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Abstract

The haplotype association analysis has been proposed to capture the collective behavior of
sets of variants by testing the association of each set instead of individual variants with the
disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with
potentially sparse frequencies in cases and controls. It starts with inferring haplotypes from
genotypes followed by a haplotype co-classification and marginal screening for disease-associated
haplotypes. Unfortunately, phasing uncertainty may have a strong effects on the haplotype co-
classification and therefore on the accuracy of predicting risk haplotypes. Here, to address
the issue, we propose an alternative approach: In Stage 1, we select potential risk genotypes
instead of co-classification of the inferred haplotypes. In Stage 2, we infer risk haplotypes from
the genotypes inferred from the previous stage. The performance of the proposed procedure
is assessed by simulation studies and a real data analysis. Compared to the existing multiple
Z-test procedure, we find that the power of genome-wide association studies can be increased

by using the proposed procedure.

Some key words: Region-based association analysis; genotype mixture models; odds ratios; genome
wide association studies; expectation-maximization algorithm.

Short title: Search for Disease Risk Haplotype Segments

1 Introduction

Advances in genotyping and sequencing technologies, coupled with the development of high-dimensional

statistical methods, have provided investigators opportunities to reveal the role of sequence varia-
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tion in the development of complex diseases. At the forefront of these investigations is genome-wide
association studies (GWAS) by the use of dense maps of single-nucleotide polymorphisms (SNPs)
and the haplotypes derived from these polymorphisms (Stranger et al., 2011). The early landmark
study using the GWAS was the Wellcome Trust Case Control Consortium (WTCCC), which re-
ported genetic association results for over 500,000 single nucleotide polymorphisms (SNPs) in seven
disease sample sets of 2000 individuals each and 3000 control individuals (WTCCC, 2007). Most
of these studies were based on the so-called common-disease-common-variant hypothesis that the
variants being sought are common to many individuals with the disease. In these studies, peo-
ple identified variants that predispose to a disease by conducting association tests (i.e., marginal
screening tests) on SNPs, one at a time. For the majority of complex diseases, it was found that
single-SNP variants might explain only < 10% of disease variations as many variants showed only
weak effects on the risk of disease and, therefore, a joint analysis of multiple SNPs might be neces-
sary for understanding the etiology of complex diseases (Manolio et al., 2009). A popular strategy
in the GWAS analysis, suggested by the block-like structure of the human genome, is to segment
each chromosome into a list of genetically meaningful SNP regions. The multilocus haplotype,
the ordered allele sequences on a chromosome, provides a unit of analysis for capturing linear and
non-linear correlations among variants (Schaid et al., 2002; Zhang et al., 2003; van Greevenbroek et
al., 2008; Li et al., 2011). A haplotype may affect phenotype directly through influencing promoter
activity and protein formulation or indirectly through tagging nearby untyped causal variants. In
general, if a particular haplotype of a pre-specified group of SNPs is unevenly distributed between
the case and control samples, this haplotype is highlighted as a risk haplotype. Haplotype segments
hold the promise of reducing the complexity of analyzing the human genome for association with
disease. Identifying risk haplotype segments is an important but hard task in genetics, because
haplotypes are often unknown and sparsely distributed. In practice, what we can observe are geno-
types not haplotypes. As each genotype is made up by two unknown haplotypes, the underlying
haplotypes have to be inferred. Inferring haplotypes from observed genotypes by using the com-
putational software such as PHASE is a popular strategy to overcome the uncertainty of genotype
phases (Stephens et al., 2001; Scheet et al., 2006). In the PHASE, a coalescent model-based Gibbs
sampling was employed to infer the most probable hyplotype pair for each individual in the sample,
given all the possible haplotype pairs that are consistent with the observed genotypes. Existing
haplotype methods improve the power of the association testing by grouping haplotypes before

testing (Zollner and Pritchard, 2005; Browning and Browning, 2007, and references therein). Zhu



et. al (2010) developed a two-stage screening procedure for GWAS data, which requires phasing
to obtain haplotypes followed by grouping. Unfortunately, grouping inferred haplotypes may be
affected by phasing uncertainty.

