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The cellular structure of wreath product algebras

Reuben Mark Green

February 18, 2016

Abstract

We review the definitions and basic theory of cellular algebras as

developed in the papers of Graham and Lehrer and of König and Xi.

We then introduce a reformulation of the concept of an iterated inflation

of cellular algebras (a concept due originally to König and Xi), which

we use to show that the Brauer algebra is cellular (following the work

of König and Xi). We then review the notion of the wreath product of

an algebra with a symmetric group, and apply our work on iterated

inflations to prove that the wreath product of a cellular algebra with a

symmetric group is in all cases cellular, and we obtain a description of

the cell modules of such a wreath product.
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Introduction

The main topics of this thesis are cellular algebras and wreath products of

algebras with symmetric groups. Cellular algebras are a class of algebras

first introduced by Graham and Lehrer in [5], and subsequently studied by

many other authors; in the original definition, a cellular algebra is defined

to be an associative, unital algebra over a commutative ring R equipped

with an R-linear bijection on the algebra with certain properties, called an

anti-involution, and an R-basis, called a cellular basis, which interacts in an

especially simple and convenient way with the multiplication of the algebra

and the anti-involution. The wreath product of an algebra with a symmetric

group Sn is a well-known construction which arises, for example, in the study

of the representation theory of symmetric groups, and which may be regarded

in some sense as a generalisation of the more familiar wreath product of

groups. Informally, if n is a positive integer, and A an algebra over a field k,

then the wreath product of A with Sn is the vector space tensor product of

one copy of the group algebra of Sn and n copies of A, with multiplication

based on the natural “placewise” definition of multiplication in a tensor

product, but “twisted” by the natural action of Sn on the n copies of A by

place permutations. The main result presented in this thesis is a proof that

if A is a cellular algebra over a field k, then the wreath product of A with Sn

is also a cellular algebra; this proof uses the concept of an iterated inflation

of cellular algebras, which was introduced by König and Xi in [9].

Graham and Lehrer showed in [5] that a number of interesting algebras

admit such a cellular structure, for example the Brauer algebra and the

Temperley-Lieb algebra, and also certain kinds of Hecke algebra, including as

a special case the group ring RSn of the symmetric group Sn. Graham and

Lehrer also showed how the existence of a cellular structure on an algebra

allows us to study its representation theory, especially in the case where the

underlying ring R is in fact a field. For any cellular algebra, we may define a
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family of modules called the cell modules, and if R is a field then the simple

modules of the algebra may be obtained as quotients of the cell modules in a

standard way which is to some extent independent of the field R.

König and Xi then gave an alternative, but equivalent, definition of

cellular algebras in [8]; this definition avoided the use of a basis, and instead

characterised cellular algebras in terms of a chain of ideals whose quotients

possess certain properties involving the anti-involution, so that we may simply

speak of an algebra being cellular with respect to some anti-involution, rather

than with respect to an anti-involution and a particular basis. Subsequently,

in the papers [9], [10], and [15], König and Xi developed the notion of an

iterated inflation of cellular algebras, a construction by which known cellular

algebras may be combined to produce new cellular algebras. By showing that

a given algebra may be constructed as such an iterated inflation of cellular

algebras, one can conclude that this algebra is itself cellular, and moreover

one may obtain information about its cellular structure and its cell modules.

König and Xi used this method in [10] to give another proof that the Brauer

algebra is cellular, and Xi applied the method to the partition algebra in

[15]. The concept of an iterated inflation of cellular algebras has since been

used by a number of authors.

The wreath product of a cellular algebra with a symmetric group has been

studied by Geetha and Goodman in [4], where in particular they drew on the

work of Dipper, James, and Mathas in [3] and of Murphy in [14] to show that

if we make the extra assumption that every cell module of the cellular algebra

A is cyclic (they define the term cyclic cellular to describe such an algebra),

then the wreath product of A and Sn is again cellular (and moreover is again

cyclic cellular). The proof of this result is quite combinatorial in nature, and

does not make use of iterated inflations of cellular algebras.

In this thesis, we shall only consider cellular algebras where the underlying

ring is in fact a field. In Chapter 1 we review some of the basic theory of
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cellular algebras over a field, drawing mainly on [5] and [8], while in Chapter

2 we shall study iterated inflations of cellular algebras, and in particular their

application to proving that the Brauer algebra is cellular. In Chapter 3, we

review the definition of the wreath product of an algebra with a symmetric

group, and then prove that the wreath product of a cellular algebra with a

symmetric group may be exhibited as an iterated inflation of cellular algebras.

Chapter 1 begins by considering the original definition of a cellular algebra

from [5] (our Definition 1.2) in Section 1.1, and giving some well-known

examples to illustrate it, including the algebra Mn(k) of n × n matrices

over a field k and the Temperley-Lieb algebra TLk(r, δ), for which we give a

detailed definition. In Section 1.2 we continue to review the ideas in [5] by

constructing the cell modules of a cellular algebra, which are fundamental to

the representation theory of cellular algebras. Next, Section 1.3 gives the

basis-free definition of a cellular algebra introduced by König and Xi in [8]

(our Definition 1.10), and a proof that the two definitions of a cellular algebra

are equivalent. Section 1.4 briefly outlines (without proofs) how a complete

set of non-isomorphic simple modules of a cellular algebra may be obtained

as certain quotients of the cell modules, as explained in [5]. In Section 1.5,

we show that the tensor product of two (or more) cellular algebras is again

cellular, and describe its cell modules (these results will be used in Chapter

3); all of this was given by Geetha and Goodman in [4].

Section 2.1 begins by briefly introducing the symmetric group Sn and

some associated combinatorics, and then explains how the group algebra kSn

(where k is any field) may be exhibited as a cellular algebra (see Theorem 2.1);

we do not give any proofs, but rather rely on the work of Mathas in [12].

Section 2.2 gives a well-known construction of the Brauer algebra as a

diagram algebra, and then gives a decomposition of the Brauer algebra as

a direct sum of vector spaces, used by König and Xi in [9], where each

subspace has a natural decomposition as a tensor product of two copies of a
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certain vector space and one copy of a group algebra of a symmetric group.

In Section 2.3, we study iterated inflations of cellular algebras; the results

given in this section are a reformulation of the work of König and Xi. In

particular, Theorem 2.2 provides the definition of an iterated inflation of

cellular algebras which we shall use in this thesis; essentially, Theorem 2.2

allows us to show that an algebra with a subspace decomposition like the one

given for the Brauer algebra in Section 2.2 is cellular with respect to some

anti-involution, provided that certain conditions governing the interaction

between the decomposition, the multiplication, and the anti-involution are

satisfied. In Section 2.4, we apply Theorem 2.2 to complete our proof that the

Brauer algebra is cellular, while in Section 2.5 we show how the cell modules

of an iterated inflation may be obtained from the subspace decomposition

which exhibits it as an iterated inflation (Corollary 2.7), and apply this to

the Brauer algebra; this result is implied in the work of König and Xi.

Section 3.1 recalls the notion of the opposite algebra of an associative

unital algebra over a field, and proves that the opposite algebra of a cellular

algebra is again cellular; we need to make use of opposite algebras in order

to overcome some technical differences between our definition of the wreath

product in Section 3.2 and the definition used in much of the literature.

Section 3.2 defines the wreath product of an algebra with a symmetric group.

As noted above, this definition is different from the definition used in much

of the literature, for example in [1] and [11]; this difference occurs because

we have adopted different conventions on the symmetric group Sn in order

that our work on the Brauer algebra in Chapter 2 agrees with the work

of König and Xi. However, there is a straightforward connection between

the two versions of the wreath product, as Section 3.2 explains. Section 3.3

reviews some standard combinatorics related to the symmetric group, in

particular Young subgroups. Section 3.4 then describes a well-known method

of obtaining modules for the wreath product from modules of the algebra
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and certain symmetric groups; the description is based closely on Section

3 of [1]. Section 3.5 shows how the wreath product of a cellular algebra

and a symmetric group may be exhibited as an iterated inflation of cellular

algebras, and hence proved to be cellular, and Section 3.6 explains how the

cell modules of such a wreath product may be constructed from the cell

modules of the original cellular algebra and the Specht modules of certain

symmetric groups using the method of Section 3.4.

In [15], Xi gave a lemma characterising iterated inflations of cellular

algebras, which has since been used by a number of authors. However, this

lemma is in fact incorrect, and in Appendix A we give a counterexample to

demonstrate this.

At the end of each chapter, I have included a brief paragraph indicating

which results from that chapter are “new”. When I claim that a result is

new, I mean that I have obtained it myself and that, as far as I know, it has

not previously been published.

Throughout this thesis, except where otherwise indicated, k will denote

an arbitrary field. By an algebra over k, we shall always mean an associative

unital k-algebra unless stated otherwise, and in fact all of the algebras

we shall consider will be finite-dimensional over k. We shall usually write

the multiplicative identity element of a k-algebra as 1, and further we shall

demand that 1 6= 0 in our algebras; thus our k-algebras must have k-dimension

at least one.

A remark about tensor products

In this thesis, we shall often need to consider the tensor products of various

algebraic structures, for example k-algebras or modules for k-algebras. In all

cases the objects whose tensor product is being taken have the underlying

structure of a vector space over the field k, and in almost all cases the desired

tensor product is constructed by taking the tensor product of the two objects
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as vector spaces over k, and then equipping the resulting k-vector space with

whatever additional operations are required. As an example, let A and B be

finite-dimensional k-algebras. Then the tensor product algebra of A and B is

defined to be the k-vector space tensor product A⊗kB of A and B, which is

made into an algebra over k by equipping it with the multiplication defined

by the formula

(a1 ⊗k b1)(a2 ⊗k b2) = (a1a2)⊗k (b1b2) (0.1)

where a1, a2 ∈ A and b1, b2 ∈ B. For convenience, we shall in this thesis adopt

the convention that the plain symbol ⊗ always denotes a tensor product ⊗k

taken over the field k; tensor products over any other ring R will be indicated

as usual by a subscript, as ⊗R. However, there is an important issue to be

considered in Formula (0.1): well-definedness. Indeed, the elements a ⊗ b

of A ⊗ B where a ∈ A and b ∈ B, called pure tensors, do not (except in

trivial cases) form a basis of A⊗B, and not all elements of A⊗B are pure

tensors. Thus it is not immediate that Formula (0.1) does yield a well-defined

operation on A⊗ B, nor that this operation is k-bilinear. In the case of a

tensor product over an arbitrary commutative ring R, one would have to

justify the definition given in Formula (0.1) by appealing to the universal

property of the tensor product; however, since we are working with tensor

products over a field, there is a simpler justification. Let α1, . . . , αn be a

k-basis of A and β1, . . . , βm a k-basis of B. Then the pure tensors αi ⊗ βj

for all i = 1, . . . , n and all j = 1, . . . ,m form a k-basis for A⊗B. We then

replace the pure tensors in Formula (0.1) with elements of this basis, to

obtain the formula

(αi ⊗ βj)(αp ⊗ βq) = (αiαp)⊗k (βjβq) (0.2)

where i, p ∈ {1, . . . , n} and j, q ∈ {1, . . . ,m}. Now since the pure tensors

αi ⊗ βj are a k-basis of A⊗B, it is immediate that Formula (0.2) does yield

a well-defined k-bilinear operation on A⊗B when it is extended k-bilinearly
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to the whole of A⊗B; further, it is trivial to show that this multiplication

does indeed satisfy Formula (0.1) for all a1, a2 ∈ A and b1, b2 ∈ B, and so we

conclude that Formula (0.1) does yield a well-defined k-bilinear operation on

A⊗B after all.

In the course of this thesis, we shall on numerous occasions define op-

erations, actions, functions, etc. on tensor products over k via formulae

like Formula (0.1) which give a definition “on pure tensors” (for example,

Section 3.4 contains several such definitions). Formally, such definitions must

be justified via an argument similar to the one given above; however, all of

these arguments are indeed very similar to the one given above, and their

inclusion would be both tedious and unnecessary. Thus we shall just give the

formulae involving pure tensors, and state that the operation (or whatever

it is) which is being defined is indeed “well-defined”; in all such cases it

is possible to prove that this is so by taking bases over k and applying an

argument like the one above.

The only place where we shall work with tensor products over a ring

which is not a field is in the proof of Proposition 3.7, and separate arguments

will be provided there.
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1 Cellular algebras

Let k be any field. The following standard definition is fundamental to all of

the material in this thesis:

Definition 1.1. LetA be an associative unital k-algebra. An anti-involution

on A is a k-linear map ι : A→ A, such that ι(ab) = ι(b)ι(a) for all a, b ∈ A

and ι2 = idA.

Notice that the requirement that ι2 = idA implies that ι is a bijection.

Further, if ι is an anti-involution on the associative unital k-algebra A, we

may easily show that

aι(1) = ι(1)a = a

for any a ∈ A, and hence, by uniqueness of the multiplicative identity element

of A, we have ι(1) = 1.

Note that some authors, in particular König and Xi, often use the term

involution instead of anti-involution.

1.1 First definition and examples

We begin with the original definition of a cellular algebra.

Definition 1.2. (Graham and Lehrer — Definition 1.1 in [5]) A cellular

algebra over the field k is an associative unital k-algebra A equipped with

a tuple (Λ,M,C, ι) of cellular data, such that

(C1) The set Λ is finite and non-empty, with a partial order ≤, and for

each λ ∈ Λ, M(λ) is a finite set. Further, C is a family of mappings

Cλ, indexed by the elements λ of Λ, such that

Cλ : M(λ)×M(λ) −→ A

and such that the collection of all elements Cλ(S, T ) for all λ ∈ Λ and

all S, T ∈M(λ) is a basis of A. We shall henceforth write the image

of (S, T ) ∈M(λ)×M(λ) under Cλ as CλS,T .
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(C2) The map ι is an anti-involution on A, and we have ι(CλS,T ) = CλT,S for

all λ ∈ Λ and all S, T ∈M(λ).

(C3) For any a ∈ A and any basis element CλS,T we have

aCλS,T =
∑

U∈M(λ)

ra(U, S)CλU,T + L

where the coefficients ra(U, S) ∈ k are independent of T , and L is

a k-linear combination of basis elements CµV,W where µ < λ and

V,W ∈M(µ).

Note that Graham and Lehrer did not explicitly require that the set Λ

be finite or non-empty. However, our convention that a k-algebra must have

k-dimension at least one implies that Λ is non-empty. Further, since we shall

only be interested in finite-dimensional k-algebras, we lose no generality by

assuming Λ to be finite (indeed, König and Xi introduced this requirement

when they recalled this definition in [8]). Also, Graham and Lehrer write

their anti-involution as ∗ : a 7→ a∗.

If A is as in Definition 1.2, then the basis of A consisting of all elements

CλS,T is called a cellular basis of A. We shall presently illustrate this

somewhat technical-looking definition with examples, but first we shall follow

Graham and Lehrer in [5] and give an equation describing products of the

form CλS,Ta which parallels the equation in (C3) for products aCλS,T . Let A

be a cellular algebra as in Definition 1.2. Let a ∈ A, λ ∈ Λ and S, T ∈M(λ).

By the properties of ι given in (C2), we have

CλS,Ta = ι2
(
CλS,Ta

)
= ι
(
ι (a)CλT,S

)
= ι

 ∑
U∈M(λ)

rι(a)(U, T )CλU,S + L′


by (C3), where L′ is a k-linear combination of basis elements CµV,W for µ < λ
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and V,W ∈M(µ). Therefore,

CλS,Ta =
∑

U∈M(λ)

rι(a)(U, T )CλS,U + ι
(
L′
)
.

Now by the linearity of ι and the fact that, for any µ ∈ Λ and V,W ∈M(µ),

we have ι
(
CµV,W

)
= CµW,V , we see that ι (L′) is again a k-linear combination

of basis elements CµV,W for µ < λ and V,W ∈M(µ). We have thus proved

that, for any a ∈ A, λ ∈ Λ and S, T ∈M(λ), we have

(C3)′ CλS,Ta =
∑

U∈M(λ)

rι(a)(U, T )CλS,U + L

where L is a k-linear combination of basis elements CµV,W with µ < λ and

V,W ∈M(µ) (which will in general be different from the element L in the

expansion of the product aCλS,T given by (C3)). Notice that the coefficients

rι(a)(U, T ) are independent of S.

We shall now give some well-known examples of cellular algebras. We

begin with a trivial example: the field k is a cellular algebra over itself

with respect to the tuple of data (Λ,M,C, ι), where Λ = {1}, M(1) = {1},

C1
1,1 = 1 and ι is the identity map on k. We shall call this the trivial

cellular algebra over k.

Our second example of a cellular algebra is the algebra Mn(k) of n×n

matrices over k. We define:

• the set Λ to be {n} with the trivial ordering;

• the set M(n) to be {1, . . . , n};

• the matrix Cni,j (where i, j ∈ {1, . . . , n}) to be the elementary n × n

matrix Ei,j which has (i, j)-th entry 1 and all other entries 0;

• the map ι to take a matrix to its transpose.

Proposition 1.3. Mn(k) is a cellular algebra with respect to the data

(Λ,M,C, ι).
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Proof. Condition (C1) is immediate, and (C2) follows by well-known proper-

ties of the transpose matrix. To prove (C3), we first recall that

El,mEi,j = δmiEl,j

for any l,m, i, j ∈ {1, . . . , n} (where δmi is the Kronecker delta). Let X be a

matrix in Mn(k) and i, j ∈ {1, . . . , n} = M(n). Then we have

X =
n∑
l=1

n∑
m=1

xl,mEl,m

where the coefficient xl,m ∈ k is the (l,m)-th entry of X. Thus,

XCni,j = XEi,j

=

(
n∑
l=1

n∑
m=1

xl,mEl,m

)
Ei,j

=

n∑
l=1

n∑
m=1

xl,mEl,mEi,j

=

n∑
l=1

n∑
m=1

xl,mδmiEl,j

=

n∑
l=1

xl,iEl,j

=
∑

l∈M(n)

xl,iC
n
l,j

which is of the form required by (C3), because the coefficients xl,i are

independent of j.

Our third example of a cellular algebra, the Temperley-Lieb algebra,

has a rather more interesting cellular structure. Before we can define this

well-known algebra, we must define the notion of a planar diagram.

Let r be a positive integer. A planar diagram with 2r nodes consists

of two rows of r nodes, one above the other, and exactly r edges between

the nodes, such that each node is connected via an edge to exactly one other

node (which may be either on the same row or the other row), with the
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additional restrictions that no two edges are allowed to cross, and the edges

must lie entirely within the rectangular area between the rows. For example,

the following are all planar diagrams, with r = 4, 5, 5, and 6, respectively:

• • • •

• • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • • •

• • • • • •.

On the other hand, the following are not planar diagrams:

• • • •

• • • •

• • • • •

• • • • •
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• • • • •

• • • • •

• • • • •

• • • • •,

since the first has edges which cross, the second contains nodes which are not

connected to any other nodes, the third contains nodes which are connected

to more than one other node, and the fourth has an edge which passes

outside the area between the rows. Because each node of a planar diagram is

connected to exactly one other node, any planar diagram defines a partition

of its nodes into pairs. We consider any two planar diagrams with the same

number of nodes to be equal if they define the same partition of their nodes,

regardless of the exact shape of their edges. Intuitively, we only care about

which nodes of a planar diagram are connected, not about the path taken by

the edges between them. Thus, for example, the planar diagrams

• • • • •

• • • • •

and

• • • • •

• • • • •

are considered to be equal.
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Now fix a positive integer r and some δ ∈ k, and let TLk(r, δ) denote the

k-vector space with basis the set of all planar diagrams with 2r nodes. To

define a multiplication on TLk(r, δ), it is enough to define the product of

any pair of planar diagrams in TLk(r, δ).

We shall first give an example of how such a product is computed, which

will hopefully clarify the subsequent formal definition. So take r = 8 and let

d1 be the diagram

• • • • • • • •

• • • • • • • •

and d2 be the diagram

• • • • • • • •

• • • • • • • •.

To compute the product d1d2, we first concatenate the two planar diagrams

into a single diagram with three rows of 8 nodes, by first drawing d1 and

then drawing d2 immediately below it, using the nodes on the bottom row

of d1 as the nodes of the top row of d2. We thus obtain the concatenated

diagram

• • • • • • • •

• • • • • • • •

• • • • • • • •.

(1.1)

We now modify this concatenated diagram by firstly deleting each of the

nodes on the middle row and joining together the two ends of the edges which

meet at that node, and secondly removing the two “closed loops” which are
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thus formed. The diagram we obtain is equivalent to the planar diagram

• • • • • • • •

• • • • • • • •,

which we shall call p. Thus we have taken our two planar diagrams d1 and

d2, and combined them to produce a third planar diagram p. However, we

do not wish to completely ignore the two closed loops in the concatenated

diagram, and so we define the product d1d2 to be the scalar multiple δ2p of p

in TLk(r, δ), with the factor δ2 occurring because we have two closed loops.

Returning to the general case, let d1 and d2 be planar diagrams with 2r

nodes. To compute the product d1d2, we follow the procedure described in

the above example. We concatenate the two planar diagrams into a single

concatenated diagram with three rows of r nodes, by first drawing d1 and

then drawing d2 immediately below it, using the nodes on the bottom row of

d1 as the nodes of the top row of d2. We may consider the edges and nodes

in this concatenated diagram to be grouped together to form paths, each of

which consists of one or more edges linked end-to-end with nodes between

them; these paths may be open paths with two “ends”, each consisting of

a node connected to only one edge, or else they may be closed loops where

each node is connected to exactly two edges (for example, the concatenated

diagram (1.1) has two closed loops and eight open paths). Next we modify

the concatenated diagram: firstly we remove the closed loops, and then for

each open path we replace all the edges and nodes of the path, except the

two end nodes, with a single edge. We thus obtain a diagram with two rows

of r nodes and r edges connecting them, which we may see must in fact be a

planar diagram. As above, we shall call this planar diagram p. We define

the product d1d2 to be δnp, where n ≥ 0 is the number of closed loops in

the concatenated diagram (and where δ0 is to be interpreted as 1 for any

value of δ in k).
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The product which we have now defined on TLk(r, δ) may easily be seen

to be associative on planar diagrams, and hence on the whole of TLk(r, δ).

Further, let e be the planar diagram where each node in the top row is

connected to the node directly below it on the bottom row, so that for

example if r = 5 then e is

• • • • •

• • • • •.

It is easy to see that e is a two-sided identity for the multiplication on

TLk(r, δ). We have now established that TLk(r, δ) is an associative, unital

k-algebra when equipped with this multiplication, which we shall call the

Temperley-Lieb algebra with parameters r and δ. Note that TLk(r, δ) is

not commutative for r ≥ 3.

We shall next equip TLk(r, δ) with a cellular structure. In order to do

this, we shall first introduce some further definitions and ideas about the

structure of planar diagrams.

Firstly, a through string of a planar diagram is an edge which connects

a node in the top row to a node in the bottom row. For example, the planar

diagram

• • • • • •

• • • • • •

has two through strings. If s is a through string of some planar diagram d,

connecting the node x on the top row of d to the node y on the bottom row,

then we shall call x and y the northern node and the southern node of

s, respectively. Any edge in a planar diagram which is not a through string

will be called a horizontal edge.
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Next, consider the planar diagram

• • • • • • • •

• • • • • • • •.

(1.2)

If we erase the through strings of this planar diagram, we obtain a new

diagram

• • • • • • • •

• • • • • • • •,

(1.3)

which consists of two rows of nodes, where some of the nodes in each row

are linked together in pairs by horizontal edges. However, we may recover

the original planar diagram (1.2) from the “erased” diagram (1.3) by simply

drawing the through strings back in again; the restriction that no two edges

may cross in a planar diagram means that there is only one way of drawing

four through strings into the diagram (1.3) to yield a valid planar diagram.

Thus we may regard the operation of erasing the through strings of a planar

diagram as a way of “splitting” it into two “half planar diagrams” ( each

consisting of a single row of nodes where some of the nodes are connected

in pairs by horizontal edges); these “half planar diagrams” may then be

“reconnected” by drawing in through strings in a unique way to yield the

original planar diagram. We shall now state these ideas more precisely.

Formally, if r is a positive integer and l is an integer with 0 ≤ l ≤ r such

that r − l is even, then a half planar diagram with r nodes and l free

nodes is a row of r nodes and exactly r−l
2 edges between the nodes, such

that each node is the end point of at most one edge; it follows that exactly l

of the nodes are not an end point of any edge — we shall call these nodes

the free nodes of the half planar diagram. Further, we require that no two

edges may cross, that two nodes may not be connected if there is a free node

20



between them, and that no edge may cross the (infinitely extended) line

defined by the row of nodes. So for example, the following are not valid half

planar diagrams:

• • • • •

• • • • •

• • • • •.

