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DETECTABLE SUBSPACES AND INVERSE PROBLEMS FOR
HAIN-LÜST-TYPE OPERATORS

B.M.BROWN, M.MARLETTA, S.N.NABOKO, I.G.WOOD

ABSTRACT. We examine the extent to which a block operator matrix of Hain-Lüst type
can be reconstructed from its Titchmarsh-Weyl coefficients. The detectable subspace of
the operator is determined in a variety of cases and the question of unique determination
of the coefficients is considered for both first and second order operators.

1. INTRODUCTION

In recent articles [6, 8, 9] the authors have considered forward and inverse problems
for operators in the boundary triples setting. In particular, we have been interested in
the detectable subspaces (see (12) below) related to the Titchmarsh-Weyl functions M(λ),
M̃(λ) associated with a formally adjoint pair, which determine upper bounds on the spaces
in which the operators can be reconstructed, to some extent, from the information about
boundary measurements contained in the Titchmarsh-Weyl functions. For instance, Derkach
and Malamud [11] (see also Ryzhov [30]) show that in the formally symmetric case, if the
detectable subspace is the whole Hilbert space, then the operator can be reconstructed up
to unitary equivalence. In terms of the Q-function, this result was proved earlier by Kreı̆n,
Langer and Textorius [17, 22].

If the underlying operator is not symmetric, but the detectable subspace is the whole
Hilbert space, then the Titchmarsh-Weyl function determines the operators of an adjoint
pair up to weak equivalence [24]. However, weak equivalence does not preserve the spec-
tral properties of the operators. Improving the result on weak equivalence in some special
cases is the topic of [2–4, 13].

In an abstract setting these results are optimal: further information depends on having
a priori knowledge of the operator. The fact that a Schrödinger operator in one dimen-
sion is uniquely determined (not just up to unitary equivalence) by the Titchmarsh-Weyl
coefficient as a function of the spectral parameter has been known for more than sixty
years [10, 12, 26] while in higher dimensions it suffices to know the Dirichlet to Neumann
map for just one value of the spectral parameter [29]. Nevertheless an inverse-PDE appli-
cation of the boundary triple approach may be found in [5].

To gain insight into what information may be determined from the Titchmarsh-Weyl
functions in a general setting, it is instructive to look at particular examples. In this ar-
ticle we examine the extent to which a block operator matrix of Hain-Lüst type can be
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reconstructed from Titchmarsh-Weyl coefficients. We show that unique determination is
generally impossible because the detectable subspace may have a non-trivial orthogonal
complement, and we characterise the detectable subspace in various different cases. The
fact that the results depend so much on the case under consideration shows that Hain-
Lüst-type operators are very far from being a Schrödinger operator when questions of
determination from boundary measurements are raised.

We also consider the case when the coefficients in the Hain-Lüst-type operator are an-
alytic. In this case, some properties of the coefficients are uniquely determined by the
Titchmarsh-Weyl coefficients (Theorem 4.1). One may expect that much more information
should be contained in the Titchmarsh-Weyl coefficients in the analytic situation. However,
our considerations of first order Hain-Lüst-type operators in Section 6 show that, in this
simpler case, the operator is not uniquely determined by its Titchmarsh-Weyl coefficient.
In terms of the detectable subspace, our results show that the first and second order results
are very similar, so it seems plausible (Conjecture 4.3) that also in the second order case
with analytic coefficients, the Titchmarsh-Weyl coefficient does not uniquely determine
the coefficients. This remains an open problem.

In Section 5 we show that the restricted resolvent, which is closely related to the func-
tion M(λ) [9], nevertheless contains just enough extra information to enable the coeffi-
cients in the second order Hain-Lüst-type operator to be largely reconstructed, with an
explicit description of the exceptional sets on which two of the coefficients may be unde-
termined.

Regarding forward Hain-Lüst-type problems, there is now a substantial literature. As
a very good starting point, we would recommend that the interested reader consult [1].
Further results can be found, e.g. in [7, 14, 16, 18–21, 27, 28].

2. PRELIMINARIES

The Hain-Lüst-type operators we will study are given by

(1) Ã∗ =

(
− d2

dx2 + q(x) w̃(x)

w(x) u(x)

)
, A∗ =

(
− d2

dx2 + q(x) w(x)

w̃(x) u(x)

)
where q, u, w̃ and w are L∞-functions, and the domains of the operators are given by

(2) D(Ã∗) = D(A∗) = H2(0, 1)× L2(0, 1).

Integration by parts shows that〈
Ã∗
(
y
z

)
,

(
f
g

)〉
−
〈(

y
z

)
, A∗

(
f
g

)〉
=

〈
Γ1

(
y
z

)
,Γ2

(
f
g

)〉
−
〈

Γ2

(
y
z

)
,Γ1

(
f
g

)〉
,(3)

where the boundary operators Γj are given by

Γ1

(
y
z

)
=

(
−y′(1)
y′(0)

)
, Γ2

(
y
z

)
=

(
y(1)
y(0)

)
and the inner products on the right of (3) are in C2. The Titchmarsh-Weyl function or
Neumann-to-Dirichlet operator M(λ) is, in this context, the 2× 2 matrix defined by

(4) M(λ)Γ1

(
y
z

)
= Γ2

(
y
z

)
, for all

(
y
z

)
∈ ker(Ã∗ − λI);
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M̃(λ) is defined similarly but with Ã∗ replaced by A∗. Given the definitions of Γ1 and Γ2

above, we have

(5) M(λ)

(
−y′(1)
y′(0)

)
=

(
y(1)
y(0)

)
;

moreover the fact that
(
y
z

)
∈ ker(Ã∗ − λI) yields two equations,

−y′′ + (q − λ)y + w̃z = 0, wy + (u− λ)z = 0,

from which z may be eliminated to give the Schur-complement equation for y, which is

(6)
(
− d2

dx2
+ q(x)− λ− w(x)w̃(x)

u(x)− λ

)
y = 0.

Thus the Titchmarsh-Weyl function M for the Hain-Lüst operator Ã∗ is determined by the
formula (5) as applied to any basis of the set of solutions of (6) for λ outside the range
of u. Explicit formulae, which we do not require here, are given in [6, eqn. (5.10-5.12)].
Similarly, M̃(λ) is determined by the formula (5) withM replaced by M̃ , and the function
y now satisfying (6) with q, w, w̃ and u replaced by their complex conjugates. It follows
that

(7) M̃(λ) = M(λ),

and so without loss of generality we can restrict our attention only to one M -function
when considering the question of how much information on the operators is contained in
the M -functions.

Hain-Lüst operator pairs therefore fall within the abstract setting of boundary triples
for adjoint pairs [23]. In this setting we showed [8] that, given any bounded operator B
(which in the Hain-Lüst context means that B is just a constant 2 × 2 matrix) one may
define an operator AB by imposing the boundary condition (Γ1 − BΓ2)u = 0 on the

elements u =

(
y
z

)
of D(Ã∗),

(8) AB := Ã∗
∣∣∣
ker(Γ1−BΓ2)

,

having the property that MB(λ) := M(λ)(I − BM(λ))−1, which maps according to the
rule

(9) MB(λ)(Γ1 −BΓ2)u = Γ2u, u ∈ ker(Ã∗ − λI),

is analytic in the resolvent set of AB . We also show that the adjoint (AB)∗ is obtained by
imposing the boundary condition (Γ1 −B∗Γ2)u = 0 on the elements of D(A∗):

(10) (AB)∗ = ÃB∗ := A∗|ker(Γ1−B∗Γ2) ,

and develop Kreı̆n resolvent formulae which relate the resolvents of operators correspond-
ing to different boundary conditions [25].

We need here the concept of solution operator or abstract Poisson operator. This is the
operator defined by

(11) u = Sλ,Bh if and only if (Ã∗ − λ)u = 0 and (Γ1 −BΓ2)u = h.

Provided λ does not lie in the spectrum of AB , the operator Sλ,B is well defined on
Ran(Γ1 − BΓ2), which is the whole boundary space C2 for our Hain-Lüst problem. The
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solution operator S̃λ,B∗ is defined analogously, by solving the equation (A∗ − λ)u = 0

subject to (Γ1 −B∗Γ2)u = h and setting S̃λ,B∗h = u.
In [6] we associated detectable subspaces with Ã∗ and A, in the abstract setting rather

than the Hain-Lüst case. These detectable subspaces were written as the closures S and S̃
of some dense subsets S and S̃ respectively. We proved that the orthogonal complement
of the detectable subspace S is given by

(12) S⊥ =
⋂

B,λ∈ρ(AB)

ker (S∗λ,B);

for the purposes of this article, the reader may take (12) as an implicit definition of the
detectable subspace S. We proved that S is a regular invariant subspace of the resolvent of
AB and, under some mild hypotheses, is independent of the boundary condition operator
B. Under the assumption that Ran (Γ1 − BΓ2) is the whole boundary space (which is
satisfied for Hain-Lüst), we also proved in [8, Proposition 3.9] that

ker (S∗λ,B) = ker
(

Γ2(ÃB∗ − λ)−1
)
.

