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Abstract

This thesis proposes a novel and robust online adaptation mechanism for threat

prediction and prevention capable of taking into consideration complex contextual

and temporal information in its internal learning processes. The proposed mecha-

nism is a hybrid cognitive computational model named SAFEL (Situation-Aware

FEar Learning), which integrates machine learning algorithms with concepts of

situation-awareness from expert systems to simulate both the cued and contex-

tual fear-conditioning phenomena. SAFEL is inspired by well-known neuroscience

findings on the brain’s mechanisms of fear learning and memory to provide au-

tonomous robots with the ability to predict undesirable or threatening situations

to themselves. SAFEL’s ultimate goal is to allow autonomous robots to perceive

intricate elements and relationships in their environment, learn with experience

through autonomous environmental exploration, and adapt at execution time to

environmental changes and threats.

SAFEL consists of a hybrid architecture composed of three modules, each based

on a different approach and inspired by a different region (or function) of the brain

involved in fear learning. These modules are: the Amygdala Module (AM), the

Hippocampus Module (HM) and the Working Memory Module (WMM). The AM

learns and detects environmental threats while the HM makes sense of the robot’s

context. The WMM is responsible for combining and associating the two types of

information processed by the AM and HM.

More specifically, the AM simulates the cued conditioning phenomenon by cre-

ating associations between co-occurring aversive and neutral environmental stim-

uli. The AM represents the kernel of emotional appraisal and threat detection in

SAFEL’s architecture. The HM, in turn, handles environmental information at a

higher level of abstraction and complexity than the AM, which depicts the robot’s

situation as a whole. The information managed by the HM embeds in a unified

representation the temporal interactions of multiple stimuli in the environment.

Finally, the WMM simulates the contextual conditioning phenomenon by creating

associations between the contextual memory formed in the HM and the emotional
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memory formed in the AM, thus giving emotional meaning to the contextual in-

formation acquired in past experiences. Ultimately, any previously experienced

pattern of contextual information triggers the retrieval of that stored contextual

memory and its emotional meaning from the WMM, warning the robot that an

undesirable situation is likely to happen in the near future.

The main contribution of this work as compared to the state of the art is a

domain-independent mechanism for online learning and adaptation that combines

a fear-learning model with the concept of temporal context and is focused on

real-world applications for autonomous robotics. SAFEL successfully integrates

a symbolic rule-based paradigm for situation management with machine learning

algorithms for memorizing and predicting environmental threats to the robot based

on complex temporal context.

SAFEL has been evaluated in several experiments, which analysed the perfor-

mance of each module separately. Ultimately, we conducted a comprehensive case

study in the robot soccer scenario to evaluate the collective work of all modules as

a whole. This case study also analyses to which extent the emotional feedback of

SAFEL can improve the intelligent behaviour of a robot in a practical real-world

situation, where adaptive skills and fast/flexible decision-making are crucial.
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Chapter 1

Introduction

Autonomous robots are gradually becoming part of our every-day life. A few years

ago, autonomous robots would be found in industry, military and research appli-

cations only. In recent years, however, a variety of domestic autonomous robots

has come to light, such as vacuum cleaner robots, toy robots and personal assis-

tants. Smart homes, for instance, would be considered science-fiction a couple of

decades ago. By contrast, smart homes are a reality nowadays; these technologies

are becoming increasingly common and accessible.

Autonomous robots are ‘intelligent machines capable of performing tasks in

the world by themselves, without explicit human control’ (Bekey 2005). These

machines may assume different forms and perform a variety of tasks. Regardless

of their profile and aims, all autonomous robots are expected to show a certain

level of autonomy so as to operate in the real world without any form of external

control for a period of time.

This proposition poses an exceptional challenge to robotics, especially for robots

operating in dynamic, uncertain or unstructured environments. In such cases,

adaptive skills are required for autonomous behaviour to be successfully accom-

plished because the environment is constantly changing. In addition, robots deal-

ing with uncertain situations, such as socially interacting with humans, may also

struggle at successfully exhibiting fully autonomous behaviour. The outcomes of

an interaction with a person can hardly be anticipated because humans’ ways to

interact can greatly vary from individual to individual, and even within the same

individual at different times. Therefore, a robot that is fully dependent on pre-

defined rules of interaction is likely to respond, at some point, in a manner that

humans consider to be either inconsistent, incoherent or annoying.

To solve this issue, robot controllers must integrate computational mechanisms

that provide adaptive skills. We argue that an efficient way to implement adaptive

behaviours is by computationally simulating the brain’s mechanisms of emotion.

1
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Evidence from well-known neuroscience findings (Damasio 1994; LeDoux 1995,

2003; Lewis, Haviland-Jones and Barrett 2010) indicate that emotions are crucial

for learning and manifesting survival skills in the great majority of animal species,

including humans, by underlying associative mechanisms that bypass regions of the

brain responsible for conscious and rational thinking. Emotions play an essential

role in brain functions that are vital for the expression of intelligent behaviours,

such as adaptation, fast and flexible decision-making, learning, perception and

memory.

Nonetheless, the effectiveness of emotional mechanisms for adaptive and flex-

ible decision-making is highly dependent on one’s competence to perceive one’s

situation. For instance, the emotional mechanisms that support survival skills

are commonly triggered when the individual perceives danger. If that individual

is unable to effectively perceive and detect potential sources of threat in the en-

vironment then such emotional mechanisms will not be activated. Therefore, in

addition to mechanisms of emotion, a robust mechanism that allows a robot to

efficiently and thoroughly perceive its state of affairs is essential for the robot to

express adaptive and flexible behaviours.

In the following sections of this chapter, we explore the relevance of emotions for

human intelligence, especially in regards to fear learning and memory (Section 1.1).

Section 1.2 presents scenarios in the field of autonomous robotics that represent

strong sources of motivation to the proposal of this thesis. Section 1.3 elaborates on

the requirements of an emotionally and situation-aware based system that meets

the needs of autonomous robotics for adaptive skills. Finally, Section 1.4 discusses

our research questions, hypothesis and contributions. The outline of the thesis is

presented in Section 1.5.

1.1 Emotions

Emotions are mostly taken for granted. We can feel them, observe their onset

and experience their effects in our lives and interaction with others. Despite being

part of a tacit and universal knowledge among people, the scientific community

has not yet reached a consensus when it comes to an ultimate definition of emo-

tions. Notwithstanding the lack of definition, emotions are widely recognized by

neuroscientists and psychologists as essential for the proper functioning of several

brain functions. In this section, we discuss the relevance of emotions for human

intelligence, as well as how they can contribute and serve as an inspiration to

improve artificial intelligence.



CHAPTER 1. INTRODUCTION 3

1.1.1 What are emotions?

What emotions are, what their ultimate purpose is and how they manifest in

the brain is a polemical discussion that divides the opinion of many researchers.

Emotions are interpreted in a number of ways by neuroscientists and psychologists.

Among other interpretations, emotions are commonly viewed as either:

• bodily responses that evolved as part of adaptation and survival skills,

• mental states that result when bodily responses are ‘sensed’ by the brain,

• ways for an individual to act or express itself,

• unconscious impulses,

• thoughts about the situations in which people find themselves, or

• the building block of a social system, thus happening between rather than

within individuals.

Regardless of how emotions are interpreted, their importance for the expression

of intelligent behaviour is a consensus among scientists nowadays. However, despite

the body of scientific evidence pointing in another direction, emotions are still

widely seen as obstacles to logical thinking, as if reason and emotion were part

of two distinct systems working separately and unable to collaborate. More than

that, unable to coexist. It is a commonly held opinion that reasonable decisions

come from a rational and clear mind where emotions are not allowed to interfere.

Hence, it is not surprising that the dictionary (Oxford Dictionaries 2017b) de-

fines ‘emotion’ as an ‘instinctive or intuitive feeling as distinguished from reasoning

or knowledge’. Ironically, the latest neuroscience findings indicate that emotions

play an essential role in the very mechanisms of rational thinking, such as decision

making, perception, learning and memory (LeDoux 1999). This is not to deny that

intense emotional states can disturb logical reasoning, but instead to advocate that

the lack of emotions can be as harmful to logical thinking as is their exacerbation.

Damasio (1994) discusses cases of patients who partially lost their emotional ca-

pabilities, among which stands out the story of an American railroad-construction

foreman called Phineas Gage. Gage was involved in a rock-blasting accident in

1848, in which an iron bar completely crossed the left frontal part of his head.

Gage suffered a serious brain injury, which partially destroyed his frontal lobe.

Against medical expectations, Gage survived without any intellectual or physical

damage besides the loss of vision in his left eye. He was able to make calculations,

talk naturally and move all parts of his body as before.
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However, Gage suffered a behavioural change so intense that his friends and

acquaintances could hardly recognize him. Gage became impatient, disrespectful,

incapable of sticking to plans and lacking any sense of embarrassment, many times

making large use of bad language regardless of the presence of others. Gage’s new

personality led him to lose most of his social network, including friends, colleagues

and jobs.

Gage’s behaviour was clearly disadvantageous to himself; yet, he could neither

avoid it nor adapt his behaviour by interpreting people’s reaction to his attitudes.

Damasio (1994) observes that:

Gage’s example indicated that something in the brain was concerned specif-

ically with unique human properties, among them the ability to anticipate

the future and plan accordingly within a complex social environment; the

sense of responsibility toward the self and others; and the ability to orches-

trate one’s survival deliberately, at the command of one’s free will.

Gage’s brain selective damage did not alter any of his motor, language or logical

abilities. However, he was now incapable of living according to the social rules he

once learned, mostly taking decisions unfavourable to his survival. Picard (2000)

observes that patients like Gage with emotional deficiency are ‘similar to today’s

computers – particularly in how they malfunction’. Despite its clear implications,

such fact has only recently captured the attention of researchers in the area of

artificial intelligence.

All emotions may be relevant in some way as inspirations for improving partic-

ular skills of a robot or system. For instance, among social animals like humans,

emotions such as embarrassment, empathy, guilt, disgust, compassion and grat-

itude are essential for living in accordance with the social rules of the group.

Similarly, robots that incorporate models of such emotions in their artificial intel-

ligence may also be more successful in applications that heavily depend on social

interaction with humans, such as companion robots.

Each emotion certainly plays an essential and special role in an individual’s

behaviour and chances of survival. Nonetheless, it is interesting to observe that

among all emotions, fear is the most ubiquitous in nature, influencing individuals’

behaviour and decision-making in the great majority of animal species (LeDoux

1999). It is also notably the most extensively studied emotion in the neuroscience,

psychology and cognitive computing fields.
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1.1.2 Fear Learning

In this thesis, we are specifically interested in the simulation of one particular

emotion: fear. More precisely, we are interested in brain mechanisms that provide

humans and other animals with the ability to learn to fear environmental stimuli

and situations that were previously emotionally neutral, as well as their ability to

memorise and retrieve such acquired knowledge with exceptional rapidness.

Learning to detect, predict and quickly react to new threats in the environment

is a pervasive skill in nature, as most known animals have been noted to manifest

it in some way. Known as fear learning, this skill evolved as the brain’s mechanism

for automatic learning and memorization of potential threats to one’s survival.

The success of this mechanism, evidenced by its ubiquitousness in nature, is

partially a consequence of its implicit and involuntary activation. It is implicit

because the feeling of fear commonly manifests itself even before the individual is

aware of it, and it is involuntary because it happens regardless of the individual’s

will. These two characteristics make of the fear-learning mechanism a powerful and

critical ally in the face of immediate danger. Unlike conscious/rational thinking,

which is slow, the implicit and automatic responses triggered by fear provide the

individual with a balance between the speed and gains of a decision (Damasio 1994;

LeDoux 1999), while automatically increasing focus and attention (Fragopanagos

and Taylor 2006). In addition, fear learning is also essential for environmental

adaptation because the brain constantly associates the feeling of fear with newly

experienced dangers. In unfamiliar environments, these fear associations allow the

individual to learn to predict and quickly react to new threats.

Fear learning supports not only survival and environmental adaptation, but

also social adaptation (i.e., one’s ability to adjust its behaviour to the rules of

one’s own society) (Twining et al. 2017). The concept of society applies to many

animal species, where individuals feel an instinctive need to be accepted by others

of its kind. As belonging to a community can highly increase one’s chances of

survival, the brain of many animal species evolved to process social rejection as

an aversive environmental stimulus. Consequently, the brain triggers fear learning

when an individual observes disapproval from others towards its actions.

Studies on the cerebral interactions of the amygdala (area of the brain essential

for the acquisition and expression of fear (LeDoux 2003)) indicate that emotions

have a strong relation with cognitive processing, being able to change an individ-

ual’s environmental perception and reaction strategy (LeDoux 1995). According

to LeDoux (1995), the amygdala is capable of allowing the appraisal of danger to

modulate complex information-processing functions of the hippocampus, including

spatial behaviour, contextual processing, and memory storage and retrieval. This
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means that brain circuitries involved in fear expression are capable of influencing

the outcome of areas of the brain responsible for logical processing.

By being real agents that inhabit the physical world and interact with human

beings, autonomous robots are also susceptible to environmental threats and to

managing social adaptation. There is a variety of areas in robotics which could

take great advantage of emotion-based models of artificial intelligence, especially

those based on the fear-learning mechanisms of the brain. Among those areas, we

highlight Human-Robot Interaction (HRI), healthcare and autonomous vehicles.

Section 1.2 explores the potential uses of emotionally intelligent robots for each of

these areas of robotics.

1.2 Emotionally Intelligent Robots

This section presents robotic fields and applications that have the potential to take

great advantage of a situation-aware fear-learning model of artificial intelligence,

thus constituting solid motivations to pursuing the goals contemplated in this

thesis. In addition to the fields and applications introduced in the next sections,

we also highlight the robot soccer world cup as an exemplary scenario for the

application of a situation-aware fear-learning model of artificial intelligence. This

is, in fact, the scenario of the case study that we have performed to evaluate

our model. This scenario and its relevance for the advancement of robotics are

discussed in Chapter 6.

1.2.1 Human-Robot Interaction

Robot companions (Dautenhahn 1998; Ho et al. 2009; Vargas et al. 2011; Enz et al.

2011) are gaining more space in our society as social entities and have shown a

great potential for applications in many areas (e.g., health and mental care (Kim,

Gu and Heo 2016; Riek 2015)). However, a common issue with long-term robot

companions is the rapid loss of interest from their users, who get frustrated and lose

motivation over time as companions continue to perform predefined and repetitive

behaviours (Ho et al. 2009). This poses a challenge to the broad development and

practical use of robot companions.

From the HRI (Human-Robot Interaction) point of view, robots’ social inter-

action becomes more believable and natural as they become more adaptable and

responsive to environmental cues (Lazzeri et al. 2013; Dautenhahn 1998; Vargas

et al. 2011). As humans, we expect others to be able to identify environmental



CHAPTER 1. INTRODUCTION 7

factors that can represent unpleasantness or danger to themselves and act ac-

cordingly. Therefore, being able to properly express fear responses could highly

increase the believability of a long-term robot companion (Lazzeri et al. 2013).

Additionally, fear learning also supports social adaptation, as discussed in Sec-

tion 1.1.2. In natural organisms, fear may also be triggered when an individual

perceives that its actions have been condemned by other individuals of its so-

cial environment. Similarly, simulated fear could also work as a motivation for

the robot to seek social acceptance among humans. For instance, a robot’s fear

mechanisms could be activated whenever users express discontentment towards its

actions (e.g. through verbal warning or facial expression), allowing the robot to

learn to identify and inhibit behaviours that may be socially awkward, annoying

or unacceptable. Over time, the robot’s behaviour would be gradually adjusted to

its user’s custom preferences and social habits.

1.2.2 Healthcare

Robotics has been increasingly used in a variety of ways for both health and

mental care applications (Riek 2015). The most widely known use of robotics in

medicine is, perhaps, to increase the precision of surgical procedures or to conduct

remote surgeries. In recent years, however, other areas of robotics such as HRI

have also received growing attention in healthcare. Section 1.2.1 discussed how

artificial mechanisms of fear learning can aid the field of HRI by improving robots’

believability and social behaviour. In this section, we explore how fear learning

can be indirectly used through HRI to improve social robots in healthcare areas

such as rehabilitation therapies, treatment of autistic spectrum disorder (ASD)

and elderly care.

Physical therapies usually involve constant intervention from therapists to per-

form repetitive limb movements. In many cases, the full attention of more than

one therapist is necessary for one single patient. The development of rehabilitation

robots emerged from the increasing need to support therapists with laborious and

repetitive training. In addition, such robots also provide better means to asses

the motor recovery of patients by measuring changes in their limb movements

(Kim, Gu and Heo 2016). For instance, Garmsiri, Najafi and Saadat (2013) con-

trol rehabilitation robots using an emotion-based model that considers and adapts

to patients’ physical reactions rather than performing repetitive preprogrammed

movements. HRI approaches are also valuable for rehabilitation therapies, as has

been demonstrated by Matarić et al. (2009). They conducted a study involving

an autonomous assistive mobile robot that provides social and cognitive support



CHAPTER 1. INTRODUCTION 8

to stroke patients in rehabilitation. Their study concluded that improving HRI

aspects leads to an increase in users’ task performance in daily and rehabilitation

activities.

Social robots have also been used for studying and treating ASD (Kozima,

Nakagawa and Yasuda 2007; Pioggia et al. 2008). These robots help to encour-

age proactive interactive responses in children with ASD. According to Pioggia

et al. (2008), studies with robotic dolls, mobile robots and humanoids acting as

social mediators have provided important insights into the study and treatment

of children with ADS. For instance, using a minimalistic robot capable to ex-

press attentional and emotional responses, Kozima, Nakagawa and Yasuda (2007)

demonstrated that, against the commonly held opinion, autistic children do exhibit

motivation to share mental states with others.

Finally, elderly care is a specially critical subject for robotics in health care.

By 2050, the population of Europe aged 65 or older is expected to reach nearly 173

million people (Bemelmans et al. 2012). Such population accounted for only 101

million people in 1995. Consequently, the ratio of younger and older people will be

severely unbalanced in comparison to the current status, requiring more caregivers

and likely reducing the quality and support of health care systems. The need

for robotic technologies capable to aid and alleviate the pressure on elderly care

systems is evident, which led to a large body of new studies and developments in

assistive robotics. While assistive robots that aid with mobility and other physical

related needs are also necessary, an increasing need for socially assistive robotics

has led to the fusion of HRI with elderly care. The goal of such robots is to develop

close and effective interactions with the person while providing support to further

needs, such as rehabilitation and mobility (Bemelmans et al. 2012).

1.2.3 Autonomous Vehicles

Highly dynamic and ever-changing environments require from individuals an ex-

ceptional ability to take rapid and flexible decisions while continuously adapting

to the frequent variations of that environment. Therefore, robots dealing with

highly dynamic environments are the ones in most need of human-like flexibility

in decision making.

A very popular example of such robots nowadays is autonomous vehicles, es-

pecially autonomous cars. The environment of an autonomous car in a motorway

is highly dynamic, involving not only the usual path-finding task of a robot but

also traffic regulations, vehicle dynamics and other drivers’ intentions. A human

driver takes advantage of emotional reasoning to take all these factors into account
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when processing information and making decisions. Research has demonstrated

that autonomous vehicles can also take advantage of emotional models that sim-

ulate a human-like driving behaviour for situation and risk assessment, as well as

driver assistance (Kraus et al. 2009; Reichardt 2008). In addition to autonomous

cars, other types of autonomous vehicles have been shown to also take advantage

of cognitive models of emotion, such as unmanned aerial vehicles (UAVs) (Jafari,

Shahri and Shouraki 2013) and aerospace launch vehicles (ALV’s) (Mehrabian,

Lucas and Roshanian 2006).

In addition to dynamic environments, uncertain environments also pose an ex-

ceptional challenge to many exploration and research robots such as autonomous

or unmanned surface, underwater and aerial vehicles (Paula and Acosta 2015).

A number of research areas depend on robots to explore and study inhospitable

environments, where the human presence is impractical, if not impossible. A

strong example of such scenario is planetary exploration. These robots require dy-

namic and highly adaptive decision-making mechanisms to increase their chances

of successful mission completion. Therefore, such robots could greatly benefit from

control mechanisms inspired by emotional models of human-like decision making

(Ippolito, Pisanich and Young 2005).

1.3 Requisites of a Robust Situation-Aware Fear-

Learning System

Fear learning has been a strong source of inspiration for developing more flexible

and adaptive artificial intelligence (Morén and Balkenius 2001; Neal and Timmis

2003; Timmis, Neal and Thorniley 2009; Lucas, Shahmirzadi and Sheikholeslami

2004; Lotfi and Akbarzadeh-T. 2014b; Salichs and Malfaz 2012). The potential of

artificial intelligence based on fear-learning models is demonstrated by its success-

ful contribution to a variety of industrial, engineering and robotic applications,

such as:

• Aerospace Launch Vehicle (ALV) control (Mehrabian, Lucas and Roshanian

2006);

• Washing machine control (Lucas, Milasi and Araabi 2006);

• Embedded systems (Jamali et al. 2010);

• Speed and flux control of induction motors (Markadeh et al. 2011; Daryabeigi,

Abjadi and Arab Markadeh 2014);
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• Online prediction of geomagnetic activity indices (Lotfi and Akbarzadeh-T.

2014a)

• Path tracking and collision problem in automated highway systems (Ja-

farzadeh et al. 2008);

• Patient-cooperative control of rehabilitation robots (Garmsiri, Najafi and

Saadat 2013);

• Target tracking control of a mobile robot (Kim and Langari 2009);

• Motion control of omni-directional three-wheel robots (Sharbafi, Lucas and

Daneshvar 2010);

Despite its advances, research on artificial fear-learning is still in its infancy and

has several aspects with a margin for improvement, among which we can highlight

situation appraisal.

In Rizzi et al. (2017), we define situation appraisal as one’s ability to ‘make

emotional evaluations and associations over perceived situations, where situations

are collections of contextual information linked to relevant entities. In other words,

a situation captures the fluctuations in an individual’s context during a particular

period of time. Situation appraisal is, therefore, an individual’s ability to attach

emotional meanings to perceived situations and react accordingly.

To the best of our knowledge, artificial fear-learning models proposed to date

do not substantially address situation appraisal, which is a significant part of the

brain’s fear-learning system, and essential for an organism to predict outcomes and

adapt to threats and environmental changes (Harrison, Duggins and Friston 2006).

To model and implement situation appraisal, a number of requirements must be

taken into consideration, which can be divided into two groups: requirements of a

situation-aware intelligence and requirements of an emotional intelligence.

1.3.1 Situation-Aware Intelligence

In the real world, people display emotional responses not only to individual envi-

ronmental stimuli (e.g. pain, smells, noises, location, light levels, etc.), but also

to context (i.e., the unified meaning of co-occurring stimuli) and to context’s vari-

ation over time. In light of how fearful emotional reactions emerge in organisms,

we argue that in order for a robot to have a detailed and extensive comprehension

of its state of affairs, a few requirements must be addressed during the modelling

phase of the robot controller. These are:
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• The robot controller must take into consideration the current state of each

particular stimulus sensed by the robot (either by means of sensors or direct

user input), as well as how each particular state of each stimulus influences

the robot’s interaction with its environment.

• The robot controller must take into consideration the current combined state

of all stimuli sensed by the robot, as well as how particular configurations

of these stimuli influence the robot’s interaction with its environment. This

describes the robot’s context.

• The robot controller must take into consideration the variation of the state

of each particular stimulus sensed by the robot over time, as well as how

the pattern wherein each particular stimulus varies over time influences the

robot’s interaction with its environment.

• The robot controller must take into consideration the variation of the com-

bined state of all stimuli sensed by the robot over time, as well as how

the pattern wherein particular configurations of these stimuli vary over time

influence the robot’s interaction with its environment. This describes the

robot’s situation.

1.3.2 Emotional Intelligence

The items listed in Section 1.3.1 address factors related to environmental percep-

tion from a neutral perspective only. In order for a robot to have an emotional

reaction in response to the perceived environment, an emotional mechanism must

be integrated with the contextual perceptions listed in Section 1.3.1. Because in

this thesis we are particularly interested in the fear emotion, we will address only

requirements for the integration of models that are inspired by the mechanisms of

fear learning in the brain.

There are particular features which are essential and recurrently present in the

mechanisms of fear learning in the brain. These are:

• Neuroplasticity, which regards to the capacity of neural circuitries in the

brain to adapt to new environments and situations. This usually involves

the ability of that neural circuitry to forget once learned information that is

no longer valuable, allied with the ability to learn new information based on

experiences from interacting with the environment.

• Associative learning and memory, which regards to the capacity of neural

circuitries to create and store links between two or more distinct stimuli,
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based on coincidences in their patterns when they co-occur. Later, this asso-

ciation facilitates retrieving the memory of one stimulus when the individual

experiences the presence of the other related stimulus.

• Real-time learning and adaptation, which regards to the ability to learn and

adapt to new stimuli and threats while they occur in an automatic and rapid

manner. This skill is particularly essential for the survival of animals in the

wild, which need to quickly identify the presence of predators and decide a

course of action (e.g. fleeing, fighting or freezing). In fact, research shows

that brain circuitries involved in fear learning are usually activated before

the activation of brain regions responsible for conscious reasoning (LeDoux

1999).

Ideally, a robust model for simulating situation-aware fear learning should meet

all of the above-mentioned requirements, including those listed in Section 1.3.1.

Nonetheless, as we understand, most models of fear learning applied to robotics

address these requirements partially only, providing incomplete solutions based on

an overly simplified environmental perception that leads to inconsistent emotional

appraisal and responses. Chapter 2 discusses the main related work in the liter-

ature, analysing how and whether they meet the requirements discussed in this

section.

1.4 Contributions of this Thesis

The central hypothesis of this thesis is as follows:

It is possible to provide robots with online and domain-independent fear

learning and memory capabilities at both stimulus and contextual abstrac-

tion levels through a robust mechanism for situation awareness that consid-

ers multi-stimulus temporal relationships. Such learning mechanism shall al-

low robots to perceive complex stimuli patterns by observing series of events

in their environment, learn with experience through autonomous environ-

mental exploration and adapt at execution time to environmental changes

and threats.

In other words, the work presented in this thesis aims at allowing robots to

learn complex temporal patterns of sensed environmental stimuli and create a rep-

resentation of these patterns. This memory is later associated with a negative or

positive ‘emotion’, analogous to fear and confidence. The learning and memoriza-

tion processes are domain independent, so any robotic task that requires adaptive

skills can take advantage of such model.
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There is a number of fear learning architectures and models proposed to date

that successfully address the requirements mentioned in Section 1.3.2. However,

despite meeting essential requirements for implementing emotional intelligence,

none of these models managed to simultaneously meet all the requirements listed

in Section 1.3.1, which are crucial for generating situation-aware intelligence. The

lack of models of fear learning in the literature capable to harmoniously meet the

requirements for both situation-aware and emotional intelligence raises the first of

our research questions, which is:

1. Can a cognitive computational model be designed so to fully meet the

requirements of a robust situation-aware fear-learning model of artificial

intelligence?

As we will later discuss in Chapter 3, Chapter 4 and Chapter 5, fear learning

involves diverse brain systems performing considerably distinct tasks at different

levels of abstraction by means of different mechanisms. Nevertheless, most models

inspired by the brain’s mechanisms of fear learning rely on one single technique

to implement all these tasks and abstraction levels. This is, in fact, one of the

reasons why many of these models provide overly simplified perceptions of the

environment, both from an emotional and a contextual perspective. This fact

leads us to our second research question, which is:

2. Can a hybrid cognitive computational model, depending on the contri-

bution of different approaches and techniques, meet the requirements of a

robust situation-aware fear-learning model of artificial intelligence?

Finally, a number of studies proposing fear-learning models provide an insuf-

ficient assessment of their models, especially in regards to their practical usage

in real-world robotics applications. Other studies, in turn, openly declare their

models as means to better study the underlying brain mechanisms involved in

fear learning. These works usually focus on providing a close-to-real emulation of

brain functions without addressing the practical usage of the model for artificial

intelligence. The lack of fear learning models dedicated and thoroughly evaluated

with respect to real-world robotics applications raises our third and final research

question, which is:

3. Can a robust situation-aware fear-learning model of artificial intelligence

be effective in real-world robotics applications?

This thesis proposes a novel hybrid cognitive computational model named

Situation-Aware FEar Learning (SAFEL) (Rizzi et al. 2017; Rizzi, Johnson and

Vargas 2016, 2017, 2018; Rizzi Raymundo, Johnson and Vargas 2015), which
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is inspired by the main brain regions involved in fear learning. SAFEL com-

bines machine learning algorithms and concepts of situation-aware expert systems

with well-known neuroscience findings on the brain’s fear-learning mechanisms.

SAFEL’s ultimate goal is to provide autonomous robots with the ability to pre-

dict undesirable or threatening situations based on their past experiences and use

this information for adapting to environmental changes and threats. SAFEL is

designed to be domain independent and meet all the requirements discussed in

Section 1.3. We evaluate the varied aspects of SAFEL’s performance in a robot

soccer scenario and demonstrate that SAFEL is capable of predicting undesirable

outcomes based on complex contextual and temporal information and improve

robots’ adaptive behaviour and flexible decision making at execution time.

The main contributions of this work as compared to the state of the art are:

1. Integration of a fear learning model with the concept of temporal context.

SAFEL performs threat predictions based on complex temporal and contex-

tual information. Existing fear memory models either focus on the contextual

or the temporal aspect, overlooking the need for both skills for an artificially

intelligent agent to properly react to real-world threatening situations.

2. SAFEL is focused on real-world applications for artificial and autonomous

intelligence in robotics. Many existing fear-learning models that are inspired

by the real mechanisms of the brain focus on providing a close-to-real emu-

lation of brain functions without addressing the practical usage of the model

for artificial intelligence.

3. The successful integration of a symbolic rule-based platform for situation

management with machine learning algorithms for memorizing and predict-

ing threats based on complex temporal context.

1.5 Thesis Organisation

This thesis is organised as follows:

• Chapter 2. Emotional and Adaptive Robots – A Prospectus: This chapter

discusses works in the literature related with the proposal of this thesis, par-

ticularly in the areas of affective computing, cognitive computational models

and emotion simulation. It concludes by presenting an introductory overview

of SAFEL’s architecture.

• Chapter 3. Amygdala Module: This chapter presents the first module of

SAFEL: the Amygdala Module (AM). This module is responsible for the



CHAPTER 1. INTRODUCTION 15

emotional appraisal of SAFEL. Here, the biological background that inspired

the model of the AM is discussed, as well as the underlying technology used

in its implementation, the model of the AM and preliminary experiments.

• Chapter 4. Hippocampus Module: This chapter presents the Hippocampus

Module (HM) of SAFEL, which is responsible for understanding and manag-

ing the contextual and temporal aspects of the robot’s state of affairs. This

chapter explores the biological background that inspired the design of this

module. It also presents relevant conceptualizations and technologies used

in its implementation, followed by the actual model of the HM.

• Chapter 5. Working Memory Module: This chapter presents the Working

Memory Module (WMM) of SAFEL, which is responsible for associating the

emotional memory generated in the AM with the contextual memory gener-

ated in the HM. Similarly to the other modules, this chapter briefly intro-

duces the biological inspiration for the WMM, followed by its technological

basis. It then presents the model of the WMM and preliminary experiments

evaluating the HM and the WMM together.

• Chapter 6. Case Study: Robot Soccer: This chapter explores the applica-

tion of SAFEL in the robot soccer scenario by means of a thorough case

study. The analysis performed in this case study evaluates SAFEL in rela-

tion to three distinct perspectives: the predictive performance of SAFEL,

improvements in the robot’s playing performance and how learning evolves

at runtime inside SAFEL’s modules.

• Chapter 7. Conclusion: This chapter summarizes the work presented in this

thesis, revisiting the hypothesis, contributions and research formulated in

Section 1.4. Ultimately, our final considerations are expressed, followed by a

perspective for future research.



Chapter 2

Emotional and Adaptive Robots –

A Prospectus

The problem of adaptive robotics as addressed in this thesis concerns two domains

of artificial intelligence and robotics: adaptive behaviour and emotion simulation.

A number of methods can be used to approach each of these areas. In this chapter,

we briefly introduce the varied approaches to simulating emotional and adaptive

behaviour for robotics, as well as the main related works in the literature.

We start by introducing the field of affective computing in Section 2.1. Sec-

tion 2.2 narrows the scope of the discussion to literature that is more closely re-

lated to the main goals of this thesis. Finally, Section 2.3 overviews the proposed

Situation-Aware FEar Learning (SAFEL) model, outlining each of its modules

along with their function in the overall architecture and their methodological ba-

sis.

2.1 Affective Computing

It is known from common sense that high levels of emotion may impair the abil-

ity to make rational decisions. However, as discussed in Chapter 1, neuroscience

findings show that the absence of emotions may be even more harmful to ratio-

nality (Damasio 1994; LeDoux 1999). In the light of such discoveries, computer

scientists started to consider the use of emotional models as a means to improve

the intelligent and adaptive behaviour of artificial systems, leading to the creation

of a new area of computer science: the affective computing.

Affective computing is one of the most recent branches of computer science,

which originated from Picard’s research in 1995 (Picard 1995, 2000). According to

Picard (2000), affective computing tackles three aspects of artificial intelligence:

(1) the ability of machines to recognise and express emotions, (2) the ability of

16
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machines to respond intelligently to human emotion, and (3) the capability of

machines to regulate and utilize emotions in order to behave more intelligently

and effectively.

The first and second branches of affective computing are concerned with the

external aspects of emotions and develop techniques that allow artificial systems

to recognize, evaluate, interpret and/or express human emotions, having as main

target Human-Robot Interaction (HRI) applications. The third branch of affective

computing is concerned with the internal aspects of emotions such as learning, per-

ception and attention (Arbib and Fellous 2004). This is the branch of most interest

to our work, though we may indirectly address aspects of the other branches as

well. It studies techniques for simulating emotional behaviours in computer sys-

tems, inspired by the emotional model of humans and other animals. It derives

from the idea that emotions give humans unique abilities, which make our deci-

sions not only intelligent but also flexible, fast and efficient. The question in this

branch of affective computing is whether artificial systems could also benefit from

the positive aspects of emotions.

Next, we analyse how researchers in the area of affective computing describe

and justify the need for emotional models in robotics. We also approach the main

controversies and questions inevitably raised by the prospect of ‘giving emotions to

robots’. We conclude this section by exploring the main approaches for simulating

emotions and emotion-derived behaviours.

2.1.1 The Role of Emotions in Robotics

We have discussed in Chapter 1 some applications for emotional robots that mo-

tivated and inspired our work. Here, we approach a similar discussion from a

more structured perspective, aiming to evaluate the ‘why and how’ of applying

emotional models in particular robotics applications.

Salichs and Malfaz (2012) consolidates the opinion of several researchers on

this subject and delivers a democratic point of view on the benefits and roles that

emotional models play in robotics. In summary, researchers’ opinions generally

converge to the conclusion that robots need emotions for the same reasons why

humans and animals need and have emotions: because emotions help them with

confronting their environment. Since robots share with us the same environment,

it is reasonable to assume that they may benefit from emotions in the same way

we benefit when dealing with our environment. Similar to humans and animals,

emotions can be used in robotics for ends such as adapting to limitations, managing

social behaviour and handling interpersonal communication. The ultimate goal is,
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therefore, to provide robots with improved autonomy and better social skills.

Breazeal and Brooks (2005) agree with this point of view by suggesting that

the main reasons for developing emotionally capable robots converge to two design

issues in robotics: (1) robust operation and behaviour in the human environment

and (2) effective interaction and cooperation with humans. According to Breazeal

and Brooks (2005), the list of advantages for giving robots emotional capacities

include:

• Expressing intelligent behaviour in complex and unpredictable environments;

• Sensing and recognizing affect and emotion in others;

• Expressing affect and internal states in a manner that is familiar to humans;

and

• Adapting to humans’ social rules so to exhibit coherent and socially accept-

able responses.

Breazeal and Brooks (2005) classify the applications of emotional robots into

four paradigms:

• Robot as a tool: where the robot is used by humans as a device for performing

a given task. As mentioned in Section 1.2, some robotics applications deal

with dangerous and/or inhospitable environments, such as planetary and

undersea exploration. In such scenarios, similar to an animal, the robot

must apply limited resources to tackle multiple concerns while dealing with

an uncertain environment and potentially dangerous situations. Breazeal and

Brooks (2005) suggest that balancing emotion-inspired mechanisms such as

interest and fear, for instance, could help the robot to maintain a focused

state for performing its task while minding safety measures and surrounding

dangers.

• Robot as a cyborg extension: where the robot is physically attached to the

human body as an extension or replacement of a body part. Breazeal and

Brooks (2005) argue that emotions play an essential role in the mind-body

connection. Therefore, to effectively be part of or extend a human body,

a robot must be able to recognize, adapt and match its features with the

rest of the person’s body according to his/her emotional state. For instance,

when the person is in a calmer mood or situation, the robotic extension could

enter into energy-conservation mode, as the need for power is mild at that

moment.
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• Robot as an avatar: where the person uses the robot to remotely communi-

cate with others. Breazeal and Brooks (2005) argue that, in this scenario,

the level of cognitive control and physical coordination required from the

user to operate the robot in simple tasks (e.g., locomotion, object manipu-

lation and facial expression) is overwhelming. Therefore, the robot needs to

be equipped with mechanisms that allow it to understand high-level instruc-

tions from the user and autonomously perform these tasks. To do so, this

mechanism must be able to effectively recognize the emotional and linguistic

intent of the user.

• Robot as a partner: where the person interacts with the robot in a collab-

orative or social manner. This scenario depicts the classical HRI problem,

in which a robot that interacts with people needs to display emotional and

social intelligence so to respond coherently to peoples’ expectation.

Examples of applications for models of emotions involving humans’ interaction

with robots (either socially or as a tool) is plentiful in the affective computing

literature. Nonetheless, models of emotions can also be useful in applications

that do not involve human interaction. For instance, Steunebrink, Dastani and

Meyer (2006) discuss an application for emotion-inspired models involving the in-

teraction and collaboration between artificial agents only. Steunebrink, Dastani

and Meyer (2006) suggest creating a multi-agent model inspired by human emo-

tions for solving two recurring problems of multi-agent systems: non-deterministic

decision-making and lack of flexibility in agents’ cooperation and coordination.

Multi-agent systems are composed of individual agents that are capable of

autonomously deciding their own actions within the group in order to achieve a

common goal. These agents are commonly modelled under standard statistical

or rule-based techniques for decision-making. According to Steunebrink, Dastani

and Meyer (2006), in many practical applications, such techniques give the agents

multiple action possibilities with near-equal priority, leading the agent to behave

nondeterministically.

To reduce the agents’ nondeterministic behaviour and excessive deliberation,

Steunebrink, Dastani and Meyer (2006) propose using the model of Ortony, Clore

and Collins (1990). For instance, suppose a particular agent that creates a plan

‘hoping’ to achieve a particular goal. However, if the plan execution starts to fail,

that agent will experience ‘fear’, which will increase over time as the plan continues

to fail. Eventually, the ‘fear’ emotion will be more intense than the ‘hope’, leading

the agent to abandon the initial plan and attempt another strategy.
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Another issue discussed by Steunebrink, Dastani and Meyer (2006) involves

the need for multiple agents to cooperate and coordinate their actions in order to

achieve the system’s global goal. The cooperation and coordination of agents are

specified by interaction protocols, which usually impose restrictive constraints on

the agents’ behaviour and limit their autonomy. On the other hand, the absence

of these protocols would lead to the nondeterminism issue because the agents

would be left with several possibilities of interaction with each other. Steunebrink,

Dastani and Meyer (2006) suggest solving this problem with a protocol that is

based on the human interaction model, in which a person constructs a mental

model of the affective state of other people for predicting their probable reaction.

In such protocols, individual agents would be capable of anticipating other agents’

reaction by becoming aware of their current emotional state. Suppose, for example,

that a particular agent is having problems and is about to abandon its current task,

which could compromise the system’s global goal. If another agent is able to infer

the emotional state of that agent, then it may be able to predict and avoid the

interruption of the concerning task.

2.1.2 Debates and Deliberations

As discussed thus far, the benefits of emotions for natural life are numerous and

self-evident. However, this is not a sufficient argument on its own to justify the

inclusion of emotion-like mechanisms in robotics architectures. Cañamero (2005)

questions whether the inclusion of emotional elements in robots’ artificial intelli-

gence makes them more valuable per se. In fact, if the inclusion of such emotional

elements does not improve a robot’s performance by any means, then what is the

purpose of adding an extra resource-consuming processing step to the robot’s ar-

chitecture? Therefore, researchers must be capable to accurately demonstrate that

the inclusion of such models of emotion does, in fact, improve the task performance

or interaction capabilities of autonomous robots. Cañamero (2005) suggests, as

a first obvious option, comparing the results of control experiments in which the

robot performs a given task with and without the aid of emotional mechanisms.

We share the opinion of Cañamero (2005) and believe that if models of emo-

tions are to be included in robotics architectures, they must first and foremost

fulfil the requirement of improving the robots’ autonomy and believability compe-

tencies. On this account, we present a number of preliminary experiments along

this thesis which evaluate our emotional model and compare the outcomes of the

robot with and without its influence. Ultimately, we provide the reader with a

comprehensive case study in Chapter 6, which evaluates the robot’s performance
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in a practical and highly dynamic scenario, subsequently demonstrating that the

robot’s task performance is substantially improved when SAFEL is incorporated

into its architecture.

Finally, despite the extensive use of the word ‘emotion’ within the affective

computing literature, it is important to keep in mind that such emotion-inspired

models do not aim at fully and realistically mimicking the actual mechanisms

of emotions in natural organisms. As Breazeal and Brooks (2005) observe, these

models simulate emotions from a functional perspective only, aiming to give robots

the adaptive benefits that emotions provide to natural beings and help them to

more successfully accomplish their tasks.

On the other hand, one may raise ethical questions on whether robots should

or could have human emotions (Lin, Abney and Bekey 2011; Coeckelbergh 2012;

Bringsjord and Clark 2012). The prospect of ‘giving emotions to machines’ raises

delicate ethical concerns and polemic discussions. In this direction, one of the

most discussed matters is the deceptive behaviour of emotive robots, under the

claim that they ‘intend to deceive’ by expressing non-authentic emotions and ‘pre-

tending’ to be a kind of entity that they are not (Coeckelbergh 2012; Bringsjord

and Clark 2012). We contend that such questions are beside the purposes of our

research at this point, as artificial emotions serve solely as a means to improve

robots autonomy and adaptation in our work. Yet, we hold the idea that such

computational mechanisms can be justifiably acknowledged as the artificial coun-

terparts of the real emotional phenomena. We share the point of view of Breazeal

and Brooks (2005), who argue that artificial emotions ‘are not “fake” because they

serve a pragmatic purpose for the robot that mirrors their natural analogs in living

creature’.

2.1.3 Approaches to Simulating Emotion

The work of (Ortony, Clore and Collins 1990), widely known as the OCC theory,

is among the most cited models of emotion in the literature, being a source of

inspiration for the development of several other models of emotions. According

to Ortony, Clore and Collins (1990), an individuals’ emotions result from its cog-

nitive capacity of appraising an event or situation in regards to its own goals,

standards and actions. Therefore, the emotional appraisal is unique to each indi-

vidual because it depends on many elements that are particular to each individual.

This explains why the same event may lead to different emotional reactions from

different individuals, or even from the same individual at different times.

The idea of establishing affective appraisal in terms of the agent’s goals is
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particularly well endorsed among the affective-computing community and is com-

monly implemented as the agent’s ‘drives’ and ‘motivations’. According to Ahn

and Picard (2005), motivation plays a fundamental role in the processes of learning

and decision making in humans and other animals. They proposed an affective-

cognitive learning framework that models the motivation of artificial agents by

means of rewards, which may be internal (cognition and emotion) or external (in-

teraction with the external world). Once the agents are motivated, they are able

to autonomously learn and make decisions. For example, happiness when finishing

a given task is an example of internal reward. On the other hand, an example of

external reward would be positive reactions of users when interacting with the sys-

tem. If the user demonstrates happiness or satisfaction in response to the agent’s

action, then it is recognized as a reward by the agent, which learns that this action

is correct in the current context.

While identifying the circumstances and components of the environment that

influence the affective state of an individual is essential for simulating emotions,

it is also necessary to adopt a methodology for modelling emotional appraisal,

i.e., how the agent affectively assess the situation. According to Salichs and Mal-

faz (2012), two main approaches define the methodological foundation for mod-

elling emotional appraisal: the affective space model and the discrete model. Both

methodologies have as main concern defining how agents’ situations and emotions

are interrelated.