Indeed, the first diagram has edges which cross; in the second diagram, the

first and fifth node are connected by an edge, but the second node, which is

free, lies between them; the third diagram contains an edge which crosses the

line defined by the row of nodes. As with planar diagrams, we consider two

half planar diagrams with the same number of nodes and the same number

of free nodes to be equal if their free nodes are in the same positions and

the edges of both half planar diagrams give rise to the same partition into

pairs of their non-free nodes: the exact shape of the edges is not important.

In particular, we are free to draw the edges of a half planar diagram either

above or below the row of nodes, so that for example

• • • • • • •

and

• • • • • • •

are considered to be the same half planar diagram; we shall make frequent

use of this freedom below.
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Returning to our above idea of splitting a planar diagram into two half

planar diagrams, we see that indeed if we take a planar diagram d and delete

its through strings, then we shall obtain two half planar diagrams, one from

the top row of d (and its associated horizontal edges), and one from the

bottom. We define the half diagrams so formed to be the top and bottom

of d, respectively. For example, the planar diagram

• • • • •

• • • • •

has top

• • • • •

and bottom

• • • • •.

Note that the number of free nodes in both the top and bottom of a planar

diagram will always be equal to the number of through strings of the planar

diagram.

Conversely, if we are given a pair of half planar diagrams with the same

number of nodes and the same number of free nodes, we may place one of

them above the other and then connect them by drawing in through strings

to form a single planar diagram. For example, consider the half planar

diagrams obtained in the previous example, and for convenience let us call

them S and T , say

S = • • • • •

and

T = • • • • •.
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We can combine them together by first drawing S above T

• • • • •

• • • • •,

and then (going along the two rows of nodes from left to right) adding edges

to join the first free node of S to the first free node of T , the second free

node of S to the second free node of T , and so on, until each free node of

S is joined via an edge to the corresponding free node of T , thus forming a

planar diagram:

• • • • •

• • • • •.

Note that, due to the restriction that edges may not cross in a planar diagram,

this is the unique planar diagram with top S and bottom T ; there is no other

way to draw in three through strings linking the free nodes of S to the free

nodes of T without violating this restriction. Of course, the planar diagram

we have obtained is the same as the original planar diagram which we split

above to obtain S and T ; notice too that if we had started by drawing T

above S, we would have obtained a different planar diagram. It is easy to see

how the above procedure may be applied to any pair of half planar diagrams

to yield a unique planar diagram, provided that they have the same number

of nodes and the same number of free nodes; the number of through strings

in the resulting planar diagram is clearly the same as the number of free

nodes in each of the initial half planar diagrams. Further, it is clear that

the two operations of splitting a planar diagram into its top and bottom on

the one hand, and connecting two half planar diagrams to yield a planar

diagram on the other, are mutually inverse. We summarise this in a lemma:
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Lemma 1.4. Let r be a positive integer, and l an integer 0 ≤ l ≤ r such

that r − l is even. Then there is a bijective correspondence between planar

diagrams with 2r nodes and l through strings on the one hand, and pairs

of half planar diagrams with r nodes and l free nodes on the other. This

correspondence is witnessed by the operation of splitting a planar diagram

with 2r nodes and l through strings into its top and bottom, and by its inverse

operation of connecting two half planar diagrams with r nodes and l free

nodes (in a unique way) to yield a planar diagram.

The next result explains how through strings of planar diagrams interact

with the operation of multiplication on TLk(r, δ).

Lemma 1.5. Let d1 and d2 be planar diagrams in TLk(r, δ) with l1 and l2

through strings respectively, and let p be the planar diagram formed when

computing the product d1d2, as explained above, so that d1d2 = δnp for some

non-negative integer n. Then the number of through strings in p is at most

min(l1, l2), and furthermore this number depends only on the bottom of d1

and the top of d2: if d′1 and d′2 are planar diagrams such that the bottom of

d′1 equals the bottom of d1 and the top of d′2 equals the top of d2, then the

number of through strings in the planar diagram p′ formed when computing

the product d′1d
′
2 is equal to the number of through strings in p.

Proof. Recall from the above definition of the product d1d2 that each edge in

the planar diagram p arises from an open path in the concatenated diagram

formed by placing d1 above d2. It is easy to see that each through string of

p must arise from an open path with a through string of d1 at one end and

a through string of d2 at the other, and that any through string of either

d1 or d2 can be part of at most one such open path. Thus p has at most

min(l1, l2) through strings. Further, any given pair of through strings s1 in

d1 and s2 in d2 form the ends of such an open path if and only if, in the

concatenated diagram, the southern node of s1 is linked via a “chain” of
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horizontal edges to the northern node of s2 (note that this “chain” will be

empty if the southern node of s1 equals the northern node of s2). Thus

the number of through strings of p depends only on the arrangement of the

southern nodes of the through strings of d1, the arrangement of the northern

nodes of the through strings of d2, and the arrangement of the horizontal

edges on the bottom row of d1 and the top row of d2; it is clear that all of

these are completely determined by the bottom of d1 and the top of d2.

Next, let us note that if d is any planar diagram then the diagram formed

by reflecting d in the line parallel to and halfway between its two rows of

nodes is again planar; let us henceforth refer to this operation as “flipping d

upside-down”. For example, if d is

• • • • •

• • • • •

then flipping d upside down yields the planar diagram

• • • • •

• • • • •.

Finally, for any positive integer r let us define Ir to be the set

{r, r − 2, r − 4, . . . , 1 or 0}

with the natural order. In other words, Ir is the set of all l with 0 ≤ l ≤ r

such that r − l is even.

We can now define a cellular structure on the Temperley-Lieb algebra

TLk(r, δ) as follows:

• let Λ be Ir;
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• for each l ∈ Λ, let M(l) be the set of all half planar diagram with r

nodes and l free nodes;

• for each l ∈ Λ and each pair of half diagrams S, T ∈ M(l), let C lS,T

to be the unique planar diagram formed by putting S above T and

connecting them as in Lemma 1.4 (notice that C lS,T thus has exactly l

through strings);

• let ι be the k-linear map defined on TLk(r, δ) by mapping each planar

diagram d to the planar diagram obtained by flipping d upside down,

as explained above.

Proposition 1.6. (Graham and Lehrer — Example 1.4 in [5]) The data

(Λ,M,C, ι) exhibits TLk(r, δ) as a cellular algebra.

Proof. We must check conditions (C1), (C2) and (C3).

(C1): We need only show that the collection of all elements C lS,T for

l ∈ Λ and S, T ∈ M(l) is a basis of TLk(r, δ). Indeed, it is the set of all

planar diagrams in TLk(r, δ), by Lemma 1.4.

(C2): It is immediate from the definition of ι that ι2(d) = d for any

planar diagram d, and hence that ι2 is the identity map on TLk(r, δ). This in

turn implies that ι must be a bijection. The fact that ι(d1d2) = ι(d2)ι(d1) for

any planar diagrams d1 and d2 follows from the definition of the product of

planar diagrams: flipping the 3-row concatenated diagram formed by placing

d1 above d2 upside down yields the same result as flipping both d1 and d2

upside down and then concatenating them in reverse order. Finally, we see

from the definition of C lS,T that ι
(
C lS,T

)
= C lT,S .

(C3): The fact that planar diagrams form a basis of TLk(r, δ) means

that it is enough to prove that the product

dC lS,T

has the required form for any C lS,T and any planar diagram d. Indeed, let d

have m through strings. Since C lS,T is a planar diagram, we know from the
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definition of multiplication in TLk(r, δ) that

dC lS,T = δnp

for some n ≥ 0 and some planar diagram p. From the proof of (C1) above,

it follows that p = C l
′
S′,T ′ for some l′ ∈ Λ and some S′, T ′ ∈M(l′), so that

dC lS,T = δnC l
′
S′,T ′ .

Since l′ is the number of through strings of C l
′
S′,T ′ , we have by Lemma 1.5

that l′ ≤ l, and moreover that l′ depends only on the bottom of d and the

top of C lS,T , which is of course S. So l′ is independent of T . We consider the

cases l′ < l and l′ = l separately. If l′ < l then we set rd(U, S) = 0 for all

U ∈M(l) and we define

L = dC lS,T = δnC l
′
S′,T ′ .

If l′ = l, then T ′ is a half planar diagram with l free nodes, and further by

considering the edges between nodes on the bottom row of the concatenated

diagram formed by joining d above C lS,T , we see that every edge in T must

be “inherited” by T ′, and hence we must have T = T ′, since T also has

l free nodes. Further, the index n is the number of closed loops in the

concatenated diagram formed from d and C lS,T , and the edges contained in

such closed loops come solely from the bottom of d and the top of C lS,T , so

n is independent of T . Thus for the case l′ = l, we define L = 0 and for each

U ∈M(l) we let

rd(U, S) =


δn if U = S′

0 otherwise.

With the above definitions, we see that for any value of l′, we have

dC lS,T =
∑

U∈M(l)

rd(U, S)C lU,T + L

and moreover that the coefficients rd(U, S) are indeed independent of T .
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1.2 Cell modules and the structure of a cellular algebra

We shall now continue to review the work of Graham and Lehrer in [5] by

defining the cell modules of a cellular algebra.

Let A be as in Definition 1.2. For each λ ∈ Λ, we define

A(λ) = spank{CλS,T : S, T ∈M(λ)},

a vector subspace of A. From (C1), we have

A =
⊕
λ∈Λ

A(λ),

([5], Lemma 2.2, (ii)) and so we see that the cellular structure affords a

decomposition of the cellular algebra as a k-vector space. For example, in

the case of the Temperley-Lieb algebra TLk(r, δ), recall that Λ is the set Ir;

for each l ∈ Λ, A(l) is then the k-span of all planar diagrams with exactly l

through strings.

However, as A is not just a vector space, but rather an algebra, we are

more interested in ideals of A than subspaces. In general, A(λ) is not an

ideal of A for λ ∈ Λ. However, we can associate two two-sided ideals of A to

each λ ∈ Λ. Indeed, for each λ ∈ Λ, let

A(< λ) =
⊕
µ<λ

A(µ)

and

A(≤ λ) = A(< λ)⊕A(λ).

Then we have

A(< λ) = spank{C
µ
P,Q : µ < λ, P,Q ∈M(µ)}

and

A(≤ λ) = spank{C
µ
P,Q : µ ≤ λ, P,Q ∈M(µ)}.

Further, from (C3) and (C3)′ above, we see that A(< λ) and A(≤ λ) are

two-sided ideals of A ([5], Lemma 1.5). For example, in TLk(r, δ), A(≤ l)
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is the k-span of all planar diagrams with at most l through strings, while

A(< l) is the k-span of all planar diagrams with strictly fewer than l through

strings. Now, for any subspace V of the algebra A and a, b ∈ A, let us

introduce the notation

a ≡ b (mod V )

to mean that a − b ∈ V (in other words, the cosets a + V and b + V are

equal); it is easy to show that this is an equivalence relation on A. We may

thus restate (C3) and (C3)′ as follows:

(C3) For any a ∈ A and any basis element CλS,T we have

aCλS,T ≡
∑

U∈M(λ)

ra(U, S)CλU,T
(
mod A(< λ)

)
where the coefficients ra(U, S) ∈ k are independent of T .

(C3)′ For any a ∈ A and any basis element CλS,T we have

CλS,Ta ≡
∑

U∈M(λ)

rι(a)(U, T )CλS,U
(
mod A(< λ)

)
.

We shall make frequent use of these restatements below. Further, from the

fact that ι
(
CλS,T

)
= CλT,S for all S, T ∈M(λ), we note that

ι
(
A(λ)

)
= A(λ)

for all λ ∈ Λ, and hence that

ι
(
A(≤ λ)

)
= A(≤ λ)

and

ι
(
A(< λ)

)
= A(< λ),

that is, the subspace A(λ) and the ideals A(≤ λ) and A(< λ) are ι-invariant

for all λ ∈ Λ.

Now for any λ ∈ Λ, we have

A(< λ) ⊆ A(≤ λ),
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and so the quotient A(≤ λ)/A(< λ) is a two-sided ideal of the quotient

algebra A/A(< λ), and hence an A-bimodule, which we shall denote by Q(λ)

([5], Definition 1.6). Notice that Q(λ) is thus isomorphic as a k-vector space

to A(λ), via the linear map given by

A(λ) −→ Q(λ)

CλS,T 7−→ CλS,T +A(< λ).

Let us now fix some λ ∈ Λ, and examine the structure of Q(λ) in more

detail. We shall first show how Q(λ) may be decomposed as a left A-module

into a direct sum of isomorphic copies of a particular left A-module. For

a ∈ A, let us write a for the element a + A(< λ) of the quotient algebra

A/A(< λ). By the definition of A(λ), we know that

A(λ) =
⊕

T∈M(λ)

spank{CλS,T : S ∈M(λ)}

and so

Q(λ) =
⊕

T∈M(λ)

∆λ(T ) (1.4)

where

∆λ(T ) = spank{C
λ
S,T : S ∈M(λ)}.

Recall from (C3) above that for any a ∈ A and any S, T ∈M(λ) we have

aCλS,T ≡
∑

U∈M(λ)

ra(U, S)CλU,T
(
mod A(< λ)

)
where the coefficients ra(U, S) ∈ k are independent of T . So for the left

action of A on Q(λ), we have

aC
λ
S,T =

∑
U∈M(λ)

ra(U, S)C
λ
U,T (1.5)

and so each ∆λ(T ) is a left A-submodule of Q(λ). Further, the fact that the

coefficients ra(U, S) are independent of T implies that for any T, T ′ ∈M(λ),

the k-linear bijection from ∆λ(T ) to ∆λ(T ′) induced by mapping

C
λ
S,T 7−→ C

λ
S,T ′
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for each S ∈M(λ) is in fact an isomorphism of left A-modules, and so the

modules ∆λ(T ) for T ∈M(λ) are all mutually isomorphic as left A-modules.

To emphasise the fact that the isomorphism type of ∆λ(T ) is independent

of T , let us define ∆λ to be the k-vector space with a basis consisting of

symbols CS for all S ∈M(λ), with a left action of A on ∆λ given by

aCS =
∑

U∈M(λ)

ra(U, S)CU (1.6)

for a ∈ A. Then ∆λ is a left A-module, and we have ∆λ ∼= ∆λ(T ) for all

T ∈M(λ). This module ∆λ is called the cell module labelled by λ. Note

that in [5], Graham and Lehrer denote this module by W (λ) ([5], Definition

2.1); our notation ∆λ is based on that of König and Xi in [8].

These cell modules ∆λ for λ ∈ Λ play a fundamental role in the rep-

resentation theory of the cellular algebra A, and we shall make extensive

use of them below. For the moment, notice that we have shown that, as a

left A-module, Q(λ) is a direct sum of |M(λ)| isomorphic copies of ∆λ ([8],

Proposition 3.3). We shall next show that there is a corresponding decom-

position of Q(λ) as a right A-module. From the fact that the ideal A(< λ)

is invariant under ι, we see that ι induces a well-defined anti-involution on

the quotient algebra A/A(< λ), which we shall also call ι; from the fact that

ι
(
CλS,T

)
= CλT,S , this new map ι has the property that

ι
(
C
λ
S,T

)
= C

λ
T,S (1.7)

for all S, T ∈M(λ). We apply this map ι to (1.4) to find that

ι
(
Q(λ)

)
=

⊕
S∈M(λ)

ι
(

∆λ(S)
)
,

where the sum of the subspaces ι
(
∆λ(S)

)
must indeed be a direct sum

because ι is a bijection. Now from the definition of Q(λ), we may see that

ι
(
Q(λ)

)
= Q(λ)
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and so

Q(λ) =
⊕

S∈M(λ)

ι
(

∆λ(S)
)
.

Now by (1.7),

ι
(

∆λ(S)
)

= spank{C
λ
S,T : T ∈M(λ)},

and from (C3)′, we know that any a ∈ A, λ ∈ Λ and S, T ∈M(λ), we have

CλS,Ta ≡
∑

U∈M(λ)

rι(a)(U, T )CλS,U
(
mod A(< λ)

)
where the coefficients rι(a)(U, T ) are independent of S. So for the right action

of A on Q(λ), we have

C
λ
S,Ta =

∑
U∈M(λ)

rι(a)(U, T )C
λ
S,U . (1.8)

Hence, each ι
(
∆λ(S)

)
is a right A-submodule of Q(λ). Further, each

ι
(
∆λ(S)

)
is isomorphic to the right A-module which can be defined as

the k-vector space with a basis consisting of symbols CT for all T ∈ M(λ)

and a right action of A given by

CTa =
∑

U∈M(λ)

rι(a)(U, T )CU (1.9)

for a ∈ A. By an abuse of notation, we shall denote this right A-module by

ι
(
∆λ
)

(again, this is based on the notation of König and Xi in [8]; in [5],

Graham and Lehrer denote this module by W (λ)∗). We have shown that, as

a right A-module, Q(λ) is a direct sum of |M(λ)| isomorphic copies of ι
(
∆λ
)
.

Note that while ∆λ and ι
(
∆λ
)

are formally equal as k-vector spaces (since

we used the same basis to define both of them), their respective actions of A

do not in general commute and so we have not defined an A-bimodule.

Now if we have a left A-module X, then for any a ∈ A and any x ∈ X, let

us define xa to be the element ι(a)x of X; it is easy to use the fact that ι is

an anti-involution on A to show that this defines a right A-module structure
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on X, and we shall denote this right A-module by ι(X). It is now easy to

show that this definition agrees with our above definition of ι
(
∆λ
)
, in the

sense that ι
(
∆λ
)

is exactly the right A-module obtained from ∆λ by defining

xa = ι(a)x (1.10)

for any a ∈ A and any x ∈ ∆λ. Conversely, it is also easy to see that ∆λ may

be considered to be the left A-module obtained from the right A-module

ι
(
∆λ
)

by defining

ax = xι(a) (1.11)

for any a ∈ A and any x ∈ ι
(
∆λ
)
.

We have now produced decompositions of Q(λ) as both a left and a right

A-module. But Q(λ) is an A-bimodule, and we would like a decomposition

of Q(λ) which respects this. Such a decomposition is provided by the next

proposition, which will also help to motivate the second definition of a

cellular algebra (due to König and Xi) which will be given in the next section.

Firstly, note that the k-vector space tensor product ∆λ ⊗ ι
(
∆λ
)

is an A-

bimodule, with left and right actions of A well-defined on pure tensors by

a(x⊗ y) = (ax)⊗ y and (x⊗ y)a = x⊗ (ya) for any a ∈ A, any x ∈ ∆λ and

any y ∈ ι
(
∆λ
)

(and recall that we are writing ⊗ for ⊗k).

Proposition 1.7. Let A be a cellular algebra as in Definition 1.2. For each

λ ∈ Λ, the k-linear map

α : Q(λ) −→ ∆λ ⊗ ι
(

∆λ
)

given by

α : C
λ
S,T 7−→ CS ⊗ CT

is an isomorphism of A-bimodules (Graham and Lehrer, [5], Lemma 2.2, (i)).

Further, recall that ∆λ and ι
(
∆λ
)

are equal as vector spaces, so that for any
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pure tensor x⊗ y in ∆λ ⊗ ι
(
∆λ
)
, the pure tensor y ⊗ x is also an element

of ∆λ ⊗ ι
(
∆λ
)
. We may show that the map

φ : ∆λ ⊗ ι
(

∆λ
)
−→ ∆λ ⊗ ι

(
∆λ
)

defined on pure tensors by

φ : x⊗y 7→ y⊗x

is indeed a well-defined k-linear map. Then the diagram

Q(λ)
α //

ι

��

∆λ ⊗ ι
(
∆λ
)

φ

��
Q(λ)

α // ∆λ ⊗ ι
(
∆λ
)

commutes (König and Xi, in Section 3 of [8]).

Proof. Since the collection of all elements C
λ
S,T for all S, T ∈M(λ) is a basis

of Q(λ), and the set of all symbols CS for S ∈M(λ) is a basis of both ∆λ

and ι
(
∆λ
)
, we see at once that α is a k-linear bijection. The fact that α

preserves both the left and right actions of A on Q(λ) follows from Equations

(1.5), (1.6), (1.8) and (1.9).

To prove that the diagram

Q(λ)
α //

ι

��

∆λ ⊗ ι
(
∆λ
)

φ

��
Q(λ)

α // ∆λ ⊗ ι
(
∆λ
)

commutes, it is enough to prove that

φ
(
α
(
C
λ
S,T

))
= α

(
ι
(
C
λ
S,T

))
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for all S, T ∈M(λ). Indeed,

φ
(
α
(
C
λ
S,T

))
= φ (CS ⊗ CT )

= CT ⊗ CS

= α
(
C
λ
T,S

)
= α

(
ι
(
C
λ
S,T

))
.

1.3 An alternative definition of cellular algebras

We now turn to a second definition of a cellular algebra, which was introduced

by König and Xi in [8], and proved to be equivalent to the definition of

Graham and Lehrer. We shall give a slightly more detailed proof of this

equivalence than that given in [8].

First, let A be a cellular algebra as in Definition 1.2. Now any partial

order on a finite set may be extended (in general non-uniquely) to a total

order. Thus we may assume without loss of generality that the order on Λ is

in fact a total order. So we may list the elements of Λ in order as

λ1 < λ2 < . . . < λn

where n = |Λ|, and the two-sided ideals A(≤ λi) for i = 1, . . . , n now form a

chain

0 ⊆ A(≤ λ1) ⊆ A(≤ λ2) ⊆ . . . ⊆ A(≤ λn) = A. (1.12)

For example, in the case of TLk(r, δ), the ideals A(≤ l) for l ∈ Ir form a

chain

0 ⊆ A(≤ 0) or A(≤ 1) ⊆ . . . ⊆ A(≤ r − 2) ⊆ A(≤ r) = A

where, as noted above, A(≤ l) is the k-span of all planar diagrams with at

most l through strings.
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We now give a definition which captures the structural properties of the

ideal Q(λ) expressed in Proposition 1.7.

Definition 1.8. (König and Xi — Definition 3.2 in [8]) Let A be a finite-

dimensional associative unital algebra over k and let ι be an anti-involution

on A. A cell ideal of A with respect to ι is a two-sided ideal J of A such that

ι(J) = J , equipped with a left ideal ∆ of A contained in J (which implies

that ι(∆) ⊆ J , where ι(∆) must be a right ideal of A by the properties of ι)

and an isomorphism

α : J −→ ∆⊗ ι(∆)

of A-bimodules which makes the diagram

J
α //

ι

��

∆⊗ι(∆)

x⊗y 7→ ι(y)⊗ι(x)

��
J

α // ∆⊗ι(∆)

commute; note that the formula

x⊗y 7→ ι(y)⊗ι(x)

for x ∈ ∆ and y ∈ ι(∆) does indeed yield a well-defined k-linear map from

∆⊗ι(∆) to itself.

Proposition 1.9. Let A be a cellular algebra with cellular data (Λ,M,C, ι),

as in Definition 1.2. Let λ ∈ Λ and fix an element X ∈M(λ). Then, with

respect to the anti-involution ι induced on A/A(< λ) by the anti-involution ι

on A, Q(λ) is a cell ideal of the quotient algebra A/A(< λ) when equipped

with the left ideal ∆λ(X) and the k-linear map α from Q(λ) to

∆λ(X)⊗ ι
(

∆λ(X)
)

given by

α : C
λ
S,T 7−→ C

λ
S,X ⊗ C

λ
X,T
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where, as above, we have written a for the coset a + A(< λ) of a ∈ A in

A/A(< λ).

Proof. This is immediate from Proposition 1.7 and the fact that ∆λ and

ι
(
∆λ
)

are isomorphic to ∆λ(X) and ι
(
∆λ(X)

)
respectively, via the maps

given by

CS 7−→ C
λ
S,X

and

CT 7−→ C
λ
X,T .

We now introduce the second definition of a cellular algebra.

Definition 1.10. (König and Xi — Definition 3.2 in [8]) A finite-dimensional

unital associative k-algebra A with an anti-involution ι is cellular with

respect to ι if it can be equipped with a decomposition

A =
n⊕
j=1

J ′j

of A as a direct sum of vector subspaces J ′j such that ι(J ′j) = J ′j for each j,

and such that if we let Jj =
⊕j

l=1 J
′
l then

0 = J0 ⊆ J1 ⊆ . . . ⊆ Jn = A

is a chain of two-sided ideals of A, and for each j = 1, . . . , n, the quotient

Jj/Jj−1 (which is isomorphic as a vector space to J ′j) is a cell ideal of A/Jj−1

with respect to the anti-involution induced by ι. Such a chain of ideals is

called a cell chain for A.

We shall prove that Definition 1.10 is equivalent to the definition of

Graham and Lehrer. One direction is now almost immediate.

Theorem 1.11. (König and Xi, in Section 3 of [8]) Let A be a cellular

algebra with cellular data (Λ,M,C, ι), as in Definition 1.2. Extend the partial
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order on Λ to a total order as above, so that we may list the elements of Λ

in order as

λ1 < λ2 < . . . < λn

where n = |Λ|. Then A is a cellular algebra with respect to ι in the sense of

Definition 1.10 when equipped with the subspace decomposition

A =
n⊕
j=1

A(λj).