This paper aims to improve the above two-stage procedure by grouping genotypes (instead of
haplotypes) before the association testing. For this purpose, we combine a genotype permutation
technique with the PHASE procedure to form a basis for testing risk haplotypes. Our method
relies on the observation that if a set of SNPs is not associated with disease (which is the null
hypothesis), the permutated genotype frequencies can be employed to generate the null distributions
of genotypes. Then, in Stage 1, for each genotype, we test its association with disease by checking
whether the observed case-frequency is located in the tail areas of its null distribution. This provides
a list of selected genotypes for further investigation in the next stage. In Stage 2, we calculate
the corresponding PHASE-inferred haplotypes and their frequencies in cases and controls for the
selected genotypes. The odds ratios (ORs) are calculated for these haplotypes. These haplotypes
are further screened by the OR test. We conduct simulation studies on the proposed method
in both prospective and retrospective design settings, showing that our method can outperform
the approach of Zhu et al. (2010) in most cases. We apply the proposed method to the Coronary
Artery Disease (CAD) and Hypertension (HT) data in the Wellcome Trust Case Control Consortium
(WTCCCQC), identifying potential risk haplotypes for these diseases.

The rest of the paper is organized as follows. The proposed methodology is introduced in
Section 2. The simulation studies and real data applications are presented in Sections 3 and 4.
Discussions and conclusion are made in Section 5. The details on the haplotype reconstruction

software PHASE are given in the Appendix.

2 Methodology

Consider a case-control sample with Ny controls and N; cases, typed at m SNP markers in a
candidate region, yielding unphased genotype set G. Suppose that G contains distinct genotypes
G;,1 < j < J with counts Np;, N1, in controls and cases respectively. Let Ny = ijl No; and
Ny = Z}le Nij. We perform the PHASE on genotypes in controls and cases. Let (hj1, hj2) be the
inferred haplotype pair for Gj. We also let H = {hy,1 < k < K} denote the distinct haplotypes
inferred from G, where G = {G;,1 < j < J} with haplotype counts nog, n1x, 1 < k < K in controls

and cases respectively and with total counts ng, ny. Then, the respective frequencies of the genotype



G in the controls and cases can be estimated by qo; = Noj/No, qij = N1;j/Ni, respectively. The
proposed method contains two stages, where we screen genotypes and halotypes respectively.

Stage 1 (Genotype screening based on permutation):

To perform the permutation on individual disease statuses between cases and controls, we ran-
domly swap a half of cases with the same number of controls. We then calculate the corresponding
frequencies of the resulting permuted cases, denoted by qz‘lj = ij/Nl, where i = 1,2,3, ..., I with
I being the total number of permutations we conducted, and N pl<i< I represent the counts
of the genotype j in the permuted cases for the permutation ¢. In the later simulation and real data
analyses, we choose I = 1000. Let ¢j; = (Zi]:1 qi1;)/1 denote the average frequencies of genotype
G over I permutations. Consider the following statistic for genotype G;:

q1j — 435
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Under the null hypothesis that G; is not associated with disease, the statistic T} is asymptotically
distributed as a standard normal. Therefore, {T;} can be used to test for disease associated

genotypes, finding a set of potential risk haplotyes as follows:
Sp={h:he {h0jvh1j}71 <Ji<J T > 7},

where v is a pre-defined critical value after adjusting multiple testing effects.

Stage 2 (Haplotype screening based on OR testing):

We examine the frequency differences of the haplotypes in the set S in controls and cases to
find the potential risk group. Let |S| be the number of all different haplotypes in S,. To calculate
their OR values, we let ngr = EthES nok, NiF = EthES nig, 1 < k < K denote the cumulative
frequencies of the haplotypes not in S for controls and cases respectively. Then, the corrected OR

values for the haplotype h,,1 < v < |S| is calculated by

(n1, + 0.5)(ner + 0.5)
(noy + 0.5)(n17 + 0.5)

OR, =
Then, the set of risk haplotypes .S, is updated by

H, = {h, € S: OR, > exp(c1¢(nov, n1v, nor, ni7)) } »



where

B(noy, 111y, noF, n1r) = /1/(noy + 0.5) + 1/(n1, + 0.5) + 1/(ngr + 0.5) + 1/(n1y + 0.5),

adding 0.5 to the OR for the continuity correction was suggested by Agresti (1999) and ¢ is a

pre-specified critical value after adjusting multiple testing effects.