Similar results hold for S̃.
Suppose now that h ∈ S⊥. Then we have Γ2(ÃB∗ − λ)−1h = 0 for all suitable B and

λ. Fixing B and λ and setting

(13) yB = (ÃB∗ − λ)−1h,

we get Γ2yB = 0 and hence Γ1yB = B∗Γ2yB = 0, so yB satisfies any homogeneous
boundary condition and lies in the domain of the minimal operator. We have therefore
proved the following.

Proposition 2.1. A vector h is orthogonal to the detectable subspace if and only if, for
each boundary condition operator B and each λ in the resolvent set of ÃB∗ , the vector
yB := (ÃB∗−λI)−1h satisfies all homogeneous boundary conditions Γ1yB = 0 = Γ2yB .
Equivalently, for our Hain-Lüst problem, yB(0), y′B(0), yB(1) and y′B(1) are all zero.

In Section 3 below, we will investigate the space S for operators of Hain-Lüst type by
asking whether the criteria in Proposition 2.1 imply that yB and hence h is equal to zero.

3. SPECIAL CASES: SOME COEFFICIENTS ARE CONSTANT ON A SUB-INTERVAL

3.1. The case w = w̃ ≡ 0: the Sturm-Liouville problem. When w = w̃ ≡ 0 the Hain-
Lüst operator decomposes into a direct sum of a Sturm-Liouville operator and the operator
of multiplication by u. Since the boundary operators Γ1 and Γ2 contain only information

about the first component y of an element
(
y
z

)
of the domain of A∗ or Ã∗, which is

completely uncoupled from z, we cannot detect the coefficient u. The detectable subspace
has the form S = SSL⊕0, where SSL is the detectable subspace of the associated Sturm-
Liouville problem. We have shown in [9] that SSL = L2(0, 1), but include the argument
here for completeness.

Let θ(x, λ) and φ(x, λ) be solutions of −y′′ + qy = λy which satisfy θ(0, λ) = 0,
θ′(0, λ) = 1 and φ(0, λ) = 1, φ′(0, λ) = 0. Then θ(x, λ) and φ(x, λ) solve−y′′+qy = λy
with the same initial conditions.
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Let h ∈ SSL and yB be as in (13). Then by the variation of constants formula, there
exist C, C̃ such that

yB(x, λ) =

∫ x

0

φ(t, λ)h(t) dt θ(x, λ) +

∫ 1

x

θ(t, λ)h(t) dt φ(x, λ) + Cθ(x, λ) + C̃φ(x, λ).

yB satisfies Γ1yB = 0 = Γ2yB . We choose λ so that it is not a Dirichlet eigenvalue.
Then

yB(0, λ) =
∫ 1

0
θhdt+ C̃ = 0, yB(1, λ) =

(∫ 1

0
φhdt+ C

)
θ(1, λ) + C̃φ(1, λ) = 0,

y′B(0, λ) = C = 0, y′B(1, λ) =
(∫ 1

0
φhdt+ C

)
θ
′
(1, λ) + C̃φ

′
(1, λ) = 0.

This simplifies to∫ 1

0

φhdt θ(1, λ)−
∫ 1

0

θhdt φ(1, λ) = 0,

∫ 1

0

φhdt θ
′
(1, λ)−

∫ 1

0

θhdt φ
′
(1, λ) = 0.

As the Wronskian of θ and φ is non-zero, we have∫ 1

0

θhdt =

∫ 1

0

φhdt = 0.

This holds for almost all λ. Analyticity in λ implies that these equations hold for all
λ. Choosing λ to run through the Dirichlet eigenvalues shows that h is orthogonal to all
Dirichlet eigenfunctions and also to any possible root vectors. Hence, h ≡ 0 proving the
result.

3.2. The Hain-Lüst problem when ww̃ is constant on an interval. We now consider
the full Hain-Lüst operator

Ã∗ =

(
− d2

dx2 + q(x) w̃(x)

w(x) u(x)

)
and present three special results on detectability. The first, Theorem 3.1, covers the case
where u is constant on an interval where w̃ vanishes. The second result, Theorem 3.4,
covers the case when ww̃ is identically zero, without any special hypotheses on u. Finally,
Theorem 3.10 deals with the case in which ww̃ is a non-zero constant and u is constant.

Theorem 3.1. Assume there exists an interval I ⊂ (0, 1) of positive measure such that
• u|I = u0 is constant,
• |w| ≥ ε > 0 a.e. on I ,
• w̃|I = 0 a.e.

Then for all
(
f1

f2

)
∈ S we have

(1) f2/w ∈ H2
loc(I) and

(2) f1 = −(f2/w)′′ + (q − u0)f2/w on I .

Remark 3.2. In particular, there is a restriction on the first component. We will see below
that there are cases where the interplay between f1 and f2 given in (2) actually arises,
i.e. there are elements of S with non-zero f1|I .

Proof. Let h ∈ C∞0 (I) be arbitrary and µ ∈ C \ {u0} such that µ ∈ ρ(AB) for some B.
Set

yµ =
h

u0 − µ
, g =

h′′ − (q − u0)h

w
and zµ =

g

u0 − µ
.
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As all functions are supported on I and yµ is smooth, we have that
(
yµ
zµ

)
lies in the

domain of the minimal operator Ã and
(14)

(Ã−µ)

(
yµ
zµ

)
=

(
−y′′µ + (q − µ)yµ + wzµ
w̃yµ + (u0 − µ)zµ

)
=

(
−h′′+(q−µ)h

u0−µ + h′′−(q−u0)h
u0−µ

g

)
=

(
h
g

)
.

Therefore, for any B

Γ2(ÃB∗ − µ)−1

(
h
g

)
= Γ2

(
yµ
zµ

)
= 0.

This implies by Proposition 2.1 that(
h
g

)
∈
⋂
B,µ

ker Γ2(ÃB∗ − µ)−1 = S⊥,

i.e. for any h ∈ C∞0 (I) we have(
h

h′′−(q−u0)h
w

)
∈ S⊥.

Now, let
(
f1

f2

)
∈ S. Then for all h ∈ C∞0 (I) we have

〈f1, h〉+

〈
f2,

h′′

w

〉
−
〈
f2,

(q − u0)h

w

〉
= 0.

This implies f2/w ∈ H2(I) and f1 = −(f2/w)′′ + (q − u0)f2/w on I . �

We now show that the complicated interplay between the two components suggested in
the theorem does occur, by proving that for more general Hain-Lüst-type operators there is

always an element
(
f1

f2

)
∈ S such that f1|I 6= 0:

Lemma 3.3. Let q, u, w, w̃ be bounded functions such that ww̃|I = 0 on some interval

I ⊂ (0, 1). Then there exists
(
f1

f2

)
∈ S such that f1|I 6= 0.

Proof. Assume for a contradiction that f1|I = 0 for all
(
f1

f2

)
∈ S. Then

(
L2(I)

0

)
⊂

S⊥, where we view L2(I) as a subset of L2(0, 1) by trivially extending functions to the
whole interval. Let 0 6= h ∈ L2(I) and µ,B as in the previous proof. Let(

y
z

)
= (ÃB∗ − µ)−1

(
h
0

)
.

As
(
h
0

)
∈ S⊥ =

⋂
B,µ ker Γ2(ÃB∗ − µ)−1, we get Γ2

(
y
z

)
=

(
y(1)
y(0)

)
= 0. As(

y
z

)
∈ D(ÃB∗), we also have Γ1

(
y
z

)
=

(
−y′(1)
y′(0)

)
= 0. Therefore,

−y′′ + (q − µ)y + wz = h, w̃y + (u− µ)z = 0, y(0) = y(1) = y′(0) = y′(1) = 0.
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On (0, 1) \ I , the function y therefore satisfies

−y′′ + (q − µ)y − ww̃

u− µ
y = 0.

Together with the boundary conditions at 0 and 1, this means y ≡ 0 on (0, 1) \ I , so
supp(y) ⊂ I and thus supp(z) ⊂ I . We now use that ww̃ = 0 on I . This means that in fact

−y′′ + (q − µ)y = h

and y satisfies any boundary condition at 0 and 1. Since this is true for all µ ∈ ρ(ÃB∗),
it follows by the same argument as for the Sturm-Liouville problem in Section 3.1 that
h = 0, giving a contradiction. �

The second case we consider characterises the detectable subspace S in the case ww̃ =
0. In the following, we denote by L2(w = 0) the set of functions f ∈ L2(0, 1) such that
w(x)f(x) = 0 a.e. We denote its orthogonal complement in L2(0, 1) by L2(w 6= 0).

Theorem 3.4. Assume ww̃ = 0 and that θ(x, λ), φ(x, λ) solve (l − λ)y = − y′′ + (q −
λ)y = 0 subject to the boundary conditions

θ(0, λ) = 0, θ′(0, λ) = 1 and φ(0, λ) = 1, φ′(0, λ) = 0.(15)

Define

Eu,w := Span n∈N {w(x)θ(x, u(x))u(x)n}+ Span n∈N {w(x)φ(x, u(x))u(x)n} .

Then
(16)

S⊥ =

{(
h
g

)
: g ⊥ Eu,w, h(x) =

∫ x

0

(wg)(t)[φ(t, u(t))θ(x, u(t))− θ(t, u(t))φ(x, u(t))]dt

}
In particular,

(17) S =

(
L2(0, 1)
L2(w 6= 0)

)
iff Eu,w = L2(w 6= 0).

