [], this bilinear form is called ¢ ([5], Definition 2.3). To

show that this bilinear form is symmetric, we apply ¢ to both sides of the
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equivalence to obtain
t(CrsChy) =1 ((Cs,0n)Chy ) (mod A(< V)

(where we have used the fact that A(< A) is invariant under ¢), from which

we have by the properties of ¢+ that

C31Csx = (Cs,Cr)Cy x  (mod A(< N)).
But by using again, we have

C%,TCQ,X = (Cr, CS>C}>>,X (mod A(< N)),

and so we conclude that (Cs, Cr) = (Cr,Cs).
Now in [5], Graham and Lehrer define

rad(\) = {z € A" : (z,y) = 0 for all y € A},

([5], Definition 3.1), which they show to be a submodule of A* ([5], Proposition
3.2, (i)). They then define L* to be the quotient module A*/rad()), and
show that for each A € A, L* is either a simple module, or it is zero. They
then prove that these modules L* provide a complete list of the isomorphism

classes of simple left A-modules.

Theorem 1.13. (Graham and Lehrer — Theorem 3.4 in [3]) Let A be a
cellular algebra with data (A, M,C, 1) as in Definition . Let

Ao={ e A:L*#0}.

Then the collection of all modules L* for A € Ag is a complete list of the
simple left A-modules, and if X\ and p are distinct elements of Ag, then the

modules L and L* are not isomorphic.

1.5 Tensor products of cellular algebras

In this section, we shall prove that the tensor product algebra of two (or
more) cellular algebras is again cellular, and describe its cell modules; we

shall use these results in Chapter
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Recall that if A and B are k-algebras, then the tensor product alge-
bra A ® B is defined to be their tensor product as k-vector spaces, with

multiplication (well-) defined on pure tensors by the formula
(a®b)(c®d) = (ac) ® (bd)

(See “A remark about tensor products” on page |8| for more details). One
may easily verify that this multiplication makes A ® B an associative unital
k-algebra, which is finite-dimensional if both A and B are. We shall show
that if both A and B are cellular, then A ® B is again cellular, and that the
cell modules of A ® B may be easily obtained as tensor products of the cell
modules of A and B; these results were stated by Geetha and Goodman in
Section 3.2 of [4].

Firstly, recall that if ¢ : A — A and ¢ : B — B are k-linear maps, then

one may easily show that there is a well-defined k-linear map
PRp:A®B —A®B
given by linearly extending
PR ¢:a®br— ¢(a) ®p(b),
where a € A and b € B. This map is called the tensor product of ¢ and ¢.

Proposition 1.14. (Geetha and Goodman, in Section 3.2 of [4l]) Let A and
B be cellular algebras over the field k as in Definition 1.4, with cellular data
(Aa, M,C,14) and (A, M,C,.p) respectively (we need to distinguish the
sets Ay and Ap and the maps L4 and tg by notation, but there will be no

confusion if we use the same notation for the other items of cellular data).

Then
o let A be Ay x Ap, with the partial order defined by setting

(A1, 1) < (A2, p2)
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if and only if
A1 < A and py < po

(it is easy to check that this does indeed define a partial order on A);
o for each (A, ) € A, let M((X, 1)) be the set M(X) x M(p);
e for each pair (S,U),(T,V) € M((\p)), let
C((é\:(lj)),(T,V) =37 @ Cly;
e lett: AR B — A® B be the tensor product 14 Q Lp.

Then the data (A, M,C,.) exhibits A® B as a cellular algebra.

Proof. We verify the conditions (C1), (C2), and (C3) of Definition [L.2]

S U)) (T.V) form a basis

of A ® B; this follows from the fact that the cellular bases of A and B are

For (C1), it is enough to prove that the elements C’((

indeed bases.
For (C2), the fact that (? = idggp follows immediately from the fact

that LE‘ =1id4 and LQB =1idp. For any a,c € A and b,d € B, we have

t((a@b)(c®d)) = ((ac) @ (bd))

(ta(ac)) © (1p(bd))

(ta(c)ra(a)) @ (ep(d)es (b))
(

(ta C®LBd)( (a) ® tp(D))

=i(c®d)(a®Db),

and so ¢ is indeed an anti-involution on A ® B. Now let A € A4 and

S, T € M(\), and p € A and U,V € M(p). Then

L (C((g:[‘j))’(T’VQ =1 (C’fg\T ® 05,\/)
=1 (Cgv‘,T) X LB (C{j’v>

=Cg® Chy
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— W)
- C(T,l\L/),(S,U)

as required.
Now let us verify that (C3) holds; that is, that for any z € A ® B and

any element C((gllj)) (T,v) 3 above, we have
w0 =Y (X, Y),(8,0) (mod 1((\,)))
(S,U),(T,V) = LANSOLIPARCE (X,Y),(T,V) e
(X Y)eM((Ap))

where the coefficients 7, ((X,Y), (S,U)) do not depend on (T, V) and we

define I((X, i) to be the subspace of A ® B which is spanned over k by all

elements C'((g,‘::g/,)L(T,’V,), where (X, ') < (A, p) and

ST e M(N), U\ Ve M(i/).

Since the pure tensors a ® b span A ® B, it is sufficient to show that this
holds for t =a®b. Solet a € A and b € B. Then we have

and

by = Y (YL U)CY, + Ly
YeM(u)

where the coefficients 7,(X, S) and r,(Y,U) are all independent of both T
and V, and L1 € A(< A) and Ls € B(< p). Now

(a®CE vy = (@ b) (Chr© Chy)
= (GCQ,T> ® (bC{j’V)

= Y > XS (Crredh,) + L
XEM(N) YEM (1)

where we define L to be

( 3 ra<X,s>c§(,T)®L2

XeM(N)
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+Li® ( > nly, U)CQV) + L1 ® Lo.
YeM(p)

The fact that Ly € A(< A) and Ly € B(< p) implies that L is a k-linear
combination of elements

o ' @ cr, v
where N < X and g/ < p, with at least one of these inequalities being strict.
So indeed L € I((X, p)). Finally, we have that

Y Y n(X, S)n(Y,U) (C}QT ® C;V)

XeM(N) YEM (u)

A,
= Z ra®b((X7Y)> (‘97 U))C((ng)),(T,V)
(X,Y)eM((Ap))

where we have defined
ra®b((Xa Y)a(Sv U)) = ra(Xv S)rb(Ya U) (114)
for each (X,Y) € M((A, p)), which we note is independent of (T, V). O

Next, we shall describe the cell modules of a tensor product of cellular
algebras. Recall that if A and B are k-algebras, and V, W are left modules
for A and B respectively, then the tensor product V@ W of V and W as
k-vector spaces becomes a left A ® B module when equipped with the action

which is well-defined by the formula
(a®b)(v@w) = (av) ® (bw)
foraec A,be ByveV,and we W.

Proposition 1.15. (Geetha and Goodman, in Section 3.2 of [4]) Let A and
B be cellular algebras with cellular data as in Proposition[1.1]}, so that the
algebra A ® B is cellular as described in that proposition. Then the cell
module A of A® B is isomorphic to the A® B module A* ® A", via the

map given by k-linearly extending
D AN 5 AN AR
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C(S,U) — Cs ® (.

Proof. To prove that ® is an isomorphism of A ® B modules, it is enough to
prove that
(I)((CL ® b)C(&U)) = (a & b)(I)(C(&U))

foralla e A, be B, S € M(X), and U € M(u). Indeed, let us recall from
Equation ([1.14]) in the proof of Proposition that for a pure tensor a ® b
in A® B, we have

ra®b((X, Y), (S, U)) =ro(X,S)ry(Y,U)

for any X, S € M(X) and any Y,T € M(u), for any A € A4 and any p € Ap.

Then we have
@((a & b)C(S,U)) =& Z Ta®b((X7 Y)) (S7 U))C(X,Y)
(X, Y)eM((Ap))

(by the definition of the action on the cell module AM)

= Y Y XS U) (Cx e Cy)

XeM(\) YEM ()

:< 3y ra(X,S)CX>®( > rb(Y,U)Cy>

XeM(N) YeM(u)
= (aCs) ® (bCy)
=(a®b)(Cs ® Cpy)

=(a®b)®(Csy)-
O

We may generalise the above definition of the tensor product of two
algebras in the obvious way to define the tensor product of n algebras
A1, A, ..., Ay for any n > 1, which we may denote by @’_; A;. In particu-
lar, for any algebra A, we may define the tensor product A®™ of n copies of

A. Further, we shall adopt the convention that A%V is just the field k for any
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k-algebra A. By using Propositions and together with induction,

we have the following theorem:

Theorem 1.16. (Geetha and Goodman, in Section 3.2 of [4]) Let k be any
field, n a positive integer, and Ay, Aa, ..., Ay be cellular algebras over k,
where each Aj; has cellular data (Aj, M,C, ;) as in Deﬁnition (we need
to distinguish the different partially ordered sets A; and the different maps v;
by notation, but there will be no confusion if we use the same notation for
the other items of cellular data).

Then the tensor product algebra ®?:1 Aj is cellular with respect to the
data (A, M, C, 1), where:

e we denote by A the set Ay X Ay X ... x Ay, with the partial order defined
by setting
(A1, A2y ey An) < (1, p2, o vy i)
to mean that

Aj < g forallj=1,...,n;

e for each element (A1, Aa,...,A\n) € A, we define M(()\l,)\g, . .,)\n))
to be the set
M(A1) x M(A2) X ... x M(A\p);

e for each element X = (A1, A2, ..., \p) € A and each pair
S =(S1,52...,5), T=(T1,T>,...,Tn) € M(A),

we define

A i A2 An .
CS,T = CS1,T1 ® CSQ,TQ ®---0C ',

e we define v to be the tensor product map 11 ® 13 ® + -+ @ 1y, (it is clear
how we may extend the definition of the tensor product of maps to the

case of an n-fold tensor product).
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Further, for any X = (A1, A2,...,\n) € A, we have an isomorphism
A}‘§A)‘1®A)‘2®---®A)‘"
of left modules over @7j_; A;.

New material in Chapter 1: There is no new material in Chapter 1.
As far as I am aware, however, proofs of the results in Section [1.5] have not

previously been published.
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2 The symmetric group, the Brauer algebra, and

iterated inflations

In this chapter we shall consider another type of diagram algebra which is
constructed in a very similar way to the Temperley-Lieb algebra, called the
Brauer algebra. This algebra has an important place in group representation
theory, and has been extensively studied. In particular, Graham and Lehrer
have shown in [5] that the Brauer algebra is cellular; we shall present a proof
of this fact based on the proof given by Koénig and Xi in [10], by exhibiting

it as an iterated inflation of known cellular algebras.

2.1 The symmetric group and its group algebra

We shall begin this chapter by considering the symmetric group S, on n
letters. In particular, we shall see that the group algebra kS, is cellular over
any field k; not only is this fact interesting in its own right, but it is a vital
ingredient in our proof that the Brauer algebra is cellular.

For any positive integer n, let us write S,, for the symmetric group
of all permutations on the set {1,...,n}. We shall adopt the convention
that S,, acts on the right, so that for m,0 € S,, the product wo is the
permutation obtained by first applying 7 and then applying o. Consequently,
fori € {1,...,n} we shall write ()7 for the image of 7 under the permutation
7, so that we have the formula (i)(7ro) = ((¢)7)o, as expected. We shall also
find it convenient below to define Sy to be the trivial group, so that Sy = S;.

The group S, and its representation theory are of great importance across
several branches of mathematics, and in many related areas. In order to
discuss the representation theory of S,, we must first develop some standard
combinatorics.

Let n be a positive integer. A partition of n is a finite tuple
A= (A1, A2, Am)
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where m > 1 and each )\; is a positive integer such that A\; > A\;41 for

i=1,...,m—1, and such that
M AEXa+ .+ Ay =n.

The number J; is called the i-th part of A\, and we may refer to A as a
partition of n with m parts. We shall find it convenient to define the
empty partition @ to be the unique partition of zero, and to adopt the
convention that @ has 0 parts. For any non-negative integer n, we shall
adopt the notation A\ F n to mean that A is a partition of n. Further, if we
again take

A= (AL A2 Am)

to be a partition of the positive integer n, and we let m’ = A1, and for each

1=1,...,m, we define
No=[{N:1<j<mand \j > i}
then it is easy to show that
N= (A1 Ao, Ay)

is also a partition of n, the conjugate partition )\’ of A\. We also define the
conjugate of the empty partition @ to be @. It is clear that this operation of
conjugation A — ) is a self-inverse bijection on the set of all partitions of
each n > 0.

For a non-negative integer n, let us define A;, to be the set of all partitions

of n; we wish to equip A,, with an ordering. Assume n > 1. Let

)‘:()\17)‘27"'a)‘m) and:u:(:ulhu%"'alu‘?")

be partitions in A,,. We define A < p to mean that
i i
DN <D
j=1 j=1

o1



for every i = 1,...,min(m,r). It is easy to check that this defines a partial
order on A,, the well-known dominance order. The order which we shall
require on A,, is in fact the reverse dominance order, which we shall
denote by <°P and which is defined by setting ;1 <<°P X\ to mean A < p; again,
this is a partial order on A,,. For the case n = 0 we have Ag = {@} and so
we define both < and <°P to be the trivial order on Ag.

We now consider the group algebra kS, of S,, over the field k. It turns
out that kS, is in fact a cellular algebra for any field k and any non-negative
integer n; this fact is a special case of a result proved by Graham and Lehrer
(Example 1.2 in [5]). We shall not give a proof of the cellularity of kS,
here, but rather refer to the work of Mathas in [I2]. Now the definition of a
cellular algebra used by Mathas ([12], page 16, 2.1) is slightly different from,
but equivalent to, our Definition Indeed, let A be a k-algebra which is
cellular in the sense of Mathas’s definition with respect to a tuple of data
(A, M,C,.) (note that Mathas writes 7 where we write M, and further he
writes the anti-involution as *: a — @*). Then A is cellular in the sense
of our Definition with respect to the tuple (A, M, C, (), where A’ is the
partially ordered set obtained from A by reversing the ordering (that is, we
replace each relation A < p on A with the relation p <°P \). Further, the cell
module C* associated by Mathas to A € A ([12], page 17), which is a right
module, is isomorphic to the right module ((A*) obtained as in Section
from the cellular data (A’, M,C,:). Thus from Equation (1.11]), we have
for A € A, that the (left) cell module A* obtained from the cellular data
(A, M,C,.) as in Section is isomorphic to the left A-module obtained
from Mathas’s (right) cell module C* by equipping C* with the left action
defined by

ar = xi(a)

for all z € C* and all a € A.