2.1 Multiple testing method

To compare the proposed method to the multiple testing procedure of Zhu et al. (2010), we briefly
describe their procedure as follows. In their procedure, a subsample A containing Néa) and Nl(a)
individuals are randomly chosen from the controls and cases respectively. These individuals are used
in the screening stage and the remaining forms a validation subsample B to be used in the validation
stage. Suppose that there are K different haplotypes inferred from A by using the PHASE. Let
(ré?,rﬁ)), 1 < k < K be their retrospective frequencies in controls and cases respectively.
Screening stage: We perform a respective frequencies-based screening by calculating an esti-

mated risk haplotype set as follows:
S@ = {hy: 2" > ¢, 1 <k < K},

where ¢ is a pre-specified constant (¢o = 1 in our later simulations) and
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Validation stage: The S® is refined by performing Fisher’s exact test based on subsample

B for each haplotype in S(®). This gives a final risk haplotype set denoted by S©®).

3 Simulation studies

In this section, via simulations we will examine the performance of the proposed methods in terms
of the average of sensitivity and specificity under various scenarios. Here, we suppose that the
disease-penetrance of a genotype depends only on the number of risk haplotypes contained in that

genotype. As each genotype consists of two haplotypes, we have three types of penetrance:
fo = P(disease|Hr-Hy), f1 = P(disease|H,H5), fo = P(disease|H,H,),

where H, and H; stand for risk and non-risk haplotypes respectively. Denote the relative risk

measures by A1 = f1/fo and A = fo/fp. Let H, and H; the estimated true risk and non-risk



haplotype sets respectively. Let T, and T be the true risk and non-risk haplotype sets. Then, by
the sensitivity and specificity of H, and Hz, we mean the positive discovery rate and the negative

discovery rate:
_ |H, N'T,|

sen = M
T |

and spe = T
We take the average AVSS = (sen + spe)/2 to assess the performance of a haplotype classification
procedure.

Setting 1 (cohort design): We generated 30 datasets, each with N; case-genotypes and Ny
control-genotypes. They were obtained by the following steps. We used the software MS (Hudson,
2002) to simulate 2(Ngp + Ni1) haplotypes with a mutation rate of 2. We randomly chose m, of
these haplotypes and labeled them as risk haplotypes. We then randomly paired 2(Ny + Ni)
haplotypes, producing Ny + N; genotype which contained m, risk haplotypes. In the third step,
we simulated the disease status of each genotype by sampling from a Bernoulli distribution. The
Bernoulli distribution took ¢g, or A1qg, or Agp as a success probability according to whether the
genotype contained zero, one or two risk haplotypes, where the relative risk measure \; is specified
as follows. For the recessive inheritance mode, Ay = 1. For the multiplicative inheritance mode,
A1 = V\. For the dominant inheritance mode, A\; = A. We coded the inheritance modes by
IM = 1,2, 3 respectively for the multiplicative, the dominant, and the recessive. Note that the
values of (Np, N1) may vary across different datasets. We considered various combinations of
(No + Ni,m,, IM, go, \), where Ny + N; = 3000, 5000, m, = 5,10,20, IM = 1,2,3, qo = 0.1,
A=1,1.4,1.8,2.2,2.6, 3,3.4, and 3.8 respectively.

For each scenario, we applied both the proposed method and the multiple testing method to 30
datasets and calculated their AVSS values respectively. For each of the three inheritance modes, we
plotted the means of these AVSS values over 30 datasets against A\. The results displayed in figures
1 and 2 show that on the cohort data, the proposed two stage method performed substantially
better than the multiple testing method in all the scenarios defined above. The improvement was

achieved by using permutation-based genotype screening.
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Figure 1: Performances of the proposed permutation method and the multiple testing method on the
cohort-design data with multiplicative or dominant or recessive inheritance models based on sample sizes of

5000.
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Figure 2: Performances of the proposed permutation method and the multiple testing method on the
cohort-design data with multiplicative or dominant or recessive inheritance models based on sample sizes of

3000.