The affective space model associates situations and emotions by means of a set

of intermediate variables working as dimensions of a Cartesian plane, namely, the

affective space. Each emotion is associated with a different zone of that space. For

instance, Hollinger et al. (2006) define emotions based on three intensity variables:

pleasure, arousal and dominance. These variables represent the three axes of the

affective space and vary with different intensities depending on the situation that

the agent observes. The resulting point of these three coordinates in the affective

space defines the agent’s current emotion.

The approach of Breazeal and Brooks (2005) to social robots is another example

of affective space model. In their approach, the robot’s emotional state is defined

according to a three-dimensional affective space, whose axes correspond to arousal

(high or low), valence (good or bad) and stance (advance or withdraw). The

interaction of these affective variables generates nine artificial emotions at varying

intensities and is dependent on the robot’s drives, goals and accomplishments.

By contrast, the discrete model is based on the discrete categorization of emo-

tions for defining the agent’s behaviour in a particular situation. This approach
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may also consider dimensions of emotional intensity, but only within the emo-

tional categories and with descriptive purposes. A widely cited example of a

discrete model is the approach proposed by Cañamero (1997). She models a set of

six independent emotions (fear, anger, happiness, sadness, boredom and interest),

each of which is characterized by an incentive stimulus, an intensity, hormonal

discharges and the activation of physiological responses. The intensity of these

emotions is influenced by factors such as external events, stimuli patterns and

particular combinations of physiological states.

Salichs and Malfaz (2012) also propose a discrete-model–based approach for

generating synthetic emotions, aiming at improving the decision-making process

of autonomous virtual agents. They argue that, generally, ‘appraisal occurs in

a holistic fashion, and it is based on theme evaluation rather than on analytical

processing using evaluation dimensions’. According to Salichs and Malfaz (2012),

the same situation may be appraised in a different manner for each particular emo-

tion, which could have distinct repercussions in the individual’s decision-making.

Therefore, the manner with which a particular situation is affectively appraised

must be independently studied for each individual emotion.

Additionally, Salichs and Malfaz (2012) believe that virtual agents should be

capable of learning by themselves to select the correct action in a particular sit-

uation based on their drives, motivations and emotions. Different people may

respond differently to the same situations. Analogously, artificial agents should be

able to ‘discover’ their own emotions in response to particular situations, as well

as reactive tendencies in the face of particular emotions.

The emotional model proposed in this thesis is largely in agreement with the

principles and arguments expressed by Salichs and Malfaz (2012). SAFEL’s em-

bodies a discrete-model approach for modelling and simulating the fear emotion in

autonomous robots. Fear responses induced by SAFEL are integrally dependent

on the outcomes of the robot’s interaction with its environment and are shaped by

the robot’s own perception of its situation. In comparison to the above-mentioned

approaches, especially those categorized as discrete models, SAFEL stands out by

providing the robot with much richer and complex perception of its environment.

This contributes to better precision when detecting fear triggers in the environ-

ment and, consequently, generates more coherent and believable fearful responses

in the robot.
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2.1.4 Unconventional Emotional Behaviours in Robotics

The wide range of different emotions studied by neuroscience and psychology has,

over the years, provided a large body of evidence and theories that helped to for-

mulate computational models for a number of distinct emotions. In previous sec-

tions, we introduced models for modelling conventional emotions and emotional

behaviours such as happiness, sadness, fear and anger. In this section, we ex-

plore the computational modelling and application of more peculiar emotional

behaviours, such as comfort, deception and guilty. In Section 7.3 we revisit the

idea of potentially simulating these behaviours as an expression of fear by means

of SAFEL.

Comfort Zones

The notion of comfort is well known between humans and other animals. It de-

termines how safe or satisfied we feel in relation to our environment. If we are

in a safe and familiar place, surrounded by friends, we feel comfortable and act

confidently. On the other hand, when we feel under risk or without support in

an unknown and hostile place, we feel uncomfortable and become resistant to ex-

plore the surroundings. The level of comfort, therefore, is a powerful danger-alert

mechanism.

Likhachev and Arkin (2000) propose a comfort function for controlling robotic

systems, which is based on a psychological research performed on infants. Accord-

ing to Likhachev and Arkin (2000), objects of attachment have a strong participa-

tion in determining an individual’s level of comfort. For example, a mother may

be an example of an object of attachment for a child, who associates the mother’s

presence with safety. When a person is close to an object of attachment, his or her

comfort level is higher than it would normally be in the same environment, under

the same circumstances.

The definition of a robot’s object of attachment may be either hardwired or

learned through environmental exploration. The attachment force between the

robot and an object of attachment would depend on how much that object ful-

fils the robot’s needs. In the work of Likhachev and Arkin (2000), the robot’s

‘desire’ to return to an object of attachment increases when it’s overall comfort

level decreases. This ‘desire’ force is a vector directed toward the object of attach-

ment, which depends on (1) the attachment bond to that object, (2) the robot’s

current comfort level and (3) the distance between the robot and the object. As

a consequence, the attachment behaviour regulates the robot’s exploration of the

world, i.e., as the environment becomes more familiar and safe, the robot becomes
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more confident in getting far from the attachment object, therefore increasing its

exploration range.

The advantage of this approach for robot exploration is clear: it prevents the

robot from entering unknown areas without proper caution. As the robot gets

familiar with that new area, it starts to act more confidently and stops spending

resources with rigorous environmental evaluation. Thus, the use of comfort zones

may help to reduce the chances of physical damage to the robot.

However, despite the comprehensive biological background provided in their

work, Likhachev and Arkin (2000) do not explore its full potential in their imple-

mentation. For example, the authors extensively discuss the influence of endoge-

nous (internal factors, e.g., hunger, body temperature, pain, etc.) and exogenous

(external factors, e.g., the individual’s degree of familiarity and past experiences

in the current environment) variables in an individual’s level of comfort. However,

in their mathematical equations, endogenous variables are ignored, and only ob-

jects of attachment are taken into account from the exogenous variables, which,

nonetheless, the robot is allowed to have only one.

Vazquez and Malcolm (2004) also used the concept of comfort zone in their work

as a strategy for avoiding collisions and loss of connection in multi–autonomous-

robot exploration tasks. They determine two important comfort zones, one for

safety (where there is no risk of collision with other robots) and one for maintaining

connectivity with nearby robots. To be considered safe and interconnected with

another robot, a robot should lie inside its own safe region and inside another

robot’s connectivity region.

However, they do not explore the idea of comfort zones with the same depth as

Likhachev and Arkin (2000). For example, Likhachev and Arkin (2000) provide

an extensive discussion on the psychological factors of comfort zones and how

they can be mapped to computer systems, whereas Vazquez and Malcolm (2004)

limit comfort zones to threshold areas where the robot should lie for keeping the

team operational. This is likely a consequence of the diverging goals of these two

works: Likhachev and Arkin (2000) focus mainly on the idea of comfort zones while

Vazquez and Malcolm (2004) are concerned with solving the team-collaboration

problem, for which they use other techniques in addition to comfort zones.

Deception

Despite not being an emotion, the act of deceiving is usually triggered by emotions,

such as fear, trust, shame, guilt, envy and even love or surprise. In our society, it

is usual to think of deception as a misconduct, which may lead others to judge an

individual’s character. In nature, however, such behaviour is common and essential
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for the survival of certain animal species, mainly for small animals that cannot

rely on the use of force to defend themselves. Analogously, there is a number of

computing and robotics applications that can benefit from simulating deceptive

behaviours, such as military technology, sportive training, games, environment

simulation and healthcare (Nijholt et al. 2012).

Davis and Arkin (2012) propose a mathematical model for robotic deception

based on the mobbing behaviour of a species of birds called Arabian Babbler.

These birds act in groups to defend themselves against predators’ attacks. A

sentinel bird is responsible for observing the surroundings and alerting the others

in case of danger, which in turn mob the predator if it persists with the attack.

The mobbing may evolve to a harassment that, if sufficiently strong, can lead the

predator to abandon its attack.

The computational model of Davis and Arkin (2012) consists in a mathematical

equation that evaluates an individual’s risk of participating in mobbing considering

that individual’s fitness, the predator’s fitness, the price of bluffing and a relat-

edness coefficient. The relatedness coefficient expresses the level of prey-predator

cooperation. In other words, the prey should avoid being chased and the predator

should avoid wasting energy in hard hunts. As the relatedness coefficient increases,

the agents are more likely to cooperate and, consequently, the chance of mobbing

increases.

Another example of robotic deception based on animals’ behaviour is the work

of Shim and Arkin (2012). They simulate in a mobile robot the deceptive be-

haviour of tree squirrels when protecting stored food. Tree squirrels have the

habit of periodically checking their food locations. However, when there are com-

petitors nearby, they visit several empty locations in an attempt to confuse the

competitors. Shim and Arkin (2012) have created a mathematical function for gen-

erating artificial deceptive-behaviour that calculates the probability of a robotic

squirrel to visit a given food location (empty or not). This calculation takes into

consideration the amount of food in each location and the presence of competitors

around.

Both above-mentioned works, Davis and Arkin (2012) and Shim and Arkin

(2012), are inspired by the deceptive behaviour of wild animals in a survival sit-

uation. The work of Wagner and Arkin (2011), by contrast, proposes a different

approach for generating deceptive behaviour. They make use of game theory and

interdependence theory to develop an algorithm that determines whether decep-

tion is warranted in a particular social situation.

They assume that the deceiver must have specific knowledge about the indi-

vidual that will be deceived (called by the authors as the mark). For instance,
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camouflaging would not deceive a robot that relies on infrared vision. Therefore,

the robot attempting to camouflage should be aware of the vision capacities of the

mark in order to successfully deceive it.

In interdependence and game theories, social interactions are represented by

an outcome matrix that stores information about the individuals interacting (in

this case, the deceiver and the mark), as well as the gain/loss for each individual

in relation to their potential combination of actions. The deceiver’s task is to

use its knowledge of the true outcome matrix (i.e., the outcome when there is no

deception in the communication) to convince the mark that a particular decision

will benefit it when it actually benefits the deceiver.

Guilt

Arkin, Ulam and Wagner (2012) address a delicate subject in affective computing:

ethics. The ethical aspects of ‘giving emotions to machines’ have raised several

discussions in the area of affective computing, and it is even more polemical when

regarding military issues. Arkin, Ulam and Wagner (2012) propose a model of

ethical behaviour for robotics in the military context, where robotic soldiers are

induced to follow international agreements of war conduct.

In their approach, the ethical part of the robot’s controller consists of 3 com-

ponents. The first component, called as the ethical governor, is responsible for

evaluating the ethical appropriateness of any lethal action intended by the robot,

intervening when necessary to prevent unethical actions. The function that eval-

uates ethics is based on two international agreements, known as Laws of War

(LOW) and Rules of Engagement (ROE) (Arkin, Ulam and Wagner 2012).

The second component, called as the ethical adaptor, allows the system to ex-

press the guilt emotion by adapting its behaviour to the consequence of its actions.

The adaptor recognizes the need of guilt expression by means of the governor’s

judgement, which has autonomy to determine whether the actual collateral dam-

age of the robot’s action significantly exceeds the estimated damage. The level of

guilt is calculated according to the number and importance of causalities caused

by the robot. Guilt is expressed by deactivating the robot’s weapons; if the level

of guilt exceeds a specified threshold, all lethal weapons are deactivated for that

robot until the end of the mission.

Finally, the third component of the controller allows the robot to strategically

deceive its opponents if needed. The decision-making process for the deceptive

action is determined by the previously discussed framework developed by Wag-

ner and Arkin (2011). Even when developing a system with the sole purpose of

deceiving, ethical issues should be considered. In the work of Arkin, Ulam and
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Wagner (2012), the robot’s decision to deceive takes into account that a false com-

munication implies in a conflict with the mark. Therefore, it should deceive only

when there is no other option. In other words, a true communication should be

preferred if the deceiver can benefit from it, even when it aids the mark.

2.2 Fear, Context and Adaptation

Fear is one of the most discussed emotions in psychology and neuroscience when

regarding survival and adaptation (LeDoux 1999; Damasio 1994). It allows us to

take advantageous decisions to our well-being and interests before we even become

conscious of it and faster than our ‘rational brain’ could process. The clear impact

of fear learning in the expression of adaptive and intelligent behaviour captured the

attention of many researchers in the field of artificial intelligence, who saw in the

brain’s mechanisms of fear an opportunity for leveraging the adaptive behaviour

of artificial agents.

In this section, we revisit previously proposed computational models of fear

learning and expression with main application to adaptive autonomous robotics.

We also compare these models with the requirements specified in Section 1.3,

especially those regarding situation awareness.

2.2.1 Artificial Homeostatic Systems

Artificial homeostatic systems (AHS) are adaptive systems inspired by the biolog-

ical mechanisms of homeostasis, which is related to the property of an organism

to regulate and maintain stable its internal state (Vargas et al. 2005). A home-

ostatic system is, therefore, the integration of all other systems in an organism

that primarily supports its internal balance. In biological organisms, these are

believed to be the immune, neural and endocrine systems (Vargas et al. 2005). In-

spired by these biological systems, researchers in the area of artificial intelligence

started to investigate and propose models of artificial endocrine system (AES)

(Neal and Timmis 2003; Vargas et al. 2005; Timmis, Neal and Thorniley 2009;

Thenius, Zahadat and Schmickl 2013) and artificial immune system (AIS) (Read,

Andrews and Timmis 2012) to work in integration with and modulate artificial

neural networks (ANNs).

An exemplary work in the area of AHS is the model proposed by Neal and

Timmis (2003), which later served as a foundation for other AHS models in the

literature (Vargas et al. 2005; Timmis, Neal and Thorniley 2009; Thenius, Zahadat
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Figure 2.1: Integration of an artificial endocrine gland with the artificial neural
network controlling the robot in the experiment of Neal and Timmis (2003). The
grey area indicates the neurons influenced by the hormonal gland.

and Schmickl 2013). Neal and Timmis (2003) present an AES mechanism for gen-

erating emotive behaviour in artificial agents. Their AES mechanism consists in

the modelling of an artificial endocrine gland that secretes ‘hormones’ in response

to external stimuli and is responsible for varying the system’s hormonal concen-

tration over time. Hormone secretion of a particular gland g is given by rg as seen

in Eq. 2.1, where αg is the rate of hormonal release for gland g. The hormonal

concentration c(t)g induced by gland g at time t decays over time according to the

formula of Eq. 2.2, where β is a decay constant.

rg = αg

nx∑
i=0

xi (2.1)

c(t+ 1)g = (c(t)g × β) + rg (2.2)

Neal and Timmis (2003) evaluate their model on a wheeled robot with 16

sonar distance-sensors. The proposed AES mechanism was integrated with the

ANN controlling the robot’s movements, as seen in Fig. 2.1. The goal is to use

the system’s hormonal concentration to modulate the output of the ANN and,

consequently, the robot’s behaviour. In other words, through the proposed AES

mechanism, the system is expected to change its default behaviour depending on

its perception of the environment. Neal and Timmis (2003) demonstrated in their

experiment that the addition of the AES mechanism generated in the robot a

behaviour analogous to the fear reflex, which was autonomously learned during

environmental exploration. As the frequency of obstacle detection increased over
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time, the aggressiveness of the robot’s movements in order to flee also increased

as if it had ‘fear’ of colliding with obstacles.

The work of Neal and Timmis (2003) was later extended by Timmis, Neal

and Thorniley (2009) in order to generate adaptive behaviour during the robot’s

environmental exploration. Timmis, Neal and Thorniley (2009) argue that even

though the work of Neal and Timmis (2003) allows robots to change their behaviour

according to environmental input, the hormonal concentrations are pre-configured

rather than learned. Timmis, Neal and Thorniley (2009) propose an improved AES

named as the adaptive artificial neural-endocrine (AANE) system. The AANE

system includes a feedback mechanism that allows the autonomous modulation of

the system’s hormonal concentration during the robot’s operational cycle.

Figure 2.2 depicts the system architecture that Timmis, Neal and Thorniley

(2009) have implemented for their experiment. In this architecture, they use two

neural networks, each associated with a hormonal-gland cell. Each ANN deter-

mines a particular behaviour of the robot, which in this case are ‘wander’ and

‘avoid obstacle’. The gland cells regulate the intensity in which these behaviours

dominate, so they can be seen as the robot’s ‘desire’ to manifest a particular

behaviour.

Figure 2.2: Overall system architecture for controlling the robot in the experiment
of Timmis, Neal and Thorniley (2009).

The final output determines the speeds of the robot’s wheels and is computed

by a third neural network (the ‘single layer perceptron’ component in Figure 2.2),

which combines the outputs of the other two ANNs. In addition to the components
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of Figure 2.2, Timmis, Neal and Thorniley (2009) add a negative-feedback gland

in the second part of their experiment, which regulates the update of the ANN’s

weights in order to prevent their exponential increase/decrease.

The experimental results of Timmis, Neal and Thorniley (2009) demonstrated

that the robot was capable to express adaptive behaviour over prolonged periods of

time. In addition to the association between collision and proximity, similar to the

association discussed in the experiment of Neal and Timmis (2003), the proximity

signal was constantly adapting at runtime and self-reinforcing, so that no further

collisions were necessary after some time for the collision-proximity association to

be maintained.

Other works that improve or expand the functionalities of the model presented

by Neal and Timmis (2003) include the models proposed by Vargas et al. (2005)

and by Thenius, Zahadat and Schmickl (2013). Vargas et al. (2005) propose a

homeostatic system that includes two other modules in addition to the artificial

hormonal gland, which are the hormone level repository (HL) and the hormone

production controller (HPC).

The HL records the level of hormone in the agent while the HPC controls

hormone production according to the internal and external factors affecting the

agent. The gland is responsible for the actual production and secretion of hor-

mones, which is modulated by excitatory signals from the HPC. When excited by

the HPC, the gland starts to produce and release hormones, which consequently

increases the hormone level of the agent. The hormonal level, in turn, influences

the output of the ANN and, as a consequence, the actions of the agent in the

environment.

HPC excitatory signals depend on the internal state of the agent, which in turn

depends on two factors: the agent’s hormonal level and external state (i.e., how

close the agent is to accomplish its goals). The HPC ceases excitatory signalling

when these two factors rise above given thresholds, which in turn interrupts the

hormonal production and secretion in the gland.

Besides the additional modules, an evident contrast between the models of

Vargas et al. (2005) and Neal and Timmis (2003) is that the former also takes

into consideration the internal state with regards to its drives and desires, as well

as whether these have been accomplished. In this particular aspect, the works

of Vargas et al. (2005) and Timmis, Neal and Thorniley (2009) are similar, as

both seek to model the robot’s desires and use it, along with the environmental

feedback, to modulate the robot’s actions in a manner that resembles an emotional

reaction.

A more recent work proposed by Thenius, Zahadat and Schmickl (2013) follows
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in a similar direction, with the goal to improve the classical ANN by simulating

hormone glands that influence the behaviour of individual neurons. Thenius, Za-

hadat and Schmickl (2013) argue that the approach of Neal and Timmis (2003)

creates a strict separation between the hormonal and neural systems. On the other

hand, their neural mechanism, called EMANN (EMotional Artificial Neural Net-

work), allows the interaction between the neural and hormonal systems in both

ways, generating a self-organizing feedback system.

Their work, however, lacks experimental evaluation on the system’s perfor-

mance regarding emotional aspects. Their performance analysis is based on a

mathematical task and the system’s performance is measured according to the in-

creasing pace of fitness level. According to the evaluation criteria used by Thenius,

Zahadat and Schmickl (2013), their work presented a significant improvement in

relation to an ANN implementation without EMANN. However, the reader is left

with no analysis on the emotional behaviour of the system.

Most of these models address all the requirements of an emotional intelligence

(Section 1.3.2) by providing computational mechanisms that simulate the biolog-

ical phenomena of neuroplasticity, associative learning and memory, as well as

real-time learning and adaptation. However, none of the works above-mentioned

fully address the all the requisites specified in Section 1.3.1, which concerns a

situation-aware intelligence. Although these models manage to handle, in a sense,

the unified meaning of multiple-stimuli in the environment, the temporal prop-

erties of these stimuli and how they interact with each other over time is not

considered.

2.2.2 The Brain Emotional Learning Model

One of the most influential works in artificial fear conditioning is the Brain Emo-

tional Learning (BEL) model, proposed by Morén and Balkenius (2001). Their

model (Fig. 2.3) consists of interconnected modules of ANNs that simulate the

role of neural circuitries involved in fear learning. It receives two types of inputs

– environmental neutral stimuli and a reward signal – that are processed by four

simulated neural regions: the thalamus, the sensory cortex, the amygdala and the

orbitofrontal cortex.

The thalamus and sensory cortex simply relay input information to the or-

bitofrontal cortex and amygdala. This architecture is inspired by the concept of

‘low and high roads to the amygdala’ presented by LeDoux (1999). The sensory

cortex receives information from the thalamus, which in turn receives information

directly from the environment. Because the thalamic pathway is shorter (the ‘low
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Figure 2.3: Fear-learning model proposed by Morén and Balkenius (2001). Each
component of their model represents an ANN. Circles represent individual ANNs
internal to the respective component.

road’), it provides the amygdala with low latency information about environmental

stimuli. On the other hand, information projected through the thalamic-cortical

pathway takes longer to reach the amygdala (the ‘high road’), but provides a

higher-level and more accurate representation of the sensed world.

The amygdala is responsible for assessing and predicting the emotional value

of stimuli, based on the significance of the accompanied reward. Finally, the or-

bitofrontal cortex is responsible for inhibiting emotional associations of the amyg-

dala that are no longer valid. This model has been tested for the most basic

effects of classical conditioning – such as fear acquisition, fear extinction, blocking,

habituation and spontaneous recovery – showing satisfactory results.

The BEL model was later improved by Morén (2002), with the addition of

a module that simulates the contextual processing performed by the brain’s hip-

pocampal regions. BEL’s hippocampus module has four main components: the

Bind subsystem, the Mem system, the Match system and the Context system. The

Bind subsystem is responsible for binding stimuli that are simultaneously detected.

The Mem system generates expectations about stimuli manifestation at specific

locations. These expectations are later compared with the actual stimuli in the

Match system. Lastly, the Context system combines information from the Match

and Bind systems to generate a contextual code that feeds the amygdala and

orbitofrontal cortex.

With the aid of the hippocampal module, BEL is able to express fear responses

based on contextual information. For example, one of the experiments performed

by Morén (2002) consisted on presenting two different stimuli to the system, CS0
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and CS1, sometimes separately and sometimes together. All single presentations of

either CS0 or CS1 were followed by a reinforcing signal, whereas all simultaneous

presentations were followed by nothing. The model gradually learned to differenti-

ate between single and joint stimulus presentation. Further experiments performed

by Morén (2002) with other patterns of stimulus presentation and location were

also successful.

Despite BEL’s success in discriminating sets of simultaneously presented stim-

uli, a few important questions were left unanswered. For instance, what would

happen if the reinforcing signal was presented only after CS0 was followed by CS1

(represented by CS0 → CS1)? Would the model understand that CS1 → CS0

is different from CS0 → CS1? According to Morén (2002), context ‘can be ei-

ther an abstract sequence of stimuli or a place defined by a number of stimuli at

different locations around the animal’, where ‘sequence of stimuli’ means a collec-

tion of stimuli values at a given time. It is clear that temporal factors are not

considered in Morén’s conceptualization of context, which is possibly the reason

why the temporal order of stimulus presentation is never evaluated in his experi-

ments. As a consequence, the BEL model does not meet all the requirements of a

situation-aware intelligence, as specified in Section 1.3.1.

The simplest version of the BEL model (i.e., the version proposed by Morén and

Balkenius (2001), which has no hippocampus module) became more popular among

researchers. Based on the BEL model (Morén and Balkenius 2001), Lucas, Shah-

mirzadi and Sheikholeslami (2004) proposed a Brain Emotional Learning Based

Intelligent Controller (BELBIC), which was later applied (somewhat adapted) to a

large range of industrial (Babaie, Karimizandi and Lucas 2007; Lucas, Milasi and

Araabi 2006; Jamali et al. 2010; Ravi and Mija 2014; Sharma and Kumar 2015),

engineering (Azizur Rahman et al. 2008; Markadeh et al. 2011; Daryabeigi, Ab-

jadi and Arab Markadeh 2014; Lotfi and Akbarzadeh-T. 2014a; El-Garhy and El-

Shimy 2015) and robotics (Mehrabian, Lucas and Roshanian 2006; Jafari, Shahri

and Shouraki 2013; Kim and Langari 2009; Jafarzadeh et al. 2008; Sharbafi, Lu-

cas and Daneshvar 2010; Garmsiri, Najafi and Saadat 2013) applications. Most

of these works have compared their BELBIC controllers with conventional con-

troller approaches (e.g. PID, MLP, ANFIS and LLNF) and observed meaningful

improvements in varied performance aspects when using BELBIC.

In 2010, Beheshti and Hashim (2010) published a review on BELBIC systems

and demonstrated their performance for engineering ends. They compared BEL-

BIC with a range of conventional controller approaches (such as PID, ANFIS

and feedback linearization controller) for several engineering applications (such

as micro heat exchanger, intelligent control of washing machine, dynamic power
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management, intelligent predictor for geomagnetic activity, and speed and flux

control of an induction motor). Their analysis concluded that BELBIC showed

better performance and results than the tested conventional approaches for real

time control and decision systems.

BELBIC’s popularity and performance improvement over traditional approaches

in several application areas demonstrate its great potential as a controller. How-

ever, it is important to keep in mind that BEL, BELBIC and methods derived

from them (Lotfi and Akbarzadeh-T. 2014b) are supervised learning algorithms

with main application to engineering applications. Therefore, these models are

not suitable for addressing the problem of online fear-learning for autonomous

robotics. Additionally, these models do not handle the temporal properties of con-

textual information, thus not fulfilling the requirements specified in Section 1.3.

2.2.3 Adaptive Behaviour in Robot Soccer

The Robot World Cup (RoboCup) is an international scientific initiative that en-

courages the development of new technologies in artificial intelligence and au-

tonomous robotics. It challenges researchers to advance the state-of-the-art robotics

so that robots can play soccer in a realistic environment without human interven-

tion. Such challenge promotes a highly dynamic and competitive scenario that

demands the development of better adaptive skills and flexible decision-making at

execution time. For this reason, we consider that the RoboCup competition repre-

sents an exemplary scenario for the application of a situation-aware fear-learning

model of artificial intelligence. This is, in fact, the scenario of the case study that

we have performed to evaluate our model, which is discussed in Chapter 6. Here,

we present a brief summary of related work in the literature that aims at provid-

ing adaptive behaviour within the RoboCup context and may not necessarily be

correlated models of emotions.

Because of the inherent teamwork nature of soccer, most research related to

intelligent behaviour and decision making in robot soccer focuses on improving

collaborative behaviour and pre-coordination (Nitschke 2005; Genter et al. 2016;

Whiteson et al. 2003). These approaches are commonly based on pre-determined

coordination strategies learned by means of supervised machine learning algo-

rithms trained with a series of possible soccer situations generated via simulation.

Consequently, an immutable strategy defined prior to the actual match is equally

delivered to all opponent teams in the RoboCup competition. Nonetheless, dif-

ferent teams may use different tactics, and a specific pre-trained approach may

fail against a particular opponent while being successful against another opponent
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team.

In real-life soccer, human players commonly use both pre- and post-coordinated

strategies in conjunction. Soccer tactics usually involve the training of an agreed

formation and strategy prior to the match, which is the pre-coordination phase.

Nevertheless, unforeseen events may occur during the match, forcing teammates

to communicate and adapt the team’s strategy, which can be seen as a post-

coordination phase. While pre-trained coordination is well developed and studied

in the RoboCup competition (Nitschke 2005), the development of effective tech-

niques for post-coordination is still overlooked (Ferrein and Steinbauer 2016).

The need for real-time adaptation capabilities has been previously addressed

using case-based reasoning (Ahmadi et al. 2003; Ros et al. 2009). In these works,

case-based reasoning approaches are used for post-coordination as a means to op-

timise players’ positioning during the match. These works represent a great con-

tribution towards post-coordination, flexible decision making and real-time adap-

tation. Among these, we highlight the work of Ros et al. (2009), consisting of a

case-based approach for real-time adaptation in team coordinated attack when in

the presence of opponent defenders. In their work, a case describes possible game

plays, which are mainly defined in terms of problem and solution descriptions. The

problem description represents the state of affairs and takes into consideration in-

formation about the ball’s global position, the defending goal, the teammates’

global positions and the opponents’ global positions. The solution description dic-

tates the sequence of actions that the robot team should perform in order to solve

the described problem. The set of possible actions for the team is predefined and

includes individual actions (e.g., kick the ball) or joint actions (e.g., pass the ball

to a specific teammate).

The selection of a solution is mainly based on the similarity between the cur-

rent and the previously solved problems, where the similarity measure is calculated

using a Gaussian function. Ros et al. (2009) conducted a comprehensive experi-

ment which demonstrated that their case-based approach performs better than a

simpler pre-coordinated reactive approach (in which robots always try to go after

the ball and attack as fast as possible individually) for reducing the chances of the

opponent defence stealing the ball.

These results clearly demonstrate the relevance of real-time adaptation in the

RoboCup scenario. Nonetheless, the approach proposed by Ros et al. (2009) can-

not be applied to other action selection scenarios, as the problem and solution

definitions are based on the evaluation of predefined features and actions. In

addition, temporal information is not considered in the problem and solution de-

scriptions, thus not meeting the requirements described in Section 1.3.1. In their
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approach, problem-solving is mostly based on independent snapshots of context,

neglecting relevant information about context variation over time.

2.2.4 Context and Situation

Section 2.2.1 and Section 2.2.2 focused mostly on discussing studies that are mainly

concerned with simulating the fear-learning phenomenon for robotics. In this

section, we focus on discussing cognitive models particularly concerned with the

contextual perception and processing of computational systems (not necessarily

robots), though some of the mentioned studies may also address fear learning.

Rudy and O’Reilly (2001) proposed a contextual fear-conditioning model that

relies on a theoretical framework (O’Reilly and Rudy 2001) based on the cortical

and hippocampal regions of the brain. In their model, the cortex represents the

context as a set of independent features, whereas the hippocampus binds these fea-

tures into a unitary representation. Rudy and O’Reilly (2001) have implemented

their framework on an ANN model, which was evaluated on a scenario that simu-

lates a context fear-conditioning experiment performed with rats. The experiment

aimed at evaluating the model regarding its capability to (1) enhance fear con-

ditioning via pre-exposure to context and (2) induce pattern completion (when a

subset of a learned pattern can recover the entire pattern).

Although successful in reproducing many fear conditioning effects, the con-

textual fear-conditioning model of Rudy and O’Reilly (2001) also disregards the

temporal properties of context. According to Rudy and O’Reilly (2001), ‘either

context can be represented as a set of independent features (the features represen-

tation view) or these features can be bound into a unitary encoding that represents

their co-occurrence (the conjunctive representation view)’. This implies that their

unitary representation of context considers features that co-occur only, which ex-

cludes a large range of temporal possibilities between distinct features that are

essential for a thorough contextual perception.

A model that considers temporal sequences has been designed by Harrison,

Duggins and Friston (2006). Their study aimed at evaluating hippocampal re-

sponses to changes in probabilistic context by submitting subjects to a first-order

Markov sequence, where the current event Et is conditionally dependent on the

previous event Et−1, and the probability of transition between them is given by

p(Et|Et−1). To model the task, they assumed that the subject was an ideal

Bayesian observer, who starts with the belief that all events are equally likely

and consecutive events are independent. As samples of events are sequentially



CHAPTER 2. EMOTIONAL AND ADAPTIVE ROBOTS 38

presented, this ideal observer constructs a transition matrix consisting of the prob-

abilities of transition between consecutive events.

Their model is similar to ours in the sense that learning and prediction are based

on the temporal relationship of events. However, the design of the task given to

their subjects, which reflects on their model of an ideal observer, considers that

every event consists of only one stimulus. Although sufficient for the purpose of

their experiment, which is analysing hippocampal responses to temporal context,

this simplistic design does not reflect real world situations, in which events may

consist of multiple stimuli.

Among recent research, we highlight the work of Subagdja and Tan (2015).

They propose a model for episodic memory (a type of long-term declarative mem-

ory mainly processed by the hippocampus) using an extended adaptive resonance

theory (ART) network. They argue that the accuracy of memory retrieval depends

on the order and latency between memory cues, which matches the conceptual

foundation of our work. They evaluate their approach in a transitive inference

problem, which is a classical logical problem of comparing the value of things

(e.g., given that A weighs more than B and B weighs more than C, then it can be

inferred that A weighs more than C).

Among related work, Subagdja and Tan (2015) may be the most similar to

our model with regards to temporal context. For instance, their definition of

a situation (which they call as an episode) is equal to ours. However, as the

authors themselves observe, their model’s performance for tasks other than simple

transitive inferences is still undetermined. An investigation on whether the model

can be applied independently of the domain is still pending, as well as if it can

handle more complex and real-world contextual information.

Additionally, our approaches also differ in the final purpose of temporal con-

text. We are mostly concerned with predicting aversive events by creating a link

between the ‘feeling of fear’ and the events that preceded an aversive stimulus in a

past experience. This would provide robots with the chance to react and prevent

unpleasant (possibly harmful) situations, as well as to increase their adaptation

capabilities. On the other hand, the work of Subagdja and Tan addresses neither

fear conditioning nor danger prediction/prevention. In their work, events’ order

has no emotional meaning and is not used for predicting future events. Their main

focus is to facilitate retrieval, creation and update of neutral contextual memory.



CHAPTER 2. EMOTIONAL AND ADAPTIVE ROBOTS 39

2.3 The SAFEL Model – An Overview

SAFEL stands for Situation-Aware FEar Learning. It is a novel situation-aware

computational system capable of providing robots with fear-learning skills in or-

der to predict threatening situations to their own well-being or to their goals.

SAFEL’s model has been first proposed by us in Rizzi Raymundo, Johnson and

Vargas (2015), partially implemented and tested in Rizzi et al. (2017) and im-

proved by us in Rizzi, Johnson and Vargas (2016). In this section, we briefly

introduce SAFEL’s biological inspiration and design. A detailed explanation of

SAFEL’s model, implementation and performance analysis are presented in the

next chapters.

SAFEL is a hybrid computational architecture inspired by the LeDoux’s fear-

learning model of the human brain (LeDoux 2003, 1999). According to LeDoux,

fear learning greatly relies on two brain regions known as the amygdala and the

hippocampus, as well as on a cognitive function known as the working memory.

Considerable evidence indicates the amygdala as an essential brain region for

fear learning and memory (LeDoux 2003, 1999). It is responsible for process-

ing the emotional significance of sensed stimuli by creating associations between

neutral and aversive stimuli. On the other hand, the hippocampus is believed

to be the main brain region involved in context processing (LeDoux 1999). In

the hippocampus, sensory information is put together in order to form a unitary

representation of the current state of affairs. Unlike information processed in the

amygdala, representations formed in the hippocampus are not just visual, auditory

or olfactory, but all of these at once, and include the way these sensations relate

to each other both in intensity and temporal order. Finally, the working memory

creates associations between the contextual memory formed in the hippocampus

with the emotional memory formed in the amygdala, giving emotional meaning to

the contextual information acquired in past experiences.

SAFEL’s architecture is based on the task division proposed by LeDoux. There-

fore, analogous to the LeDoux model, SAFEL is divided into three modules that

work in an integrated and parallel manner: the Amygdala Module (AM), the Hip-

pocampus Module (HM) and the Working Memory Module (WMM). Fig. 2.4

depicts the SAFEL model, illustrating how the three modules of the architecture

are interconnected.

Environmental stimuli detected by the robot (e.g., by means of sensors’ input

or direct user input) are categorised into aversive and neutral stimuli by the robot’s

controller and delivered to the AM and HM. The AM is responsible for detecting

threats by analysing the current values of aversive stimuli and associating them
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Figure 2.4: SAFEL model. Solid-border boxes represent areas of the brain whereas
dotted-border boxes represent cognitive functions of the brain. The model receives
neutral and aversive stimuli as input from the robot controller and outputs the
corresponding emotional response back to the robot controller.

to simultaneously occurring neutral stimuli. This learning process is induced by

means of a procedure analogous to the cued fear conditioning (Pavlov 1927).

In the classical fear conditioning, associative learning is induced by pairing a

neutral stimulus (i.e., a stimulus that initially elicits no specific response from the

individual) with an aversive stimulus (i.e., a stimulus that naturally elicits fear or

discomfort, such as pain, hunger, etc.). Eventually, the previously neutral stimulus

acquires emotional meaning and becomes able to elicit the state of fear by itself,

even in the absence of the aversive stimulus. When this happens, we say that the

neutral stimulus is now a conditioned stimulus, which elicits fear as a conditioned

emotional response.

In SAFEL’s model, the AM is also responsible for providing emotional feedback

to the HM, which in parallel generates complex contextual representations of the

sensed environmental stimuli. In the hippocampus, the amygdala’s emotional

feedback and the generated contextual information are associated.

Finally, pieces of contextual information and their emotional significance are

memorised in the WMM. Later, any previously experienced pattern of contextual

information will trigger the retrieval of that stored memory and its emotional

meaning. Consequently, if a particular situation preceded the occurrence of an

aversive stimulus in a past experience, the WMM will retrieve the same state

of fear triggered by that situation in the past, warning the individual that an

undesirable situation is likely to happen in the near future.

SAFEL’s AM is based on a modified artificial neural network (ANN) proposed
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by Rizzi Raymundo and Johnson (2014), which allows robots to associate environ-

mental stimuli at runtime based on the Pavlovian classical conditioning procedure

Pavlov (1927). In the AM, this modified ANN is used to associate neutral and aver-

sive stimuli at runtime. The ANN is pre-trained to generate a high output value

whenever any aversive input is also high, and a low output otherwise, regardless

of the value of neutral inputs. Associative learning takes place by autonomously

adjusting the first-layer weights of the ANN according to the coincidence of input

values. In other words, the association takes place whenever a strong neutral stim-

ulus input and a strong aversive stimulus input co-occur. Eventually, the neutral

stimulus is turned into a conditioned stimulus, becoming able to trigger by itself

the same ANN output that the aversive stimulus would, even in its absence. The

output of the ANN is said to be the adrenaline signal, which represents the current

fear level of the system.

The HM is based on a conceptualization of situation awareness for expert sys-

tems formulated by Dey (2001). It is responsible for collecting, understanding

and managing the states of the robot over time. To accomplish that, we have

modelled and implemented the HM using SCENE (Pereira, Costa and Almeida

2013; Rizzi Raymundo et al. 2014), which is a powerful situation management

platform that extends the JBoss Drools rule engine and its CEP (Complex Event

Processing) platform (Bali 2013).

The HM receives two inputs: events, which are sets of environmental stim-

uli at a given point in time, and the adrenaline signal relayed by the AM. This

module is responsible for assembling these events into pieces of information known

as situations, which depict the robot’s state-of-affairs during a particular period

of time. Situations are later categorised in relation to their emotional meaning

according to the subsequent emotional feedback from the amygdala. Situations

preceding high adrenaline signals are categorised as aversive situations, and safe

situations otherwise. Ongoing situations are left uncategorised and are said to be

neutral situations because their true emotional meaning can only be determined

sometime after their conclusion.

Finally, the WMM is the module of SAFEL where the association between con-

text and “fear” takes place. In the WMM, the temporal patterns of situations are

memorised and associated with their respective labels (safe or aversive). Here, two

processes take place. First, a feature extraction is performed in order to generate

compacted versions of situational information containing only the most relevant

characteristics of the situations’ temporal patterns. These compacted situations

are then delivered to a binary classification tree for learning and prediction.

The tree associates the emotional meaning of a situation with its temporal
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pattern. Then, whenever an emotionally uncategorised situation arrives, the tree

attempts to predict its emotional meaning by comparing the temporal properties

of this situation and of those previously learned. If the tree finds a match for

that situation pattern, then it returns the emotional category linked to that pat-

tern, which will be either safe or aversive. Ultimately, SAFEL’s final output is

the emotional category retrieved by the classification tree and indicates whether

something aversive is likely to happen in the near future.

SAFEL is designed to meet all the requirements discussed in Section 1.3. It

performs flexible associations between aversive and neutral stimuli at execution

time while handling the temporal and contextual information contained in the

robot’s environment. The processes described above for the AM, HM and WMM

are discussed in detail in Chapter 3, Chapter 4 and Chapter 5 respectively. Each

module of SAFEL is addressed in a dedicated chapter that discusses the biologi-

cal inspiration, underlying technology, design and preliminary experiments (when

applicable) of the respective module of SAFEL.



Chapter 3

Amygdala Module

The amygdala comprises two almond-shaped sets of neurons located deep in the

medial temporal lobe of the brain (Fig. 3.1). Considerable evidence points the

amygdala as the main brain region involved in fear learning and memory (LeDoux

2003, 1999; Phillips and LeDoux 1992; Herry and Johansen 2014).

Figure 3.1: Amygdala region in the brain.

This chapter explores the biological background behind cued fear conditioning

in the amygdala and proposes a computational model for simulating it, which

represents the Amygdala Module (AM) of SAFEL. This chapter also partially

contributes to answering the three research questions formulated in Section 1.4

by:

1. addressing the first two requirements of a situation-aware intelligence (Sec-

tion 1.3.1) in combination with all the requirements of an emotional intelli-

gence (Section 1.3.2);

2. presenting the design and implementation of a modified ANN aimed at pro-

viding online associative learning, which is the first approach of a hybrid

model consisting of three distinct approaches; and

43
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3. discussing experiments performed with simulated robots that demonstrate

the successful use of the AM of SAFEL in a practical robotics application.

3.1 Biological Background

This section introduces the biological background that inspired the modelling and

implementation of the AM of SAFEL. We start in Section 3.1.1 with one of the

most simple forms of associative learning, known as classical conditioning. Sec-

tion 3.1.2 explains how classical conditioning can be unified with fear learning to

generate classical fear conditioning. Finally, Section 3.1.3 presents the brain re-

gions and mechanisms behind the phenomenon of classical fear conditioning that

have inspired the design of the AM.

3.1.1 Classical Conditioning

Natural environments change often, which makes adaptation an essential skill for

the survival of most organisms. For that reason, most animals are equipped with a

range of biological systems that facilitate their adaptation to different situations,

among which stands out the ability to learn.

Classical conditioning, also known as Pavlovian conditioning, is one of the most

basic forms of learning and involves the association of a behavioural response with

an event that normally does not trigger that response. This phenomenon, first

documented by Pavlov (1927), is recurrent among humans and other animals.

In the 1900’s, the Russian physiologist Ivan Pavlov was studying the diges-

tion of dogs by observing the salivation processes in dogs when being fed. While

performing experiments with a dog, Pavlov observed that the dog would salivate

whenever his laboratory assistant, who used to feed the dog, entered the room.

The presence of the assistant would trigger the dog’s salivation even when he was

not holding any food. Pavlov suspected that the dog had associated the idea of

food with his assistant’s presence. As a consequence of this association, the assis-

tance’s presence came to induce in the dog the same behavioural response triggered

by the presence of food: salivation.

According to Pavlov, some reflexes are ‘hard-wired’ and, therefore, do not need

to be learned. For example, dogs do not need to learn to salivate when they smell

food, because they are born with this behaviour. This kind of reflex, which is

natural and automatic, is called unconditioned response (UR). The stimulus that

triggers an unconditioned response is called unconditioned stimulus (US). In the

example of Pavlov’s dog, the smell of food is an US that triggers salivation as an



CHAPTER 3. AMYGDALA MODULE 45

UR.

After such unexpected observation, Pavlov decided to start a monitored exper-

iment with his dog. First, he measured the dog’s salivation whenever he presented

a bowl of food and whenever he rang a bell. Salivation was significantly increased

with the presentation of food, but not with the ringing of a bell. In this case, the

ringing of a bell is said to be an neutral stimulus (NS) in regards to the salivation

response because it does not naturally trigger salivation.

Next, Pavlov repeatedly paired the neutral and unconditioned stimuli by con-

sistently presenting these two stimuli simultaneously to the dog. After repeatedly

pairing the NS with the US (bell ringing and food smell, respectively), Pavlov rang

the bell without presenting food. The salivation response meaningfully increased

this time, even in the absence of food. Pavlov concluded that the repeated NS-

US pairing worked as a conditioning procedure, inducing the dog to learn a new

stimulus-response relationship, which is the salivation in response to the ringing

of a bell.