Now, in Chapter 3 of [12], Mathas (following the work of Murphy in [13]
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and [14]) gives a detailed proof that for any field k and any positive integer n,
the Twahori-Hecke algebra Hy 4(Sy) of Sy, over k with parameter ¢ € k\ {0}
is cellular ([12], page 37, Theorem 3.20). Mathas also explains how the (right)
cell modules he obtains for Hy 4(Sy) relate to the Specht modules of Hy 4(Sy)
given by Dipper and James in [2] ([12], page 54, Note 2, as corrected by the
author’s errata). We are interested in kS,, rather than Hy 4(S,), and so we
shall consider only the case where ¢ = 1, because Hy 1(Sy,) is isomorphic
to kS, ([12], page 5; note that Mathas also adopts the convention that S,
acts on the right ([I2], page 1), so that our notion of kS,, agrees with his).
Further, since the definition of the Specht modules of Hy 4(S,) given by
Dipper and James in [2] is a generalisation of the definition of the Specht
modules of kS, given by James in [6], we shall refer to [6] rather than [2].
Indeed, recall that in [6] (page 13, 4.3), James defines for each A € A, a
right kS,-module, the Specht module of \, for which he writes S*; however,
we shall follow the notation of Mathas in [I2] and denote this module by
S* (Mathas uses S* to denote the (right) cell modules which he obtains for
Hi,q(Sn), but we shall have a different use for this notation, see Theorem [2.1
below). Finally, recall that for any right kS,-module F, the dual module of
E is the right kS,,-module formed by equipping Homy(E, k) with the action
defined by letting
(om)(z) = p(an™)

for any ¢ € Homg(E,k), m € S, and = € E (see [6], 1.4, pages 2 and 3;
note that we are writing linear functionals on the left of their arguments).
Again, we shall follow the notation of Mathas and denote this dual module
by E° ([12], page 24, Exercise 7). We can now use the results in Chapter 3
of [I12] which we have discussed above to give the following theorem on the

cellularity of kS,:

Theorem 2.1. For any field k and integer n > 0, the group algebra kS, is
cellular in the sense of Deﬁm’tion with respect to a tuple (An, M,C, 1) of
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cellular data, where A, is as above the set of all partitions of n equipped with
the reverse dominance order, and ¢ is the anti-involution on kS, induced by
mapping each ™ € S, to m~1. We denote by S* the (left) cell module associ-
ated to X\ € A, by the cellular data (An, M, C, 1) as described in Section[1.3
If we denote by S* the (right) Specht module associated to A\ € A, as defined
by James in [6], then S is isomorphic to the left kS, -module obtained by
equipping the right kS, -module (S*)° (see above) with the action

ax = zi(a)
where a € kS, and x € (S*)°.

Note that we have included the case n = 0 in Theorem Indeed, recall
that we have adopted the convention that Sy denotes the trivial group, so
that kSy may be identified with the field k; it is now easy to see that all of
the claims made in Theorem are trivially true for n = 0. Further, note
that we shall not require any details of the cellular basis of kS,, which is
given in Mathas’s result (the Murphy basis or standard basis as it is called

in [12)).

2.2 The Brauer algebra

In Chapter [1| we showed how the Temperley-Lieb algebra TLg(r,0) may
be constructed as the k-vector space with a basis consisting of all planar
diagrams on 2r nodes, and with a multiplication based on the notion of
“concatenating” pairs of planar diagrams. The Brauer algebra with parameters
r (a positive integer) and 0 € k is constructed in exactly the same way, except
that in defining the set of diagrams which will form the basis of the algebra,
we remove the restriction that no two edges of a diagram may cross. We
thus obtain the set of Brauer diagrams on 2r nodes, which contains the set
of all planar diagrams on 2r nodes. The multiplication is again based on the

concatenation of diagrams as for the Temperley-Lieb algebra, and so in fact
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TLg(r,d) is a subalgebra of the Brauer algebra.

Formally, then, let  a be positive integer. A Brauer diagram with 2r
nodes consists of two rows of r nodes, one above the other, and exactly r
edges between the nodes, such that each node is connected via an edge to
exactly one other node (which may be either on the same row or the other
row), where the edges must lie entirely within the rectangular area between
the rows. For example, the following two diagrams are Brauer diagrams,

with r = 5 and r = 6 respectively:

g 2

As with planar diagrams we insist that each node in a Brauer diagram is the

endpoint of exactly one edge, and so the following are not Brauer diagrams

e
T

as the first contains nodes which are not connected to any other node, and
the second contains nodes connected to more than one other node. Because

of this requirement, any Brauer diagram defines a partition of its nodes into
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pairs. As with planar diagrams, we consider any two Brauer diagrams with
the same number of nodes to be equal if they define the same partition of
their nodes, regardless of the exact shape of their edges.

It is immediate that any planar diagram is also a Brauer diagram. Another
special kind of Brauer diagram is a permutation diagram, which is a
Brauer diagram which satisfies the additional restriction that there are no
“horizontal” edges between nodes on the same row, so that each node on the
top row is connected to exactly one node on the bottom row. For example,

the diagrams

F A
XX

are permutation diagrams, while the two previous examples of Brauer di-
agrams given above are not. Now if 7 € S, then we may construct a
permutation diagram on 2r nodes by connecting the i-th node on the top
row to the (i)m-th node on the bottom row for each ¢ = 1,...,r. It is clear
that this construction sets up a bijective correspondence between S, and the
set of permutation diagrams on 27 nodes; for example, the two permutation
diagrams above correspond to the elements (1532) and (23)(45) of Ss,
respectively.

Now let k be any field, and fix 6 € k. We define Bg(r,d) to be the
k-vector space with a basis consisting of all Brauer diagrams on 2r nodes.
To define a multiplication on Bg(r,d), it is enough to define the product of
two Brauer diagrams, and we define such a product in ezactly the same way

as for the Temperley-Lieb algebra TLi(r, d): given two Brauer diagrams d
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and dy, the product dids is computed by forming a concatenated diagram by
first drawing d; and then drawing ds immediately below it, using the nodes
on the bottom row of dy as the nodes of the top row of do; we then let p be
the diagram with two rows of r nodes which are connected by edges in the
same way that the nodes on the top and bottom rows of the concatenated
diagram are connected by open paths consisting of one or more edges linked
end-to-end with nodes between them. It is easy to see that p must again be
a Brauer diagram. Finally, we multiply p by 6™ where n is the number of
closed loops in the concatenated diagram (if there are no such closed loops
then the product is just p). For example, let » = 6 and let dy, d2 be the

Brauer diagrams

ey
P
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(note that there is only one closed loop in the concatenated diagram, even
though that loop crosses itself and thus produces two “lobes”, one inside the
other; we are not concerned with such self-crossing).

As with TLg(r,0), this product can easily be seen to be associative on
Brauer diagrams and hence is associative on the whole of Bi(r,d). Further,
we define e to be the Brauer diagram where each node on the top row is
connected to the node directly below it, and as for TLg(r,d), e is then a
two-sided identity. Thus we have now established that B (r, §) equipped with
this multiplication is an associative unital k-algebra, the Brauer algebra
with parameters r and §.

It is immediate that the Temperley-Lieb algebra TLg(r,d) occurs as
the subalgebra of By(r,d) spanned by all planar diagrams. Further, if we
identify each permutation m € S, with the associated permutation diagram
as described above, we may see by considering the way the multiplication rule
applies to permutation diagrams that in fact the k-span of all permutation
diagrams in By(r,d) is a subalgebra of Bg(r,d) isomorphic to the group
algebra kS,..

Having defined Bi(r, §), we now wish to prove that it is a cellular algebra.
However, the proof of this is not as straightforward as the proof that TLy(r, d)
is cellular: in particular the basis of Bg(r, §) consisting of all Brauer diagrams
is not a cellular basis in general. Graham and Lehrer gave a rather computa-
tional proof that Bg(r, d) is cellular in Section 4 of [5], but we shall follow the
approach introduced by Koénig and Xi in Section 5 of [9] and expanded upon
in Section 5 of [10], by exhibiting Bk (r,d) as an iterated inflation of cellular
algebras. In the remainder of this section, we shall lay the foundations of
this proof by constructing a well-known decomposition of Bg(r, ) as a direct
sum of subspaces which themselves admit a further natural decomposition

as tensor products; in the next section we shall define iterated inflations of
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cellular algebras and apply this definition to our decomposition of By(r, d)
to conclude that Bg(r,d) is cellular.

Let us start by defining the anti-involution on Bg(r,d) as in Theorem 4.10
of [5]. We do this in exactly the same way as for TLy(r,d): given any Brauer
diagram d, we define ¢(d) to be the diagram formed by “flipping d upside
down” (formally, by reflecting d in the line parallel to and halfway between
its two rows of nodes), which we may easily see must also be a Brauer
diagram. As for planar diagrams, it is clear that for any Brauer diagrams
d,d’ in Bg(r,d), we have 2(d) = d and «(dd’) = (d")i(d). Tt follows that ¢ is
an anti-involution on By (r, ).

Recall that a through string of a planar diagram is simply an edge which
connects a node on the top row of the diagram to a node on the bottom row.
We may define a through string of a Brauer diagram in exactly the same way,
and we may carry over the definitions of the northern node and southern
node of a through string. We shall call any edge of a Brauer diagram which
is not a through string a horizontal edge, as for planar diagrams. Then for

any Brauer diagram d in Bg(r, ), there exists a unique [ in the set
I, ={r,r—2,r—4,...,10r 0}

such that d has [ through strings. Thus we may partition the basis of Bi(r, d)
consisting of all Brauer diagrams in Bg(r,d) according to the number of

through strings each diagram has, and hence if we define
D; = span,{d : d is a Brauer diagram with exactly { through strings}

for each [ € I, then we have a direct sum decomposition
Bk(T7 6) = @ Dy
lel,
of Bik(r, d) as a k-vector space.
Next, recall that we have defined the notion of a half planar diagram on

r nodes; we shall now make a corresponding definition for Brauer diagrams.
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Indeed, if 7 is a positive integer and [ € I, then a half Brauer diagram
with r nodes and [ free nodes is a row of r nodes and exactly %l edges
between the nodes, such that each node is the end point of at most one edge;
it follows that exactly [ of the nodes are not an end point of any edge — we
shall call these nodes the free nodes of the half Brauer diagram. As for
planar diagrams, we require that no edge may cross the (infinitely extended)
line defined by the row of nodes, but (since edges are allowed to cross each
other in a Brauer diagram) we do not require that no two edges may cross
or that two nodes may not be connected if there is a free node between
them. As with planar diagrams, the idea behind this definition is that half
Brauer diagrams are exactly the diagrams which may be obtained by taking
a Brauer diagram and erasing its through strings, and then taking one of
the resulting two single-row diagrams.

Now let [ € I, and S, T be two half planar diagrams with r nodes and [
free nodes. Recall how the restriction that edges may not cross each other in
a planar diagram means that there is a unique planar diagram with top S
and bottom T (see Lemma. The situation is, however, more complicated
for B(r,d). If we erase the through strings of a Brauer diagram, we get
two half Brauer diagrams; as for planar diagrams, we shall call these its
top and bottom. However, a Brauer diagram with more than one through
string is not uniquely determined by its top and its bottom: given two half
Brauer diagrams S and T with [ free nodes, there are in fact exactly !
distinct Brauer diagrams with top S and bottom T, since there are I! ways
of connecting the [ free nodes of S to the [ free nodes of T' by drawing in [
through strings. So rather than just decomposing a Brauer diagram into its
top and bottom, we must also record the way in which the through strings
are arranged, as we shall now explain. Let d be a Brauer diagram with 27
nodes which has [ through strings, with top S and bottom 7. Number the
northern nodes of the through strings of d with the numbers 1 to I, going
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from left to right, and do likewise for the southern nodes of the through
strings of d. We may define an element 7 of S; by letting (i)m be the number
labelling the southern node of the through string whose northern node has

label i. For example, if we take d to be

L B ° ° o o
and

[ ) [ ] [} [ [ [ ] [}

\_%_/ ?

respectively. Numbering the northern and southern nodes of the through

strings of d as described above gives us

[ ] .1 [} .2 .3 [ ] - [ ]
1%3

from which we see that 7 is (132) € Ss.

It is easy to see that the triple (S, 7, T") uniquely determines the Brauer
diagram d, and hence we have established a bijective correspondence between
the set of Brauer diagrams with 2r nodes and precisely [ through strings on

the one hand, and on the other hand the set
Ql X Sl X Ql

where €2; is the set of all half Brauer diagrams with r nodes and [ free

nodes. If we define V; to be the k-vector space with basis €;, then this
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correspondence induces a k-linear bijection
D+ Vi®kS @V, (2.1)

and hence, up to isomorphism of k-vector spaces, we have obtained the

well-known decomposition

By(r,6) = P Vi@ kS @ Vi, (2.2)
lel,

where (recall) I, is the set of all integers [ such that 0 <[ < r and r—1 is even.
This is our desired decomposition of Bi(r,d), and in the next section we shall
explain how this allows us to prove the cellularity of Bx(r, d) as given by Konig
and Xi in [9]. Informally, we shall show that the multiplication of Bi(r, ¢)
and the anti-involution ¢ interact in a “nice” way with this decomposition,
and in particular with the multiplication of the symmetric group algebras k.S;
which appear in the decomposition. This will allow us to exploit the known

cellularity of the algebras kS; to produce a cellular structure on Bg(r, ).

2.3 Iterated inflations of cellular algebras

In [9], Konig and Xi introduced the concept of an iterated inflation of cellular
algebras, and we shall now briefly review this work. Firstly, Konig and Xi
defined two methods of inflating an algebra (Sections 3.1 and 3.2 in [9]). In
the first method, we take a k-algebra A, a k-vector space V, and a bilinear
form ¢ : V x V — A, and we define an associative multiplication on the

tensor product V ® A ® V via the formula
(rRaw) (yRbz) =2 ® ap(w,y)b ® 2z, (2.3)

thus making V ® A ® V an “algebra”, potentially without a unit, called an
inflation of A along V. In the second method, we take two k algebras A
and B, where B is not assumed to have a unit element, and define some

associative multiplication on the (external) direct sum A @ B such that the
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multiplication on B is preserved, B is a two-sided ideal of A & B, and the
quotient algebra (A @ B)/B is isomorphic to A; this construction is called
an inflation of A along B. An iterated inflation is then defined by using
these two constructions repeatedly (Section 3.3 in [9]): one starts with some
algebra Aj, then one takes an algebra Bj, a vector space V; and a bilinear
form ¢ as above, and one forms the inflation V; ® B; ® Vi; one then forms
an inflation As of Ay along Vi ® B1 ® V1. One can then take another algebra
Bs, a vector space V5 and a bilinear form 9, and form the inflation Az of Ao
along the inflation Vo ® Bs ® V5, and so on. Further, Koénig and Xi showed
that if the algebras A; and By, Bs, ... are cellular, then provided that certain
technical conditions are satisfied, all of the algebras As, As, ... will also be
cellular.