Proof. We have noted above that ι (A(λj)) = A(λj) for all λj ∈ Λ. Further,

we have by the definition of the two-sided ideal A(≤ λj) that

A(≤ λj) =

j⊕
l=1

A(λl),

and so by (1.12) we have the required chain of two-sided ideals, where each

quotient is indeed a cell ideal by Proposition 1.9.

It remains only to prove the other direction of the equivalence.

Theorem 1.12. (König and Xi, in Section 3 of [8]) Suppose that A is a cel-

lular algebra in the sense of Definition 1.10 with respect to an anti-involution

ι, so that in particular A is equipped with a direct sum decomposition into

vector subspaces

A =

n⊕
j=1

J ′j

such that ι(J ′j) = J ′j. Then there exists a tuple of data (Λ,M,C, ι) which

exhibits A as a cellular algebra in the sense of Definition 1.2, where in

particular ι is the original anti-involution and Λ is the set {1, . . . , n} with

the natural order.

Proof. For each j ∈ {1, . . . , n}, let Jj =
⊕j

l=1 J
′
l . Then by Definition 1.10,

we have a chain of two-sided ideals of A,

0 = J0 ⊆ J1 ⊆ . . . ⊆ Jn = A,
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and for each j = 1, . . . , n, we have a finite-dimensional left ideal ∆j of A/Jj−1

such that ∆j ⊆ Jj/Jj−1 and also an isomorphism

αj : Jj/Jj−1 −→ ∆j⊗ι(∆j)

of (A/Jj−1)-bimodules which gives a commutative diagram as in Defini-

tion 1.8.

Let Λ be {1, . . . , n} with the natural ordering. We shall now define the

elements M and C of the tuple (Λ,M,C, ι). Indeed, for each j ∈ Λ, let us

write the coset a+ Jj−1 of a ∈ A in A/Jj−1 as a, so that in particular the

map a 7→ a is a k-linear bijection from J ′j to Jj/Jj−1. Now choose elements

xj1, x
j
2, . . . , x

j
mj

of A such that

xj1, x
j
2, . . . , x

j
mj

is a basis of ∆j (where mj is the k-dimension of ∆j). Then let M(j) be

{1, 2, . . . ,mj}, and for all pairs s, t ∈M(j) let Cjs,t be an element of J ′j such

that

C
j
s,t = α−1

j (xjs⊗ι(x
j
t )).

We now check that conditions (C1), (C2), and (C3) of Definition 1.2 hold.

(C1): We need only check that the collection of all elements Cjs,t for all

j ∈ Λ and all s, t ∈ M(j) is a basis of A. Indeed, for any j ∈ Λ, it is clear

that the collection of all elements Cjs,t for s, t ∈ M(j) is a basis of J ′j , and

since

A =

n⊕
j=1

J ′j

as a vector space, we see that the elements Cjs,t do indeed form a basis of A.

(C2): It suffices to check that ι(Cjs,t) = Cjt,s for all j ∈ Λ and all
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s, t ∈M(j). Indeed, we know that the diagram

Jj/Jj−1

αj //

ι

��

∆j⊗ι(∆j)

φ : x⊗y 7→ ι(y)⊗ι(x)

��
Jj/Jj−1

αj // ∆j⊗ι(∆j)

commutes. So

αj

(
ι
(
C
j
s,t

))
= φ

(
αj

(
C
j
s,t

))
= φ

(
xjs⊗ι(x

j
t )
)

= xjt⊗ι(xjs)

= αj

(
C
j
t,s

)
,

and since αj is a bijection and ι(a) = ι(a) for any a ∈ A, it follows that

ι
(
Cjs,t

)
= Cjt,s.

(C3): Let j ∈ Λ, s, t ∈ M(j) and a ∈ A. Now ∆j is a left ideal of

A/Jj−1. So we have

a xjs =
∑

u∈M(j)

ra(u, s)x
j
u

for some elements ra(u, s) ∈ k, which are of course independent of t. Then

we have

aC
j
s,t = aα−1

j

(
xjs⊗ι(x

j
t )
)

= α−1
j

(
(a xjs)⊗ι(x

j
t )
)

=
∑

u∈M(j)

ra(u, s)α
−1
j

(
xju⊗ι(x

j
t )
)

=
∑

u∈M(j)

ra(u, s)C
j
u,t,

from which it follows that

aCjs,t ≡
∑

u∈M(j)

ra(u, s)C
j
u,t (mod Jj−1),

as required.
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1.4 Bilinear forms and the simple modules of a cellular alge-

bra

In [5], Graham and Lehrer define a symmetric bilinear form on each cell

module of a cellular algebra, and then use this to obtain a complete classifi-

cation of the simple modules of the cellular algebra. We shall now review

the definition of these symmetric bilinear forms (for use in the next chapter),

and then briefly describe how they may be used to find the simple modules.

Recall that the cell module ∆λ associated to λ can be considered to be

the k-vector space with a basis consisting of symbols CS for all S ∈M(λ).

Thus we may define a k-valued bilinear form 〈· , ·〉 on ∆λ by simply giving

the value of 〈CS , CT 〉 for each pair S, T ∈M(λ). Indeed, choose S, T ∈M(λ)

and let c = CλT,S . Then on the one hand, we have by (C3) that

CλT,SC
λ
T,S ≡

∑
U∈M(λ)

rc(U, T )CλU,S
(
mod A(< λ)

)
,

while on the other hand, we have by (C3)′ that

CλT,SC
λ
T,S ≡

∑
U∈M(λ)

rι(c)(U, S)CλT,U
(
mod A(< λ)

)
.

Comparing these two equivalences, we see that we must have

CλT,SC
λ
T,S ≡ 〈CS , CT 〉CλT,S

(
mod A(< λ)

)
,

where 〈CS , CT 〉 ∈ k is defined to be the common value of rc(T, T ) and

rι(c)(S, S); from these values 〈CS , CT 〉 we may now define our bilinear form

on ∆λ. Further, if we choose any pair of elements X,Y of M(λ), then by

applying the above argument using (C3) and (C3)′ to the product CλX,SC
λ
T,Y ,

we may see that

CλX,SC
λ
T,Y ≡ 〈CS , CT 〉CλX,Y

(
mod A(< λ)

)
. (1.13)

Note that in [5], this bilinear form is called φλ ([5], Definition 2.3). To

show that this bilinear form is symmetric, we apply ι to both sides of the
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equivalence (1.13) to obtain

ι
(
CλX,SC

λ
T,Y

)
≡ ι
(
〈CS , CT 〉CλX,Y

) (
mod A(< λ)

)
(where we have used the fact that A(< λ) is invariant under ι), from which

we have by the properties of ι that

CλY,TC
λ
S,X ≡ 〈CS , CT 〉CλY,X

(
mod A(< λ)

)
.

But by using (1.13) again, we have

CλY,TC
λ
S,X ≡ 〈CT , CS〉CλY,X

(
mod A(< λ)

)
,

and so we conclude that 〈CS , CT 〉 = 〈CT , CS〉.

Now in [5], Graham and Lehrer define

rad(λ) = {x ∈ ∆λ : 〈x, y〉 = 0 for all y ∈ ∆λ},

([5], Definition 3.1), which they show to be a submodule of ∆λ ([5], Proposition

3.2, (i)). They then define Lλ to be the quotient module ∆λ/rad(λ), and

show that for each λ ∈ Λ, Lλ is either a simple module, or it is zero. They

then prove that these modules Lλ provide a complete list of the isomorphism

classes of simple left A-modules.

Theorem 1.13. (Graham and Lehrer — Theorem 3.4 in [5]) Let A be a

cellular algebra with data (Λ,M,C, ι) as in Definition 1.2. Let

Λ0 = {λ ∈ Λ : Lλ 6= 0}.

Then the collection of all modules Lλ for λ ∈ Λ0 is a complete list of the

simple left A-modules, and if λ and µ are distinct elements of Λ0, then the

modules Lλ and Lµ are not isomorphic.

1.5 Tensor products of cellular algebras

In this section, we shall prove that the tensor product algebra of two (or

more) cellular algebras is again cellular, and describe its cell modules; we

shall use these results in Chapter 3.
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Recall that if A and B are k-algebras, then the tensor product alge-

bra A ⊗ B is defined to be their tensor product as k-vector spaces, with

multiplication (well-) defined on pure tensors by the formula

(a⊗ b)(c⊗ d) = (ac)⊗ (bd)

(See “A remark about tensor products” on page 8 for more details). One

may easily verify that this multiplication makes A⊗B an associative unital

k-algebra, which is finite-dimensional if both A and B are. We shall show

that if both A and B are cellular, then A⊗B is again cellular, and that the

cell modules of A⊗B may be easily obtained as tensor products of the cell

modules of A and B; these results were stated by Geetha and Goodman in

Section 3.2 of [4].

Firstly, recall that if φ : A→ A and ϕ : B → B are k-linear maps, then

one may easily show that there is a well-defined k-linear map

φ⊗ ϕ : A⊗B −→ A⊗B

given by linearly extending

φ⊗ ϕ : a⊗ b 7−→ φ(a)⊗ ϕ(b),

where a ∈ A and b ∈ B. This map is called the tensor product of φ and ϕ.

Proposition 1.14. (Geetha and Goodman, in Section 3.2 of [4]) Let A and

B be cellular algebras over the field k as in Definition 1.2, with cellular data

(ΛA,M,C, ιA) and (ΛB,M,C, ιB) respectively (we need to distinguish the

sets ΛA and ΛB and the maps ιA and ιB by notation, but there will be no

confusion if we use the same notation for the other items of cellular data).

Then

• let Λ be ΛA × ΛB, with the partial order defined by setting

(λ1, µ1) ≤ (λ2, µ2)
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if and only if

λ1 ≤ λ2 and µ1 ≤ µ2

(it is easy to check that this does indeed define a partial order on Λ);

• for each (λ, µ) ∈ Λ, let M
(
(λ, µ)

)
be the set M(λ)×M(µ);

• for each pair (S,U), (T, V ) ∈M
(
(λ, µ)

)
, let

C
(λ,µ)
(S,U),(T,V ) = CλS,T ⊗ C

µ
U,V ;

• let ι : A⊗B −→ A⊗B be the tensor product ιA ⊗ ιB.

Then the data (Λ,M,C, ι) exhibits A⊗B as a cellular algebra.

Proof. We verify the conditions (C1), (C2), and (C3) of Definition 1.2.

For (C1), it is enough to prove that the elements C
(λ,µ)
(S,U),(T,V ) form a basis

of A⊗B; this follows from the fact that the cellular bases of A and B are

indeed bases.

For (C2), the fact that ι2 = idA⊗B follows immediately from the fact

that ι2A = idA and ι2B = idB. For any a, c ∈ A and b, d ∈ B, we have

ι
(
(a⊗ b)(c⊗ d)

)
= ι
(
(ac)⊗ (bd)

)
=
(
ιA(ac)

)
⊗
(
ιB(bd)

)
=
(
ιA(c)ιA(a)

)
⊗
(
ιB(d)ιB(b)

)
=
(
ιA(c)⊗ ιB(d)

)(
ιA(a)⊗ ιB(b)

)
= ι(c⊗ d)ι(a⊗ b),

and so ι is indeed an anti-involution on A ⊗ B. Now let λ ∈ ΛA and

S, T ∈M(λ), and µ ∈ ΛB and U, V ∈M(µ). Then

ι
(
C

(λ,µ)
(S,U),(T,V )

)
= ι
(
CλS,T ⊗ C

µ
U,V

)
= ιA

(
CλS,T

)
⊗ ιB

(
CµU,V

)
= CλT,S ⊗ C

µ
V,U
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= C
(λ,µ)
(T,V ),(S,U)

as required.

Now let us verify that (C3) holds; that is, that for any x ∈ A⊗ B and

any element C
(λ,µ)
(S,U),(T,V ) as above, we have

xC
(λ,µ)
(S,U),(T,V ) ≡

∑
(X,Y )∈M((λ,µ))

rx
(
(X,Y ), (S,U)

)
C

(λ,µ)
(X,Y ),(T,V )

(
mod I

(
(λ, µ)

))
where the coefficients rx

(
(X,Y ), (S,U)

)
do not depend on (T, V ) and we

define I
(
(λ, µ)

)
to be the subspace of A⊗B which is spanned over k by all

elements C
(λ′,µ′)
(S′,U ′),(T ′,V ′), where (λ′, µ′) < (λ, µ) and

S′, T ′ ∈M(λ′), U ′, V ′ ∈M(µ′).

Since the pure tensors a ⊗ b span A ⊗ B, it is sufficient to show that this

holds for x = a⊗ b. So let a ∈ A and b ∈ B. Then we have

aCλS,T =
∑

X∈M(λ)

ra(X,S)CλX,T + L1

and

bCµU,V =
∑

Y ∈M(µ)

rb(Y, U)CµY,V + L2

where the coefficients ra(X,S) and rb(Y, U) are all independent of both T

and V , and L1 ∈ A(< λ) and L2 ∈ B(< µ). Now

(a⊗ b)C(λ,µ)
(S,U),(T,V ) = (a⊗ b)

(
CλS,T ⊗ C

µ
U,V

)
=
(
aCλS,T

)
⊗
(
bCµU,V

)
=

∑
X∈M(λ)

∑
Y ∈M(µ)

ra(X,S)rb(Y,U)
(
CλX,T ⊗ C

µ
Y,V

)
+ L

where we define L to be( ∑
X∈M(λ)

ra(X,S)CλX,T

)
⊗ L2
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+ L1 ⊗
( ∑
Y ∈M(µ)

rb(Y,U)CµY,V

)
+ L1 ⊗ L2.

The fact that L1 ∈ A(< λ) and L2 ∈ B(< µ) implies that L is a k-linear

combination of elements

Cλ
′

S′,T ′ ⊗ C
µ′

U ′,V ′

where λ′ ≤ λ and µ′ ≤ µ, with at least one of these inequalities being strict.

So indeed L ∈ I
(
(λ, µ)

)
. Finally, we have that

∑
X∈M(λ)

∑
Y ∈M(µ)

ra(X,S)rb(Y,U)
(
CλX,T ⊗ C

µ
Y,V

)
=

∑
(X,Y )∈M((λ,µ))

ra⊗b
(
(X,Y ), (S,U)

)
C

(λ,µ)
(X,Y ),(T,V )

where we have defined

ra⊗b
(
(X,Y ), (S,U)

)
= ra(X,S)rb(Y,U) (1.14)

for each (X,Y ) ∈M
(
(λ, µ)

)
, which we note is independent of (T, V ).

Next, we shall describe the cell modules of a tensor product of cellular

algebras. Recall that if A and B are k-algebras, and V,W are left modules

for A and B respectively, then the tensor product V ⊗W of V and W as

k-vector spaces becomes a left A⊗B module when equipped with the action

which is well-defined by the formula

(a⊗ b)(v ⊗ w) = (av)⊗ (bw)

for a ∈ A, b ∈ B, v ∈ V , and w ∈W .

Proposition 1.15. (Geetha and Goodman, in Section 3.2 of [4]) Let A and

B be cellular algebras with cellular data as in Proposition 1.14, so that the

algebra A ⊗ B is cellular as described in that proposition. Then the cell

module ∆(λ,µ) of A⊗B is isomorphic to the A⊗B module ∆λ⊗∆µ, via the

map given by k-linearly extending

Φ : ∆(λ,µ) −→ ∆λ ⊗∆µ
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C(S,U) 7−→ CS ⊗ CU .

Proof. To prove that Φ is an isomorphism of A⊗B modules, it is enough to

prove that

Φ
(
(a⊗ b)C(S,U)

)
= (a⊗ b)Φ

(
C(S,U)

)
for all a ∈ A, b ∈ B, S ∈ M(λ), and U ∈ M(µ). Indeed, let us recall from

Equation (1.14) in the proof of Proposition 1.14 that for a pure tensor a⊗ b

in A⊗B, we have

ra⊗b
(
(X,Y ), (S,U)

)
= ra(X,S)rb(Y,U)

for any X,S ∈M(λ) and any Y, T ∈M(µ), for any λ ∈ ΛA and any µ ∈ ΛB.

Then we have

Φ
(
(a⊗ b)C(S,U)

)
= Φ

 ∑
(X,Y )∈M((λ,µ))

ra⊗b
(
(X,Y ), (S,U)

)
C(X,Y )


(by the definition of the action on the cell module ∆(λ,µ))

=
∑

X∈M(λ)

∑
Y ∈M(µ)

ra(X,S)rb(Y, U) (CX ⊗ CY )

=

( ∑
X∈M(λ)

ra(X,S)CX

)
⊗
( ∑
Y ∈M(µ)

rb(Y,U)CY

)

= (aCS)⊗ (bCU )

= (a⊗ b) (CS ⊗ CU )

= (a⊗ b)Φ (CS,U ) .

We may generalise the above definition of the tensor product of two

algebras in the obvious way to define the tensor product of n algebras

A1, A2, . . . , An for any n ≥ 1, which we may denote by
⊗n

j=1Aj . In particu-

lar, for any algebra A, we may define the tensor product A⊗n of n copies of

A. Further, we shall adopt the convention that A⊗0 is just the field k for any
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k-algebra A. By using Propositions 1.14 and 1.15 together with induction,

we have the following theorem:

Theorem 1.16. (Geetha and Goodman, in Section 3.2 of [4]) Let k be any

field, n a positive integer, and A1, A2, . . . , An be cellular algebras over k,

where each Aj has cellular data (Λj ,M,C, ιj) as in Definition 1.2 (we need

to distinguish the different partially ordered sets Λj and the different maps ιj

by notation, but there will be no confusion if we use the same notation for

the other items of cellular data).

Then the tensor product algebra
⊗n

j=1Aj is cellular with respect to the

data (Λ,M,C, ι), where:

• we denote by Λ the set Λ1×Λ2× . . .×Λn with the partial order defined

by setting

(λ1, λ2, . . . , λn) ≤ (µ1, µ2, . . . , µn)

to mean that

λj ≤ µj for all j = 1, . . . , n;

• for each element (λ1, λ2, . . . , λn) ∈ Λ, we define M
(
(λ1, λ2, . . . , λn)

)
to be the set

M(λ1)×M(λ2)× . . .×M(λn);

• for each element λ = (λ1, λ2, . . . , λn) ∈ Λ and each pair

S = (S1, S2, . . . , Sn), T = (T1, T2, . . . , Tn) ∈M
(
λ
)
,

we define

CλS,T = Cλ1S1,T1
⊗ Cλ2S2,T2

⊗ · · · ⊗ CλnSn,Tn ;

• we define ι to be the tensor product map ι1 ⊗ ι2 ⊗ · · · ⊗ ιn (it is clear

how we may extend the definition of the tensor product of maps to the

case of an n-fold tensor product).
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Further, for any λ = (λ1, λ2, . . . , λn) ∈ Λ, we have an isomorphism

∆λ ∼= ∆λ1 ⊗∆λ2 ⊗ · · · ⊗∆λn

of left modules over
⊗n

j=1Aj.

New material in Chapter 1: There is no new material in Chapter 1.

As far as I am aware, however, proofs of the results in Section 1.5 have not

previously been published.
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2 The symmetric group, the Brauer algebra, and

iterated inflations

In this chapter we shall consider another type of diagram algebra which is

constructed in a very similar way to the Temperley-Lieb algebra, called the

Brauer algebra. This algebra has an important place in group representation

theory, and has been extensively studied. In particular, Graham and Lehrer

have shown in [5] that the Brauer algebra is cellular; we shall present a proof

of this fact based on the proof given by König and Xi in [10], by exhibiting

it as an iterated inflation of known cellular algebras.

2.1 The symmetric group and its group algebra

We shall begin this chapter by considering the symmetric group Sn on n

letters. In particular, we shall see that the group algebra kSn is cellular over

any field k; not only is this fact interesting in its own right, but it is a vital

ingredient in our proof that the Brauer algebra is cellular.

For any positive integer n, let us write Sn for the symmetric group

of all permutations on the set {1, . . . , n}. We shall adopt the convention

that Sn acts on the right, so that for π, σ ∈ Sn, the product πσ is the

permutation obtained by first applying π and then applying σ. Consequently,

for i ∈ {1, . . . , n} we shall write (i)π for the image of i under the permutation

π, so that we have the formula (i)(πσ) = ((i)π)σ, as expected. We shall also

find it convenient below to define S0 to be the trivial group, so that S0
∼= S1.

The group Sn and its representation theory are of great importance across

several branches of mathematics, and in many related areas. In order to

discuss the representation theory of Sn, we must first develop some standard

combinatorics.

Let n be a positive integer. A partition of n is a finite tuple

λ = (λ1, λ2, . . . , λm)
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where m ≥ 1 and each λi is a positive integer such that λi ≥ λi+1 for

i = 1, . . . ,m− 1, and such that

λ1 + λ2 + . . .+ λm = n.

The number λi is called the i-th part of λ, and we may refer to λ as a

partition of n with m parts. We shall find it convenient to define the

empty partition ∅ to be the unique partition of zero, and to adopt the

convention that ∅ has 0 parts. For any non-negative integer n, we shall

adopt the notation λ ` n to mean that λ is a partition of n. Further, if we

again take

λ = (λ1, λ2, . . . , λm)

to be a partition of the positive integer n, and we let m′ = λ1, and for each

i = 1, . . . ,m′, we define

λ′i = |{λj : 1 ≤ j ≤ m and λj ≥ i}|,

then it is easy to show that

λ′ = (λ′1, λ
′
2, . . . , λ

′
m′)

is also a partition of n, the conjugate partition λ′ of λ. We also define the

conjugate of the empty partition ∅ to be ∅. It is clear that this operation of

conjugation λ 7→ λ′ is a self-inverse bijection on the set of all partitions of

each n ≥ 0.

For a non-negative integer n, let us define Λn to be the set of all partitions

of n; we wish to equip Λn with an ordering. Assume n ≥ 1. Let

λ = (λ1, λ2, . . . , λm) and µ = (µ1, µ2, . . . , µr)

be partitions in Λn. We define λ E µ to mean that

i∑
j=1

λj ≤
i∑

j=1

µj
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for every i = 1, . . . ,min(m, r). It is easy to check that this defines a partial

order on Λn, the well-known dominance order. The order which we shall

require on Λn is in fact the reverse dominance order, which we shall

denote by Eop and which is defined by setting µ Eop λ to mean λ E µ; again,

this is a partial order on Λn. For the case n = 0 we have Λ0 = {∅} and so

we define both E and Eop to be the trivial order on Λ0.

We now consider the group algebra kSn of Sn over the field k. It turns

out that kSn is in fact a cellular algebra for any field k and any non-negative

integer n; this fact is a special case of a result proved by Graham and Lehrer

(Example 1.2 in [5]). We shall not give a proof of the cellularity of kSn

here, but rather refer to the work of Mathas in [12]. Now the definition of a

cellular algebra used by Mathas ([12], page 16, 2.1) is slightly different from,

but equivalent to, our Definition 1.2. Indeed, let A be a k-algebra which is

cellular in the sense of Mathas’s definition with respect to a tuple of data

(Λ,M,C, ι) (note that Mathas writes T where we write M , and further he

writes the anti-involution as ∗ : a 7→ a∗). Then A is cellular in the sense

of our Definition 1.2 with respect to the tuple (Λ′,M,C, ι), where Λ′ is the

partially ordered set obtained from Λ by reversing the ordering (that is, we

replace each relation λ < µ on Λ with the relation µ <op λ). Further, the cell

module Cλ associated by Mathas to λ ∈ Λ ([12], page 17), which is a right

module, is isomorphic to the right module ι(∆λ) obtained as in Section 1.2

from the cellular data (Λ′,M,C, ι). Thus from Equation (1.11), we have

for λ ∈ Λ, that the (left) cell module ∆λ obtained from the cellular data

(Λ′,M,C, ι) as in Section 1.2 is isomorphic to the left A-module obtained

from Mathas’s (right) cell module Cλ by equipping Cλ with the left action

defined by

ax = xι(a)

for all x ∈ Cλ and all a ∈ A.

Now, in Chapter 3 of [12], Mathas (following the work of Murphy in [13]
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and [14]) gives a detailed proof that for any field k and any positive integer n,

the Iwahori-Hecke algebra Hk,q(Sn) of Sn over k with parameter q ∈ k \ {0}

is cellular ([12], page 37, Theorem 3.20). Mathas also explains how the (right)

cell modules he obtains for Hk,q(Sn) relate to the Specht modules of Hk,q(Sn)

given by Dipper and James in [2] ([12], page 54, Note 2, as corrected by the

author’s errata). We are interested in kSn rather than Hk,q(Sn), and so we

shall consider only the case where q = 1, because Hk,1(Sn) is isomorphic

to kSn ([12], page 5; note that Mathas also adopts the convention that Sn

acts on the right ([12], page 1), so that our notion of kSn agrees with his).