A neutral stimulus that comes to trigger a response after being associated with

an US is called conditioned stimulus (CS). The respective response, when triggered

by the CS, is called a conditioned response (CR). After association with the smell of

food (which is an US), the ringing of a bell becomes a CS, which triggers salivation

as a CR.

Unlike URs, a CR can be extinguished if the respective US is persistently

presented in the absence of the CS and vice-versa. For example, the dog will

diminish its salivation response to the bell if food is repeatedly presented on the

absence of the bell’s sound and vice-versa. For that reason, CRs are considered to

be unstable. On the other hand, URs are said to be stable, because they are native

and cannot be extinguished, regardless the circumstances in which the respective

US is induced.

3.1.2 Fear Learning and Conditioning

Conditioning procedures like the one described in Section 3.1.1, which rely on the

association with positive reinforcing stimuli, are also known as appetitive condi-

tioning. The positive reinforcing stimulus is said to be the appetitive stimulus (or

appetitive US), which in the example of Pavlov’s dog is food. Other examples of

appetitive US are water, warmth, breeding, etc. A natural behaviour for animals

conditioned with an appetitive stimulus, such as food, is to often seek for the CS

that signals the availability of that appetitive US (Andreatta and Pauli 2015).

Similarly, any conditioning procedure that relies on an aversive reinforcing
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stimulus is said to be an aversive conditioning. In aversive conditioning, an animal

associates the feeling of fear with an NS after it is repeatedly paired with an

aversive US. An aversive unconditioned stimulus is any stimulus that naturally

elicits fear or anxiety in the animal. In other words, the animal is born with the

knowledge that such stimulus is aversive. Some examples of aversive US are pain,

hunger, sensory impairment (such as losing visibility in dark places), aggressive

facial expression of other animals, etc. A natural behaviour for animals conditioned

with an aversive stimulus, such as pain, is to avoid contact with the CS that signals

the presence of the aversive US (Andreatta and Pauli 2015).

By pairing an NS and an aversive US in a process similar to that of classical

conditioning, the NS can acquire emotional value and become able to trigger fear

reactions by itself, even in the absence of the aversive US. Since the NS did not

trigger fear reactions before, we say that the animal has learned to fear it through

a fear conditioning procedure. As a consequence, the NS becomes a (aversive) CS.

The classical foot-shock experiment performed with rats and mice demonstrates

this phenomenon (Phillips and LeDoux 1992). In the experiment, a rat is placed

into an apparatus and receives auditory cues (the NS) paired with a mild electrical

foot shock (the US). The shock naturally elicits fear in the rat, which freezes in

response (the UR). After repeating this procedure a few times, the rat associates

the NS with the US and starts to freeze in response to the auditory cue even in

the absence of an electrical shock. At this point, the auditory cue has become

a CS. The freezing reaction in response to the CS is said to be either a CR or a

conditioned emotional response (CER). Fear learning is called as cued fear learning

when it induces association of a CS that is a discrete stimulus, such as a tone, with

an aversive US.

3.1.3 Brain Mechanisms of Fear

The famous Hebbian Theory (Hebb 1949), also know as Hebbian Rule, postulates

that:

When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A’s efficiency, as one of the cells

firing B, is increased.

In other words, according to Hebb (1949), associative learning at neural level

involves the simultaneous electrical stimulation of two interconnected neurons.

This theory has been demonstrated by numerous studies (Stuchlik 2014; Bliss and

Lømo 1973; Bliss and Collingridge 1993) and is believed to be carried out by
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a phenomenon known as long-term potentiation (LTP) (LeDoux 1995; Stuchlik

2014), which strengths the communication between two neurons and can last for

hours, weeks or even longer (Cooke and Bliss 2006).

Neural communication takes place at the synapse, which is the structure that

composes the junction between two neurons. Signals are transmitted between neu-

rons by means of chemical substances called neurotransmitters, which are released

in the synapse by one neuron’s axon and forwarded to the dendrites of another

(the target) neuron. In the membrane of the target neuron’s dendrite, neurotrans-

mitters are bound to specific receptors, leading to either excitation or inhibition of

the target neuron, completing the neural messaging cycle. The LTP phenomenon

consists in enhancing the reception or the release of neurotransmitters (Kolb and

Whishaw 2004).

There are different types of LTP, among which NMDAR-dependent LTP is the

most extensively studied (Malenka and Bear 2004; Martin, Grimwood and Morris

2000). NMDAR is a receptor in the membrane of the target neuron that acts as

a detector of neural activity coincidence. It is usually blocked by a magnesium

ion, which only strong electrical stimulation is able to remove (Fig. 3.2a). For this

reason, weak stimulation is able to activate AMPA receptors only. Nonetheless,

weak electrical stimulation becomes able to activate the NMDA receptor after

the magnesium ion is removed by a strong electrical stimulation (Fig. 3.2b). The

activation of NMDAR allows Ca2+ influx in the target neuron, which in turn

increases the function or number of AMPA receptors in the membrane of the target

neuron, enhancing the responsiveness of that neuron to weak electrical stimulation

(Fig. 3.2c).

LTP is not the only process that affects synapses’ efficiency. Long-term depres-

sion (LTD) is a process similar to LTP, but instead of strengthening, it weakens

synapses’ ability to transmit signals between neurons. Both LTP and LTD are

induced by influx of Ca2+ in the target neuron. The factor that determines wheter

LTP or LTD will occur is related to the concentration and duration of Ca2+ influx

in the target neuron. High and brief concentrations of Ca2+ induce LTP, whereas

prolonged and moderate concentrations of Ca2+ induce LTD (Yang, Tang and

Zucker 1999).

Synapses’ ability to change their strength in signal transmission according to

neural activity level, called as synaptic plasticity or Hebbian plasticity, is known

to play an important role in classical conditioning (Roberts and Glanzman 2003).

LTP has been demonstrated to occur in the amygdala regions and is believed to

underlie fear conditioning mechanisms mediated by the amygdala (LeDoux 1995;

Barad, Gean and Lutz 2006). In addition, the NMDAR mechanism is considered
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(a) Weak electrical stim-
ulation is not able to re-
move the magnesium ion
from NMDA receptor and,
thus, activate only AMPA
receptors.

(b) A strong electrical
stimulation can remove
the magnesium ion from
the NMDA receptor.

(c) Now glutamate re-
leased by weak electrical
stimulation can activate
the NMDAR, which allows
the influx of Ca2+ , in-
creasing the number and
function of AMPA recep-
tors.

Figure 3.2: LTP process in the synapse (Kolb and Whishaw 2004).

by researchers as the ‘neural instantiation’ of the Hebbian Theory (LeDoux 1995).

For a simplified example of this relation, consider the foot-shock experiment

discussed in Section 3.1.2. A weak electrical stimulus could come from a condi-

tioned stimulus (CS), such as the auditory cue for the rat. On the other hand,

a strong electrical stimulation could come from an aversive unconditioned stimu-

lus (US), such as the foot shock. The target neuron, in turn, could be a neuron

that meaningfully contributes to triggering fear responses, such as freezing. Then,

the pairing of weak (from the auditory cue) and strong (from the shock) electrical

stimuli generates LTP, which makes the target neuron more responsive to the weak

stimulus. In the future, the weak stimulus will be able to activate the target neu-

ron by itself, allowing the auditory cue to trigger freezing responses. LTD would

occur if the CS and the US are repeatedly presented in the absence of each other,

leading the rat to stop responding to the auditory cue.

3.2 Underlying Technology

This section presents the algorithm used to simulate classical fear conditioning in

an artificial agent. Section 3.2.1 briefly introduces the artificial neural network

(ANN) algorithm while Section 3.2.2 discusses at a higher level of abstraction

our approach for implementing the LTP and LTD phenomena in an ANN. This

approach is formally defined later in Section 3.3.
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3.2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are collections of units known as neurons or

nodes (Callan 1999), which are interconnected according to a pre-specified archi-

tecture that determines the network’s style (for example, in this work we use the

classical feedforward neural network). Each neuron combines a number of input

signals and calculates an output value, which is sent to other neurons by means of

weighted connections.

ANNs are divided into layers, each containing a number of neurons. An ANN

receives information from the environment through its first layer, known as the

input layer, and communicates back to the environment through its last layer,

known as the output layer. All other layers are called hidden layers. Fig. 3.3

shows an example of ANN.

Input 1

Input 2

Input 3

Input 4

Output

Hidden

layer

Input

layer

Output

layer

Figure 3.3: Example of a feedforward artificial neural network.

Each neuron, except by those in the input layer, receives a series of input values

from the previous layer, which are summed according to equation Eq. 3.1. The

input to a neuron i is, therefore, the result of this summation given by neti in

Eq. 3.1, called net input.

neti = bi +
∑
j

xjwij (3.1)

where xj is the output of neuron j from the previous layer, wij is the weight of the

connection between neurons j and i, and bi is the bias of neuron i. The net input is

then processed by an activation function that provides the neuron’s output, which

in our case is the sigmoid function (equation Eq. 3.2).

f(neti) =
1

1 + e−neti
(3.2)

Connections’ weights are initially random, and thus need to be specifically

adjusted to the ANN’s task. This adjustment is performed in a sequence of gradual
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steps by a training algorithm, such as the backpropagation algorithm. After the

training phase, the ANN is expected to output the correct response with small

margin of error given a set of input values.

3.2.2 Artificial Synaptic Plasticity

The Amygdala Module (AM) is based on the concepts of classical fear condition-

ing, introduced in Section 3.1, which in this work we simulate using a modified

ANN. As discussed in Section 3.1.3, the neural mechanism of classical conditioning

consists in strengthening the signalling efficiency of synapses. On the other hand,

synapses are represented by connections between neurons in the ANN, while their

signalling strength is represented by the weights of these connections. Therefore,

the synaptic plasticity phenomenon can be simulated in a simplified manner by

gradually changing the weights of the ANN according to their activity coincidence.

The AM is based on a modification to the classical ANN to generate an artificial

synaptic plasticity (ASP) mechanism. This ASP mechanism, proposed by us in a

previous work (Rizzi Raymundo and Johnson 2014), induces associative learning

by adjusting the weights of the first-layer neurons of the ANN. The ANN’s inputs,

outputs and parameters are defined and the ANN is trained as normal, according to

the task it is designed to perform. The input set included in the pre-training phase

is said to be the set of unconditioned stimuli (US’s), and the output of the ANN

at this point is said to be the unconditioned response (UR). After the pre-training

phase, new input neurons representing the neutral stimuli (NS’s) are added to the

ANN in an ad-hoc manner with zeroed first-layer weights. Because their weights

are zeroed, NS inputs are unable to influence the ANN’s output. After a procedure

similar to classical conditioning, in which the US and the NS are jointly presented

to the robot a few times, the first-layer weights of NS input neurons are gradually

adjusted. Eventually, NS input neurons become able to influence the output of

the ANN in the same way US input neurons would, at which point we say the NS

inputs have been turned into conditioned stimulus (CS) inputs, and the output of

the ANN is a conditioned response (CR). The design and implementation of the

ASP mechanism described above is formally defined in Section 3.3.

For instance, in one of our experiments, a simulated robot is equipped with

five touch sensors and 16 distance sensors around its body, as well as two wheels

for locomotion. The ANN controlling the robot’s movements is initially trained to

make turns whenever the robot’s touch sensors detect a collision. At this point, the

ANN has five inputs, whose values come from the five touch sensors and indicate

collisions detected around the robot’s body; and two outputs, which provide the
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speeds for the left and right wheels of the robot. After the training phase, 16

new inputs are added to the ANN (with zeroed weights), depicting obstacles’

distances detected by the 16 distance sensors of the robot. Therefore, inputs

coming from the five touch sensors represent the US’s, while inputs coming from the

16 distance sensors represent the CS’s. After a few bumps during environmental

exploration, the robot associated the inputs of the distance sensors with the inputs

from the touch sensors and became able to make the turns before colliding, using

the information from the distance sensors only, which were learned at runtime.

This experiment and its results are discussed in more details in Section 3.4.2 and

have also been published in Rizzi Raymundo and Johnson (2014).

The ASP mechanism, as initially proposed by us in Rizzi Raymundo and John-

son (2014), induces general associative learning, such as the food-bell association

of Pavlov’s dog discussed in Section 3.1.1. In this thesis, we modify our ASP mech-

anism to induce specifically cued fear learning, such as the shock-tone association

discussed in Section 3.1.2. Other learning approaches using a similar mechanism

(usually referred to as Hebbian learning) have been previously proposed (Balkenius

and Morén 1998; Miller, Barnet and Grahame 1995; Timmis, Neal and Thorniley

2009). However, our approach (Rizzi Raymundo and Johnson 2014) provides a

number of additional features that better accommodate SAFEL’s design require-

ments and goals. In Section 3.5, these additional features are discussed in details

and compared with traditional Hebbian learning approaches.

3.3 Model

As discussed in Section 3.1, an aversive unconditioned stimulus (US) is any stimu-

lus that naturally elicits fear in the animal, such as pain, hunger and loss of senses.

Animals do not need to learn to fear aversive US’s because they are already born

with this behaviour. This is analogous for the Amygdala Module (AM) of SAFEL,

which should be pre-trained to recognise aversive US’s and output an appropriate

fear response.

Fig. 3.4 depicts the initialization process of the ANN in the AM. Initially,

the ANN is trained to output an adrenaline signal as the unconditioned response

(UR), which indicates the current level of fear of the robot. For the experiments

discussed in Section 3.4 and Chapter 6, we have extended the standard MAT-

LAB (MATLAB 2014) implementation of the feedforward ANN, which uses the

Levenberg-Marquardt algorithm (Moré 1978) to train the ANN.

During the training phase, the input set of the ANN includes aversive US’s

only (Fig. 3.4a), which may be any stimuli considered undesirable to the robot by
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(a) The ANN is trained with aversive
unconditioned stimuli only to output
an adrenaline signal according to the
averseness level of each input stimuli.
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(b) After the training phase, neutral
stimuli are added to the input set of the
ANN, with zeroed first-layer weights.

Figure 3.4: Initialization of the artificial neural network of the Amygdala Module.

its designer (e.g., collision, fall, low visibility, low battery), and should take into

consideration the specific task that the robot has to perform. The ANN should

be trained to output a high adrenaline signal whenever one or more aversive US

inputs have high values, where each input should be normalised in the interval [0,

1].

After the training phase, any other stimuli that are not considered aversive by

the robot’s designer are added to the ANN input set with zeroed first-layer weights

(Fig. 3.4b). These are the neutral stimuli (NS’s). At runtime, while the robot

explores the environment, the ANN of the AM uses the artificial synaptic plasticity

(ASP) mechanism proposed by us in Rizzi Raymundo and Johnson (2014) to create

associations between any persistently co-occurring pairs of NS and aversive US.

These NS’s are eventually transformed into aversive CS’s, thus becoming able to

independently generate high adrenaline signal outputs. The mechanism through

which this associative learning takes place is formally described next.

The inputs of the ANN are divided into two groups: the aversive US group,

depicted by the vector ~u, of size p; and the CS group, depicted by the vector ~c, of

size q. Together, these two stimuli vectors compose the input of the ANN, which

is a vector ~s of size p+ q representing the set of all environmental stimuli that the

robot is able to sense. Therefore:

~s = [u1, u2, ..., up, c1, c2, ..., cq] , (3.3)

where ∀si ∈ ~s , si ∈ [0, 1] , and

neti = bi +

p∑
k=1

ukwik +

q∑
j=1

cjwij . (3.4)
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A particular CS cannot be an US at the same time and vice-versa. Therefore

~u ∪ ~c = ~s and ~u ∩ ~c = ∅. From now on in this section, we reserve the variables

k ∈ {1, 2, ..., p} and j ∈ {1, 2, ..., q} for indexing US and CS elements, respectively.

The ANN is expected to be pre-trained so that the higher the value of an US

uk, the stronger (or more aversive) it is. The fear learning mechanism of the AM

consists of gradually changing the first-layer weights of neutral stimuli so that

they become able to activate the second-layer neurons with the same pattern that

unconditioned stimuli would. Therefore, after each query of the neural network,

all first-layer weights related to CS inputs should be updated by a delta. Note

that weights wik, which are related to US inputs, should not be changed. The new

weight values are given by:

wij = wij + ∆wij . (3.5)

The value of ∆wij, which represents the synaptic adjustment, should consider

not only the amount by which a given pattern is associated (determined by long-

term potentiation (LTP)) but also the amount by which the same pattern is extin-

guished/dissociated (determined by long-term depression (LTD)). The variables

LTPij and LTDij in Eq. 3.6 control the level of association of stimulus cj by

strengthening (if LTPij > LTDij) or weakening (if LTDij > LTPij) the weight

wij of neuron cj.

∆wij = αj(LTPij − LTDij) , (3.6)

where αj ∈ [0, 1] is the rate at which the neural network learns to associate/dis-

sociate stimulus cj. Hence, αj = 0 means that no association will occur, and the

closer αj is to 1 the faster is the system’s associative learning. αj is a user-defined

parameter of SAFEL called as the association rate (AR) of stimulus cj.

The value of wij cannot be increased/decreased indefinitely because the ANN

outcome could be much higher or lower than the outcome produced by aversive

US’s in the same situation, diverging from the concept of cued fear conditioning.

In order to avoid that, wij must be kept in a range [w′ij, w
′′
ij], where w′ij is the initial

value of wij and w′′ij is the desired maximum value of wij after the conditioning

procedure. Note that, in our case, wij = 0 because all NS inputs are initialized

with zeroed first-layer weights.

The closer wij is from w′′ij, the closer it is from a complete association and the

more capable it is to influence the adrenaline output of the ANN. Analogously, the

closer wij is from w′ij = 0, the closer it is from a complete dissociation. From this
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reasoning it follows that:

LTPij =
(
w′′ij − wij

)
×∆aj , (3.7)

LTDij =
(
wij − w′ij

)
×∆dj

= wij ×∆dj . (3.8)

The variables ∆aj and ∆dj, both in the interval [0,1], dictate the degree of

synaptic activity coincidence between cj and ~u, and how it affects the pace of

association and dissociation, respectively. We will return to these variables later

on.

We must also consider that a given CS cj may have a stronger association with

a particular aversive US uk than to the others. The level of association between

cj and uk is called as the sensitivity of stimulus cj to stimulus uk. The mapping

of sensitivities from ~c to ~u is given by the matrix Θ, of size q × p. The element

θjk ∈ [0, 1] of Θ is the sensitivity of stimulus cj to stimulus uk, where 0 means no

association at all and the closer θjk is to 1 the stronger the association between cj

and uk. The sensitivity matrix Θ is an optional user-defined parameter of SAFEL

and, if correctly calibrated, can prevent the robot from learning ‘superstitions’,

i.e., patterns that are no more than random coincidences. The relevance of the

sensitivity matrix, as well as how it should be defined, is discussed with a practical

example in Section 3.4.2.

According to our definition, the value of w′′ij should be defined so that, after a

complete association, cj can activate neuron i of the second layer with the same

pattern that vector ~u would, which implies Eq. 3.9:

cjmax w
′′
ij =

∑
k

u′k wik , (3.9)

where the constants cjmin
and cjmax are, respectively, the minimum and maximum

values that cj can assume. The problem with this approach is that all CS’s are

considered to assume their minimum values in normal conditions, which should in-

crease whenever something uncommon or undesirable occurs, analogous to aversive

stimulus. However, unlike aversive US’s (whose behaviour is known beforehand by

the robot’s designer and learned by the ANN at the training phase), the behaviour

of an NS or CS is only revealed at runtime and, therefore, is unpredictable before

that. In the real world, there are many examples of NS that assume their average

or highest values in neutral situations. For instance, big cities commonly suffer

from high levels of noise pollution. Therefore, input values coming from a sound

sensor would be, in average, high for robots living in big cities. This does not
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imply that the robot is constantly in danger.

To deal with this limitation, we have adapted the mechanism proposed in

Rizzi Raymundo and Johnson (2014) to consider the average values of an NS,

instead its minimum and maximum values only. Therefore, Eq. 3.9 becomes

c′j w
′′
ij =

∑
k

u′k wik

w′′ij =

∑
k u
′
k wik

c′j
,

(3.10)

where c′j is the farthest value that cj can assume from its median value c̃j. Con-

sidering that cjmin
= 0 and cjmax = 1 (see Eq. 3.3), then c′j is defined by Eq. 3.11:

c′j = max((cjmax − c̃j), (c̃j − cjmin
))

= max((1− c̃j), c̃j) ,
(3.11)

where c̃j is the median of the latest pre-defined number of input values for cj.

We use the latest pre-defined number of input values (instead of all the previ-

ously occurring input values) to allow for environmental adaptation. Robots may

switch environments, or their environment may be altered in some way. The ac-

tions of a robot should consider mainly its most recent environmental conditions.

For example, a robot living in a big city with high levels of noise pollution may be

moved to a peaceful countryside place. In this new environment, loud noises have

a different meaning and may be crucial to detect threats. Therefore, the robot’s

basis for comparison should be adjusted. The old sound level detections are not

as relevant as the most recently detected sound levels when identifying imminent

threats and, thus, should be gradually forgotten over time.

The strength τ and weaknesses ϕ of stimulus cj are given, respectively, by

Eq. 3.12 and Eq. 3.13:

τ(cj) =

∣∣∣∣cj − c̃jc′j

∣∣∣∣ and (3.12)

ϕ(cj) =
c′j − |cj − c̃j|

c′j
. (3.13)

In other words, the higher the value of τ(cj) the stronger the stimulus cj, and the

higher the value of ϕ(cj), the weaker the stimulus cj.

In biological synaptic plasticity, an association between a pair of CS and US

occur when their signals are simultaneously strong. This is analogous for the

ANN of the AM. Therefore, the higher the values of τ(cj) and uk, the higher
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the association between cj and uk (i.e., the higher the association factor ∆aj).

However, cj may be associated with more than one US, at different sensitivity

values. Thereafter, it is more accurate to state that ∆aj is proportional to the

average strength of ~u weighted by the respective sensitivities. This implies Eq. 3.14:

∆aj = τ(cj)×
∑

k θjkuk∑
k θjk

. (3.14)

Analogously, the dissociation (i.e., the extinction of an association) of a CS cj

with an US uk should occur when these stimuli are no longer paired. Therefore, the

higher the value of ϕ(cj) and the higher the mean of ~u weighted by the respective

sensitivities, the higher the dissociation between cj and ~u (i.e., the higher the

dissociation factor ∆dj), which leads to Eq. 3.15:

∆dj = ϕ(cj)×
∑

k θjkuk∑
k θjk

. (3.15)

According to classical conditioning, the stronger the CS and the weaker the US

signals, the higher the dissociation between them as well. However, the dissociation

factor of the AM does not take this into consideration, as it is not of our interest

that the robot forgets the learned association when the US becomes absent. This

is because, as the robot becomes better in predicting an aversive US and perhaps

acting towards avoiding it, the aversive US will become increasingly absent as

a consequence of the robot’s preventive actions. By forgetting the learned fear

associations because of its own preventive actions, the robot would likely enter

into an endless learning and forgetting cycle. For this reason, SAFEL’s AM only

promotes dissociation when the US is present in the absence of the associated CS.

By replacing Eq. 3.7, Eq. 3.8, Eq. 3.14 and Eq. 3.15 in Eq. 3.6 and simplify-

ing, we find Eq. 3.16, which provides the synaptic adjustment ∆wij necessary to

generate the associative learning as discussed in Eq. 3.5.

∆wij = αj ×
∑

k θjkuk∑
k θjk

×
[
τ(cj)

(
w′′ij − wij

)
− ϕ(cj)wij

]
, (3.16)

where w′′ij is given by Eq. 3.10. If a particular pair of associated stimuli, say cj and

uk, have high input values at the same time, a net-input extrapolation may occur.

This is because after being associated with uk, cj is able to mimic the effect of uk in

the ANN. Therefore, if both inputs are high, the second-layer neurons will receive

a total input twice as high as they would if association had not occurred. For this

reason, the net input values of second-layer neurons must be restricted according

to Eq. 3.17, where (ukwik)min and (ukwik)max are, respectively, the minimum and
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maximum values that ukwik can assume.

bi +
∑
k

(ukwik)min < neti < bi +
∑
k

(ukwik)max . (3.17)

3.4 Preliminary Tests

As mentioned in Section 3.2.2, the artificial synaptic plasticity (ASP) mechanism

introduced in Section 3.3 was initially meant for general purpose associative learn-

ing and conditioning. Modifications to this mechanism for providing specifically

fear learning were performed later by us in Rizzi, Johnson and Vargas (2018). The

preliminary experiments presented next evaluate the original ASP mechanism, as

proposed by us in Rizzi Raymundo and Johnson (2014). The modified mechanism

(Rizzi, Johnson and Vargas 2018) is evaluated in the AM together with the rest

of SAFEL’s modules in Chapter 6.

We have used Webots (Michel 2004) for performing the experiments discussed

in this section. Webots is a robot-simulator software able to reproduce a great

variety of robots, devices and environments. Through Webots, we have created and

used a customized version of the simulated Pioneer 2 robot (ActivMedia Robotics

1999). Webots’ original simulation of Pioneer 2 includes a two-wheel differential-

drive mobile robot, equipped with 16 distance sensors (Fig. 3.5a). However, our

experiments require that the robot is equipped with touch sensors as well. For this

reason, we have added five touch sensors to the robot, designed as spheres in the

front, sides and back of the robot’s body (Fig. 3.5b).

(a) Webots’ original simulation of the
Pionner 2 robot.

(b) Customized addition of 5 touch sen-
sors in the Pioneer 2 robot.

Figure 3.5: Simulations of the Pioneer 2 robot in the Webots simulator software.
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We have performed two sets of experiments1. The first, discussed in Sec-

tion 3.4.1, has been based on Pavlov’s dog example, in which the conditioning

process is very simple and requires an one-to-one stimulus association (e.g., asso-

ciation of a sound to the smell of food). The second set of experiments, discussed

in Section 3.4.2, consists of more complex associative learning, where conditioning

involves the association of multiple stimuli.

3.4.1 Experiment I – Single CS Association

The simplicity of Pavlov’s dog experiment allowed him to easily observe the be-

havioural changes derived from both association and dissociation processes. By

limiting the number and complexity of stimulus associations (food smell and bell

sound), Pavlov considerably facilitated the control and observation of the experi-

ment progression. In other words, to generate associative or dissociative behaviour,

Pavlov needed to change only a few variables in the experiment, such as adding

or removing the presence of a particular stimulus. In order to clearly observe the

effects of associative and dissociative learning when using the ASP mechanism,

we have conducted an experiment similar to that performed by Pavlov, where the

robot associates collisions with a direct human feedback.

Experiment Setup

In this experiment, the wheels of the robot from Fig. 3.5b are controlled by an

ANN. We have trained this ANN to turn the robot away from obstacles based on

information coming from the robot’s five touch sensors. The robot also receives a

direct feedback from a human supervisor, which here we will call as the ‘external

feedback’ input and is given by the pressing of a numeric key.

For our example, the robot’s touch sensors represent the set of unconditioned

stimuli (US’s) (analogous to the dog’s sense of smell in Pavlov’s experiment),

while the external feedback represent a conditioned stimulus (CS) (analogous to

the ringing of a bell in Pavlov’s experiment). The external feedback initially has

no influence in the robot’s decision-making process. We expect that the robot will

associate the US (touch sensor) and the CS (external feedback) stimuli after a

conditioning-like procedure and learn to reduce speed in response to the external

feedback, even if no collisions are detected by the touch sensors.

Fig. 3.6a depicts the ANN that controls the movements of the robot. The first

five inputs of the ANN (u1 to u5), representing the US’s, come from the robot’s

touch sensors (Fig. 3.6b) and accept only binary values, where one means that a

1Videos of the experiments in Webots are available at http://carolrizzi.github.io/ASP.

http://carolrizzi.github.io/ASP
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c1ACS

Left

Right

(a) Neural network that controls the robot. In-
puts are divided into unconditioned (~u) and con-
ditioned (~c) stimuli. Inputs belonging to vector
~u come from touch sensors, while input c1 comes
from the keyboard.

(b) Aerial view of robot’s sen-
sors disposition. Blue spheres
represent the contact area of
touch sensors.

Figure 3.6: Robot’s controller setup for the single CS association experiment.

collision has been detected and zero means the opposite. Input c1, representing the

CS (which is initially an NS), comes from a numeric keyboard and may assume any

value between one and nine (inclusive). The ANN’s outputs provide the speeds

for the robot’s left and right wheels, respectively, in radians per second.

Results

Each test execution lasted 5 minutes and has been divided according to the phases

and procedures depicted in Table 3.1. The sensitivity matrix has been configured

so that the sensitivity of the external feedback stimulus is equally divided among

the five touch sensors (i.e., 0.2 for each CS-US pair). This experiment is a good

example of an environmental setup and task that do not require the rigorous

adjustment of the sensitivity matrix. We discuss an example where the careful

adjustment of CS-US sensitivity is needed in Section 3.4.2.

Fig. 3.7 shows the variation of the robot’s speed over time for the first, third

and fifth minutes of the experiment (before association, after association and af-

ter dissociation phases, respectively). Pink solid areas represent moments when

the external feedback was presented to the robot, while hatched areas indicate

moments when at least one of the robot’s touch sensors detected collision.

Fig. 3.7a (before association) clearly shows that the robot reacts only to the

sensors’ indication of collision, reducing speed as needed to make a turn. As

expected, the robot never reduces speed in response to the external feedback during

this first phase.

Fig. 3.7b depicts the robot’s speed over time after the association procedure. In
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Table 3.1: Phases and procedures of the robot’s conditioning in the single CS
association experiment. Each test execution takes five minutes and is divided into
five conditioning phases, each lasting one minute. Note that association rate (AR)
equals 0 is analogous to executing the traditional ANN without ASP.

Minute Phase Procedure

1 Before Association
AR is set to 0.0. The key is pressed for 3
seconds every 10 seconds.

2 During Association
AR is set to 0.1. The key is pressed whenever
a collision is detected.

3 After Association
The key is pressed for 3 seconds every 10 sec-
onds and whenever a collision is detected.

4 During Dissociation The key is never pressed.

5 After Dissociation
The key is pressed 3 seconds every 10 seconds
if no collision is detected.
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Figure 3.7: Robot’s speed (in radian per second) over time for three of the condi-
tioning phases: before association, after association and after dissociation. Pink
solid regions show the moments when the external feedback was presented to the
robot. Hatched regions indicate moments when one or more touch sensors detected
a collision.
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this phase, the robot reacts not only to collision, but also to the external feedback.

Note that the robot’s speed decreases in the beginning of all solid areas (when

the external feedback is presented), and increases again in the end of solid areas

(when the external feedback becomes absent), meaning that the robot slows down

during the whole period in which the external feedback is presented.

Finally, Fig. 3.7c depicts the phase after the dissociation process, when the

robot is expected to forget the learned association. Observe that the graphs from

Fig. 3.7c and Fig. 3.7a are similar in the sense that the robot responds only to the

detection of collision and ignores any external feedback. This is evidence that the

robot successfully forgot the learned association between collision and the external

feedback after the dissociation procedure took place.

Fig. 3.8 shows a comparison of the robot’s speed according to the intensity of

the external feedback, represented by the value of the numeric key activated by

the human supervisor, where the higher the key number the stronger the external

feedback. This graph takes into consideration the average speed of the robot at par-

ticular intensities of external feedback during the third minute of the experiment

execution (i.e., after the association conditioning procedure took place). Fig. 3.8

shows a substantial difference in the speed for each tested external feedback inten-

sity, which consistently decreases as the feedback intensity increases. This means

that the intensity of the conditioned stimulus (CS) influences the intensity of the

robot’s conditioned response (CR).
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Figure 3.8: Robot’s speed after the conditioning procedure, for each tested inten-
sity of external feedback, depicted by the value of the pressed numeric key. The
observed speeds are an average of the sum of the robot’s wheels speed when the
external feedback is presented.
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3.4.2 Experiment II – Multiple CS Association

The every-day learning and conditioning processes to which we are exposed dur-

ing our lives usually involve much more complex associations than that studied in

Pavlov’s classical experiment. The process of learning how to handle objects is an

example of a complex and natural conditioning, which is part of humans’ growth

process. For babies, the first attempts of catching an object are usually unsuc-

cessful. It is probable that they will knock it over several times before successfully

catching it. Each attempt provides the baby with vision and touch stimuli feed-

back. The repeated pairing of these stimuli while the baby continuously tries to

catch the object is an example of conditioning, which eventually allows him or

her to make an association between collision and proximity. After some attempts,

babies start to understand that the closer their hands are to an object, the more

likely they are to hit it. If the intention is to grab the object, then their hands

must stop close enough to wrap it, but far enough to avoid knocking it over. Even-

tually, the baby finds a composition of approximation and movement speed that

satisfactorily reaches the goal: grab the object.

Unlike the simpler conditioning procedure conducted with Pavlov’s dog, the

baby conditioning in this example depends on the association of a series of com-

plex stimuli, such as vision, movement speed and control of independent moving

body parts (e.g., fingers and arms). All these neutral stimuli, which later be-

come conditioned, must be associated with the feedback from the baby’s hands

touch. This results in a complex multi-stimulus association relationship, where the

observable conditioned response depends on the association of a series of stimuli.

Experiment Setup

In this experiment, we investigate the outcome of the ASP mechanism in a multi-

stimulus association scenario that is inspired by the setup of the experiments

carried out by Timmis, Neal and Thorniley (2009), discussed in Section 2.2.1. In

this experiment, the robot is equipped with both distance and touch sensors (as in

Fig. 3.5b), but is trained to avoid obstacles based on its touch sensors information

only. Environmental exploration will provide to the robot a natural conditioning

because it is likely that at least one distance sensor will measure high proximity

to an obstacle whenever a collision occurs. Therefore, no human direct feedback

or intervention is required in this experiment. The robot is expected to gradually

and autonomously associate collision with proximity during its operational cycle

and eventually start using information from its distance sensors to avoid obstacles

before touching them.
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(a) First scenario: open space. (b) Second scenario: corridor.

Figure 3.9: Aerial view of the robot’s initial positions in the multiple CS association
experiment.

To evaluate the robot’s behaviour under different levels of environment com-

plexity, we have executed the experiment in two scenarios, each with different

obstacle arrangements. In each scenario, the robot has been initialized in three

distinct positions/angles and evaluated for five association rates (ARs): 0, 0.001,

0.01, 0.1 and 1. AR = 0 is analogous to executing the traditional ANN without the

ASP mechanism. Fig. 3.9 depicts the robot’s initial positions in the two scenarios.

For this experiment, Webots has been configured to simulate measurement

noise for the robot’s 16 distance sensors. Noise errors are randomly generated

and may deviate a distance measurement in up to ±10% of its correct value.

We have executed each test 30 times to consider possible performance fluctuations

derived from sensor noise, where each test execution lasted five minutes. Therefore,

consider that all the results presented next (Fig. 3.12 and Fig. 3.13) shows the

average values among the 30 simulations executed for each of the scenarios depicted

in Fig. 3.9.

Fig. 3.10a depicts the architecture of the neural network that controls the

robot’s movements, whose inputs come from the sensors depicted in Fig. 3.10b.

The first five inputs, representing the set of US’s, come from the robot’s touch

sensors and assume only binary values, where one means that a collision has been

detected and zero means the opposite. The last 16 inputs, representing the set

of CS’s (which are initially neutral), come from the robot’s distance sensors and

assume integer values ranging from 0 to 1024, where the higher the input value

the closer the robot is to an obstacle. In our experiment, the robot’s maximum

detection range is 0.5 meters. Therefore, a distance-sensor measurement of zero

means that this sensor is more than 0.5 meters away from detectable obstacles,

while a measurement of 1024 means that it is touching an obstacle. The ANN’s
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(a) Artificial neural network that controls
the robot. Inputs are divided into uncon-
ditioned (u1 to u5) and conditioned (c1 to
c16) stimuli. Information of US inputs come
from touch sensors, while information of CS
inputs come from distance sensors.

(b) Aerial view of robot’s sen-
sors disposition. Red lines repre-
sent distance sensor rays and blue
spheres represent the contact area
of touch sensors.

Figure 3.10: Robot’s controller setup for the multiple CS association experiment.

outputs provide the speeds for the left and right wheels, respectively, in radians

per second.

By contrast to the experiment discussed in Section 3.4.1, this experiment re-

quires the careful calibration of the sensitivity matrix. We may intuitively induce

that sensors c1, c2 and c3 in Fig. 3.10b should be associated with sensor u1, because

they have similar disposition in relation to the robot’s body. Analogously, c14, c15

and c16 should be associated with u5; c4 and c5 should be associated with u2; and

so on. However, the knowledge of this additional stimuli relationship derived from

the sensors disposition is not yet known by the ANN and will be ignored during

environmental exploration if not provided in some way.

For instance, consider the example illustrated in Fig. 3.11. The left distance

sensors are very close to the wall at the same time that the frontal touch sensors are

active. As a consequence, the robot would associate with the frontal touch sensors

(u1 and u5) not only the frontal distance sensors (c1 to c3 and c14 to c16), but

also the left distance sensors (c4 to c6). Because of the incorrect association, the

robot would react as if it was frontally blocked whenever its left distance sensors

indicated high proximity, going backwards when it should actually turn to the

right.

As discussed in Section 3.3, the sensitivity matrix allows us to customize the

degree of association between each pair of CS and US, which in our experiment

are represented by the distance and touch sensors, respectively. The sensitivity
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Figure 3.11: Situation in which the non-calibration of the
sensitivity matrix would lead to wrong CS-US association.

matrix may be calibrated according to the developer’s judgement, depending on

the purpose of the associative learning, as well as the robot’s design, environment

and task. Here, we have based the sensitivity matrix on the sensors disposition,

so that distance sensors are associated with the nearest touch sensor.

Table 3.2 depicts the sensitivity matrix used in this experiment (for the sake of

readability, we omitted the value of zeroed cells). Some distance sensors, such as

c3, are close to more than one touch sensor and, therefore, have their sensitivity

values divided between two touch sensors (u1 and u2, in this case). Other distance

sensors, such as c6 and c11, are relatively far from all touch sensors, so they have

no sensitivity mapping.

Table 3.2: Sensitivity matrix for the collision-proximity experiment.

Touch
Sensors

Distance Sensors
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

u1 0.2 0.4 0.4 - - - - - - - - - - - - -
u2 - - 0.4 0.4 0.2 - - - - - - - - - - -
u3 - - - - - - 0.1 0.4 0.4 0.1 - - - - - -
u4 - - - - - - - - - - - 0.2 0.4 0.4 - -
u5 - - - - - - - - - - - - - 0.4 0.4 0.2

Results - Part I

We have opted for starting this experiment with a fairly simple environment, as

depicted in Fig. 3.9a, where the robot is unlikely to get trapped. By doing so, we

can make a transparent evaluation of how the ASP mechanism affects the robot
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Figure 3.12: Average results out of 30 simulation executions for each association
rate tested in the scenario of Fig. 3.9a. Error bars in Fig. (a) and Fig. (b) show
the standard deviation. Note that, in this case, error bars are hardly seen because
the standard deviation in minimal.

behaviour, without interference of unrelated factors in the results, such as physical

limitations of the robot.

The graph of Fig. 3.12a shows the collision counting for each tested association

rate (AR) and for each of the three initial positions (Fig. 3.9a). Observe that the

resulting number of collisions is highly similar among the different initial positions

of the robot for all the tested ARs, which indicates that the starting position of

the robot does not meaningfully influence the final outcome.

On the other hand, changing the AR drastically affects the incidence of col-

lisions. In comparison to AR = 0 (i.e., when the ASP mechanism is disabled),

the number of collisions has been reduced by about 50% when AR = 0.001, and

more than 90% when the AR is larger than 0.001. This is a clear evidence that



CHAPTER 3. AMYGDALA MODULE 67

the robot has created a successful association between distance and touch sensors

at runtime, leading to a meaningful reduction in the number of collisions during

environmental exploration.

The graph of Fig. 3.12b depicts the summed distance measurements for each

tested AR and for each initial position of the robot. This summation of distance

measurements takes into consideration all the distances between the robot and any

obstacle detected by the 16 distance sensors along complete simulation executions.

Fig. 3.12b clearly shows that the overall distance from obstacles increases as the

AR increases. This indicates that the larger the AR, the earlier the robot learns

to use the distance sensors to stay away from obstacles.

Finally, Fig. 3.12c shows the collision count over time for each AR tested in

simulations where the robot started from position 1. There is a clear difference in

collision incidence between graphs I, II, III and IV (ARs 0.0, 0.001, 0.01 and 0.1,

respectively). However, the difference between graphs IV and V is minimal. This is

because, for this particular environment, AR = 0.1 allows the robot to successfully

create an collision-distance association after just one conditioning step (i.e., one

collision). Therefore, increasing the AR above 0.1 would not considerably change

the robot’s behaviour or adaptive performance. This effect can also be observed

in Fig. 3.12a and Fig. 3.12b, where the difference in total collisions and obstacle

distance when AR = 0.1 and when AR = 1 is considerably small if compared with

the other tested values of AR.

Results - Part II

The second part of this experiment has been executed in the scenario of Fig. 3.9b,

which consists of a curved corridor that is relatively narrow for the robot to make

turns and has two dead ends. In this second scenario, we desire to observe the im-

provement of the robot’s adaptive behaviour under more complex object-avoidance

situations. Fig. 3.13a shows the collision counting for each initial position of the

robot and tested association rate (AR).

By contrast to the previous experiment, in this scenario the starting position

of the robot has yielded slightly different results. The number of collisions when

the robot started in position 3 is almost the same for AR = 0.0 and AR = 0.001,

which did not occur for the other initial positions. This is because, when AR =

0.001, the robot got trapped in a corner where it continued bumping until the end

of the simulation. This trapping situation of the robot can be observed on the

videos of the experiment2.

2Videos of the experiments in Webots are available at http://carolrizzi.github.io/ASP

http://carolrizzi.github.io/ASP
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(c) Count of detected collisions over time for robot starting in position 3.

Figure 3.13: Average results out of 30 simulation executions for each association
rate tested in the scenario of Fig. 3.9b. Error bars in Fig. (a) and Fig. (b) show
the standard deviation.

The trapping occurred due to limitations of the robot’s touch-sensor’s dispo-

sition in combination with the specific angle that it reached the corner in the

specific case where AR = 0.001. The exact moment when the robot got trapped

can be observed in Fig. 3.13c, which shows the collision detection over time for

simulations where the robot started from position 3. Note that, after the time step

2000 in graph II (AR 0.001), the number of collisions increases and never reaches

zero again, indicating that the robot was constantly in collision from that moment

on. A similar situation happened for simulations where the robot started from the

other initial positions (1 and 2). However, in these cases, the trapping situation

occurred only in a few of the 30 simulation executions, this is the reason why the

collisions counting presents high standard deviation for positions 1 and 2 when
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AR = 0.001 in Fig. 3.13a.

Despite the trapping situation, results for the other ARs (0.01, 0.1 and 1.0) in

Fig. 3.13a are relatively stable, presenting a consistent decrease in number of col-

lisions, with low standard deviation. In addition, for these AR values, the graph’s

lines depicting each of the initial positions are considerably close to each other,

indicating that the starting position of the robot did not meaningfully influence

the experiment outcome.

The discussed trapping of the robot can also be observed in Fig. 3.13b, which

shows the sum of all distances measured by the 16 distance sensors of the robot

for each initial position and tested ARs. As expected, because of the trapping

situation, the distance sensors detected a minimal distance from obstacles for tests

with AR = 0.001, indicating that the robot was predominantly close to the walls

during these simulations. The high standard deviation of results when ARs =

0.001 and ARs = 0.1 demonstrates that, in these cases, the robot’s exploratory

performance varied from one simulation execution to another. Possibly, the robot

got trapped for longer in some particular simulation executions only.

Unlike the graph of Fig. 3.13a, which shows a growing slope (indicating that

the distance from the walls increase as the AR increases), Fig. 3.13b shows a

different result for AR values above 0.001. More interestingly, Fig. 3.13b shows

that proximity to obstacles is increasing for ARs above 0.001, but the number of

collisions is actually decreasing for the same AR values, as seen in Fig. 3.13a. It

follows that, in this scenario, the robot is spending more time near the walls when

under high AR values, but is not touching them.

In fact, because the corridor in Fig. 3.9b is relatively narrow for the robot to

make 180◦ turns, it needs to make slower and more ‘careful’ movements to avoid

touching the wall when turning back in dead ends. As a consequence, the robot

spends more time close to the wall making the turn, but not necessarily touching

it. In Fig. 3.13b, this phenomenon is more noticeable for ARs = 0.1 and ARs =

1.0 in position 1 and for ARs = 0.01 and ARs = 0.1 in position 3.