In Section 4 of [9], Kénig and Xi showed that the class of cellular algebras
over a field k is exactly the class of algebras obtained via the method of
iterated inflations as above, by taking A; to be a matrix algebra over k,
and each B; to be the field k (][9], Theorem 4.1). In Section 5 of the same
paper, they outlined how the Brauer algebra Bi(r,d) may be exhibited as
an iterated inflation constructed from cellular algebras, thus giving a new
proof that it is indeed cellular. Other authors have since applied the idea of
an iterated inflation of cellular algebras in various contexts.

We have now outlined the basic concept of an iterated inflation of cellular
algebras as given by Konig and Xi. However, as mentioned above, there
are various technical details and extra conditions which must be satisfied
in order for the construction to work. In [9] and [I0], these conditions are
not presented in a single definition or result, but rather are developed as
needed in the course of the text (see, for example, Lemmas 5.2-5.5 in [10]).
In this section, we shall present a reformulation of the concept of an iterated
inflation of cellular algebras, derived from the work of Konig and Xi, but

with a somewhat simpler construction. Further, we shall present our version
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via a single theorem which explicitly gives all of the necessary conditions and
which may thus be more easily applied in practice. We shall show below that
the decomposition of Bi(r,0) satisfies the hypotheses of this theorem
and hence that Bg(r,d) is cellular (all of this work was essentially given by
Ko6nig and Xi in [I0]), and we shall make further use of the theorem in the
next chapter, when we consider wreath products of cellular algebras with
symmetric groups.

Indeed, let us start with our theorem on iterated inflations of cellular

algebras.

Theorem 2.2. Let A be an associative, unital, finite-dimensional k-algebra,
with an anti-involution v. Suppose that we have, up to isomorphism of
k-vector spaces, a k-vector space decomposition
A=2PVvieBieV; (2.4)
1€l

of A, where I is some finite partially ordered set and where each V; is some
k-vector space and each B; is a cellular algebra over k. We shall henceforth
consider A to be identified with this direct sum of tensor products.

Suppose that for each i € I, we have a basis ; for V; and a basis B; for
B;, such that the following conditions hold:

1. For each i € I, we have for any u,v € Q; and any b € B; that
(uRb®v) =1v®0(b)®u (2.5)
where o; s the anti-involution on B;.

2. Let A be the basis of A consisting of all elements u ® b ® v for all
u,v € ; and all b € B;, as i ranges over I. Then for any ¢ € I and

any u,v € ; and any b € B;, we have for any a € A that

a- (uRb®v)=z(a,u)®cla,u)b®@v (mod J(< 1)) (2.6)
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where

J<i)=PVieBaV

1<

and x(a,u) € V; and c(a,u) € B; depend only on a and u, as indicated

by the notation.

Then A may be exhibited as a cellular algebra, via a tuple of data
(A, M, C, 1) which we shall now define. Indeed, for i € I, let (A;, M,C,0;) be
cellular data for B; (we need to distinguish the different partially ordered sets
A; and the different maps o; for all i € I by notation, but there will be no
confusion if we use the same notation for the other items of cellular data).

Then:

o let A be the set {(i,\) : i € I and X\ € A;}, with the partial order
defined by setting

(4, A) < (Jyp) ifi<j
and

(4, A) < (4, p) if A< p

(that is, lexicographic order);
o for (i,\) € A, let M(i,\) be the set Q; x M(N);
e for (i,\) € A and (x,X), (y,Y) € M(i,\), let

i
O((x, ;M =20 Chy®y.

We shall call an algebra A satisfying the conditions of Theorem an
iterated inflation; more specifically, we might call it an iterated inflation
of the algebras B; for ¢ € I, or an iterated inflation of the algebras B; for

i € I along the vector spaces V; for i € I.

Proof of Theorem [2.3 We show that the claimed cellular data satisfies prop-
erties (C1), (C2), and (C3) of Definition [1.2]
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For (C1), it suffices to note that our order on A is indeed a partial order,

and that the elements C’((M)

2,X),(y,Y) do indeed form a basis of A.

For (C2), first note that by linearity of ¢ and of each map o;, we may
easily show that in fact Equation holds for any u,v € V; and any
b € B;. Then to prove (C2), it is enough to note that for any (i, \) € A and
(x, X),(y,Y) € M(i, A), we have

‘ (C((;;g):(y,Y)) =t (x ® Cky ® y)
=y ® o (C§(7y> ®

_ i)
(5.Y),(,X)"

It remains only to prove (C3). Firstly, note that by linearity, we may
easily show that in fact Equation holds for any a € A, any u,v € ;
and any b € B; (that is, not just for b € B;), and so, in particular, it holds
when b is taken to be any element C’j‘gy of the cellular basis of B;. Next,
for any (i, A) € A, let A(< (i,A)) be the subspace of A spanned by all the

elements

(Jo1)
C(w,W),(z,Z)

for all (j,p) € A with (j, ) < (4, A), and all pairs (w, W), (2, Z) in M (j, i)
(since we have not yet proved that A is cellular with respect to the given
data, we do not yet know that A(< (i,\)) is an ideal of A — we only know
that it is a subspace). Notice in particular that J(< i) C A(< (i,A)).
Now let (i,\) € A and (u, X), (v,Y) € M(i,\), and a € A. We have
aC’((i’:Ez)’(vy) =a- (u ® Ci\(,y ® v)
=r®cCyy®v  (mod J(< 1))

for some © = z(a,u) and some ¢ = ¢(a,u) as in Equation (2.6). Thus we
have

aC(i’g)’(uy) = <:C ® CC@‘(’Y ® v) + Ly (2.7)

(u
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for some Ly € J(< i); notice that we have Ly € A(< (i,A)). Then we have
by the cellularity of B; that

$®CO§\(7y®U:$® Z TC(U,X)C[>}7Y+L2 ® v
UeM(N)

for some Lo € B;(< A), and hence

$®CC§\(’Y®U:$® Z rc(U,X)C?},Y Qv+ zrzeLv. (2.8)
UeM())

It is easy to see that # ® Ly @ v lies in A(< (i, A)). Now write z as a k-linear

combination

T = nyww

wel;

and note that these coefficients v, € k depend only on a, u and w. We have

T ® Z TC(UX)CUY ®v—z Z YwTe(U, X) (w@Cﬁ’Y(@v)
UeM(O) wesy; UeM(A

= Z Ta((UJ, U), (u, X)) (w ® C(/>'7y ® v)

(w,U)EM (i,))
where we have defined r, ((w,U), (u, X)) = Yw7e(U, X), which is independent
of Y and v (recall that ¢ depends only on a and «). Thus by and ,
we have
Ol = 2o rallw 0, (w XNCLT () + T
(w,U)eM(i,\)

where L = Ly + © ® Ly ® v, which is an element of A(< (i, A)). The right
hand side of this equation is indeed of the form required by (C3), and (C3)
now follows by the fact that A is a basis of A. O

As mentioned above, [9] and [10] do not present iterated inflations via
a single result like Theorem However, in [15], Xi offered the following
lemma to characterise iterated inflations of cellular algebras, which has been

cited by several subsequent authors:
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Lemma. (Xi — Lemma 3.3 in [15]) Let A be an algebra with an anti-

involution . Suppose there is a decomposition

m
A= @ V;®B; @V (direct sum of vector spaces),
j=1

where V; is a vector space and Bj is a cellular algebra with respect to an

anti-involution o; and a cell chain

Jl(j)g...gj

S

) =B

for each j. Define
t
L=EPVieB;aV;.
j=1
Assume that
(i) the restriction of v on V; ® B; ® Vj is given by
WRb®VF— v®0oj(b) ®w
(it) for each j, there is a bilinear form ¢; : V; x V; — Bj such that

0j(¢j(w,v)) = ¢j(v,w) for all v,w € V;

(i) the multiplication of two elements in V; @ B; @ V; is governed by ¢;

modulo J;_1, that is, for x,y,u,v € V; and b,c € B;, we have
(z@b®y)(ueenv) =20 by, u)e® v
modulo the ideal J;_1
(iv) (V; ® Jl(j) ®V;) + Jj_1 is an ideal in A for alll and j.
Then A is a cellular algebra.

Note that in the context in which this lemma is given in [15], the claim
“Then A is a cellular algebra” in the last line of the lemma means (in terms

of our definitions from Chapter [1} in particular Definition [1.10)) “Then A is
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cellular with respect to the anti-involution ¢ on A” (see [15]; in particular
the wording of Definition 3.2 and the proof of the above lemma). However,
this lemma is incorrect; see Appendix [A] for a counterexample. Essentially,
the lemma imposes conditions on the multiplication within each “layer”
V; ® Bj ® V; of the algebra A, by demanding that it is “governed” by a
bilinear form as in point (%ii); this condition is, of course, derived from the
formula which defines the multiplication in an inflation of an algebra
along a vector space. However, in order to ensure that we can construct
cellular data for the algebra A from the cellular data of the algebras B;, it is
also necessary to control how the multiplication behaves “between” layers,
and this is why we require the condition [2]in Theorem this condition
was given (for the Brauer algebra) by Konig and Xi in Lemma 5.5 in [10].
Although the condition given in point (7i) of Xi’s proposed lemma is not
strong enough to ensure cellularity by itself, it is nonetheless the case that
if A is an algebra which satisfies the hypotheses of Theorem then the
multiplication within each “layer” of A is indeed governed by a bilinear form
in exactly this way. This fact demonstrates the link between the original
version of iterated inflations as given by Konig and Xi, and our reformulation
in Theorem Before we prove it, recall from the proof of Theorem
that we can easily use the linearity of + and Equation to show that

u®b®v) =v®0;(b) ®u (2.9)

for any u,v € V; and any b € B; (where o; is the anti-involution on B;).

Similarly, recall that we may use Equation (2.6)) to show that
a- (u®b®v)=1x(a,u)®cla,u)bv (mod J(< 1)) (2.10)

for any a € A, any u,v € ; and any b € B;. Now let us state the result we

wish to prove concerning the multiplication in an iterated inflation.

Proposition 2.3. Let A be an algebra satisfying all the hypotheses of Theo-

rem [2.9, with notation as in that theorem. Then for each i € I there exists a
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unique k-bilinear form

¢i: Vix Vi — B
such that for any u,v,w,z € V; and b,d € B;, we have
(wWRd®2)(uRbRv) =w®dpi(z,u)b@v (mod J(< 7). (2.11)

Further, we have
¢i(z,u) = 0 (¢i(u, 2)) (2.12)
for all z,u € V;.

In order to prove this result, we shall require the following technical

lemma.

Lemma 2.4. Let A be an algebra satisfying all the hypotheses of Theorem
with notation as in that theorem. Fix some index t© € I, and enumerate the
elements of the basis B; of B; as by,...,by. For any w, z,u € §; and any
ke{l,...,N}, define a(w, z,u, k) to be the coefficient of the basis element
w in the expansion of the element x(w ® by, @ z,u) of the vector space V; over
the basis Q; (this x(wRbr® z,u) is of course obtained by taking a = wRbr Rz
in Equation . Then we have for any l € {1,..., N} that

a(w, z,u, k)e(w @ b, @ z,u)o;(by) = a(u,u, z,1)bgo; (c(u ®b R u, z))

Further, if
c(w®b,®z,u)#0

then we must have
z(w by ® z,u) = a(w, z,u, k)w.
Proof. For any | € {1,..., N} we have by Equation (2.10) that

(wR b ® 2)(u®o;(b) @u)

=z(wRbr®z,u) ®c(w by @ z,u)o;(b) @u (mod J(< 7).
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But we can also apply ¢ = id to the product (w ® by ® 2)(u ® o;(b;) ® u),
and use Equation (2.9) and the properties of the anti-involution ¢ to find
that (w ® br ® 2)(u® o5(by) @ u) is equal to ¢((u® b ® u)(z ® 0(bg) ® w)).

Then we have

L(u @by @u)(z® oi(by) ®w))
=(z(u®b ®u,2) @ clu®b ®u,z)o;(by) ®w) (mod J(< i))
(by Equation and the fact that ¢ preserves J(< i),
which follows from Equation (2.9))
=w @ bgoi(c(u@b @u,z)) @z(u®b ®u,z)

(by Equation (2.9)).

Thus we have

z(w b ®z,u) @ c(w® by @ z,u)o;(b) @u

=wRboi(c(uRb @ u,2)) @x(u®b u,z) (mod J(< 1))

and in fact since both sides lie in V; ® B; ® V; (which has trivial intersection

with J(< 7)), we have

z(w b ® z,u) @ c(w® by @ z,u)o;(b) @u

=wRboi(c(u@b @u,2)) r(uRb u,z). (2.13)

When we expand the right-hand side of this equation as a k-linear combination
over the basis A of A, we see that it is in fact a k-linear combination of
elements of A of the form w ® * ® *. Similarly, when we expand the left-hand
side as a k-linear combination over the basis A of A, we see that it is in fact
a k-linear combination of elements of A of the form * ® * ® u. It follows

that left-hand side of the equation must be equal to

a(w, z,u, k)w @ c(w @ by ® z,u)o; (b)) @ u (2.14)
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and that the right-hand side must be equal to
w @ broi(c(u® b @ u,2)) @ alu,u, z,l)u.

Thus we have

a(w, z,u, k)w ® c(w ® by, ® z,u)o;(b) @ u

=w R broi(c(u® b ®u, 2)) ®alu,u,z,l)u.

and so

w® a(w, z,u, k)c(w @ by, @ z,u)o;(b) @ u

=w® a(u,u, z,)broi(c(u @b @ u,z)) @u. (2.15)
Since both w and u are non-zero, it follows that
a(w, z,u, k)e(w @ by @ z,u)o;(by) = a(u, u, z,)bro;(c(u @ by @ u, 2))

as claimed.

Recall from ([2.14]) our simplified form of the left-hand side of Equa-
tion ([2.13]): we have

z(w b ®z,u) @ clw® by @ z,u)oi(b) @u

= a(w, z,u, k)w @ c(w @ b ® z,u)o; (b)) @u  (2.16)

for any [ € {1,..., N}. Now suppose that c(w ® by ® z,u) # 0. Let us take

the expansion of 1 € B; over the basis B;, to obtain

N
1= Biby
=1

for some f1,...,8n € k. By applying o; to both sides of this equation and

using the fact that o;(1) = 1, we have
N
1= Boib).
=1
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‘We now have

0 # c(w ® b ® z,u)

=c(w® b, ® z,u)l
N

=c(w® b, ® z,u) Z Bioi(br)
=1
N

= Brelw @by @ z,u)0i(br).

=1
It follows that

Bre(w @ by @ z,u)oi(by) # 0

for some [ € {1,..., N}, and hence that for this [ we have
C(w X bk Rz, u)ai(bl) 7é 0.

Then by using Equation (2.16)) with this value of [, and the fact that u # 0,
we have

z(w @by ® z,u) = a(w, z,u, k)w.