Further, since the definition of the Specht modules of Hk,q(Sn) given by

Dipper and James in [2] is a generalisation of the definition of the Specht

modules of kSn given by James in [6], we shall refer to [6] rather than [2].

Indeed, recall that in [6] (page 13, 4.3), James defines for each λ ∈ Λn a

right kSn-module, the Specht module of λ, for which he writes Sλ; however,

we shall follow the notation of Mathas in [12] and denote this module by

Sλ (Mathas uses Sλ to denote the (right) cell modules which he obtains for

Hk,q(Sn), but we shall have a different use for this notation, see Theorem 2.1,

below). Finally, recall that for any right kSn-module E, the dual module of

E is the right kSn-module formed by equipping Homk(E,k) with the action

defined by letting

(ϕπ)(x) = ϕ(xπ−1)

for any ϕ ∈ Homk(E,k), π ∈ Sn, and x ∈ E (see [6], 1.4, pages 2 and 3;

note that we are writing linear functionals on the left of their arguments).

Again, we shall follow the notation of Mathas and denote this dual module

by E� ([12], page 24, Exercise 7). We can now use the results in Chapter 3

of [12] which we have discussed above to give the following theorem on the

cellularity of kSn:

Theorem 2.1. For any field k and integer n ≥ 0, the group algebra kSn is

cellular in the sense of Definition 1.2 with respect to a tuple (Λn,M,C, ι) of
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cellular data, where Λn is as above the set of all partitions of n equipped with

the reverse dominance order, and ι is the anti-involution on kSn induced by

mapping each π ∈ Sn to π−1. We denote by Sλ the (left) cell module associ-

ated to λ ∈ Λn by the cellular data (Λn,M,C, ι) as described in Section 1.2.

If we denote by Sλ the (right) Specht module associated to λ ∈ Λn as defined

by James in [6], then Sλ is isomorphic to the left kSn-module obtained by

equipping the right kSn-module (Sλ)� (see above) with the action

ax = xι(a)

where a ∈ kSn and x ∈ (Sλ)�.

Note that we have included the case n = 0 in Theorem 2.1. Indeed, recall

that we have adopted the convention that S0 denotes the trivial group, so

that kS0 may be identified with the field k; it is now easy to see that all of

the claims made in Theorem 2.1 are trivially true for n = 0. Further, note

that we shall not require any details of the cellular basis of kSn which is

given in Mathas’s result (the Murphy basis or standard basis as it is called

in [12]).

2.2 The Brauer algebra

In Chapter 1 we showed how the Temperley-Lieb algebra TLk(r, δ) may

be constructed as the k-vector space with a basis consisting of all planar

diagrams on 2r nodes, and with a multiplication based on the notion of

“concatenating” pairs of planar diagrams. The Brauer algebra with parameters

r (a positive integer) and δ ∈ k is constructed in exactly the same way, except

that in defining the set of diagrams which will form the basis of the algebra,

we remove the restriction that no two edges of a diagram may cross. We

thus obtain the set of Brauer diagrams on 2r nodes, which contains the set

of all planar diagrams on 2r nodes. The multiplication is again based on the

concatenation of diagrams as for the Temperley-Lieb algebra, and so in fact
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TLk(r, δ) is a subalgebra of the Brauer algebra.

Formally, then, let r a be positive integer. A Brauer diagram with 2r

nodes consists of two rows of r nodes, one above the other, and exactly r

edges between the nodes, such that each node is connected via an edge to

exactly one other node (which may be either on the same row or the other

row), where the edges must lie entirely within the rectangular area between

the rows. For example, the following two diagrams are Brauer diagrams,

with r = 5 and r = 6 respectively:

• • • • •

• • • • •

• • • • • •

• • • • • •.

As with planar diagrams we insist that each node in a Brauer diagram is the

endpoint of exactly one edge, and so the following are not Brauer diagrams

• • • • •

• • • • •

• • • • •

• • • • •,

as the first contains nodes which are not connected to any other node, and

the second contains nodes connected to more than one other node. Because

of this requirement, any Brauer diagram defines a partition of its nodes into
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pairs. As with planar diagrams, we consider any two Brauer diagrams with

the same number of nodes to be equal if they define the same partition of

their nodes, regardless of the exact shape of their edges.

It is immediate that any planar diagram is also a Brauer diagram. Another

special kind of Brauer diagram is a permutation diagram, which is a

Brauer diagram which satisfies the additional restriction that there are no

“horizontal” edges between nodes on the same row, so that each node on the

top row is connected to exactly one node on the bottom row. For example,

the diagrams

• • • • •

• • • • •

and

• • • • •

• • • • •

are permutation diagrams, while the two previous examples of Brauer di-

agrams given above are not. Now if π ∈ Sr, then we may construct a

permutation diagram on 2r nodes by connecting the i-th node on the top

row to the (i)π-th node on the bottom row for each i = 1, . . . , r. It is clear

that this construction sets up a bijective correspondence between Sr and the

set of permutation diagrams on 2r nodes; for example, the two permutation

diagrams above correspond to the elements (1 5 3 2) and (2 3)(4 5) of S5,

respectively.

Now let k be any field, and fix δ ∈ k. We define Bk(r, δ) to be the

k-vector space with a basis consisting of all Brauer diagrams on 2r nodes.

To define a multiplication on Bk(r, δ), it is enough to define the product of

two Brauer diagrams, and we define such a product in exactly the same way

as for the Temperley-Lieb algebra TLk(r, δ): given two Brauer diagrams d1
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and d2, the product d1d2 is computed by forming a concatenated diagram by

first drawing d1 and then drawing d2 immediately below it, using the nodes

on the bottom row of d1 as the nodes of the top row of d2; we then let p be

the diagram with two rows of r nodes which are connected by edges in the

same way that the nodes on the top and bottom rows of the concatenated

diagram are connected by open paths consisting of one or more edges linked

end-to-end with nodes between them. It is easy to see that p must again be

a Brauer diagram. Finally, we multiply p by δn where n is the number of

closed loops in the concatenated diagram (if there are no such closed loops

then the product is just p). For example, let r = 6 and let d1, d2 be the

Brauer diagrams

• • • • • •

• • • • • •

and

• • • • • •

• • • • • •,

respectively. To calculate d1d2, we form the concatenated diagram

• • • • • •

• • • • • •

• • • • • •,

from which we see that d1d2 = δp, where p is the diagram

• • • • • •

• • • • • •
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(note that there is only one closed loop in the concatenated diagram, even

though that loop crosses itself and thus produces two “lobes”, one inside the

other; we are not concerned with such self-crossing).

As with TLk(r, δ), this product can easily be seen to be associative on

Brauer diagrams and hence is associative on the whole of Bk(r, δ). Further,

we define e to be the Brauer diagram where each node on the top row is

connected to the node directly below it, and as for TLk(r, δ), e is then a

two-sided identity. Thus we have now established that Bk(r, δ) equipped with

this multiplication is an associative unital k-algebra, the Brauer algebra

with parameters r and δ.

It is immediate that the Temperley-Lieb algebra TLk(r, δ) occurs as

the subalgebra of Bk(r, δ) spanned by all planar diagrams. Further, if we

identify each permutation π ∈ Sr with the associated permutation diagram

as described above, we may see by considering the way the multiplication rule

applies to permutation diagrams that in fact the k-span of all permutation

diagrams in Bk(r, δ) is a subalgebra of Bk(r, δ) isomorphic to the group

algebra kSr.

Having defined Bk(r, δ), we now wish to prove that it is a cellular algebra.

However, the proof of this is not as straightforward as the proof that TLk(r, δ)

is cellular: in particular the basis of Bk(r, δ) consisting of all Brauer diagrams

is not a cellular basis in general. Graham and Lehrer gave a rather computa-

tional proof that Bk(r, δ) is cellular in Section 4 of [5], but we shall follow the

approach introduced by König and Xi in Section 5 of [9] and expanded upon

in Section 5 of [10], by exhibiting Bk(r, δ) as an iterated inflation of cellular

algebras. In the remainder of this section, we shall lay the foundations of

this proof by constructing a well-known decomposition of Bk(r, δ) as a direct

sum of subspaces which themselves admit a further natural decomposition

as tensor products; in the next section we shall define iterated inflations of
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cellular algebras and apply this definition to our decomposition of Bk(r, δ)

to conclude that Bk(r, δ) is cellular.

Let us start by defining the anti-involution on Bk(r, δ) as in Theorem 4.10

of [5]. We do this in exactly the same way as for TLk(r, δ): given any Brauer

diagram d, we define ι(d) to be the diagram formed by “flipping d upside

down” (formally, by reflecting d in the line parallel to and halfway between

its two rows of nodes), which we may easily see must also be a Brauer

diagram. As for planar diagrams, it is clear that for any Brauer diagrams

d, d′ in Bk(r, δ), we have ι2(d) = d and ι(dd′) = ι(d′)ι(d). It follows that ι is

an anti-involution on Bk(r, δ).

Recall that a through string of a planar diagram is simply an edge which

connects a node on the top row of the diagram to a node on the bottom row.

We may define a through string of a Brauer diagram in exactly the same way,

and we may carry over the definitions of the northern node and southern

node of a through string. We shall call any edge of a Brauer diagram which

is not a through string a horizontal edge, as for planar diagrams. Then for

any Brauer diagram d in Bk(r, δ), there exists a unique l in the set

Ir = {r, r − 2, r − 4, . . . , 1 or 0}

such that d has l through strings. Thus we may partition the basis of Bk(r, δ)

consisting of all Brauer diagrams in Bk(r, δ) according to the number of

through strings each diagram has, and hence if we define

Dl = spank{d : d is a Brauer diagram with exactly l through strings}

for each l ∈ Ir, then we have a direct sum decomposition

Bk(r, δ) =
⊕
l∈Ir

Dl

of Bk(r, δ) as a k-vector space.

Next, recall that we have defined the notion of a half planar diagram on

r nodes; we shall now make a corresponding definition for Brauer diagrams.
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Indeed, if r is a positive integer and l ∈ Ir, then a half Brauer diagram

with r nodes and l free nodes is a row of r nodes and exactly r−l
2 edges

between the nodes, such that each node is the end point of at most one edge;

it follows that exactly l of the nodes are not an end point of any edge — we

shall call these nodes the free nodes of the half Brauer diagram. As for

planar diagrams, we require that no edge may cross the (infinitely extended)

line defined by the row of nodes, but (since edges are allowed to cross each

other in a Brauer diagram) we do not require that no two edges may cross

or that two nodes may not be connected if there is a free node between

them. As with planar diagrams, the idea behind this definition is that half

Brauer diagrams are exactly the diagrams which may be obtained by taking

a Brauer diagram and erasing its through strings, and then taking one of

the resulting two single-row diagrams.

Now let l ∈ Ir and S, T be two half planar diagrams with r nodes and l

free nodes. Recall how the restriction that edges may not cross each other in

a planar diagram means that there is a unique planar diagram with top S

and bottom T (see Lemma 1.4). The situation is, however, more complicated

for Bk(r, δ). If we erase the through strings of a Brauer diagram, we get

two half Brauer diagrams; as for planar diagrams, we shall call these its

top and bottom. However, a Brauer diagram with more than one through

string is not uniquely determined by its top and its bottom: given two half

Brauer diagrams S and T with l free nodes, there are in fact exactly l!

distinct Brauer diagrams with top S and bottom T , since there are l! ways

of connecting the l free nodes of S to the l free nodes of T by drawing in l

through strings. So rather than just decomposing a Brauer diagram into its

top and bottom, we must also record the way in which the through strings

are arranged, as we shall now explain. Let d be a Brauer diagram with 2r

nodes which has l through strings, with top S and bottom T . Number the

northern nodes of the through strings of d with the numbers 1 to l, going
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from left to right, and do likewise for the southern nodes of the through

strings of d. We may define an element π of Sl by letting (i)π be the number

labelling the southern node of the through string whose northern node has

label i. For example, if we take d to be

• • • • • • •

• • • • • • •,

then l = 3 and S and T are

• • • • • • •

and

• • • • • • •,

respectively. Numbering the northern and southern nodes of the through

strings of d as described above gives us

• •1 • •2 •3 • •

•1 • •2 • • • •3

from which we see that π is (1 3 2) ∈ S3.

It is easy to see that the triple (S, π, T ) uniquely determines the Brauer

diagram d, and hence we have established a bijective correspondence between

the set of Brauer diagrams with 2r nodes and precisely l through strings on

the one hand, and on the other hand the set

Ωl × Sl × Ωl

where Ωl is the set of all half Brauer diagrams with r nodes and l free

nodes. If we define Vl to be the k-vector space with basis Ωl, then this
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correspondence induces a k-linear bijection

Dl ←→ Vl ⊗ kSl ⊗ Vl (2.1)

and hence, up to isomorphism of k-vector spaces, we have obtained the

well-known decomposition

Bk(r, δ) ∼=
⊕
l∈Ir

Vl ⊗ kSl ⊗ Vl, (2.2)

where (recall) Ir is the set of all integers l such that 0 ≤ l ≤ r and r−l is even.

This is our desired decomposition of Bk(r, δ), and in the next section we shall

explain how this allows us to prove the cellularity of Bk(r, δ) as given by König

and Xi in [9]. Informally, we shall show that the multiplication of Bk(r, δ)

and the anti-involution ι interact in a “nice” way with this decomposition,

and in particular with the multiplication of the symmetric group algebras kSl

which appear in the decomposition. This will allow us to exploit the known

cellularity of the algebras kSl to produce a cellular structure on Bk(r, δ).

2.3 Iterated inflations of cellular algebras

In [9], König and Xi introduced the concept of an iterated inflation of cellular

algebras, and we shall now briefly review this work. Firstly, König and Xi

defined two methods of inflating an algebra (Sections 3.1 and 3.2 in [9]). In

the first method, we take a k-algebra A, a k-vector space V , and a bilinear

form ϕ : V × V → A, and we define an associative multiplication on the

tensor product V ⊗A⊗ V via the formula

(x⊗ a⊗ w)(y ⊗ b⊗ z) = x⊗ aϕ(w, y)b⊗ z, (2.3)

thus making V ⊗A⊗ V an “algebra”, potentially without a unit, called an

inflation of A along V . In the second method, we take two k algebras A

and B, where B is not assumed to have a unit element, and define some

associative multiplication on the (external) direct sum A⊕B such that the
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multiplication on B is preserved, B is a two-sided ideal of A⊕B, and the

quotient algebra (A⊕B)/B is isomorphic to A; this construction is called

an inflation of A along B. An iterated inflation is then defined by using

these two constructions repeatedly (Section 3.3 in [9]): one starts with some

algebra A1, then one takes an algebra B1, a vector space V1 and a bilinear

form ϕ1 as above, and one forms the inflation V1 ⊗B1 ⊗ V1; one then forms

an inflation A2 of A1 along V1⊗B1⊗V1. One can then take another algebra

B2, a vector space V2 and a bilinear form ϕ2, and form the inflation A3 of A2

along the inflation V2 ⊗B2 ⊗ V2, and so on. Further, König and Xi showed

that if the algebras A1 and B1, B2, . . . are cellular, then provided that certain

technical conditions are satisfied, all of the algebras A2, A3, . . . will also be

cellular.

In Section 4 of [9], König and Xi showed that the class of cellular algebras

over a field k is exactly the class of algebras obtained via the method of

iterated inflations as above, by taking A1 to be a matrix algebra over k,

and each Bi to be the field k ([9], Theorem 4.1). In Section 5 of the same

paper, they outlined how the Brauer algebra Bk(r, δ) may be exhibited as

an iterated inflation constructed from cellular algebras, thus giving a new

proof that it is indeed cellular. Other authors have since applied the idea of

an iterated inflation of cellular algebras in various contexts.

We have now outlined the basic concept of an iterated inflation of cellular

algebras as given by König and Xi. However, as mentioned above, there

are various technical details and extra conditions which must be satisfied

in order for the construction to work. In [9] and [10], these conditions are

not presented in a single definition or result, but rather are developed as

needed in the course of the text (see, for example, Lemmas 5.2–5.5 in [10]).

In this section, we shall present a reformulation of the concept of an iterated

inflation of cellular algebras, derived from the work of König and Xi, but

with a somewhat simpler construction. Further, we shall present our version
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via a single theorem which explicitly gives all of the necessary conditions and

which may thus be more easily applied in practice. We shall show below that

the decomposition (2.2) of Bk(r, δ) satisfies the hypotheses of this theorem

and hence that Bk(r, δ) is cellular (all of this work was essentially given by

König and Xi in [10]), and we shall make further use of the theorem in the

next chapter, when we consider wreath products of cellular algebras with

symmetric groups.

Indeed, let us start with our theorem on iterated inflations of cellular

algebras.

Theorem 2.2. Let A be an associative, unital, finite-dimensional k-algebra,

with an anti-involution ι. Suppose that we have, up to isomorphism of

k-vector spaces, a k-vector space decomposition

A ∼=
⊕
i∈I

Vi ⊗Bi ⊗ Vi (2.4)

of A, where I is some finite partially ordered set and where each Vi is some

k-vector space and each Bi is a cellular algebra over k. We shall henceforth

consider A to be identified with this direct sum of tensor products.

Suppose that for each i ∈ I, we have a basis Ωi for Vi and a basis Bi for

Bi, such that the following conditions hold:

1. For each i ∈ I, we have for any u, v ∈ Ωi and any b ∈ Bi that

ι(u⊗ b⊗ v) = v ⊗ σi(b)⊗ u (2.5)

where σi is the anti-involution on Bi.

2. Let A be the basis of A consisting of all elements u ⊗ b ⊗ v for all

u, v ∈ Ωi and all b ∈ Bi, as i ranges over I. Then for any i ∈ I and

any u, v ∈ Ωi and any b ∈ Bi, we have for any a ∈ A that

a · (u⊗ b⊗ v) ≡ x(a, u)⊗ c(a, u)b⊗ v
(
mod J(< i)

)
(2.6)
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where

J(< i) =
⊕
l<i

Vl ⊗Bl ⊗ Vl

and x(a, u) ∈ Vi and c(a, u) ∈ Bi depend only on a and u, as indicated

by the notation.

Then A may be exhibited as a cellular algebra, via a tuple of data

(Λ,M,C, ι) which we shall now define. Indeed, for i ∈ I, let (Λi,M,C, σi) be

cellular data for Bi (we need to distinguish the different partially ordered sets

Λi and the different maps σi for all i ∈ I by notation, but there will be no

confusion if we use the same notation for the other items of cellular data).

Then:

• let Λ be the set {(i, λ) : i ∈ I and λ ∈ Λi}, with the partial order

defined by setting

(i, λ) < (j, µ) if i < j

and

(i, λ) < (i, µ) if λ < µ

(that is, lexicographic order);

• for (i, λ) ∈ Λ, let M(i, λ) be the set Ωi ×M(λ);

• for (i, λ) ∈ Λ and (x,X), (y, Y ) ∈M(i, λ), let

C
(i,λ)
(x,X),(y,Y ) = x⊗ CλX,Y ⊗ y.

We shall call an algebra A satisfying the conditions of Theorem 2.2 an

iterated inflation; more specifically, we might call it an iterated inflation

of the algebras Bi for i ∈ I, or an iterated inflation of the algebras Bi for

i ∈ I along the vector spaces Vi for i ∈ I.

Proof of Theorem 2.2. We show that the claimed cellular data satisfies prop-

erties (C1), (C2), and (C3) of Definition 1.2.
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For (C1), it suffices to note that our order on Λ is indeed a partial order,

and that the elements C
(i,λ)
(x,X),(y,Y ) do indeed form a basis of A.

For (C2), first note that by linearity of ι and of each map σi, we may

easily show that in fact Equation (2.5) holds for any u, v ∈ Vi and any

b ∈ Bi. Then to prove (C2), it is enough to note that for any (i, λ) ∈ Λ and

(x,X), (y, Y ) ∈M(i, λ), we have

ι
(
C

(i,λ)
(x,X),(y,Y )

)
= ι
(
x⊗ CλX,Y ⊗ y

)
= y ⊗ σi

(
CλX,Y

)
⊗ x

= y ⊗ CλY,X ⊗ x

= C
(i,λ)
(y,Y ),(x,X).

It remains only to prove (C3). Firstly, note that by linearity, we may

easily show that in fact Equation (2.6) holds for any a ∈ A, any u, v ∈ Ωi

and any b ∈ Bi (that is, not just for b ∈ Bi), and so, in particular, it holds

when b is taken to be any element CλX,Y of the cellular basis of Bi. Next,

for any (i, λ) ∈ Λ, let A
(
< (i, λ)

)
be the subspace of A spanned by all the

elements

C
(j,µ)
(w,W ),(z,Z)

for all (j, µ) ∈ Λ with (j, µ) < (i, λ), and all pairs (w,W ), (z, Z) in M(j, µ)

(since we have not yet proved that A is cellular with respect to the given

data, we do not yet know that A
(
< (i, λ)

)
is an ideal of A — we only know

that it is a subspace). Notice in particular that J(< i) ⊆ A
(
< (i, λ)

)
.

Now let (i, λ) ∈ Λ and (u,X), (v, Y ) ∈M(i, λ), and a ∈ A. We have

aC
(i,λ)
(u,X),(v,Y ) = a ·

(
u⊗ CλX,Y ⊗ v

)
≡ x⊗ cCλX,Y ⊗ v

(
mod J(< i)

)
for some x = x(a, u) and some c = c(a, u) as in Equation (2.6). Thus we

have

aC
(i,λ)
(u,X),(v,Y ) =

(
x⊗ cCλX,Y ⊗ v

)
+ L1 (2.7)
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for some L1 ∈ J(< i); notice that we have L1 ∈ A
(
< (i, λ)

)
. Then we have

by the cellularity of Bi that

x⊗ cCλX,Y ⊗ v = x⊗

 ∑
U∈M(λ)

rc(U,X)CλU,Y + L2

⊗ v
for some L2 ∈ Bi(< λ), and hence

x⊗ cCλX,Y ⊗ v = x⊗

 ∑
U∈M(λ)

rc(U,X)CλU,Y

⊗ v + x⊗ L2 ⊗ v. (2.8)

It is easy to see that x⊗L2⊗ v lies in A
(
< (i, λ)

)
. Now write x as a k-linear

combination

x =
∑
w∈Ωi

γww

and note that these coefficients γw ∈ k depend only on a, u and w. We have

x⊗

 ∑
U∈M(λ)

rc(U,X)CλU,Y

⊗ v =
∑
w∈Ωi

∑
U∈M(λ)

γwrc(U,X)
(
w ⊗ CλU,Y ⊗ v

)
=
∑

(w,U)∈M(i,λ)

ra
(
(w,U), (u,X)

) (
w ⊗ CλU,Y ⊗ v

)
where we have defined ra ((w,U), (u,X)) = γwrc(U,X), which is independent

of Y and v (recall that c depends only on a and u). Thus by (2.7) and (2.8),

we have

aC
(i,λ)
(u,X),(v,Y ) =

∑
(w,U)∈M(i,λ)

ra((w,U), (u,X))C
(i,λ)
(w,U),(v,Y ) + L

where L = L1 + x⊗ L2 ⊗ v, which is an element of A
(
< (i, λ)

)
. The right

hand side of this equation is indeed of the form required by (C3), and (C3)

now follows by the fact that A is a basis of A.

As mentioned above, [9] and [10] do not present iterated inflations via

a single result like Theorem 2.2. However, in [15], Xi offered the following

lemma to characterise iterated inflations of cellular algebras, which has been

cited by several subsequent authors:
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Lemma. (Xi — Lemma 3.3 in [15]) Let A be an algebra with an anti-

involution ι. Suppose there is a decomposition

A =
m⊕
j=1

Vj ⊗Bj ⊗ Vj (direct sum of vector spaces),

where Vj is a vector space and Bj is a cellular algebra with respect to an

anti-involution σj and a cell chain

J
(j)
1 ⊆ · · · ⊆ J (j)

sj = Bj

for each j. Define

Jt =
t⊕

j=1

Vj ⊗Bj ⊗ Vj .

Assume that

(i) the restriction of ι on Vj ⊗Bj ⊗ Vj is given by

w ⊗ b⊗ v 7−→ v ⊗ σj(b)⊗ w

(ii) for each j, there is a bilinear form φj : Vj × Vj → Bj such that

σj(φj(w, v)) = φj(v, w) for all v, w ∈ Vj

(iii) the multiplication of two elements in Vj ⊗ Bj ⊗ Vj is governed by φj

modulo Jj−1, that is, for x, y, u, v ∈ Vj and b, c ∈ Bj, we have

(x⊗ b⊗ y)(u⊗ c⊗ v) = x⊗ bφj(y, u)c⊗ v

modulo the ideal Jj−1

(iv)
(
Vj ⊗ J (j)

l ⊗ Vj
)

+ Jj−1 is an ideal in A for all l and j.