The robot’s behavioural changes were beyond our expectations. Because of

locomotion difficulty in the dead ends of the narrow corridor, the robot had to

move more ‘carefully’ in order to make a turn without touching the walls. As a

consequence, the more we increased the AR, the more time the robot spent making

the turn in the dead ends, and the less it collided. This ‘cautiousness’ is a positive

collateral-effect that was neither deliberately designed, nor predicted.

The explored area is another unexpected and positive collateral-effect. When

running without ASP, the robot’s awareness of space was limited to touch feedback,

so it could not perceive alternative (and perhaps better) paths to avoid an obstacle.
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As a consequence, the robot kept doing laps in a small space. By contrast, when

using ASP, the increased vision-range of the distance sensors improved the robot’s

space-awareness, which doubled the robot’s explored area.

3.5 Final Considerations

This chapter presented a computational model of artificial synaptic plasticity

(ASP) for simulating cued fear conditioning in the amygdala. This model is based

on the NMDAR-dependent LTP phenomenon that takes place in amygdala regions

and is essential for fear acquisition and extinction. The model relies on a modifica-

tion to the classical feedforward neural network proposed by us in Rizzi Raymundo

and Johnson (2014), where the first-layer weights of the ANN are updated accord-

ing to the activity coincidence of the input neurons. The original ASP model as

proposed in Rizzi Raymundo and Johnson (2014), which simulates general condi-

tioned learning and association, has been later adapted to provide specifically fear

learning in order to meet SAFEL’s needs.

Experiments with a virtually simulated Pioneer robot demonstrated that the

proposed ASP mechanism successfully generates online associative learning by

means of a cued fear-conditioning procedure. The robot autonomously learned

during environmental exploration to use input information added post-training,

in a ad-hoc manner. Stimuli association with ASP has been tested at different

complexity levels and has been shown to successfully improve the robot’s object-

avoidance capabilities in all the tested situations. Additionally, both association

and dissociation phenomena have been demonstrated in the simulations.

Interesting behavioural modifications of the robot have been observed, which

resembles the expression of behaviours such as ‘fear’ and ‘carefulness’. In the ex-

periment of Section 3.4.2, the robot has been trained to avoid obstacles whenever

possible using information from its touch sensors. After associating the distance

sensor inputs with the touch sensor inputs, the robot became able to express the

same obstacle-avoidance behaviour in response to the distance sensor as well. How-

ever, different from the touch sensors, whose inputs are binary, distance sensor’s

inputs are continuous values and, therefore, provide the robot with a more com-

plete information about the environment. As a consequence, we could observe

behaviours from the robot in response to the distance sensors inputs that were not

expressed when the robot was reacting to the touch sensors only.

For instance, the thorough information from the distance sensors allowed the

robot to understand and adjust its speed according to proximity information, which

was not possible with the touch sensors only because the robot would only become
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aware of potential collisions after these have already happened. The speed adjust-

ment learned by the robot led it to express behaviours such as ‘carefulness’ and

‘fear’ of collision, which were not previously observed. Interestingly, the intensity

of these behaviours could be regulated by adjusting the association rate (AR), so

that the higher the AR, the more ‘careful’ the robot would behave.

Interestingly, the robot’s performance in carrying out the given task (i.e., ex-

ploring the environment without colliding) was not solely improved by increasing

the AR, but instead by finding a balance in the level of ‘carefulness’ in the robot’s

resulting behaviour. In real-life daily tasks, to much carefulness can be as detri-

mental as the total lack of it. Hand-writing a letter with no care for calligraphy

may turn it unreadable, thus failing the goal of that task, which is communication.

On the other hand, dedicating to much care to calligraphy may take the writer

much longer than necessary to finish the letter, which is also detrimental. This is

analogous for the experiment discussed in Section 3.4.2. When the AR was too

low, the robot would frequently bump into the walls, failing the goal of avoid-

ing collisions. On the other hand, when the AR was too high, the robot would

commit almost no collisions but take much longer to complete a 180◦ turn. Con-

sequently, the robot would have less time to effectively explore the environment.

This phenomenon can be clearly observed in the videos of the experiment3.

For decades, the Hebbian rule has been an inspiration for learning algorithms

(Balkenius and Morén 1998; Miller, Barnet and Grahame 1995; Timmis, Neal and

Thorniley 2009). In its simplest form, the classical Hebbian learning algorithm

consists of modifying the connection between two computing units (e.g., neurons)

by an amount proportional to the product of the activation of those units (Sanger

1989), which is mathematically expressed as in Eq. 3.18:

W (t+ 1) = W (t) + γ(~y(t) ~x(t)T ) (3.18)

where γ determines the rate of change of the weights, ~x is the activation of the

input nodes, W is the weight matrix and, consequently, ~y = W~x is the activation of

the subsequent layer of neurons. The ASP mechanism proposed here goes beyond

the classical Hebbian algorithm (as defined in Eq. 3.18) in several aspects:

• The ASP mechanism allows the definition of the degree of relationship be-

tween pairs of conditioned stimulus (CS) and unconditioned stimulus (US)

by means of the sensitivity matrix. This gives the designer of the artificial

agent freedom to model possible conditioned associations according to the

3Videos of the experiments presented in this chapter are available at http://carolrizzi.

github.io/ASP

http://carolrizzi.github.io/ASP
http://carolrizzi.github.io/ASP
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requirements or particular features of the agent, as well as of the agent’s

environment and task. A relationship based on the input values of the ANN,

such as that established through the sensitivity matrix of ASP, could not be

easily implemented with the formula of Eq. 3.18 because the classical Heb-

bian algorithm updates weights based on the relationship between ~x and ~y

rather then between ~x and itself.

• The classical Hebbian algorithm updates the weights based on the prod-

uct ~y(t) ~x(t)T . This method considers that every CS will behave equally,

where the lowest possible value is a baseline for what is considered to be

the standard behaviour of that CS and the highest possible value represents

the occurrence of an uncommon event, which may entail a threat to the

agent or another reason for associative learning to take place. This approach

is incompatible with real world situations because different CS’s behave in

different manners, which are usually unknown before environmental explo-

ration. As discussed in Section 3.3 (with the example of a robot living under

high/low levels of noise pollution), a particular CS could assume medium to

high values in normal situations and low values whenever something uncom-

mon happens. Instead of using the lowest possible value as a baseline, the

ASP mechanism proposed here uses the average values of that CS over time

as the baseline, thus taking into consideration the particularities of each CS

and, consequently, being more suitable for real world applications.

• The ASP mechanism also takes into consideration the effect of environmental

changes in the behaviour of CS’s. For instance, moving an agent from one

environment to another may have a meaningful effect in the average values

of a particular CS over time. The ASP mechanism takes this factor into

consideration by gradually forgetting old average values and giving priority

to values that represent the most recent environmental conditions of the

agent.

Although the ASP mechanism introduced in this chapter can be considered an

emotional cognitive model by itself, it is important to keep in mind that it does

not represent SAFEL as a whole and, in fact, constitutes just one of the three

modules of SAFEL. The ASP mechanism described here represents the elemen-

tary foundation of the SAFEL model, over which more complex knowledge and

memory is built on by the higher modules of SAFEL. The ASP of the AM is the

threat-detection machinery of SAFEL, which not only monitors the occurrence of

foreknown threats (the US’s), but also learns and memorizes new primary threats

in the environment (the CS’s).



Chapter 4

Hippocampus Module

The hippocampus consists of two curved regions of the brain, notably shaped like

a seahorse, located in the medial temporal lobe (Fig. 4.1). Considerable evidence

indicates that the hippocampus is essential for the formation of episodic memory

and the processing of context, playing an important role in the phenomenon of

contextual fear conditioning (Phillips and LeDoux 1992; LeDoux 1999; Rudy, Huff

and Matus-Amat 2004; Fortin, Agster and Eichenbaum 2002).

Figure 4.1: Hippocampus region in the brain.

The following sections explore the phenomenon of contextual fear conditioning

and its underlying neural mechanisms, especially in the hippocampal regions of

the brain (Section 4.1). Section 4.2 and Section 4.3 discuss, respectively, the

basic concepts and technologies related to an area of artificial intelligence known

as knowledge representation, which is inspired by cognition theories on context

formation and representation in the brain. Finally, we present the Hippocampus

Module (HM) model in Section 4.4, which is based on concepts of knowledge

representation.

This chapter partially contributes to answering the first and second of our three

73
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research questions formulated in Section 1.4 by:

1. addressing the last two requirements of a situation-aware intelligence (Sec-

tion 1.3.1) in combination with the last requirement of an emotional intelli-

gence (Section 1.3.2); and

2. presenting a module of SAFEL capable of manipulating stimuli information

so to create contextual information. This module is designed and imple-

mented using a rule-based platform for situation management, which is the

second approach of a hybrid model consisting of three distinct approaches.

The discussion of experiments related to the HM of SAFEL is addressed in

Chapter 5 because such experiments also depend on the working of the Working

Memory Module. Therefore, examples of practical robotics applications using the

HM are not presented in this chapter and should, instead, be sought in Chapter 5.

4.1 Biological Background

This chapter introduces the biological phenomena and related brain functions that

inspired the HM design. Section 4.1.1 introduces the contextual fear conditioning

phenomenon, which greatly depends on the proper functioning of hippocampal

areas of the brain. Next, in Section 4.1.2, we briefly discuss the functions of

the hippocampus that support the acquisition and expression of contextual fear

learning and their underlying neural mechanisms.

4.1.1 Contextual Fear Conditioning

In Section 3.1, we discussed how the foot-shock experiment with mice demon-

strated the phenomenon of cued fear conditioning. A mouse is placed into an

apparatus and is repeatedly stimulated by auditory cues paired with an electrical

shock to its feet. Such procedure then conditions the mouse to freeze in response

to the auditory cue, even in the absence of an electrical shock.

Nevertheless, the auditory cue is not the only stimulus observed to induce the

mouse’s fear expression in this experiment. Researchers conducting this experi-

ment observed that if they removed the mouse from the cage where the cued fear

conditioning first took place and, after some time, returned it to that same cage,

the mouse would also present the freezing response, even in the absence of the au-

ditory cue or the electrical shock (Phillips and LeDoux 1992). This indicates that

the mouse has also associated the aversive unconditioned stimulus (US) with the

background context, which in this case was the cage where the shock was induced
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in the first place. The phenomenon of expressing defensive responses in the pres-

ence of a specific combination of stimuli (e.g., a situation or place) under which an

aversive US has been previously induced is known as contextual fear conditioning

(Phillips and LeDoux 1992).

In the neuroscience literature, the term context is commonly used to refer to

any stimuli other than the main conditioned stimulus (CS) cue (e.g., the tone in the

experiment with mice) that is static and continuously present in the environment

where the US occurs. Stimuli with this characteristic are known as background

contextual stimuli. However, a contextual stimulus can also be associated with the

aversive US without the parallel pairing of a cued CS. In this case, the contextual

stimulus is said to be a foreground contextual stimulus (Phillips and LeDoux 1994).

Although both types of conditioning (cued and contextual) lead to the same

fear responses, their perception and processing mechanisms in the brain are notably

distinct. In cued fear conditioning, the CS is restricted to a single stimulus that

belongs to a specific sensory modality (smell, touch, taste, hearing or vision),

whereas in contextual fear conditioning, the CS is composed of a collection of

stimuli, which may belong to different sensory modalities (Phillips and LeDoux

1992). This set of stimuli is bound into a unitary representation of context that

depicts not the stimuli per se, but how they correlate in time, space and intensity

(LeDoux 1999; Eichenbaum 2004).

4.1.2 Context in the Brain

In the hippocampus, we begin to leave the purely perceptual reasoning about the

world and enter the conceptual domain of the brain. Sensory information is put

together in the hippocampus to form a unitary representation of the current state

of affairs. Unlike information processed in the amygdala, representations formed

in the hippocampus are not just visual, auditory or olfactory, but all of these at

once, and includes the way these sensations relate to each other in intensity, space

and temporal order (LeDoux 1999).

Hippocampal regions are believed to play an important role in the brain’s

contextual processing (Phillips and LeDoux 1992; Eichenbaum 2004). Eichenbaum

(2004) provides a thorough review of the underlying cognitive mechanisms involved

in the hippocampus’ contextual processing and episodic memory (our capacity of

recollecting personal experiences). According to Eichenbaum (2004), there are

three elemental cognitive processes mediated in the hippocampus, from which

two represent the inspiration for the design of the HM. These are the associative

representation and the sequential organisation.
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Associative representation regards to the association between stimuli that com-

pose each discrete event in an experienced episode. Evidence from hippocampal

lesions in humans and animals suggests the existence of learning mechanisms in the

hippocampus that are essential for binding into an integrated fragment of mem-

ory the array of features associated with an event (Davachi and Wagner 2002). In

Section 3.1, we have discussed the mechanisms behind the phenomenon of NMDA-

dependent LTP and how it is involved in amygdala functions. Although the charac-

ter of information being processed in the hippocampus is different from that being

processed in the amygdala, the same long-term potentiation (LTP) phenomenon is

believed to underlie both kinds of learning (Martin, Grimwood and Morris 2000).

Some hippocampal functions supported by LTP are the multi-stimulus association

and the pattern completion, which occurs when the presence of one or more stimuli

participating in an episodic memory leads to the firing of neurons that retrieve the

entire episode. Research has also shown that the hippocampus is activated dur-

ing multi-stimulus processing, especially when subjects are required to create link

between these stimuli by means of systematic comparison (Davachi and Wagner

2002).

Sequential organisation regards to the temporal organisation of events compos-

ing an experienced episode. According to Eichenbaum (2004), episodic memories

consist not only of the particular information one is attempting to recall but also

of the ‘experience of events that precede and follow’. A number of studies have

demonstrated the relevance of hippocampus’ temporal representations in promot-

ing intelligent behaviour and survival. Honey, Watt and Good (1998) has shown

that hippocampal lesions disturb the normal orienting response of animals when

pairs of stimuli are presented in an order different from the order presented in the

training phase. Also, according to Eichenbaum (2004), the firing of hippocampal

neurons related to the processing of event sequences have been shown to be active

during several learning protocols, including classical conditioning.

As mentioned in Chapter 3, considerable evidence indicates the amygdala as

the main brain region involved in fear learning and memory (LeDoux 2003, 1999;

Phillips and LeDoux 1992; Herry and Johansen 2014). However, the hippocam-

pus is also believed to be essential for contextual fear conditioning. Research

has demonstrated that lesions of the amygdala interfere with the acquisition and

expression of cued and contextual fear learning, while lesions to the hippocam-

pus interfere with contextual fear learning only (Phillips and LeDoux 1992; Rudy,

Barrientos and O’Reilly 2002).

LeDoux (1995) argues that the hippocampus may function in the process of



CHAPTER 4. HIPPOCAMPUS MODULE 77

contextual fear conditioning as a kind of higher-order sensory structure that in-

tegrates its own contextual information with the emotional meaning processed in

the amygdala. Learning this kind of relationship might allow the individual to

distinguish in which situations a given CS may represent a threat. For instance,

the appearance of a snake during a walk in the woods may represent a threat and

should trigger fight-or-flight bodily responses, while a snake’s appearance in the

zoo should not be a reason for concern.

According to LeDoux (1999), the amygdala and hippocampal systems work in

parallel, forming what LeDoux calls, respectively, as the emotional memory and

the memory of emotion. When a person remembers a past traumatic situation,

in addition to the state of affairs, the hippocampus will also coldly remind this

person that he/she was afraid at that time, providing an unemotional memory of

emotion. The amygdala, in turn, will trigger bodily and brain responses (muscles

straining, increased heart rate, hormone release, etc.) that allow him/her to re-

experience the fear felt during that trauma, thus providing an emotional memory

of the episode. Exposure to stimuli that were present during the trauma activates

both the amygdala and hippocampal systems, which work in parallel to retrieve

emotional and contextual memory about the event, respectively. Because these

two memories are simultaneously recovered in response to the same stimuli, they

are experienced as if they were one single memory.

Different from the model of the AM presented in Chapter 3, which is inspired

by the neural mechanisms behind the LTP and LTD phenomena, the HM does

not attempt to directly model the underlying physical and chemical phenomena

of hippocampal neurons. Instead, we have modelled and implemented the HM at

a higher level of abstraction that focuses on the functionalities of the hippocam-

pus, especially associative representation and sequential organisation of events.

A considerably large ANN would be required to simulate the complex temporal

and multi-stimulus information handled in the hippocampus. For this reason, we

decided to model the HM based on psychological conceptualizations of humans’

reasoning and context representation. These concepts are presented next, in Sec-

tion 4.2

4.2 Context and Knowledge Representation –

Basic Concepts

As discussed in Section 4.1, the hippocampus is the main brain region involved in

the processing of contextual information. Analogously, the Hippocampus Module
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(HM) of SAFEL represents the centre of contextual processing in the proposed

model. The HM is responsible for collecting individual stimuli and binding them

into pieces of information that can describe the robot’s state of affairs over time.

To perform this task, the HM is based on techniques used by situation-aware

expert systems. Expert systems are those that emulate the decision-making abil-

ity of a human expert in a domain-specific problem (Jackson 1998; Sasikumar

et al. 2007), and by doing so they require a protocol that specifies how to rep-

resent knowledge and reproduce human reasoning. The most popular theories

of the human reasoning and behaviour, such as SOAR (Rosenbloom et al. 1991)

and ACT* (Anderson 1996), describe the human conscious cognitive process of

decision-making as a combination of declarative knowledge (facts about the world),

procedural knowledge (facts about how to perform certain actions), and episodic

knowledge (rules defining when to execute certain actions) learned in past experi-

ences.

Therefore, to simulate the decision-making process of a human expert, expert

systems need a methodology able to recognise and process rules and facts, which

involves the creation of declarative representations of relevant knowledge. How-

ever, traditional programming languages (Java, C++, C#, etc.) are designed for

solving procedural problems, which instead involves the declaration of a sequence

of routines. As consequence, modelling the human representation of knowledge by

means of procedural languages requires considerable effort, in most cases leading

to the so-called ‘spaghetti code’ (several nested if-else statements).

For this reason, expert systems are commonly developed by means of rule-

based techniques using symbolic computation, i.e., non-numeric computations in

which symbols and symbol structures are constructed so to represent concepts

and relationships between them (Jackson 1998). Rule-based approaches allow

developers to define the system’s reasoning at a higher level of abstraction that is

close to well-known cognition theories over the human reasoning and knowledge

representation. In addition, rule-based approaches also provide a clear separation

between the system’s logic and other parts of the system (e.g., data manipulation),

which facilitates the system’s maintenance and readability.

This section presents the main basic concepts behind knowledge representa-

tion and situation-aware expert systems, including rule-based programming (Sec-

tion 4.2.1), event processing (Section 4.2.2), context awareness (Section 4.2.3) and

situation awareness (Section 4.2.4).
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4.2.1 Rule-Based Programming

Knowledge representation is, according to Jackson (1998), a substantial area of

study in the borderline between artificial intelligence and cognitive science. It is

concerned with computationally representing and storing information about the

world in a manner analogous to the human brain. Knowledge representation lan-

guages are programming languages that focus on describing objects and ideas in-

stead of defining sequences of instructions or storing simple data elements (Jackson

1998). Rule-based languages are a type of knowledge representation language that

‘encode empirical associations between patterns of data presented to the system

and actions that the system should perform as a consequence’ (Jackson 1998).

Rule-based languages consist of a set of rules, which can be repeatedly applied

to a set of facts. Facts are data representing entities observed in the real world

and are classified by their types. Examples of fact type are ‘person’, ‘tree’, ‘cat’,

whose fact instances could be, for example, ‘John’, ‘the tree of John’s house’ and

‘Garfield’, respectively. Facts may have properties. Some examples of properties

for the fact type ‘person’ are ‘name’, ‘age’ and ‘temperature’, which could assume

values such as ‘John’, ‘28’ and ‘37◦C’, respectively.

On the other hand, rules are heuristics that define a collection of actions to

be executed in a given circumstance, which is conditioned to a collection of fact

instances and their properties. An example of a rule is ‘when a person enters the

building, then open the lift door’. Since ‘John’ is an instance of the fact ‘person’,

such rule would be satisfied and have its actions executed (i.e., open the lift door),

if John happens to enter the building.

Code 4.1 exemplifies a generic rule. Rules are basically two-part structures (if-

then or when-then statements) that reason over knowledge representation using

first order logic. The if or when part of the rule, known as the head or the

left-hand side (LHS), consists of a condition that can be a single expression (i.e.,

evaluates only one fact type in order to apply the rule) or a set of expressions.

Each expression is called a pattern. Patterns are joined to each other by logical

connectors (i.e., and, or). A rule is said to be matched if all of its patterns

are satisfied. The then part of the rule, known as the body or the right-hand

side (RHS), is composed of a set of operations, which are executed if the rule is

matched.

Code 4.1: Example of generic rule.

1 if pattern1 and pattern2 and ... patternn /∗left−hand side∗/
2 then action1 and action2 and ... actionm /∗right−hand side∗/
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A typical rule-based system (Jackson 1998; Sasikumar et al. 2007) consists of

three components, which are:

• Working memory : is the space in memory reserved to the facts known about

the domain. In other words, the working memory usually contains informa-

tion about the particular instance of the problem being addressed. Note that

the working memory described here is part of the rule-based paradigm and

is not to be confused with the brain’s working memory or with the work-

ing memory module of SAFEL, both of which are discussed in Chapter 5.

For disambiguation purposes, here we will call it as the rule-based working

memory (RBWM).

• Rule base: also known as the knowledge base, is the set of rules modelling

the knowledge about the domain.

• Inference engine: also known as the rule engine, is the component that

evaluates fact instances against rules’ patterns, which is a process known

as pattern matching. When one or more facts satisfy a rule’s condition,

the inference engine executes the actions defined in that rule’s RHS. The

inference engine also carries out a process called conflict resolution, which

dictates the execution order of conflicting rules, i.e., rules that have been

simultaneously matched by the same set of facts.

A fact insertion is the act of inserting information about a fact instance in

the RBWM and, consequently, notifying the rule engine about the existence of

the respective fact. After being inserted, the fact instance is matched by the rule

engine against all rules in the rule base in order to find which rules’ patterns are

satisfied by that fact instance. After a fact instance is inserted in the RBWM, it

can be updated or retracted.

A fact update is the act of warning the rule engine about changes in the in-

formation of that fact’s properties. For example, consider the fact type ‘person’,

which has properties such as ‘name’, ‘age’ and ‘temperature’. An alteration to a

person’s temperature represents an update to the properties of the fact instance

representing that particular person. To notify the rule engine about the alteration

in that person’s temperature, the respective fact instance must be updated in the

RBWM. On the other hand, a fact retraction is the act of removing the informa-

tion about a fact instance from the RBWM, so the respective fact instance can no

longer be matched against rules.

When the actions of a rule are executed, that rule is said to have been fired

(or activated). Rules may generate new facts when fired. In this case, the newly
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generated facts may lead to subsequent pattern matches, resulting in a cascade

effect that takes place until there are no facts in the RBWM able to activate any

of the rules in the rule base.

4.2.2 Complex Event Processing

Some rule-based systems are able to understand and manage event notifications,

which represent the flow of information that signals changes of state in the system’s

domain (Cugola and Margara 2012). Such systems make use of a data process-

ing model known as complex event processing (CEP), which filters and combines

events’ notifications to generate higher-level events known as composite events.

CEP engines usually provide tools for defining and managing different aspects of

event abstraction, correlation and hierarchy.

Events occurring in the real world are represented in a CEP system as event

instances and are categorised by event types. For instance, consider a fire detec-

tion system that receives temperature information from sensors distributed in a

building. The temperature notification from one of the sensors in the building’s

entrance hall is an event instance of the ‘temperature’ event type.

Composite events are events whose existence depends on the notification of

other events’ occurrence. For instance, the instantiation of an event of type ‘fire’

could depend on a series of constraints on others events occurrence, such as a

temperature greater than 60◦C being reported by two different sensors located

within an area smaller than 30 m2, where these notifications occurred within 10

seconds of each other.

Observe in this example that events correlation is not only evaluated in terms

of their standard properties (such as the temperature value and sensor location),

but also in terms of their temporal properties (such as the fact that temperature

notifications occurred within 10 seconds of each other). The computational op-

erations used to correlate events based on their temporal aspects are known as

temporal operations. Some common examples of temporal operators are before

(when an event occurs before another one), during (when an event occurs during

the occurrence of another one) and starts (when two events start to occur at the

same time but not necessarily ceases to occur at the same time). We will return

to the subject of temporal operators in Section 4.3, giving more examples and

discussing their usage for comparing the temporal properties of events.
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4.2.3 Context awareness

Context is a common word in people’s everyday dialogues. The Oxford Dictio-

naries (2017a) defines it as ‘The circumstances that form the setting for an event,

statement, or idea, and in terms of which it can be fully understood.’ Therefore,

being aware of context is the same as being aware of such circumstances in relation

to something or someone.

Dey (2001) provides one of the most cited definitions of context for computa-

tional applications in the literature. According to Dey (2001):

Context is any information that can be used to characterise the situation of

an entity. An entity is a person, place or object that is considered relevant

to the interaction between a user and an application, including the user and

applications themselves.

In other words, context is any information about the observed entity that is relevant

to the purpose of an application. A context-aware application is any application

able to observe the context of an entity and capture important information about

that context in order to autonomously perform inferences, decisions and actions.

The gathered information about context is known as context information and can

be obtained explicitly, by means of users’ input, or implicitly, by means of sensors’

input.

Context information can be primitive, i.e., a discrete piece of information such

as the user’s GPS location, or composite, which is a combination of other pieces

of context information (either primitive or composite) and their relationship. For

instance, consider an application that gives quick suggestions of nearby places to

eat. To make a suggestion, the application must be aware of a composite contextual

information, which depends on several other pieces of context data. Firstly, the

application will need context information about the time of the day to ensure

that it is appropriate to suggest lunch or dinner at the current time. Another

essential context information in this scenario is the user’s location. Finally, the

application will also need information about nearby restaurants’ locations, food

style and users’ rating, which may be gathered from the internet.

Observe in this example that a composite context consists not only of other

pieces of context information but also of their relationships. In this specific ex-

ample, the list of suggested restaurants (which is a context information by itself)

is constructed based on the user’s location (which is another context information)

and a constraint (e.g., these restaurants must be located within 200 meters of the

user’s location). This relationship is also part of the composite context detected

by the application.
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According to Prekop and Burnett (2003), there are two dimensions of context:

external and internal. The external dimension of context, which is the main focus

of most context-aware applications, capture elements of the physical environment

such as location, proximity, temperature, time and lighting levels. On the other

hand, the internal dimension of context attempts to capture a more cognitive as-

pect of context, such as the user’s goals, tasks, business processes, personal events,

communication and emotional and physical states. Both dimensions are impor-

tant and meaningfully contribute to capturing the unique pattern of activities

performed by an individual that defines his/her context.

In computing, the concept of context awareness is mostly used in ubiquitous

computing (also known as pervasive computing), which is the area of research

concerned with enhancing technology use by embedding computers in our every-

day movements and interactions with the environment, both physical and social

(Hansmann et al. 2013). Ubiquitous computing usually involves the use of mobile

devices present in our daily activities to access information about the users and

their environment so to provide them with useful applications. Hence, being aware

of users’ context is essential in ubiquitous computing.

In addition to mobile computing, another popular application for ubiquitous

computing is its integration with expert systems. Conventional expert systems

depend on users’ explicit input to perform their tasks. However, the integration

between ubiquitous computing and expert systems allows the creation of proactive

systems capable of detecting and processing users’ contextual data to automatically

generate domain-specific solutions (Kwon, Yoo and Suh 2006).

In our work, the robot plays the role of the user in context-aware applications.

Here, we use context-aware concepts and tools to capture the robot’s external

context regarding environmental threats in order to model the robot’s internal

context regarding its ‘emotional state’ of either ‘fear’ or ‘confidence’. However,

context awareness by itself, as described in this section, is insufficient for capturing

the sequence of events involving the robot and its context. For this reason, we also

use concepts and tools for developing situation-aware systems, which we introduce

next in Section 4.2.4.

4.2.4 Situation Awareness

We have introduced in Section 4.2.3 the definitions of context and context aware-

ness formulated by Dey (2001). His definition of context, however, does not incor-

porate temporal properties. This is because, according to Dey (2001), the temporal
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aspects associated with the status of an entity are part of an extended conceptu-

alization of context called situation. A situation describes a collection of states of

relevant entities, where each state depicts those entities’ context at a given point

in time. In this sense, the term situation awareness could be understood as the act

of being aware of the variations in an entity’s context during a particular period of

time. Note that Dey’s definition of a situation has substantial similarity with the

notion of episodic memory discussed in Section 4.1.2, which refers to our capacity

of mentally recollecting and reconstructing the set of events composing an episode,

ie., a personal experience.

Pereira, Costa and Almeida (2013) provide a practical definition for situation

from the computational point of view that extends Dey’s conceptualization of situ-

ation awareness and is the definition used in the HM model. According to Pereira,

Costa and Almeida (2013), situations are ‘composite entities whose constituents

are other entities, their properties and the relations in which they are involved’.

Situations also have a duration and can be referred as being current or past. Some

examples of a situation are ‘John has fever’ (current situation), ‘John had a fever

of 38◦C yesterday’ (past situation) and ‘Mary has been travelling for the last three

days’ (current situation).

Situations are classified by their types. A situation type describes the general

characteristics of that situation, which is assigned to every instance of that situ-

ation type. An example of situation type is ‘Patient has fever’, whose instances

would include any patient having a fever, for example: ‘John has fever’ and ‘Mary

has fever’. In this example, the ‘Patient’ is said to be a situation participant, i.e.,

an entity that is involved in the situation and may or may not be its main subject.

The process of identifying instances of a situation type is known as situation

detection and consists basically of detecting instances of entities that are related

to the situation and that satisfy constraints of the situation type. For example,

a situation of type ‘Patient has fever’ is detected when an instance of the entity

type ‘Patient’ satisfies the condition that defines the statement ‘has fever’. An

example of this condition is ‘Patient has a temperature higher than 37◦C’. There-

fore, in this particular example, a situation of type ‘Patient has fever’ is said to be

detected every time an instance of ‘Patient’ satisfies the condition ‘Patient has a

temperature higher than 37◦C’.

The situation is said to be active and is considered a current situation while

the condition of that particular situation type is satisfied. When this condition

is no longer satisfied, the situation is said to be inactive and is considered a past

situation. The point in time in which the situation starts to be active is known

as activation moment, while the point in time in which the situation starts to
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be inactive is known as deactivation moment. For example, consider the previous

example of the situation type ‘Patient has fever’, in which the ‘has fever’ statement

is based on the condition ‘Patient has a temperature higher than 37◦C’. In this

particular example, the instance ‘John has fever’ is said to be active and current

when John’s temperature becomes higher than 37◦C. In the same way, the instance

‘John has fever’ is said to be inactive and past when John’s temperature drops

below 37◦C.

Fig. 4.2 provides a graphical representation of the life cycle of three situations,

which are instantiating the same situation type. The vertical axis depicts the

possible state-of-affairs of the entities that may participate in the situation. The

horizontal axis depicts the passing of time. For example, consider the previous

example of the situation type ‘Patient has fever’ for the entity instance ‘John’.

The grey area represents the moments when John’s temperature lies above 37◦C.

Fig. 4.2 depicts two past situations (situations 1 and 2, respectively), in which this

particular example means that ‘John had fever’, and a current situation (situation

3), which means that ‘John has fever’.

For the model of the HM, we are particularly interested in using techniques

of situation awareness for simulating situation appraisal. In Rizzi et al. (2017),

we define situation appraisal as one’s ability to “make emotional evaluations and

associations over perceived situations”. In other words, situation appraisal is an

individual’s ability to attach emotional meanings to perceived situations and re-

act accordingly. In this case, the HM should provide means for the robot to

attach emotional meaning to experienced situations, where the emotional infor-

mation comes from the Amygdala Module (AM). A detailed explanation on how

State of affairs 
that satisfy 
constraints 

captured in the 
situation type

States of affairs

a1 d1 a2 d2 a3 now

time

Situation 1
Situation 2

Situation 3

Current Situation

Past Situation

Figure 4.2: Example of situations’ life cycle.
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the emotional meaning is acquired by the HM and attributed to individual situa-

tion instances is given in Section 4.4.

4.3 Underlying Technology

This section presents the platforms for rule, event and situation management used

to implement the contextual processing taking place in the Hippocampus Module

of SAFEL. Section 4.3.1 briefly introduces the Drools platform, which provides a

powerful environment and necessary tools for developing rule-based and complex

event processing (CEP) systems. Section 4.3.2 provides a succinct introduction to

SCENE, which is a robust platform for situation management that extends Drools.

The Drools platform implements the concepts presented in Section 4.2.1 and

Section 4.2.2, facilitating the development of context-aware applications as dis-

cussed in Section 4.2.3. On the other hand, the SCENE platform implements the

concepts presented in Section 4.2.4, which is essential for managing the temporal

relationship between stimuli in the Hippocampus Module (HM).

4.3.1 Drools

Drools (Bali 2013) is a Business Rules Management System (BRMS) developed and

supported by Red Hat and the JBoss Community (Red Hat 2017a,b). It provides

a comprehensive platform for rules management and CEP, which include a rule

engine, a rule language, a CEP engine and an integrated development environment

(IDE).

Drools is divided into five modules, among which two are of interest to our

work. These are the Drools Expert module, which implements the rule engine

and provides the rule-based coding environment, and the Drools Fusion, which

implements the CEP engine. The Drools Expert module is also responsible for

managing the rule-based working memory (RBWM), which here we call as the

Drools working memory (DWM) for disambiguation reasons.

Drools’ rule engine uses the Rete algorithm for performing pattern matching.

Rete (Latin for net) is a graph-based algorithm capable of efficiently comparing

large collections of objects against large collections of patterns (Forgy 1982). Rules

are declared by means of the Drools Rule Language (DRL), which also allows the

declaration of functions, imports, global variables and rule attributes. For the sake

of didactics, this section will focus on briefly explaining the rules mechanics only,

since rules are the central concept of DRL.

Code 4.2 depicts the rule structure in DRL. The definition of a rule starts with
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Code 4.2: Example of rule structure in DRL.

1 rule "Rule Name"

2 <attributes>

3 when

4 <conditions>

5 then

6 <actions>

7 end

its name (line 1), after which the rule’s optional attributes may be defined (line

2). Some example of rule’s attributes are salience (to define the rule’s priority in

relation to other rules in the code), no-loop (to prevent the actions of a rule from

indefinitely re-executing itself) and timer (establishes an interval for recursively

firing that rule if its patterns are still satisfied). The when keyword (line 3) de-

termines the start point of the left-hand side (LHS), which is the place where the

rule’s conditions are defined, as explained in Section 4.2.1. On the other hand,

the then keyword (line 5) determines the start point of the right-hand side (RHS),

which is the place where the rule’s actions are defined.

The RHS of a rule is implemented using the traditional Java syntax, whereas

the implementation of rules’ LHS is mostly based on the dialect of the MVEL

language [43]. MVEL is a runtime expression language written in Java that allows

expressing basic logic in Java-based applications. Code 4.3 shows a simple example

of the MVEL syntax and how it is used inside a DRL rule.

The rule of Code 4.3, named ‘Adult Detection’, contains a single pattern stated

in the MVEL dialect (line 3), which is matched against facts of the type ‘Person’

and is divided into two parts. The first part of this pattern contains a restriction,

which states that only fact instances of the type ‘Person’ having the property

(which may be called an attribute or a field) ‘age’ equals 18 can satisfy the LHS of

the rule. If this restriction is satisfied, the second part of this pattern will assign

the value of the ‘name’ field to the binding variable ‘$name’. The ‘$’ character

is optional and commonly used in DRL codes to differentiate variables and fields.

The value of the ‘name’ property of matched fact instances is printed out in the

rule’s RHS (line 5) using the standard Java syntax.

For instance, consider the rule of Code 4.3 and suppose that the DWM contains

two fact instances of the type ‘Person’. One fact has the ‘name’ property equals

John and the ‘age’ property equals 15, while the other fact has the ‘name’ property

equals Mary and the ‘age’ property equals 20. In this case, Drools output would

be: ‘Adult detected. Name: Mary’. John’s name would not be displayed because

he is younger than 18 years, thus not satisfying the pattern’s restriction.
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Code 4.3: Simple example of a rule with a single pattern in DRL.

1 rule "Adult Detection"

2 when

3 Person (age > 18, $name : name)

4 then

5 System.out.println("Adult detected. Name: " + $name);
6 end

Code 4.4: Example of fact type definition in Drools.

1 public class Person {

2 private String name;

3 private int age;

4 private int temperature;

5 private Person father;

6 //getters and setters ...

7 }

In Drools, fact types are defined by means of Java classes. Code 4.4 depicts the

definition of the fact type ‘Person’ that has been used in the example of Code 4.3.

Note in Code 4.4 that one of the attributes of the fact type ‘Person’ is another fact

of the type ‘Person’, which establishes a relationship between two fact instances

that, in this case, is fatherhood.

Code 4.5 shows a rule that has more than one pattern and uses the fatherhood

relationship available in the ‘Person’ fact type class. The first pattern (line 3) is

satisfied by instances of the fact type ‘Person’ whose ‘age’ attribute is greater than

18 years. The ‘$person’ variable receives a reference to the fact instance matched

in the first pattern. Once the first pattern is satisfied, the second pattern (line

4) matches against each fact instance of the type ‘Person’ existing in the DWM

whose ‘father’ attribute is equal to the reference stored in the variable ‘$person’.

If a pair of facts exists in the DWM that satisfies the two patterns of this rule,

then a message will be printed showing the father’s and offspring’s names. In other

words, this rule executes the following reasoning: ‘Print a given message for each

person in the DWM who has a father older than 18 years’.

For instance, suppose that the DWM currently has the fact instances shown in

Table 4.1, all of which are instances of the fact type ‘Person’. In this case, Drools

output would be:

• John is Mike’s father.

• John is Mary’s father.

Drools displays two messages about John because he is older than 18 years and

has two sons known by the DWM, which are Mike and Mary. Nonetheless, nothing
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Code 4.5: Example of a DRL rule with two patterns and a restriction on a rela-
tionship between two fact instances.

1 rule "Father Detection"

2 when

3 $person : Person (age > 18, $fatherName : name)

4 Person (father == $person, $name : name)

5 then

6 System.out.println($fatherName + " is " + $name + "s father.");

7 end

Table 4.1: List of fact instances of type ‘Person’ defining the current state of the
Drools Working Memory.

Instance
Name

Instance Attributes
Name Age father

john John 50 null
sam Sam 30 null
mike Mike 10 john
mary Mary 15 john
jake Jake 8 joe

is said about John’s father because the ‘father’ attribute of the fact instance ‘john’

is empty. In addition, there are no messages about Sam because, even though he

is older than 18 years, he has no relatives inserted in the DWM. Finally, although

Jake has a father, the fact instance representing his father has not been inserted

in the DWM. For this reason, no message is displayed about Jake.

Drools also provides a robust support to CEP by means of the Drools Fu-

sion module. Drools Fusion’s temporal reasoning implements all the temporal

operators proposed by Allen (1981, 1983), as well as their logical complement.

Allen (1981, 1983) describes point-in-time events as being instantaneous events,

while interval-based events have duration and, consequently, are delimited by start

and end timestamps. Table 4.2 shows all the temporal operators supported by

Drools Fusion and their respective temporal reasoning for both point-in-time and

temporal-based event relationships.

For instance, consider the rule of Code 4.6, which detects when a person’s fever

is increasing. Also, suppose this system receives real-time body signals from the

person being monitored. The ‘Fever’ class is declared as an event in line 2. The

explicit declaration of the ‘Fever’ class as an event fact in line 2 is necessary for

the rule engine to understand that instances of the type ‘Fever’ are not normal

facts and have temporal properties.

To satisfy the conditions of the rule of Code 4.6, the DWM must contain
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Table 4.2: Drools Fusion Temporal Operations.

Operation Point-Point Point-Interval Interval-Interval

A before B
B after A

A

B

A

B

A

B

A meets B
B met by A

A

B

A

B

A overlaps B
B overlapped by A

A

B

A finishes B
B finished by A

A

B

A

B

A includes B
B during A

A

B

A

B

A starts B
B started by A

A

B

A

B

A coincides B
A

B

A

B

Code 4.6: Example of Drools rule with a temporal operation.

1 declare Fever

2 @role(event)

3 end

4

5 rule "Fever Increasing"

6 when

7 $fever : Fever ($person : person, $temp : temperature)

8 Fever (person == $person, temperature > $temp, this after $fever)
9 then

10 System.out.println($person.getName() + ", your fever has increased!");

11 end

at least two ‘Fever’ events with different temperatures that reference the same

person, and the fever with higher temperature must have happened after (which

is the temporal operation) the other one. Every time this combination of events

happens, a message is printed by the RHS of the rule (line 10), warning the febrile

person about his or her fever condition.

4.3.2 SCENE

SCENE (Pereira, Costa and Almeida 2013; Rizzi Raymundo et al. 2014) is an

application programming interface that extends the DRL and makes use of Drools’

rule and CEP engines to provide a powerful support to situation management.
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Code 4.7: Example of situation type definition in SCENE.

1 public class Fever extends SituationType {

2

3 @Role(label = "$patient")
4 private Patient patient;

5

6 public Patient getPatient() {

7 return patient;

8 }

9

10 public void setPatient(Patient patient) {

11 this.patient = patient;

12 }

13 }

Code 4.8: Example of a situation rule in SCENE.

1 rule "Situation Detection: Febrile Patient"

2 @role(situation)

3 @type(Fever)

4 when

5 $patient : Patient(temperature > 37)

6 then

7 SituationHelper.situationDetected(drools);

8 end

SCENE specifies both structural and behavioural aspects of situations, which are

represented by situation types and situation rules, respectively. Situation types

may be defined in Java code or in DRL. For the sake of simplicity, here we focus

on exemplifying the Java definition.

Situation types must extend the SituationType abstract class provided by

SCENE, which implements the concept of situation type introduced in Section 4.2.4.

Code 4.7 depicts the definition of the ‘Fever’ situation type, where the participant

of the situation is the patient having a fever (line 4). The Java annotation in line

3 indicates how the participant (in this case, the patient) is referenced by the rule

that manages the fever situation type. Each attribute declared as a participant of

the situation must have get and set methods implemented (lines 06 to 12).

The behavioural part of a situation is characterised by means of conditional

patterns defined in the LHS of a specialised Drools rule, which is declared as a

situation rule. Code 4.8 depicts an example of a situation rule which manages

situation instances of the type ‘Fever’ that has been defined in Code 4.7.

The rule of Code 4.8 matches against patients that have temperature greater

than 37◦C. Every time a Patient instance satisfying this condition is inserted in

the DWM, SCENE creates and activates a new ‘Fever’ situation instance (line
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7) by means of the SituationHelper class. The rule attribute declared in line 2

indicates to the rule engine that this is not a normal rule, but a situation rule

that should be handled by SCENE. The rule attribute declared in line 3 informs

SCENE about the situation type that will be instantiated if the conditions of this

rule are satisfied. If the condition of the rule in Code 4.8 is satisfied, the object

referenced by the ‘$patient’ binding variable (line 5) becomes the participant of

the new ‘Fever’ situation instance, as defined in line 3 of Code 4.7. After created,

situation instances can be used in other rules’ conditions, whether they are active

or inactive.

Normally, the created ‘Fever’ instance would have to be explicitly deactivated,

which would require the declaration of another rule establishing that a ‘Fever’

situation instance must be deactivated whenever its patient’s temperature drops

below 38◦C. However, SCENE inherits a Drools feature known as truth main-

tenance, which allows Drools to automatically retract a fact instance when the

conditions that instantiated such fact are no longer true. This feature makes rules

easier to manage and interpret by approximating their behaviour to the human

way of reasoning.

In the case of situations, SCENE automatically deactivates a situation instance

if the conditions that led to the activation of such situation are no longer true.

Therefore, ‘Fever’ instances created by the rule of Code 4.8 are automatically

deactivated whenever the respective patient’s temperature drops below 38◦C. Note,

however, that even though SCENE’s truth maintenance is inherited from Drools,

retraction and deactivation are distinct actions and have different outcomes. By

deactivating a situation instance, SCENE is indicating to the rule engine that

such situation became a past situation. However, information about that situation

instance still exists in the DWM, and will only cease to exist after its retraction.

SCENE also inherits the temporal operations implemented by Drools Fusion

and applies them to situation instances. SCENE’s temporal operations rely on

the comparison between the activation and deactivation moments of situation in-

stances. By contrast to events, which can only be in the past, situations may

be currently active, case in which they will not have a deactivation time stamp.