We defer the somewhat lengthy proof of the theorem to section 3.3, and first consider
some special cases.

Corollary 3.5. If w ≡ 0, then S =

(
L2(0, 1)

0

)
.

Proof. In this case, Eu,w = {0}, so from (16), S⊥ =

(
0

L2(0, 1)

)
. �

More generally, from Theorem 3.4, we immediately have the following inclusion:

Corollary 3.6. Let ww̃ ≡ 0. Then S ⊆
(

L2(0, 1)
L2(w 6= 0)

)
.

Proof. In fact this result is required in order to prove Theorem 3.4 and is re-stated as
Lemma 3.12 below, where it is proved independently. However it also follows immediately

from Theorem 3.4 since (16) implies that S⊥ ⊇
(

0
L2(w = 0)

)
. �

For the reverse inclusion, we have the following results. We start with a lemma.
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Lemma 3.7. Assume that

(18) Span n∈N0

{
χ{w 6=0}u

n
}

= L2(w 6= 0).

Then Eu,w = L2(w 6= 0).

Remark 3.8. Equality (18) holds for u(x) = x. More generally, if u is continuous and
strictly monotone then it also holds, as one may verify by using the Stone-Weierstrass
Theorem.

Proof. Let Ψ be the set of solutions of −y′′ + (q− u)y = 0. Then v ∈ E⊥u,w if and only if∫ 1

0

v(x)w(x)ψ(x)u(x)n dx = 0

for any ψ ∈ Ψ. By our assumption (18), this is equivalent to v(x)w(x))ψ(x)|w 6=0 = 0 for
any ψ ∈ Ψ. As not all ψ ∈ Ψ can simultaneously vanish at a point x, this is equivalent to
v(x)|w 6=0 = 0, which concludes the proof of the lemma. �

As an immediate consequence of Lemma 3.7 and Theorem 3.4 we have:

Corollary 3.9. Letww̃ ≡ 0. Assume that equality (18) holds. Then S ⊇
(

L2(0, 1)
L2(w 6= 0)

)
.

Some further consequences of Theorem 3.4 are given in Remark 3.14 below.
We conclude this section on special cases with the following result, whose proof uses a

result in the proof of Theorem 3.4 and is therefore deferred to section 3.4.

Theorem 3.10. Assume ww̃ = c0, a non-zero constant, and that u = u0, a constant. Then
S = L2(0, 1)⊕ L2(0, 1).

3.3. Proof of Theorem 3.4. Throughout this subsection, we assume the hypotheses of
Theorem 3.4 hold.

Using Proposition 2.1, a simple calculation using ww̃ = 0 shows that
(
h
g

)
∈ S⊥ if

and only if

−y′′B + (q − µ)yB = h− wg

u− µ
for all suitableB,µ and yB as in the proposition. By the arguments for the Sturm-Liouville

problem, we therefore have
(
h
g

)
∈ S⊥ if and only if

(19)
∫ 1

0

(
h− wg

u− µ

)
ψ(x, µ)dx = 0 for both ψ = θ and ψ = φ.

For the first part of the proof of Theorem 3.4 we need a lemma:

Lemma 3.11. Let ww̃ = 0. If
(
h
g

)
∈ S⊥, then g ⊥ Eu,w.

Proof. Choose a contour Γ around essran(u), multiply (19) by a power of µ and integrate
with respect to µ. Then for any n ∈ N0,

0 = −
∫ 1

0

w(x)g(x)
1

2πi

∫
Γ

ψ(x, µ̄)

u(x)− µ
µndµdx = −

∫ 1

0

w(x)g(x)ψ(x, u(x))u(x)
n
dx.

This proves the lemma. �
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This establishes one of the inclusions in Theorem 3.4 in the case whenEu,w = L2(w 6=
0): for in this case, Lemma 3.11 implies that g|{w 6=0} = 0. From (19), we then get
that

∫ 1

0
h(x)ψ(x, µ) dx ≡ 0 a.e. As in Section 3.1, this implies h ≡ 0, so we get(
0

L2(w = 0)

)
⊇ S⊥. The reverse inclusion is established in the following lemma.

Lemma 3.12. Let ww̃ = 0. We have S ⊆
(

L2(0, 1)
L2(w 6= 0)

)
.

Proof. Let
(
y
z

)
= Sµ,B

(
c1
c2

)
, for some c1, c2 ∈ C. Then wy + (u − µ)z = 0,

so z = wy
µ−u is supported only on the support of w. Moreover, −y′′ + (q − µ)y + w̃z =

−y′′ + (q − µ)y = 0, so y ∈ L2(0, 1) and z ∈ L2(w 6= 0). Since from [6, Lemma 3.1],
we have that S = Span µ∈ρ(AB)RanSµ,B , this concludes the proof. �

Therefore, we have shown that if Eu,w = L2(w 6= 0), then S⊥ =

(
0

L2(w = 0)

)
.

We now consider the case when Eu,w 6= L2(w 6= 0). Then there exists g 6= 0 such that
g ⊥ Eu,w. Put

(20) h(x) =

∫ x

0

(wg)(t)[φ(t, u(t))θ(x, u(t))− θ(t, u(t))φ(x, u(t))] dt.

We need to check that h defined in this way satisfies the condition

0 =

∫ 1

0

(
h− wg

u− µ

)
φ(x, µ)dx.

We first note the following: Let (l0 − µ)y = f mean that{
−y′′ + qy − µy = f,
y(0) = y′(0) = 0.

An explicit calculation gives

y(x) =

∫ x

0

[φ(x, µ)θ(t, µ)− θ(x, µ)φ(t, µ)]f(t)dt.

We let ψ stand for either θ or φ. Then we consider the function

∆(x, µ, ρ) :=
ψ(x, µ)

ρ− µ
+ (l0 − ρ)−1ψ(x, µ)

for ρ ∈ C\{µ}. Since (l − ρ)∆ = 0, we have that ∆(x, µ, ρ) = C1θ(x, ρ) + C2φ(x, ρ)

and with ψ(x, µ) = ψ
′
(0, µ)θ(x, µ) + ψ(0, µ)φ(x, µ), consideration of the domain of l0

leads to

∆(x, µ, ρ) =
ψ
′
(0, µ)

ρ− µ
θ(x, ρ) +

ψ(0, µ)

ρ− µ
φ(x, ρ).

This implies
(21)
ψ(x, µ)

ρ− µ
≡ −

∫ x

0

[φ(x, ρ)θ(t, ρ)−θ(x, ρ)φ(t, ρ)]ψ(t, µ)dt+
ψ
′
(0, µ)

ρ− µ
θ(x, ρ)+

ψ(0, µ)

ρ− µ
φ(x, ρ).
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We now fix x ∈ [0, 1] and put ρ = u(x). As µ ∈ ρ(ÃB∗) for someB, we have µ 6∈ essranu
and this choice is always possible. This gives

ψ(x, µ)

u(x)− µ
=−

∫ x

0

[φ(x, u(x))θ(t, u(x))− θ(x, u(x))φ(t, u(x))]ψ(t, µ)dt

+
ψ
′
(0, µ)

u(x)− µ
θ(x, u(x)) +

ψ(0, µ)

u(x)− µ
φ(x, u(x))

for both choices θ, φ of ψ. Using this expression for ψ(x,µ)

u(x)−µ
, a calculation gives∫ 1

0

wg(x)
ψ(x, µ)

u(x)− µ
dx

= −
∫ 1

0

(wg)(x)

∫ x

0

[φ(x, u(x))θ(t, u(x))− θ(x, u(x))φ(t, u(x))]ψ(t, µ) dt dx(22)

+

∫ 1

0

(wg)(x)θ(x, u(x))

u(x)− µ
ψ
′
(0, µ) dx+

∫ 1

0

(wg)(x)
φ(x, u(x))

u(x)− µ
ψ(0, µ) dx.

As g ⊥ Eu,w, we have that ∫ 1

0

(wg)(x)
ψ(x, u(x))

u(x)− µ
dx = 0,

so the last two terms on the right of (22) cancel. Exchanging the order of integration, we
get ∫ 1

0

wg(x)
ψ(x, µ)

u(x)− µ
dx

= −
∫ 1

0

ψ(t, µ)

∫ 1

t

(wg)(x)[φ(x, u(x))θ(t, u(x))− θ(x, u(x))φ(t, u(x))] dx dt

=

∫ 1

0

ψ(t, µ)

∫ t

0

(wg)(x)
(
φ(x, u(x))θ(t, u(x))− θ(x, u(x))φ(t, u(x))

)
dx dt,

where for the second equality, we use that since θ and φ depend analytically on the second
variable, they can be developed into series of the form

(23) θ(t, u(x)) =

∞∑
k=0

ck(t)u(x)k, φ(t, u(x)) =

∞∑
k=0

c̃k(t)u(x)k

and make use of the orthogonality condition on g. Therefore, by (20),∫ 1

0

wg(x)
ψ(x, µ)

u(x)− µ
dx =

∫ 1

0

ψ(t, µ)h(t) dt.

Hence, as (19) is satisfied, we have
(
h
g

)
∈ S⊥.