O

Proof of Proposition[2.3 Choose some ¢ € I. We shall first prove that such
a bilinear form ¢; exists, then that is is unique, and finally that it interacts
with o; as claimed.

Existence: Let us enumerate the elements of B; as b1,...,by as in
Lemma [2.4., To prove that there exists a k-bilinear form ¢; such that
Equation holds for all u,v,w,z € V; and b,d € B;, it is enough (by

linearity) to find some function ¢; : ©; x ©Q; — B; such that
(Wb ®2)(uRb, ®v) =w R brdi(z,u)b, @ v (mod J(< 7))

for any u, v, w, z € Q; and k,r € {1,..., N}, and then extend this ¢; bilinearly.
So let u,v,w,z € Q; and k,r € {1,...,N}. We know by Equation ({2.10)
that

(Wb R2) (uRb,®V) = 2(WRbE® 2z, u) V(Wb Rz, u)by@v  (mod J(< i))
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and so we shall seek to prove that the right-hand side of this equivalence has
the desired form.

As in Lemma, let us define a(w, z, u, k) to be the coefficient of the
basis element w in the expansion of the element z(w ® by ® z,u) of the
vector space V; over the basis €);. Further, let us express 1 € B; as a k-linear

combination over B;, say

N
1= Bibi,
=1

and recall that o;(1) = 1. We thus have
a(w, z,u, k)e(w @ by, ® z,u)

N
= a(w,z,u, k)c(w @ by @ z,u)o; <Z Blbl>

=1

I
WE

510&(’(/), Z, U, k)C(U) ® bk & 2, U)O'Z(bl)

~

1

I
M=

5[0[(’&, u, z, l)ka',L(C(’UJ ® bl & u, Z))

~

1

(by Lemma

N

= by, Z Biou, u, z,1)oi(c(u @ by @ u, 2)).
=1

Now let us define

N

oi(z,u) = Z Bra(u,u, z,1)oi(c(u @ by @ u, 2))

=1
which depends (as required) only on z and w. Then we have
a(w, z,u, k)e(w @ by, ® z,u) = broi(z,u). (2.17)
Now suppose that c(w ® by ® z,u) # 0. Then we have
(WRb@2)(u®b, @v)=2(w b, @ z,u) c(w by @ z,u)b, v

(mod J(< 7))
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= a(w,z,u, k)w ® c(w @ by, @ z,u)b, ® v
(by Lemma [2.4)

=w® a(w,z,u,k)c(w b, @ z,u)b, @ v

=w ® bri(z,u)by @V
(by Equation (2.17)).

If we have c¢(w ® by, ® z,u) = 0, then we have on the one hand that
(Wb, ®2)(u®b ®v)=x(w b, ®2,u)®c(w® b, ®2,u)b, @V
(mod J(< 7))

=0,
while on the other hand we have

W @ brdi(z,u)by @ v =w @ a(w, z,u, k)c(w @ by, @ z,u)b, @ v

(by Equation (Z17))
= ()7

so that indeed
(w @b ®2)(u®b V) =w® brpi(z,u)by ®v  (mod J(< i)).

Uniqueness: Suppose we have two k-bilinear forms ¢; and ¢, mapping

Vi x V; to B;, such that

(wedR2)(ueb®v)=w®dpi(z,u)b@v (mod J(< 1))
and

(wWRdR2)(uRb®v) =w®dd,(z,u)b@v (mod J(< 1))

for any u,v,w,z € V; and any b,d € B;. So for any z,u € V;, we may take b
and d to be 1 and w and v to be u in these equivalences, and then since the

right-hand side of both equivalences lies in V; ® B; ® V;, we have
u® di(z,u) ®u=1u® ¢(z,u) @u
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and thus (since u # 0)
¢i(27 u) = QZ);(Z’ u)
so that indeed
bi = ¢}
Interaction with o;: It is enough to prove that
bi(z,u) = 0i(i(u, 2))
for any z,u € €;. Indeed, let z,u € £;. On the one hand, we have

(zR1®2)(uRl®u) =28 ¢i(z,u) u (mod J(< Z))

but on the other hand we can apply ¢? = id to the product (:®1®2)(u®1®u),
and use Equation (2.9) and the properties of the anti-involution ¢ to find
that (:®1®2)(u®1®@u) is equal to t((u®1®@u)(2®1®z)). Then we have

H((u®lou)(z@1®2)) = uu® ¢i(u,2)®z) (mod J(< i)
(using the fact that ¢ preserves J(< 7))
= 2® 0; (qbi(u, z)) Qu
(by Equation (2.9)).

Thus by the fact that z ® ¢;(z,u) ® u and z ® 0;(¢;(u, 2)) ® u both lie in
V; ® B; ® V;, we have in fact shown that

2@ ¢i(z,u) @u=2® 0;(di(u, 2)) @u
and hence (because z and u are both non-zero) we have

di(z,u) = 04 (di(u, z))

as required. ]
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2.4 The Brauer algebra is an iterated inflation

We shall now complete our proof that the Brauer algebra By (r,d) may be
exhibited as an iterated inflation of cellular algebras. Recall from Equa-
tion that we have (up to isomorphism of k-vector spaces) a direct sum
decomposition

By(r,0) =P Vioks eV
lel,

where for each [ € I,., V] is the k-vector space with basis the set €2; of all
half Brauer diagrams with r nodes and [ free nodes. Recall further that this
isomorphism is witnessed by the correspondences given for each | € I, by
the isomorphism , where a Brauer diagram d with exactly [ through
strings corresponds to the element S @ 7 ® T of V; ® kS; ® V;, where S and
T are the top and bottom of d respectively, and 7 € S; is the permutation
describing the arrangement of the through strings of d. In the notation of
Theorem [2.2] we let V; and ; be as above, we define the algebra B; to be
kS; (which is cellular by Theorem , and we define B; to be the basis .5;
of kS;. Then the basis A of Bk(r,d) as in Theorem [2.2|is the basis of Bi(r, ¢)
consisting of all Brauer diagrams with 2r nodes. We shall now show that
Equations and are satisfied.

Firstly, we show that ¢ interacts with the decomposition as required by
Equation (as shown by Konig and Xi in Lemma 5.4 of [10]). For this, it
is enough to prove that if d is a Brauer diagram corresponding to S @ # @ T'
as above, then ¢(d) corresponds to T ® 7~! ® S (since the anti-involution
on kS; maps 7 to 7 !). Indeed, ¢(d) is the Brauer diagram obtained by
flipping d upside down, so it certainly has top 7" and bottom S. Further, if
we number the northern nodes of the through strings of d with the numbers
1 to [ from left to right, and likewise for the southern nodes, then by the
definition of 7, the node labelled i on the top row of d is connected to the

node labelled (7)7 on the bottom row. Hence, the node labelled (i)7 on the
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top row of ¢(d) is connected to the node labelled i on the bottom row of «(d).
This is equivalent to saying that the node labelled i on the top row of ¢(d)
is connected to the node labelled (i)7~! on the bottom row of ¢(d). Thus
indeed ¢(d) corresponds to T ® 771 ® S.

Now let us show that the multiplication in Bg(r,d) behaves as required

by Equation (2.6). In fact we can prove a much more precise result:

Proposition 2.5. (Konig and Xi — Lemma 5.5 in [10]; see also Proposition
4.7 in [5]) Let v be a positive integer and m,l € I,. Let di and da be Brauer
diagrams in Bx(r,d) with m and | through strings, respectively. Then we have
half Brauer diagrams P,Q € Q,, and U,V € Q, and permutations w € Sy,
and o € S; and such that under the isomorphism , dy corresponds to
PRm®RQ and dy corresponds to URo®V . Let p be the Brauer diagram formed
when computing the product dids as explained above, so that dids = 6™p for
some integer n. > 0 (with §° taken to be 1). Then p has at most | through
strings, and whether p has exactly | through strings or not depends only on
Q and U.

If p has exactly | through strings, then p corresponds under the isomor-
phism to Z ® 0o ® V, where Z is a half Brauer diagram with | free
nodes depending only on P,Q, 7 and U, and 0 € S; depends only on Q, 7 and
U, while the index n of 6 (as above) depends only on @ and U.

We shall give a formal proof of this proposition presently; first let us
consider an example of such a calculation, which will hopefully clarify the

proof. Take r = 11 and let d; be the diagram

° ° ° ° ° ° ° ° ° ° °
— \_K;7<
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with 5 through strings, and ds be the diagram

with 3 through strings. To calculate the product dyds, we form the concate-

nated diagram

[ ] [ ] [ ] .\_/. [ ] .\:></. [ J

[ ] Q:. .\_/./\Q\/. .\_/./:7<.
T, o <X

[ ] [ ] [ ] L] [ ] [ ] [ ] L] [ ] .(2.18).,

[ ] [ [ [ ] [ ] [ [ [ ] [ ] [ [ ]
~ \_><_/
— —
[ ] [ ] [ J [ ] [ ] [ ] [ J [ [ ] [} [ J

Let us now consider this product in terms of the claims made in Proposi-
tion 2.5

Firstly, notice that p has 3 through strings, which is the same number
as do. This is so because, in the concatenated diagram , there are
three open paths which have a through string of d; “at one end” and a
through string of dy “at the other end”, and in turn this is so because (in
the concatenated diagram) the northern node of each through string of ds is
“connected” to the southern node of a through string of dy, either because
the two nodes coincide in the concatenated diagram, or via a “chain” of
horizontal edges; this fact is in turn a consequence purely of the arrangement

of free nodes and horizontal edges in the bottom of d; and the top of ds
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(these are the half diagrams @ and U of Proposition respectively), as
claimed in the proposition.

Now the bottom of p is the same as the bottom of dy (this half diagram
corresponds to the half diagram V' of Proposition ; whatever diagram we
had chosen for d;, the horizontal edges present in the bottom of dy would
have been “inherited” by the bottom row of the concatenated diagram
and hence by the bottom of p; thus if (with a different choice of dj) the
bottom of p had not been equal to the bottom of do, then the bottom of
p would necessarily have had more horizontal edges than the bottom of ds,
and hence p would necessarily have had fewer than 3 through strings.

Next, we see that the top of p (corresponding to the half diagram Z in
the proposition) has four edges: three are “inherited” from the top of dj,
and the fourth arises from an open path in the concatenated diagram
which consists of a pair of through strings of d; whose southern nodes are
connected by a “chain” of horizontal edges from the bottom row of d; and
the top row of do; note in particular that neither the through strings of do
nor the horizontal edges in the bottom of dy are involved (as claimed in
Proposition [2.5]).

Now let us return to the three open paths in the concatenated diagram
(2.18) which give rise to the through strings of p. Indeed, let us pick them

out in the concatenated diagram:

Now recall that we may describe the arrangement of the through strings of a

Brauer diagram via a permutation: for do this permutation is (23) € Ss (this
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is the permutation o of Proposition [2.5)); for p it is id € S3. If we extract
the “upper part” of the diagram (2.19) by removing the edges corresponding
to through strings of ds and also the lowest row of nodes together with its

horizontal edges, we get

Let us now remove from this diagram all of the dotted edges and the nodes
to which they are connected; further, for each of the three remaining open
paths, let us replace all of the nodes and edges in the path, except the two

“end nodes”, with a single edge. We are left with the permutation diagram

° ° ° (2.21)

which corresponds to the permutation (23) € S3 in the manner explained
above when we defined permutation diagrams; further notice that the diagram
, and hence this permutation (2 3) obtained from it, depends only on
the diagram d; and the top of the diagram ds (this permutation (23) is the
9 of Proposition [2.5)). Now if we multiply this permutation (23) obtained
from the diagram ([2.20) with the permutation (23) describing the layout
of the through strings of ds, we get the permutation id which describes the
layout of the through strings of p, and the diagram shows why this is
so (all of this is in agreement with the claim made in Proposition that
the permutation describing the arrangement of the through strings of p is
equal to 0o).

Finally, the single factor of § appearing in the product dids arises from

the single closed loop in the concatenated diagram (2.18)). This closed loop
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is formed entirely from horizontal edges in the bottom of d; and the top of
dy (in the notation of Proposition we have n = 1, and indeed this value

is determined solely by the half diagrams @ and U).

Proof of Proposition [2.5. Recall Lemma[l.5, where we showed that if f; and
fo are planar diagrams, then the number of through strings in the planar
diagram formed when calculating the product fifo cannot be more than the
number of through strings in either fi; or fs, and further that this number
depends only on the bottom of fi; and the top of fo. Exactly the same
argument used in the proof of that lemma can be applied to the two Brauer
diagrams d; and do, and thus indeed p has at most [ through strings, and
whether p has exactly [ through strings or not depends only on @) and U.

From now on, we shall assume that p has exactly [ through strings. Thus
p corresponds under the isomorphism to Z@T1® V' for some Z, V' €
and some 7 € S;. Further, we shall denote by D the concatenated diagram
with three rows of nodes formed when computing the product dids (so in
our example, D is the diagram .

Now all of the horizontal edges on the bottom row of ds are “inherited”
by the bottom row of D, and hence are also “inherited” by the bottom row
of p. Thus all of the edges of the bottom V of dy are present in the bottom
V' of p. Since both V and V' have [ free nodes, it follows that V/ = V.

By considering D, we see that the edges of Z are exactly the edges of P
together with any edges which arise from an open path in D which has a
through string of d; at each end and one or more horizontal edges from the
middle row of D between them. Since the horizontal edges on the middle row
of D are all “inherited” from either @ or U, we see that Z does not depend
on o or V, so that as claimed Z depends only on P,@Q, 7 and U.

To see that 7 = 6o for a suitable 6 as claimed, we do exactly as in
the above example. Firstly we note that, as in the proof of Lemma

any through string of p must arise from an open path in D with a through
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string of d; at one end and a through string of dy at the other; since p has
exactly [ through strings, there are exactly [ such open paths, which we shall
call the good paths of D (in the above example, the paths picked out in
the diagram are exactly the good paths). We notice that the good
paths of D are exactly those paths which contain a node corresponding to a
northern node of a through string of ds, and that these nodes are exactly
the nodes corresponding to a free node of U (when the nodes of U are taken
to correspond to the nodes of the middle row of D in the natural way). We
next extract the “upper part” of D by removing the edges corresponding
to through strings of do and also the lowest row of nodes together with
its horizontal edges; let us call this diagram D’ (this D’ corresponds to
the diagram in the example above). Further, we define the good
paths of D’ to be exactly those paths in D’ which are formed from part
of a good path of D (in the above example, the paths picked out in the
diagram are exactly the good paths). Now clearly the diagram D’
does not depend on either o or V, and moreover the good paths of D’ are
exactly those paths which contain a node corresponding to a free node of
U. Thus if we do as in the above example and use the good paths of D’ to
form a permutation diagram on 2! nodes, then this permutation diagram
does not depend on either ¢ or V. Define 6 to be the permutation in S
corresponding to this permutation diagram (in the manner explained above
when we defined permutation diagrams), which thus depends only on d; and
U. It is now clear by considering the diagram D that 7 = 6o as required.
Finally, the index n is the number of closed loops in the concatenated
diagram D, which we may see depends only on the arrangement of horizontal
edges in the bottom of d; and the top of da, so indeed n depends only on @
and U. 0

We may now use Proposition to prove that Equation (2.6]) holds for

our decomposition of the Brauer algebra By(r, d). Recall that for each [ € I,
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we have defined €; to be the set of all half Brauer diagrams with r nodes
and [ free nodes, the algebra B; to be kS;, and B; to be the basis S; of kS;.
Then the basis A of Bg(r,d) as in Theorem is the basis consisting of all
Brauer diagrams with 2r nodes. Let a € A, let [ € I,., let U,V € ; and let
o € 5;. Let d be the Brauer diagram corresponding to U ® ¢ ® V' under the
isomorphism (2.1). Then we have ad = §™p for some Brauer diagram p and
some non-negative integer n.