Inactive situations (i.e., those in the past), in turn, have activation and deacti-

vation time stamps. For this reason, inactive situations support all the temporal

operations inherited from Drools Fusion, which cannot be said about active sit-

uations. Table 4.3 demonstrates the behaviour of SCENE’s temporal operations

when situation instances are active (dotted lines) and inactive (solid lines).
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Table 4.3: SCENE Temporal Operations.

Operation Active-Active Active-Inactive Inactive-Inactive

A before B
B after A

A

B

A

B

A meets B
B met by A

A

B

A

B

A overlaps B
B overlapped by A

A

B

A

B

A

B

A finishes B
B finished by A

A

B

A includes B
B during A

A

B

A

B

A

B

A starts B
B started by A

A

B

A

B

A

B

A coincides B
A

B

Active Situation

Inactive Situation

Code 4.9: Example of a situation rule using a temporal operation from SCENE.

1 rule "Sinusitis Detection"

2 @role(situation)

3 @type(Sinusitis)

4 when

5 $fever : Fever($patient : patient, active)

6 Headache(patient == $patient, this during $fever)
7 then

8 SituationHelper.situationDetected(drools);

9 end

Code 4.9 shows a rule whose conditions match against two types of situation

instances – ‘Fever’ and ‘Headache’ – in order to detected a third one: ‘Sinusitis’.

This rule performs the during temporal operation over situation instances of the

types ‘Fever’ and ‘Headache’ (line 6). The ‘active’ constraint of the pattern in

line 5 establishes that the ‘Fever’ situation must be still occurring for the rule

to be satisfied. The ‘patient == $patient’ constraint in line 6 ensure that the

patient participating in the ‘Headache’ situation is the same patient participating
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in the ‘$fever’ situation instance. Finally, the ‘this during $fever’ constraint in

line 6 establishes that the ‘Headache’ situation must have occurred (if it is a past

situation) or still be occurring (if it is a current situation) during the occurrence

of the ‘$fever’ situation instance.

If the conditions of this rule’s patterns are satisfied, SCENE creates and inserts

in the DWM a new situation of type ‘Sinusitis’ (line 8), which will have as a

participant the same patient participating in the ‘Fever’ and ‘Headache’ situations,

referenced by the variable ‘$patient’.

4.4 Model

The concepts discussed in Section 4.2 are used in the Hippocampus Module (HM)

to model the robot’s external world regarding perceived environmental threats,

as well as the robot’s internal status regarding its ‘fear’ and ‘confidence’ levels

depending on the environmental feedback. The tools introduced in Section 4.3,

especially SCENE, are used to implement and simulate contextual fear condition-

ing (discussed in Section 4.1) by gathering and temporally organising pieces of

contextual information, which are later assigned an emotional meaning reflecting

the status of the environment in relation to aversive stimuli.

The HM receives two distinct inputs. The first input is a set of environmental

stimuli represented by the vector ~s, which is the same set of stimuli input delivered

to the Amygdala Module (AM). However, unlike the AM, the HM does not require

input stimuli to be categorized into neutral and aversive. The second input is the

adrenaline signal outputted by the AM, a value in the range [0, 1] representing the

system’s emotional feedback in regards to the robot’s current state of affairs. The

higher the adrenaline signal, the higher the fear level of the system; and the lower

the adrenaline signal, the higher the system’s confidence level.

Situation management in the HM is based on the following definitions:

Definition 1. An event et is a collection of all stimuli detected by the robot’s

sensors at time t, so that et = [st1, s
t
2, ..., s

t
n], where sti is a normalized real value

sti ∈ [0, 1] representing the intensity of stimulus of type i detected at time t.

Definition 2. A situation S is composed of the sequence of events occurring during

its active period, so that Sj = [eaj
, eaj+1, ..., edj

]T , where aj and dj are, respectively,

the times of activation and deactivation of situation j. In the case Sj is a current

situation, then dj is the current time.

There are four situation types in the HM: unconditioned aversive (UA), neutral,
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safe and conditioned aversive (CA). These four situation types have been imple-

mented using SCENE and the conditions for their activation and deactivation

is highly dependent on SCENE’s temporal operators. The rules that instantiate

these situations are defined in a Drools Rule Language (DRL) file, which is pro-

vided in Annex I. The patterns of these rules are constantly matched against the

most recent adrenaline signal projected by the AM, which is continually updated

in the Drools working memory (DWM). The management of the four situation

types here defined is exemplified in Fig. 4.3 and the rules for their instantiation

can be summarised as follows:

• Unconditioned Aversive Situation: An UA situation indicates the periods of

time in which the robot was (or is, if it is a current situation) exposed to

aversive stimuli. It is activated when the adrenaline signal rises above a given

threshold (which is a predefined parameter of SAFEL) and is deactivated

when the adrenaline signal returns to normal levels. Therefore, its duration

is flexible and depends on the AM’s emotional feedback.

Figure 4.3: Situation Management in the Hippocampus Module (HM). Situations
from S1 to S7 are initially neutral. Neutral situations become safe situations if no
unconditioned aversive (UA) situation occur in a particular period of time after
their deactivation moment (dj), as exemplified by situations S1, S2 and S3. When
the adrenaline signal rises above a pre-determined threshold, an UA situation is
instantiated and all preceding neutral situations not yet categorised as safe become
conditioned aversive (CA) situations, which in this example are situations S4, S5,
S6 and S7. Note that, here we represent the temporal disposition of situations in a
simplified manner for the sake of didactics, but in the HM’s situation management
model, situations’ occurrence usually overlap each other.
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• Neutral Situation: Neutral situations are those that have no emotional mean-

ing to the robot, as they indicate neither safety nor threat. Unlike aversive

situations, whose duration may vary and is dictated by the fluctuation of the

adrenaline signal, neutral situations have fixed duration, which is given by a

predefined parameter of SAFEL named global situation duration (GSD).

• Safe Situation: Safe situations are previously neutral situations that, af-

ter being deactivated, were observed to not precede any aversive situation.

Therefore, ongoing safe situations indicate that the robot is not being ex-

posed to aversive stimuli at the current moment and has no expectations to

be exposed to aversive stimuli in the near future. The detection of safe sit-

uations is only possible after they are inactive (i.e., after they have become

past situations), since they depend on the evaluation of events posterior to

their own occurrence to be defined as such.

• Conditioned Aversive Situation: CA situations are previously neutral situa-

tions that, after being deactivated, were observed to precede an UA situation.

Thus, the occurrence of CA situations indicates that the robot is likely to

be exposed to aversive stimuli in the near future. They are said to be condi-

tioned because, similarly to conditioned stimuli, they were previously neutral

and acquired emotional meaning due to an association with an unconditioned

aversive situation. Like safe situations, CA situations can only be detected

after their deactivation moment, since they also depend on the evaluation of

events posterior to their own occurrence to be defined as such.

Code 4.10 shows the rule responsible for instantiating new UA situations. This

rule’s LHS is satisfied when the level of the latest adrenaline signal received from

the AM is above the predefined adrenaline threshold (line 5). If this condition

is satisfied, SCENE creates and inserts in the DWM a new situation instance of

type ‘UnconditionedAversiveSituation’ (line 7). Because of the truth maintenance

system discussed in Section 4.3.2, the newly created ‘UnconditionedAversiveSitua-

tion’ situation is automatically deactivated when the adrenaline level drops below

the predefined adrenaline threshold. The properties of events such as Adrenaline

and situations such as UnconditionedAversiveSituation are defined in Java classes.

All situation instances are relayed from the HM to the Working Memory Mod-

ule (WMM), with the exception of UA situations. The main task of the WMM,

which will be further discussed in Chapter 5, is to predict the occurrence of aver-

sive stimuli. Therefore, the WMM must comprehend and be aware of which event

patterns precede the occurrence of aversive stimuli. UA situations are not sent
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Code 4.10: Drools rule for instantiating an unconditioned aversive situation.

1 rule "Unconditioned Aversive Situation Instantiation"

2 @role(situation)

3 @type(UnconditionedAversiveSituation)

4 when

5 $adrenaline : Adrenaline (level >= hippocampus.getAdrenalineThreshold())

6 then

7 SituationHelper.situationDetected(drools);

8 end

Code 4.11: Example of temporal operation in the Drools rules of the Hippocampus
Module.

1 rule "Conditioned Aversive Situation Projection"

2 salience 20

3 when

4 $ua : UnconditionedAversiveSituation (active)

5 $neutral : NeutralSituation(projected, this before $ua)
6 then

7 $neutral.projectAs("aversive");
8 retract($neutral);
9 end

to the WMM because they co-occur with aversive stimuli instead of preceding it,

thus having no valuable information for the WMM in terms of predictions.

The HM projects situation instances to the WMM along with their emotional

category, i.e., neutral, safe or CA. Consequently, every situation instance is sent in

two distinct moments to the WMM, first when they are still neutral situations, and

then a few time steps later when the HM is able to categorise them into either safe

or (conditioned) aversive. The dual submission of the same situation instance, but

with different situation types, is essential for the WMM to perform its associative

learning, which is discussed in Chapter 5.

Code 4.11 shows the rule responsible for projecting CA situations to the WMM

when they are detected, which contains a temporal operation. This rule’s patterns

are satisfied when an active UA situation is detected (line 4) and there are neutral

situations (which have already been projected to the WMM categorised as neutral

situations) occurring before (which is the temporal operation) the detection of that

UA situation (line 5). If these conditions are satisfied, then those same neutral

situations are projected once again to the WMM (line 7), but this time categorised

as CA situations, and then retracted from the DWM (line 8).

Fig. 4.4 shows an example of situations’ life-cycle over time that is more realistic

than the example given in Fig. 4.3, where Fig. 4.4a shows the adrenaline signal over

time, and Fig. 4.4b, Fig. 4.4c and Fig. 4.4d show situations’ status in the system

at time t10, t13 and t14, respectively. The activation and deactivation moments
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Figure 4.4: Example of situations’ status over time. In Fig. (b), (c) and (d), the
horizontal axis indicates the time step, and overlapping situations are vertically
disposed, for the sake of readability. (a) The behaviour of the adrenaline signal
over time. Fig. (b), (c) and (d) show the status of situations’ type at times t10,
t13 and t14, respectively.

of situation Si, which are ai and di respectively, are given by the time stamps

delimiting the duration of situation Si. For instance, situation S1 has activation

time a1 = t1 and deactivation time d1 = t5, situation S2 has activation time a2 = t2

and deactivation time d2 = t6, and so on. Analogously, S1 = [et1 , et2 , et3 , et4 , et5 ],

S2 = [et2 , et3 , et4 , et5 , et6 ], and so on.

Observe that situations can overlap each other. For example, situation S2 is

activated while situation S1 is active; situation S3 is activated while situations S1

and S2 are active, etc. Consequently, two or more situations can contain the same

event. For instance, event et4 belongs to situations S1, S2, S3 and S4. Also, neutral

situations can be either current or past. For instance, in Fig. 4.4b, situations from

S1 to S6 are past situations because they have already finished by time t10, while

situations S7, S8 and S9 are current because they are still occurring at time t10.

A new neutral situation is activated every fixed number of time steps given by

an internal parameter of SAFEL called situation detection delay (SDD) (Fig. 4.4b),

which defines the period of time between the activation of a given situation and

the activation of its predecessor situation. The SDD used to be a predefined user

parameter in previous versions of SAFEL. In order to transform the SDD into an



CHAPTER 4. HIPPOCAMPUS MODULE 99

internal parameter and reduce users’ parameter settings, we investigated which

ratio between the global situation duration (GSD) and the SDD that yields the

highest predictive performance from SAFEL (Rizzi, Johnson and Vargas 2016).

This study is presented later, in Section 5.4.4.

As previously mentioned, neutral situations may become safe or (conditioned)

aversive after their deactivation moment, but only if certain constraints are sat-

isfied. For instance, all situations detected in Fig. 4.4b are still neutral because

nothing can be said about them at time t10. To be considered safe, a situation

must be a past situation and be followed by at least two consecutive past neutral

situations. This is to ensure that this situation will never precede or co-occur with

any CA or aversive situation. To be considered CA, a situation must precede a

peak in the adrenaline level and not have been categorised as safe. All situations

are still considered neutral at time t10 in Fig. 4.4b because none of these conditions

has been matched by time t10.

However, at moment t13 in Fig. 4.4c, the conditions for categorising a neutral

situation into a safe situation are satisfied by the current status of situation S1.

At time t13, situation S1 is past and precedes the past neutral situation S5 that,

in turn, precedes the past neutral situation S9. Thus, at time t13, situation S1

leaves the status of neutral and becomes a safe situation. Similarly, the conditions

for categorising a neutral situation as a CA situation are also satisfied by the

current status of situations going from S2 to S9 at time t14 in Fig. 4.4d. Note

in Fig. 4.4a that the adrenaline level rises above the predetermined adrenaline

threshold at time t14. Thus, at time t14, situations going from S2 to S9 leave the

status of neutral and are classified as CA situations. This change of status occurs

because these situations are the only currently neutral situations preceding the

rise of adrenaline at time t14 that have not yet been categorised as safe.

Safe and CA situations are immediately projected to the WMM in the moment

they are categorised as such, whereas neutral situations are projected to the WMM

at their deactivation time. Consequently, every factually safe and CA situation is

sent twice to the WMM: first when it is still neutral and has just been deactivated;

and then again a few time steps later, when the HM is able to determine whether

it is actually a safe or CA situation. In the example of Fig. 4.4, for instance,

situation S1 is sent to the WMM at time t5 as a neutral situation and at time

t13 as a safe situation. Analogously, situation S5 is sent to the WMM at time t9

as a neutral situation and at time t14 as a CA situation. The dual submission of

the same situation instance, but with different situation types, is essential for the

WMM to perform its task, which is discussed in the next chapter.
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4.5 Final Considerations

This chapter presented the design and implementation of the Hippocampus Module

(HM), which is the module of SAFEL responsible for context processing. The

model of the HM has been first proposed by us in Rizzi Raymundo, Johnson

and Vargas (2015), implemented and evaluated in Rizzi et al. (2017) and later

improved by us in Rizzi, Johnson and Vargas (2016). SAFEL has suffered minor

modifications after the improvement proposed in Rizzi, Johnson and Vargas (2016),

which are mostly related to terminology and number of conditioned aversive (CA)

situations detected per unconditioned aversive (UA) situation.

The HM model attempts to simulate two essential cognitive processes tak-

ing place in the hippocampus, which are the associative representation and the

sequential organisation processes, discussed in Section 4.1.2. While associative

representation regards to the hippocampus capacity of multi-stimulus association,

the sequential organisation addresses the temporal organisation of events compos-

ing an episodic memory. Together, these two cognitive processes create the basis

for context processing, representation and memory in the brain, and are believed

to also underlie the phenomenon of contextual fear conditioning. To simulate these

cognitive processes, we have based the HM model on computational concepts of

knowledge representation and situation awareness, discussed in Section 4.2, which

are inspired by theories on the human cognitive processes of reasoning and context

representation.

We used Drools to implement the concepts presented in Section 4.2, which is

a comprehensive platform that provides all the necessary tools along with pow-

erful engines for developing systems based knowledge representation techniques.

We have also used SCENE, which is a robust platform that extends Drools and

facilitates the development of situation-aware systems.

Different from the Amygdala Module (AM), whose model is inspired by the

underlying neural mechanisms taking place in the amygdala regions, the HM has

been designed at a higher level of abstraction based on the hippocampal functions,

instead of physical and chemical phenomena. As discussed in Section 4.4, we have

used a rule-based situation-aware approach to capture the external context of the

robot in regards to environmental threats. Feedback from this external context

is later integrated with feedback from the AM in order to simulate the robot’s

internal and emotional context.

We have opted for designing the HM based on concepts of knowledge repre-

sentation because we believe that a considerably large ANN would be required
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to simulate the complex temporal and multi-stimulus information handled in hip-

pocampal regions of the brain. The long-term potentiation (LTP) process taking

place in the hippocampus (Eichenbaum 2004) is considerably more complex than

the basic LTP process simulated in the AM. However, we believe that it may be

possible to partially simulate hippocampal functions, especially associative repre-

sentation and sequential organisation, using deep neural networks (Schmidhuber

2015), which we intend to investigate in future work.

Preliminary tests of the HM have been performed (Rizzi et al. 2017; Rizzi,

Johnson and Vargas 2016). However, these preliminary tests have been left for

discussion in Chapter 5 because they also depend on the functioning of the Working

Memory Module (WMM) of SAFEL.



Chapter 5

Working Memory Module

Unlike the previously discussed modules of SAFEL, which are inspired by regions

of the brain (the amygdala and the hippocampus), the module presented in this

chapter is rather inspired by a cognitive function of the brain, known as the working

memory. A variety of studies indicate that prefrontal cortex areas and the ante-

rior cingulate region (Fig. 5.1) are involved in working memory functions (LeDoux

2003; Krause-Utz et al. 2014; Spellman et al. 2015). The working memory is be-

lieved to play an important role in consciousness, learning and reasoning (Baddeley

and Hitch 1974; Baddeley 1995).

Figure 5.1: Regions of the brain involved in working memory functions.

The following sections discuss neuroscience theories of the working memory

functions that have inspired the Working Memory Module (WMM) of SAFEL and

how we have computationally designed it. Section 5.1 discusses such theories of the

working memory and how it creates the experience of conscious fear. Section 5.2

discusses the underlying technology used in the implementation of the WMM,

whose design is later presented in Section 5.3. Finally, Section 5.4 presents the

preliminary experiments that have been performed to evaluate the Hippocampus

102
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Module (HM) and the WMM.

In regards to the research questions introduced in Section 1.4, this chapter

contributes to answering them by:

1. addressing all the requirements of a situation-aware intelligence (Section 1.3.1)

and of an emotional intelligence (Section 1.3.2), by combining and associat-

ing the knowledge generated in the Amygdala Module (AM) and HM;

2. presenting the design and implementation of associative learning between

contextual and emotional knowledge using a binary classification tree, which

is the third and final approach of the hybrid model of SAFEL.

3. analysing experiments performed with a real robot that demonstrate the

successful application of the HM and the WMM for robotics purposes.

5.1 Biological Background

In Chapter 3 and Chapter 4 we have discussed cued and contextual fear condition-

ing, respectively. However, we have not yet addressed the conscious experience of

fear that occurs to an individual when he or she is in danger. Theories of con-

sciousness have been proposed to date that relate it with a cognitive function of

the brain, known as the working memory (Baddeley and Hitch 1974; Baddeley

1995), which LeDoux (2003) describes as ‘a serially organized mental workspace

where things can be compared and contrasted and mentally manipulated’.

According to LeDoux (2003), sensed stimuli and stored representations of con-

text are fused in the working memory through interactions between brain regions

that include the pre-frontal cortex, the hippocampus and related areas in the tem-

poral lobe. In the case of a fearful experience, these interactions will also involve

the amygdala and related regions, which in turn warn the working memory about

the activation of the fear system of the brain. In fact, the working memory receives

a greater number and variety of inputs in the presence of emotional stimuli than

in the presence of other types of stimuli. The influence of the amygdala on the

conscious perception of an object or event is believed to be the main condition for

the subjective experience of an emotional state of fear.

We have discussed in Chapter 4 that the amygdala and hippocampal systems

work in parallel, forming what LeDoux (1999) calls, respectively, as emotional

memory and memory of emotion. If an individual is exposed to stimuli that

were present during a previously experienced trauma, both the amygdala and

hippocampal systems are activated and work in parallel to retrieve emotional and
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contextual memories about the event, respectively. Because these two memories

are simultaneously recovered in response to the same stimuli, they are experienced

as if they were one single memory.

According to LeDoux (1999), the working memory is where these memories

are retrieved, fused and consciously experienced as if they were a unified memory.

In other words, the working memory allows the association of explicit contextual

memory formed in the hippocampus with implicit emotional memory formed in

the amygdala to create memories that are contextual and emotional at the same

time. In addition, because its functions involve conscious reasoning, the working

memory allows the individual to consciously reason and decide a course of action

based on the information made available by that unified contextual and emotional

memory.

The WMM of SAFEL works in a similar manner by associating the temporal

patterns of situation instances formed in the Hippocampus Module (HM) with

their emotional meaning given by the Amygdala Module (AM), which may be

‘safe’ or (conditioned) ‘aversive’. The main function of the WMM is to retrieve

fear memories based on the current context of the robot to predict the occurrence

of imminent unpleasant events. To do that, the WMM compares the current state

of affairs of the robot with previously experienced situations that preceded an

unpleasant event in the past. Whenever the WMM detects a current situation that

is similar to a situation that preceded an aversive stimulus in a past experience,

it will retrieve the same state of fear triggered at that time and warn the robot

controller that an undesirable situation is likely to happen in the near future. By

doing so, SAFEL provides the robot with an opportunity to act in advance and

maybe prevent the occurrence of that aversive stimulus.

5.2 Underlying Technology

As previously discussed, the main task of the WMM is to associate the contextual

memories formed in the HM with their emotional meaning given by the AM. This

associative learning is implemented in the WMM using a binary classification tree

(Breiman et al. 1984), which is used to classify situation instances generated in the

HM into safe or (conditioned) aversive. In a binary classification tree, exemplified

in Fig. 5.2, each node corresponds to a binary predicate on one attribute, where

one branch from the node represents positive instances of the predicate and the

other branch represents negative instances. Each leaf node is labelled by a class,

which in our case depicts an emotional category (safe or aversive). For example, to

predict the emotional category of a situation instance, a path from the root node
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Figure 5.2: Example of a binary classification tree.

to a leaf must be found. This path depends on the values of the visited nodes in

the tree, each of which is depicted by a predicate on a particular temporal property

of situation information.

Classification trees are generated by first analysing the training dataset and

determining a hierarchy of binary splits so that the data in each of the descendant

nodes are ‘purer’ than the data in their parent node. The concept of ‘purity’ here

is related to the class homogeneity of a node, where the smaller the number of

classes related to a node, the ‘purer’ this node is.

Different metrics can be used to measure node impurity. We use the Gini Index

(GI) as impurity metric to generate the classification tree of the WMM, which is

given by Eq. 5.1.

GI(t) = 1−
c−1∑
i=0

[p(i|t)]2, (5.1)

where c is the number of classes and p(i|t) is the proportion of cases belonging to

class i at a given node t. A node with just one class is said to be a pure node

and has GI equals zero. Nodes with more than one class have positive GI, where

the more classes it has, the higher the GI. The generation of the classification

tree consists of splitting nodes so to minimize their impurity index. This process

is recursively repeated for the child nodes, stopping when a pure node is found

or when a stopping criterion is reached, such as a maximum number of splits or

maximum tree depth.

The following design reasons led us to adopt the binary classification tree for

implementing the associative learning of the WMM:

• Interpretable: classification trees are white-box algorithms, thus allowing

one to easily interpret the logic behind the robot’s learning and emotional

response to stimuli.

• Implicit feature selection: classification trees are built by dynamically select-

ing the most informative features, and ignoring information that is irrelevant
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for the predictions. This is essential for the WMM because in most cases

only a subset of the robot’s sensors will provide valuable information about

the pattern of a specific situation. For instance, a robot may require a cam-

era, face recognition algorithms and sonar sensors to detect that a person is

nearby, but many other sensor information (e.g., internal temperature, ac-

celerometer and battery level) would not give valuable information for this

particular task. Analogously, some predictions of aversive situation could

heavily rely on information from some sensors while disregarding informa-

tion from another sensors. If predictions are based on the wrong kind of

stimulus information then the predictive performance could be potentially

compromised. Therefore, the WMM must be capable to detect and ignore

stimulus information that does not contribute to characterizing and predict-

ing aversive situations.

• Fast training and classification: the classification tree is an algorithm well

known by its fast training and classification processes (Lim, Loh and Shih

2000). This is important because SAFEL’s emotional learning greatly relies

on constantly retraining the classifier of the WMM at runtime. The slower

the retraining and classification processes are, the more time the robot would

take to present an emotional reaction to the current state of affairs.

• Non-parametric: classification trees are non-parametric algorithms, which

means that they do not require the specification of parameters that depend

on the distribution of data. One of SAFEL’s goals is to be of general pur-

pose. To be applicable to a variety of environmental characteristics, SAFEL’s

learning must be independent of data shape.

5.3 Model

The WMM is the module of SAFEL where the association between context and

“fear” takes place. In the Working Memory Module (WMM), the temporal pat-

terns of situations are memorised and associated with their respective labels (safe

or (conditioned) aversive). Two processes take place in the WMM. First, a feature

extraction is performed in order to generate compacted versions of situational in-

formation containing only the most relevant characteristics of situations’ temporal

patterns. Later, these compacted situations are delivered to a binary classification

tree for associative learning and prediction. These two processes are respectively

addressed in Section 5.3.1 and Section 5.3.2.
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5.3.1 Unitary Representation of Context

In the WMM, situation instances coming from the HM pass through a feature

extraction process in order to generate compacted versions of situational informa-

tion. This phase consists of extracting relevant information that characterizes the

pattern of stimuli’s variation over time during the active time of the respective

situations.

Chapter 4 has largely discussed the meaning of event and situation from a

conceptual and computational point of view. A mathematical representation has

been given to these concepts in Def. 1 and Def. 2, respectively, which are relevant

for the explanation given in this section. For convenience, we paraphrase below

the definitions of Chapter 4. Def. 1 states that:

An event et is a collection of all stimuli detected by the robot’s sensors

at time t, so that et = [st1, s
t
2, ..., s

t
n], where sti is a normalized real value

sti ∈ [0, 1] representing the intensity of stimulus of type i detected at time t.

While Def. 2 states that:

A situation S is composed of the sequence of events occurring during its

active period, so that Sj = [eaj
, eaj+1, ..., edj

]T , where aj and dj are, respec-

tively, the times of activation and deactivation of situation j. In the case Sj

is a current situation, then dj is the current time.

From Def. 1 and Def. 2, and supposing that aj = 1 and dj = m, and that the

robot has n sensory inputs, we have that:

Sj =


e1

e2

...

em

 =


s1

1 s1
2 · · · s1

n

s2
1 s2

2 · · · s2
n

...
...

. . .
...

sm1 sm2 · · · smn

 . (5.2)

From Eq. 5.2 we can say that

Sj = [s1, s2, ..., sn], (5.3)

where si = [s1
i , ..., s

m
i ]T and represents the behaviour of stimuli si from time t = 1

to time t = m, which are the activation and deactivation moments of situation Sj.

The feature extraction process taking place in the WMM consists of generating

from Sj a new piece of situation information S ′j, given by Eq. 5.4:

S ′j = [s1, ..., sn, γ1, ..., γn, η1, ..., ηn], (5.4)
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where si, γi and ηi are, respectively, the mean, skewness and number of local

maxima of si (Eq. 5.3). The mean value of stimulus si, given by si, provides

the average intensity of stimulus si during the active time of situation Sj. On

the other hand, the skewness of stimulus si, given by γi, provides the approximate

time interval when stimulus si was more intense during the active time of situation

Sj. Finally, the number of local maxima of stimulus si, given by ηi, provides the

detection frequency of stimulus si during the active time of situation Sj. Together,

si, γi and ηi provide three essential information on the behavioural characteristics

of stimulus si during the active life-cycle of Sj.

We discussed in Section 4.1 the unitary representation of context in the brain,

which represents the main distinction between contextual and cued conditioning.

While information processed in the amygdala is purely perceptual (e.g., visual, au-

ditory, olfactory), the unitary representation of context formed in the hippocampus

binds all these stimuli along with their inter- and temporal relationship. The fea-

ture extraction performed in the WMM is analogous to this unitary representation

of context in the brain in the sense that it binds the stimuli composing a situation

instance in order to extract intrinsic data characteristics depicting their inter- and

temporal relationship during the active time of that situation.

The binding of stimuli is, therefore, performed in two steps. The first part of

stimuli binding takes place in the HM, which assembles stimuli information within

particular time intervals and attaches to them an emotional meaning, based on

the emotional feedback from the AM. At this phase, it is still unknown to SAFEL

how stimuli composing situations relate to each other. The second part of stimuli

binding takes place in the WMM, which consolidates situation information coming

from the HM into a unified representation that expresses the temporal relationship

of stimuli composing individual situation instances. After both stimuli-binding

phases are completed, in the HM and WMM respectively, SAFEL becomes aware

not only of the emotional meaning of situations but also of the temporal relation-

ship between stimuli composing them.

S ′j can also be seen as an approximated representation of Sj, in the sense that

it does not comprise all the information contained in Sj, but describes Sj with

sufficient accuracy. This is important especially because the resulting situation in-

stances will later compose a dataset for training the classification tree, as explained

in Section 5.3.2. By using approximate representations of situation instances in-

stead of the actual situation instances themselves we prevent poor generalization

of situations’ temporal properties derived from overfitting the training data.

This feature extraction phase is also useful for data compression, by reducing

dimensionality and potential data redundancies. The volume of information about
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situation j is reduced from a matrix Sj of size n×m to a vector S ′j of size 3n after

the feature extraction. This is especially effective when m� n, which is, in fact,

the most common case, as the number m of time steps within a situation instance

is usually much larger than the number n of sensory inputs a robot may offer.

5.3.2 Associative Learning

The associative learning of the working memory module is implemented using a

binary classification tree (Breiman et al. 1984), whose basic functioning and main

advantages has been briefly explained in Section 5.2. The situation information

resulting from the feature-extraction process described in Section 5.3.1 composes

the input set delivered to the classification tree for both training and prediction.

The classes, i.e., the tree’s resulting predictions, represent the emotional meaning

of the respective situations, which may be either safe or (conditioned) aversive. In

other words, the tree learns the temporal patterns of situations instances stored

in S ′j and associates them with their respective emotional label (safe or aversive).

As mentioned in Section 4.4, every single situation instance is relayed in two

distinct moments by the HM to the WMM: first when it is a neutral situation,

and later when the HM can ensure that it is either safe or aversive (a conditioned

aversive (CA) situation in this case). Emotionally categorised situations (i.e.,

which are either safe or aversive) are used to train the classification tree, which

then learns the temporal patterns that characterise safe and aversive situations in

the robot’s current environment. On the other hand, the tree uses emotionally

uncategorised situations (i.e., neutral situations) to try and predict whether an

unconditioned aversive situation will occur in the near future, by matching its

temporal patterns against those of previously learned situations.

Therefore, at time dj (i.e., when situation Sj has just been deactivated), the

HM will send Sj as a neutral situation to the WMM, where it is transformed into

S ′j and submitted to the binary tree for classification. The tree will classify that

situation into safe or aversive based on past situation experiences of the robot.

Then, at time tn, where tn > dj, situation information Sj will be sent to the

WMM once again, but this time labelled as either safe of aversive. The generated

situation pattern S ′j and its type (safe or aversive) will now be used for retraining

the classification tree, providing it with one more situation experience where to

base its future predictions.

Fig. 5.3 exemplifies how the learning and prediction processes take place in

the WMM. At time t0, situation S1 is sent for the first time from the HM to the

WMM, when it is still a neutral situation. The classification tree in the WMM
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Figure 5.3: Progression of learning and prediction in the Working Memory Module
(WMM).

will attempt to predict the emotional meaning of S1 based on learned patterns of

previously experienced situations. Because the classification tree has not previ-

ously experienced any situation that is similar to S1, it may output an incorrect

emotional response.

At time t10, the HM is able to ensure that S1 was actually a conditioned aversive

(CA) situation because after its deactivation moment S1 was observed to precede

an unconditioned aversive (UA) situation. Situation S1 is sent for the second

time from the HM to the WMM, but this time labelled as a CA situation. This

information is used in the WMM to retrain and update the classification tree,

which will then become able to recognise and associate situations similar to S1

with fear.

At time t200, situation S24, which is similar to situation S1 in regards to stimuli

temporal pattern, is sent for the first time from the HM to the WMM as a neutral

situation. When arriving in the WMM, the neutral situation S24 will pass through

the feature extraction process and then be compared by the classification tree

with previously experienced situation instances. The classification tree is likely to

recognise the similarity between situations S1 and S24 and return the emotional

label that has been assigned to situation S1 at time t10, which is conditioned

aversive. Consequently, the WMM will be predicting that situation S24 is aversive

before the HM can provide evidence for that. If correct, this prediction would

warn the robot with antecedence about a potential imminent threat, thus giving

the robot a chance to act towards avoiding this threat before its occurrence.

Note that pre-training SAFEL prior to environmental exploration is optional.
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The dataset used to train the decision tree can start empty, with no knowledge

about the current environment. As the robot explores the environment and ex-

periences new aversive situations, the dataset grows and the tree is retrained.

Therefore, the robot’s capability to predict imminent aversive events improves

with experience, as it explores the environment.

In addition, the tree is constantly retrained with the latest pre-defined number

of observed situation instances. This means that the WMM is capable of gradually

forgetting previously learned associations that are no longer consistent with the

current state of the robot’s environment. For instance, if a particular situation

that was safe in a previous environment is now aversive in the current environment,

then the classification tree will gradually forget the previous association of that

situation with safety and create a new association with fear. This re-learning

process occurs gradually as the tree is retrained with information from the most

recent observations of the robot in the new environment.

5.4 Preliminary Tests

The experiment performed here aim to evaluate exclusively the Hippocampus Mod-

ule (HM) and the Working Memory Module (WMM). This means that the Amyg-

dala Module (AM) is not included in the evaluation of the experiments presented

in this section. A proper evaluation focused exclusively on the performance of the

AM has been discussed in Chapter 3. Also, a full evaluation of all the modules of

SAFEL working in conjunction is discussed in depth in Chapter 6.

This section presents three experiments. The first experiment, presented in

Section 5.4.3, evaluates the first version of the HM and the WMM in terms of

predictive performance and robustness. The second experiment, presented in Sec-

tion 5.4.4, proposes a method for improving the predictive performance of these

two modules of SAFEL while reducing user parameter setting. Finally, the third

experiment, presented in Section 5.4.5, briefly discusses a comparative analysis

with the BEL model, which has been previously discussed in Chapter 2.

All the experiments presented in this section have been conducted using a

NAO humanoid robot, model T14 (Fig. 5.4a). NAO is one of the most widely

used robots in the Human-Robot Interaction (HRI) field of research (Weiss and

Bartneck 2015). By using NAO, we hope to facilitate the reproduction of our

work, as well as the implementation of future comparative studies.

In addition, by using a physical robot in these experiments, we aim at exposing

SAFEL to noises and reading failures characteristic of real robot sensors. In a

virtually simulated environment, the quality of sensor reading could be greatly
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(a) The NAO robot, model T14.

 mark 68 mark 64

(b) Examples of NAOmark.

Figure 5.4: Gadgets used in the experiments.

improved in comparison to real sensors, providing smoother data and possibly

facilitating SAFEL’s predictions. All sensor noises and detection failures were

preserved during the experiments, so to analyse how it would affect SAFEL’s

prediction performance. We have used four types of sensor readings to represent

NAO’s perception of environmental stimuli, which are:

• s1: light level,

• s2: number of human faces detected,

• s3: identification of NAOmarks, which are landmark images with specific

patterns that NAO robots can recognise and identify (Fig. 5.4b),

• s4: sound detection confidence, which is a number in the range [0,1] depicting

NAO’s confidence that a particular detected sound is real.

In the experiments presented here, the aversive stimulus is represented by dark-

ness, which is an analogy to the natural fear and stress that most animals expe-

rience when they become unable to see. Hence, before running the experiments,

the HM of SAFEL was configured to increase adrenaline levels whenever NAO de-

tected low light levels. Remember that the AM is not part of this experiment and,

therefore, the adrenaline signal must be fixed in the HM according to a given con-

dition, which in this case is the light level. The remaining environmental stimuli

(i.e., human faces, NAOmarks and sound detection) were initially neutral.

In order to create a controlled test environment, where we could analyse the

influence of the same set of situations under different parameter settings, we have

separated the experiments into three phases. First, we collected data by repeat-

edly presenting the above-listed stimuli to NAO and then storing NAO’s sensor
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readings. In the second phase, we assembled the collected data in a specific time

line, creating a dataset that was reproduced for different parameters and configu-

rations. Lastly, we ran SAFEL on each dataset independently, during which the

instances of the datasets were presented sequentially to SAFEL as if it was being

executed in the robot at real time. The first and second phases are explained

next in Section 5.4.1 and Section 5.4.2. The third phase is explained in the re-

sults description of the respective experiments (Section 5.4.3, Section 5.4.4 and

Section 5.4.5).

5.4.1 Data Collection

We have collected data respecting six distinct situation patterns. A situation pat-

tern is the set of main temporal aspects (such as average time delay and temporal

sequence of stimuli) that characterizes a given situation. Hence, a situation in-

stance is in a sense an instantiation of a situation pattern and must have all the

temporal properties that characterise that pattern (e.g., a specific order of stimulus

detection). This is not to be confused with how a situation instance instantiates

a situation type, as discussed in Chapter 4. Note that a situation instance instan-

tiates a situation type in terms of its properties and participants, while the same

situation instance can instantiate a situation pattern in terms of the temporal

organization of its composing stimuli.

Fig. 5.5 shows examples of NAO’s sensor readings for each of the six situation

patterns induced in the experiment. For example, the pattern of the situation

observed in Fig. 5.5b is characterised by the detection of a human face followed

by the detection of a NAOmark. To collect data for situation instances with

this pattern, we first presented a human face to the robot for about five seconds.

Afterwards, the human face was hidden from the robot and a NAOmark was

presented instead, also for about five seconds. This procedure has been performed

at good light conditions, so the robot could easily detect both human faces and

NAOmarks. The same procedure was then independently repeated several times

in order to collect many different instances of this same situation pattern.

Analogously, to collect instances like the one seen in Fig. 5.5c, we presented the

NAOmark and a human face at the same time to the robot at good light conditions

for about five seconds and then moved both away from the robot’s range of vision.

Again, we repeated this procedure several times in order to collect many different

instances of this same pattern. The same sequence of steps was performed for

collecting instances of the remaining situation patterns in Fig. 5.5.

Fig. 5.5a depicts an example of a conditioned aversive (CA) situation followed
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Figure 5.5: Example of situation instances for each of the six situation patterns
induced in the experiment. Vertical axis depicts NAO’s sensor input after normal-
ization. Horizontal axis depicts the time line counted in numbers of events.

by an aversive stimulus, which in this case is darkness. The CA situation is charac-

terised by the presentation of the NAOmark at good light conditions, followed by

the presentation of a human face (demonstrated in Fig. 5.6). Because this pattern

is always followed by the presentation of an aversive stimulus, it is then considered

to be the pattern of a CA situation. On the other hand, all the other patterns

(Fig. 5.5b to Fig. 5.5f) represent safe situations, because they never precede any

aversive event.

Observe that some situation patterns, such as the ones in Fig. 5.5b and Fig. 5.5c,

are somewhat similar to the pattern of the CA situation in Fig. 5.5a. This has

been purposely designed in the experiment, as we desire to verify SAFEL’s capa-

bility to effectively differentiate safe situations from CA situations, even when the

patterns of these situations are similar to a certain extent.

Although duration and delay of stimuli exposition to the robot were similar

among data collections, it was not rigorously timed, as it is part of the experiment

to evaluate SAFEL’s generalisation capability. Besides, in real world cases, situ-

ation instances of the same situation pattern may have similar temporal delays,

but rarely equal.
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Figure 5.6: Procedure for presenting the aversive event to the robot. (a) Lights are
kept on, while a specific NAOmark is presented to NAO for about 5 seconds. (b)
With lights still on, the NAOmark is hidden, and then a human face is presented
to the robot for about 5 seconds. (c) Both human face and NAOmark are hidden.
Light is turned off.

5.4.2 Dataset Generation

We have generated 10 different datasets, which are composed of the situation in-

stances collected through the process explained in Section 5.4.1. The individually

collected situation instances were arranged in the datasets according to a specific

temporal sequence of situation patterns, which is identical for all the 10 datasets.

Fig. 5.7 demonstrates the process for generating the datasets used in this experi-

ment.

To generate a dataset, we randomly selected a situation instance matching the

first situation pattern of the chosen temporal sequence and concatenated this sit-

uation instance to the dataset. Then we repeated these steps for all the remaining

situation patterns in the chosen temporal sequence (Fig. 5.7). Because all sen-

sor noise and failures have been preserved during data collection, a few situation

instances may present incomplete or fragmented data. To prevent the temporal

positioning of a problematic situation instance from influencing the result, we gen-

erated in total 10 datasets base on the same sequence of situation patterns using

the above-mentioned method.

Only situation instances with no stimulus presentation (with the pattern of

Fig. 5.5f) were reused in the same dataset. Because they are basically the absence

of stimulation, situation instances of this pattern are highly similar to each other

and, therefore, can be reused without affecting the integrity of the experiment.

Situation instances of the remaining patterns (Fig. 5.5a to Fig. 5.5e) were not

reused in the same dataset.

Each dataset is equivalent to about 4.5 hours testing and contains 28 uncondi-

tioned aversive (UA) situations separated by intervals varying from 2 to 25 minutes
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Figure 5.7: Dataset generation process. First, we individually collected a number
of situation instances for each of the 6 situation patterns induced in this exper-
iment. Then, for each pattern in the chosen sequence of situation patterns, we
randomly select a situation instance of that pattern and concatenate it to the
dataset. This procedure was repeated 10 times, so to generate 10 distinct datasets
with the same sequence of situation patterns.

representing the set of initially neutral (and potential CA or safe situations), which

may comprise any of the situation patterns from Fig. 5.5b to Fig. 5.5f.

5.4.3 Experiment I – Analysing the Hippocampus and Work-

ing Memory Modules

This experiment basically evaluates the flexibility of SAFEL’s emotional response

by analysing SAFEL’s capability to generalize similar situation patterns while

being able to distinguish situation patterns that are markedly distinct.

We highlight that this experiment focuses on observing the robot’s emotional

response rather than its behavioural response. In fear conditioning, the behavioural

response of an individual is a reflex of its emotional response. The emotional re-

sponse, in turn, is the most important feedback in order to verify that the indi-

vidual is under fear, as well as to evaluate the success of fear learning. Thus, in

this experiment, we focus on studying the robot’s emotional response to different

stimulation in order to verify that it can, in fact, learn and predict aversive events

based on situational information. A thorough evaluation of SAFEL’s influence on

the behavioural response of a robot is performed in Chapter 6.
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Validation Methodology

The generated datasets have been evaluated according to three factors. The first

factor evaluates SAFEL’s performance under different pre-defined values of global

situation duration (GSD) and situation detection delay (SDD). SAFEL has been

analysed for three GSDs: 20 seconds (SDD = 4 sec), 30 seconds (SDD = 6 sec)

and 40 seconds (SDD = 8 sec). These GSD values have been selected based on the

average time required for the robot to completely observe the induced situation

patterns, which is around 30 seconds (±10 seconds).

The second factor evaluates SAFEL’s capability to ignore sensory inputs that

are not relevant for predicting the occurrence of aversive stimuli. In this regard,

we evaluated SAFEL on two versions of each generated dataset, one with and

another without sound sensor input. Since there are no particular patterns in the

sound information detected by NAO, it should have a minimal influence in the final

prediction. Thus, SAFEL’s outcome should be similar for both dataset versions.

Finally, the third factor evaluates the impact of different values of inter stimulus

interval (ISI) on SAFEL’s performance. ISI is the time interval between the offset

of the CA situation and the onset of the aversive event. For example, in this

experiment, the ISI is the time interval starting right after the presentation of

the NAOmark followed by a human face, and ending right before increasing the

darkness level of the environment. We have tested three values of ISI: 5, 10 and

15 seconds. The goal of testing different ISIs is to analyse whether the temporal

position of relevant events in the CA situation can influence SAFEL’s performance.

Considering all dataset generations (10 datasets, 3 ISIs and 2 sets of stimuli

input, with and without sound readings) and the 3 GSDs tested, this experiment

contains 180 dataset samples in total. All 180 generated datasets were tested

independently, and their instances were presented sequentially to SAFEL as if it

was being executed in the robot at real time. For each run, we started measuring

predictive performance after the classifier had processed the initial 20% of the

respective dataset. This decision was made because we assume that the classifier

would not have enough samples from each situation type (safe and conditioned

aversive (CA)) to create a differentiation among them without learning the initial

20% samples of each dataset.

The generated dataset samples have been divided into groups within each factor

that reflect the features under which they are being evaluated. The first factor,

which evaluates the influence of different values of the GSD parameter on the

classification performance, has been divided into three groups of 60 samples. The

first group comprises all dataset samples with GSD = 20 seconds, the second group

comprises all samples with GSD = 30 seconds, and the third group comprises all
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samples with GSD = 40 seconds.