Bearing Lemma 3.11 in mind, to complete the proof it is now enough to check that h is

uniquely determined by g whenever
(
h
g

)
∈ S⊥. We know that∫ 1

0

h(x)ψ(x, µ)dx =

∫ 1

0

(wg)(x)

u(x)− µ
ψ(x, µ)dx
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for µ 6∈ essran(u) and therefore for all µ since the left integral is analytic in µ. Letting µn

run through the spectrum of the operator − d2

dx2
+ q with Dirichlet boundary conditions,

the functions {θ(x, µn)} form a basis. This implies that h is uniquely determined by g and
completes the proof of Theorem 3.4. �.

Remark 3.13. If Span∞k=0wu
k = L2(w 6= 0), then Eu,w = L2(w 6= 0). Indeed,

assume Eu,w 6= L2(w 6= 0). Then there exists g ∈ L2(w 6= 0), g 6= 0 such that
φ(x, u(x))g ⊥ wuk for k = 0, 1, ... and θ(x, u(x))g ⊥ wuk for k = 0, 1, .... This
implies φ(x, u(x))g(x) = 0, θ(x, u(x))g(x) = 0 a.e. on {w 6= 0}. Since φ(x, u(x))
and θ(x, u(x)) have no common zeroes we get g(x) = 0 a.e.

Remark 3.14. If
(
h
g

)
∈ S⊥, then h has the following properties:

(1) h(0) = 0;
(2) h(1) = 0 by the orthogonality condition on g and developing φ(t, u(x)) and

θ(t, u(x)) into power series as in (23);
(3) h ∈ H1 and by explicit calculations

h′(x) =

∫ x

0

(wg)(t)[φ(t, u(t))θ
′
(x, u(t))− θ(t, u(t))φ

′
(x, u(t))] dt;

(4) h′(0) = 0;
(5) h′(1) = 0 (as for h(1));
(6) h ∈ H2 and using that the Wronskian of θ and φ is 1,

h′′(x) = (wg)(x) +

∫ x

0

(wg)(t)[φ(t, u(t))θ(x, u(t))− θ(t, u(t))φ(t, u(t))](q(x)− u(t)) dt

= (wg)(x)−
∫ x

0

(wg)(t)u(t)[φ(t, u(t))θ(x, u(t))− θ(t, u(x))φ(x, u(t)) dt+ q(x)h(x),

i.e.

−h′′(x) + q(x)h(x) = −(wg)(x) +

∫ x

0

(wg)(t)u(t)[φ(t, u(t))θ(x, u(x))− θ(t, u(t))φ(x, u(t))] dt.

(7) In the special case when w̃ ≡ 0 and u is constant, say u ≡ u0, then
(
h
g

)
∈ S⊥

if and only if h ∈ H2
0 (0, 1) and −h′′ + (q − u0)h = −wg.

Remark 3.15. We see from these results that in the one-dimensional case, the description
of the detectable subspace is complicated. However, in the multi-dimensional case, the
description is much easier. This is due to the fact that in higher dimensions the operator-
valued function M(λ) at one point λ contains much more information than the scalar
functionM(λ) in the one-dimensional case. Using the now-classical results about recovery
of potentials in Schrödinger PDEs, e.g. [29], one sees that knowing M(λ) for just one λ
uniquely determines q − λ + w2/(λ − u). If one knows this quantity for three different
values of λ then reduction to a 3 × 3 linear system with essentially a van der Monde
determinant shows that one knows q, w and the values of u on the set where w is non-zero.

3.4. Proof of Theorem 3.10. We shall show that if
(
h
g

)
∈ S⊥ then h = wg = 0.

Since ww̃ 6= 0 this implies h = g = 0.
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Let θ(x, λ) and φ(x, λ) solve the Schrödinger equation −y′′ + (q − λ)y = 0 subject to

the boundary conditions (15). A similar calculation as in (19) shows that
(
h
g

)
∈ S⊥ if

and only if

(24)
∫ 1

0

(
h− wg

u0 − µ

)
ψ(x, ρ)dx = 0 for both ψ = θ and ψ = φ,

where ρ := µ + c̄0
u0−µ . Observe that the mapping from µ to ρ is not injective; indeed two

different values of µ,

µ± :=
ρ+ u0

2
±

√(
ρ− u0

2

)2

+ c̄0

yield the same value of ρ. With this notation, we have the two equations∫ 1

0

(h(u0 − µ±)− wg)θ(x, ρ)dt = 0 for a.e. ρ.

Subtracting yields ∫ 1

0

hθ(x, ρ)dt = 0 for a.e. ρ ∈ C,

and hence for all ρ ∈ C. Choosing ρ to lie in the spectrum of the Schrödinger operator
with Dirichlet boundary conditions gives the result. �

4. ANALYTIC COEFFICIENTS: PARTIAL UNIQUENESS RESULTS

The previous section shows that the Hain-Lüst operator generally cannot be recon-
structed from a knowledge of its Titchmarsh-Weyl M -function; even worse, its detectable
space S is generally not the whole Hilbert space. The vanishing of the coefficients w and
w̃ in some part of the interval [0, 1] is very important in constructing these non-uniqueness
and non-detectability results.

In this section we investigate some uniqueness results for the case of real-valued analytic
coefficients.

Theorem 4.1. Consider two Hain-Lüst problems with coefficients q1, q2, u1, u2, w1 = w̃1

and w2 = w̃2, satisfying the following properties:

(1) all the coefficients mentioned are analytic in a neighbourhood N of the line-
segment [0, 1] in C;

(2) w1, w2 are bounded away from zero in N ;
(3) The uj are invertible as functions on N and are real-valued on [0, 1], with either

u1(0) 6= u2(0) or u′1(0) 6= u′2(0), or similar inequalities at x = 1.

Then the two Hain-Lüst problems must have distinct Titchmarsh-Weyl M -functions.

Proof. Following the discussion around (5) and (6) in the Introduction, to prove our result
we need some basic information about analyticity properties of solutions of the Schur
complement equation (6), which here has the form

(25)

(
− d2

dx2
+ qj − λ−

w2
j

uj − λ

)
y = 0
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for j = 1, 2. Specifically, we have solutions of the form

(26) yj(x, λ) =

∞∑
n=1

cn,j(λ)(x− u−1
j (λ))n, c1(λ) ≡ 1,

(27) ỹj(x, λ) = log(x− u−1
j (λ))yj(x, λ) + zj(x, λ),

in which yj and zj can be continued analytically in x to the whole of N and in λ to
the whole of uj(N ) for all x ∈ N . The choice of the branch of logarithm is obviously
important, but observe that different choices of branch only add multiples of the analytic
solution yj to the logarithmically singular solution ỹj . The presence of the logarithmic
singularity depends on the fact that wj does not vanish. These formulae are easily proved
using Frobenius expansion formulae, see, e.g. [15].

We assume for a contradiction that u1(0) 6= u2(0) or u′1(0) 6= u′2(0) but that the M -
functions coincide. The proof is similar in the case when the inequalities hold at x = 1.

Suppose that λ is non-real. In this case all the singularities of solutions lie off the real
axis. Since ỹ1 and y2 solve (25) for j = 1, 2 respectively and there are no singularities in
the interval [0, 1], a standard integration by parts yields
(28)[
−ỹ′1y2+ỹ1y

′
2

]1
0
+

∫ 1

0

[
(q1 − q2)(x) +

w1(x)2

λ− u1(x)
− w2(x)2

λ− u2(x)

]
ỹ1(x, λ)y2(x, λ)dx = 0.

Using the coincidence of the M -functions we can write(
ỹ1(1)
ỹ1(0)

)
=

(
m11 m12

m21 m22

)(
−ỹ′1(1)
ỹ′1(0)

)
,

(
y2(1)
y2(0)

)
=

(
m11 m12

m21 m22

)(
−y′2(1)
y′2(0)

)
,

which we use to replace the function values at x = 0 and x = 1 in (28) by derivative
values, leaving

(ỹ′1(0)y′2(1)−ỹ′1(1)y′2(0))(m12−m21)+

∫ 1

0

[
(q1 − q2)(x) +

w1(x)2

λ− u1(x)
− w2(x)2

λ− u2(x)

]
ỹ1(x, λ)y2(x, λ)dx = 0.

However the M -function is symmetric: m12(λ) = m21(λ), a fact which follows from the
constancy of the Wronskian of solutions of the equations (25). Thus, for all non-real λ,

(29)
∫ 1

0

[
(q1 − q2)(x) +

w1(x)2

λ− u1(x)
− w2(x)2

λ− u2(x)

]
ỹ1(x, λ)y2(x, λ)dx = 0.