By Proposition [2.5] p has at most [ through strings, and whether or not it
has exactly [ through strings does not depend on ¢ or V', but only on a and U.
If p has fewer than [ through strings, put z(a,U) = 0 and ¢(a,U) = 0; it is
clear that Equation (2.6) now holds. If p has exactly [ through strings, then
as in Proposition p corresponds to Z ® fo ® V under the isomorphism
([2.1). Thus if we define z(a,U) = Z and c(a,u) = §"6, then Equation (2.6)
follows by Proposition Finally, notice that by Proposition [2.5] our choice
of z(a,U) and c¢(a,U) has depended only on a and U. Thus we have now
proved the following:

Theorem 2.6. (Konig and Xi — Theorem 5.6 in [10]) The decomposition
By(r,0) = @vl kS @V,
lel,
of the Brauer algebra By(r,d) given in Equation exhibits Bx(r,0) as
an iterated inflation of the cellular algebras kS; for |l € I., in the sense of
Theorem with £ being the set of all half Brauer diagrams with r nodes
and | free nodes, and B; being the basis S; of kS;.

2.5 The cell modules of an iterated inflation

We shall now show how the cell modules of an iterated inflation of cellular
algebras may be obtained from the cell modules of the cellular algebras B;
which appear in the decomposition (2.4). While this method of obtaining

the cell modules of an iterated inflation is not explicitly given in [9] or [10],

84



it is implicit in the work done there; Xi gave a more explicit formulation
of the idea in [I5], in particular in the proof given for Lemma 3.3, and in
Corollary 4.10. The result we present here is slightly different from the
corresponding ideas in the work of Konig and Xi, due to the different way

we have formulated the concept of an iterated inflation of cellular algebras.

Corollary 2.7. Let A be an iterated inflation of cellular algebras as in
Theorem with notation as in that theorem. Then the cell module of A
corresponding to (i,\) € A is (up to isomorphism) V; @ A®, where A is the

cell module of B; corresponding to X\, with the action given by
alu®§) =z(a,u) ® cla,u)

fora € A, u € Q; and & € A*, where x(a,u) and c(a,u) are as in Theo-
rem 2.2

Proof. Let (u,X),(v,Y) € M(i,\), and a € A. Then as in the proof of
Theorem we have
(4,2 _ A
aCy X), (wy) = @ (“ ®Cxy ® U)
Ex®cC§\(7y®v (mod J(< 1))

for some = = z(a,u) and some ¢ = ¢(a, u) as in Equation (2.6). Recall also

that if we write z as a k-linear combination

T = Z’wa

’LUEQZ'

over ;, and for any (w,U) € M (i,\) we define
Ta((wv U)v (u7 X)) = VwTC(U7 X),

then we have

i\ A
aC((ng),(uY) = Z ra((wa U)> (u7 X))C((w,[}),(v,y) + L
(w,U)EM(i,N)
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where L is a linear combination of elements C'((g,’;/(),% (ur.y) for (", N) < (i, N).
Thus, the cell module of A corresponding to (i, \) € A may be constructed
as the k-vector space with basis the set of all symbols C', x) for all (u, X) €

M (i, A\) and action given by

aC(u,X) = Z 'ra((w, U)7 (u7 X))C(w,U)
(w,U)EM(i,))

(by Section in particular Equation (|1.6))). We can set up a linear bijection
from this module to the k-vector space V; @ A* by sending each basis element
Clu,x) to u® Cx (where Cx is a basis element of A* as usual). The formula

for the action of A induced on V; ® A* by this isomorphism is
a(u@Cx)= »  ral(wU), (u,X))(we Cy)
(w,U)EM (i,)\)

=3 Y U X)(we Cy)

weQ; Ue M (N)

Z'yww ® Z ro(U, X)Cy

we; UeM())

=z(a,u) ® (c(a,u) Cx) .

Since the elements C'y for X € M () form a basis of A*, we may easily show

that this action of A on V; ® A* agrees with the formula given above. [

As a consequence of Corollary 2.7, we may obtain the cell modules of
Bk(r, d) with respect to the cellular structure given in Theorem This
characterisation of the cell modules of Bg(r, d) is implicit in Section 4 of [5],

and has since been used by a number of authors.

Proposition 2.8. Let I € I, and A\ € Ay (recall that A; is the set of all
partitions of | with the reverse dominance order). Then for the cell module

AN of Bi(r,6), we have an isomorphism
A(l,)\) >~V S)\

86



of k-vector spaces, where (recall) Vi is the k-vector space with basis the set of
all half Brauer diagrams with r nodes and | free nodes and S is a cell module

of kSp, as explained in Theorem[2.1 The action is as given in Corollary[2.7}
Proof. This is immediate from Theorems and Corollary O

New material in Chapter 2: The main new idea in this chapter is
our reformulation of the concept of an iterated inflation of cellular alge-
bras in Theorem [2.2] Of course, this reformulation is closely based on the
work of Konig and Xi, and so it is not a completely new result. Similarly,
Proposition (which shows that multiplication “within a layer” of an
iterated inflation is “governed” by a bilinear form) is also “new” in the sense
that it is based on our reformulation in Theorem but it is really just
a demonstration of the link between Theorem and the original work of
Konig and Xi; the same applies to Corollary (on the cell modules of an
iterated inflation). However, I do not believe that a counterexample to Xi’s
Lemma about iterated inflations (Lemma 3.3 in [I5]) has previously been

published, so the content of Appendix [A]is new.
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3 Wreath products of cellular algebras with sym-

metric groups

The wreath product of an algebra with a symmetric group is a well-known
construction which arises naturally in certain areas of representation theory;
such wreath products and their representation theory have been studied, for

example, by Chuang and Tan in [1].

3.1 Opposite algebras

We begin by briefly reviewing the notion of opposite algebras, which will be
used below to overcome certain minor technical problems we shall encounter
in reconciling our work on wreath products with some of the literature on
the subject. Recall that for any unital associative k-algebra A, we define
the opposite algebra A°P to be the unital associative k-algebra whose

underlying vector space is A, with multiplication * defined by
axb = ba,

where the product on the right-hand side is the product in the original
algebra A; the unit element of A°P is the same as the unit element of A. It

is immediate that (AOP)OP = A.

Proposition 3.1. Let A be a cellular algebra over k as in Definition
with cellular data (A, M,C, ). For each X\ € A and each S, T € M(X), define
égj = C%,S. Then A°P is cellular with respect to (A, M, 5, L).

Proof. The properties (C1) and (C2) of Definition |1.2| are immediate by the
cellularity of A. For (C3), let a € A°?, A € A and S,T € M(\). Then

axCr = Cp ga

= Y r@US8Cy  (mod A(< X)) (by (C3))
UeM()\)
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= Y #WlU.8)Chy
UeM(\)

(where 7,(U, S) is defined to be 7,4y (U, S)).

Thus a * égT has the required form, since the coefficients 7,(U, S) are
independent of 7" and A°P(< X\) = A(< A). Thus AP is cellular as claimed.
O

3.2 The wreath product

Let k be any field. We shall begin by defining our main object of study, the
wreath product of a k-algebra with a symmetric group S,,. The definition
which we shall use is slightly different from the one usually used in the
literature (for example, in Section 3 of [1] or Section 6 of [I1]); this is because
we have adopted the convention that the symmetric group 5, acts on the right
(see Section [2.1)), whereas works such as [I] and [11] adopt the convention
that the symmetric group acts on the left. Thus, with S,, acting on the right
as per our convention, the symmetric group on n letters as used in [I] and
[T1] is the opposite group Sp¥ of S,, whose group operation we shall write as
*, so that o x m = wo. There is, however, a simple relationship between the

two different definitions of the wreath product, as explained below.

Definition 3.2. Let A be a finite-dimensional unital associative k-algebra,
and n a positive integer. The wreath product S,,!A of A with the symmetric

group S, is defined to be the k-vector space
kS, @ (A®")

(where A®™ denotes the tensor product of n copies of the vector space A),

with multiplication well-defined on pure tensors by the formula

(CRa1®az®@: - ®ay)(TR®b @by ® -+ @ by)

=0T & (a(l)ﬂ_1b1) & (0(2)ﬂ—1b2) K- Q (a(n)ﬂ_lbn) (31)
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where a1,a9,...,0,,b1,b2,...,b, € A and o,7 € S,,. We may easily verify
that this formula does indeed yield a well-defined k-bilinear multiplication on
SnlA, and moreover that S,!A equipped with this multiplication is a finite-
dimensional unital associative k-algebra; indeed it has dimension (dim(A))"n!
and unit element

e®1IRxI®---®1

where 1 is the unit of A and e is the identity permutation in S,. Further,
we shall adopt the convention that the wreath product SgtA of A with Sy
is just kSp, which (recall) is taken to be the field k; so note carefully that
although we regard both S; and Sy to be the trivial group, 5114 and SylA
are not isomorphic (unless A = k), since the first is isomorphic to A, while

the second is k.

We shall adopt the following notation for pure tensors in the wreath

product S,tA: for ai,as,...,a, € A and x € kS,,, we shall write
(x;a1,a9,...,ay)
for the pure tensor
TR RVar®- - Ra, € SHA.

So notice that this notation (+; «,..., +) is k-linear in each place, and that

with this notation the formula (3.1]) for multiplication in S,,!A becomes

(o5a1,a2,...,a,)(m;b1,b2,...,by)
= (07T; a(l)ﬂfl bl, amrle, ce ,a(n)ﬁflbn) (3.2)
where a1,a9,...,a,,b1,b2,...,b, € A and 0,7 € S,.
As mentioned above, a different definition of the wreath product is found

in much of the literature: in both [1] and [11], the wreath product of A and

Sp? is defined to be the vector space (A®") @ kSp” with a product defined
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on pure tensors by the formula

(a1,a2,...,an;0)(b1,ba, ..., by;7)

= (albgq(l), a2b071(2), ce ,anbgfl(n); g * 7T) (3.3)

for ai,as,...,an,b1,be,...,b, € Aand o,m € Sp¥ (where we have adopted a
notation for pure tensors which is analogous to the one given above). Again,
we may check that Equation does indeed give a well-defined associative
unital multiplication on (A®") @kSyP; let us denote the algebra so defined by
A1SyP, and further let us emphasise that this AWS,Y is precisely the wreath
product as defined in [I] and [I1]. By direct calculation of products, we may

easily show that we have an isomorphism
S 1A ((Aop)zszp)op
of k-algebras, via the map (well-)defined on pure tensors by
(o3a1,a2,...,an) — (a1,a2,...,a4p;0).

By applying this isomorphism with A°P in place of A and then taking the

opposite algebra of both sides, we have also
AUSEP = (S, 0(A%P))P, (3.4)
with the isomorphism being
(a1,a2,...,an;0) — (0;a1,a92,...,a,). (3.5)

We shall use this relationship, together with Proposition to apply some
of the results we shall obtain below for the algebra S,,0A to the algebra ASp’;
since A1SyY is the version of the wreath product most commonly found in
the literature, this should make our results more readily usable.

Now if H is a subgroup of S, then the subspace of Sj,lA spanned by all

pure tensors of the form

(oya1,a2,...,ay)
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for a1, as,...,a, € A and 0 € H may easily be shown to be a subalgebra of
SntA, which we shall denote by H{A. It is easy to see that this subalgebra of
SnlA is identical to the algebra which may be obtained by replacing S, with
its subgroup H in the definition of S,!A, and thus we shall identify H@A
with this algebra, and call H1A the wreath product of A with H. It is
easy to see that HA has k-dimension (dim(A))"|H|. In particular, consider
the subalgebra {e}1A of S,,lA, where e is the identity permutation in Sy,: it
is easy to see that this subalgebra is isomorphic to the n-fold tensor product

algebra A®".

3.3 Compositions and Young subgroups of S,

We shall now review some well-known ideas and facts about the structure of
the symmetric group S,,. In particular, we shall recall the familiar method of
associating to each composition u of n a subgroup S, of Sy, called a Young
subgroup.

Let n be a positive integer. A composition of n is a finite tuple
= (p1, p2; - thn)
where m > 1 and each p; is a non-negative integer, such that
p1t+p2 . ey =N

The number pu; is called the i-th part of pu, and we may refer to u as a
composition of n with m parts. We shall adopt the notation u F n to

mean that p is a composition of n. Conversely, if m is a positive integer and

H = (H15M27"')Mm)

is any finite tuple of non-negative integers which are not all zero, then we

may define the size of y to be

| = g1+ p2 4+
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and it is then clear that u E |u|.
Now let u = (p1, p2, - -, bm) F n (so we have m,n > 1). Define fip =0

and for ¢ = 1,...,m, define
i
= e
j=1
Then for ¢ = 1,...,m, define a set ©; via

{1 +1,... 0y ifpg >0
0, =

so that, for example, if n = 10 and p = (3,0,1,2,0,4), then we have
0, = {1,2,3}, O, =0, O3 = {4}, 0, = {5,6}, 05 =9, Og = {7,8,9, 10}.