The second factor, which evaluates SAFEL’s capability to ignore sensory in-

formation that is irrelevant for the prediction, has been divided into two groups of

90 samples. The first group comprises all dataset samples without input from the

sound sensor and the second group comprises all dataset samples with input from

the sound sensor.

The third factor, which evaluates the influence of different values of ISI on the

classification performance, has been divided into three groups of 60 samples. The

first group contains all datasets with ISI = 5 seconds, the second group contains

all datasets with ISI = 10 seconds, and the third group contains all datasets with

ISI = 15 seconds.

We have used the F-measure as the performance metric to evaluate SAFEL’s

efficacy for classifying neutral situations into safe or CA. The F-measure, also

known as F1-score, is the harmonic mean between precision and recall.

Results

Fig. 5.8 shows SAFEL’s performance regarding the three factors previously men-

tioned, which are GSD (Fig. 5.8a), input set (Fig. 5.8b) and ISI (Fig. 5.8c). In

order to study the effects of these three factors on SAFEL’s classification perfor-

mance, we have used the factorial analysis of variance (factorial ANOVA), where

the null hypothesis states that there is no statistically significant difference in

the classification performance among groups within a given factor, and is rejected

when p ≤ 0.05.

Through the ANOVA test, we have analysed the significance of the main ef-

fects (i.e., the three factors independently) and of the two-way interactions between

factors on the classification performance. The ANOVA test has not found a statis-

tically significant interaction between factors. The test also found no statistically

significant difference between groups within the first and second factors, which are

GSD and input set, respectively.

This result indicates that there is no significant difference in the classification

performance when varying the GSD from 20 to 40 seconds, which reinforces the

robustness of SAFEL for situation prediction. It also indicates that there is no

significant difference in classification performance between datasets with and with-

out sound sensor input. This demonstrates that SAFEL managed to mostly ignore

sound information, as expected. Because sound input had no particular patterns

regarding the presentation of aversive stimuli, if SAFEL had significantly consid-

ered it for classifying situations into safe or CA, the second group of datasets in

Fig. 5.8b could have presented much lower predictive performance.
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Figure 5.8: Average classification performance (F-measure) among dataset samples
per group, where error bars show the 95% confidence interval of the respective
group. Each graph shows the results for one of the evaluated factors, which are
(a) global situation duration (GSD), (b) input set (with or without sound input)
and (c) inter stimulus interval (ISI).

On the other hand, the ANOVA test has found a statistically significant dif-

ference in the classification performance among groups within the third factor

(p = 0.0001), which evaluates the variation of the ISI. However, even though the

ANOVA test has found a statistically significant difference among groups, we can

observe through the confidence intervals shown in Fig. 5.8c that such difference

is minimal. We can assert with 95% confidence level that the (true) performance

mean of the three groups in Fig. 5.8c are, respectively, within the intervals [0.66,

0.7], [0.68, 0.72] and [0.62, 0.66]. The closeness of the confidence intervals indicates

that, although the ISI can influence the classification performance, such effect is

not substantial.

Discussion Part I - Influence of the Events of Interest

In this section, we investigate how the positioning of the events of interest in the

CA situation can undermine the classification performance and how it potentially

influenced the result observed in Fig. 5.8c. We define events of interest in the

context of SAFEL’s implementation as all events that persistently precede UA

situations and are consistently absent in safe situations. Hence, events of interest

are the set of events that can provide the most valuable information to differentiate

a safe situation from a CA situation. The proper detection and management of
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Figure 5.9: Time positioning of the events of interest during CA situations. The
diagram shows the possible scenarios considering all combinations of GSD and
ISI used in the experiment. Green lines depict the different GSD values (20, 30
and 40 seconds). The different values of ISI are represented by black dotted lines,
which are (a) 5 seconds, (b) 10 seconds and (c) 15 seconds. Events of interest are
depicted by red and blue lines, which represent the presentation of NAOmark and
human face to the robot, respectively.

this information are, therefore, essential for consistently training the classification

tree of the WMM.

Fig. 5.9 demonstrates how a particular configuration of ISI and GSD can affect

the classification performance. In the performed experiment, the events of interest

for predicting the aversive event are the presentation of a NAOmark for about

5 seconds (red lines in Fig. 5.9) followed by the presentation of a human face for

about 5 seconds (blue lines in Fig. 5.9). The ISI is represented by dotted black lines,

which may have 5, 10 or 15 seconds (Fig. 5.9a, Fig. 5.9b and Fig. 5.9c, respectively).

Green lines represent the three tested durations (GSD) of CA situations, which

are 20, 30 and 40 seconds.

Observe in Fig. 5.9 that CA situations always contain all events of interest,

except when ISI = 15 seconds and the GSD is 20 seconds long (Fig. 5.9c). In

this case, the first 5 seconds of the events of interest (i.e., the presentation of
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Figure 5.10: Mean classification performance (F-measure) among datasets gener-
ated without sound information, grouped by their situation duration and ISI.

the NAOmark) are left out of the CA situation. As consequence, an incorrect

pattern of CA situation is used to train the classification tree. Instead of NAOmark

followed by face recognition (Fig. 5.5a), the tree is trained to recognized situations

with face recognition only (Fig. 5.5d) as CA situations. The problem is aggravated

by the fact that some safe situations have the same pattern. As consequence, the

tree is trained with inconsistent information, in which the same situation pattern

is sometimes presented as safe and sometimes presented as CA. This could explain

the difference in classification performance observed in Fig. 5.8c.

Fig. 5.10 shows the average performance for all evaluated datasets without

sound input. Note that SAFEL has consistently demonstrated better performance

for datasets where GSD = 20 seconds, except when ISI = 15 seconds, case in which

we can observe the largest performance decay of the graph. The result of Fig. 5.10

supports the explanation given above, indicating that the problem demonstrated

by Fig. 5.9c is indeed the main reason for the discrepancy observed in Fig. 5.8c.

In addition, the higher performance obtained when GSD = 20 seconds (in

comparison with the other GSDs values tested) shows that keeping the length of

the GSD as close as possible to the length of the events of interest leads to better

results (as long as it covers all the events of interest). One can speculate that if

the GSD is too large, the classifier may start considering noise from other events

(having happened long before the aversive event) that are not part of the events

of interest.

In conclusion, the GSD should not be too short, nor too large. The ideal

scenario is to have the GSD just large enough to cover the events of interest.

A way of tackling this problem is to create a mechanism that allows SAFEL to

automatically adjust the duration of situations, which is an improvement that we

indicate as future work.



CHAPTER 5. WORKING MEMORY MODULE 122

Discussion Part II - Performance Over Time

Through SAFEL, the robot learns continuously during its life cycle, thus improv-

ing its predictive capabilities with each newly detected stimulus. Fig. 5.11 shows

the classification outcome and its performance over time for two of the 180 datasets

tested with SAFEL. Fig. 5.11a depicts the most common result among the evalu-

ated datasets and Fig. 5.11b depicts the worst-case scenario. We have generated

similar graphs for each of the 180 datasets evaluated, which are available online1.

Observe in Fig. 5.11a that performance increases as the number of processed

situations increases. Classification recall is low for the first third of the detected

situations because SAFEL did not predict any of the aversive events happening

during that period. Recall improved for the second third of the detected situations,

but precision was affected because SAFEL misclassified a few safe situations during

that period. However, towards the end, both precision and recall improved as a

result of SAFEL correctly classifying most situations in the final third of the

dataset.

This demonstrates that SAFEL’s predictions get more accurate over time. The

classification tree starts empty, with no knowledge about the current environment,

which explains the low predictive performance in the beginning of the dataset.

As the robot experiences different situations, the classification tree is fed with

information about the environment and becomes able to provide better predic-

tions. The more experience the robot gains about the environment, the higher the

accuracy of SAFEL’s predictions.

The learning process described above is ubiquitous in nature. For example, in-

fant animals that have never seen or touched fire before could, by curiosity, naively

try to interact with it. After touching it for the first or second time and getting

painful burn sensations, they would become afraid of fire and stay away from it

in the future. However, note that ‘being afraid’ of fire is only possible after the

animal acquires the knowledge that fire can be harmful through a negative feed-

back, which in this case is pain. Something unpleasant such as pain, which in this

example plays the role of aversive US, must first occur for the learning process to

take place; and the more painful experiences the animal has with fire, the bigger its

confidence that fire is indeed dangerous. This is an interesting example to demon-

strate the two sides of pain. Although unpleasant and potentially debilitating if

too intense, pain is an essential negative feedback that helps animals to identify

and memorize environmental threats. This learning pattern, in which prediction

accuracy improves over time, is reflected in the majority of the experiments that

1Other graphs generated in this experiment are available at https://www.cs.kent.ac.uk/

people/rpg/cr519/safel.

https://www.cs.kent.ac.uk/people/rpg/cr519/safel
https://www.cs.kent.ac.uk/people/rpg/cr519/safel
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(a) Dataset without sound input, GSD = 30 s and ISI = 10 s.
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(b) Dataset without sound input, GSD = 20 s and ISI = 15 s.

Figure 5.11: SAFEL’s performance over time for two of the 180 datasets. Figure
(a) and (b) show four graphs each. The first graph presents the result of SAFEL’s
classification: red-line peaks indicate the occurrence of aversive events over time
and blue-line peaks indicate SAFEL’s predictions for aversive events. The last
three graphs show the F-measure, precision and recall of SAFEL’s classification
over time, respectively. These graphs show two types of over-time measurement:
the blue line depicts the cumulative performance over the integral test; the bars
depict an ‘instantaneous’ over-time measurement, where the performance is cumu-
lative only in the interval comprised by the respective bar.
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we have performed with SAFEL, and the speed with which performance improves

varies among datasets.

Fig. 5.11b shows an example of the performance over time when CA situations

happen to miss part of the events of interest. In our case, this happens when GSD

= 20 seconds and the ISI = 15 seconds, as previously explained and demonstrated

with Fig. 5.9. Fig. 5.11b shows a slow and modest performance improvement over

time, which decays after 2000 situations. In addition, classification precision is

poor from the beginning to the end of the experiment due to the large number of

safe situations classified as CA situations. As previously mentioned (see Fig. 5.9),

this is because the tree is being trained with inconsistent information, where the

same situation pattern is sometimes presented as safe and sometimes presented as

CA. Therefore, in this case, the classification tree has no basis for providing an

accurate prediction.

The experiments have demonstrated that, as long as all events of interest are

captured by the CA situations, the actual duration of these situations (i.e., the

GSD), as well as their ISI, do not meaningfully influence the classification per-

formance. This means that SAFEL is capable of adapting to different temporal

characteristics without performance decay. In addition, Fig. 5.8 shows that, al-

though all sensor noises and detection failures have been preserved, SAFEL was

capable of predicting aversive events based on situational information with 67% of

classification performance (F-measure) on average.

5.4.4 Experiment II – Improving the Predictive Perfor-

mance of SAFEL

Among others, the situation detection delay (SDD) and global situation duration

(GSD) are parameters of SAFEL that must be predefined by the user, as explained

in Section 4.4. The GSD defines a fixed duration for neutral situations, whereas

the SDD defines the period of time between the activation of a given situation and

the activation of its predecessor situation.

The value of the GSD and the SDD can highly influence the performance of the

classification tree in the WMM. For example, suppose two subsequent situations

S1 and S2. If SDD > GSD (Fig. 5.12a), which implies that d1 < a2, then the

stimuli information in between the time stamps d1 and a2 will not be collected

by the HM and, consequently, will not be sent to the WMM for learning and

prediction. Learning this piece of information could be important for the robot to

accomplish its task, and thus should not be ignored.

Now, suppose SDD = GSD, which implies that d1 = a2, as seen in Fig. 5.12b.
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a)

b)

c)

SDD > GSD

a1 S1 d1

a2 S2 d2

lost info

SDD = GSD

a1 S1 d1

a2 S2 d2

lost info

SDD < GSD

a1 S1 d1

a2 S2 d2

minimal info lost

Figure 5.12: Effect of different sizes of situation detection delay (SDD) on the loss
of situation information.

Even in this case, there is still some information being ignored. The WMM will

be able to learn the pattern of situations S1 and S2, but any sequence of events

starting after a1 and finishing before d2 will not be learned. Sequences of events

in between these two time-stamps could be forming the pattern of a CA situation.

Therefore ignoring this information could undermine the robot’s ability to predict

aversive situations.

Hence, it is important that SDD < GSD, as shown in Fig. 5.12c, so to min-

imize the loss of potentially essential information. However, defining how small

the SDD should be in relation to the GSD is still an open issue. Essential infor-

mation could be lost if the SDD is too large. If it is too small, then unnecessary

redundancy could be introduced to the system, possibly reducing its response time.

In the first versions of SAFEL, both the GSD and the SDD were pre-defined

parameters of SAFEL. While defining the GSD value is fairly intuitive and can be

easily induced from the problem the robot has to solve, finding an ideal SDD value

is a complex task. For example, suppose an elderly-care robot. One can induce

that the set of events relevant for the robot to predict that an elder person sitting

in a chair is going to stand and walk may occur between 10 to 30 seconds before

that action actually takes place. On the other hand, the set of events relevant for

predicting which room of the house that person intends to visit may occur between

one to two minutes before the person actually reaches that room. In this case, one

can estimate the GSD based on fairly stable factors that can be easily observable

during a few trials, such as the person’s walking speed, the design of the house, in

which room the person is and to which room he/she is moving to. However, one

cannot construct a similar reasoning nor make simple observations to estimate a
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satisfactory value for the SDD.

The goal of this experiment is to turn the SDD into an internal parameter

of SAFEL, which shall be calculated based on the value of the GSD. This cal-

culus shall take into consideration the result from an empirical study to find the

best quantitative relation between GSD and SDD in order to achieve the highest

predictive performance possible from SAFEL. By doing so, we aim at reducing

the complexity of SAFEL’s pre-configuration while increasing its predictive per-

formance.

Validation Methodology

The habit of overestimating danger is ubiquitous and essential in nature, as the

cost of underestimating a danger is usually much higher than that of overestimat-

ing it (LeDoux 1999). The same rule may apply to robots, as they inhabit our

physical world and may face similar threats. Thus, it is of our interest to take

into consideration SAFEL’s capability to mimic natures tendency to overestimate

danger. For this reason, we have used the F2-score as the performance metric to

evaluate SAFEL’s efficacy for classifying neutral situations into safe or conditioned

aversive (CA).

The F2-score is a modified version of the F1-score (or F-measure) that gives

more importance to recall (i.e., the fraction of aversive events that were predicted)

than precision (i.e., the fraction of correctly predicted aversive events). While

the F1-score is defined as the harmonic mean between precision and recall, the

F2-score gives twice the weight to recall in comparison to precision.

We have tested three different values of ISI. Consequently, three different ver-

sions of dataset have been created for each dataset generated according to the

methodology explained in Section 5.4.2. This has been done by varying the ISI

between 5, 10 and 15 seconds. Lastly, we ran SAFEL on each dataset indepen-

dently, during which the instances of the datasets were presented sequentially to

SAFEL as if it was being executed in the robot at real time.

Every dataset has been tested with three different values of GSD: 20, 30 and

40 seconds. As explained in Section 5.4.3, these GSD values have been selected

based on the average time required for the robot to completely observe the induced

situation patterns, which is around 30 seconds (±10 seconds). For each dataset,

predictive performance started to be measured after SAFEL had processed the

initial 20% of its instances, which we assume to be the minimum amount of samples

necessary for the classification tree to create a distinction between each situation

type (safe and CA).

We have tested nine SDD values, which were defined as a percentage of the
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corresponding GSD. For each combination of dataset configuration (3 ISIs and 3

GSDs), we tested an SDD equals 10% of the GSD, an SDD equals 20% of the

GSD, and so on, until 90% of the GSD.

Results

Fig. 5.13, shows the median and percentiles of predictive performance for each

SDD tested. It is clear from Fig. 5.13 that a higher performance is obtained when

the SDD is in between 10% and 30% of the GSD.

We used the factorial analysis of variance (ANOVA) to study the effects of dif-

ferent SDDs in SAFEL’s predictive performance, where the null hypothesis states

that there is no statistically significant difference in the predictive performance

among different SDDs, and is rejected when p ≤ 0.05. The ANOVA test found

statistically significant difference in performance (p ≈ 0) when comparing SDDs

smaller and bigger than 30%. This result can be observed in Fig. 5.14, which

compares the means of predictive performance by SDD. Fig. 5.14 shows that bet-

ter predictive performance is obtained when the SDD is 20% of the GSD, and

the difference in performance is statistically significant when compared with SDDs

ranging from 40% to 90% of the respective GSD. However, the difference is not

statistically significant when comparing SDDs between 10% to 30% of the GSD.

When observing the interactions between the different values of SDD and ISI
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Figure 5.13: Boxplot of the predictive performance of SAFEL by SDD. On each
box, the central red mark is the median, the edges of the box are the 25th and 75th

percentiles, the whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted as red marks.
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Figure 5.14: Comparison of performance means by SDD. Each performance mean
is represented by a mark, and their respective 95% confidence intervals are rep-
resented by error bars. Two performance means are significantly different if their
intervals are disjoint. The highest performance mean is highlighted in blue. For
the remaining performance means, it is represented in red if there is a statistically
significant difference from the highest performance, otherwise they are represented
in grey.

(Table 5.1a), we found a statistically significant difference indicating that, regard-

less of the ISI value (5, 10 or 15 seconds), best performance is still mostly obtained

when SDD ranges from 10% to 30% of the respective GSD. On the other hand,

when analysing the interactions between the different values of SDD and GSD (Ta-

ble 5.1b), we found some influence of the GSD in the performance. The ANOVA

test indicated that GSD = 20 seconds yields statistically significantly better per-

formance if compared with the other tested values of GSD (30 and 40 seconds).

However, in our experiment, this effect occurred only when SDD is between 10%

and 50% of the respective GSD. Also, the performance is consistently better when

SDD = 30 seconds in comparison to SDD = 40 seconds, though the difference

is not statistically significant. This result reinforces the hypothesis discussed in

Section 5.4.3 that keeping the length of the GSD as close as possible to the length

of the events of interest leads to slightly better results, thought the difference in

performance is not substantial.

In conclusion, this result clearly indicates that it is worth fixing the SDD value

as 20% of the GSD in terms of predictive performance.
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Table 5.1: Analysis of the effect of variables’ interaction in the predictive perfor-
mance. The underlined number indicates the highest mean predictive performance.
Bold numbers indicate values of predictive performance that have no statistically
significant difference from the highest performance.

(a) SDD × ISI.

ISI (sec)

5 10 15

SDD
(% of
GSD)

10% 0.711 0.720 0.730
20% 0.716 0.733 0.746
30% 0.657 0.728 0.754
40% 0.571 0.706 0.741
50% 0.521 0.665 0.727
60% 0.431 0.625 0.699
70% 0.375 0.566 0.665
80% 0.366 0.525 0.638
90% 0.371 0.527 0.628

(b) SDD × GSD.

GSD (sec)

20 30 40

SDD
(% of
GSD)

10% 0.753 0.719 0.689
20% 0.775 0.721 0.700
30% 0.773 0.704 0.662
40% 0.756 0.665 0.597
50% 0.728 0.605 0.580
60% 0.704 0.530 0.521
70% 0.658 0.474 0.474
80% 0.616 0.466 0.448
90% 0.601 0.440 0.485

5.4.5 Experiment III – A Comparative Analysis with BEL

As discussed in Chapter 2, the Brain Emotional Learning (BEL) model (Morén

and Balkenius 2001) is among the most cited models of artificial fear conditioning

in the literature, especially regarding its applications in real-world robotics and

engineering tasks. The BEL model consists of interconnected modules of ANNs

that, similarly to SAFEL, simulate the role of neural circuitries involved in fear

learning. It receives two types of inputs: environmental neutral stimuli and a

reward signal; and outputs an emotional response.

In terms of predictive performance, we understand that comparing BEL (Morén

and Balkenius 2001) and SAFEL with a focus on temporal reasoning would be

unfair, because unlike SAFEL, BEL is not designed to process temporal sequences

of events. Although BEL is considered a related work and has similarities with

SAFEL, these are mostly conceptual, such as the fact that both models are inspired

by real brain mechanisms.

Unlike SAFEL, BEL would be unable to successfully predict the occurrence

of aversive events with the experiment configuration proposed in this section. As

evidence for this argument, we have compared the predictive performance of BEL

on our dataset, generated as explained in Section 5.4.1 and Section 5.4.2, and on

a simpler dataset where the prediction of the aversive stimulus does not depend

on the temporal relationship of environmental stimuli. We have obtained the

implementation of the BEL algorithm from Lotfi and Akbarzadeh-T. (2014b)2.

2The source code of the BEL algorithm implemented by Lotfi and Akbarzadeh-T Lotfi and
Akbarzadeh-T. (2014b) is available at http://bitools.ir/projects.html

http://bitools.ir/projects.html
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Table 5.2: Comparison of the result from running the algorithm2 proposed by Lotfi
and Akbarzadeh-T. (2014b) with the dataset that they have provided as example3

and one of our datasets generated as explained in Section 5.4.1 and Section 5.4.2.
The second and third columns show the fraction of true positives for the first
and second classes of the corresponding datasets, which in our dataset depict ‘CA
situation’ and ‘safe situation’ respectively.

Dataset TP Class 1 TP Class 2

Authors’ dataset 69.7% 62.5%
Our dataset 0.0% 100%

The performance of the BEL algorithm has been evaluated on our dataset and on

the dataset3 used by Lotfi and Akbarzadeh-T. (2014b), whose classes indicate the

presence or absence of heart disease in a patient based on 13 attributes describing

that patient’s condition (age, sex, chest pain type, blood pressure, etc.). Table 5.2

compares the results.

Table 5.2 clearly shows a good performance when running the BEL-based al-

gorithm with their own example dataset, which correctly predicts 69.7% of the

instances in the first class, and 62.5% of the instances in the second class. How-

ever, the performance of the BEL-based algorithm is drastically poor when it is

executed with one of our datasets, as none of the situation instances have been

classified as aversive. By ‘predicting’ that all instances were safe situations, the

BEL algorithm managed to correctly predict 100% of the safe situations. This is

a clear indication that the BEL classifier was not capable to learn with data sam-

ples representing aversive situations. As a consequence, the BEL classifier failed

the main goal of this experiment, which is to warn the robot of imminent envi-

ronmental threats. If the classifier predicts only safe situations, then no aversive

situations will be ever predicted and the robot will never be given the chance to

act in advance to prevent them.

This result is a consequence of the different ways in which SAFEL and BEL

observe sensory data in order to output predictions, as seen in Fig. 5.15. SAFEL

looks back in the temporal line and observes the pattern of data for a period of

time before the detection of the aversive stimulus. The BEL algorithm, in turn,

considers only the pattern of data that co-occurs with the aversive stimulus, which

is analogous to the task performed in the Amygdala Module (AM) of SAFEL.

However, in our dataset, the pattern of neutral stimuli that co-occurs with the

aversive stimuli is identical to the pattern of stimuli occurring in many other

events where the aversive stimulus is absent. Thus, a dataset containing sensor

3This dataset and its complete description are available at http://archive.ics.uci.edu/

ml/datasets/heart+Disease.

http://archive.ics.uci.edu/ml/datasets/heart+Disease
http://archive.ics.uci.edu/ml/datasets/heart+Disease
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Figure 5.15: Comparison of stimuli analysis by SAFEL and BEL. The vertical
axis depicts NAO’s sensor input after normalization. Horizontal axis depicts the
time step. The green and red areas indicate the portion of sensory information
considered by SAFEL and BEL, respectively, at the moment that the robot detects
an aversive stimulus (which is darkness in this case).

readings like the one seen in Fig. 5.15 is inconsistent for BEL and leads to poor

performance. On the other hand, the same dataset leads to high performance for

SAFEL, as demonstrated in the experiments of Section 5.4.3 and Section 5.4.4.

One way to deal with BEL’s poor performance is to pre-process our dataset

using the HM and part of the WMM of SAFEL, and then deliver to BEL the

compacted version of situation instances created in the feature extraction phase

performed in the WMM. We believe that this would greatly improve the accuracy of

BEL’s prediction, but by doing so we would have more than half of data processing

performed by SAFEL. It would be analogous to comparing SAFEL with itself,

however replacing the classification tree in the WMM with BEL, therefore not

configuring a proper comparative study.

In addition, further differences between the two models also include:

1. An optional pre-training phase may be conducted with SAFEL. However,

this is not mandatory, as SAFEL is able to learn environmental threats at

runtime without any prior knowledge besides the set of predefined aversive

unconditioned stimulus (US). On the other hand, BEL is a supervised learn-

ing algorithm and requires a training step with many epochs and then a test

phase. This also reflects in the learning time, which required more than an

hour for BEL with our dataset, while requiring only about 1.5 minutes in

average for SAFEL.

2. BEL is mostly used as a controller for industrial and engineering purposes,

being usually compared in terms of predictive performance with traditional

controllers in the industry such as PID. SAFEL, on the other hand, aims at
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complex goals and tasks, such as providing robots with human-like emotional

responses, adaptive capabilities and flexible decision making at execution

time.

5.5 Final Considerations

This chapter presented the design and implementation of the Working Memory

Module (WMM), which is the module of SAFEL responsible for associating the

contextual memories formed in the Hippocampus Module (HM) with their emo-

tional meaning given by the Amygdala Module (AM). We have discussed the two

processes taking place in the WMM for creating associations between context and

‘fear’. The first process is a feature extraction, which selects only the most relevant

characteristics of situations’ temporal patterns. This feature extraction step helps

reducing redundancy and dimensionality of data, which consequently contributes

to preventing overfitting of data. It also allows us to generate a unitary represen-

tation of context that is similar to its biological counterpart concept discussed in

Section 4.1. This process is based on extracting three features from each stimulus,

which compose the set of features that we consider to better capture the main

temporal characteristics of stimuli variation over time. However, a proper study

to increase the number of extracted features is needed, as well as to investigate

which features better represent the temporal behaviour of stimuli. We indicate

such investigation as future work.

The second process taking place in the WMM is the actual association between

context and emotion, which is performed using a binary classification tree. A

number of reasons led us to use a classification tree for this task, including that it

is easy to interpret, fast to train, nonparametric and implicitly performs feature

selection. The compacted versions of situation information generated through the

feature extraction process are delivered along with their emotional category to the

classification tree for learning and prediction. Safe and conditioned aversive (CA)

situations are used to retrain the classification tree, while neutral situations are

used for predicting the occurrence of imminent threat. The classification tree does

such predictions by matching the temporal pattern of neutral situations with the

patterns of previously learned CA situations.

In this chapter, we have also presented three preliminary experiments per-

formed with the Hippocampus and Working Memory modules of SAFEL. The

first experiment, presented in Section 5.4.3, aimed at evaluating the predictive

performance of the first version of the HM and WMM together. This experiment
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demonstrated that SAFEL is capable to warn the robot about the imminent oc-

currence of aversive events based on information that is contextual and emotional

at the same time. In addition, these predictions are flexible in the sense that

the robot is capable to recognize similarities in the patterns of different situations

while being capable to distinguish situation patterns that are markedly distinct.

The key difference between SAFEL and other models of fear learning (see

Chapter 2) is that these predictions, which warn the robot controller of imminent

threats, is not only based on the relevance of individual stimuli (which is processed

in the AM), but also on complex temporal and contextual information. Other

models of fear learning have been proposed to date that can predict the imminent

occurrence of threats, as discussed in Chapter 2, but these usually either ignore

the relationship between multiple stimuli or the temporal behaviour of stimuli.

Therefore, they have restricted applicability, as they would only work in scenarios

where the aversive stimulus accompanies very abrupt and punctual changes of one

single stimulus in the environment. In most cases, those models that take into

consideration the temporal behaviour of stimuli do not allow the customization

of the time interval comprising the temporal analysis (which in SAFEL is made

possible by the GSD parameter), limiting the model’s usability and solution scope.

The second experiment, discussed in Section 5.4.4, aimed at improving SAFEL

by investigating the best quantitative relation between two parameters of SAFEL,

the global situation duration (GSD) and the situation detection delay (SDD), in

order to achieve the highest predictive performance possible. This study was later

used to fixate the SDD value based on the GSD parameter value, consequently

turning the SDD into an internal parameter of SAFEL. By doing so, we managed

to reduce the complexity of configuring SAFEL’s pre-defined parameters while

increasing its predictive performance.

Finally, the third experiment, presented in Section 5.4.5, briefly compared the

outcomes of SAFEL and BEL with the datasets used in the experiments of Sec-

tion 5.4.3 and Section 5.4.4. This is not a thorough comparative study, as its

sole goal is to prove that BEL is unable to successfully predict the occurrence of

aversive events with the experiment configuration proposed in Section 5.4. Unlike

SAFEL, BEL is not designed to process temporal sequences of events. Therefore,

we focused on demonstrating that BEL succeeds well with simpler datasets that

do not involve complex temporal relationships between stimuli while performing

poorly with our experimental setup, where SAFEL demonstrated high predictive

performance.



Chapter 6

Case Study: Robot Soccer

This chapter explores the application of SAFEL in the robot soccer context. The

analysis conducted in this case study evaluates SAFEL under three different per-

spectives: the predictive performance, the robot’s adaptation performance and

how learning evolves at runtime inside SAFEL’s modules. Additionally, this chap-

ter also contributes to answering all the three research questions formulated in

Section 1.4 by evaluating SAFEL as a whole (and consequently all the three

approaches comprising its hybrid architecture) under all the requirements of a

situation-aware intelligence (Section 1.3.1) and of an emotional intelligence (Sec-

tion 1.3.2) in a practical and highly dynamic robotic application, which is the

RoboCup competition.

We briefly introduce the RoboCup competition in Section 6.1 and describe the

scenario of the case study in Section 6.2. Section 6.3 describes the case study in

terms of goals, scope and experimental setup. Finally, results are presented in

Section 6.4 and further discussed in Section 6.5.

6.1 The Robot World Cup

Robot World Cup (RoboCup) is an important international scientific initiative

with the goal to advance the state of the art of artificial intelligence for autonomous

robots by proposing an ambitious challenge. The official challenge of the RoboCup

initiative, established in 1997, states that “by the middle of the 21st century, a

team of fully autonomous humanoid robot soccer players shall win a soccer game,

complying with the official rules of FIFA, against the winner of the most recent

World Cup.” (Ferrein and Steinbauer 2016).

The relevance of the RoboCup competition is not on the challenge itself, but

on the intrinsic gains from the journey to accomplish such a goal. RoboCup’s

initiative poses a challenge of high complexity that requires a significant body

134
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of research in the areas of artificial intelligence, sensor fusion, real-time planning

and navigation, cooperation in multiagent robotics, context recognition, image

processing, motor control, among others (Kitano et al. 1998).

For this reason, RoboCup has been considered to be both a landmark project

and a standard problem (Kitano et al. 1998). A landmark project is any project

aiming to accomplish a highly appealing and exciting goal, capable of capturing

the interest of a broad and varied public. Perhaps, the best-known example of a

successful landmark project is the Apollo space program, which aimed at the goal

of landing a man on the moon and returning him safely to earth. The appeal of

such a goal captured the interest of industries, researchers, as well as the general

public, leading to a historical technological breakthrough.

On the other hand, standard problems are those in which the development of

a solution implies on the evaluation of a number of theories, algorithms and ar-

chitectures, thus contributing to advance the state of the art in various domains.

Human-computer chess matches are well-known examples of a standard problem,

having greatly contributed to the state of the art of search algorithms. Attempts

at programming computers to play chess started in the early 1970’s and had its

most famous success with the victory of IBM’s Deep Blue, a chess-specialised com-

puter, over then world’s chess champion Garry Kasparov, in 1997 (Newborn 2012).

Nowadays, chess-playing programs running in general purpose mobile phones have

been able to win over strong human players in international competitions.

When comparing with the human-machine chess challenge, RoboCup’s initia-

tive poses a challenge of higher complexity, involving significant advancements in

the areas of artificial intelligence, sensor fusion, real-time planning and navigation,

cooperation in multiagent robotics, context recognition, image processing, motor

control, among others (Kitano et al. 1998). The RoboCup initiative has hosted

annual competitions for more than 20 years now, a period over which significant

advancements have been achieved towards autonomous robotics. Such advance-

ments, in turn, led a considerable number of rules in the competition to be reviewed

and rigidified over the years, making the competition environment more realistic.

The RoboCup competition is split into five leagues, each focused on advancing

different aspects of robot soccer. These are the Soccer Simulation League, the

Small-Size League, the Middle-Size League, the Standard Platform League and

the Humanoid League. In this case study, we are interested in the advancements

of the Standard Platform League (SPL), which relies on equal robot hardware

for all teams so that these can solely focus on developing control algorithms for

humanoid robots. The current standard platform used in the SPL competition is

the humanoid robot NAO, developed by SoftBank Robotics (2017).
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Despite RoboCup’s many achievements towards a number of research fields

related to autonomous robotics, the development of contextual perception and

flexible decision making has made modest progress. Ferrein and Steinbauer (2016)

mention that stable solutions for the robots’ behaviour exist, though fundamental

perception and decisional problems have not yet been solved. They also emphasise

that according to Itsuki Noda, current president of the RoboCup Federation, future

advances in the RoboCup will move towards the flexible interaction between robots

and humans, through the development of AI able to understand and react to

‘intentions’. The ability to handle intentions in a flexible way is essential mainly

when considering the ultimate goal of the RoboCup initiative, in which a team of

robots shall play against a team of humans.

This case study investigates whether SAFEL can contribute towards filling

the current gap in context awareness and flexible decision making in RoboCup’s

SPL competition. SAFEL has been tested and evaluated in a particular potential

scenario within an SPL match where the goalkeeper is required to understand and

adapt to the different behaviour profiles of distinct opponent teams in order to

take custom and advantageous decisions.

6.2 Scenario of the Case Study

Teamwork, pre-coordination and collaborative behaviour are the main focus of

most research related to robot soccer (Nitschke 2005; Genter et al. 2016; White-

son et al. 2003). These are undoubtedly crucial in soccer, but the effectiveness of

teamwork strategies is limited to the skill level of individuals in a team. A good

cooperation strategy is of little aid if the team members are unqualified. In addi-

tion, despite the intrinsic team-work nature of soccer, there are many situations in

which individual players need to rely on their own skills and decision-making capa-

bilities, often when they find themselves isolated from the rest of their teams. For

this reason, we argue that mechanisms to improve the adaptation skills and flexible

decision-making of individual players are also essential for robot soccer. This is,

however, a neglected area of study in RoboCup (Rizzi, Johnson and Vargas 2017).

We propose the following scenario in RoboCup’s SPL (Fig. 6.1): suppose a

match between team T1 and team T2, where team T1 is currently attacking. Now

suppose that a defender from team T2 manages to take possession of the ball and

switch fields (i.e., pass the ball from one side of the field to the other in one shot).

Because team T1 was fully engaged in the attack, all members of team T1 are in

team T2’s side of the field, except the goalkeeper. Also, second by the goalkeeper

from team T1, the striker from team T2 is the closest player to the ball at this
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striker

Pass Trajectory ball

goalie

Figure 6.1: Scenario of the case study. Red squares represent players from team
T1, blue circles represent players from team T2 and the black circle represents the
ball. The circle and square with thicker border line represent the respective team’s
goalkeeper.

moment. The ball stops closer to the goalkeeper than to the striker, but far enough

so that the goalkeeper would have to leave the goal area vulnerable in order to

pursue the ball.

In this hypothetical scenario, the goalkeeper is isolated from the rest of its

team and is forced to rely only on its own judgement and skills. The striker from

team T2 will certainly reach the ball before the other players of team T1 unless the

goalkeeper intervenes. The decision to be taken by the goalkeeper is, therefore,

whether to intervene or not. Intervening requires leaving the goal area unattended

and, consequently, vulnerable. On the other hand, not intervening would give an

obvious advantage to the opponent striker for a clear shot to goal.

The answer to this question is not straightforward, as it depends on the playing

profile of the opponent team. If the opponent striker has a weak shot, for instance,

then it will likely need more than one kick to attempt a goal, giving team T1 time

to retreat and aid in the defence. Also, if the striker’s first kick is weak, then

the ball will consequently be even closer to the goalkeeper, making it possible to

reach the ball without completely abandoning the goal area. Thus, in this case,

remaining in the goal area and waiting for help is a wiser decision.

On the other hand, if the striker has a strong shot and good aim, it may be

worth risking the goal by trying to reach the ball first, since staying in the goal area

would not reduce the likelihood of team T2 scoring a goal. At first, it may seem a

trivial problem that depends only on the strength of the striker’s shot. However,

there are many factors involved, including the distances between the elements of
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interest in this situation (i.e., the striker, the goalkeeper, the goal and the ball).

The kick that is weak from a particular position in the field, may be enough to

score a goal from another position if we consider the angle and distance between the

ball, the goal and the goalkeeper. The problem can become even more complex by

increasing the number of undesirable outcomes to be avoided by the goalkeeper.

For instance, in the above example, goals are the only outcome to be avoided.

However, if we add collisions as another undesirable outcome, the behaviour profile

of opponent teams will diverge even more, and the sequence of events leading to

the undesired outcomes (goals and collisions) will become even more complex.

The example described above composes the scenario used for all experiments in

this case study. The scenario and its implementation process are formally described

next, in Section 6.3.

6.3 Experiments

To implement the proposed scenario, we used the B-Human’s robot soccer con-

troller and simulation tool (Röfer et al. 2015). The B-Human team is currently

among the best teams in the RoboCup SPL, having won the world championship

five times, the RoboCup German Open seven consecutive times and the RoboCup

European Open once. We evaluate and compare the outcome of the scenario

described in Section 6.2 for two goalkeeper behaviours: the first is the default be-

haviour implemented by the B-Human team and the second is a similar behaviour,

but taking into consideration SAFEL’s emotional responses.

In the following sections, we describe the goals and scope of this experiment,

as well as the experimental setup. Videos of the simulations and complementary

material for the experiments described in this chapter are available online1.

6.3.1 Goals of the Case Study

In the scenario described in Section 6.2, the default behaviour of the goalkeeper

(as implemented by the B-Human team) is to leave the goal area to pursue the ball

whenever it is within a particular distance from the goal area. In any other cases,

the goalkeeper would stay and guard the goal. Therefore, when deciding whether

to leave the goal area, the goalkeeper does not take into consideration any other

factors besides the ball position in relation to the goal area.

By using SAFEL, we intend to expand the area in which the goalkeeper is will-

ing to leave the goal area to pursue the ball. However, instead of creating a simple

1Complementary material for the experiments discussed in this chapter are available at https:
//www.cs.kent.ac.uk/people/rpg/cr519/casestudy.

https://www.cs.kent.ac.uk/people/rpg/cr519/casestudy
https://www.cs.kent.ac.uk/people/rpg/cr519/casestudy
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rule based on the position of the ball in the field, we expect the keeper to learn

with experience when it is safe or not to leave the goal unattended. Such decision

would take into consideration the distances between the elements of interest in

the field (i.e., the goalkeeper itself, the opponent striker, the defending goal and

the ball), the identity of the opponent team and how aggressive and skilled is its

striker.

More importantly, we expect the final decision in regards to leaving or not the

goal area to be based not only on the stimuli information but also on their inter-

and temporal relationship. This is due to SAFEL’s capability of integrating stimuli

information and temporal relationship in a unified representation of context.

With this case study, we intend to demonstrate:

• That SAFEL is capable of providing fear learning capabilities at stimulus

and situational level.

• That SAFEL’s emotional feedback can be used to aid in environmental adap-

tation and flexible decision-making.

• That SAFEL’s emotional feedback can improve the intelligent behaviour of

robots in the robot soccer context.

• The importance and influence of all modules of SAFEL in its final emotional

response.

It is out of this case study’s scope to define or investigate which behaviours

should be triggered in response to SAFEL’s emotional feedback to maximise the

goalkeeper’s positive outcomes. Although we select some behaviours for our exper-

iments’ purposes, we consider that investigating the ideal behaviours for a partic-

ular scenario is a task better undertaken by the designers of the robot controller,

who are familiar with the specifics of their robots and controllers, as well as with

the particular features of their robots’ environments and tasks.

It is also out of this case study’s scope to evaluate SAFEL’s performance in

regards to computation time. During the first versions of SAFEL’s implementa-

tion, we focused solely on ensuring SAFEL’s efficacy for predicting future aversive

events and responding accordingly, mainly for practical usage in robotics. How-

ever, we recognise that optimising computation time is crucial for SAFEL, since it

is aimed to be executed at runtime, and we indicate improvements in this direction

as a future work.
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6.3.2 Experimental Setup

For this case study, we have defined four opponent teams (A, B, C and D) to

play the role of team T2 described in Section 6.2, each exhibiting a distinct striker

behaviour. The behaviour of each team’s striker is summarised in Table 6.1, whose

characteristics are described as follows:

• Aggressive Ball Pursuit : indicates whether the striker is inclined to prioritise

the ball pursuit so to neglect external factors, such as other players in its

way, increasing the occurrence of collisions. Strikers that are not aggressive

in their ball pursuit behaviour will take into consideration other players’

position in the field, hesitating in its chase for the ball whenever it may lead

to collisions.

• Opportunistic Rebound : indicates whether the striker is inclined to approach

the ball for rebound (after a failed goal attempt), regardless of how close the

ball is to the goalkeeper, possibly increasing the occurrence of collisions and

goals. Strikers that are not inclined to opportunistic rebound will hesitate

in approaching the ball for rebound if it is too close to the goalkeeper.

• Strong Shot to Goal : indicates whether the striker has a stronger than av-

erage kick when attempting to score a goal, likely increasing its chance of

actually scoring. Strikers with average kick strength may still score goals,

but less frequently than strikers with a strong shot.

Fig. 6.2 shows the areas of interest in the soccer field for the purposes of this

case study. Area A1 shows the goal area, where the goalkeeper usually stands

under normal circumstances. Area A2 shows the distance that the goalkeeper is

willing to move away from the goal in order to reach the ball. By its default

behaviour, the goalkeeper will not leave area A1 if the ball stops anywhere outside

area A2. Area A3 shows the new extended area of the goalkeeper’s willingness

to reach the ball when using SAFEL. A3 also represents the area of the field

dedicated for positioning the ball at the beginning of each test execution. Finally,

area A4 shows the part of the field dedicated for positioning the opponent striker

Table 6.1: Strikers’ behavioural characteristics per team.

Attacking Teams A B C D

Aggressive Ball Pursuit
Opportunistic Rebound

Strong Shot to Goal
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A1

A2
A3

A4

Figure 6.2: Areas of interest in the soccer field. This image shows only the side
of the defending team’s field (i.e., the team of the goalkeeper), as it is where the
scenario takes place. The red circle represents the initial position of the goalkeeper
in this case study.

in the beginning of each test execution. Outside this area, the striker may be

too far so that it cannot be seen by the goalkeeper, or too close so that it is not

advantageous in any way for the goalkeeper to attempt reaching the ball. The red

circle in Fig. 6.2 represents the initial position of the goalkeeper in the beginning

of each test execution.

In this experiment, we simulate a particular situation (as described in Sec-

tion 6.2) occurring during an ongoing match. To ensure that our scenario is co-

herent with possible events occurring in a real ongoing match, we have defined the

following restrictions for generating the initial positions of the ball and striker in

the field:

• The ball must start inside the defined area of interest A3.

• The striker must start inside area A1, which has been predefined according

to (1) a maximum distance from the goalkeeper position so that it can be

seen by the goalkeeper and (2) a minimum distance from the goalkeeper so

that its position is coherent with that of a real ongoing match.

• The distance of the striker to the ball must be larger than the distance from

the goalkeeper to the ball. The contrary would imply higher chances for the

striker to reach the ball first, a situation in which leaving the goal area would

not be an advantageous action for the goalkeeper.



CHAPTER 6. CASE STUDY: ROBOT SOCCER 142

• The striker must be on the same side of the field as the ball. This is to ensure

that the initial position of the striker would be coherent with that of a real

ongoing match and to prevent the scenario solution from becoming trivial.

450 unique combinations of initial striker position and initial ball position in

the field were randomly generated taking into consideration the above-listed re-

strictions. The goalkeeper always starts in the same position, which is in the

middle of its own goal line (red circle in Fig. 6.2).

We performed three experiments in this case study, each evaluating a different

aspect of SAFEL’s performance. For the first and second experiments, the B-

Human default controller was independently executed in the simulation for all the

450 generated combinations of initial position and for each team, totalling 1,800

unique simulation executions. For the second experiment, the extended B-Human

controller using SAFEL was independently executed in the simulation for 135

combinations of initial position and for each team, totalling 540 unique simulation

executions using SAFEL. In addition, for the third experiment, 110 out of the

450 combinations of initial positions were selected to evaluate SAFEL’s learning

evolution over time for each of the four teams, totalling 440 unique simulations

executed for the third experiment.