Fix any point t ∈ (0, 1). We shall consider the limits of the integral (29) as λ →
u1(t) from above and from below in the complex plane. We need to avoid the singularity
which will appear in the term 1/(λ − u1(x)) at x = t when λ = u1(t); there may also
be a singularity in the term 1/(λ − u2(x)), generally not at x = t but at some other
point; however this is cancelled by the factor y2(x, λ) which vanishes at precisely such a
point thanks to (26). Thus it suffices to avoid the singularity which will appear at x = t.
Assuming without loss of generality that =(u1(t + iε)) > 0 and =(u1(t − iε)) < 0 for
small ε > 0, the avoidance is achieved by (a) deforming the contour [0, 1] into the lower-
half of the x-plane when =λ > 0, taking a detour around a semi-circle of small radius
r > 0 passing below x = t, and (b) deforming above x = t on a semi-circle for =λ < 0.
We denote the deformed contours (including the segments [0, t − r] ∪ [t + r, 1]) by C+r
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and C−r respectively, and we have∫
C±r

[
(q1 − q2)(x) +

w1(x)2

λ− u1(x)
− w2(x)2

λ− u2(x)

]
ỹ1(x, λ)y2(x, λ)dx = 0

where∓=λ > 0 onC±r. For the solution ỹ1, when=λ > 0, we can cut the x-plane along a
curve (−∞, u−1

1 (λ)] in the upper half-plane while integrating with respect to x on contour
C−r in the lower half plane; and when =λ < 0 we can cut along a curve (−∞, u−1

1 (λ)] in
the lower half-plane while integrating on contour C+r in the upper half plane. With these
choices of cuts we have the limits
(30)

lim
λ→u1(t)+i0

ỹ1(x, λ) =

{
log |x− t|y1(x, u1(t)) + z1(x, u1(t)), x > t,
log |x− t|y1(x, u1(t)) + z1(x, u1(t))− iπy1(x, u1(t)), x < t,

(31)

lim
λ→u1(t)−i0

ỹ1(x, λ) =

{
log |x− t|y1(x, u1(t)) + z1(x, u1(t)), x > t,
log |x− t|y1(x, u1(t)) + z1(x, u1(t)) + iπy1(x, u1(t)), x < t.

Taking the difference between the two contour integrals and letting λ → u1(t) from the
appropriate half-plane in each, and using the information about the solution ỹ1 in (30,31)
we therefore obtain

0 = −2πi

∫ t−r

0

[
(q1 − q2)(x) +

w1(x)2

u1(t)− u1(x)
− w2(x)2

u1(t)− u2(x)

]
y1(x, u1(t))y2(x, u1(t))dx

+

∫ π

−π

[
(q1 − q2)(t+ reiθ) +

w1(t+ reiθ)2

u1(t)− u1(t+ reiθ)
− w2(t+ reiθ)2

u1(t)− u2(t+ reiθ)

]
ỹ1(t+ reiθ, u1(t))y2(t+ reiθ, u1(t))ireiθdθ,

in which we observe that any zeros in the denominator u1(t)− u2(·) will be cancelled by
zeros of y2(·, u1(t)). For small r we have ỹ1(t+ reiθ, u1(t)) ∼ z1(t, u1(t)) so that letting
r ↘ 0 gives

w1(t)2

u′1(t)
z1(t, u1(t))y2(t, u1(t))

=

∫ t

0

[
q1(x)− q2(x) +

w1(x)2

u1(t)− u1(x)
− w2(x)2

u1(t)− u2(x)

]
y1(x, u1(t))y2(x, u1(t))dx.(32)

Our strategy now is to consider the limit t↘ 0 and prove that w1(0) = 0, contradicting the
hypothesis w1 and w2 are bounded away from zero. There are different cases depending
on whether or not u1(0) = u2(0).

Case 1: u1(0) 6= u2(0). Then for all sufficiently small t the term 1/(u1(t)− u2(x)) is
bounded independently of x and t. We first assume that

(33) the function t 7→ y2(t, u1(t)) is not identically zero.

Under this assumption the dominant term in the integral on the right hand side of (32) is∫ t

0

w1(x)2

u1(t)− u1(x)
y1(x, u1(t))y2(x, u1(t))dx ∼

[
w1(0)2 ∂λy1(0, λ)|λ=u1(0) y2(t, u1(t))

]
t

Combining this with (32) and cancelling the common factor y2(t, u1(t)) shows that

w1(t)2

u′1(t)
z1(t, u1(t)) ∼ tw1(0)2 ∂λy1(0, λ)|λ=u1(0) ≤ O(t),
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which in particular implies that w1(0) = 0. This contradicts the hypothesis that w1 is
bounded away from zero.

The case u1(0) 6= u2(0) is therefore complete if we can show that the assumption (33)
always holds. Assume for a contradiction that (33) does not hold. Then (32) becomes
(34)∫ t

0

[
q1(x)− q2(x) +

w1(x)2

u1(t)− u1(x)
− w2(x)2

u1(t)− u2(x)

]
y1(x, u1(t))y2(x, u1(t))dx ≡ 0.

We now know that y1(t, u1(t)) = 0 for all t and we have assumed that y2(t, u1(t)) = 0
for all t, so

y1(x, u1(t)) = (x−t)y′1(t, u1(t))+O((x−t)2); y2(x, u1(t)) = (x−t)y′2(t, u1(t))+O((x−t)2),

where dash denotes differentiation with respect to the first argument. From (26) we know
that y′1(t, u1(t)) 6= 0. Also we know that y′2(t, u1(t)) 6= 0 since t is a regular point for the
equation (25) with j = 2 and λ = u1(t) 6= u2(t) (by the assumption u1(0) 6= u2(0) and
the fact that t is small) and so it is impossible for both y2(t, u1(t)) and y′2(t, u1(t)) to be
zero. Thus the leading order term in the small-t expansion of the integral in (34) is

t2w1(0)

2u′1(0)
y′1(0, u1(0))y′2(0, u1(0)).

This term must be identically zero and, in view of the fact that neither y′1(0, u1(0)) nor
y′2(0, u1(0)) may vanish, we deduce that w1(0) = 0, and arrive again at a contradiction.

Case 2: u1(0) = u2(0) but u′1(0) 6= u′2(0). Since u1 6≡ u2 we may assume that t is
sufficiently small to ensure u1(x) 6= u2(x) for all x ∈ (0, t]. In (32) we shall use first-order
Taylor expansions, for which purpose we note that by virtue of (26),

(∂y2(t, λ)/∂λ)|λ=u2(t) = −1/u′2(t),

and hence, for small t > 0,

y2(t, u1(t)) = y2(t, u1(t))− y2(t, u2(t)) = −t(u′1(0)− u′2(0))/u′2(0) +O(t2),

y1(x, u1(t))y2(x, u1(t))

u1(t)− u2(x)
= y1(x, u1(t))

[
y2(x, u1(t))− y2(x, u2(x))

u1(t)− u2(x)

]
= −y1(x, u1(t))

1

u′2(x)
(1 + o(1)) = O(t− x);

y1(x, u1(t))y2(x, u1(t))

u1(t)− u1(x)
=

[
y1(x, u1(t))− y1(x, u1(x))

u1(t)− u1(x)

]
y2(x, u1(t))

= −y2(x, u1(t))
1

u′1(x)
(1 + o(1)) = O(t− x).

It follows that the right hand side of (32) is O(t2) or smaller. The dominant term of the left
hand side is

w1(t)2

u′1(t)
z1(t, u1(t))y2(t, u1(t)) =

w1(t)2

u′1(t)
z1(t, u1(t))(y2(t, u1(t))− y2(t, u2(t)))

=
w1(t)2

u′1(t)
z1(t, u1(t))

(
t
u′1(0)− u′2(0)

u′2(t)
+O(t2)

)
.
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Bearing in mind the assumption u′1(0) 6= u′2(0) we see that comparing the left and right
hand sides of (32) has given us, for small t,

w1(t)2

u′1(t)
z1(t, u1(t)) = O(t).

Since z1(t, u1(t)) = O(1) we deduce that w1(0) = 0, which is again a contradiction. �

Remark 4.2. The asymptotic behaviours of the solutions which we have used in this the-
orem can be seen explicitly in the case u(x) = x, q(x) ≡ 0, w(x) ≡ 1, for instance, when
the analytic solutions (y as opposed to ỹ) are all scalar multiples of

y(x, λ) =

∞∑
n=1

cn(x− λ)n,

in which cn = −cn−1/(n(n+ 1)). Clearly in this case y is an entire function of both of its
arguments. The second solution ỹ can be found by the method of D’Alembert.

Conjecture 4.3. Despite Theorem 4.1, we conjecture that in the general case of analytic
coefficients, MB(λ) does not determine the coefficients uniquely. In the first order case
this non-uniqueness is established below, see Remark 6.2.

5. RECONSTRUCTION OF THE OPERATOR FROM ONE RESTRICTED RESOLVENT
(AB − λ)−1

∣∣
S

The detectable subspace S is the largest space on which we may recover information
about an operator from its M -functions. We now consider, if the resolvent of AB is known
on this space, for one unknown B, how much information about AB can be recovered.

Theorem 5.1. For the Hain-Lüst operator

Ã∗ =

(
− d2

dx2 + q(x) w̃(x)

w(x) u(x)

)
with coefficients q, w, w̃ and u all in L∞(0, 1), the restricted resolvent (AB − λ)−1

∣∣
S

determines q, u|w 6=0, w and w̃|w 6=0, as well as the boundary condition matrix B.

The proof of this result is distributed over the following subsections.

5.1. Preliminaries. For any fixed λ0 6∈ Ran(u) a straightforward calculation shows that

Ran(Sλ0,B) = ker (Ã∗ − λ0) =

{(
1

− w
u−λ0

)
(c1y1 + c2y2)

}
where yi, i = 1, 2, are the solutions of the Schur complement equation (6), namely

(35) −y′′ + (q − λ0)y − ww̃

u− λ0
y = 0,

with initial conditions

(36)
{
y1(0) = 0, y′1(0) = 1;
y2(0) = 1, y′2(0) = 0.