Then A is a cellular algebra.

Note that in the context in which this lemma is given in [15], the claim

“Then A is a cellular algebra” in the last line of the lemma means (in terms

of our definitions from Chapter 1, in particular Definition 1.10) “Then A is
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cellular with respect to the anti-involution ι on A” (see [15]; in particular

the wording of Definition 3.2 and the proof of the above lemma). However,

this lemma is incorrect; see Appendix A for a counterexample. Essentially,

the lemma imposes conditions on the multiplication within each “layer”

Vj ⊗ Bj ⊗ Vj of the algebra A, by demanding that it is “governed” by a

bilinear form as in point (iii); this condition is, of course, derived from the

formula (2.3) which defines the multiplication in an inflation of an algebra

along a vector space. However, in order to ensure that we can construct

cellular data for the algebra A from the cellular data of the algebras Bi, it is

also necessary to control how the multiplication behaves “between” layers,

and this is why we require the condition 2 in Theorem 2.2; this condition

was given (for the Brauer algebra) by König and Xi in Lemma 5.5 in [10].

Although the condition given in point (iii) of Xi’s proposed lemma is not

strong enough to ensure cellularity by itself, it is nonetheless the case that

if A is an algebra which satisfies the hypotheses of Theorem 2.2, then the

multiplication within each “layer” of A is indeed governed by a bilinear form

in exactly this way. This fact demonstrates the link between the original

version of iterated inflations as given by König and Xi, and our reformulation

in Theorem 2.2. Before we prove it, recall from the proof of Theorem 2.2

that we can easily use the linearity of ι and Equation (2.5) to show that

ι(u⊗ b⊗ v) = v ⊗ σi(b)⊗ u (2.9)

for any u, v ∈ Vi and any b ∈ Bi (where σi is the anti-involution on Bi).

Similarly, recall that we may use Equation (2.6) to show that

a · (u⊗ b⊗ v) ≡ x(a, u)⊗ c(a, u)b⊗ v
(
mod J(< i)

)
(2.10)

for any a ∈ A, any u, v ∈ Ωi and any b ∈ Bi. Now let us state the result we

wish to prove concerning the multiplication in an iterated inflation.

Proposition 2.3. Let A be an algebra satisfying all the hypotheses of Theo-

rem 2.2, with notation as in that theorem. Then for each i ∈ I there exists a
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unique k-bilinear form

φi : Vi × Vi −→ Bi

such that for any u, v, w, z ∈ Vi and b, d ∈ Bi, we have

(w ⊗ d⊗ z)(u⊗ b⊗ v) ≡ w ⊗ dφi(z, u)b⊗ v
(
mod J(< i)

)
. (2.11)

Further, we have

φi(z, u) = σi (φi(u, z)) (2.12)

for all z, u ∈ Vi.

In order to prove this result, we shall require the following technical

lemma.

Lemma 2.4. Let A be an algebra satisfying all the hypotheses of Theorem 2.2,

with notation as in that theorem. Fix some index i ∈ I, and enumerate the

elements of the basis Bi of Bi as b1, . . . , bN . For any w, z, u ∈ Ωi and any

k ∈ {1, . . . , N}, define α(w, z, u, k) to be the coefficient of the basis element

w in the expansion of the element x(w⊗ bk⊗ z, u) of the vector space Vi over

the basis Ωi (this x(w⊗bk⊗z, u) is of course obtained by taking a = w⊗bk⊗z

in Equation 2.10). Then we have for any l ∈ {1, . . . , N} that

α(w, z, u, k)c(w ⊗ bk ⊗ z, u)σi(bl) = α(u, u, z, l)bkσi
(
c(u⊗ bl ⊗ u, z)

)
.

Further, if

c(w ⊗ bk ⊗ z, u) 6= 0

then we must have

x(w ⊗ bk ⊗ z, u) = α(w, z, u, k)w.

Proof. For any l ∈ {1, . . . , N} we have by Equation (2.10) that

(w ⊗ bk ⊗ z)(u⊗ σi(bl)⊗ u)

≡ x(w ⊗ bk ⊗ z, u)⊗ c(w ⊗ bk ⊗ z, u)σi(bl)⊗ u
(
mod J(< i)

)
.
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But we can also apply ι2 = id to the product (w ⊗ bk ⊗ z)(u⊗ σi(bl)⊗ u),

and use Equation (2.9) and the properties of the anti-involution ι to find

that (w ⊗ bk ⊗ z)(u⊗ σi(bl)⊗ u) is equal to ι
(
(u⊗ bl ⊗ u)(z ⊗ σi(bk)⊗ w)

)
.

Then we have

ι
(
(u⊗ bl ⊗ u)(z ⊗ σi(bk)⊗ w)

)
≡ ι
(
x(u⊗ bl ⊗ u, z)⊗ c(u⊗ bl ⊗ u, z)σi(bk)⊗ w

) (
mod J(< i)

)
(by Equation (2.10) and the fact that ι preserves J(< i),

which follows from Equation (2.9))

= w ⊗ bkσi(c(u⊗ bl ⊗ u, z))⊗ x(u⊗ bl ⊗ u, z)

(by Equation (2.9)).

Thus we have

x(w ⊗ bk ⊗ z, u)⊗ c(w ⊗ bk ⊗ z, u)σi(bl)⊗ u

≡ w ⊗ bkσi(c(u⊗ bl ⊗ u, z))⊗ x(u⊗ bl ⊗ u, z)
(
mod J(< i)

)
and in fact since both sides lie in Vi ⊗Bi ⊗ Vi (which has trivial intersection

with J(< i)), we have

x(w ⊗ bk ⊗ z, u)⊗ c(w ⊗ bk ⊗ z, u)σi(bl)⊗ u

= w ⊗ bkσi(c(u⊗ bl ⊗ u, z))⊗ x(u⊗ bl ⊗ u, z). (2.13)

When we expand the right-hand side of this equation as a k-linear combination

over the basis A of A, we see that it is in fact a k-linear combination of

elements of A of the form w⊗∗⊗∗. Similarly, when we expand the left-hand

side as a k-linear combination over the basis A of A, we see that it is in fact

a k-linear combination of elements of A of the form ∗ ⊗ ∗ ⊗ u. It follows

that left-hand side of the equation must be equal to

α(w, z, u, k)w ⊗ c(w ⊗ bk ⊗ z, u)σi(bl)⊗ u (2.14)
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and that the right-hand side must be equal to

w ⊗ bkσi(c(u⊗ bl ⊗ u, z))⊗ α(u, u, z, l)u.

Thus we have

α(w, z, u, k)w ⊗ c(w ⊗ bk ⊗ z, u)σi(bl)⊗ u

= w ⊗ bkσi(c(u⊗ bl ⊗ u, z))⊗ α(u, u, z, l)u.

and so

w ⊗ α(w, z, u, k)c(w ⊗ bk ⊗ z, u)σi(bl)⊗ u

= w ⊗ α(u, u, z, l)bkσi(c(u⊗ bl ⊗ u, z))⊗ u. (2.15)

Since both w and u are non-zero, it follows that

α(w, z, u, k)c(w ⊗ bk ⊗ z, u)σi(bl) = α(u, u, z, l)bkσi(c(u⊗ bl ⊗ u, z))

as claimed.

Recall from (2.14) our simplified form of the left-hand side of Equa-

tion (2.13): we have

x(w ⊗ bk ⊗ z, u)⊗ c(w ⊗ bk ⊗ z, u)σi(bl)⊗ u

= α(w, z, u, k)w ⊗ c(w ⊗ bk ⊗ z, u)σi(bl)⊗ u (2.16)

for any l ∈ {1, . . . , N}. Now suppose that c(w ⊗ bk ⊗ z, u) 6= 0. Let us take

the expansion of 1 ∈ Bi over the basis Bi, to obtain

1 =

N∑
l=1

βlbl

for some β1, . . . , βN ∈ k. By applying σi to both sides of this equation and

using the fact that σi(1) = 1, we have

1 =

N∑
l=1

βlσi(bl).
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We now have

0 6= c(w ⊗ bk ⊗ z, u)

= c(w ⊗ bk ⊗ z, u)1

= c(w ⊗ bk ⊗ z, u)
N∑
l=1

βlσi(bl)

=

N∑
l=1

βl c(w ⊗ bk ⊗ z, u)σi(bl).

It follows that

βl c(w ⊗ bk ⊗ z, u)σi(bl) 6= 0

for some l ∈ {1, . . . , N}, and hence that for this l we have

c(w ⊗ bk ⊗ z, u)σi(bl) 6= 0.

Then by using Equation (2.16) with this value of l, and the fact that u 6= 0,

we have

x(w ⊗ bk ⊗ z, u) = α(w, z, u, k)w.

Proof of Proposition 2.3. Choose some i ∈ I. We shall first prove that such

a bilinear form φi exists, then that is is unique, and finally that it interacts

with σi as claimed.

Existence: Let us enumerate the elements of Bi as b1, . . . , bN as in

Lemma 2.4. To prove that there exists a k-bilinear form φi such that

Equation (2.11) holds for all u, v, w, z ∈ Vi and b, d ∈ Bi, it is enough (by

linearity) to find some function φi : Ωi × Ωi → Bi such that

(w ⊗ bk ⊗ z)(u⊗ br ⊗ v) ≡ w ⊗ bkφi(z, u)br ⊗ v
(
mod J(< i)

)
for any u, v, w, z ∈ Ωi and k, r ∈ {1, . . . , N}, and then extend this φi bilinearly.

So let u, v, w, z ∈ Ωi and k, r ∈ {1, . . . , N}. We know by Equation (2.10)

that

(w⊗bk⊗z)(u⊗br⊗v) ≡ x(w⊗bk⊗z, u)⊗c(w⊗bk⊗z, u)br⊗v
(
mod J(< i)

)
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and so we shall seek to prove that the right-hand side of this equivalence has

the desired form.

As in Lemma 2.4, let us define α(w, z, u, k) to be the coefficient of the

basis element w in the expansion of the element x(w ⊗ bk ⊗ z, u) of the

vector space Vi over the basis Ωi. Further, let us express 1 ∈ Bi as a k-linear

combination over Bi, say

1 =

N∑
l=1

βlbl,

and recall that σi(1) = 1. We thus have

α(w, z, u, k)c(w ⊗ bk ⊗ z, u)

= α(w, z, u, k)c(w ⊗ bk ⊗ z, u)σi

( N∑
l=1

βlbl

)

=

N∑
l=1

βlα(w, z, u, k)c(w ⊗ bk ⊗ z, u)σi(bl)

=
N∑
l=1

βlα(u, u, z, l)bkσi(c(u⊗ bl ⊗ u, z))

(by Lemma 2.4)

= bk

N∑
l=1

βlα(u, u, z, l)σi(c(u⊗ bl ⊗ u, z)).

Now let us define

φi(z, u) =
N∑
l=1

βlα(u, u, z, l)σi(c(u⊗ bl ⊗ u, z))

which depends (as required) only on z and u. Then we have

α(w, z, u, k)c(w ⊗ bk ⊗ z, u) = bkφi(z, u). (2.17)

Now suppose that c(w ⊗ bk ⊗ z, u) 6= 0. Then we have

(w ⊗ bk ⊗ z)(u⊗ br ⊗ v) ≡ x(w ⊗ bk ⊗ z, u)⊗ c(w ⊗ bk ⊗ z, u)br ⊗ v(
mod J(< i)

)
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= α(w, z, u, k)w ⊗ c(w ⊗ bk ⊗ z, u)br ⊗ v

(by Lemma 2.4)

= w ⊗ α(w, z, u, k)c(w ⊗ bk ⊗ z, u)br ⊗ v

= w ⊗ bkφi(z, u)br ⊗ v

(by Equation (2.17)).

If we have c(w ⊗ bk ⊗ z, u) = 0, then we have on the one hand that

(w ⊗ bk ⊗ z)(u⊗ br ⊗ v) ≡ x(w ⊗ bk ⊗ z, u)⊗ c(w ⊗ bk ⊗ z, u)br ⊗ v(
mod J(< i)

)
= 0,

while on the other hand we have

w ⊗ bkφi(z, u)br ⊗ v = w ⊗ α(w, z, u, k)c(w ⊗ bk ⊗ z, u)br ⊗ v

(by Equation (2.17))

= 0,

so that indeed

(w ⊗ bk ⊗ z)(u⊗ br ⊗ v) ≡ w ⊗ bkφi(z, u)br ⊗ v
(
mod J(< i)

)
.

Uniqueness: Suppose we have two k-bilinear forms φi and φ′i mapping

Vi × Vi to Bi, such that

(w ⊗ d⊗ z)(u⊗ b⊗ v) ≡ w ⊗ dφi(z, u)b⊗ v
(
mod J(< i)

)
and

(w ⊗ d⊗ z)(u⊗ b⊗ v) ≡ w ⊗ dφ′i(z, u)b⊗ v
(
mod J(< i)

)
for any u, v, w, z ∈ Vi and any b, d ∈ Bi. So for any z, u ∈ Vi, we may take b

and d to be 1 and w and v to be u in these equivalences, and then since the

right-hand side of both equivalences lies in Vi ⊗Bi ⊗ Vi, we have

u⊗ φi(z, u)⊗ u = u⊗ φ′i(z, u)⊗ u
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and thus (since u 6= 0)

φi(z, u) = φ′i(z, u)

so that indeed

φi = φ′i.

Interaction with σi: It is enough to prove that

φi(z, u) = σi
(
φi(u, z)

)
for any z, u ∈ Ωi. Indeed, let z, u ∈ Ωi. On the one hand, we have

(z ⊗ 1⊗ z)(u⊗ 1⊗ u) ≡ z ⊗ φi(z, u)⊗ u
(
mod J(< i)

)
but on the other hand we can apply ι2 = id to the product (z⊗1⊗z)(u⊗1⊗u),

and use Equation (2.9) and the properties of the anti-involution ι to find

that (z⊗ 1⊗ z)(u⊗ 1⊗u) is equal to ι
(
(u⊗ 1⊗u)(z⊗ 1⊗ z)

)
. Then we have

ι
(
(u⊗ 1⊗ u)(z ⊗ 1⊗ z)

)
≡ ι(u⊗ φi(u, z)⊗ z)

(
mod J(< i)

)
(using the fact that ι preserves J(< i) )

= z ⊗ σi
(
φi(u, z)

)
⊗ u

(by Equation (2.9)).

Thus by the fact that z ⊗ φi(z, u) ⊗ u and z ⊗ σi
(
φi(u, z)

)
⊗ u both lie in

Vi ⊗Bi ⊗ Vi, we have in fact shown that

z ⊗ φi(z, u)⊗ u = z ⊗ σi
(
φi(u, z)

)
⊗ u

and hence (because z and u are both non-zero) we have

φi(z, u) = σi
(
φi(u, z)

)
as required.
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2.4 The Brauer algebra is an iterated inflation

We shall now complete our proof that the Brauer algebra Bk(r, δ) may be

exhibited as an iterated inflation of cellular algebras. Recall from Equa-

tion (2.2) that we have (up to isomorphism of k-vector spaces) a direct sum

decomposition

Bk(r, δ) ∼=
⊕
l∈Ir

Vl ⊗ kSl ⊗ Vl

where for each l ∈ Ir, Vl is the k-vector space with basis the set Ωl of all

half Brauer diagrams with r nodes and l free nodes. Recall further that this

isomorphism is witnessed by the correspondences given for each l ∈ Ir by

the isomorphism (2.1), where a Brauer diagram d with exactly l through

strings corresponds to the element S ⊗ π ⊗ T of Vl ⊗ kSl ⊗ Vl, where S and

T are the top and bottom of d respectively, and π ∈ Sl is the permutation

describing the arrangement of the through strings of d. In the notation of

Theorem 2.2, we let Vl and Ωl be as above, we define the algebra Bl to be

kSl (which is cellular by Theorem 2.1), and we define Bl to be the basis Sl

of kSl. Then the basis A of Bk(r, δ) as in Theorem 2.2 is the basis of Bk(r, δ)

consisting of all Brauer diagrams with 2r nodes. We shall now show that

Equations (2.5) and (2.6) are satisfied.

Firstly, we show that ι interacts with the decomposition as required by

Equation (2.5) (as shown by König and Xi in Lemma 5.4 of [10]). For this, it

is enough to prove that if d is a Brauer diagram corresponding to S ⊗ π ⊗ T

as above, then ι(d) corresponds to T ⊗ π−1 ⊗ S (since the anti-involution

on kSl maps π to π−1). Indeed, ι(d) is the Brauer diagram obtained by

flipping d upside down, so it certainly has top T and bottom S. Further, if

we number the northern nodes of the through strings of d with the numbers

1 to l from left to right, and likewise for the southern nodes, then by the

definition of π, the node labelled i on the top row of d is connected to the

node labelled (i)π on the bottom row. Hence, the node labelled (i)π on the
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top row of ι(d) is connected to the node labelled i on the bottom row of ι(d).

This is equivalent to saying that the node labelled i on the top row of ι(d)

is connected to the node labelled (i)π−1 on the bottom row of ι(d). Thus

indeed ι(d) corresponds to T ⊗ π−1 ⊗ S.

Now let us show that the multiplication in Bk(r, δ) behaves as required

by Equation (2.6). In fact we can prove a much more precise result:

Proposition 2.5. (König and Xi — Lemma 5.5 in [10]; see also Proposition

4.7 in [5]) Let r be a positive integer and m, l ∈ Ir. Let d1 and d2 be Brauer

diagrams in Bk(r, δ) with m and l through strings, respectively. Then we have

half Brauer diagrams P,Q ∈ Ωm and U, V ∈ Ωl, and permutations π ∈ Sm

and σ ∈ Sl and such that under the isomorphism (2.1), d1 corresponds to

P⊗π⊗Q and d2 corresponds to U⊗σ⊗V . Let p be the Brauer diagram formed

when computing the product d1d2 as explained above, so that d1d2 = δnp for

some integer n ≥ 0 (with δ0 taken to be 1). Then p has at most l through

strings, and whether p has exactly l through strings or not depends only on

Q and U .

If p has exactly l through strings, then p corresponds under the isomor-

phism (2.1) to Z ⊗ θσ ⊗ V, where Z is a half Brauer diagram with l free

nodes depending only on P,Q, π and U , and θ ∈ Sl depends only on Q, π and

U , while the index n of δ (as above) depends only on Q and U .

We shall give a formal proof of this proposition presently; first let us

consider an example of such a calculation, which will hopefully clarify the

proof. Take r = 11 and let d1 be the diagram

• • • • • • • • • • •

• • • • • • • • • • •
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with 5 through strings, and d2 be the diagram

• • • • • • • • • • •

• • • • • • • • • • •

with 3 through strings. To calculate the product d1d2, we form the concate-

nated diagram

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •,
(2.18)

from which we see that the product d1d2 is δp, where p is

• • • • • • • • • • •

• • • • • • • • • • •.

Let us now consider this product in terms of the claims made in Proposi-

tion 2.5.

Firstly, notice that p has 3 through strings, which is the same number

as d2. This is so because, in the concatenated diagram (2.18), there are

three open paths which have a through string of d1 “at one end” and a

through string of d2 “at the other end”, and in turn this is so because (in

the concatenated diagram) the northern node of each through string of d2 is

“connected” to the southern node of a through string of d1, either because

the two nodes coincide in the concatenated diagram, or via a “chain” of

horizontal edges; this fact is in turn a consequence purely of the arrangement

of free nodes and horizontal edges in the bottom of d1 and the top of d2
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(these are the half diagrams Q and U of Proposition 2.5, respectively), as

claimed in the proposition.

Now the bottom of p is the same as the bottom of d2 (this half diagram

corresponds to the half diagram V of Proposition 2.5); whatever diagram we

had chosen for d1, the horizontal edges present in the bottom of d2 would

have been “inherited” by the bottom row of the concatenated diagram (2.18)

and hence by the bottom of p; thus if (with a different choice of d1) the

bottom of p had not been equal to the bottom of d2, then the bottom of

p would necessarily have had more horizontal edges than the bottom of d2,

and hence p would necessarily have had fewer than 3 through strings.

Next, we see that the top of p (corresponding to the half diagram Z in

the proposition) has four edges: three are “inherited” from the top of d1,

and the fourth arises from an open path in the concatenated diagram (2.18)

which consists of a pair of through strings of d1 whose southern nodes are

connected by a “chain” of horizontal edges from the bottom row of d1 and

the top row of d2; note in particular that neither the through strings of d2

nor the horizontal edges in the bottom of d2 are involved (as claimed in

Proposition 2.5).

Now let us return to the three open paths in the concatenated diagram

(2.18) which give rise to the through strings of p. Indeed, let us pick them

out in the concatenated diagram:

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •.
(2.19)

Now recall that we may describe the arrangement of the through strings of a

Brauer diagram via a permutation: for d2 this permutation is (2 3) ∈ S3 (this
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is the permutation σ of Proposition 2.5); for p it is id ∈ S3. If we extract

the “upper part” of the diagram (2.19) by removing the edges corresponding

to through strings of d2 and also the lowest row of nodes together with its

horizontal edges, we get

• • • • • • • • • • •

• • • • • • • • • • •.
(2.20)

Let us now remove from this diagram all of the dotted edges and the nodes

to which they are connected; further, for each of the three remaining open

paths, let us replace all of the nodes and edges in the path, except the two

“end nodes”, with a single edge. We are left with the permutation diagram

• • •

• • •,

(2.21)

which corresponds to the permutation (2 3) ∈ S3 in the manner explained

above when we defined permutation diagrams; further notice that the diagram

(2.20), and hence this permutation (2 3) obtained from it, depends only on

the diagram d1 and the top of the diagram d2 (this permutation (2 3) is the

θ of Proposition 2.5). Now if we multiply this permutation (2 3) obtained

from the diagram (2.20) with the permutation (2 3) describing the layout

of the through strings of d2, we get the permutation id which describes the

layout of the through strings of p, and the diagram (2.20) shows why this is

so (all of this is in agreement with the claim made in Proposition 2.5 that

the permutation describing the arrangement of the through strings of p is

equal to θσ).

Finally, the single factor of δ appearing in the product d1d2 arises from

the single closed loop in the concatenated diagram (2.18). This closed loop
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is formed entirely from horizontal edges in the bottom of d1 and the top of

d2 (in the notation of Proposition 2.5, we have n = 1, and indeed this value

is determined solely by the half diagrams Q and U).

Proof of Proposition 2.5. Recall Lemma 1.5, where we showed that if f1 and

f2 are planar diagrams, then the number of through strings in the planar

diagram formed when calculating the product f1f2 cannot be more than the

number of through strings in either f1 or f2, and further that this number

depends only on the bottom of f1 and the top of f2. Exactly the same

argument used in the proof of that lemma can be applied to the two Brauer

diagrams d1 and d2, and thus indeed p has at most l through strings, and

whether p has exactly l through strings or not depends only on Q and U .

From now on, we shall assume that p has exactly l through strings. Thus

p corresponds under the isomorphism (2.1) to Z⊗ τ ⊗V ′ for some Z, V ′ ∈ Ωl

and some τ ∈ Sl. Further, we shall denote by D the concatenated diagram

with three rows of nodes formed when computing the product d1d2 (so in

our example, D is the diagram 2.18).

Now all of the horizontal edges on the bottom row of d2 are “inherited”

by the bottom row of D, and hence are also “inherited” by the bottom row

of p. Thus all of the edges of the bottom V of d2 are present in the bottom

V ′ of p. Since both V and V ′ have l free nodes, it follows that V ′ = V .

By considering D, we see that the edges of Z are exactly the edges of P

together with any edges which arise from an open path in D which has a

through string of d1 at each end and one or more horizontal edges from the

middle row of D between them. Since the horizontal edges on the middle row

of D are all “inherited” from either Q or U , we see that Z does not depend

on σ or V , so that as claimed Z depends only on P,Q, π and U .

To see that τ = θσ for a suitable θ as claimed, we do exactly as in

the above example. Firstly we note that, as in the proof of Lemma 1.5,

any through string of p must arise from an open path in D with a through

82



string of d1 at one end and a through string of d2 at the other; since p has

exactly l through strings, there are exactly l such open paths, which we shall

call the good paths of D (in the above example, the paths picked out in

the diagram (2.19) are exactly the good paths). We notice that the good

paths of D are exactly those paths which contain a node corresponding to a

northern node of a through string of d2, and that these nodes are exactly

the nodes corresponding to a free node of U (when the nodes of U are taken

to correspond to the nodes of the middle row of D in the natural way). We

next extract the “upper part” of D by removing the edges corresponding

to through strings of d2 and also the lowest row of nodes together with

its horizontal edges; let us call this diagram D′ (this D′ corresponds to

the diagram (2.20) in the example above). Further, we define the good

paths of D′ to be exactly those paths in D′ which are formed from part

of a good path of D (in the above example, the paths picked out in the

diagram (2.20) are exactly the good paths). Now clearly the diagram D′

does not depend on either σ or V , and moreover the good paths of D′ are

exactly those paths which contain a node corresponding to a free node of

U . Thus if we do as in the above example and use the good paths of D′ to

form a permutation diagram on 2l nodes, then this permutation diagram

does not depend on either σ or V . Define θ to be the permutation in Sl

corresponding to this permutation diagram (in the manner explained above

when we defined permutation diagrams), which thus depends only on d1 and

U . It is now clear by considering the diagram D that τ = θσ as required.