Then for each i we have ©; C {1,...,n} and hence Sg, is a subgroup of S,
(recall that we have adopted the convention that Sy is the trivial group).
Further, since the sets ©; for ¢ = 1,...,m are pairwise disjoint, it follows
that the product

Se, X Se, X ...%x Se,, (3.6)

of subgroups of S, is in fact a direct product, which is called the Young
subgroup of x in S,,, and which we denote by S,,. Now for each i =1,...,m,
we have
CHENT

and hence the group Se, is isomorphic to S,;; moreover, if y; > 0 then
there is a canonical identification of ©; with the set {1,..., u;} by mapping
fli—1 + j to j, so that we obtain a canonical isomorphism from Seg, to Sy,; of
course if y1; = 0 then we have a unique (trivial) isomorphism from Se, to .S,,,.
For o € S, we shall usually write & for the corresponding element of Sg,
under this isomorphism. It now follows that S, is canonically isomorphic to

the direct product
Spp X Sy X XSy (3.7)
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We thus obtain a decomposition of the group algebra kS, as a tensor

product of symmetric group algebras
kS, =kS,, ®kS,, ®---®@kS,,,. (3.8)

Further, since S, is a subgroup of S,,, we have as above the subalgebra 5,1 A

of SplA; it is easy to show that we have an isomorphism of k-algebras
(S tA) @ (SptA) @ -+ @ (S, 1A) — SA

well-defined on pure tensors by mapping

1 1 1 L2 2 2 ..om .m m
(Glﬂa17a27"'aau1)®(02aa1>a27"'7au2)®"'®(Jm7a17a27"'7aum>
to
~ ~ .1 1 1 2 2 2 m _.m m
(61 0m; a1,09,...,a,,,a1,a5, ...,y ,...,a1", a3, ... a4, ) (3.9)

where each a;- lies in A, and o; € S,,, and &; represents the image in
Se, of o; under the canonical isomorphism; note also that if ; = 0 then
(04;at,db, ..., aiu) is understood to be just 1 € S)iA 2k, and o; = e.

Let us keep p = (p1, p2, ..., pm) E n as above. Let £* be a complete
family of left coset representatives of S, in S, without redundancy (note

that by a left coset we mean a coset of the form xS, for x € S,,). Further,

let T* be the set of all tuples
(p1,P2; -, Pn)
where each p; lies in {1,...,m} and for each i = 1,...,m we have
{7 :pj =i} = p

(that is, each i appears exactly u; times in the tuple). There is a natural

bijection between L£# and T#, as we shall now show. Indeed, let

wh=(1,...,1,2,...,2,...,m,...,m) € TH.
——

w1 places po places Lm places
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Now S, has a natural left action on T* given by
o (p1,2, -, Pn) = (P1)or P@)os - - -+ P(n)or)-
It is clear that this action is transitive, so that
TH = Orbit(w"),

and further it is also clear that S, is the stabiliser of w#. Hence, by the
well-known Orbit-Stabiliser theorem, we have a bijection from L* to TH,
given by

The reverse direction of this bijection is a bijective mapping from T* to L*

which takes an element (p1,p2,...,pn) € TH to an element = € L such that

(p17p27"' 7pn) =z -wh

which implies
x_l : (plap27 s 7pn) = wM’

and further the fact that the map (3.10)) is a bijection implies that this x is
the unique element of £# whose inverse acts on (p1, pa, ..., pn) to give w.

We now summarise the above discussion in a proposition.

Proposition 3.3. Let n be a positive integer, and pu = (p1, 2, - - -, ftm) be
a composition of n with m parts. Then for any (p1,p2,...,pn) € TH, there
erists a unique x € LM such that

(p(l)x—l,p(Q)x—l,... ,p(n)x—l) = (1,...,1,2,. . .,2,.. RN 7 ,m)

N——
p1 places pa places Um places

and the mapping so induced from TH to L* is a bijection.

Now for any n > 1, and any m > 1, let us define A’ (m) to be the set

of all compositions of n with exactly m parts. A simple order on A" (m) is
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the backwards lexicographic order, which we shall denote simply by <,

where for compositions

n= (NlaﬂQv"'aﬂm) andﬂ: (ﬂlaﬂ%--'a#m)

in A" (m), we define ;1 < i to mean that there exists some i € {1,...,m}
such that u; = fi; for all j such that m > j >4, and p; < f1;. 1t is easy to
see that this defines a strict total order on A" (m), and we shall denote the
corresponding non-strict order by <, as usual. Note that the name backwards
lexicographic order for this order is not standard; this order is sometimes
called the reverse lexicographic order, but we shall not use that name to
avoid confusion with the order which may be obtained by simply reversing
the standard lexicographic order (in the same way that we obtained the
reverse dominance order from the standard dominance order in Section ,

which is not the same order as this backwards lexicographic order.

3.4 Construction of modules for S, A

In this section, we shall describe a well-known method of combining modules
of a k-algebra A with modules of certain symmetric group algebras to produce
modules for the subalgebra S,1A of the wreath product S,tA, where p is
some composition of n; we shall also describe how S),0A-modules may be used
to produce SplA-modules. These ideas have been described, for example, in
Section 3 of [I] and (for the case of the wreath product of groups) in Chapter
4 of [7], although the definitions given in this section are slightly different
from the corresponding definitions in those accounts due to the fact that we
have a different definition of the wreath product. Note that in this section,
we shall make several definitions involving tensor products which are given
by a formula “on pure tensors”; all of these definitions may be shown to
be well-defined via arguments like those given in “A remark about tensor

products” on page[8l Further, we shall not give proofs that the constructions
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described below do indeed yield modules for the given algebras; all of these
proofs consist purely of routine but sometimes lengthy verifications.

For the rest of this section, let us fix some positive integers n and m, and
some composition p = (u1, pa, - - ., fm) € AL (m).

Let Vi,...,Vy, be left A-modules. Then we define (V,..., V)" to be

the left S,1A-module with underlying vector space

with the action given by

(U;al,CLQ,...,CLn)(’Ul®1}2®--c®1}n):

(a()e?V(1)o) @ (a(2)6V(2)0) @ -+ @ (A(n)oV(n)s)

for ai,az,...,a, € A, 0 € S, and each v; in the appropriate V;. Notice
that, since o € S,,, we have that the right-hand side of the above equation
does indeed lie in the underlying vector space of (V,..., V;,)%#. Further, if
u; = 0 for some 4, then the factor Vi®“i is taken to be k and thus may be
ignored when taking the tensor product over k. Note also that if u = (n)
(so that m =1 and we may write V] as just V), we have that (V)% is equal
as a vector space to V®"; we thus introduce the shorthand notation V"
for this module, which is of course a module for S,,!A4 since S, = S,,. For
convenience, let us define VI to be the trivial SplA-module k, recalling that
SotA = k.

There is another way of viewing the module (V1, ..., V;,)%. Recall the
isomorphism which allows us to identify S,tA with the tensor product
algebra

(S 1A) @ (SptA) ® - @ (SptA),

for which we may form as usual the tensor product module

VM @V Q... @ Vim (3.11)
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where from above each Viz“ ‘is a Syt A-module. We may thus view the module
(3.11) as a S, 1A-module, which we may identify with (V1,...,V;,)# via the
mapping given by

(U%®v%® ce ®vlltl) ® (U%@U%@ . ®U32) R ® (vin@)v;’l@ R ®U;Tm)
— VI QU® - - - QU QVIRVER -+ QUL @ - - RV RUF'® -+ - R

from the module to (V1,..., Vy)¥, which is indeed an isomorphism of
SutA-modules.

Now let X be a left S,tA-module and U a left kS,-module. Then the
vector space tensor product X®U is an S,tA-module when equipped with

the action
(o;a1,a2,...,a,)(x @u) = ((0;a1,a2,...,a,)x) @ (ou)

fora; € A, 0 € S, v € X and u € U (note that in the second factor of
this tensor product, we are essentially “inflating” the kS,-module U to a
S, lA-module by exploiting the fact that kS, occurs as the quotient of S0 A
by the subalgebra {e}1A). We shall denote this module by XoU.

Now recall from Equation above that we have a decomposition

kS, =kS,, ®kS,, ®---®kS,,,.

of kS, as a tensor product of algebras. Now if for each 7 = 1,...,m we have a
left module U; for kS,,;, then we may form the (outer) tensor product module
UNh®---@Uy, for kS, ®---®kS,,, as usual. By the above isomorphism, we
may then regard U1® - -- ®Up, as a kS,-module. To understand the action
of kS, on this module, let 7 € S,,. By the decomposition of Sy, we
have a unique factorisation m = @17 - - - T, of m, where each 7; € Sg, is the
image under the canonical isomorphism of m; € S, (see above). Then if
u; € U; for i = 1,...,m, the action of m on the pure tensor u1 ® - -+ ® Uy, in

U1®---®U,, is given by
(Ul ® - @ Upy) = (Mu1) @ -+ @ (T Um,)- (3.12)
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We shall now show how the above constructions may be used to produce
modules for S,1A from modules of A and modules of the symmetric group
algebras kS,,;, in a way which will prove useful below. Indeed, for each
i =1,...,m, let V; be a left A-module and U; a left kS,,-module. By

applying the above constructions, we obtain an S,!A-module
(‘/17 ety Vm)zﬂ @ (U1® e ®Um)

We shall now give an alternative method for constructing this module. For
each i = 1,...,m, we form the S,;0A-module Vil’”, and then the §,,14-
module Viw ‘@U;. We then take the (outer) tensor product of these modules

Viw ‘@U; to form a module
(Vf“l@Ul) ® - ® (VT%‘”@UM)
for the tensor product algebra
(S ) @ - @ (S tA),
which by the isomorphism we may identify with S,0A, and hence regard
(1ro0) o0 1ot

as an S, lA-module. We may now easily show that there is a well-defined

k-linear mapping from
(Vf“l@Ul> R ® (V},{‘m®Um>

to

Viyeo o, Vi) 0 (1 QU2® - - - QU

which is given by taking the pure tensor

(V@VR -+ Q) But) ® (VOVFR -+ - RV, DUg) @ -+ -

@ (' RVE® - U RUum)
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to

(U%@w%@ ... ®U/111®U%®v%® .. ®U32® -

ce ®v§n®v;”® ce ®U;Zn) ® (u1®u2® . ®Um)-

This mapping may then easily be shown to be an isomorphism of S,1A-
modules.

We have so far been concerned with modules for the subalgebra S,1A of
SptA. For any left S,0A-module W, we define as usual the induced module
formed from W to be the left S,tA-module

(SntA) ®g,04 W,

which we shall denote by Ind;;W.

The constructions described in this section arise naturally when working
with modules over wreath products. For example, in Chapter 4 of [7], James
and Kerber use exactly these constructions to obtain the simple modules of

the wreath product group of a finite group with a symmetric group.

3.5 The wreath product of a cellular algebra and a symmet-

ric group

We have now finished our preliminary discussion of the wreath product St A
for an arbitrary k-algebra A, and so we turn to the real subject of our work
in this chapter: the wreath product S;,!A where A is a cellular k-algebra. In
this section, we shall show that S,1A is then a cellular algebra; this has been
proved by Geetha and Goodman in the case that A is not only cellular but
cyclic cellular, meaning that all of the cell modules of A are cyclic (Theorem
4.1 in [4]). Their proof is quite combinatorial in nature, and draws on the
work of Dipper, James, and Mathas in [3] and of Murphy in [I4]. However,
we shall prove the cellularity of S,1A, where A is any cellular algebra, by

exhibiting it as an iterated inflation in the sense of Theorem Note also
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that the version of the wreath product used in [4] is the construction which
we have called AVSyY (see Section , but as indicated above we may easily
transfer results between the two different wreath products S,24 and A.SyF.

Firstly, let us fix some cellular algebra A with cellular data (A, M, C,¢)
as in Definition Further, as noted at the beginning of Section [I.3], we
may assume without loss of generality that the partially ordered set A is in
fact totally ordered. Thus, if we let r = |A|, then we may list the elements
of A in order, say

A< A < .. < A

Next, recall that if n = 0 then 5,14 is just k, which is trivially cellular.
So from now on we shall assume that n > 1.

Now recall that to apply Theorem to SplA, we need a subspace
decomposition of S,!A as in Equation , where each subspace has (up to
isomorphism of k-vector spaces) a further decomposition as a tensor product.
In the statement of Theorem we begin with this decomposition, and
then by taking bases for all of the vector spaces V; and cellular algebras
B; involved in the decomposition, we produce a basis A for the original
algebra. However, we shall obtain our desired decomposition of S,2A by first
defining this basis A of S,1A4, and then showing how we may use this basis
to define the required decomposition. Thus, we define A to be the basis of

SnlA consisting of all elements of the form

(0; 0163117Q1’C§322,Q2""’C§327Qn) (3.13)

where ¢ € S,, and for each i = 1,...,n, ¢ € A = {A1,\2,..., A} and
P;,Q; € M(e;); it is immediate that A is indeed a basis of S,?A because
Sy, is a basis of kS,, and the cellular basis of A is of course a basis of A.
Now take an element of the form , and for each i = 1,...,n define
pi to be the unique element of {1,...,r} such that ¢, = )\,,. Now define
pj = |{i:p;i = j}| for each j =1,...,r, and define p = (p1,..., pr). Then
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clearly p is a composition of n with r parts, which we shall call the layer
index of the element of A.

For each p € A% (r), let us define A* to be the set of all elements of A
with layer index u, and further let us define X* to be the k-span of A*
in S,0A. Since the collection of sets A* as u varies over A~ (r) is clearly a
partition of A by disjoint non-empty sets, it follows that we have a vector
space direct sum decomposition

SwA= P x~.
HEAL (1)
This is the decomposition of S;?A which we shall use to exhibit S,,!A as an
iterated inflation; our next step is to understand how to decompose each
subspace X* as a tensor product V,, ® B, ® V,, as in Theorem
Let o € A% (r) and E be an element of A*, so that we have

— . € € €n
E= (07 Cri O -’CPn,Qn)

as in Equation (3.13]) above, and define the tuple (p1,...,p,) over {1,...,r}

as above. Then clearly we have

(ph o 7pn) S TN’

and so by Proposition we have a unique y € £ such that

D1yy-1sP(2)y~1s--sPmyy—-1) = (1,..., 1,2,...,2, ... r, ... 1),
((l)y (2)y (nyy~1) ( : ) W_,)

p1 places pa places ur places

from which it follows that

(6(1)y—1,6(2)y—1,. . .,E(n)y—l) = ()\1, .. .,)\1,)\2, .. .,)\2, .. -7)\7’7 .. .,)\r).

p1 places H2 ;EECES ur places
Then we have
_ 1. el €2 €
b= ((Jy)y  Cr@i CpQr -’CPZ,Qn)
€ -1 € -1 € 1
Dy (2)y (n)y —1
= (oy; C C ..,C ) 1,1
( Y; P(l)yth(l)yfﬁ P(Q)yflaQ(Q)yfl’ ) P(n)y,l,Q(n)y,l (y ) ) )
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= (ay; ngl,Yl,C}gYZ, e 7037(27}/“) (y 1,...,1)

(where we have defined 7; = €(;y,-1, X; = Py)y-1, and Y; = Qj),-1).
Further, we have oy = 6 for unique x € £# and unique 0 € S,,, so
E= (.739; 037(11,1/1’ ngg,ng e ,C’;ﬁ’yﬂ) (yil; 1,...,1)
= (@51, ) (05 CF 3 Oy, CFy, ) (751,01, (314)

where from above we have

(M1sm2y e sMn) = (A1, ooy A Agy ooy Agy ey Ay e Ap). (3.15)
——
p1 places w2 places wr places

Further, the fact that x,y and 6 were uniquely determined rather than
arbitrarily chosen in the above argument implies that the above expression
(3.14) is in fact the unique expression of E in that form, in the sense that if

we have w, z € L# and 7 € §, such that
E=(wl,...,1) (w; cglth,cg;Tz,...,cgthn) 71,1,
(which implies that &; = €(;),-1, S; = P),-1, and T; = Q(;),-1) with

(01,02, 0n) = (A1, AL Aoy Aay e A Ar),

-~

w1 places 2 places wr places

then we must have w = z, 2z = y, and 7w = 0, and hence §; = n;, 5; = X; and
T; = Y; for each ¢. Finally, let us note that any element of S,,'A of the form
for some x,y € L#, some 0 € S, some 71, ...,n, such that is
satisfied, and some X;,Y; € M(n;) is clearly an element of the basis A" of
X*#. Summarising, we have shown that taking the collection of all elements
of the form satisfying , as x,y range over LH, 0 ranges over S,
and X;,Y; range over M (n;), yields exactly the set A*, with no repetitions.