Recall eqn. (9), namely

MB(λ)(Γ1 −BΓ2)

(
y
z

)
= Γ2

(
y
z

)
for all

(
y
z

)
∈ ker (Ã∗ − λ).
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In particular, then,

(37) MB(λ)

[(
−y′1(1)

1

)
−B

(
y1(1)

0

)]
=

(
y1(1)

0

)
;

(38) MB(λ)

[(
−y′2(1)

0

)
−B

(
y2(1)

1

)]
=

(
y2(1)

1

)
.

It follows immediately from these expressions that

MB(λ)−1

(
1
0

)
=

[(
−y′1(1)

1

)
−B

(
y1(1)

0

)]
/y1(1);

MB(λ)−1

(
y2(1)

1

)
=

[(
−y′2(1)

0

)
−B

(
y2(1)

1

)]
.

We note that y1(1) 6= 0 for almost all λ ∈ C – in particular, y1(1) 6= 0 if λ 6∈ Ran(u) is
not an eigenvalue of Ã∗|ker (Γ2).

5.2. Useful vectors. We know that in S there are vectors of the form(
1
−w
u−λi

)
yj , i = 1, 2; j = 1, 2; λ1 6= λ2.

At this stage we cannot construct any such vectors explicitly. However we can certainly

assert the existence of a pair of vectors ui =

(
fi
gi

)
, i = 1, 2, such that

(1) fi(x) 6= 0 for a.e. x ∈ (0, 1);
(2) gi(x) 6= 0 for a.e. s such that w(x) 6= 0;
(3) gi(x) = 0 for all x such that w(x) = 0;
(4) g1(x)/f1(x) 6= g2(x)/f2(x) for a.e. x such that w(x) 6= 0.
(5) fi ∈ C1[0, 1], i = 1, 2.

To see that vectors satisfying these properties exist, choose{
fi = y1,
gi = −w

u−λi
y1, λ1 6= λ2,

and observe that
g1

f1
=
−w

u− λ1
6= −w
u− λ2

=
g2

f2
.

Note that, at this stage, we do not know w; however, since we know S, we certainly know
the set {x : w(x) 6= 0} as the union of supports of second components of vectors in S.

Lemma 5.2. Assume that q, w, w̃, u ∈ L∞(0, 1), that f ∈ C1[0, 1], g ∈ L2(0, 1), and that
y is the solution of 

−y′′ + (q − λ)y − ww̃

u− λ
y = f − w̃g

u− λ
;

(Γ1 −BΓ2)

(
y
0

)
= 0.

Then, with ‖ · ‖ denoting the norm in L2(0, 1),∥∥∥∥y +
f

λ

∥∥∥∥ = o(λ−1), λ→ −∞; λ ∈ R.
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Proof. Let L0 denote the operator defined by L0y = −y′′ + qy with boundary condition(
−y′(1)
y′(0)

)
= B

(
y(1)
y(0)

)
.

Then

〈L0y, y〉 = (y(1), y(0))B(y(1), y(0))∗ +

∫ 1

0

[|y′|2 + q|y|2]dx,

and since the trace operator y 7→ (y(1), y(0)) is bounded with respect to the norm in
H1(0, 1) with relative bound zero, it follows that for any ε > 0 there exists cε, dε ∈ R such
that the numerical range of L0 is contained in a set

{λ ∈ C | <(λ) ≥ cε, |=(λ)| ≤ ε|<(λ)|+ dε}.

It follows that when λ→ −∞, one has a uniform bound

‖L0(L0 − λ)−1‖ ≤ const.

Together with the fact that the domain of L0 is dense in L2(0, 1) this implies that for any
u in L2(0, 1),

L0(L0 − λ)−1u→ 0, λ→ −∞.
Now the equation in the Lemma may be written as (L0 − λ)y = f + A(λ)y + G(λ) in
which ‖A(λ)‖ = O(λ−1) and ‖G(λ)‖ = O(λ−1), λ→ −∞. This can be written as[

I − (L0 − λ)−1A(λ)
]
y =
−1

λ
f +

L0(L0 − λ)−1f

λ
+ (L0 − λ)−1G(λ),

and the result follows by using the Neumann series for the resolvent of the operator on the
left hand side. �

Remark 5.3. One may prove that the result holds when λ→∞ in any sector | arg(−λ)| <
π/2− ε, where ε > 0 is fixed.

5.3. Reconstruction of w̃|w 6=0 and q. Let
(
fi
gi

)
, i = 1, 2, be two vectors from S for

which the conditions of our previous sub-section are satisfied. Define(
Yi
Zi

)
= (AB − λ)−1

∣∣
S

(
fi
gi

)
, i = 1, 2, λ ∈ ρ(AB).

These vectors are known since they require only the restricted resolvent for their computa-
tion. Performing this computation explicitly, we have

(39)



−Y ′′i + (q − λ)Yi −
ww̃

u− λ
Yi = fi −

w̃gi
u− λ

,

Zi =
gi

u− λ
− wYi
u− λ

(Γ1 −BΓ2)

(
Yi
Zi

)
= 0.

Rearranging the first equation slightly we obtain

−Y ′′i − λYi − fi = −qYi +
ww̃

u− λ
Yi −

w̃gi
u− λ

,
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in which the left hand side is known, and hence the right hand side is known. However by
Lemma 5.2, we have

−qYi +
ww̃

u− λ
Yi −

w̃gi
u− λ

=
qfi
λ

+
w̃gi
λ

+ o(λ−1), λ→ −∞.

It follows that qfi+w̃gi are known, for i = 1, 2; hence that q+w̃ gi
fi

are known. Subtracting,
we deduce that

w̃

(
g1

f1
− g2

f2

)
is known. However g1/f1 and g2/f2 are known on the set of x such that w(x) 6= 0 (and
are zero outside this set). Hence we deduce that

w̃|w 6=0 is known.

Since (say) q + wg1/f1 is now fully known, it follows that

q is known.

5.4. Reconstruction of w and u|w 6=0. From the second equation in (39) we know the
functions

Zi =
gi

u− λ
− wYi
u− λ

, i = 1, 2.

Since, from Lemma 5.2, we have Yi = −fi/λ+ o(λ−1), we obtain

Zi = −gi
λ
− giu+ wfi

λ2
+ o(λ−2).

From this expansion it follows that giu+wfi are known, i = 1, 2, and hence that w+ gi
fi
u

are known, i = 1, 2. Subtracting, we find that u
(
g1
f1
− g2

f2

)
are known, i = 1, 2; moreover

g1
f1
− g2

f2
is non-zero a.e. on the set of x such that w(x) 6= 0. It follows that

u|w 6=0 is known.

Repeating the argument at the end of the previous section we conclude that

w is known.

5.5. Reconstruction of the boundary condition matrix B. We now know the coeffi-
cients q, ww̃ and u|w 6=0 and so the solutions y1 and y2 of (35,36) appearing in (37,38) are
completely determined. To reconstruct B we first re-write (37,38) as

(40) (MB(λ)−1 +B)

(
y1(1)

0

)
=

(
−y′1(1)

1

)
,

(41) (MB(λ)−1 +B)

(
y2(1)

1

)
=

(
−y′2(1)

0

)
.

In order for MB(λ)−1 +B to be completely determined for any fixed λ it suffices that the
vectors (

y1(1)
0

)
,

(
y2(1)

1

)
be linearly independent, which is true provided y1(1) 6= 0.

For λ 6∈ Ran(u), the requirement y1(1) 6= 0 is equivalent to the requirement that λ not
be an eigenvalue of Ã∗|ker (Γ2). Under our hypotheses of L∞ coefficients, the numerical
range of Ã∗|ker (Γ2) is confined to a semi-infinite strip of the form

<(λ) ≥ α, |=(λ)| ≤ β.



20 B.M.BROWN, M.MARLETTA, S.N.NABOKO, I.G.WOOD

In particular, y1(1) is non-zero for any λ outside this semi-infinite strip. Thus MB(λ)−1 +

B is determined outside the numerical range of Ã∗|ker (Γ2).
In order to recover B it is therefore sufficient to know that MB(λ)−1 is determined.

However by [9, Theorem 4.1], the resolvent (AB − λ)−1
∣∣
S uniquely determines MB(λ).

Thus B is uniquely determined, and Theorem 5.1 is proved. �

6. THE FIRST ORDER HAIN-LÜST OPERATOR

In this section we consider a first order toy model replacement of the Hain-Lüst equation
and show that, even for this simple case in which many quantities are explicitly computable
by quadrature, many results remain non-trivial. In particular we show that the M -function
does not determine the coefficients in the operator uniquely, even when the coefficients are
analytic.

We consider on the domain D(A) = D(Ã) = H1
0 (0, 1) × L2(0, 1) the first order

operators

A =

(
i
d

dx
+ q w̃

w u

)
, Ã =

 i
d

dx
+ q w

w̃ u

 ,

with coefficients q, u, w and w̃ all L∞(0, 1) functions. The adjoints A∗ and Ã∗ have
domain H1(0, 1)⊕ L2(0, 1).