Finally, the index n is the number of closed loops in the concatenated

diagram D, which we may see depends only on the arrangement of horizontal

edges in the bottom of d1 and the top of d2, so indeed n depends only on Q

and U .

We may now use Proposition 2.5 to prove that Equation (2.6) holds for

our decomposition of the Brauer algebra Bk(r, δ). Recall that for each l ∈ Ir,
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we have defined Ωl to be the set of all half Brauer diagrams with r nodes

and l free nodes, the algebra Bl to be kSl, and Bl to be the basis Sl of kSl.

Then the basis A of Bk(r, δ) as in Theorem 2.2 is the basis consisting of all

Brauer diagrams with 2r nodes. Let a ∈ A, let l ∈ Ir, let U, V ∈ Ωl and let

σ ∈ Sl. Let d be the Brauer diagram corresponding to U ⊗ σ ⊗ V under the

isomorphism (2.1). Then we have ad = δnp for some Brauer diagram p and

some non-negative integer n.

By Proposition 2.5, p has at most l through strings, and whether or not it

has exactly l through strings does not depend on σ or V , but only on a and U .

If p has fewer than l through strings, put x(a, U) = 0 and c(a, U) = 0; it is

clear that Equation (2.6) now holds. If p has exactly l through strings, then

as in Proposition 2.5, p corresponds to Z ⊗ θσ ⊗ V under the isomorphism

(2.1). Thus if we define x(a, U) = Z and c(a, u) = δnθ, then Equation (2.6)

follows by Proposition 2.5. Finally, notice that by Proposition 2.5, our choice

of x(a, U) and c(a, U) has depended only on a and U . Thus we have now

proved the following:

Theorem 2.6. (König and Xi — Theorem 5.6 in [10]) The decomposition

Bk(r, δ) ∼=
⊕
l∈Ir

Vl ⊗ kSl ⊗ Vl

of the Brauer algebra Bk(r, δ) given in Equation (2.2) exhibits Bk(r, δ) as

an iterated inflation of the cellular algebras kSl for l ∈ Ir, in the sense of

Theorem 2.2, with Ωl being the set of all half Brauer diagrams with r nodes

and l free nodes, and Bl being the basis Sl of kSl.

2.5 The cell modules of an iterated inflation

We shall now show how the cell modules of an iterated inflation of cellular

algebras may be obtained from the cell modules of the cellular algebras Bi

which appear in the decomposition (2.4). While this method of obtaining

the cell modules of an iterated inflation is not explicitly given in [9] or [10],
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it is implicit in the work done there; Xi gave a more explicit formulation

of the idea in [15], in particular in the proof given for Lemma 3.3, and in

Corollary 4.10. The result we present here is slightly different from the

corresponding ideas in the work of König and Xi, due to the different way

we have formulated the concept of an iterated inflation of cellular algebras.

Corollary 2.7. Let A be an iterated inflation of cellular algebras as in

Theorem 2.2, with notation as in that theorem. Then the cell module of A

corresponding to (i, λ) ∈ Λ is (up to isomorphism) Vi ⊗∆λ, where ∆λ is the

cell module of Bi corresponding to λ, with the action given by

a(u⊗ ξ) = x(a, u)⊗ c(a, u)ξ

for a ∈ A, u ∈ Ωi and ξ ∈ ∆λ, where x(a, u) and c(a, u) are as in Theo-

rem 2.2.

Proof. Let (u,X), (v, Y ) ∈ M(i, λ), and a ∈ A. Then as in the proof of

Theorem 2.2, we have

aC
(i,λ)
(u,X),(v,Y ) = a ·

(
u⊗ CλX,Y ⊗ v

)
≡ x⊗ cCλX,Y ⊗ v

(
mod J(< i)

)
for some x = x(a, u) and some c = c(a, u) as in Equation (2.6). Recall also

that if we write x as a k-linear combination

x =
∑
w∈Ωi

γww

over Ωi, and for any (w,U) ∈M(i, λ) we define

ra((w,U), (u,X)) = γwrc(U,X),

then we have

aC
(i,λ)
(u,X),(v,Y ) =

∑
(w,U)∈M(i,λ)

ra((w,U), (u,X))C
(i,λ)
(w,U),(v,Y ) + L
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where L is a linear combination of elements C
(i′,λ′)
(u′,X′),(v′,Y ′) for (i′, λ′) < (i, λ).

Thus, the cell module of A corresponding to (i, λ) ∈ Λ may be constructed

as the k-vector space with basis the set of all symbols C(u,X) for all (u,X) ∈

M(i, λ) and action given by

aC(u,X) =
∑

(w,U)∈M(i,λ)

ra((w,U), (u,X))C(w,U)

(by Section 1.2, in particular Equation (1.6)). We can set up a linear bijection

from this module to the k-vector space Vi⊗∆λ by sending each basis element

C(u,X) to u⊗CX (where CX is a basis element of ∆λ as usual). The formula

for the action of A induced on Vi ⊗∆λ by this isomorphism is

a(u⊗ CX) =
∑

(w,U)∈M(i,λ)

ra((w,U), (u,X))(w ⊗ CU )

=
∑
w∈Ωi

∑
U∈M(λ)

γwrc(U,X)(w ⊗ CU )

=

∑
w∈Ωi

γww

⊗
 ∑
U∈M(λ)

rc(U,X)CU


= x(a, u)⊗ (c(a, u)CX) .

Since the elements CX for X ∈M(λ) form a basis of ∆λ, we may easily show

that this action of A on Vi ⊗∆λ agrees with the formula given above.

As a consequence of Corollary 2.7, we may obtain the cell modules of

Bk(r, δ) with respect to the cellular structure given in Theorem 2.6. This

characterisation of the cell modules of Bk(r, δ) is implicit in Section 4 of [5],

and has since been used by a number of authors.

Proposition 2.8. Let l ∈ Ir and λ ∈ Λl (recall that Λl is the set of all

partitions of l with the reverse dominance order). Then for the cell module

∆(l,λ) of Bk(r, δ), we have an isomorphism

∆(l,λ) ∼= Vl ⊗ Sλ
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of k-vector spaces, where (recall) Vl is the k-vector space with basis the set of

all half Brauer diagrams with r nodes and l free nodes and Sλ is a cell module

of kSn, as explained in Theorem 2.1. The action is as given in Corollary 2.7.

Proof. This is immediate from Theorems 2.1, 2.2, 2.6, and Corollary 2.7.

New material in Chapter 2: The main new idea in this chapter is

our reformulation of the concept of an iterated inflation of cellular alge-

bras in Theorem 2.2. Of course, this reformulation is closely based on the

work of König and Xi, and so it is not a completely new result. Similarly,

Proposition 2.3 (which shows that multiplication “within a layer” of an

iterated inflation is “governed” by a bilinear form) is also “new” in the sense

that it is based on our reformulation in Theorem 2.2, but it is really just

a demonstration of the link between Theorem 2.2 and the original work of

König and Xi; the same applies to Corollary 2.7 (on the cell modules of an

iterated inflation). However, I do not believe that a counterexample to Xi’s

Lemma about iterated inflations (Lemma 3.3 in [15]) has previously been

published, so the content of Appendix A is new.
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3 Wreath products of cellular algebras with sym-

metric groups

The wreath product of an algebra with a symmetric group is a well-known

construction which arises naturally in certain areas of representation theory;

such wreath products and their representation theory have been studied, for

example, by Chuang and Tan in [1].

3.1 Opposite algebras

We begin by briefly reviewing the notion of opposite algebras, which will be

used below to overcome certain minor technical problems we shall encounter

in reconciling our work on wreath products with some of the literature on

the subject. Recall that for any unital associative k-algebra A, we define

the opposite algebra Aop to be the unital associative k-algebra whose

underlying vector space is A, with multiplication ∗ defined by

a ∗ b = ba,

where the product on the right-hand side is the product in the original

algebra A; the unit element of Aop is the same as the unit element of A. It

is immediate that
(
Aop

)op
= A.

Proposition 3.1. Let A be a cellular algebra over k as in Definition 1.2

with cellular data (Λ,M,C, ι). For each λ ∈ Λ and each S, T ∈M(λ), define

ĈλS,T = CλT,S. Then Aop is cellular with respect to (Λ,M, Ĉ, ι).

Proof. The properties (C1) and (C2) of Definition 1.2 are immediate by the

cellularity of A. For (C3), let a ∈ Aop, λ ∈ Λ and S, T ∈M(λ). Then

a ∗ ĈλS,T = CλT,Sa

≡
∑

U∈M(λ)

rι(a)(U, S)CλT,U (mod A(< λ)) (by (C3)′)
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=
∑

U∈M(λ)

r̂a(U, S)ĈλU,T

(where r̂a(U, S) is defined to be rι(a)(U, S)).

Thus a ∗ ĈλS,T has the required form, since the coefficients r̂a(U, S) are

independent of T and Aop(< λ) = A(< λ). Thus Aop is cellular as claimed.

3.2 The wreath product

Let k be any field. We shall begin by defining our main object of study, the

wreath product of a k-algebra with a symmetric group Sn. The definition

which we shall use is slightly different from the one usually used in the

literature (for example, in Section 3 of [1] or Section 6 of [11]); this is because

we have adopted the convention that the symmetric group Sn acts on the right

(see Section 2.1), whereas works such as [1] and [11] adopt the convention

that the symmetric group acts on the left. Thus, with Sn acting on the right

as per our convention, the symmetric group on n letters as used in [1] and

[11] is the opposite group Sop
n of Sn, whose group operation we shall write as

∗, so that σ ∗ π = πσ. There is, however, a simple relationship between the

two different definitions of the wreath product, as explained below.

Definition 3.2. Let A be a finite-dimensional unital associative k-algebra,

and n a positive integer. The wreath product SnoA of A with the symmetric

group Sn is defined to be the k-vector space

kSn ⊗
(
A⊗n

)
(where A⊗n denotes the tensor product of n copies of the vector space A),

with multiplication well-defined on pure tensors by the formula

(σ ⊗ a1 ⊗ a2 ⊗ · · · ⊗ an)(π ⊗ b1 ⊗ b2 ⊗ · · · ⊗ bn)

= σπ ⊗ (a(1)π−1b1)⊗ (a(2)π−1b2)⊗ · · · ⊗ (a(n)π−1bn) (3.1)
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where a1, a2, . . . , an, b1, b2, . . . , bn ∈ A and σ, π ∈ Sn. We may easily verify

that this formula does indeed yield a well-defined k-bilinear multiplication on

SnoA, and moreover that SnoA equipped with this multiplication is a finite-

dimensional unital associative k-algebra; indeed it has dimension (dim(A))nn!

and unit element

e⊗ 1⊗ 1⊗ · · · ⊗ 1

where 1 is the unit of A and e is the identity permutation in Sn. Further,

we shall adopt the convention that the wreath product S0oA of A with S0

is just kS0, which (recall) is taken to be the field k; so note carefully that

although we regard both S1 and S0 to be the trivial group, S1oA and S0oA

are not isomorphic (unless A = k), since the first is isomorphic to A, while

the second is k.

We shall adopt the following notation for pure tensors in the wreath

product SnoA: for a1, a2, . . . , an ∈ A and x ∈ kSn, we shall write

(x; a1, a2, . . . , an)

for the pure tensor

x⊗ a1 ⊗ a2 ⊗ · · · ⊗ an ∈ SnoA.

So notice that this notation ( · ; · , . . . , · ) is k-linear in each place, and that

with this notation the formula (3.1) for multiplication in SnoA becomes

(σ; a1, a2, . . . , an)(π; b1, b2, . . . , bn)

= (σπ; a(1)π−1b1, a(2)π−1b2, . . . , a(n)π−1bn) (3.2)

where a1, a2, . . . , an, b1, b2, . . . , bn ∈ A and σ, π ∈ Sn.

As mentioned above, a different definition of the wreath product is found

in much of the literature: in both [1] and [11], the wreath product of A and

Sop
n is defined to be the vector space (A⊗n)⊗ kSop

n with a product defined
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on pure tensors by the formula

(a1, a2, . . . , an;σ)(b1, b2, . . . , bn;π)

= (a1bσ−1(1), a2bσ−1(2), . . . , anbσ−1(n);σ ∗ π) (3.3)

for a1, a2, . . . , an, b1, b2, . . . , bn ∈ A and σ, π ∈ Sop
n (where we have adopted a

notation for pure tensors which is analogous to the one given above). Again,

we may check that Equation (3.3) does indeed give a well-defined associative

unital multiplication on (A⊗n)⊗kSop
n ; let us denote the algebra so defined by

AoSop
n , and further let us emphasise that this AoSop

n is precisely the wreath

product as defined in [1] and [11]. By direct calculation of products, we may

easily show that we have an isomorphism

SnoA ∼=
(
(Aop)oSop

n

)op

of k-algebras, via the map (well-)defined on pure tensors by

(σ; a1, a2, . . . , an) 7−→ (a1, a2, . . . , an;σ).

By applying this isomorphism with Aop in place of A and then taking the

opposite algebra of both sides, we have also

AoSop
n
∼=
(
Sno(Aop)

)op
, (3.4)

with the isomorphism being

(a1, a2, . . . , an;σ) 7−→ (σ; a1, a2, . . . , an). (3.5)

We shall use this relationship, together with Proposition 3.1, to apply some

of the results we shall obtain below for the algebra SnoA to the algebra AoSop
n ;

since AoSop
n is the version of the wreath product most commonly found in

the literature, this should make our results more readily usable.

Now if H is a subgroup of Sn, then the subspace of SnoA spanned by all

pure tensors of the form

(σ; a1, a2, . . . , an)
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for a1, a2, . . . , an ∈ A and σ ∈ H may easily be shown to be a subalgebra of

SnoA, which we shall denote by HoA. It is easy to see that this subalgebra of

SnoA is identical to the algebra which may be obtained by replacing Sn with

its subgroup H in the definition of SnoA, and thus we shall identify HoA

with this algebra, and call HoA the wreath product of A with H. It is

easy to see that HoA has k-dimension (dim(A))n|H|. In particular, consider

the subalgebra {e}oA of SnoA, where e is the identity permutation in Sn: it

is easy to see that this subalgebra is isomorphic to the n-fold tensor product

algebra A⊗n.

3.3 Compositions and Young subgroups of Sn

We shall now review some well-known ideas and facts about the structure of

the symmetric group Sn. In particular, we shall recall the familiar method of

associating to each composition µ of n a subgroup Sµ of Sn, called a Young

subgroup.

Let n be a positive integer. A composition of n is a finite tuple

µ = (µ1, µ2, . . . , µm)

where m ≥ 1 and each µi is a non-negative integer, such that

µ1 + µ2 + . . .+ µm = n.

The number µi is called the i-th part of µ, and we may refer to µ as a

composition of n with m parts. We shall adopt the notation µ � n to

mean that µ is a composition of n. Conversely, if m is a positive integer and

µ = (µ1, µ2, . . . , µm)

is any finite tuple of non-negative integers which are not all zero, then we

may define the size of µ to be

|µ| = µ1 + µ2 + . . .+ µm
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and it is then clear that µ � |µ|.

Now let µ = (µ1, µ2, . . . , µm) � n (so we have m,n ≥ 1). Define µ̂0 = 0

and for i = 1, . . . ,m, define

µ̂i =
i∑

j=1

µj .

Then for i = 1, . . . ,m, define a set Θi via

Θi =


{µ̂i−1 + 1, . . . , µ̂i} if µi > 0

∅ if µi = 0,

so that, for example, if n = 10 and µ = (3, 0, 1, 2, 0, 4), then we have

Θ1 = {1, 2, 3}, Θ2 = ∅, Θ3 = {4}, Θ4 = {5, 6}, Θ5 = ∅, Θ6 = {7, 8, 9, 10}.

Then for each i we have Θi ⊆ {1, . . . , n} and hence SΘi is a subgroup of Sn

(recall that we have adopted the convention that S∅ is the trivial group).

Further, since the sets Θi for i = 1, . . . ,m are pairwise disjoint, it follows

that the product

SΘ1 × SΘ2 × . . .× SΘm (3.6)

of subgroups of Sn is in fact a direct product, which is called the Young

subgroup of µ in Sn, and which we denote by Sµ. Now for each i = 1, . . . ,m,

we have

|Θi| = µi

and hence the group SΘi is isomorphic to Sµi ; moreover, if µi > 0 then

there is a canonical identification of Θi with the set {1, . . . , µi} by mapping

µ̂i−1 + j to j, so that we obtain a canonical isomorphism from SΘi to Sµi ; of

course if µi = 0 then we have a unique (trivial) isomorphism from SΘi to Sµi .

For σ ∈ Sµi , we shall usually write σ̂ for the corresponding element of SΘi

under this isomorphism. It now follows that Sµ is canonically isomorphic to

the direct product

Sµ1 × Sµ2 × . . .× Sµm . (3.7)
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We thus obtain a decomposition of the group algebra kSµ as a tensor

product of symmetric group algebras

kSµ ∼= kSµ1 ⊗ kSµ2 ⊗ · · · ⊗ kSµm . (3.8)

Further, since Sµ is a subgroup of Sn, we have as above the subalgebra SµoA

of SnoA; it is easy to show that we have an isomorphism of k-algebras

(Sµ1 oA)⊗ (Sµ2 oA)⊗ · · · ⊗ (Sµm oA) −→ SµoA

well-defined on pure tensors by mapping

(σ1; a1
1, a

1
2, . . . , a

1
µ1)⊗ (σ2; a2

1, a
2
2, . . . , a

2
µ2)⊗ · · · ⊗ (σm; am1 , a

m
2 , . . . , a

m
µm)

to

(σ̂1 · · · σ̂m ; a1
1, a

1
2, . . . , a

1
µ1 , a

2
1, a

2
2, . . . , a

2
µ2 , . . . , a

m
1 , a

m
2 , . . . , a

m
µm) (3.9)

where each aij lies in A, and σi ∈ Sµi , and σ̂i represents the image in

SΘi of σi under the canonical isomorphism; note also that if µi = 0 then

(σi; a
i
1, a

i
2, . . . , a

i
µi) is understood to be just 1 ∈ S0oA ∼= k, and σi = e.

Let us keep µ = (µ1, µ2, . . . , µm) � n as above. Let Lµ be a complete

family of left coset representatives of Sµ in Sn, without redundancy (note

that by a left coset we mean a coset of the form xSµ for x ∈ Sn). Further,

let T µ be the set of all tuples

(p1, p2, . . . , pn)

where each pj lies in {1, . . . ,m} and for each i = 1, . . . ,m we have

|{j : pj = i}| = µi

(that is, each i appears exactly µi times in the tuple). There is a natural

bijection between Lµ and T µ, as we shall now show. Indeed, let

ωµ = (1, . . . , 1︸ ︷︷ ︸
µ1 places

, 2, . . . , 2︸ ︷︷ ︸
µ2 places

, . . . ,m, . . . ,m︸ ︷︷ ︸
µm places

) ∈ T µ.
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Now Sn has a natural left action on T µ given by

σ · (p1, p2, . . . , pn) = (p(1)σ, p(2)σ, . . . , p(n)σ).

It is clear that this action is transitive, so that

T µ = Orbit(ωµ),

and further it is also clear that Sµ is the stabiliser of ωµ. Hence, by the

well-known Orbit-Stabiliser theorem, we have a bijection from Lµ to T µ,

given by

x 7−→ x · ωµ. (3.10)

The reverse direction of this bijection is a bijective mapping from T µ to Lµ

which takes an element (p1, p2, . . . , pn) ∈ T µ to an element x ∈ Lµ such that

(p1, p2, . . . , pn) = x · ωµ

which implies

x−1 · (p1, p2, . . . , pn) = ωµ,

and further the fact that the map (3.10) is a bijection implies that this x is

the unique element of Lµ whose inverse acts on (p1, p2, . . . , pn) to give ωµ.

We now summarise the above discussion in a proposition.

Proposition 3.3. Let n be a positive integer, and µ = (µ1, µ2, . . . , µm) be

a composition of n with m parts. Then for any (p1, p2, . . . , pn) ∈ T µ, there

exists a unique x ∈ Lµ such that

(p(1)x−1 , p(2)x−1 , . . . , p(n)x−1) = (1, . . . , 1︸ ︷︷ ︸
µ1 places

, 2, . . . , 2︸ ︷︷ ︸
µ2 places

, . . . ,m, . . . ,m︸ ︷︷ ︸
µm places

)

and the mapping so induced from T µ to Lµ is a bijection.

Now for any n ≥ 1, and any m ≥ 1, let us define Λ�n(m) to be the set

of all compositions of n with exactly m parts. A simple order on Λ�n(m) is
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the backwards lexicographic order, which we shall denote simply by <,

where for compositions

µ = (µ1, µ2, . . . , µm) and µ̂ = (µ̂1, µ̂2, . . . , µ̂m)

in Λ�n(m), we define µ < µ̂ to mean that there exists some i ∈ {1, . . . ,m}

such that µj = µ̂j for all j such that m ≥ j > i, and µi < µ̂i. It is easy to

see that this defines a strict total order on Λ�n(m), and we shall denote the

corresponding non-strict order by ≤, as usual. Note that the name backwards

lexicographic order for this order is not standard; this order is sometimes

called the reverse lexicographic order, but we shall not use that name to

avoid confusion with the order which may be obtained by simply reversing

the standard lexicographic order (in the same way that we obtained the

reverse dominance order from the standard dominance order in Section 2.1),

which is not the same order as this backwards lexicographic order.

3.4 Construction of modules for SnoA

In this section, we shall describe a well-known method of combining modules

of a k-algebra A with modules of certain symmetric group algebras to produce

modules for the subalgebra SµoA of the wreath product SnoA, where µ is

some composition of n; we shall also describe how SµoA-modules may be used

to produce SnoA-modules. These ideas have been described, for example, in

Section 3 of [1] and (for the case of the wreath product of groups) in Chapter

4 of [7], although the definitions given in this section are slightly different

from the corresponding definitions in those accounts due to the fact that we

have a different definition of the wreath product. Note that in this section,

we shall make several definitions involving tensor products which are given

by a formula “on pure tensors”; all of these definitions may be shown to

be well-defined via arguments like those given in “A remark about tensor

products” on page 8. Further, we shall not give proofs that the constructions
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described below do indeed yield modules for the given algebras; all of these

proofs consist purely of routine but sometimes lengthy verifications.

For the rest of this section, let us fix some positive integers n and m, and

some composition µ = (µ1, µ2, . . . , µm) ∈ Λ�n(m).

Let V1, . . . , Vm be left A-modules. Then we define (V1, . . . , Vm)oµ to be

the left SµoA-module with underlying vector space(
V ⊗µ11

)
⊗ · · · ⊗

(
V ⊗µmm

)
with the action given by

(σ; a1, a2, . . . , an)(v1 ⊗ v2 ⊗ · · · ⊗ vn) =

(a(1)σv(1)σ)⊗ (a(2)σv(2)σ)⊗ · · · ⊗ (a(n)σv(n)σ)

for a1, a2, . . . , an ∈ A, σ ∈ Sµ, and each vj in the appropriate Vi. Notice

that, since σ ∈ Sµ, we have that the right-hand side of the above equation

does indeed lie in the underlying vector space of (V1, . . . , Vm)oµ. Further, if

µi = 0 for some i, then the factor V ⊗µii is taken to be k and thus may be

ignored when taking the tensor product over k. Note also that if µ = (n)

(so that m = 1 and we may write V1 as just V ), we have that (V )oµ is equal

as a vector space to V ⊗n; we thus introduce the shorthand notation V on

for this module, which is of course a module for SnoA since Sµ = Sn. For

convenience, let us define V o0 to be the trivial S0oA-module k, recalling that

S0oA ∼= k.

There is another way of viewing the module (V1, . . . , Vm)oµ. Recall the

isomorphism (3.9) which allows us to identify SµoA with the tensor product

algebra

(Sµ1 oA)⊗ (Sµ2 oA)⊗ · · · ⊗ (Sµm oA) ,

for which we may form as usual the tensor product module

V oµ11 ⊗ V oµ22 ⊗ · · · ⊗ V oµmm (3.11)
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where from above each V oµii is a Sµi oA-module. We may thus view the module

(3.11) as a SµoA-module, which we may identify with (V1, . . . , Vm)oµ via the

mapping given by

(v1
1⊗v1

2⊗ · · ·⊗v1
µ1)⊗ (v2

1⊗v2
2⊗ · · ·⊗v2

µ2)⊗ · · · ⊗ (vm1 ⊗vm2 ⊗ · · ·⊗vmµm)

7−→ v1
1⊗v1

2⊗ · · ·⊗v1
µ1⊗v

2
1⊗v2

2⊗ · · ·⊗v2
µ2⊗ · · ·⊗v

m
1 ⊗vm2 ⊗ · · ·⊗vmµm

from the module (3.11) to (V1, . . . , Vm)oµ, which is indeed an isomorphism of

SµoA-modules.