We shall now use Equation to decompose the subspace X* as a
tensor product V, ® B, ® V, as in Theorem where (recall) we require
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V,, to be a k-vector space and B, to be a cellular algebra. Recall that for
i=1,...,7, we denote the cell module of A associated to \; € A by AM. We

define V), to be the k-vector space tensor product
(kLH) ® (AA1)®M1 ® (A&)@m " (AA,)(@W

where kL denotes the k-vector space with basis £, and each cell module
A is regarded purely as a k-vector space. Further, we take B, to be the
group algebra kS,. We have by Equation that kS, is isomorphic as
a k-algebra to the tensor product algebra kS,, ® kS, ® --- ® kS, . By
Theorem each algebra kS),; is cellular, and hence kS, is indeed cellular
by Theorem Now recall that each cell module A% has a basis consisting
of all symbols Cg for S € M(\;). Thus V, has a basis consisting of all pure

tensors of the form
S=2®0Cs ®Cs ® - ®Cg,
where we have

(51782,. . "SHI’SN1+17"‘7SN1+N2"’ ,Sn)

elements of M(A1) elements of M(A2)

and = € L¥. In keeping with the notation of Theorem we shall call this
basis €,,. Thus the tensor product V,, ® kS, ® V), has a k-basis consisting of
all elements S ® 6 @ T' where

S=2®Cs ®Cs & ---®Cs,

and

T=yCr,oCn®- --Cr,

are elements of €, and 6 € S,. Thus, we may define a k-linear map
v,:V,@kS, @V, — X*

by defining
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U, (S®0xT)=

. . m 712 Mn —1.
(:1,...,1) (9, CE i CE, o CF efl,Tn) (L1,...,1)

)

where for each i = 1,...,n, we have defined 7; € A such that T; € M (n;); the

fact that 6 € S, then implies that S;)p-1 € M(n;) also, so that Cgi_)e_l T 18

indeed defined. Now since the value of ¥, (S ® 6 ® T') is of the form (3.14),

and we certainly have

(7’1’7727"')7771):()‘17"'7)‘1’)‘27"'))‘27"‘7)\7‘)"'a>‘1”)7

n1 places w2 places wr places

it follows that ¥, (S ® 0 ® T') is in fact an element of the basis A* of X*.
Further, we may easily use the fact that each element of A* has a unique
expression of the form (subject to (3.15))) to show that in fact any
element of A" may be obtained as an image ¥, (S ® § ® T') for a unique
choice of §,T € Q,, and 0 € S, and from this it follows that the map ¥,
is in fact a k-linear bijection from V,, ® kS, ® V,, to X#. Thus we have our
desired decomposition
SA= P . (V,0kS,®@V,)
HEAL(r)

~ P V,2kS, 2V, (3.16)
REAR (1)

Returning to Theorem and (in the notation of that theorem) taking the
basis B, of the algebra B, = kS, to be simply S, we see that under this
decomposition , our basis A of S,lA is indeed the basis arising from
the bases 2, and B, just as described in Theorem

Our next task will be to prove that the decomposition has the
properties required by Theorem 2.1, but before we can do that we must

define our anti-involution on S,A.

Proposition 3.4. The formula

L((O’; ai,as, ... 7an)) = (071 s laye)sta@)e), - - - ,L(a(n)a))



for ai,ag,...,an, € A and o € S, (where the map v on the right hand side
is the anti-involution on A) yields a well-defined anti-involution v on SplA;
note that we are thus using ¢ to denote the anti-involutions on both A and

SnlA, but this should not cause confusion.

Proof. We may easily show that defining ¢ by the given formula on pure

tensors does indeed yield a well-defined k-linear map. Then for any elements

ai,as,...,a, € Aand any o € S, we have

L2((U; ai, az,..., an)) = L((U_l ) L(a'(l)a)7 L(a(2)0)7 KR L(a(n)a)))
- ((J_l)_l ) [’Z(G(l)a’lo)’ L2<a(2)0*10)7 s 7L2(a(n)0*10>)
= (o;a1,a2,...,a,).

Since such elements (o;ay,as,...,a,) span S,tA over k, we have (2 = id.

To check that «(ab) = ¢(b)i(a) for all a,b € Sy1A, it suffices by linearity to

prove that for any aq,...,an,b1,...,b, € A and any o, € S,,, we have

L((U; ay,...,ap)(m;by,... ,bn)) = L((ﬂ’; bi,... ,bn))L(<O'; at, ... ,an)),
which may easily be verified by direct calculation. O

Note that this anti-involution ¢ on S, A corresponds exactly to the anti-
involution used on the wreath product A1S,” by Geetha and Goodman (see
the start of Section 4 in [4]), under the isomorphism (3.5)).

We shall now complete our proof that S,1A is an iterated inflation of
cellular algebras, by showing that our decomposition satisfies Equations
and .

Equation may be verified by a straightforward calculation. Indeed,
let jt = (p1,...,pr) € A () and as above take

S=2Cs, ®Cs ® - ®Cg

n

and

T=y®CnoCn® - ®C,
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to be elements of 2, and let § € S,. Then we have
L(‘l’u(s R0 T))

= (@it ) (05 €8 CE e G ) T )

(1)9717 (2)9717 (n)gflv

— -1, oM 2 n .
= (51, D)) ((9 CF i CF L m- .,Cs(n)eflen» W((z31,...,1))
(because ¢ is an anti-involution)
— (o -1. m yp
— (y; 1,...,1)(9 - (CSI’TU)J L (CS%T(M)
Tn —1.
) <CSn,T(n>9))(x ;1.0 1)
(where we have used the fact that 7,9 = n;, since 0 € S),)
— (2 -1. m 72 n, -1,
_(y,l,...,l)(e ,CT(l)gysl,CT@)g,SQ,...,C’T(n)msn)(x 1,..,1)

=0, (T '®S)
v

W(T®(0) @ S)

as required.
Finally, we prove that Equation (2.6|) is satisfied. We do this by proving

the following slightly more general result:
Proposition 3.5. Let u = (u1, ..., 1) € A (r) and let
S=2®Cs ®Cs, ® --®Cg,,
T=yxCn,®Cn®- --0Cr,
be elements of Q,, and 0 € S,,. Let a1,...,a, € A and o € S,,. Then we
have
(0;a1,...,ap)¥, (S®RORT) =
\I/M((z ® a1yre-1C5,), ® @ a(n)qug(n)ﬂ) R T) (mod J<,)

where z € LV and ™ € S, are the unique elements such that ox = zm, and

we define

T =P x*,

W <p
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so that J<,, is in fact the k-span of all elements of the basis A of SplA with

layer index strictly less than u.

Proof. The proof is by direct calculation. Indeed, we have

(03a1,...,0p)¥, (S®O0RT) =

n -1
(o5a1,...,an)(z;1,. .., 1)(9; C’g?lwilm, R Cg(n)rl’Tn)(y 1., 1),

(3.17)

Now

(o501, .. a,) (w3 1,...,1) = (025 @)1, -5 Qp)p—1)
= (2m; a(yp-1, -+, A(n)z—1)

= (z1,...,D)(ma@ye—1,- - Ayz—1)-

Further, we have

. . m Tin

(71', a(l)x_1, ey a(n)z_1) (0 5 05(1)9—1,T1’ ceey CS(n)g—LTn)
— -’ m -~ Tin
= (7T9, a105(1>971’T1, ey anCS(n)eith)

(where we have defined a; = a(;)g-1,-1)

= (7‘(‘9; Z Ta1 (Ul, S(l)g_l)C’glth + Lq,...
U1eM(m)

> Ty (Uny Syo-1) O+ Ln)
UnGM(Un)

(where each L; lies in A(< n;))

= <7r9 ; Z Tay (Ul, 5(1)9*1)031111’ T
UreM(m)

e ’Zr&" (Un, S(n)gfl)CZ:L“Tn) + L
Un€M (nn)

where L is a k-linear combination of elements of the basis A of S,,!A of the

form

(70;C% yps - CR y.) (3.18)
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where for each ¢ = 1,...,n, we have §; < n; in A, and moreover this inequality
must be strict for at least one i. It follows that the layer index of each of
these elements is strictly less that u in the backwards lexicographic order on

A% (r). Tt is also clear that if ¢ is an element of the form (3.18]), then
(z1,...,De(y 5 1,...,1)
has the same layer index as c. It now follows from (3.17)) that

(03a1,...,an)¥, (S®OT)

(Z; 1, ey 1) (71‘9; ZT&I (Ul,S(l)gfl)Cglth, s
UreM(m)

ceey Z Ta,, (Un, S(n)efl)CZZ,Tn) (y_l; 1, ceey 1)
Un€M (nn)

(mod J<,),

the right hand side of which is equal to

Yo > ra(UnSwe1) - ran (Uns Spye1)-
UreM(m) Un€M(nn)
n ~1
(z;1,...,1)(7r9;oglljl,...,cngn)(y 1,.,1)
— Z ZT@I (UI,S(1)971) "'T&n(UnaS(n)Gfl)'

UreM(m) Un€M (nn)
v, ((Z ® CU(I)WG Q- ® CU(n)we) ®ml® T)
(by the definition of W,; notice that we do indeed have U9 € M (n;)
for each 4, since 76 € S,,)

=T, ((Z ® Z Ta} (1, S((l)ﬂg)g—l)CU{ ®---
UieM(m)

e ® Z Tal, (Ur/u S((n)ﬂ.g)g—l)CU;L ) R T R T)

UpneM(nn)

(where we have defined U] = Uiyrg and a; = a(iyro)

=V, ((z ® allC’s((l)ﬂ@)g,1 R ® a;lCS((n) )@ ® T)

w6)6—1
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=V, ((Z & a(1)rz—1 05(1)7r R CS(n)ﬂ) QRO R T)

(because a; = d(i)ﬂe = A()rhg—1z—1 — a(i)mz—l)-
OJ

Equation (2.6) now follows from Proposition since every element of
the basis A of S,1A is of the form (o;aq,...,a,), and it is clear that the

elements

(z @ a(1)re—1 CS(I)W ®-- & a(n)ﬂr’lcsm)w)

and 7 depend only on (o;ay,...,a,) and S (since z and 7 are defined by
ox = zm). Thus, we may apply Theorem to our decomposition
and hence prove that Sj,lA is cellular. Before we give a formal statement
of this result, let us introduce one more notational convention. By tracing
back through our arguments, we may see that the indexing set of the cell
modules of S04 is the set of all tuples (i, ((1,...,¢)) such that u € AL (r)
and ¢; € Ay, (this comes from our use of the theorems and [2.2). For
such a tuple, it is clear that (|1],...,|¢|) = i, and so we lose no information
if we omit p from the notation and thus identify the set which indexes the
cell modules of S, A with the set of all r-tuples of partitions ((i, ..., () such
that (|C1],...,|¢|) = u for some pu € A% (r); let us denote this set by A" ().

Theorem 3.6. Let k be any field and A a cellular k-algebra with cellu-
lar data (A, M,C,1), where |A| = r. Then for any positive integer n, the
wreath product algebra SplA is a cellular algebra with respect to a tuple
(AL (r), M, C, 1), where A& (r) is the set of all r-tuples of partitions (C1,. . .,¢)
such that (|C1], ..., |Cr|) = p for some composition p of n with exactly r parts,

and further the map ¢ in the tuple is the anti-involution (well-) defined on

SlA by

L((O’; ai,as, ... ,an)) = (071 : L(a(l)o), L(a(2)0)7 R L(a(n)o))

forai,as,...,an, € A and o € S,.
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Now let us briefly show how this result may be applied to the wreath
product A1SyP as defined, for example, in [I] (see Section [3.2} above). Recall

from Equation (3.4]) that
AUSEP =2 (S,0(A°P)) 7.

By using Proposition and Theorem we may show that (SnZ(AOP))Op
is cellular with respect to a tuple of data including the partially ordered
set A" (r) and the map ¢, exactly as in Theorem (note that ¢ is indeed a
map on (S,1(A%))"", since it is clear that (S,(A°P))” and Sn1A are equal
as vector spaces). Hence by the isomorphism (3.5)), AuSyP is cellular with
respect to a tuple of data including the partially ordered set Al (r) and the

anti-involution ¢ which is (well-) defined on A1Sy* by

[’((ah az,...,0an; U)) = (L(ao'(l))7 [’(aa(Q))a SRR L(aa(n)) ) 071)

for ai,as,...,a, € A and o € S;F.

3.6 The cell modules of a wreath product

In this section, we shall show how the cell modules of the wreath product
SptA (where n is a positive integer) which arise from the cellular structure
obtained in Theorem may be obtained from the cell modules of A and
Sy, via the constructions described in Section [3.4]

Firstly, let us obtain one description of the cell modules by applying Corol-
1ary Indeed, let (C1,-..,¢r) € AL(r), and let = (|C1, -, [¢]) € AL (r).