Definition 6.1. The boundary operators Γ1,Γ2, Γ̃1, Γ̃2 are defined by

Γ1

(
y
z

)
= iy(1), Γ̃1

(
y
z

)
= −iy(0),

Γ2

(
y
z

)
= y(0), Γ̃2

(
y
z

)
= y(1).

Then, the Lagrange identity is〈
Ã?
(
y
z

)
,

(
f
g

)〉
−
〈(

y
z

)
, A?

(
f
g

)〉
= 〈iy′, f〉 − 〈y, if ′〉

= iyf |10 = i(y(1)f(1)− y(0)f(0)) =

〈
Γ1

(
y
z

)
, Γ̃2

(
f
g

)〉
−
〈

Γ2

(
y
z

)
, Γ̃1

(
f
g

)〉
.

6.1. Calculation of the M -function. In line with our review in Section 2 the M -function
is defined by the equation

M0(λ)Γ1

(
y
z

)
= Γ2

(
y
z

)
for
(
y
z

)
∈ ker (Ã∗ − λ).

This gives iM0(λ)y(1) = y(0) and thus

M0(λ) = −iy(0)

y(1)
.

Now
(
y
z

)
∈ ker (Ã∗ − λ) holds if and only if we have

iy′ + qy + w̃z = λy, wy + uz = λz.
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Solving these equations yields z =
wy

λ− u
and iy′ + (q − λ)y +

ww̃

λ− u
y = 0, so we have

y′

y
= i(q − λ+

ww̃

λ− u
) giving

(42) y(x) = y(0) exp

(
i

∫ x

0

[q(t)− λ+
w(t)w̃(t)

λ− u(t)
]dt

)
.

Thus we have an explicit expression for the M -function in terms of the coefficients in the
operator:

M0(λ) = −i exp

(
iλ− i

∫ 1

0

q(t)dt+ i

∫ 1

0

ww̃(t)

u(t)− λ
dt

)
.

Remark 6.2.
(1) Observe that the only information on q from M0 is its mean value,

∫ 1

0
q(t)dt. In

the Hermitian case i
d

dx
+ q is unitarily equivalent to i

d

dx
+
∫ 1

0
q(t)dt by a gauge

transformation; as these operators have the same form, the fact that M0 can only
determine the mean value of q also follows from abstract results (e.g. [30]).

(2) This also shows that for the scalar equation i
d

dx
+q we can only recover

∫ 1

0
q(t)dt.

This is despite S = Span {ei
∫ x q(t)dt, eiλx} = L2(0, 1).

(3) From
∫ 1

0
ww̃(t)
u(t)−λdt we can reconstruct Ranu but not u and ww̃. To see this let

φ : [0, 1] → [0, 1] be an analytic change of coordinates. Then
∫ 1

0
ww̃
u−λdt =∫ 1

0
(ww̃◦φ)
u◦φ−λ φ

′dt. Thus the analytic change of coordinates ww̃ → (ww̃ ◦ φ)φ′ and
u→ u ◦ φ gives non uniqueness.

In view of these remarks, and to provide a comparison with our results for the second-
order Hain-Lüst case, it is interesting to consider the calculation of the detectable subspace
for the first order Hain-Lüst operator. Despite the availability of explicit expressions such
as (42) the computations are only tractable in some special cases.

Theorem 6.3. In the special caseww̃ ≡ 0 the orthogonal complement S⊥ of the detectable
subspace is given by

S⊥ =

{(
f
g

)
: g ⊥ Eu,w, f = J (g)

}
.

Here Eu,w is the space

Eu,w =

∞∨
n=0

w(x)ψ(x, u(x))un(x),

where ψ(x, λ) is the unique-up-to-scalar-multiples solution of the differential equation

(43) iψ′ + (q − λ)ψ = 0;

and J is the functional defined by f = J (g) precisely when

(44) f(x) = i exp

(
i

∫ x

0

q

)∫ x

0

exp

(
−i
∫ t

0

q

)
exp(i(t− x)u(t))w(t)g(t)dt.

The proof of this result will use Proposition 2.1 from Section 2 and follows closely the
methods in Section 3.
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Proof. Following the ideas which lead to Proposition 2.1 we know that
(
f
g

)
∈ S⊥ if

and only if, for a.e. λ ∈ C there exist y, z such that y(0) = 0 = y(1),

iy′ + (q − λ)y + wz = f, and w̃y + (u− λ)z = g.

We assume without loss of generality that λ does not lie in essran(u). The second equation
can then be used to determine z, giving

z =
g

u− λ
− w̃y

u− λ
;

then, since ww̃ ≡ 0, the equation for y becomes

(45) iy′ + (q − λ)y = f − wg

u− λ
,

equipped with boundary conditions y(0) = 0 = y(1). It is easy to see that given any
non-trivial function ψ(·, λ) solving (43), ψ(·, λ) provides an integrating factor for (45) and
hence that y(0) = 0 = y(1) if and only if

(46)
∫ 1

0

(
f(x)− w(x)g(x)

u(x)− λ

)
ψ(x, λ)dx = 0.

This condition must hold for a.e. λ in C. To obtain the conditions on g in the theorem
we multiply by λn and integrate with respect to λ round a contour enclosing essran(u),
exactly as in the proof of Lemma 3.11, yielding

(47)
∫ 1

0

w(x)ψ(x, u(x))u(x)ng(x)dx = 0.

This shows that g ⊥ Eu,w is a necessary condition. It is not difficult to verify that it is also
sufficient.

Knowing now that
∫ 1

0
w(x)ψ(x, u(x))u(x)ng(x)dx = 0 we can use the Taylor expan-

sion

(λ− u(x))−1 = λ−1
∞∑
n=0

(
u(x)

λ

)n
,

valid for large λ, in conjunction with (47) to deduce that∫ 1

0

w(x)
ψ(x, u(x))

u(x)− λ
g(x)dx = 0,

and hence obtain from (46) that

(48)
∫ 1

0

f(x)ψ(x, λ)dx =

∫ 1

0

w(x)
ψ(x, λ)− ψ(x, u(x))

u(x)− λ
g(x)dx.

From (43) we have an explicit formula for ψ, correct up to scalar multiples,

ψ(x, λ) = exp(−iλx) exp

(
i

∫ x

0

q

)
, so ψ(x, λ) = exp(iλx) exp

(
−i
∫ x

0

q

)
and if we define the compactly supported function f̃(x) := χ(0,1)(x)f(x) exp

(
−i
∫ x

0
q
)

then (48) yields

F(f̃)(λ) =

∫ 1

0

w(x)g(x)
ψ(x, λ)− ψ(x, u(x))

u(x)− λ
dx,

where F denotes Fourier transform. The function on the right hand side is an entire func-
tion; it is of the appropriate exponential type to be, by the Paley-Wiener theorem, the
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Fourier transform of an L2 function supported on (0, 1). The equation therefore has a
unique solution for f̃ and hence f is uniquely determined from (48). The fact that the
expression (44) gives the solution of this equation is a calculation which we omit here. �

As an immediate consequence of Theorem 6.3 we have the following.

Corollary 6.4. Under the hypotheses of Theorem 6.3 the detectable subspace satisfies

S⊥ =

(
0

L2(w = 0)

)
if and only if

(49)
∞∨
n=0

w(x)un(x) = L2(w 6= 0).

One may ask whether the characterisation of S⊥ in Theorem 6.3 holds in the case when
ww̃ is nonzero. The following example shows that it does not.

Example 6.5. We show that any example with q ≡ 0, u(x) = x, ww̃ ≡ i, has the property

that S⊥ 6=
(

0
L2(w = 0)

)
even though (49) holds.

To this end we observe that in a general situation the function ψ appearing in the proof
of Theorem 6.3 is replaced by the solution of the differential equation(

i
d

dx
+ q − ww̃

u(x)− λ

)
ψ(x, λ) = λψ(x, λ),

which, for the coefficients chosen here, means that

ψ(x, λ) = exp

(
−iλx+

∫ x

0

dt

t− λ

)
=
(

1− x

λ

)
exp(−iλx) and ψ(x, λ) =

λ− x
λ

exp(iλx).

The condition that
(
f
g

)
∈ S⊥ is still (46), which here is equivalent to

∫ 1

0

(xf(x)− w(x)g(x)− λf(x)) exp(iλx)dx = 0.

We may write this as

(50)
∫ 1

0

(xf(x)− w(x)g(x))exp(iλx)dx = −i
∫ 1

0

f(x)

(
d

dx
exp(iλx)

)
dx.

Take any smooth φ ∈ C∞0 (0, 1), multiply (50) by F(φ)(λ) and invert the Fourier trans-
forms to obtain ∫ 1

0

(xf(x)− w(x)g(x))φ(x)dx =

∫ 1

0

(−if)(x)φ′(x)dx.

Since this holds for all φ ∈ C∞0 (0, 1) we deduce that f ∈ H1(0, 1) and

if ′(x) = xf(x)− w(x)g(x).

Replacing xf(x)−w(x)g(x) by if ′(x) on the left hand side of (50) we deduce that for all
λ,

0 = [−if(x) exp(iλx)]
x=1
x=0 = −i(f(1) exp(iλ)− f(0)),
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which implies that f(0) = 0 = f(1). Thus our complete characterisation of the arbitrary

element
(
f
g

)
of S⊥ is that

g ∈ L2(0, 1); f ∈ H1(0, 1); −if ′ + xf = wg; f(0) = 0 = f(1).