Now let X be a left SµoA-module and U a left kSµ-module. Then the

vector space tensor product X⊗U is an SµoA-module when equipped with

the action

(σ; a1, a2, . . . , an)(x⊗ u) = ((σ; a1, a2, . . . , an)x)⊗ (σu)

for ai ∈ A, σ ∈ Sµ, x ∈ X and u ∈ U (note that in the second factor of

this tensor product, we are essentially “inflating” the kSµ-module U to a

SµoA-module by exploiting the fact that kSµ occurs as the quotient of SµoA

by the subalgebra {e}oA). We shall denote this module by X�U .

Now recall from Equation (3.8) above that we have a decomposition

kSµ ∼= kSµ1 ⊗ kSµ2 ⊗ · · · ⊗ kSµm .

of kSµ as a tensor product of algebras. Now if for each i = 1, . . . ,m we have a

left module Ui for kSµi , then we may form the (outer) tensor product module

U1⊗ · · ·⊗Um for kSµ1 ⊗ · · · ⊗ kSµm as usual. By the above isomorphism, we

may then regard U1⊗ · · ·⊗Um as a kSµ-module. To understand the action

of kSµ on this module, let π ∈ Sµ. By the decomposition (3.6) of Sµ, we

have a unique factorisation π = π̂1π̂2 · · · π̂m of π, where each π̂i ∈ SΘi is the

image under the canonical isomorphism of πi ∈ Sµi (see above). Then if

ui ∈ Ui for i = 1, . . . ,m, the action of π on the pure tensor u1 ⊗ · · · ⊗ um in

U1⊗ · · ·⊗Um is given by

π(u1 ⊗ · · · ⊗ um) = (π1u1)⊗ · · · ⊗ (πmum). (3.12)
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We shall now show how the above constructions may be used to produce

modules for SµoA from modules of A and modules of the symmetric group

algebras kSµi , in a way which will prove useful below. Indeed, for each

i = 1, . . . ,m, let Vi be a left A-module and Ui a left kSµi-module. By

applying the above constructions, we obtain an SµoA-module

(V1, . . . , Vm)oµ � (U1⊗ · · ·⊗Um).

We shall now give an alternative method for constructing this module. For

each i = 1, . . . ,m, we form the Sµi oA-module V oµii , and then the Sµi oA-

module V oµii �Ui. We then take the (outer) tensor product of these modules

V oµii �Ui to form a module(
V oµ11 �U1

)
⊗ · · · ⊗

(
V oµmm �Um

)
for the tensor product algebra

(Sµ1 oA)⊗ · · · ⊗ (Sµm oA) ,

which by the isomorphism (3.9) we may identify with SµoA, and hence regard(
V oµ11 �U1

)
⊗ · · · ⊗

(
V oµmm �Um

)
as an SµoA-module. We may now easily show that there is a well-defined

k-linear mapping from(
V oµ11 �U1

)
⊗ · · · ⊗

(
V oµmm �Um

)
to

(V1, . . . , Vm)oµ � (U1⊗U2⊗ · · ·⊗Um)

which is given by taking the pure tensor

(v1
1⊗v1

2⊗ · · ·⊗v1
µ1⊗u1)⊗ (v2

1⊗v2
2⊗ · · ·⊗v2

µ2⊗u2)⊗ · · ·

· · · ⊗ (vm1 ⊗vm2 ⊗ · · ·⊗vmµm⊗um)
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to

(v1
1⊗v1

2⊗ · · ·⊗v1
µ1⊗v

2
1⊗v2

2⊗ · · ·⊗v2
µ2⊗ · · ·

· · · ⊗vm1 ⊗vm2 ⊗ · · ·⊗vmµm)⊗ (u1⊗u2⊗ · · ·⊗um).

This mapping may then easily be shown to be an isomorphism of SµoA-

modules.

We have so far been concerned with modules for the subalgebra SµoA of

SnoA. For any left SµoA-module W , we define as usual the induced module

formed from W to be the left SnoA-module

(SnoA)⊗SµoAW,

which we shall denote by IndnµW .

The constructions described in this section arise naturally when working

with modules over wreath products. For example, in Chapter 4 of [7], James

and Kerber use exactly these constructions to obtain the simple modules of

the wreath product group of a finite group with a symmetric group.

3.5 The wreath product of a cellular algebra and a symmet-

ric group

We have now finished our preliminary discussion of the wreath product SnoA

for an arbitrary k-algebra A, and so we turn to the real subject of our work

in this chapter: the wreath product SnoA where A is a cellular k-algebra. In

this section, we shall show that SnoA is then a cellular algebra; this has been

proved by Geetha and Goodman in the case that A is not only cellular but

cyclic cellular, meaning that all of the cell modules of A are cyclic (Theorem

4.1 in [4]). Their proof is quite combinatorial in nature, and draws on the

work of Dipper, James, and Mathas in [3] and of Murphy in [14]. However,

we shall prove the cellularity of SnoA, where A is any cellular algebra, by

exhibiting it as an iterated inflation in the sense of Theorem 2.2. Note also
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that the version of the wreath product used in [4] is the construction which

we have called AoSop
n (see Section 3.2), but as indicated above we may easily

transfer results between the two different wreath products SnoA and AoSop
n .

Firstly, let us fix some cellular algebra A with cellular data (Λ,M,C, ι)

as in Definition 1.2. Further, as noted at the beginning of Section 1.3, we

may assume without loss of generality that the partially ordered set Λ is in

fact totally ordered. Thus, if we let r = |Λ|, then we may list the elements

of Λ in order, say

λ1 < λ2 < . . . < λr.

Next, recall that if n = 0 then SnoA is just k, which is trivially cellular.

So from now on we shall assume that n ≥ 1.

Now recall that to apply Theorem 2.2 to SnoA, we need a subspace

decomposition of SnoA as in Equation (2.4), where each subspace has (up to

isomorphism of k-vector spaces) a further decomposition as a tensor product.

In the statement of Theorem 2.2, we begin with this decomposition, and

then by taking bases for all of the vector spaces Vi and cellular algebras

Bi involved in the decomposition, we produce a basis A for the original

algebra. However, we shall obtain our desired decomposition of SnoA by first

defining this basis A of SnoA, and then showing how we may use this basis

to define the required decomposition. Thus, we define A to be the basis of

SnoA consisting of all elements of the form(
σ ; Cε1P1,Q1

, Cε2P2,Q2
, . . . , CεnPn,Qn

)
(3.13)

where σ ∈ Sn and for each i = 1, . . . , n, εi ∈ Λ = {λ1, λ2, . . . , λr} and

Pi, Qi ∈ M(εi); it is immediate that A is indeed a basis of SnoA because

Sn is a basis of kSn and the cellular basis of A is of course a basis of A.

Now take an element of the form (3.13), and for each i = 1, . . . , n define

pi to be the unique element of {1, . . . , r} such that εi = λpi . Now define

µj = |{i : pi = j}| for each j = 1, . . . , r, and define µ = (µ1, . . . , µr). Then
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clearly µ is a composition of n with r parts, which we shall call the layer

index of the element (3.13) of A.

For each µ ∈ Λ�n(r), let us define Aµ to be the set of all elements of A

with layer index µ, and further let us define Xµ to be the k-span of Aµ

in SnoA. Since the collection of sets Aµ as µ varies over Λ�n(r) is clearly a

partition of A by disjoint non-empty sets, it follows that we have a vector

space direct sum decomposition

SnoA =
⊕

µ∈Λ�
n(r)

Xµ.

This is the decomposition of SnoA which we shall use to exhibit SnoA as an

iterated inflation; our next step is to understand how to decompose each

subspace Xµ as a tensor product Vµ ⊗Bµ ⊗ Vµ as in Theorem 2.2.

Let µ ∈ Λ�n(r) and E be an element of Aµ, so that we have

E =
(
σ ; Cε1P1,Q1

, Cε2P2,Q2
, . . . , CεnPn,Qn

)
as in Equation (3.13) above, and define the tuple (p1, . . . , pn) over {1, . . . , r}

as above. Then clearly we have

(p1, . . . , pn) ∈ T µ,

and so by Proposition 3.3, we have a unique y ∈ Lµ such that

(p(1)y−1 , p(2)y−1 , . . . , p(n)y−1) = (1, . . . , 1︸ ︷︷ ︸
µ1 places

, 2, . . . , 2︸ ︷︷ ︸
µ2 places

, . . . , r, . . . , r︸ ︷︷ ︸
µr places

),

from which it follows that

(ε(1)y−1 , ε(2)y−1 , . . . , ε(n)y−1) = (λ1, . . . , λ1︸ ︷︷ ︸
µ1 places

, λ2, . . . , λ2︸ ︷︷ ︸
µ2 places

, . . . , λr, . . . , λr︸ ︷︷ ︸
µr places

).

Then we have

E =
(

(σy)y−1 ; Cε1P1,Q1
, Cε2P2,Q2

, . . . , CεnPn,Qn

)
=
(
σy ; C

ε(1)y−1

P(1)y−1 ,Q(1)y−1
, C

ε(2)y−1

P(2)y−1 ,Q(2)y−1
, . . . , C

ε(n)y−1

P(n)y−1 ,Q(n)y−1

)
(y−1; 1, . . . , 1)
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=
(
σy ; Cη1X1,Y1

, Cη2X2,Y2
, . . . , CηnXn,Yn

)
(y−1; 1, . . . , 1)

(where we have defined ηi = ε(i)y−1 , Xi = P(i)y−1 , and Yi = Q(i)y−1).

Further, we have σy = xθ for unique x ∈ Lµ and unique θ ∈ Sµ, so

E =
(
xθ ; Cη1X1,Y1

, Cη2X2,Y2
, . . . , CηnXn,Yn

)
(y−1; 1, . . . , 1)

= (x; 1, . . . , 1)
(
θ ; Cη1X1,Y1

, Cη2X2,Y2
, . . . , CηnXn,Yn

)
(y−1; 1, . . . , 1), (3.14)

where from above we have

(η1, η2, . . . , ηn) = (λ1, . . . , λ1︸ ︷︷ ︸
µ1 places

, λ2, . . . , λ2︸ ︷︷ ︸
µ2 places

, . . . , λr, . . . , λr︸ ︷︷ ︸
µr places

). (3.15)

Further, the fact that x, y and θ were uniquely determined rather than

arbitrarily chosen in the above argument implies that the above expression

(3.14) is in fact the unique expression of E in that form, in the sense that if

we have w, z ∈ Lµ and π ∈ Sµ such that

E = (w; 1, . . . , 1)
(
π ; Cδ1S1,T1

, Cδ2S2,T2
, . . . , CδnSn,Tn

)
(z−1; 1, . . . , 1),

(which implies that δi = ε(i)z−1 , Si = P(i)z−1 , and Ti = Q(i)z−1) with

(δ1, δ2, . . . , δn) = (λ1, . . . , λ1︸ ︷︷ ︸
µ1 places

, λ2, . . . , λ2︸ ︷︷ ︸
µ2 places

, . . . , λr, . . . , λr︸ ︷︷ ︸
µr places

),

then we must have w = x, z = y, and π = θ, and hence δi = ηi, Si = Xi and

Ti = Yi for each i. Finally, let us note that any element of SnoA of the form

(3.14) for some x, y ∈ Lµ, some θ ∈ Sµ, some η1, . . . , ηn such that (3.15) is

satisfied, and some Xi, Yi ∈ M(ηi) is clearly an element of the basis Aµ of

Xµ. Summarising, we have shown that taking the collection of all elements

of the form (3.14) satisfying (3.15), as x, y range over Lµ, θ ranges over Sµ

and Xi, Yi range over M(ηi), yields exactly the set Aµ, with no repetitions.

We shall now use Equation (3.14) to decompose the subspace Xµ as a

tensor product Vµ ⊗Bµ ⊗ Vµ as in Theorem 2.2, where (recall) we require
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Vµ to be a k-vector space and Bµ to be a cellular algebra. Recall that for

i = 1, . . . , r, we denote the cell module of A associated to λi ∈ Λ by ∆λi . We

define Vµ to be the k-vector space tensor product

(kLµ)⊗
(

∆λ1
)⊗µ1

⊗
(

∆λ2
)⊗µ2

⊗ · · · ⊗
(

∆λr
)⊗µr

where kLµ denotes the k-vector space with basis Lµ, and each cell module

∆λi is regarded purely as a k-vector space. Further, we take Bµ to be the

group algebra kSµ. We have by Equation (3.8) that kSµ is isomorphic as

a k-algebra to the tensor product algebra kSµ1 ⊗ kSµ2 ⊗ · · · ⊗ kSµm . By

Theorem 2.1, each algebra kSµi is cellular, and hence kSµ is indeed cellular

by Theorem 1.16. Now recall that each cell module ∆λi has a basis consisting

of all symbols CS for S ∈M(λi). Thus Vµ has a basis consisting of all pure

tensors of the form

S = x⊗ CS1 ⊗ CS2 ⊗ · · · ⊗ CSn

where we have

(S1, S2, . . . , Sµ1︸ ︷︷ ︸
elements of M(λ1)

, Sµ1+1, . . . , Sµ1+µ2︸ ︷︷ ︸
elements of M(λ2)

, . . . , Sn)

and x ∈ Lµ. In keeping with the notation of Theorem 2.1, we shall call this

basis Ωµ. Thus the tensor product Vµ ⊗ kSµ ⊗ Vµ has a k-basis consisting of

all elements S ⊗ θ ⊗ T where

S = x⊗ CS1 ⊗ CS2 ⊗ · · · ⊗ CSn

and

T = y ⊗ CT1 ⊗ CT2 ⊗ · · · ⊗ CTn

are elements of Ωµ and θ ∈ Sµ. Thus, we may define a k-linear map

Ψµ : Vµ ⊗ kSµ ⊗ Vµ −→ Xµ

by defining

104



Ψµ (S ⊗ θ ⊗ T ) =

(x; 1, . . . , 1)
(
θ ; Cη1S(1)θ−1 ,T1

, Cη2S(2)θ−1 ,T2
, . . . , CηnS(n)θ−1 ,Tn

)
(y−1; 1, . . . , 1)

where for each i = 1, . . . , n, we have defined ηi ∈ Λ such that Ti ∈M(ηi); the

fact that θ ∈ Sµ then implies that S(i)θ−1 ∈M(ηi) also, so that CηiS(i)θ−1 ,Ti
is

indeed defined. Now since the value of Ψµ (S ⊗ θ ⊗ T ) is of the form (3.14),

and we certainly have

(η1, η2, . . . , ηn) = (λ1, . . . , λ1︸ ︷︷ ︸
µ1 places

, λ2, . . . , λ2︸ ︷︷ ︸
µ2 places

, . . . , λr, . . . , λr︸ ︷︷ ︸
µr places

),

it follows that Ψµ (S ⊗ θ ⊗ T ) is in fact an element of the basis Aµ of Xµ.

Further, we may easily use the fact that each element of Aµ has a unique

expression of the form (3.14) (subject to (3.15)) to show that in fact any

element of Aµ may be obtained as an image Ψµ (S ⊗ θ ⊗ T ) for a unique

choice of S,T ∈ Ωµ and θ ∈ Sµ, and from this it follows that the map Ψµ

is in fact a k-linear bijection from Vµ ⊗ kSµ ⊗ Vµ to Xµ. Thus we have our

desired decomposition

SnoA =
⊕

µ∈Λ�
n(r)

Φµ (Vµ ⊗ kSµ ⊗ Vµ)

∼=
⊕

µ∈Λ�
n(r)

Vµ ⊗ kSµ ⊗ Vµ. (3.16)

Returning to Theorem 2.1, and (in the notation of that theorem) taking the

basis Bµ of the algebra Bµ = kSµ to be simply Sµ, we see that under this

decomposition (3.16), our basis A of SnoA is indeed the basis arising from

the bases Ωµ and Bµ just as described in Theorem 2.1.

Our next task will be to prove that the decomposition (3.16) has the

properties required by Theorem 2.1, but before we can do that we must

define our anti-involution on SnoA.

Proposition 3.4. The formula

ι
(
(σ; a1, a2, . . . , an)

)
=
(
σ−1 ; ι(a(1)σ), ι(a(2)σ), . . . , ι(a(n)σ)

)
105



for a1, a2, . . . , an ∈ A and σ ∈ Sn (where the map ι on the right hand side

is the anti-involution on A) yields a well-defined anti-involution ι on SnoA;

note that we are thus using ι to denote the anti-involutions on both A and

SnoA, but this should not cause confusion.

Proof. We may easily show that defining ι by the given formula on pure

tensors does indeed yield a well-defined k-linear map. Then for any elements

a1, a2, . . . , an ∈ A and any σ ∈ Sn, we have

ι2
(
(σ; a1, a2, . . . , an)

)
= ι
((
σ−1 ; ι(a(1)σ), ι(a(2)σ), . . . , ι(a(n)σ)

))
=
(
(σ−1)−1 ; ι2(a(1)σ−1σ), ι2(a(2)σ−1σ), . . . , ι2(a(n)σ−1σ)

)
= (σ; a1, a2, . . . , an).

Since such elements (σ; a1, a2, . . . , an) span SnoA over k, we have ι2 = id.

To check that ι(ab) = ι(b)ι(a) for all a, b ∈ SnoA, it suffices by linearity to

prove that for any a1, . . . , an, b1, . . . , bn ∈ A and any σ, π ∈ Sn, we have

ι
(
(σ; a1, . . . , an)(π; b1, . . . , bn)

)
= ι
(
(π; b1, . . . , bn)

)
ι
(
(σ; a1, . . . , an)

)
,

which may easily be verified by direct calculation.

Note that this anti-involution ι on SnoA corresponds exactly to the anti-

involution used on the wreath product AoSop
n by Geetha and Goodman (see

the start of Section 4 in [4]), under the isomorphism (3.5).

We shall now complete our proof that SnoA is an iterated inflation of

cellular algebras, by showing that our decomposition (3.16) satisfies Equations

(2.5) and (2.6).

Equation (2.5) may be verified by a straightforward calculation. Indeed,

let µ = (µ1, . . . , µr) ∈ Λ�n(r) and as above take

S = x⊗ CS1 ⊗ CS2 ⊗ · · · ⊗ CSn

and

T = y ⊗ CT1 ⊗ CT2 ⊗ · · · ⊗ CTn
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to be elements of Ωµ and let θ ∈ Sµ. Then we have

ι
(

Ψµ

(
S ⊗ θ ⊗ T

))
= ι
(

(x; 1, . . . , 1)
(
θ ; Cη1S(1)θ−1 ,T1

, Cη2S(2)θ−1 ,T2
, . . . , CηnS(n)θ−1 ,Tn

)
(y−1; 1, . . . , 1)

)
= ι
(
(y−1; 1, . . . , 1)

)
ι
((
θ ; Cη1S(1)θ−1 ,T1

, Cη2S(2)θ−1 ,T2
, . . . , CηnS(n)θ−1 ,Tn

))
ι
(
(x; 1, . . . , 1)

)
(because ι is an anti-involution)

= (y; 1, . . . , 1)
(
θ−1 ; ι

(
Cη1S1,T(1)θ

)
, ι
(
Cη2S2,T(2)θ

)
, . . .

. . . , ι
(
CηnSn,T(n)θ

))
(x−1; 1, . . . , 1)

(where we have used the fact that η(i)θ = ηi, since θ ∈ Sµ)

= (y; 1, . . . , 1)
(
θ−1 ; Cη1T(1)θ,S1

, Cη2T(2)θ,S2
, . . . , CηnT(n)θ,Sn

)
(x−1; 1, . . . , 1)

= Ψµ

(
T ⊗ θ−1 ⊗ S

)
= Ψµ

(
T ⊗ ι(θ)⊗ S

)
as required.

Finally, we prove that Equation (2.6) is satisfied. We do this by proving

the following slightly more general result:

Proposition 3.5. Let µ = (µ1, . . . , µr) ∈ Λ�n(r) and let

S = x⊗ CS1 ⊗ CS2 ⊗ · · · ⊗ CSn ,

T = y ⊗ CT1 ⊗ CT2 ⊗ · · · ⊗ CTn

be elements of Ωµ, and θ ∈ Sµ. Let a1, . . . , an ∈ A and σ ∈ Sn. Then we

have

(σ; a1, . . . , an)Ψµ (S ⊗ θ ⊗ T ) ≡

Ψµ

((
z ⊗ a(1)πx−1CS(1)π

⊗ · · · ⊗ a(n)πx−1CS(n)π

)
⊗ πθ ⊗ T

)
(mod J<µ)

where z ∈ Lµ and π ∈ Sµ are the unique elements such that σx = zπ, and

we define

J<µ =
⊕
µ′<µ

Xµ′ ,

107



so that J<µ is in fact the k-span of all elements of the basis A of SnoA with

layer index strictly less than µ.

Proof. The proof is by direct calculation. Indeed, we have

(σ; a1, . . . , an)Ψµ (S ⊗ θ ⊗ T ) =

(σ; a1, . . . , an)(x; 1, . . . , 1)
(
θ ; Cη1S(1)θ−1 ,T1

, . . . , CηnS(n)θ−1 ,Tn

)
(y−1; 1, . . . , 1).

(3.17)

Now

(σ; a1, . . . , an)(x; 1, . . . , 1) = (σx; a(1)x−1 , . . . , a(n)x−1)

= (zπ; a(1)x−1 , . . . , a(n)x−1)

= (z; 1, . . . , 1)(π; a(1)x−1 , . . . , a(n)x−1).

Further, we have

(π; a(1)x−1 , . . . , a(n)x−1)
(
θ ; Cη1S(1)θ−1 ,T1

, . . . , CηnS(n)θ−1 ,Tn

)
=
(
πθ ; â1C

η1
S(1)θ−1 ,T1

, . . . , ânC
ηn
S(n)θ−1 ,Tn

)
(where we have defined âi = a(i)θ−1x−1)

=
(
πθ ;

∑
U1∈M(η1)

râ1
(
U1, S(1)θ−1

)
Cη1U1,T1

+ L1, . . .

. . . ,
∑

Un∈M(ηn)

rân
(
Un, S(n)θ−1

)
CηnUn,Tn + Ln

)
(where each Li lies in A(< ηi))

=
(
πθ ;

∑
U1∈M(η1)

râ1
(
U1, S(1)θ−1

)
Cη1U1,T1

, . . .

. . . ,
∑

Un∈M(ηn)

rân
(
Un, S(n)θ−1

)
CηnUn,Tn

)
+ L

where L is a k-linear combination of elements of the basis A of SnoA of the

form (
πθ;Cδ1X1,Y1

, . . . , CδnXn,Yn
)

(3.18)
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where for each i = 1, . . . , n, we have δi ≤ ηi in Λ, and moreover this inequality

must be strict for at least one i. It follows that the layer index of each of

these elements is strictly less that µ in the backwards lexicographic order on

Λ�n(r). It is also clear that if c is an element of the form (3.18), then

(z; 1, . . . , 1)c(y−1; 1, . . . , 1)

has the same layer index as c. It now follows from (3.17) that

(σ; a1, . . . , an)Ψµ (S ⊗ θ ⊗ T )

≡ (z; 1, . . . , 1)
(
πθ ;

∑
U1∈M(η1)

râ1
(
U1, S(1)θ−1

)
Cη1U1,T1

, . . .

. . . ,
∑

Un∈M(ηn)

rân
(
Un, S(n)θ−1

)
CηnUn,Tn

)
(y−1; 1, . . . , 1)

(mod J<µ),

the right hand side of which is equal to∑
U1∈M(η1)

· · ·
∑

Un∈M(ηn)

râ1
(
U1, S(1)θ−1

)
· · · rân

(
Un, S(n)θ−1

)
·

(z; 1, . . . , 1)
(
πθ ;Cη1U1,T1

, . . . , CηnUn,Tn

)
(y−1; 1, . . . , 1)

=
∑

U1∈M(η1)

· · ·
∑

Un∈M(ηn)

râ1
(
U1, S(1)θ−1

)
· · · rân

(
Un, S(n)θ−1

)
·

Ψµ

((
z ⊗ CU(1)πθ

⊗ · · · ⊗ CU(n)πθ

)
⊗ πθ ⊗ T

)
(by the definition of Ψµ; notice that we do indeed have U(i)πθ ∈M(ηi)

for each i, since πθ ∈ Sµ)

= Ψµ

((
z ⊗

∑
U ′1∈M(η1)

ra′1

(
U ′1, S((1)πθ)θ−1

)
CU ′1 ⊗ · · ·

· · · ⊗
∑

U ′n∈M(ηn)

ra′n
(
U ′n, S((n)πθ)θ−1

)
CU ′n

)
⊗ πθ ⊗ T

)

(where we have defined U ′i = U(i)πθ and a′i = â(i)πθ)

= Ψµ

((
z ⊗ a′1CS((1)πθ)θ−1 ⊗ · · · ⊗ a′nCS((n)πθ)θ−1

)
⊗ πθ ⊗ T

)
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= Ψµ

((
z ⊗ a(1)πx−1CS(1)π

⊗ · · · ⊗ a(n)πx−1CS(n)π

)
⊗ πθ ⊗ T

)
(because a′i = â(i)πθ = a(i)πθθ−1x−1 = a(i)πx−1).