Recall from above that
V, = (kL) ® (A’\1>®’” 2 (A,\2>®u2 Q- (A’\”>®”T

and that we define 2, to be the basis of V), consisting of all pure tensors of
the form

S=2Cs ®Cs,®---®Cg,
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where x € L* and we have

(51,52, s Sy Spntts - Spurtpas - - n)-

-~
elements of M(A\1) elements of M(\2)

Further, recall that by Equation (3.8) and Theorems and the cell
module of kS, indexed by ((i,...,¢) is the tensor product module

SQ@SCQ@---@SC’“

where the action is as given in Equation (3.12]). Hence, by applying Corol-
lary , we have for the cell module A€1-$r) of §04 an isomorphism of

k-vector spaces
A(Cl,...,gr) ) VN ® (SCl ® SCQ R ® SC’I‘)

so that in fact Al1-$) is isomorphic as a k-vector space to the tensor

product
k! @ (AM)P @ (AM) g g (AM) T @ S @S2 e 0 89

Further, by Corollary the action of S,1A is as follows: take some
(o;a1,...,a,) € A, so that each a; is in fact some element C%Yz of the
cellular basis of A, let § € €, be as above and let w; € SCifori=1,...,r;
then we have by Proposition that

(o01,...,a,)(S® (w1 ® - @w,)) =

(2® a1yra1Cs5y, @+ @ Ayrg-1C5,y, ) @ (Mwr ® -+ @ mewy)  (3.19)

where z € LV and m € S, are the unique elements such that oz = 27, and
the elements 7; € S, arise from the factorisation of 7 as for Equation (3.12).
We may now easily show by linearity that Equation holds for any
ai,...,a, € A, not just elements of the cellular basis. Further, we may

similarly show that Equation (3.19)) continues to hold when the basis elements
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C's, of the cell modules of A are replaced by general elements of those cell

modules, so that in fact we have

(U;a1,.-.,an)(($®v1®~-®vn)®(w1®-..®wr)) —

(z® A(1)rz—1V(1)r @ @ a(n)m_lv(n)w) ® (mw; ® -+ @ mpw,)  (3.20)

where aq,...,a, € A and each v; is an element of the appropriate cell module
of A (and the other quantities are all as in Equation (3.19)).

We shall now give an alternative description of the cell modules A(¢1¢r)
of §,1A as inflations of S,,1A-modules obtained via the constructions described
in Section this construction of the cell modules of a wreath product was
given (for ASpP) by Geetha and Goodman for the case where all the cell
modules of A are cyclic (Theorem 4.26 in [4]).

Proposition 3.7. The cell module A1) of SNA is isomorphic to the
SplA-module

IndZ((A’\l, LA (SN g SC’“)>,

where 1 = (1C1],---,1¢)-

Proof. We shall explain how the isomorphism is constructed, but we shall
omit the rather lengthy but routine calculations needed to verify the various

stages of the argument. Recall that
Indj (A, AM) "0 (5 @ @ 59))
is defined to be the module
(Satd) @y (AN, ., AM) " 0 (5% @ 5¢))

where we have adopted the shorthand notation ®,, to mean ®g, 4. Further,

let us identify the cell module AC1¢r) with the vector space tensor product
kL @ (AM)P @ (A2 g @ (AT 0 S @S2 . @S¢
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as explained above. It is then easy to prove that we may define a k-linear

map
¥ Al Indg((m, LAY (S e SCT)>

via the formula

V:z2QUI® - QU QW Q- Qw, —>

(2:1,...,1) @ (1@ @) @ (w1 ® - Quwy)) (3.21)

where z € L£*, each v; lies in the appropriate cell module of A, and w; € S%

for i = 1,...,r. Further, we may check by direct calculation using Equa-

tion (3.20]) that

(5a1,...,a)P(X2 RV Q@ QU QW1 Q-+ @ wy) =
Y((oya1,...,an)(ZRVI® - QU QW @ -+ ®wy))
for any o € S, and ay,...,a, € A, which implies that v is a homomorphism
of SptA-modules. It remains only to prove that ¢ is invertible, and to do

this we shall construct an inverse map for ¥. Indeed, it is straightforward to

check that we may define a map
¢ : (SniA) x ((A*l, L AR (Sh e ® SCT)> — ACLGr)
which is k-linear in both places by the formula
¢:((o5a1,...,a0),(V1® - @Vp) @ (W1 @+ @w,)) —>
T ® a1y @ @ Ap)elmys @ hw @ -+ @ 0w, (3.22)

where v; and w; are as above, 0 € Sy, a; € A, x € LV and 0 € S,, are the
unique elements such that o = 26, and the elements 0; € S, are the unique
elements such that 6 = él . ér where éz is as usual the image of §; under

the canonical isomorphism from S),; to Se,. Further, we may check that
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¢((U§a17-~7an)(7r§bly--wbn)a(vl®"'®Un)®(w1®”'®wr)) =
QS((a;al,...,an),(ﬂ';bl,...,bn)((vl®---®vn)®(w1®---®w7~)))
for any 7 € S, and b; € A (with the other quantities as above), from

which we may conclude that the map ¢ is S,tA-balanced; that is, that
¢(aa,d) = ¢(a,ad) for any a € S,1A, and o € S, 1A and any

de (AN, A" o (S @@ 59).

Thus by the universal property of the tensor product, we have a well-defined
map

B+ (SwA) @ (AN, AM)* 0 (59 @ ) ) — A6

given by

b (orar,. . an) @y (1@ @) @ (w1 @+ @ wy)) —
r Q@ a(l)gv(l)e R ® a(n)ev(n)g X lel R R Hrwr

where the quantities involved are as in Equation (3.22]). By direct calculation,

we may now verify that

¢or¢)(m®vl®®vn®wl®®wr):

TRV QUp QW Q- @ Wy
where the quantities are as in Equation (3.21]), and also that
wogﬁ((a;al,,.,’an) Qu ((v1®--'®vn)®(w1®---®w7«))> =
(o301, ,an) @u (N1 @ @) ® (W1 @+ @ wy))

where the quantities involved are as in Equation (3.22)). It now follows that

¢ is indeed an inverse map to . ]

New material in Chapter 3: As far as I am aware, the concept of

an iterated inflation of cellular algebras has not previously been applied
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to the wreath product of a cellular algebra with a symmetric group, and
thus our proof of the cellularity of A.S, in Section is a new result. Of
course, Geetha and Goodman have already shown that the wreath product
A1SyP is cellular if all of the cell modules of A are cyclic, but their proof
is quite different from ours. The construction of the cell modules of AS,
given in Proposition [3.7| was given by Geetha and Goodman (for A1SyP), but
our proof of it is again based on the decomposition of A!S,, as an iterated

inflation and thus is new.
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A A counterexample to a proposed lemma of Xi

This appendix contains a counterexample to the proposed lemma of Xi on
page that is, an algebra A with an anti-involution ¢ which satisfies all
of the hypotheses of the lemma, but is not cellular with respect to ¢ (in the
sense of our Definition . As far as I know, this counterexample is a new
result.

Indeed, let k be any field, and define A to be the k-vector space
My(k) &k @ k.

We define a multiplication on A by setting

a a b b
11 a2 .8 11 b2 6] =
as1 G929 b21 b22
yair daiz abi1  Bbiz
+ ,ay, 0
dagr  ya Bba1  abaa

It is routine to verify that this formula does indeed define a k-bilinear
associative multiplication on A, and moreover that this multiplication is
commutative (so that the concepts of left ideals, right ideals, and two-sided
ideals coincide, and thus we may unambiguously refer to ideals of A) and

has identity element
0 0
1,1

) )

0 0

Further, let us define a map ¢ on A by setting
(M, o, ) = (MT,a,ﬁ)

for any «, 8 € k and any M € Ms(k); it is routine to verify that this ¢ is in
fact an anti-involution on A. Now we may identify the k-vector spaces k and
My (k) with the tensor products k @ k @ k and k ® Ma (k) ® k respectively, by
identifying the element 1@ x ® 1 of k @ k @ k (resp. k ® Ms(k) ® k) with the
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element x of k (resp. Ma(k)). Let Vi = Vo = V3 =k and let By = Ma(k) and
By = B3 =k, where My (k) is a cellular algebra as in Proposition and k
is taken to be the trivial cellular algebra. Thus we obtain an isomorphism of

vector spaces

A= (VioBioVi)® (Va® By @ Va) & (V3 ® Bs @ Va)

(A.1)
= (ko My(k) k) ® (kokok) ® (k@k®k)
from the mapping
(M,a,8)— (1M®1,10a®1,1®5®1). (A.2)

To show that A satisfies the hypotheses of Xi’s lemma when equipped with
the anti-involution ¢ and the decomposition (A.1]), we define k-bilinear forms

G1:Vix Vi = By, ¢o:Vox Vo — Bg, ¢p3: V3 x V3 = B3

by setting
0 0
0 0

(z)l(lv 1) =

and ¢a(1,1) = ¢3(1,1) = 1. It is now routine to check that these definitions
satisfy all the hypotheses of Xi’s lemma; in particular note that for j = 1,2, 3,
the cellular algebra Bj has cell chain {0} C B;.

Proposition A.1. The algebra A is not cellular with respect to the anti-

mvolution .

Proof. Suppose for a contradiction that A is cellular in the sense of Defini-
tion with respect to ¢. Then by Theorem A is cellular in the sense
of Definition with respect to a tuple (A, M, C, ) of cellular data.

We have

dim(A) =" M\

AEA

But dim(A) = 6, and the only ways of writing 6 as a sum of square integers

are6=1+1+14+1+1+1and 6 =441+ 1. It follows that either |A] =6
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or |A] = 3. But if |A| = 6 then we must have |[M(X)| =1 for all A € A, and
thus the cellular basis of A would be of the form

A1 Ao )\3 A4 )\5 /\6
C’571751’ 052752’ 053753’ 054754’ 055755’ 056756

where A = {A1,..., A6} and M ()\;) = {S;} for each ¢ = 1,...,6. But then by
axiom (C2) of Definition we must have L(ng Sl-) = C’é\z s, for each 4, and
it follows that ¢ must be the identity map on A. Since ¢ is not the identity
map, we have a contradiction.

Thus, we must have A = {\1, \2, A3}, where we may assume that
[M(M)| = [M(A2)] =1
and

Note, however, that our indexing of the elements of A as A1, A2, A3 need not
have any relation to the ordering on A. Recall that for A € A, A()) is defined
to be the subspace

spank{Cg\Qy X, Y e M(\)}

of A, and A(< \) is defined to be the ideal
spank{Cg(,Y cp<Xand XY € M(p)}
of A; we shall now show that
A(X3) ={(M,0,0) : M € M>(k)}

and that A(< A3) = {0}. Indeed, it is clear that A(< A3) must be equal to
exactly one of

{0}, A(A1), A(A2), or A(M\1) @ A(N2)

(depending upon the ordering on A) and hence A(< A3) is an ideal of A with

dimension at most 2.
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Now let (M, «, B) € A, so that M € Ms(k) and «, 5 € k. Then

1 a 0
7070 (Mvaaﬁ): 7070
0 0 0 0
0 0 0 0
7070 (M7aﬂﬁ): ’0’0
0 1 0 o
and if « # 0, then the elements
a 0 0 0
(M7a76)7 7070 Y 7070
0 0 0 «

of A are linearly independent, so that if a £ 0 then the ideal generated by

(M, a, ) in A must have dimension at least 3. Similarly, we may use the

facts that
01 0 g
7070 (M7a? ): 70?0
00 0 0
and
0 0 0 0
7070 (M7a7/8): 7070
10 6 0

to show that if 8 # 0 then the ideal generated by (M, «, §) in A must have
dimension at least 3. Thus, we have shown that any ideal of A which does
not lie in {(M,0,0) : M € Ms(k)} must have dimension at least 3, and thus
A(< A3) must lie in {(M,0,0) : M € Ma(k)}.

Next, by the fact that A is commutative, we have
A A A A
CS?TCT?S = CT?SCS?T‘
But by Equation (1.13]), we have
C23,.C%, = (Cp,Cp)C¥y + L
S, T~T,S T,%~T/vs s 1

and

CR5C3% = (Cs, Cs)Cpp + Lo
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for some Ly, L € A(< A3). It follows (because A(< A3) N A(A3) = {0}) that
(Cs,Cs)Cpp = (Cr, Cr)C3s
and since C%?T and C:g\fs are linearly independent, it follows that
(Cs,Cs) = (Cr,Cr) = 0. (A.3)
By applying the same argument to the product C’%fTCQf’S, we find that
(Cs,Cr) = (C1,Cs) = 0. (A.4)
Now consider the element CQ?S. We have
C3 = (B,a, )
for some B € My(k) and «, 8 € k, and thus
C3'sCy’s = (B,a, f)(B, . )
= (X,a%, %)

(where X is some 2 x 2 matrix which we shall not need to consider further).

But by Equation (|1.13]), we have some L € A(< A3) such that

Cé\?scé\,gs = <CSaCS>Cé\,3$ + L
=L (since (Cg,Cs) = 0 by Equation (A.3))
and since A(< A3) C {(M,0,0) : M € Ma(k)}, L is of the form (Y,0,0) (for
some 2 X 2 matrix Y'), and thus we have « = 5 = 0. Similar arguments show
that the elements C%SS, C’é‘f’T, C’%fT must each be of the form (M, 0,0) (for
some 2 x 2 matrix M), and hence A(A3) must be a 4-dimensional subspace
of {(M,0,0) : M € My(k)}, so in fact
A(As) = {(M,0,0) : M € My(k)}.
Further, we must now have A(< A\3) C A(\3) and A(< A3) N A(A3) = {0},

so that A(< A\3) = {0}.
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Returning to the elements C’g‘f’s, C%fs, CQ?T, C%f”T, we have

C3% = (B,0,0)
C34 = (C,0,0)
Cy%s = (C',0,0)
% = (D, 0,0)

for some B,C,C’, D € Ms(k). Further, by axiom (C2) of Definition [1.2{ we

have
A A
L(CS,SS) = CS,SS
A A
L(CS,ST) = CT?S
A A
L(CT?T) = Crp
from which we deduce that B and D are symmetric and C' = CT'; further

since C’é\f”T #* C%f”s, C cannot be symmetric.

In order to derive a contradiction, let us fix a to be the element

0 0
0

;1,0

of A. Then by axiom (C3) of Definition [I.2] and the fact that A(< Ag) = {0},

we have
A A A A
a: (CS,ST - CT?S) = aCS,gT — aCrp’y
=1a(5, 8)CEY + 1a(T, S) Oy
—7a(S, T)Cg,?’s —1a(T, T)C%?s-

But if we let

C11 €12
C =

C21 (22

then by direct calculation, we have
a- (C&p - Cpg) =a-(C—CT,0,0)
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. 0 c12 — €21 0.0
C21 — C12 0
0
7070 )

0

0
0

and so by linear independence of C’g%, C’%SS, CgBT, C%3T, we have

7a(5,8) =14(S,T) =1o(T,S) =r(T,T) = 0. (A.5)
Now let
B_ b1 bi2
bia b2
and
D— di1 dio ’
di2  dao

where we have used the fact the B and D are symmetric. Then by direct

calculation we have
s
a- CS"S = ,0,0],

but by using Equation (A.5]), we have
a-C¥y =14(S,8)C¥ + 1a(T, S)Cp
= ;0,0
00

and so b1 = by = 0. By applying the same argument to the product a- C'%?’T,

we also have di; = dys = 0. But now we have

\ 0 1
053$:(B>O7O)Zb12' aOaO
7 10
\ 0 1
CTST:(Daoao):dl2' 7070
7 1 0

which implies that ngs and Cé\i’T are linearly dependent, and this is a

contradiction. Thus indeed A is not cellular with respect to ¢. ]
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