In particular, given any f ∈ H1
0 (0, 1), we may simply choose g = (−if ′ + xf)/w and,

provided 1/w ∈ L∞, which can be arranged within our hypotheses, we shall have an
element of S⊥ for which f is not identically zero.

Our final result on the first order Hain-Lüst model concerns the reconstruction of the op-
erator from the resolvent restricted to the detectable subspace. Before stating the theorem,
we prove a lemma.

Lemma 6.6. Suppose that y(1) = CBy(0) and that iy′ + (q(x) − λ)y + A(λ)y = h +
O(1/λ), where the last term is O(1/λ) in L2(0, 1) and |A(λ)| = O(1/λ). Then as =λ→
±∞ with λ in a cone arg(λ) ∓ π

2 < π
2 − ε0, for any fixed, small ε0 > 0, one has, in

L2(0, 1),

(51) y = −h
λ

+ o(1/λ).

Proof. Define an operator L0 = i ddx with domain D(L0) = {u ∈ H1(0, 1) |u(1) =
CBu(0)}, where CB = (i+B)/(i−B). A direct calculation shows that

2=〈L0u, u〉 = 2=〈iu′, u〉 =

∫ 1

0

(u′u+ u′u) = |u(1)|2 − |u(0)|2 = (|CB |2 − 1)|u(0)|2.

Thus L0 is either dissipative (|CB | ≥ 1) or anti-dissipative (|CB | ≤ 1). It follows from
basic numerical range estimates that in the operator norm,

(52) ‖(L0 − λ)−1‖ ≤ 1

|=(λ)|
, |CB | ≥ 1 and λ in C−, or |CB | ≤ 1 and λ in C+.

Combining these with the identity L0(L0 − λ)−1 = I + λ(L0 − λ)−1 it follows that one
has bounds

‖L0(L0−λ)−1‖ ≤ const., ±(1− |CB |) ≥ 0 and λ tends to infinity on a non-real ray in C±.
Since the domain of L0 is dense in L2(0, 1) it then follows that one has the following
strong limits for any u ∈ L2(0, 1):
(53)
L0(L0 − λ)−1u→ 0, ±(1− |CB |) ≥ 0 and λ tends to infinity on a non-real ray in C±.
Under the hypotheses in Lemma 6.6 we know that y satisfies the equation

(L0 − λ)y = (−q(x)−A(λ))y + h+O(1/λ)

and so, if λ tends to infinity along a non-real ray, in the upper half-plane for |CB | ≤ 1 or
in the lower half-plane for |CB | ≥ 1, we have

y − (L0 − λ)−1(q +A(λ))y = (L0 − λ)−1h+O(1/λ2).

This means that under these conditions,

y =
[
I − (L0 − λ)−1(q +A(λ))

]−1
[
−h
λ

+
1

λ
L0(L0 − λ)−1h+O(1/λ2)

]
.

From (53) we know that L0(L0 − λ)−1h = o(1/λ), and from (52) we know ‖(L0 −
λ)−1(q + A(λ))‖ = O(1/λ) when λ tends to infinity on an appropriate non-real ray. The
result follows immediately. �
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Theorem 6.7. Let AB denote the restriction of Ã∗ to the space of functions satisfying the
boundary condition Γ1u = BΓ2u, where B ∈ C. Then the coefficients q, w, w̃|w 6=0 and
u|w 6=0, as well as the boundary condition parameter B, are all uniquely determined by a
knowledge of the detectable subspace itself, together with a knowledge of (AB − λ)−1 on
the detectable subspace.

Proof. We first identify some useful vectors in the detectable subspace. From (12) it fol-
lows that for all µ in the resolvent set ρ(AB), vectors in Ran(Sµ,B) lie in the detectable

subspace. By solving the equation (Ã∗ − µ)

(
f
g

)
= 0, we see that Ran(Sµ,B) is a

one-dimensional space given by

(54) Ran(Sµ,B) = span

{(
1

− w(x)
u(x)−µ

)
exp(−iµx) exp

(
i

∫ x

0

(
q − ww̃

u− µ

))}
.

From this it follows that the detectable subspace should contain elements
(
f
g

)
such that

(1) f, g ∈ L∞(0, 1);
(2) |f | is bounded below with a strictly positive lower bound;
(3) g(x) 6= 0 for all x such that w(x) 6= 0.

By doing this for a pair of different values of µ, say µ1 and µ2, one can generate two

different vectors U1 =

(
f1

g1

)
and U2 =

(
f2

g2

)
in the detectable subspace with these

three properties, with the additional feature that

(55)
g1(x)

f1(x)
6= g2(x)

f2(x)
for all x such that w(x) 6= 0.

This follows from the fact that w(x)/(u(x)− µ1) 6= w(x)/(u(x)− µ2) for all x such that
w(x) 6= 0. Observe that we do not claim to know what U1 and U2 are, because we do not
know the operator Ã∗ a priori; all we claim is that two such vectors exist in the detectable
subspace with these properties.

Our first step is to reconstruct q and w̃|w 6=0. We first pick two pairs
(
f1

g1

)
and(

f2

g2

)
of vectors in S satisfying the properties (1)-(3) above and (55). For any fixed

λ in the resolvent set ρ(AB), define(
yj
zj

)
= (AB − λ)−1Uj , j = 1, 2.

This means that for j = 1, 2,

iy′j(x) + (q(x)− λ)yj(x)− ww̃(x)

u(x)− λ
yj(x) = fj −

w̃(x)

u(x)− λ
gj(x),

(56) zj(x) =
gj(x)

u(x)− λ
− w(x)yj(x)

u(x)− λ
,

yj(1) = CByj(0),
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where CB = (i + B)/(i − B). Since we know (AB − λ)−1 on the detectable subspace,
we know fj , gj , yj and zj for j = 1, 2, for any λ ∈ ρ(AB). We observe that

(57) iy′j(x)− λyj(x)− fj(x) = −q(x)yj(x)− w̃(x)gj(x)

u(x)− λ
+

ww̃(x)

u(x)− λ
yj(x).

From (57) and Lemma 6.6 we see that,

iy′j(x)− λyj(x)− fj(x) =
q(x)fj(x)

λ
+
w̃(x)gj(x)

λ
+ o(1/λ).

The left hand side of this equation is known since yj and fj are known. This means that
q(x)fj(x) + w̃(x)gj(x) is known for j = 1, 2. Dividing by fj , which is known and is
bounded away from zero, we see that q(x) + w̃(x)

gj(x)
fj(x) is known, for j = 1, 2. By taking

differences between the j = 1 and j = 2 cases it follows from the property (55) that w̃(x)
is known for all x such that w(x) 6= 0.

Observe that the set of x such that w(x) 6= 0 is known. This follows from the fact that
we know the detectable subspace by hypothesis, and from the fact that we know vectors

Uj =

(
fj
gj

)
with gj(x) non-vanishing at all x such that w(x) 6= 0.

Observe too that since the detectable subspace is the closure of the linear spans of all
vectors of the form (54), one always has gj(x) = 0 whenever w(x) = 0. It follows that
w̃
gj
fj

= w̃|w 6=0
gj
fj

, and so w̃ gj
fj

are known for j = 1, 2. This implies that q is known.
From (56) and Lemma 6.6 we now have

zj =
gj

u− λ
− wyj
u− λ

=
gj

u− λ
− wfj

λ2
+ o

(
1

λ2

)
= −gj

λ
− gju+ wfj

λ2
+ o

(
1

λ2

)
.

Since zj is known this implies that gju + wfj is known for j = 1, 2. Thus w +
gj
fj
u is

known for j = 1, 2, and taking differences we see that
(
g1
f1
− g2

f2

)
u is known. Following

our earlier reasoning for w̃, we deduce that u|w 6=0 is known. But now since w + g1
f1
u is

known on the set where w is nonzero, and since the set where w is nonzero is known, it
follows that w also is known.

Finally we outline how the constant B in the boundary conditions can be reconstructed.
Fix λ0 ∈ C. Given the information about q, w, w̃w 6=0 and u|w 6=0 found above, the vector
U in the detectable subspace given by

(58) U :=

(
f
g

)
:=

(
1

− w
u−λ0

)
exp(−iλ0x) exp

(
i

∫ x

0

(
q − ww̃

u− λ0

)
dt

)
is known. Since the resolvent is known on the detectable subspace, it follows that(

y
z

)
= (AB − λ)−1U

is known, and moreover satisfies the boundary condition associated with AB , namely (i−
B)y(1) = (i + B)y(0). In fact, since the differential equation satisfied by y uses only
the coefficients q, ww̃ and uw 6=0, y can be found in terms of quadratures by solving the
equation with elementary methods. The only way that B can fail to be determined is if we
have, for all λ0 and λ, both y(0) = 0 and y(1) = 0. This turns out to be equivalent to∫ 1

0

(
f(x)− w̃(x)g(x)

u(x)− λ

)
exp

(
−i
∫ x

0

(
q − λ− ww̃

u− λ

)
dt

)
dx = 0.
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Substituting in the explicit expressions for f and g in (58), putting λ = −iτ and letting
τ → +∞ shows that this is impossible. �
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