During each simulation execution, the goalkeeper continually collects informa-

tion on the current state of eight stimuli, two of which were aversive unconditioned

stimulus (US) and six were initially neutral stimuli, which could later become con-

ditioned stimulus (CS). The eight stimuli ~s = [s1, ..., s8] collected by the goalkeeper,

along with their type (US or CS) are:

• s1 (US u1): Opponent scoring. This stimulus assumes the value 1 if the

opponent has scored a goal and 0 otherwise;

• s2 (US u2): Collision exposure. This stimulus indicates whether there was

a prolonged collision with an opponent robot. The longer the goalkeeper is

continuously exposed to collision, the closer this value is from 1, otherwise

the closer it is from 0. The absence of collisions is indicated by 0;

• s3 (CS c1): Falling state of the goalkeeper itself. This stimulus assumes the

value 0.4 if the goalkeeper is staggering, 0.7 if the goalkeeper is falling, 0.8

if the goalkeeper is getting up and 1 if the goalkeeper is fallen;

• s4 (CS c2): Normalized distance from the ball to the goalkeeper;

• s5 (CS c3): Normalized distance from the closest opponent to the goalkeeper;

• s6 (CS c4): Normalized distance from the closest opponent to the ball;
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Table 6.2: Sensitivity matrix used in the experiments of the proposed case study.

Goal (u1) Collision (u2)

Falling state (c1) 0.6 0.0
Dist. ball to goalie (c2) 0.0 0.2

Dist. opponent to goalie (c3) 0.0 0.4
Dist. opponent to ball (c4) 0.0 0.2

Dist. ball to goal (c5) 0.0 0.1
Dist. opponent to goal (c6) 0.4 0.1

• s7 (CS c5): Normalized distance from the ball to the goal; and

• s8 (CS c6): Normalized distance from the closest opponent to the goal.

Table 6.2 depicts the sensitivity matrix used in all experiments of this case

study. According to our sensitivity matrix, the US depicting an opponent’s goal

has a higher level of association with two CS’s only, which are the falling state of the

goalkeeper and the distance from the opponent striker to the goal. This is because

goal scoring recurrently occurring while the goalkeeper is on the ground is a strong

indication of failed catching ball attempts, showing that the goalkeeper may be

ineffective against that specific team’s striker. On the other hand, certain strikers

may be able to score goals from farther distances than others, and associating the

occurrence of goals with the distance between the striker and the goal may help

identify which team has a skilled striker with strong kicks.

Finally, all the other CS’s have been linked with the US depicting the occur-

rence of collisions. This is because collision incidence is, of course, highly related

with proximity between moving entities, and all CS’s except by c1 describe dis-

tances between the elements of interest in the soccer field. The remaining param-

eters of SAFEL have been defined as follows:

• Global situation duration (GSD): 15 seconds;

• Adrenaline threshold: 0.5 (in the range [0,1]);

• Association rate (AR): 0.4 (in the range [0,1]) for all conditioned stimuli;

Given the above-listed set of stimuli and parameters, as well as Def. 1 and

Def. 2 given in Section 4.4, we have that in this case study an event et depicts

the state of the eight stimuli detected by the goalkeeper at time step t, so that

et = [st1, s
t
2, ..., s

t
8], where sti is a value representing the value of stimulus si detected

at time t. SAFEL’s input set is composed by the vector ~u = [u1, u2] = [s1, s2], rep-

resenting the group of US’s, and the vector ~c = [c1, ..., c6] = [s3, ..., s8], representing

the group of CS’s.
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A situation S in this scenario is composed of the sequence of events occurring

during its active time in the simulation, so that Sj = [eaj
, ..., edj

]T , where aj

and dj are, respectively, the times of activation and deactivation of situation j.

According to the specified GSD, dj occurs 15 seconds after the occurrence of aj

for neutral, safe and conditioned aversive (CA) situations (unconditioned aversive

(UA) situations have flexible GSD as discussed in Section 4.4, which depends on

the current value of the adrenaline signal). The first event e1 is recorded at the

beginning of the simulation, and the last event en is recorded when one of the

following stop criteria is met in the simulation:

1. A goal has been scored by the opponent striker;

2. The ball has been kicked out of the field boundaries; or

3. The number of recorded events has reached 300, which we consider to be

enough time for the rest of the defending team (initially on the other side of

the field) to retreat and help the goalkeeper in defending the goal. In this

case, the proposed scenario is over.

6.4 Results

This case study consists of three experiments, each evaluating a different aspect of

SAFEL’s performance in the proposed scenario. The first experiment, discussed in

Section 6.4.2, evaluates SAFEL’s predictive performance by analysing its capability

of predicting the imminent occurrence of aversive stimuli. The second experiment,

discussed in Section 6.4.3, compares the goalkeeper’s playing performance with

and without SAFEL’s emotional feedback. The outcome of the simulations that

generated the datasets used for the experiments of Section 6.4.2 and Section 6.4.3

is analysed in Section 6.4.1.

Finally, the third experiment, discussed in Section 6.4.4, explores how SAFEL’s

learning and environmental adaptation evolves over time. Unlike the first two

experiments, SAFEL starts with an empty dataset in the third experiment, thus

having no previous knowledge about the robot’s environment.

6.4.1 Dataset Analysis

The data presented in this section is used in the experiments of Section 6.4.2 and

Section 6.4.3 and have been generated via simulation with the default behaviour

of the goalkeeper, as implemented by the B-Human team. For each of the four

defined team behaviours, 450 independent simulations have been executed with
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distinct combinations of initial positions for the striker and ball, as described in

Section 6.3.2.

Fig. 6.3 shows the outcome of the 450 soccer simulations in terms of situation

type per initial position of the ball in the field. In other words, for each simulation,

we observed the generated initial position of the ball as well as whether the result

was aversive (goal and/or collision) or safe (no goals or collisions) for the goalkeeper

in the end of the simulation. Fig. 6.3 depicts the integration of these two pieces

of information, where the dots depict the 450 initial positions of the ball in the

field and their colours indicate whether the resulting simulation was aversive (red

dot) or safe (green dot). The area delimited by a solid red line depicts the area

of interest A3 (defined in Section 6.3.2), which represents the new extended area

of the goalkeeper’s willingness to reach the ball when using SAFEL, as well as

the area dedicated for positioning the ball at the beginning of each test execution.

Areas delimited by dotted red lines depict the areas of the field where the ball

was positioned that we observed to concentrate the majority of aversive situation

outcomes, especially goal scoring. Fig. 6.4 is analogous to Fig. 6.3, however, it

shows the portion of aversive situations caused by goals and by collisions.

Teams A and D show a clear inclination to causing aversive situations (Fig. 6.3a

and Fig. 6.3d, respectively). However, the type of outcomes that lead to aversive

situations differs between these two teams. For team D, aversive situations are

caused by goals in 97% of the cases (Fig. 6.4d), while the number of aversive

situations for team A is well balanced between collisions (54%) and goals (46%)

(Fig. 6.4a). Another difference is the areas in the field from where team A and D

manage to score goals. Most goals scored by team A are inside the areas delimited

by dotted red lines while team D managed to score goals from almost all regions

inside area A3. This is likely because the striker from team D has a stronger

kick than strikers from the other teams, as discussed in Section 6.3.2, thus being

capable of scoring from farther distances with one single kick.

Different from teams A and D, team C shows a clear inclination towards safe

situations for the goalkeeper (Fig. 6.3c). Nonetheless, 30% of simulations with

team C resulted in aversive situations, whose majority (74%) was caused by goals

(Fig. 6.4c). Like team A, most goals scored by team C occurred when the ball

started within the areas delimited by dotted red lines.

Finally, team B presents the most homogeneous result of all teams. The number

of aversive (44%) and safe (56%) situations is well balanced (Fig. 6.3b), as well

as the number of goals and collisions, which represent 47% and 53% of aversive

situations, respectively (Fig. 6.4b). Unlike teams A and C, whose majority of

aversive situations occurred when the ball started within the areas delimited by
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(a) Team A (b) Team B

(c) Team C (d) Team D

Figure 6.3: Resulting situation types (safe or aversive) per initial ball position (450
in total) for all teams.
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(a) Team A (b) Team B

(c) Team C (d) Team D

Figure 6.4: Resulting outcomes (goal, collision or nothing) per initial ball position
(450 in total) for all teams.
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Table 6.3: Outcome of simulations selected for training. The percentage of goals
and collisions out of 315 simulations per team are show in the ‘Goals’ and ‘Col-
lisions’ rows, respectively. The ‘Aversive Tests’ row shows the percentage of sim-
ulations with at least one goal or one collision. The ‘Safe Tests’ row shows the
percentage of simulations in which neither goals nor collisions occurred.

Attacking Team A B C D

Goals (%) 31 21 23 70
Collisions (%) 48 26 10 2

Aversive Tests (%) 68 44 32 72
Safe Tests (%) 32 56 68 28

dotted red lines, the initial ball positions leading to aversive situations for team B

are spread throughout the whole area A3.

From the 450 simulation executions for each team, 315 (70%) was selected for

training, while 135 (30%) was selected for testing. Table 6.3 depicts the outcome

of simulation executions selected for the training phase. Table 6.3 shows a clear

advantage for team D in the number of goals if compared with the other teams, in

virtue of its striker’s stronger than average shot to goal (see Table 6.1). Despite

the great number of scored goals, team D caused very few collisions because its

striker has neither the aggressive ball pursuit behaviour nor opportunistic rebound

inclination. Second in the ranking of goals is team A, which is the most aggres-

sive of all teams by exhibiting both the aggressive ball pursuit and opportunistic

rebound behaviours. In addition to the high number of goals, team A also caused

the highest number of collisions of all teams, which is higher than the number of

collisions caused by all the other three teams together.

Teams B and C are less threatening than teams A and D. The striker from

team B exhibits only the aggressive ball pursuit behaviour, while the striker from

team C exhibits only the opportunistic rebound behaviour. Consistent with their

respective behaviours, Table 6.3 shows that team B has caused more collisions than

team C, which in turn scored more goals than team B. Nonetheless, the difference

between the number of goals and the number of collisions is more evident for team

C (23 goals versus 10 collisions) than for team B (21 goals versus 26 collisions).

6.4.2 SAFEL Predictive Performance

This experiment uses the data generated via simulation presented in Section 6.4.1

for both training and evaluation of SAFEL’s predictive performance. This experi-

ment focuses on analysing SAFEL’s predictive performance and, therefore, will not

take into consideration the behaviour and playing performance of the goalkeeper
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Table 6.4: Predictive Performance. SAFEL’s predictive performance for each of
the four teams is compared against a baseline classifier under two performance
measures (F2-score and edit distance) and two statistical tests (t-test and K-S
test). p ≤ 10−15 for both t-test and K-S test in all the evaluated cases.

Team A Team B Team C Team D

SAFEL Baseline SAFEL Baseline SAFEL Baseline SAFEL Baseline

F2-score 0.5013 0.1198 0.5456 0.0853 0.6817 0.1440 0.5188 0.1604
Edit Dist. 0.1453 0.3044 0.1391 0.2130 0.0995 0.1520 0.1693 0.3396

(which is properly addressed in Section 6.4.3). Here, we evaluate SAFEL’s success

in correctly predicting future occurrences of aversive stimuli.

Predictive performance is measured at the level of the Working Memory Mod-

ule (WMM). This is because at this stage within SAFEL’s architecture, stimuli

information has already been processed and transformed into compacted pieces of

situational information. Before this phase, data instances are still complex and

large sets of information organized in matrices, without well-defined classes neces-

sary for analysing classification performance. On the other hand, data processed

by the WMM conforms with the conventional dataset format, in which instances

are represented by arrays of data (instead of matrices), each of which has well-

established classes: safe situation or conditioned aversive situation.

We have tested SAFEL’s performance against a baseline classifier that gener-

ates random predictions by respecting the class distribution of the training set.

Table 6.4 compares the predictive performance of SAFEL with the baseline classi-

fier under two distinct performance measures: the F2-score and the edit distance.

Basically, the edit distance calculates the cost for transforming an array into an-

other. In this case, the edit distance calculates the cost to transform the array of

predicted classes into the array of correct classes. Consequently, the smaller the

edit distance value, the closer the predictions are from the real classes, and the

better the predictive performance.

The F2-score, on the other hand, is a modified version of the F-score (also

known as F-measure) that gives more importance to recall (i.e., the fraction of

actual conditioned aversive situations that were predicted) than to precision (i.e.,

the fraction of predicted conditioned aversive situations that are correct). The

conventional F-score is defined as the harmonic mean between precision and re-

call, whereas the F2-score weighs recall twice as high as precision. We opted for

the F2-score instead of the conventional F-score because it is of our interest that

SAFEL demonstrates capability to mimic nature’s tendency to overestimate dan-

ger (LeDoux 1999). For an animal surviving in the wild, for instance, the cost of
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underestimating danger is much higher (e.g., injuries, death) than the cost of over-

estimating it (e.g., spending energy escaping from harmless animals or objects).

It follows that SAFEL would be better evaluated by a metric that rewards danger

overestimation to some extent, which is the reason why we opted for using the

F2-score.

The difference in predictive performance between SAFEL and the baseline

classifier has been tested under the null hypothesis that there is no statistically

significant difference between their predictive performance given a particular per-

formance measure (F2-score or edit distance), which is rejected when p ≤ 0.05.

The null hypothesis has been firstly tested using the t-test, which is widely known

as a robust test for evaluating whether two sets of data are significantly differ-

ent from each other. However, the t-test may give misleading results if the data

being tested are substantially non-normal. We tested the normality of our data

distribution using the one-sample Kolmogorov-Smirnov test, also known as the

one-sample K-S test, and observed that some of our data samples are non-normal.

To ensure the reliability of our results, we have also compared the results using

the two-sample K-S test, which evaluates the difference between the cumulative

distribution functions of the sample data and, therefore, is suitable for comparing

non-normal distribution data. The resulting p-value was equal to or smaller than

10−15 for both the t-test and the K-S test in all the evaluated cases (i.e., for all

teams and performance measures).

SAFEL showed remarkably higher F2-score and lower edit distance in compar-

ison to the baseline classifier for all teams, which has been shown to be statistically

significant by both the t-test and the K-S test. This result demonstrates that the

classification tree in the WMM makes sense of the data assembled by the other

modules of SAFEL and is capable of finding recurrent patterns in it. That is a

clear indication of the high quality of data collection and manipulation performed

in both in the Amygdala and Hippocampus modules. It also demonstrates that

SAFEL is effective in the proposed scenario, by successfully finding patterns in

the robot’s environment and providing an adequate emotional response, which is

clearly distinguished from lucky guesses.

6.4.3 Goalkeeper Playing Performance

The focus of this experiment is to verify that SAFEL can improve the playing

performance of the goalkeeper by comparing the outcome of simulations executed

with and without SAFEL’s emotional feedback. As previously mentioned, the

goalkeeper’s default behaviour in the proposed scenario is to pursue the ball only
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if it is within a particular distance from the goal area. We argue that in certain

situations, it may be more advantageous for the goalkeeper to leave the goal area,

even if the ball is farther than that particular pre-defined distance.

SAFEL’s task in this experiment is to learn with experience (i.e., with the

training data collected with the B-Human simulation) in order to define when it

is or not more advantageous for the goalkeeper to pursue the ball. By doing so,

SAFEL provides the goalkeeper with more flexible and adaptable decisions, which

are taken according to the playing profile of each particular opponent team.

For this experiment, SAFEL has been trained with the same training dataset

described in Section 6.4.1, whose statistics has been presented in Table 6.3. When

using SAFEL, the goalkeeper’s behaviour is to leave the goal area whenever SAFEL

predicts the imminent occurrence of an aversive stimulus (i.e., whenever SAFEL

recognises the current neutral situation as being similar to a previously experienced

conditioned aversive situation), and keep guard of the goal area otherwise.

This behaviour has been selected according to common-sense knowledge over

the soccer scenario and has not been exhaustively tested before performing this

experiment. Therefore, there may exist other options of behaviour to be expressed

by the goalkeeper in response to SAFEL’s emotional feedback that lead to even

better playing performance. As we have mentioned in Section 6.3.1, the task

of selecting the best possible behaviour to be triggered in response to SAFEL’s

feedback is out of our work’s scope, as we understand that this task would be better

undertaken by the designers of the robot’s controller. Nonetheless, showing clear

improvements in the goalkeeper’s playing performance even thought there was no

effort to optimize its response only emphasizes SAFEL’s capability to improve

robots’ environmental adaptation.

1080 independent simulations have been executed for this experiment: for each

of the four teams, there were 135 simulation executions testing the goalkeeper’s

default behaviour and 135 simulation executions testing the goalkeeper’s behaviour

under SAFEL’s influence. Table 6.5 presents the outcome of the simulated scenario

with and without SAFEL’s influence for each team, whereas Table 6.6 shows the

statistics over SAFEL’s emotional responses for each opponent team.

Table 6.5 shows a reduction in the number of goals and an increase in the

number of collisions for all opponent teams in the proposed scenario. This effect

is explained by the fact that both striker and goalkeeper attempt to reach the

ball at the same time whenever the goalkeeper decides to pursue the ball, which

puts them in collision course. The best chance to prevent a goal when dealing

with a particular opponent may be to leave the goal area and try to reach the ball

first. However, this may also increase the chances of collision depending on the
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Table 6.5: Simulations’ outcome. For each combination of opponent team and
goalkeeper behaviour tested (depicted by the table’s columns) there were 135 in-
dependent simulation executions. The first three rows show, respectively, the
percentage of simulations with at least one occurrence of (1) goal, (2) collision and
(3) balls kicked out of the field line. The last row shows the summed collision
exposure (see definition of stimulus s2 in Section 6.3.2) over all simulations for a
particular team and goalkeeper behaviour.

Team A Team B Team C Team D

Default SAFEL Default SAFEL Default SAFEL Default SAFEL

Goals (%) 27 0 17 4 29 14 67 53
Collisions (%) 55 79 25 56 7 11 1 2
Ball Out (%) 35 56 44 51 19 55 16 33

Coll. Exp. Sum 2245 2540 700 1614 433 587 25 60

Table 6.6: Statistics of SAFEL’s emotional response. The ‘Aversive Simulations’
row shows the percentage of simulations (out of 135 for each team) with aversive
predictions by SAFEL. The ‘Prediction Timing’ row shows the average time (in
percentage of events per simulation) that SAFEL takes to predict the first aversive
situation. Finally, the ‘Aversive Events’ row shows the average percentage of
aversive events per simulation.

Attacking Team A B C D

Aversive Simulations (%) 100 94 12 21
Prediction Timing (%) 26 34 76 18

Aversive Events (%) 8.9 5.6 1.9 0.6

opponent’s ball pursuit behaviour.

Table 6.5 shows a clear reduction in the percentage of goals from team A when

using SAFEL, which goes from 27% to no goals at all. This result is mostly a

consequence of SAFEL predicting averseness in all the 135 simulations executed

against team A, as seen in Table 6.6. This extreme emotional reaction shows

that SAFEL successfully detected in the training dataset that team A is the most

aggressive team and causes a high incidence of aversive stimuli, both goals and

collisions.

Although SAFEL increased the percentage of simulations with collisions from

55% to 79% with team A, collision exposure (see definition in description of stimu-

lus s2 in Section 6.3.2) increased by 13% only (from 2245 to 2540). This indicates

that, despite the increase in the incidence of simulations with collisions, the dura-

tion of these collisions reduced with the use of SAFEL. In addition, SAFEL also

led to a considerable increase in the number of balls out, which indicates that the

goalkeeper managed to maintain the ball away from the goal more frequently when
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under the influence of SAFEL.

The usage of SAFEL led to an impressive reduction in the percentage of goals

when playing against team B. However, such good result came at the cost of a

large increase in the incidence of simulations with collisions, which was aggravated

by an even larger increase in the collision exposure and a modest increase in the

number of balls out. This result can be explained by the similarity in the number

of goals and collision in the training dataset for team B, as well as the similarity

in the number of aversive and safe situations. Note in Table 6.3 that the other

teams, especially C and D, have a clear inclination towards either causing more

collisions than scoring goals or scoring more goals than causing collisions. Team

B, however, shows the most homogeneous result among all teams in terms of goals

× collisions. Additionally, team B has also the most homogeneous result among

all teams in terms of safe × aversive situations.

Finally, another compromising factor with team B is the mixed outcomes for

the same regions of initial ball position. Aversive situations induced by teams A

and C, for example, mostly occurred from within areas of the field delimited by

the red dotted lines shown in Fig. 6.3. This facilitates SAFEL in finding a pattern

in the behaviour of these teams that leads to the occurrence of aversive situations.

However, aversive situations caused by team B occurred from almost all regions

within area A3; and the same occurred for safe situations.

Therefore, the behaviour of team B was homogeneous in three important as-

pects: (1) number of goals versus collisions, (2) number of aversive situations

versus safe situations and (3) the initial ball positions in the field that led to safe

situations and aversive situations. While teams A and D presented a moderately

homogeneous result in one of these aspects only, team B presented a significantly

homogeneous result in all of the three aspects, making it more difficult for SAFEL

to find a coherent pattern in the behaviour of team B. This is likely the compromis-

ing factor that affected the accuracy of SAFEL’s emotional response when playing

against team B. Regardless of the lower accuracy, SAFEL still managed to improve

the goalkeeper’s decision-making during the match by considerably reducing the

number of goals from the opponent.

The most impressive result in terms of flexible and adaptable decision making

shown by SAFEL was with team C. By accusing only 12% of the simulations as

aversive (Table 6.6), SAFEL managed to reduce the number of goals by half and

more than double the number of balls out, at the cost of a slight increase in the

number of collisions (Table 6.5). This result is a clear indication that SAFEL

learned with high accuracy the behavioural pattern of team C, by needing a small

number of correct aversive predictions to create an effective response that leads to
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better playing performance for the goalkeeper.

Finally, the goalkeeper’s playing performance against team D had an improve-

ment similar to that against team C when using SAFEL. With only 21% of the

simulations against team D accused as aversive (Table 6.6), SAFEL managed to

reduce the incidence of goals from 67% to 53%, double the number of balls out,

at the cost of an insignificant increase in the percentage of collisions (from 1% to

2%), as seen in Table 6.5.

Overall, SAFEL reduced the number of goals and increased the number of

balls out against all the four teams, at the cost of slight increases in the number

of collisions and collision exposure. The only exception is team B, case in which

there was a significant increase in collision incidence. Nevertheless, SAFEL still

led to a considerable improvement in the goalkeeper’s capability of defending the

goal.

Most importantly, Table 6.6 is evidence that SAFEL learned the different be-

haviour profiles of each team by exhibiting a distinct emotional reaction to each of

them, which is consistent with the behaviours described in Section 6.3.2 and the

training outcome observed in Table 6.3. Table 6.6 shows that the more aggres-

sive the team, the more simulations against this team are accused as aversive by

SAFEL (first row of Table 6.6), the earlier SAFEL’s detects threat (second row

of Table 6.6) and the more events per simulation are recognized as threatening

by SAFEL (third row of Table 6.6). Although team D scored a large number of

goals, it caused very few collisions, which is the reason why SAFEL has predicted

a smaller than expected number of aversive simulations and events for this team.

6.4.4 Learning Over Time

For this experiment, we focused on observing how SAFEL gradually learns with

experience and the progress of its predictions’ quality over time. Unlike the experi-

ments performed in Section 6.4.2 and Section 6.4.3, where SAFEL was pre-trained

with a large dataset, here SAFEL starts without any knowledge about the envi-

ronment.

This experiment consists of training phases, each of which is evaluated under

ten independent simulation executions. The training phases are successive and

learning is cumulative. For instance, the first training phase consists of training

SAFEL at runtime inside the simulation, which is later tested under another ten

independent simulation executions. The goal of the test simulations is to analyse

how the knowledge acquired during the training phase influenced the goalkeeper’s

decisions afterwards.
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The second training phase follows the same procedure, but in addition, the sim-

ulation is executed with the same SAFEL instance obtained from the first training

phase. This means that the learning acquired in the second training phase also

takes into consideration what has been learned in the first training phase. Again,

for the second training phase, ten more simulations are independently executed

for evaluation. This procedure is repeated for all subsequent training phases. This

experiment comprises ten training phases for each of the four teams. Therefore,

the proposed scenario has been simulated 440 times for performing this experiment

(4 teams, 10 training phases and 10 tests for each training phase).

The results of this experiment are presented in Table 6.7, which notably shows

that, when the robot had no initial knowledge of the environment, it demonstrated

intense fearful reactions to any newly occurring aversive stimuli. For instance, the

first training phase resulted in either goal or collision for all opponent teams except

team C (highlighted in Table 6.7). As a consequence, SAFEL predicted threat for

teams A, B and D in all the 10 simulations of the first testing phase. For team C,

however, there was no threat prediction in the first testing phase because SAFEL

learned during the first training phase that playing against team C does not result

in the occurrence of aversive stimuli.

The initial overreaction of the goalkeeper against teams A, B and D may seem

exaggerated (i.e., predicting threats in all first-phase tests). However, this be-

haviour is consistent with that of many animals, including our own, when dealing

with unfamiliar environments (Likhachev and Arkin 2000). Under unknown situ-

ations or environments, we tend to be more alert and cautious, exhibiting fiercer

than normal fight-or-flight responses at any minor sign of undesirable or harmful

stimulus. If over time no negative experience occurs in that new environment, we

tend to feel more comfortable and become less vigilant and reactive. On the other

hand, the recurrent occurrence of negative experiences in a novel environment

tends to make us more uncomfortable and stressed.

This behaviour is visible along the training and testing phases. After the first

two training phases against team B, the goalkeeper showed a very negative expec-

tation of the environment by predicting threat in all 10 executions of both first-

and second-phase tests. However, after observing over time that team B’s striker

is not as dangerous as initially assumed, the goalkeeper reduced its predictions of

threat from 10 to 4 per test phase in average. We can also observe that the op-

posite habituation response occurs with teams A and D. Because playing against

these two teams recurrently leads to either goals or collisions, instead of becoming

comfortable over time, the goalkeeper maintained its initial intense behaviour by

predominantly predicting threat during the tests.
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Table 6.7: Statistics of SAFEL’s learning over time. The ‘training result’ row in-
dicates the collision exposure during the respective training phase, where asterisks
indicate that a goal has been scored. Values shown for test results are the totals
over the 10 test executed for each training phase.

Training Phase 1 2 3 4 5 6 7 8 9 10

Team A

Training Result 0* 0 0 0* 10 15 34 35 20 94

Test

Goals 0 5 4 6 4 1 2 3 3 0

Collisions 6 4 4 4 5 5 6 8 4 10
Coll. Exp. 101 63 134 151 25 56 169 201 87 308
Balls Out 2 2 2 3 4 2 3 3 3 5

Predictions 10 9 10 7 10 8 10 10 10 10

Team B

Training Result 4 0 0 0 0* 0 0 1 0* 5

Test

Goals 0 1 2 2 2 0 1 0 3 3

Collisions 2 0 3 4 2 1 1 2 1 3
Coll. Exp. 63 0 25 137 42 5 4 11 2 18
Balls Out 2 5 2 5 4 3 3 6 4 4

Predictions 10 10 4 5 4 2 4 4 4 3

Team C

Training Result 0 0 0 0* 41 0 3 0 0 0

Test

Goals 1 1 4 3 5 1 0 3 2 4

Collisions 0 1 0 0 0 0 0 0 1 0
Coll. Exp. 0 40 0 0 0 0 0 0 0 0
Balls Out 5 4 3 4 4 5 3 7 3 3

Predictions 0 1 0 4 4 5 2 0 3 3

Team D

Training Result 0* 0 45 52 35 0* 0* 0* 0 16

Test

Goals 0 4 1 5 9 1 3 6 3 3

Collisions 0 0 6 1 0 4 2 2 4 4
Coll. Exp. 0 0 48 131 0 40 45 44 89 110
Balls Out 0 3 0 1 1 3 0 1 1 2

Predictions 10 7 10 10 2 10 10 10 10 10

A completely different behaviour has been observed against team C. Although

the goalkeeper started with a very positive expectation of the environment by

predicting no threat after the first training phase, we can observe that its negative

expectations gradually increase and decrease along the training phases. Also, note

that these variations in expectations are consistent with the degree of challenges

faced against team C during the training phases.

Interestingly, the maximum number of threat predictions seen per testing phase
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against team C is 5 out of 10, which is half the maximum number of threat pre-

dictions seen for the other teams. This demonstrates that SAFEL was capable of

recognising that team C’s striker is not as dangerous as the other teams’ strikers

and, consequently, provide adequate emotional feedback.

Learning in the Amygdala Module

Fig. 6.5 shows the learning progress in the AM for associating the CS c1 = s3 (the

falling state of the goalkeeper) with the US u1 = s1 (opponent goal scoring), when

playing against team D. Because the striker from team D has a strong shot at goal,

it has better chances than the other teams to score a goal with one single kick,

regardless of the farther distance. By its default behaviour, the goalkeeper tends

to jump and try to catch the ball whenever it observes the ball is arriving at high

speed and probably scoring a goal. If the ball is in fact too fast, the goalkeeper is

likely to fail even when jumping. This is one of the reasons for the impressively

high number of goals from team D seen in Table 6.3.

Fig. 6.5a shows the values of stimuli s1, s2 and s3 (goal (US), collisions (US) and

falling status (CS), respectively) and the AM’s adrenaline signal varying over time

for each training phase executed against team D. Fig. 6.5b shows the variation of

the first-layer weight w11 of the ANN in the AM, which links the first-layer neuron

representing stimulus c1 (goalkeeper falling state) with the first neuron of the

second (hidden) layer. In other words, Fig. 6.5b demonstrates the progression of

synaptic plasticity process in the AM for neuron c1, which is the neuron describing

the goalkeeper’s falling state.

We can observe in Fig. 6.5a that, already in the first training phase, there is

a co-occurrence of stimuli u1 and c1, which leads to an update in the value of w11

(Fig. 6.5b). This initial association is enough to slightly increase the adrenaline

signal in the first training phase right after the goal occurrence (i.e., when u1 has

stopped occurring), while the goalkeeper is still on the ground (i.e., when c1 is still

occurring). This means that, at this point, c1 is already able to slightly raise the

adrenaline signal by itself, even in the absence of the US u1. The initially neutral

stimulus c1 has become a conditioned stimulus, though still weak (the adrenaline

does not rise above the defined threshold) and unable to affect the behaviour of

the robot.

There is no occurrence of falls from the second to the fourth training phases.

In the fifth training phase, though, the goalkeeper falls while a collision was al-

ready happening, meaning that at some point c1 and u2 co-occurred. However, as

specified by the sensitivity matrix depicted in Table 6.2, c1 has sensitivity to u1

(goal) only. Since association between c1 and u2 (collision) is obstructed by the
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(a) Values of stimuli u1, u2 and c1 (goal, collision and goalkeeper falling state, respec-
tively) and the AM’s adrenaline signal overtime for each training phase.
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(b) Plasticity mechanism taking place along the training phases for weight ∆w11 linking
the first-layer neuron representing stimulus c1 (goalkeeper falling state) with the first
neuron of the second (hidden) layer.

Figure 6.5: Association process in the Amygdala Module over time when playing
against team D.

sensitivity matrix, no association arises from the co-occurrence between c1 and

u2. The absence of association can be confirmed in Fig. 6.5b, which shows that

w11 suffered no alteration in the fifth training phase as a result of such stimuli

co-occurrence. This demonstrates that the sensitivity matrix, in fact, works as

expected by preventing unwanted associations.

On the sixth training phase, a co-occurrence between c1 and u1 happens again

(Fig. 6.5a) and the value of w11 is once again updated (Fig. 6.5b), increasing the

influence of c1 on the value of the adrenaline signal. Nevertheless, Fig. 6.5a shows

that a different event consecutively occurs on the seventh and eight training phases.

A goal is scored by the opponent at some point in time in both training phases,

but no falls occur. The presence of the US in the absence of the CS, as explained
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in Section 3.1, leads to dissociation (i.e., the forgetting of a created association),

caused by the LTD phenomenon. The simulation of this phenomenon is observable

in Fig. 6.5b, which shows that a decrease in the value of w11 occurs in the seventh

training phase, and then again in the eight training phase. No meaningful event

occurs in regards to the AM associative learning process in the remaining training

phases.

The result seen in Fig. 6.5 is a clear evidence that the AM of SAFEL is capa-

ble of inducing associative learning that is analogous to the cued fear conditioning

by successfully simulating the LTP and LTD phenomena in the brain. This re-

sult also demonstrates that such learning technique has practical application in

robotics by allowing robots to successfully learn with environmental exploration

and autonomously adapt.

Learning in the Hippocampus and Working Memory Modules

Interestingly, a clear distinction in how SAFEL perceived the different opponent

teams is also observable in the resulting classification tree of the WMM after the

training phases, which reflects the contextual learning taking place in both the HM

and WMM. Fig. 6.6 shows the classification tree of the WMM after the second,

sixth and tenth training phases for each of the four opponent teams.

For the sake of readability, descriptions of stimuli and extracted feature have

been abbreviated in the presentation of the trees. Each node of the tree is described

by an abbreviation of the format STMF , where STM describes the stimulus and

F describes the extracted feature. Stimuli are abbreviated as follows:

• Fall: stimulus s3 – Falling state of the goalkeeper itself. This stimulus

assumes the value 0.4 if the goalkeeper is staggering, 0.7 if the goalkeeper is

falling, 0.8 if the goalkeeper is getting up and 1 if the goalkeeper is fallen;

• DBK: stimulus s4 – Normalized distance from the ball to the goalkeeper;

• DOK: stimulus s5 – Normalized distance from the closest opponent to the

goalkeeper;

• DOB: stimulus s6 – Normalized distance from the closest opponent to the

ball;

• DBG: stimulus s7 – Normalized distance from the ball to the goal; and

• DOG: stimulus s8 – Normalized distance from the closest opponent to the

goal.
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While the extracted feature, which characterizes a temporal property of a par-

ticular stimulus during the life cycle of a particular situation, is abbreviated as

follows:

• M: the mean value of that stimulus during the life cycle of the respective

situation.

• S: the skewness of that stimulus’ distribution during the life cycle of the

respective situation.

• P: the number of peaks (or local maxima) in the distribution of that stimulus

during the life cycle of the respective situation.

For instance, a tree node described as DBKM will evaluate the mean value of the

distance between the ball and the goalkeeper during the life cycle of each situation

instance that visits that node of the tree.

The first obvious difference is in the size of the classification trees, which varies

not only between different training phases but also between different teams. For all

teams, increasing the number of training phases consistently leads to larger classi-

fication trees. As discussed in Section 5.3, the more the robot explores the environ-

ment and experiences new aversive situations, the larger is the dataset depicting

the robot’s environmental conditions and, consequently, the more knowledge the

classification tree is able to absorb. Fig. 6.6 is a clear evidence that the knowl-

edge base of the tree (and consequently the robot’s capability to predict imminent

aversive events) increases with experience, as the robot explores the environment.

However, in terms of flexible decision making and adaptive learning, the most

important difference to be observed is how the trees have grown for each different

team. Interestingly, all teams but team C have started with the exact same pattern.

These tree structures is coherent with the result seen in Table 6.7, which shows that

the first training phase resulted in either goal or collision for all opponent teams

except for team C. Since there was no aversive situation to learn, the classification

tree assumed that any situation instance arriving for prediction regarding team C

would belong to the ‘safe situation’ category. Also, the decision of the trees for

teams A, B and D after the second training phase is solely based on the distance

from the ball to the goal. Curiously, this is the same criteria for leaving the goal

area implemented by the B-Human team in their default goalkeeper behaviour.

Despite the initial similarity, the classification trees started to grow differently

for each different opponent over the training phases, as the game style of each

team’s striker gradually became distinct. Observe, for example, that the classi-

fication tree after the sixth training phase is much larger for team D (Fig. 6.6d)
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than for the other teams. Different from the goalkeeper’s default behaviour, which

is based only on the distance from the ball to the goal area, the decision of the tree

for team D is based on the distances from the ball and from the opponent to all

the other elements of interest in the field, as well as all the ways that the temporal

properties of these variables can be expressed in SAFEL (i.e., mean, skewness and

number of peaks). In comparison with the default behaviour of the goalkeeper as

implemented by the B-Human team, the decision of leaving or not the goal area

with SAFEL is based on a much richer net of factors, which in turn is constructed

based on events taking place at real time while the goalkeeper is in action.

The tree for team C (Fig. 6.6c) after the sixth training phase is, perhaps,

the easiest to interpret and greatly matches the profile of team C, as well as the

events taking place between the second and sixth training phase. This tree can be

interpreted as follows:

1. If the opponent has been close to the goalkeeper for a while, then warn

imminent threat (This is likely to lead to collisions);

2. If the opponent has been relatively far from the goalkeeper, but the goal-

keeper has been fallen for a long time, then warn imminent threat (This is

likely to lead to goals);

3. If the opponent has been relatively far from the goalkeeper and the goalkeeper

has been fallen but not for long, then warn imminent threat only if the

opponent is relatively close to the goal (this is likely to lead to goals);

4. Otherwise, consider this a safe situation.

We can conclude from the rules above that, in this specific scenario against team

C, SAFEL is particularly concerned with states of the world where a rebound is

likely to occur (e.g., the goalkeeper being on the ground after an attempt to block

the ball while the opponent is getting closer to the goal). SAFEL’s concern with

rebound opportunities is an exact match with the profile of the team C described

in Table 6.1. According to Table 6.1, the striker from team C has neither a

strong shot to goal nor an aggressive ball pursuit behaviour. The only behaviour

this team has is, in fact, the opportunistic rebound. Additionally, the situations

described above in items 2 and 3 have happened in these exact circumstances

during the fourth training phase2, which is probably the moment when the tree

started to change and adapt to the opportunistic rebound behaviour of team C.

The reasoning depicted by the rules of this classification tree is strong evidence

2These situations can be observed in the videos of the simulations, which are available at
https://www.cs.kent.ac.uk/people/rpg/cr519/casestudy.

https://www.cs.kent.ac.uk/people/rpg/cr519/casestudy
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Figure 6.6: Classification tree of the WMM after the second, sixth and tenth
training phases for each of the four opponent teams. For the sake of readability,
some of the large trees have been truncated in their presentation.
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that, together, the HM and WMM of SAFEL are able to identify unique patterns

in stimuli interaction over time that characterizes the distinct profile of each team.

6.5 Discussion

Next we discuss how the learning and association processes in each module influ-

ences SAFEL’s overall learning and emotional feedback, where Section 6.5.1 dis-

cusses the role of the Amygdala Module (AM) and Section 6.5.2 discusses the role

of the Hippocampus Module (HM) and the Working Memory Module (WMM)

in SAFEL’s predictions. Section 6.5.3 gives a closure to this discussion by re-

capitulating the importance of the integrated work and communication between

all modules in the SAFEL model. Finally, Section 6.5.4 discusses other possible

scenarios in the RoboCup context where SAFEL could also be used to provide

adaptation and flexible decision making.

6.5.1 The Role of the Amygdala Module

Although the AM itself is not solely responsible for the positive results presented

in Section 6.4, it plays an important role in the overall learning process. While

the HM is concerned with creating and associating representations of context with

aversive stimuli, the AM is the one module responsible for revealing to the HM

what stimulus is or not aversive. More importantly, the AM is responsible for

finding new aversive stimuli (in addition to those pre-defined) with which the

HM can associate context. This discovery of new aversive stimuli is based on a

conditioning-like procedure taking place at runtime. Therefore, the AM learns

with experience which stimuli in the environment are threatening enough so that

the HM and WMM should be aware of its existence as aversive.

For instance, Section 6.4.4 demonstrated how the adrenaline signal is influ-

enced by the conditioning process taking place at the AM. Because the sensitivity

matrix indicates a high relationship between stimuli u1 (goal scoring) and c1 (goal-

keeper falling state), an association process takes place whenever these two stimuli

co-occur. As a consequence, stimulus c1 becomes more efficient in raising the

adrenaline output from the AM. After a few repeated co-occurrence of these two

stimuli, c1 becomes efficient enough to raise the adrenaline signal above the pre-

defined adrenaline threshold, thus leaving the status of neutral stimulus (NS) and

becoming a conditioned stimulus (CS).

From this moment on, the HM will start to associate with fear any context

preceding the occurrence of c1, regardless of the state the other aversive stimuli.
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In other words, the HM will label as conditioned aversive any situation preceding

the occurrence of c1. Consequently, the WMM will learn the pattern of these

situations as well, in addition to those preceding US’s. In the future, the WMM’s

classification tree will be likely to predict averseness whenever it receives from the

HM a neutral situation with pattern similar to those preceding c1. For the robot,

this prediction means that something undesirable is about to happen in the near

future. However, in a deeper analysis, we can state that the WMM is actually

predicting that the goalkeeper is about to jump for catching the ball and is likely

to fail.

Unlike aversive US’s, which are universally aversive regardless of what is hap-

pening in the environment, aversive CS’s may return to the status of NS. As

explained in Section 3.1, the dissociation process that turns a CS into a NS takes

place when the US recurrently occurs in the absence of the CS. This process has

also been demonstrated in Section 6.4.4 to be successfully induced in the AM. In

our example, dissociation would mean that at some point during a soccer match

the goalkeeper is no longer jumping to catch the ball when goals are scored. This

could happen for a number of reasons.

For instance, the over-time increasing frequency of fearful responses from SAFEL

induces the goalkeeper to more frequently leave the goal area for pursuing the ball.

Consequently, there will be times in which the goalkeeper will be disputing the ball

with the striker instead of standing in the goal area. Suppose that in some of these

cases, the striker manages to dribble the goalkeeper and score a goal. Because the

goalkeeper is away from the goal, it has no reasons to jump. Therefore, in this

scenario a goal has been scored but the goalkeeper did not fall, case in which the

dissociation process takes place.

The likelihood of a goal being scored while the goalkeeper is jumping to catch

the ball is now reduced by the fact that the goalkeeper is more often disputing

the ball with the striker instead of standing in the goal area. This makes the

association between u1 and c1 less relevant than it was in the beginning, which

justifies the dissociation.

Finally, it is interesting to observe that the AM has created strong associations

between u1 and c1 only when the goalkeeper was playing against team D. This is in

virtue of team D being the only team with a striker capable of frequently scoring

goals from farther distances with just one kick. This is a clear evidence that the

AM was not only capable to create associations and detect new aversive stimuli,

but also to identify aversive stimuli based on the profile of the opponent team.
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6.5.2 The Role of the Hippocampus and Working Memory

Modules

Although the AM is essential in the SAFEL architecture, as discussed in Sec-

tion 6.5.1, it is unable to make sense of context or its temporal properties. Like

the AM, the HM and WMM together play an essential role in the SAFEL model,

which is understanding and attaching emotional labels to the robot’s state of af-

fairs. This task involves several subtasks, which are divided between the HM and

the WMM.

The robot’s perception of the environment starts to be constructed in the

AM, of course, but it is in the HM that environmental perception becomes more

elaborated and realistic. While the AM detects punctual events capturing unique

traits of each team, the HM is able to gather complex sets of information that

can describe with more details the unique patterns of action of each team and,

therefore, is better able to differentiate one team from another based on their

in-game actions.

For instance, the AM may be able to detect that the goalkeeper is usually

fallen when team D scores a goal because these two stimuli co-occur. As discussed

in Section 6.4.4, this association is important because it indicates that jumping

to catch the ball is an ineffective strategy against team D. However, the AM is

usually unable to predict that a goal is likely to occur in the near future based

on what is occurring at the moment because, in this case, the stimuli relevant

for the prediction are not co-occurring. This kind of prediction would require a

mechanism that makes sense of how events evolve over time, which is provided by

the HM and WMM.

The situation management performed in the HM allows SAFEL to build pieces

of information describing how environmental stimuli interact over time. This pro-

vides SAFEL with a much richer perception of the environment, allowing the robot

to observe and understand a level of detail in the environment that would not be

possible with information gathered in the AM only.

For instance, the AM is able to detect that a particular US u1 occurs whenever

a particular CS c1 has low value and another particular CS c2 has high value.