Setting 2 (case-control design): We generated 30 datasets, each of which were simulated
by the following two steps. In Step 1, to generate V] case-genotypes, we first drew 2/N; haplotypes

by using the software MS with mutation rate of 2, of which m, haplotypes were labeled as risk



haplotypes. We then randomly paired these haplotypes to form N case-genotypes. Let G;,1 < j <
J be all the different genotypes contained in the Ny cases and 75,1 < j < J be the retrospective
frequencies. These case-genotypes formed three groups according to the number of risk haplotypes
which each genotype contained: Each genotype in Groups 0, 1 and 2 contained two non-risk
haplotypes, only one risk-haplotype, and two risk haplotypes respectively. In Step 2, we generated
Ny control-genotypes, which also had genotypes G;, 1 < j < J but with population retrospective

frequencies qo;,1 < j < J. We first let qpj,1 < j < J depend on the pre-specified constant d by

r1;(1 —d/rig,), G; belongs to Group 2
qoj = § 11;(1 —0.5d/r14,), G; belongs to Group 1
r1;(1 +1.5d/r14,), G; belongs to Group 0

where r14, = che Group, "' for k = 0,1,2,, and d is a parameter to reflect the effects of risk
haplotypes on genotype frequencies. We simulated Ny control-genotype counts from the multi-
nomial model MN(No, (qo1, ..., qos)T) and calculated the corresponding retrospective frequencies
roj,1 < j < J. We considered the cases where d = 0,0.05,0.1,0.1, 0.15,0.2,0.25,0.3, and 0.35
respectively.

For each dataset, the cumulative frequencies of Groups 0, 1, and 2 in controls are rg, + 1.5d,
rg, — 0.5d, and 74, — d respectively, whereas the corresponding frequencies in cases are 74, r4, and
rg, respectively. It can be proved that the odds ratios of Groups 1 and 2 to Group 0 are increasing
in the value of d.

We applied the proposed two-stage method and the multiple testing method to these case-
control data. The mean curves of the AVSS values with one standard error up and down were
plotted against the d values in Figure 3. The results again demonstrate that the proposed two-
stage method can be more powerful than the multiple testing method in detecting risk haplotypes.
However, the AVSS gain was decreasing in the number of risk haplotypes, m,, as well as the

underlying odds ratios in Groups 1 and 2.
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Figure 3: Performances of the proposed permutation method and the multiple testing method on the

case-control data.

4 Real data analysis

We applied the proposed two-stage procedure to the GWAS genotype datasets on coronary artery
disease (CAD) and hypertension (HT) obtained by Affymetrix 500K SNP chips in the WTCCC
study (WTCCC, 2007). The data were downloaded from the European Genotype Archive (EGA)
with formal data access permission of the WTCCC Data Access Committee. Each dataset contained
2000 unrelated cases as well as 3000 unrelated controls. The controls came from two sources: 1500
from the 1958 British Birth Cohort (58C) and 1500 from the three National UK Blood Services
(NBS). There were about 500600 SNPs across the human genome, which are genotyped. We first
pre-processed the data by excluding the SNPs which meet one of the following criteria: (1) the
p-value of Fisher test for Hardy-Weinberg equilibrium is less than 1078 in controls; (2) the p-value

of the chi-square test between 58C and NBS is less than 1078; (3) the minor allele frequency is

10



less than 1%; (4) the calling score is less than 95%. After the exclusion, around 4897746 SNPs
remained for the analysis. To reduce the dimension of the genotypes, we segmented the genome
into regions of 8 SNPs according to their positions on the chromosomes, obtaining 61218 regions
and the corresponding genotype datasets Gy, k = 1,2,...,61218. Note that the long region will
dilute the effects of risk SNPs and can result in many rare genotypes, whereas the short region
will miss interactions between SNPs. The region length of 8 was chosen to achieve a compromise
between the above aspects by using a pilot study. Also note that as we excluded the SNPs with
bad callings, the numbers of cases and controls are varying across the different regions.

Note that {Gg : k = 1,...,61218} contained 1983537 genotypes in total for the CAD data and
2097111 genotypes in total for the HT data respectively. The proposed procedure includes two
stages. In Stage 1, we obtained the estimated risk genotypes, while in Stage 2, we further inferred
haplotype pairs from the estimated risk genotypes. We used the total number of the genotypes to set
the Bonferroni correction to the critical value in the permutation test. To achieve a significance level
of 0.05 for all genotypes, the adjusted significance level was set to be 0.05/1983537 = 2.52 x 1078
and 0.05/2097111 = 2.38 x 10~ for the CAD data and the HT data respectively. This resulted in an
approximate critical value of 5.5 for both the CAD and HT data. The genotype screening in Stage
1 resulted in 1433 potential risk haplotypes in the CAD data and 430 potential risk haplotypes in
the HT data.