Equation (2.6) now follows from Proposition 3.5, since every element of

the basis A of SnoA is of the form (σ; a1, . . . , an), and it is clear that the

elements (
z ⊗ a(1)πx−1CS(1)π

⊗ · · · ⊗ a(n)πx−1CS(n)π

)
and π depend only on (σ; a1, . . . , an) and S (since z and π are defined by

σx = zπ). Thus, we may apply Theorem 2.2 to our decomposition (3.16)

and hence prove that SnoA is cellular. Before we give a formal statement

of this result, let us introduce one more notational convention. By tracing

back through our arguments, we may see that the indexing set of the cell

modules of SnoA is the set of all tuples (µ, (ζ1, . . . , ζr)) such that µ ∈ Λ�n(r)

and ζi ∈ Λµi (this comes from our use of the theorems 1.16, 2.1 and 2.2). For

such a tuple, it is clear that (|ζ1|, . . . , |ζr|) = µ, and so we lose no information

if we omit µ from the notation and thus identify the set which indexes the

cell modules of SnoA with the set of all r-tuples of partitions (ζ1, . . . , ζr) such

that (|ζ1|, . . . , |ζr|) = µ for some µ ∈ Λ�n(r); let us denote this set by Λ`n(r).

Theorem 3.6. Let k be any field and A a cellular k-algebra with cellu-

lar data (Λ,M,C, ι), where |Λ| = r. Then for any positive integer n, the

wreath product algebra SnoA is a cellular algebra with respect to a tuple

(Λ`n(r),M, C, ι), where Λ`n(r) is the set of all r-tuples of partitions (ζ1, . . . , ζr)

such that (|ζ1|, . . . , |ζr|) = µ for some composition µ of n with exactly r parts,

and further the map ι in the tuple is the anti-involution (well-) defined on

SnoA by

ι
(
(σ; a1, a2, . . . , an)

)
=
(
σ−1 ; ι(a(1)σ), ι(a(2)σ), . . . , ι(a(n)σ)

)
for a1, a2, . . . , an ∈ A and σ ∈ Sn.
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Now let us briefly show how this result may be applied to the wreath

product AoSop
n as defined, for example, in [1] (see Section 3.2, above). Recall

from Equation (3.4) that

AoSop
n
∼=
(
Sno(Aop)

)op
.

By using Proposition 3.1 and Theorem 3.6, we may show that
(
Sno(Aop)

)op

is cellular with respect to a tuple of data including the partially ordered

set Λ`n(r) and the map ι, exactly as in Theorem 3.6 (note that ι is indeed a

map on
(
Sno(Aop)

)op
, since it is clear that

(
Sno(Aop)

)op
and SnoA are equal

as vector spaces). Hence by the isomorphism (3.5), AoSop
n is cellular with

respect to a tuple of data including the partially ordered set Λ`n(r) and the

anti-involution ι which is (well-) defined on AoSop
n by

ι
(
(a1, a2, . . . , an;σ)

)
=
(
ι(aσ(1)), ι(aσ(2)), . . . , ι(aσ(n)) ; σ−1

)
for a1, a2, . . . , an ∈ A and σ ∈ Sop

n .

3.6 The cell modules of a wreath product

In this section, we shall show how the cell modules of the wreath product

SnoA (where n is a positive integer) which arise from the cellular structure

obtained in Theorem 3.6 may be obtained from the cell modules of A and

Sn via the constructions described in Section 3.4.

Firstly, let us obtain one description of the cell modules by applying Corol-

lary 2.7. Indeed, let (ζ1, . . . , ζr) ∈ Λ`n(r), and let µ = (|ζ1|, . . . , |ζr|) ∈ Λ�n(r).

Recall from above that

Vµ = (kLµ)⊗
(

∆λ1
)⊗µ1

⊗
(

∆λ2
)⊗µ2

⊗ · · · ⊗
(

∆λr
)⊗µr

and that we define Ωµ to be the basis of Vµ consisting of all pure tensors of

the form

S = x⊗ CS1 ⊗ CS2 ⊗ · · · ⊗ CSn
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where x ∈ Lµ and we have

(S1, S2, . . . , Sµ1︸ ︷︷ ︸
elements of M(λ1)

, Sµ1+1, . . . , Sµ1+µ2︸ ︷︷ ︸
elements of M(λ2)

, . . . , Sn).

Further, recall that by Equation (3.8) and Theorems 1.16 and 2.1, the cell

module of kSµ indexed by (ζ1, . . . , ζr) is the tensor product module

Sζ1 ⊗ Sζ2 ⊗ · · · ⊗ Sζr

where the action is as given in Equation (3.12). Hence, by applying Corol-

lary 2.7, we have for the cell module ∆(ζ1,...,ζr) of SnoA an isomorphism of

k-vector spaces

∆(ζ1,...,ζr) ∼= Vµ ⊗
(
Sζ1 ⊗ Sζ2 ⊗ · · · ⊗ Sζr

)
so that in fact ∆(ζ1,...,ζr) is isomorphic as a k-vector space to the tensor

product

kLµ ⊗
(
∆λ1

)⊗µ1 ⊗ (∆λ2
)⊗µ2 ⊗ · · · ⊗ (∆λr

)⊗µr ⊗ Sζ1 ⊗ Sζ2 ⊗ · · · ⊗ Sζr .
Further, by Corollary 2.7, the action of SnoA is as follows: take some

(σ; a1, . . . , an) ∈ A, so that each ai is in fact some element CηiXi,Yi of the

cellular basis of A, let S ∈ Ωµ be as above and let wi ∈ Sζi for i = 1, . . . , r;

then we have by Proposition 3.5 that

(σ; a1, . . . , an)
(
S ⊗ (w1 ⊗ · · · ⊗ wr)

)
=(

z ⊗ a(1)πx−1CS(1)π
⊗ · · · ⊗ a(n)πx−1CS(n)π

)
⊗ (π1w1 ⊗ · · · ⊗ πrwr) (3.19)

where z ∈ Lµ and π ∈ Sµ are the unique elements such that σx = zπ, and

the elements πi ∈ Sµi arise from the factorisation of π as for Equation (3.12).

We may now easily show by linearity that Equation (3.19) holds for any

a1, . . . , an ∈ A, not just elements of the cellular basis. Further, we may

similarly show that Equation (3.19) continues to hold when the basis elements
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CSi of the cell modules of A are replaced by general elements of those cell

modules, so that in fact we have

(σ; a1, . . . , an)
(
(x⊗ v1 ⊗ · · · ⊗ vn)⊗ (w1 ⊗ · · · ⊗ wr)

)
=(

z ⊗ a(1)πx−1v(1)π ⊗ · · · ⊗ a(n)πx−1v(n)π

)
⊗ (π1w1 ⊗ · · · ⊗ πrwr) (3.20)

where a1, . . . , an ∈ A and each vi is an element of the appropriate cell module

of A (and the other quantities are all as in Equation (3.19)).

We shall now give an alternative description of the cell modules ∆(ζ1,...,ζr)

of SnoA as inflations of SµoA-modules obtained via the constructions described

in Section 3.4; this construction of the cell modules of a wreath product was

given (for AoSop
n ) by Geetha and Goodman for the case where all the cell

modules of A are cyclic (Theorem 4.26 in [4]).

Proposition 3.7. The cell module ∆(ζ1,...,ζr) of SnoA is isomorphic to the

SnoA-module

Indnµ

((
∆λ1 , . . . ,∆λr

)oµ � (Sζ1 ⊗ · · · ⊗ Sζr)),
where µ = (|ζ1|, . . . , |ζr|).

Proof. We shall explain how the isomorphism is constructed, but we shall

omit the rather lengthy but routine calculations needed to verify the various

stages of the argument. Recall that

Indnµ

((
∆λ1 , . . . ,∆λr

)oµ � (Sζ1 ⊗ · · · ⊗ Sζr))
is defined to be the module

(
SnoA

)
⊗µ
((

∆λ1 , . . . ,∆λr
)oµ � (Sζ1 ⊗ · · · ⊗ Sζr))

where we have adopted the shorthand notation ⊗µ to mean ⊗SµoA. Further,

let us identify the cell module ∆(ζ1,...,ζr) with the vector space tensor product

kLµ ⊗
(
∆λ1

)⊗µ1 ⊗ (∆λ2
)⊗µ2 ⊗ · · · ⊗ (∆λr

)⊗µr ⊗ Sζ1 ⊗ Sζ2 ⊗ · · · ⊗ Sζr
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as explained above. It is then easy to prove that we may define a k-linear

map

ψ : ∆(ζ1,...,ζr) −→ Indnµ

((
∆λ1 , . . . ,∆λr

)oµ � (Sζ1 ⊗ · · · ⊗ Sζr))
via the formula

ψ : x⊗ v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wr 7−→

(x; 1, . . . , 1)⊗µ
(
(v1 ⊗ · · · ⊗ vn)⊗ (w1 ⊗ · · · ⊗ wr)

)
(3.21)

where x ∈ Lµ, each vi lies in the appropriate cell module of A, and wi ∈ Sζi

for i = 1, . . . , r. Further, we may check by direct calculation using Equa-

tion (3.20) that

(σ; a1, . . . , an)ψ(x⊗ v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wr) =

ψ
(
(σ; a1, . . . , an)(x⊗ v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wr)

)
for any σ ∈ Sn and a1, . . . , an ∈ A, which implies that ψ is a homomorphism

of SnoA-modules. It remains only to prove that ψ is invertible, and to do

this we shall construct an inverse map for ψ. Indeed, it is straightforward to

check that we may define a map

φ :
(
SnoA

)
×
((

∆λ1 , . . . ,∆λr
)oµ � (Sζ1 ⊗ · · · ⊗ Sζr)) −→ ∆(ζ1,...,ζr)

which is k-linear in both places by the formula

φ :
(
(σ; a1, . . . , an), (v1 ⊗ · · · ⊗ vn)⊗ (w1 ⊗ · · · ⊗ wr)

)
7−→

x⊗ a(1)θv(1)θ ⊗ · · · ⊗ a(n)θv(n)θ ⊗ θ1w1 ⊗ · · · ⊗ θrwr (3.22)

where vi and wi are as above, σ ∈ Sn, ai ∈ A, x ∈ Lµ and θ ∈ Sµ are the

unique elements such that σ = xθ, and the elements θi ∈ Sµi are the unique

elements such that θ = θ̂1 · · · θ̂r where θ̂i is as usual the image of θi under

the canonical isomorphism from Sµi to SΘi . Further, we may check that
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φ
(
(σ; a1, . . . , an)(π; b1, . . . , bn), (v1 ⊗ · · · ⊗ vn)⊗ (w1 ⊗ · · · ⊗ wr)

)
=

φ
(

(σ; a1, . . . , an), (π; b1, . . . , bn)
(
(v1 ⊗ · · · ⊗ vn)⊗ (w1 ⊗ · · · ⊗ wr)

))
for any π ∈ Sµ and bi ∈ A (with the other quantities as above), from

which we may conclude that the map φ is SµoA-balanced ; that is, that

φ(aα,d) = φ(a,αd) for any a ∈ SnoA, and α ∈ SµoA and any

d ∈
(
∆λ1 , . . . ,∆λr

)oµ � (Sζ1 ⊗ · · · ⊗ Sζr).
Thus by the universal property of the tensor product, we have a well-defined

map

φ̂ :
(
SnoA

)
⊗µ
((

∆λ1 , . . . ,∆λr
)oµ � (Sζ1 ⊗ · · · ⊗ Sζr)) −→ ∆(ζ1,...,ζr)

given by

φ̂ : (σ; a1, . . . , an)⊗µ
(
(v1 ⊗ · · · ⊗ vn)⊗ (w1 ⊗ · · · ⊗ wr)

)
7−→

x⊗ a(1)θv(1)θ ⊗ · · · ⊗ a(n)θv(n)θ ⊗ θ1w1 ⊗ · · · ⊗ θrwr

where the quantities involved are as in Equation (3.22). By direct calculation,

we may now verify that

φ̂ ◦ ψ (x⊗ v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wr) =

x⊗ v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wr

where the quantities are as in Equation (3.21), and also that

ψ ◦ φ̂
(

(σ; a1, . . . , an)⊗µ
(
(v1 ⊗ · · · ⊗ vn)⊗ (w1 ⊗ · · · ⊗ wr)

))
=

(σ; a1, . . . , an)⊗µ
(
(v1 ⊗ · · · ⊗ vn)⊗ (w1 ⊗ · · · ⊗ wr)

)
where the quantities involved are as in Equation (3.22). It now follows that

φ̂ is indeed an inverse map to ψ.

New material in Chapter 3: As far as I am aware, the concept of

an iterated inflation of cellular algebras has not previously been applied
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to the wreath product of a cellular algebra with a symmetric group, and

thus our proof of the cellularity of AoSn in Section 3.5 is a new result. Of

course, Geetha and Goodman have already shown that the wreath product

AoSop
n is cellular if all of the cell modules of A are cyclic, but their proof

is quite different from ours. The construction of the cell modules of AoSn

given in Proposition 3.7 was given by Geetha and Goodman (for AoSop
n ), but

our proof of it is again based on the decomposition of AoSn as an iterated

inflation and thus is new.
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A A counterexample to a proposed lemma of Xi

This appendix contains a counterexample to the proposed lemma of Xi on

page 68, that is, an algebra A with an anti-involution ι which satisfies all

of the hypotheses of the lemma, but is not cellular with respect to ι (in the

sense of our Definition 1.10). As far as I know, this counterexample is a new

result.

Indeed, let k be any field, and define A to be the k-vector space

M2(k)⊕ k⊕ k.

We define a multiplication on A by settinga11 a12

a21 a22

 , α, β

b11 b12

b21 b22

 , γ, δ

 =

γa11 δa12

δa21 γa22

+

αb11 βb12

βb21 αb22

 , αγ, βδ

 .

It is routine to verify that this formula does indeed define a k-bilinear

associative multiplication on A, and moreover that this multiplication is

commutative (so that the concepts of left ideals, right ideals, and two-sided

ideals coincide, and thus we may unambiguously refer to ideals of A) and

has identity element 0 0

0 0

 , 1, 1

 .

Further, let us define a map ι on A by setting

ι (M,α, β) =
(
MT , α, β

)
for any α, β ∈ k and any M ∈M2(k); it is routine to verify that this ι is in

fact an anti-involution on A. Now we may identify the k-vector spaces k and

M2(k) with the tensor products k⊗ k⊗ k and k⊗M2(k)⊗ k respectively, by

identifying the element 1⊗ x⊗ 1 of k⊗ k⊗ k (resp. k⊗M2(k)⊗ k) with the
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element x of k (resp. M2(k)). Let V1 = V2 = V3 = k and let B1 = M2(k) and

B2 = B3 = k, where M2(k) is a cellular algebra as in Proposition 1.3 and k

is taken to be the trivial cellular algebra. Thus we obtain an isomorphism of

vector spaces

A ∼=
(
V1 ⊗B1 ⊗ V1

)
⊕
(
V2 ⊗B2 ⊗ V2

)
⊕
(
V3 ⊗B3 ⊗ V3

)
=
(
k⊗M2(k)⊗ k

)
⊕
(
k⊗ k⊗ k

)
⊕
(
k⊗ k⊗ k

) (A.1)

from the mapping

(M,α, β) 7−→ (1⊗M ⊗ 1, 1⊗ α⊗ 1, 1⊗ β ⊗ 1). (A.2)

To show that A satisfies the hypotheses of Xi’s lemma when equipped with

the anti-involution ι and the decomposition (A.1), we define k-bilinear forms

φ1 : V1 × V1 → B1, φ2 : V2 × V2 → B2, φ3 : V3 × V3 → B3

by setting

φ1(1, 1) =

0 0

0 0


and φ2(1, 1) = φ3(1, 1) = 1. It is now routine to check that these definitions

satisfy all the hypotheses of Xi’s lemma; in particular note that for j = 1, 2, 3,

the cellular algebra Bj has cell chain {0} ⊆ Bj .

Proposition A.1. The algebra A is not cellular with respect to the anti-

involution ι.

Proof. Suppose for a contradiction that A is cellular in the sense of Defini-

tion 1.10 with respect to ι. Then by Theorem 1.12, A is cellular in the sense

of Definition 1.2 with respect to a tuple (Λ,M,C, ι) of cellular data.

We have

dim(A) =
∑
λ∈Λ

|M(λ)|2.

But dim(A) = 6, and the only ways of writing 6 as a sum of square integers

are 6 = 1 + 1 + 1 + 1 + 1 + 1 and 6 = 4 + 1 + 1. It follows that either |Λ| = 6
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or |Λ| = 3. But if |Λ| = 6 then we must have |M(λ)| = 1 for all λ ∈ Λ, and

thus the cellular basis of A would be of the form

Cλ1S1,S1
, Cλ2S2,S2

, Cλ3S3,S3
, Cλ4S4,S4

, Cλ5S5,S5
, Cλ6S6,S6

where Λ = {λ1, . . . , λ6} and M(λi) = {Si} for each i = 1, . . . , 6. But then by

axiom (C2) of Definition 1.2, we must have ι
(
CλiSi,Si

)
= CλiSi,Si for each i, and

it follows that ι must be the identity map on A. Since ι is not the identity

map, we have a contradiction.

Thus, we must have Λ = {λ1, λ2, λ3}, where we may assume that

|M(λ1)| = |M(λ2)| = 1

and

M(λ3) = {S, T}.

Note, however, that our indexing of the elements of Λ as λ1, λ2, λ3 need not

have any relation to the ordering on Λ. Recall that for λ ∈ Λ, A(λ) is defined

to be the subspace

spank{CλX,Y : X,Y ∈M(λ)}

of A, and A(< λ) is defined to be the ideal

spank{C
µ
X,Y : µ < λ and X,Y ∈M(µ)}

of A; we shall now show that

A(λ3) = {(M, 0, 0) : M ∈M2(k)}

and that A(< λ3) = {0}. Indeed, it is clear that A(< λ3) must be equal to

exactly one of

{0}, A(λ1), A(λ2), or A(λ1)⊕A(λ2)

(depending upon the ordering on Λ) and hence A(< λ3) is an ideal of A with

dimension at most 2.
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Now let (M,α, β) ∈ A, so that M ∈M2(k) and α, β ∈ k. Then1 0

0 0

 , 0, 0

 (M,α, β) =

α 0

0 0

 , 0, 0


and 0 0

0 1

 , 0, 0

 (M,α, β) =

0 0

0 α

 , 0, 0


and if α 6= 0, then the elements

(M,α, β),

α 0

0 0

 , 0, 0

 ,

0 0

0 α

 , 0, 0


of A are linearly independent, so that if α 6= 0 then the ideal generated by

(M,α, β) in A must have dimension at least 3. Similarly, we may use the

facts that 0 1

0 0

 , 0, 0

 (M,α, β) =

0 β

0 0

 , 0, 0


and 0 0

1 0

 , 0, 0

 (M,α, β) =

0 0

β 0

 , 0, 0


to show that if β 6= 0 then the ideal generated by (M,α, β) in A must have

dimension at least 3. Thus, we have shown that any ideal of A which does

not lie in {(M, 0, 0) : M ∈M2(k)} must have dimension at least 3, and thus

A(< λ3) must lie in {(M, 0, 0) : M ∈M2(k)}.

Next, by the fact that A is commutative, we have

Cλ3S,TC
λ3
T,S = Cλ3T,SC

λ3
S,T .

But by Equation (1.13), we have

Cλ3S,TC
λ3
T,S = 〈CT , CT 〉Cλ3S,S + L1

and

Cλ3T,SC
λ3
S,T = 〈CS , CS〉Cλ3T,T + L2
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for some L1, L2 ∈ A(< λ3). It follows (because A(< λ3) ∩A(λ3) = {0}) that

〈CS , CS〉Cλ3T,T = 〈CT , CT 〉Cλ3S,S

and since Cλ3T,T and Cλ3S,S are linearly independent, it follows that

〈CS , CS〉 = 〈CT , CT 〉 = 0. (A.3)

By applying the same argument to the product Cλ3T,TC
λ3
S,S , we find that

〈CS , CT 〉 = 〈CT , CS〉 = 0. (A.4)

Now consider the element Cλ3S,S . We have

Cλ3S,S = (B,α, β)

for some B ∈M2(k) and α, β ∈ k, and thus

Cλ3S,SC
λ3
S,S = (B,α, β)(B,α, β)

= (X,α2, β2)

(where X is some 2× 2 matrix which we shall not need to consider further).

But by Equation (1.13), we have some L ∈ A(< λ3) such that

Cλ3S,SC
λ3
S,S = 〈CS , CS〉Cλ3S,S + L

= L (since 〈CS , CS〉 = 0 by Equation (A.3))

and since A(< λ3) ⊆ {(M, 0, 0) : M ∈M2(k)}, L is of the form (Y, 0, 0) (for

some 2× 2 matrix Y ), and thus we have α = β = 0. Similar arguments show

that the elements Cλ3T,S , C
λ3
S,T , C

λ3
T,T must each be of the form (M, 0, 0) (for

some 2× 2 matrix M), and hence A(λ3) must be a 4-dimensional subspace

of {(M, 0, 0) : M ∈M2(k)}, so in fact

A(λ3) = {(M, 0, 0) : M ∈M2(k)}.

Further, we must now have A(< λ3) ⊆ A(λ3) and A(< λ3) ∩ A(λ3) = {0},

so that A(< λ3) = {0}.
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Returning to the elements Cλ3S,S , C
λ3
T,S , C

λ3
S,T , C

λ3
T,T , we have

Cλ3S,S = (B, 0, 0)

Cλ3S,T = (C, 0, 0)

Cλ3T,S = (C ′, 0, 0)

Cλ3T,T = (D, 0, 0)

for some B,C,C ′, D ∈M2(k). Further, by axiom (C2) of Definition 1.2 we

have

ι
(
Cλ3S,S

)
= Cλ3S,S

ι
(
Cλ3S,T

)
= Cλ3T,S

ι
(
Cλ3T,T

)
= Cλ3T,T

from which we deduce that B and D are symmetric and C ′ = CT ; further

since Cλ3S,T 6= Cλ3T,S , C cannot be symmetric.

In order to derive a contradiction, let us fix a to be the element0 0

0 0

 , 1, 0


of A. Then by axiom (C3) of Definition 1.2 and the fact that A(< λ3) = {0},

we have

a ·
(
Cλ3S,T − C

λ3
T,S

)
= aCλ3S,T − aCλ3T,S

= ra(S, S)Cλ3S,T + ra(T, S)Cλ3T,T

− ra(S, T )Cλ3S,S − ra(T, T )Cλ3T,S .

But if we let

C =

c11 c12

c21 c22


then by direct calculation, we have

a ·
(
Cλ3S,T − C

λ3
T,S

)
= a · (C − CT , 0, 0)
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= a ·

 0 c12 − c21

c21 − c12 0

 , 0, 0


=

0 0

0 0

 , 0, 0

 ,

and so by linear independence of Cλ3S,S , C
λ3
T,S , C

λ3
S,T , C

λ3
T,T , we have

ra(S, S) = ra(S, T ) = ra(T, S) = ra(T, T ) = 0. (A.5)

Now let

B =

b11 b12

b12 b22


and

D =

d11 d12

d12 d22

 ,

where we have used the fact the B and D are symmetric. Then by direct

calculation we have

a · Cλ3S,S =

b11 0

0 b22

 , 0, 0

 ,

but by using Equation (A.5), we have

a · Cλ3S,S = ra(S, S)Cλ3S,S + ra(T, S)Cλ3T,S

=

0 0

0 0

 , 0, 0


and so b11 = b22 = 0. By applying the same argument to the product a ·Cλ3T,T ,

we also have d11 = d22 = 0. But now we have

Cλ3S,S = (B, 0, 0) = b12 ·

0 1

1 0

 , 0, 0


Cλ3T,T = (D, 0, 0) = d12 ·

0 1

1 0

 , 0, 0


which implies that Cλ3S,S and Cλ3T,T are linearly dependent, and this is a

contradiction. Thus indeed A is not cellular with respect to ι.
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