However, only the WMM is able to detect that some US is likely to occur at time

tn+100 if the CS c1 is high at time tn and gradually decreases its value until time

tn+100 while the CS c2 is constantly high from time tn to time tn+100. Both cases

describe the same situation. However, while the AM is detecting the occurrence

of the US only around time tn+100 (possibly a couple of time steps earlier), the

WMM has already predicted it at time tn. Such prediction from the WMM is only
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possible, though, due to the assembling of situation instances performed by the

HM. Therefore, SAFEL’s contextual perception of the environment is not a merit

of the HM or the WMM independently but instead of the collaboration between

these two modules, whose harmony is highly dependent on the emotional feedback

provided by the AM.

In the scenario of this case study, the kind of data processing performed in the

HM and WMM allowed constructing logical premises describing specific details of

each team’s playing profile as discussed in Section 6.4.4. It is interesting to observe

that a completely different reasoning has been built by the classification tree of

the WMM for each of the four teams, which is in accordance with the behaviours

described in Table 6.1. While the AM only managed to build a clear distinction

between team D and the other teams, the WMM managed to build distinct logical

premises for each of the four teams, thus successfully differentiating all of the teams

from each other.

It is worth noting that the difference in the complexity of data processed by the

AM and by the HM/WMM also represents the pivotal difference between SAFEL

and BEL that led to the result observed in the experiment of Section 5.4.5. The

level of details perceived in the environment by BEL would be analogous to the

level of environmental perception from SAFEL if it was composed of the AM only.

6.5.3 The Big Picture

Now that the functioning of each of SAFEL’s modules has been explained in detail

and thoroughly analysed in the case study, we can review the model from a global

perspective. During environmental exploration, a number of factors can be relevant

for predicting the occurrence of an aversive stimulus, such as:

1. The current state of a particular stimulus,

2. The current state of a particular set of stimuli,

3. The way the state of a particular stimulus changes over time, and

4. The way the state of a particular set of stimuli changes over time.

Some of these factors may be more or less relevant than the others, depending

on the robot’s context and task, but most importantly, they all may play a role

when predicting aversive events. Therefore, none of these factors should be ne-

glected in the fear-learning process. In contrast to previous fear-learning models

(see Chapter 2), SAFEL takes all the above-listed factors into consideration in its

fear-learning and decision-making processes.
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The AM deals with the relevance of the robot’s present state-of-affairs, learn-

ing which states of particular stimuli are relevant for detecting averseness. The

HM, in turn, collects the state of sets of stimuli, and their variations over time.

Finally, the WMM makes sense of the information collected by the HM by fusing

it with the information coming from the AM. Each module of SAFEL’s architec-

ture contributes in a distinct and relevant way to the fear learning and prediction

processes, and removing any of them would imply in ignoring at least one of the

factors previously listed.

In addition, due to the parallel communication between its modules, SAFEL

is capable to simulate two aspects of fear memory in the brain that are broadly

explored by LeDoux (2003, 1999), which have already been discussed in Section 3.1

and Section 4.1. The first aspect is based on the idea of a unified representation

of context, which considers not only the relevance of individual stimuli per se, but

also their inter-relationship and the way it varies over time.

The second aspect is based on the distinction between the emotional memory

and the memory of emotion. The AM creates an emotional memory, by indicating

through the adrenaline signal when the robot is presently facing one or more aver-

sive stimuli and, therefore, should trigger fearful reactions and behaviours. While

the amygdala receives categorized input (NS or aversive US), the HM receives the

same input set, but uncategorised, so to generate an emotionally neutral memory.

Ultimately, the WMM uses the emotionally neutral memory coming from the HM

to retrieve a memory of emotion once generated by the AM in previous experiences

of the robot.

A final consideration is that some existing models inspired by the real mech-

anisms of the brain focus on providing a close-to-real emulation of brain func-

tions without addressing its practical usage in artificial intelligence (Gardner and

Grüning 2013; Subagdja and Tan 2015). Although SAFEL attempts to mimic

certain aspects of the brain’s mechanisms of fear learning and memory, it has no

intention of achieving a realistic emulation of the brain’s functions and is exclu-

sively focused on real-world applications for artificial intelligence and autonomous

robotics.

6.5.4 Other RoboCup Scenarios

In addition to the scenario explored in Section 6.2, SAFEL has great potential to

be used in other RoboCup scenarios as well, as we further discuss in Rizzi, Johnson

and Vargas (2017). Next, we briefly suggest additional scenarios and approaches
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through which SAFEL could be used for improving collaborative behaviour, post-

coordination and ad-hoc teamwork.

Anticipated Help Request: In many soccer situations, an undesirable outcome

may be unavoidable, regardless of a player success in correctly predicting it and

taking the appropriate actions. For instance, in the scenario of the case study

discussed in Section 6.2, the best way for the goalkeeper to avoid a goal when

dealing with the striker from team A is to leave the goal area and try to reach

the ball first. However, this action also increases the number of collisions, since

both striker and goalkeeper attempt to reach the ball at the same time. One

option for the goalkeeper in this case would be to, in addition to pursuing the ball,

message teammates whenever SAFEL predicts an aversive situation. By requesting

help before it is actually needed, the goalkeeper allows its teammates to act with

antecedence and, perhaps, aid in situations where help would be impracticable

without the opportunity to anticipate their actions.

The Coordinator-Robot Approach: Ros et al. (2009) propose an coordination

protocol in which one single robot is selected as the “coordinator”. The coordinator

is responsible for reasoning over the current problem, given the state of the world,

and messaging to the remaining teammates the sequence of actions that should

be executed by the group in order to solve that problem. This approach provides

a simple solution to the post-coordination problem, while preventing decision-

making conflicts that could arise from a distributed system, and can easily be

applied using SAFEL. For instance, SAFEL could be used only with the selected

coordinator robots, which in turn can change the actions and strategies of the

whole team whenever SAFEL predicts danger.

Drop-in Competition: The drop-in competition, introduced in 2013 (Genter,

Laue and Stone 2015), encourages the creation of agents capable of coordinating

and co-operating with other teammates in an ad-hoc manner. In this competition,

robots of different RoboCup teams collaborate as a single team towards a com-

mon goal: win the match with the highest goal difference possible. The biggest

challenge of the drop-in competition reside in the the lack of pre-coordination,

which affects the players’ capability to properly communicate. Because of the

limited and possibly misleading communication in the drop-in competition, many

RoboCup teams do not completely trust their teammates’ messages, completely

ignoring them in many cases. This is because misleading communication could

lead a player robot to engage in a disadvantageous or non-intelligent behaviour,

which would negatively affect its score in the competition. In this sense, SAFEL

could improve ad-hoc teamwork in the drop-in competition by providing means to

learn and predict (1) the reliability of each teammate’s communication; (2) the
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relative skill of each teammate in particular roles and positions; and (3) when it

is better to make or receive a pass.

6.6 Final Considerations

This chapter analysed the performance of SAFEL in the robot soccer context.

More than a competition, the Robot World Cup (RoboCup) is an initiative with

the ambitious challenge of evolving robotics and artificial intelligence technologies

to a level where a soccer team of robots can defeat the best soccer team of humans

in the world. Such challenge has motivated researchers in a variety of robotics

related areas to develop machines, algorithms and models that contribute to the

goal of the RoboCup initiative. Nonetheless, artificial intelligence techniques re-

lated to flexible decision making, contextual perception and real-time adaptation

still have a modest presence in RoboCup’s list of accomplishments. This chapter

explored how SAFEL can contribute to filling this gap while also evaluating its

performance in the robot soccer scenario.

A thorough analysis has been conducted in this chapter, which evaluated

SAFEL under three different perspectives: (1) the predictive performance of SAFEL

in Section 6.4.2, (2) the robot’s adaptation performance in Section 6.4.3 and (3)

how learning evolves at runtime inside SAFEL’s modules in Section 6.4.4. For

such analyses, we set up a scenario where the goalkeeper of one team is alone with

the striker of the opponent team and must decide, based on the playing profile

of the opponent striker and other factors in the game, whether to leave the goal

area unattended to pursue the ball. To construct this scenario, we used the robot

soccer controller and simulation tool of the B-Human team (Röfer et al. 2015),

which is currently among the best teams in the Standard Platform League (SPL)

of RoboCup.

The results of the first experiment, which evaluates the predictive performance

of SAFEL, demonstrated that SAFEL is capable of finding recurrent patterns in

the behaviour of each team and providing an adequate emotional response by

anticipating the occurrence of collisions or goals. The second experiment, which

compared the playing performance of the goalkeeper with and without SAFEL,

demonstrated that SAFEL reduced the number of goals and increased the number

of balls out against all the four teams, at the cost of slight increases in the number of

collisions. It is also worth noting that SAFEL’s emotional response was different for

each team and coherent with the particular behaviours that we have implemented

for each of them, which is a strong evidence that SAFEL successfully learned the

different behaviour profiles of each team during this experiment.
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Finally, the third and most comprehensive experiment aimed at monitoring how

SAFEL gradually learns with experience and how the quality of its predictions

progresses over time. Unlike the first and second experiments described above,

SAFEL started with an empty dataset in this experiment. This means that SAFEL

started without any knowledge about the environment and adapted to it solely at

runtime.

During this experiment, SAFEL was allowed only 10 independent simulations

of the scenario for each team to learn and adapt to the particular strategies and be-

haviours of each team’s striker. Despite the short number of simulations allowed for

training, SAFEL showed differentiated emotional responses for each team, which

were coherent with the events taking place during the respective simulations.

During the first rounds of simulation, when SAFEL still had insufficient time

to observe the environment and build a robust expectation of it, SAFEL reacted

with intense fearful responses to any newly occurring aversive stimuli. Interest-

ingly, this behaviour is consistent with that of many animals, including our own,

when dealing with unfamiliar environments. After a few more simulation rounds,

though, SAFEL could better observe the environmental outcomes with each team

and adequate its emotional responses, responding with more ‘confidence’ to less

threatening strikers and maintaining the initial stress against more aggressive or

skilled strikers.

Section 6.4.4 also analysed how the learning and prediction processes evolved

over time inside each independent module of SAFEL. Ultimately, Section 6.4.4

concluded by discussing how the results observed in this experiment were affected

by each independent module of SAFEL and how their integrated work is essential

to successfully accomplish all the goals of the SAFEL model.

Together the three experiments presented in Section 6.4.2, Section 6.4.3 and

Section 6.4.4 provide strong evidence of SAFEL’s effectiveness in:

• Generating emotional responses that are coherent with the robot’s state of

affairs;

• Perceiving context in a detailed way, including its temporal properties;

• Identifying the specific patterns that make a particular environment different

from another;

• Requiring little time of environmental exploration in order to learn relevant

environmental patterns and adapting to environmental changes and threats;

• Giving the robot controller a robust basis for generating flexible decision-

making and adaptive behaviour by means of its emotional responses.
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Conclusion

This thesis presented a novel hybrid cognitive computational model named SAFEL

(Rizzi et al. 2017; Rizzi, Johnson and Vargas 2016, 2017, 2018; Rizzi Raymundo,

Johnson and Vargas 2015). Inspired by well-known neuroscience findings on areas

of the brain involved in fear learning, SAFEL integrates machine learning algo-

rithms with concepts of situation-awareness from expert systems to simulate both

the cued and contextual fear-conditioning phenomena. Ultimately, SAFEL pro-

vides autonomous robots with the ability to predict undesirable or threatening

situations based on their past experiences and use this information for adaptation

and flexible decision-making.

SAFEL consists of a hybrid architecture composed of three modules, each based

on a different approach and inspired by a different region (or function) of the brain

involved in fear learning. These modules are: the Amygdala Module (AM), the

Hippocampus Module (HM) and the Working Memory Module (WMM). Each

module was presented in a dedicated chapter, which discussed the biological in-

spiration, underlying technology, design and preliminary experiments (when ap-

plicable) of the respective module of SAFEL. Ultimately, a comprehensive case

study was conducted to evaluate the collective work of all modules. It also anal-

ysed to which extent the emotional feedback of SAFEL can improve the intelligent

behaviour of a robot in a practical real-world situation, where adaptive skills and

fast/flexible decision-making are crucial.

The case study consisted of a robot soccer scenario. We focused on simulating

a particular situation potentially occurring during a soccer match in the Stan-

dard Platform League (SPL) of the Robot World Cup (RoboCup) competition.

In the simulated situation, the playing performance of the goalkeeper was com-

pared with and without the influence of SAFEL’s emotional responses. The core

behaviour of the goalkeeper player used in this case study was implemented by the

B-Human team (Röfer et al. 2015), which is currently among the best teams in the
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RoboCup competition, having won it for several years. This experiment showed

that, in comparison with the default player behaviour, the in-game performance

of the goalkeeper was improved when the predictions of SAFEL were affecting the

robot’s actions. The goalkeeper was capable to distinguish the different profiles

and recurrent behaviours of four opponent teams and adapt its actions accordingly

during the game. Overall, when using SAFEL, the goalkeeper was able to reduce

the number of goals scored by the opponent and increase the number of success-

ful attempts at kicking the ball away from the opponent at the cost of slightly

increasing the number of collisions with the opponent robot.

In addition to the player performance, this case study also evaluated the pre-

dictive performance of SAFEL in the RoboCup scenario, as well as how learning in

SAFEL evolved at execution time. These experiments demonstrated that SAFEL

is capable of finding recurrent patterns in the behaviour of each team and provid-

ing an adequate emotional response by anticipating the occurrence of collisions or

goals. This is true even when the robot started exploring the environment with no

prior knowledge about it. In this case, SAFEL showed an impressive efficiency for

learning solely at runtime the particularities of each specific environment and dis-

playing emotional responses that were coherent with the profile of each particular

opponent team.

Next, we revisit the main contributions of this thesis in Section 7.1, compar-

ing its hypothesis and research questions with the accomplishments of SAFEL

as a domain independent model for providing at-runtime adaptation and robust

situation-aware fear-learning capabilities to autonomous robots. In Section 7.2, we

express our final considerations and opinions on the work presented in this thesis,

suggesting future work and improvements to SAFEL. Finally, Section 7.3 presents

ideas for future research involving SAFEL.

7.1 Contributions Revisited

This section revisits the main objectives of SAFEL and the research questions that

it naturally evokes. We start this section by revisiting the central hypothesis of

this thesis, as stated in Section 1.4:

It is possible to provide robots with online and domain-independent fear

learning and memory capabilities at both stimulus and contextual abstrac-

tion levels through a robust mechanism for situation awareness that consid-

ers multi-stimulus temporal relationships. Such learning mechanism shall

allow robots to perceive intricate elements and relationships in their environ-

ment, learn with experience through autonomous environmental exploration



CHAPTER 7. CONCLUSION 174

and adapt at execution time to environmental changes and threats.

It is our understanding that SAFEL has successfully achieved the aims of this

thesis and fulfilled the formulated hypothesis. The SAFEL model provides robots

with fear learning and memory skills in a manner analogous to both the cued and

contextual fear-conditioning biological phenomena. It is also domain independent,

as has been demonstrated by the several successful experiments in different scenar-

ios presented throughout this thesis. Finally, SAFEL also allows the robot to learn

about its environment without any prior information apart from the identification

of unconditioned and neutral/conditioned stimuli. This learning and adaptation

process takes place at runtime, during the robot’s environmental exploration, and

requires no explicit human or other external intervention.

In summary, SAFEL fulfils several important requirements for modelling sit-

uation appraisal for adaptive and autonomous robotics, allowing us to settle our

research questions. Next, we paraphrase the research questions specified in Sec-

tion 1.4 and answer them based on the achievements of SAFEL.

1. Can a cognitive computational model be designed so to fully meet

the requirements of a robust situation-aware fear-learning model

of artificial intelligence? SAFEL successfully fulfils all the requirements

of a robust situation-aware fear-learning model of artificial intelligence as

specified in Section 1.3. In regards to the requirements related to a situation-

aware intelligence (Section 1.3.1), SAFEL allows the robot controller to:

• Take into consideration the current state of each particular stimulus

sensed by the robot at a given time, as well as how it influences the

robot’s interaction with its environment.

• Take into consideration the robot’s context (i.e., the combined state

of all stimuli sensed by the robot at a given time), as well as how it

influences the robot’s interaction with its environment.

• Take into consideration the variation of the state of each particular

stimulus sensed by the robot over time, as well as how it influences the

robot’s interaction with its environment.

• Take into consideration the robot’s situation (i.e., how the robot’s con-

text varies over time), as well as how it influences the robot’s interaction

with its environment.

In regards to the requirements related to an emotional intelligence (Sec-

tion 1.3.2), SAFEL successfully simulates and/or provides:
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• A neuroplasticity-like mechanism, which allows the robot to adapt to

new environments by learning new stimuli associations and forgetting

those associations that are no longer useful in its current state of affairs.

• Associative learning and memory, by means of the associative learning

performed in both the AM and WMM, where stimuli and context are

associated with the simulated fear emotion.

• Real-time learning and adaptation, by allowing the robot to learn and

understand its environment at execution time and subsequently use the

learned information to express adaptive and flexible decision-making

behaviours.

2. Can a hybrid cognitive computational model, depending on the

contribution of different approaches and techniques, meet the re-

quirements of a robust situation-aware fear-learning model of ar-

tificial intelligence? SAFEL consists of a hybrid architecture composed

of three modules, each based on a different approach. The Amygdala Mod-

ule (AM) is based on a modified ANN that provides associative learning for

cued fear conditioning. The Hippocampus Module (HM) is based on concepts

of situation-awareness, which are implemented by means of a powerful rule-

based platform for situation management. Finally, the contextual association

and memory retrieval processes taking place in the Working Memory Module

(WMM) are performed by a binary classification tree. This is evidence that

a robust situation-aware fear-learning model of artificial intelligence can be

built on a hybrid architecture. Additionally, the experiment discussed in

Section 5.4.5 demonstrates that SAFEL displayed remarkably better per-

formance for handling context than the BEL model, which is based on one

single technique and relies on the joint work of multiple ANN modules.

3. Can a robust situation-aware fear-learning model of artificial intel-

ligence be effective in real-world robotics applications? The experi-

ments of Chapter 6 are strong evidence that SAFEL can be effectively used

in real-world applications for improving the robot’s task performance and

increasing its chances of successfully accomplishing its goals in a dynamic

and competitive environment.

7.2 Final Considerations

Together, the preliminary experiments presented in Chapter 3 and Chapter 5,

along with the experiments of the case study presented in Chapter 6, provide
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strong evidence that SAFEL has met all of the requirements and research ques-

tions formulated in Chapter 1 and fulfilled the hypothesis stated by this thesis.

Overall, SAFEL demonstrated good predictive performance and at-runtime learn-

ing capabilities. It was shown in a number of experiments in different scenarios

that SAFEL effectively allows robots to use complex temporal and contextual

information allied with simulated mechanisms of fear learning to predict the im-

minent occurrence of threats or undesirable situations. The ability to predict such

events allow robots to take actions towards preventing their occurrence, thus be-

coming better fitted to the features of that environment, which configures the very

definition of adaptation.

Notwithstanding the positive outcomes of this thesis, there are a few aspects of

SAFEL that require further attention and improvements. In regards to the AM,

we suggest the implementation of a better method for robot-controller designers to

optionally stipulate the longevity of the AM memory, if desired. Currently, there

is only one predefined parameter that allows configuring the learning latency in

the AM, as well as the longevity of learned information, which is the association

rate (AR). However, defining the value of the AR is not intuitive and can only

be fine tuned through trial and error. Furthermore, the predefined AR value

impacts both the association and dissociation processes of the AM. This means

that the learning latency and the longevity of the learned information in regards

to a particular stimulus are governed by the same parameter, even though these

are two completely distinct processes.

Despite the discussed downsides, the AM as we designed still presents clear

advantages in comparison to other models of artificial synaptic plasticity in the

literature. Among the main advantages we highlight:

• The AM does not require predefining parameters to configure the learning

process of internal nodes of the ANN. The AM requires parameter settings

only for the input nodes, so as to define which inputs are CS and US. An

optional parameter setting is also allowed to describe the sensitivity level of

particular CS’s to particular US’s. In both cases, the relationship between

the ANN’s inputs is the only knowledge required from the robot designer in

order to configure such parameters. This relationship, in turn, is intuitive

and can be inferred from the robot’s task in most cases, as the inputs of the

ANN usually reflect the robot’s domain of interest in the real world.

• A number of models consider that CS-US pairing occurs only when the input

value of these two stimuli are simultaneously high (Morén and Balkenius

2001; Timmis, Neal and Thorniley 2009). However, unlike aversive US’s
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(whose behaviour is known beforehand by the robot’s designer and learned

by the ANN at the training phase), the behaviour of an NS or CS is only

revealed at runtime and, therefore, is unpredictable before that. In the

real world, there are many examples of NS that assume their average or

highest values in neutral situations. Contrasted to other models of synaptic

plasticity, the AM of SAFEL does take this aspect into consideration.

• Although here we use the mechanism of the AM to induce fear learning, it

can actually be used for other kinds of conditioning. In fact, the original

design of the AM, proposed by Rizzi Raymundo and Johnson (2014), aims

at providing classical conditioning between CS’s and US’s, where the US is

not necessarily aversive. This is an important aspect of the AM, as it creates

opportunities for us to modify SAFEL so to simulate emotions other than

fear.

We are also aware of a few facets of the HM that require further consideration.

The first that comes to our attention is the need to define an absolute and pre-fixed

number for the adrenaline threshold. Contrary to how it is currently implemented

in the HM, the line between fear and confidence tends towards a blurred and soft

range rather than a final absolute number. Also, this range should be flexible and

adaptable to the current state of affairs. In fact, the existence of such threshold

leads us to our second concern in the HM, which is the limitation imposed by

this module in the final fear responses of the architecture. Although the AM

outputs a continuous value representing the adrenaline signal, the HM transforms

it into a binary response: safe or aversive situation. The adrenaline signal of the

AM allows for a larger and richer range of emotional interpretations, which are

considerably narrowed by the HM. This, in turn, affects the range of affective

responses accessible to the WMM, ultimately restricting the range of affective

responses of SAFEL as a whole.

A third concern in the HM is the need to predefine a global situation duration

(GSD), which is then equally applied to all situation types with the exception of

unconditioned aversive (UA) situations. Although such parameter can be easily

induced by the robot designer from the robot’s domain and tasks, there is no

guarantee that the duration of situations will remain the same over time, which

could later lead to decay in predictive performance. We have partially addressed

this issue in the latest version of SAFEL by increasing the number of existing

conditioned aversive (CA) situations preceding the occurrence of UA situations.

By doing so, we provide the classification tree of the WMM with a larger set

of patterns from where to extract relevant information to predict aversive events,
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giving the WMM part of the responsibility to identify what is or not a CA situation.

We recognize, though, that this is a fragile solution and should be reviewed in

future versions of SAFEL.

In regards to the WMM, we recognize the demand for investigating other pos-

sible features to be extracted from situation instances delivered by the HM. Cur-

rently, a set of three features is extracted from each stimulus composing the situa-

tion instances, which are the features that we consider to better capture the main

temporal characteristics of stimuli variation over time. However, a proper study to

increase the number of extracted features is needed, as well as to investigate which

features better represent the temporal behaviour of stimuli. Additionally, once

the narrowing of affective responses in the HM (as discussed above) is addressed,

we will have a margin for tackling the same issue within the WMM. This could

be potentially resolved by replacing the current binary classification tree in the

WMM with a regression tree. A more thorough investigation is advised though.

In addition to the discussed issues, which concern to specific modules, there

are two other general aspects of the architecture that require attention. The first

is that SAFEL is not currently capable to identify that the CS associated with

an aversive US originates from the robot’s actions. Such capacity would allow the

robot to identify which of its own actions are leading to undesirable situations

and subsequently adapt or inhibit such actions. This would certainly enhance the

adaptive skills and flexible decision-making already generated by SAFEL.

This issue can be potentially addressed by dividing CS inputs into two types:

controllable and uncontrollable. In this approach, the robot designer would not

only categorize SAFEL’s inputs into US’s and CS’s but also categorize CS inputs

into those whose source is the robot (controllable CS’s) and those whose source

is the environment (uncontrollable CS’s). The former depicts consequences of the

robot’s decisions and actions which are, therefore, under the robot’s control. The

latter depicts uncontrollable factors in the environment, such as the consequences

of other agents’ actions. For instance, in the case study presented in Chapter 6,

the goalkeeper’s decision of jumping to catch the ball would configure a control-

lable CS, whereas the distance between the opponent striker and the goal would

configure an uncontrollable CS.

Internally to the architecture, the fear learning and association processes of

SAFEL would be duplicated, so that a separate association process takes place

for each type of CS. Ultimately, SAFEL would provide two fear feedbacks, one

for controllable CS’s and one for uncontrollable CS’s. This would allow the robot

controller to identify whether the imminent threat is a consequence of the robot’s

actions, of the environment or a combination of both. Nonetheless, this approach
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does not indicate which specific action (or sequence of actions) of the robot is

inducing the occurrence of the aversive stimulus. To solve that, a potential ap-

proach is to simply output together with the fear responses the situation pattern

that retrieved that fear response from the classification tree of the WMM.

Despite the robot not being able to recognize with the current version of SAFEL

which of its actions may be compromising its own goals, we have demonstrated

in Chapter 6 that such actions can be later identified by the robot designers,

which may be crucial during the development phase of the robot’s behaviours. For

instance, the AM revealed in the experiments of Chapter 6 that the goalkeeper’s

default action of jumping to catch a ball was ineffective against team D while being

successful against the other teams.

The second aspect is the evident need for an analysis of SAFEL’s performance

in terms of computation time. At the initial stages of designing and implementing

SAFEL, we opted for firstly ensuring that SAFEL would meet the requirements

and goals considered in Chapter 1. However, we recognize that a high performance

in terms of computation time is also essential for SAFEL’s purposes, as it is ex-

pected to be executed at runtime and, therefore, any latencies may compromise

the performance of the robot.

An interesting fact that compensates the current lack of a processing time

analysis is SAFEL’s potential for working in a distributed manner. Although the

proper functioning of SAFEL requires the collective work of all modules, each mod-

ule works independently from the others. This means that robotic tasks demand-

ing extensive computational resources could use SAFEL in a distributed manner

by, for instance, dedicating a machine for each module of SAFEL. This would

contribute to alleviating the pressure on computational resources by reducing the

computational time of SAFEL and consequently reducing the computational time

of the robot controller.

7.3 Future Research

In Section 7.2, we reviewed from a critical perspective some aspects of SAFEL that,

in our opinion, require further improvements and should be addressed in future

work. By contrast, here we explore future work in a more generic and inquisitive

way, expressing our aspiring ideas for expanding and further experimenting with

SAFEL in future research.



CHAPTER 7. CONCLUSION 180

7.3.1 Reinforcement Learning

Reinforcement learning is a computational approach in which, similar to SAFEL,

the agent learns by interacting with the environment (Sutton and Barto 1998).

Reinforcement learning algorithms interact with the environment in time steps,

where the learning agent first observes the current state of the environment at a

given time t and uses a policy to select an action from a set of possible actions.

The environment is altered by the robot’s action, thus moving to a new state

at time t + 1. The outcome of this new state in regards to the robot’s goals is

calculated by a reward function. The cycle is then restarted so that the robot

makes a new observation of the environment state at time t+ 1 and selects a new

action. Ultimately, a value function estimates the total long-term reward an agent

can expect to accumulate in the future. The main goal of a reinforcement learning

paradigm is to maximize the agent’s total reward in the long run.

Sutton and Barto (1998) describe rewards and values respectively as primary

and secondary to a reinforcement learning agent. He states that ‘Without rewards

there could be no values, and the only purpose of estimating values is to achieve

more reward.’ Therefore, the reward is a central concept in reinforcement learning

algorithms, and so is the method used to estimate it.

Rewards are usually defined by the robot designer according to the robot’s

task and environment. For instance, when learning to walk, the reward may be

calculated proportional to the robot’s forward motion. A classic example of re-

inforcement learning application is teaching an agent how to escape a maze. In

this case, a common approach is to reward the robot with 0 or -1 at every time

step prior to the actual escape and with +1 when it manages to escape. Although

this methodology has been widely and successfully applied in the literature, it is

limited by the fact that the reward of each environment state is pre-determined

and fixed. Also, note that the source of the reward information is the environment,

not the agent.

We hypothesize that SAFEL can contribute to leverage reinforcement learn-

ing approaches by providing (1) a reward function that is dynamic and capable

to evolve according to environmental changes and (2) a second reward source in

addition to the environment that is guided by the agent’s internal states of fear.

Similar to conventional reward functions, SAFEL also provides feedback about the

state of the environment in regards to the robot’s goals, however, based on a much

richer, more complex and potentially more realistic set of environmental informa-

tion, which is learned at runtime rather than pre-determined. SAFEL is capable to

associate the robot’s actions and state of affairs with aversive stimuli and output
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a fear (or negative) feedback that, if inverted, is analogous to a reward (or posi-

tive) feedback. However, different from conventional reward functions, SAFEL’s

feedback is based on complex temporal and contextual information deriving from

multi-stimulus interactions. This reward feedback could be further improved by

implementing the modifications suggested in Section 7.2, so that SAFEL could

output a continuous value rather than binary.

Alternatively, we hypothesize that SAFEL could also be used to generate robust

environment models. In model-based reinforcement-learning approaches, models

of environments assist the decision-making process by planning courses of action

based on estimations of probable future situations. Sutton and Barto (1998) define

models of the environment as ‘anything that an agent can use to predict how the

environment will respond to its actions’. Since SAFEL can take as input the

robot’s actions and current environmental state and output a fear response that

is equivalent to a negative feedback, we conjecture that SAFEL could be used to

construct a robust model of the environment. It is part of our plans for future

work to test the two hypotheses discussed above and compare their outcome with

the performance of standard reinforcement learning techniques.

7.3.2 Deep Learning

We have designed and implemented the HM on a symbolic and rule-based paradigm

because we believe that a standard ANN would not be capable of successfully

simulating the intricate LTP process taking place in the hippocampus (Eichenbaum

2004), which is considerably more complex than the LTP process simulated in

the AM. However, recent advancements in deep learning techniques have changed

this scenario, making of deep neural networks (DNNs) a promising method for

approaching the implementation of both the HM and WMM. This could possibly

lead to the fusion of these two modules of SAFEL into a single one.

By contrast with shallow standard ANNs, DNNs can handle a large number

of processing layers, consequently being able to better learn and represent data

with multiple levels of abstraction. DNNs have remarkably advanced the state of

the art in speech recognition, image processing, object detection and many other

domains (LeCun, Bengio and Hinton 2015).

Among the many variations of deep architectures, we are mostly interested in

the convolutional neural network (CNN). CNNs have several features that fulfil

the requirements of both the HM and WMM, especially in two important aspects:

1. CNNs are designed to process data in the form of multiple arrays in order

to detect local combinations of features from the previous layer (LeCun,
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Bengio and Hinton 2015). This is important because situations are initially

represented in the HM as matrices Sm×n, where n is the number of different

stimuli sensed by the robot and m is the number of time steps considered

within the duration of a situation.

2. In addition to convolutional layers, CNNs also contain pooling layers, which

are responsible for merging semantically similar features into one single node.

This is analogous to the feature extraction process performed in the WMM.

Another interesting approach that can potentially be embedded into SAFEL’s

architecture is the deep recurrent neural network (RNN). RNNs are commonly used

for processing data with intrinsic temporal information, where the sequence with

which data is observed is considered to be part of the data itself. This characteristic

of RNNs is very attractive for SAFEL because the major requirement of the HM

is the capability to comprehend and manage the temporal properties of sensed

environmental stimuli.

An RNN processes the elements of an input sequence individually and stores

in its hidden layers information that implicitly depicts the history of past ele-

ments in that sequence. This powerful mechanism used to be drastically limited

by the vanishing gradient problem common in standard ANNs trained with the

backpropagation method. However, recent advancements in deep RNNs have ad-

dressed this issue and demonstrated an increasingly better capacity of predicting

the future elements of a sequence (LeCun, Bengio and Hinton 2015).

Our plans for future work include investigating the use of deep learning archi-

tectures in the implementation of the HM and the WMM, especially in regards

to:

• Which deep architecture (CNN, RNN, etc.) best meets the requirements of

SAFEL;

• How the modules of SAFEL can be redesigned so to include deep learning

techniques;

• Whether deep learning does, in fact, lead to better predictive performance

than the current approach;

• How some design requirements of the WMM that are particularly well-

fulfilled by the classification tree (e.g., being easy to interpret and fast to

train) could be addressed when using a DNN architecture.
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7.3.3 Fear-Derived Behaviours

We have discussed in Section 2.1.4 a number of methods to implement emotion-

induced behaviours such as comfort, deception and guilt. Here we contemplate

the modelling of these same behaviours as an expression of fear (or the lack of it

in the case of comfort), which could be accomplished with SAFEL, perhaps in an

even more robust manner.

In Section 2.1.4, we discussed a comfort function based on the idea of ‘objects

of attachment’ that has been proposed by Likhachev and Arkin (2000) to control

robots’ navigation and exploration behaviours. We claim that, in a sense, SAFEL

already simulates the idea of comfort and confidence. It may be used in a manner

similar to that suggested by Likhachev and Arkin (2000), however without the

need for specifying an object of attachment. For the specific problem of careful

navigation and exploration in unfamiliar environments, the robot controller could

provide SAFEL with an additional input that is proportional to the time spent

by the robot in the current environment, whose inverse value would represent the

aversive US. In other words, the more time spent in a given environment, the

higher the level of familiarity with that space, the higher the robot’s confidence

and, consequently, the lower the intensity of the fear response.

We conjecture that SAFEL could also be used to generate deceptive behaviour

by indicating when the deception does not work. For instance, the CS inputs

to SAFEL could be the robot’s actions when trying to deceive along with other

environmental variables that may describe the robot’s state of affairs. The US

inputs, on the other hand, would depict the success of the robot in its attempt of

deceiving. For instance, we have discussed in Section 2.1.4 the model proposed by

Davis and Arkin (2012) for simulating deceptive behaviour that is based on the

mobbing behaviour of a species of birds called Arabian Babbler. In the scenario

studied by Davis and Arkin (2012), the CS inputs to SAFEL would represent

aspects of the state of affairs observed by the agent such as the fitness of involved

agents (as in the work of Davis and Arkin (2012)), the identity of the predator,

distances between involved agents, and so on. US inputs, in turn, would depict

the outcome of the encounter, i.e., whether the predator engaged in confronting

the agents and, if so, the intensity and aggressiveness level of the confrontation.

By observing the outcome of particular confronting situations, each individual

agent in the mob would learn which features of the environment are predictors of

dangerous and aggressive disputes. In future encounters, SAFEL would indicate

with fear levels when it is wiser to abandon the mobbing strategy and flee. The dif-

ference between the contemplated method using SAFEL and the method adopted

by Davis and Arkin (2012) is that SAFEL allows a larger and more varied set of
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inputs that better describes the environment, which is customizable and defined

according to the robot’s task and needs. The decision on whether to engage in the

deceiving behaviour would be also influenced by the identity of the predator and

the outcome of previous encounters with it, rather than a pre-fixed fitness value

only. With SAFEL, this decision would also be based on more complex and rich

observations of the environment, as it would include not only the value of stimuli

at a given point in time but also their variation over time.

Finally, the feeling of guilt can be interpreted as the realization of being respon-

sible for harming, endangering or simply doing something undesirable to others.

However, the awareness of being accountable for such an action is insufficient on

its own to induce the feeling of guilt. For instance, a person with a psychopathic

personality is unlikely to feel guilty despite being aware of its own actions and

their effect on others. Therefore, the feeling of guilt also involves the sense of un-

pleasantness when causing harm and the desire to avoid that unpleasant sensation,

which is equivalent to fear.

For instance, we have discussed in Section 2.1.4 the model of ethical behaviour

for military robots proposed by Arkin, Ulam and Wagner (2012). The second

module of their model, called the ethical adaptor, promotes the expression of guilt

by adapting the robot’s behaviour to the consequences of its own actions. In other

words, the more unjustified damage the robot’s actions cause, the higher the level

of guilt and the more of its lethal weapons get deactivated. SAFEL could be used

in this scenario to predict and prevent the re-occurrence of the offending actions

in the specific circumstances that they happened in the first instance. Because

the action of preventing past wrong-doings also configures the expression of guilt,

SAFEL would be theoretically inducing ethical and guilt behaviours by means of

fear simulation.

7.3.4 Beyond Fear

In this thesis, SAFEL has been specifically modelled to simulate the fear emotion.

However, SAFEL’s design allows the simulation of emotions other than fear, as

long as their expression is conditional to the association between environmental

stimuli.

For instance, in Section 3.1.2 we explained the difference between aversive and

appetitive stimuli. An aversive US is any stimulus that naturally elicits fear or

anxiety in the animal, whereas an appetitive US is any stimulus that naturally

elicits contentment or satisfaction in the animal. Analogously, aversive condition-

ing leads the animal to avoid the CS that signals the presence of the aversive
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US, whereas the appetitive conditioning encourages the animal to pursue the CS

that signals the availability of the appetitive US. Although leading to contrasting

behaviours, the same mechanism underlies these two phenomena. Equivalently,

the generation of artificial aversive conditioning (as performed by SAFEL) and

artificial appetitive conditioning could, in theory, be carried out by the same com-

putational mechanism.

Appetitive conditioning could be accomplished with SAFEL by simply replac-

ing the pre-definition of aversive US inputs with appetitive US inputs. For in-

stance, suppose a companion robot that autonomously seeks its recharging base

and recharges by itself when needed. In this scenario, the set of CS inputs (e.g.,

room of the house, region of the room, time of the day, etc.) would be associated

with a pre-defined set of appetitive (rather than aversive) US inputs (e.g., visual

detection of the recharging base, physical attachment to the recharging base, con-

tinuous increase of the battery level, etc.). This technique would allow the robot

to continuously adapt its seeking behaviour for the recharging base taking into

consideration its own location in relation to the location of the base in the house,

even if it is moved to another location.

A robot could even be equipped with both the aversive and appetitive condi-

tioning mechanisms to accomplish more realistic and robust adaptive behaviour.

Subsequently, the robot’s behaviour and action inclinations could be modelled

as a function of SAFEL’s fear/confidence and satisfaction/dissatisfaction outputs

through an approach similar to the affective space model (discussed in Section 2.1).

For instance, when dissatisfied and confident (i.e, lacking resources but in a familiar

and safe environment) the robot could start seeking resources in a more ‘deter-

mined’ and ‘aggressive’ way, by moving faster and less concerned with obstacles or

threats. On the other hand, when satisfied and confident, the robot would adopt

a more ‘relaxed’ behaviour, analogous to resting, by interrupting the search for

resources and lowering energy consumption. When satisfied and afraid, the robot

would prioritize the search for a familiar and safe area, since resources are not a

concern at that moment. Finally, when dissatisfied and afraid, the robot would

perform a more prudent search for resources, by perhaps moving slower or turning

on any safety mechanisms that it may have.

Alternatively, such mechanisms could be used to generate even more complex

emotional behaviours as a function of fear/confidence and satisfaction/dissatisfac-

tion values varying over time. In this approach, the robot would be constantly

seeking to fulfil an ideal internal state corresponding to particular values of con-

fidence and satisfaction. The longer the robot is in that ideal internal state, the

‘happier’ it is considered to be. However, the longer the robot is in a dissatisfied
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state, the more ‘frustrated’ it gets. Analogously, the longer the robot is in an

afraid state, the more ‘anxious’ it becomes. Optionally, one could implement the

‘bored’ state, so that the longer the robot is in a highly satisfied and confident

state, the more ‘bored’ it gets. This would work as a motivation for the robot to

autonomously decide to explore new areas, objects, tasks, strategies, etc.

7.3.5 Applications

We believe that SAFEL can be applied to a number of real-world applications

where robots are required to deal with highly dynamic or competitive environ-

ments, adapt and behave flexibly. Some examples of such scenarios are scientific

exploration robots (planetary, undersea, etc.), search and rescue robots, surveil-

lance robots, robot toys, robotic prosthetics, educational robots and elder-care

robotics. Among the many application opportunities, we are especially enthusi-

astic to testing SAFEL for autonomous vehicles and Human-Robot Interaction

(HRI).

Autonomous vehicles usually need to deal with highly dynamic and uncertain

environments, in which multiple non-controllable factors may influence or com-

promise the safety of the passenger. Among these factors are the intentions and

emotional state of other drivers. When driving, humans make use of emotional

reasoning to detect the emotional state of other drivers (e.g., aggressive, friendly,

rushed, apprehensive, etc.) as well as their intention (e.g., enter the roundabout

first or give way). We hypothesize that SAFEL could provide autonomous vehi-

cles with an equivalent skill, where the vehicle learns which behaviour patterns of

other vehicles indicate that it is safe to advance with a particular action and which

patterns indicate that it is safer to wait and give way. Subsequently, the vehicle

may even learn which particular areas and roads of everyday driving paths (e.g.,

from home to work) that are more troublesome and, thus, require more caution.

In the area of HRI we are particularly interested in testing whether SAFEL can

effectively predict the user’s affective response (e.g., satisfaction or disapproval)

to specific states of affair or even to particular sequences of actions of the robot.

By predicting which sequence and combination of stimuli or actions precede the

contentment of the user, for instance, the robot may be able to better fulfil the

user’s needs over time and autonomously adapt to each user’s preferences.

7.3.6 Prospects

We have demonstrated throughout this thesis that SAFEL is a novel and robust on-

line adaptation mechanism for threat prediction and prevention capable of taking
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into consideration complex context-temporal information in its internal learning

processes. We have also demonstrated that SAFEL is domain independent by suc-

cessfully employing it on different applications. In summary, we have performed

extensive experiments with SAFEL and demonstrated its capabilities and contri-

butions to the state of the art. Nonetheless, we believe and hope that much more

can be accomplished with SAFEL and that its contributions to robotics and arti-

ficial intelligence can transcend the subjects covered in this thesis. We also hope

that SAFEL may serve as a basis or inspiration for future works, to build better

artificial mechanisms and to provide autonomous agents with even more robust

emotional and adaptive behaviours.
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Annex I

Drools Rules of the

Hippocampus Module

1

2 package uk.ac.kent.cs.knowledge.situation

3

4 // ===== IMPORT ============================= //

5 import uk.ac.kent.cs.Hippocampus;

6 import uk.ac.kent.cs.knowledge.event.*;

7 import br.ufes.inf.lprm.scene.base.SituationHelper;

8 import br.ufes.inf.lprm.situation.SituationType;

9 import br.ufes.inf.lprm.scene.base.evaluators.*;

10 import java.util.ArrayList;

11

12 // ===== GLOBAL ============================= //

13 global Hippocampus hippocampus;

14

15 // ===== EVENT ============================== //

16 declare Event

17 @role(event)

18 end

19

20 declare Adrenaline

21 @role(event)

22 end

23

24 declare Flag

25 @role(event)

26 end

27

28 // ===== RULE =============================== //

29 rule "Neutral Situation Instantiation"

30 @role(situation)

202
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31 @type(NeutralSituation)

32 when

33 $flag : Flag()

34 not UnconditionedAversiveSituation(active)

35 then

36 SituationHelper.situationDetected(drools);

37 end

38

39 rule "Neutral Situation Projection"

40 when

41 not UnconditionedAversiveSituation(active)

42 $neutral : NeutralSituation(!active, !projected)

43 $events : ArrayList (size > 0) from collect (Event(this during

$neutral))
44 then

45 $neutral.addEvents($events);
46 $neutral.projectAs("neutral");
47 update($neutral);
48 end

49

50 rule "Unconditioned Aversive Situation Instantiation"

51 @role(situation)

52 @type(UnconditionedAversiveSituation)

53 when

54 $adrenaline : Adrenaline (level >= hippocampus.getAdrenalineThreshold())

55 then

56 SituationHelper.situationDetected(drools);

57 end

58

59 rule "Safe Situation Projection"

60 when

61 $neutral : NeutralSituation(projected)

62 $seclastneutral : NeutralSituation(projected, this after $neutral)
63 $lastneutral : NeutralSituation(projected, this after $seclastneutral)
64 then

65 neutral.projectAs("safe");

66 retract($neutral);
67 end

68

69 rule "Conditioned Aversive Situation Projection"

70 salience 20

71 when

72 $ua : UnconditionedAversiveSituation (active)

73 $neutral : NeutralSituation(projected, this before $ua)
74 then

75 $neutral.projectAs("aversive");
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76 retract($neutral);
77 end

78

79 rule "Neutral Situation Retraction"

80 salience 30

81 when

82 $ua : UnconditionedAversiveSituation(active)

83 $neutral : NeutralSituation(!active, !projected)

84 then

85 retract($neutral);
86 end

87

88 rule "Unconditioned Aversive Situation Retraction"

89 when

90 $ua : UnconditionedAversiveSituation(!active)

91 exists UnconditionedAversiveSituation(active)

92 then

93 retract($ua);
94 end