Note that there were two sub-populations in controls. We applied further filtering on the regions
to exclude the ones that have significant differences in the haplotypes frequencies within the two
sub-control samples. The exclusion criterion was based on calculating chi-square p-value. Any
region resulted in p-value less than 0.30 was excluded from the suspicious regions. This criterion
was concluded from the simulated case-control samples when the risk factor d is less than 0.15 as we
found out that the p-values for most of the 30 datasets are greater than 0.30. The numerical details
were omitted. We applied the above criterion on the above potential risk haplotypes and eliminated
these haplotypes with the chi-square p-value being less than 0.30. In Stage 2, we calculated the OR
values of the selected haplotypes and thresholded them by using the bounds

exp(c1v/1/(nog + 0.5) +1/(n1g +0.5) + 1/(nor + 0.5) + 1/(n17 + 0.5)),

defined in the methodology section with ¢; = 4 and 3.6 for the CAD data and the HT data
respectively. Note that the values of ¢; were determined by the Bonferroni correction according to

the corrected significance levels of 0.05/1433 and 0.05/430 for the CAD and the HT respectively.

11



This gave the final risk-haplotype sets as displayed in Tables 1, 2, and 3 below. In these tables, each
haplotype has been assigned to a physically closest gene on the basis of the information provided
in the GWAS catalog (Welter et al., 2014) and the genetic information from the British 1958 Birth
cohort http://www?2.le.ac.uk/projects /birthcohort/1958bc. In the CAD case, we did rediscover
the CAD risk gene CDKN2B and the risk haplotype GGTGCCAG found by the previous study
(WTCCC, 2007; Zhu et al., 2010). Note that by use of the multiple testing method, Zhu et al.
(2010) identified the following genes (ZFAT1 and MACROD2 for HT; EIF4H, CDKN2B, HFE2,
ZBTB43 and LDHA for CAD) reaching genome-wide significance. Therefore, the proposed method
can be much more powerful than the multiple testing method in the identification significant genes

(and SNPs) for association studies.

12



Table 1: The risk haplotypes for coronary artery disease of WT'CCC data detected by permutation

method.

| cap |
‘ Chr ‘ Region SNP range ‘ Haplotype ‘ P(H;|case) ‘ P(Hj|control) ‘ OR ‘ P-Value ‘ Gene ‘
‘ ‘ 3910010 — 3932838 754654522 — 510915469 ‘ CGACGGCC ‘ 0.04238 ‘ 0.01861 ‘ 3.09933 ‘ 4.5 ‘ hCG036596 ‘
‘ 1 ‘ 1902751 — 37450147 756673253 — SN P4 ‘ CAACCGAT‘ 0.05116 ‘ 0.03019 ‘z ‘ LOCT728431 ‘
‘ 1 ‘ 202166400 — 202187685 | 756692041 — 751041311 ‘ AAATGGGA ‘ 0.07815 ‘ 0.05083 ‘ 1.72409 ‘ 4.3 x 1079 | LOC284577 ‘
‘ 1 ‘ 225406446 — 225425470 ‘ 754654697 — 510916399 ‘ TTGTAAAA ‘ 0.06155 ‘ 0.03524 ‘ 1.85056 ‘ 8.1x 10710 ‘ RHOU ‘
‘ 1 ‘ 227569611 — 227620956 ‘ rs7514972 — 759431663 ‘ CGCGTAGG ‘ 0.05807 ‘ 0.0297 ‘ 2.06768 ‘ 2.2 x 10712 ‘ TRIM67 ‘
‘ 1 ‘ 239380743 — 239454253 ‘ 752491826 — rs7533316 ‘ AGCTCACG ‘ 0.09857 ‘ 0.07858 ‘ 1.63864 ‘ 7.4 % 10708 ‘ CEP170 ‘
‘ 1 ‘ 24()5()(]846—24(]—158647‘ 512083813 — rsd72276 ‘ CAACATAG ‘ 0.01905 ‘ 0.00712 ‘ AKT3 ‘
‘ 2 ‘ 3789586 — 3821960 ‘ rsT576476 — rs12618184 ‘ GOTTACAG ‘ 0.03451 ‘ 0.01119 ‘3.14706 3.1 x 1071 | LOC442006 ‘
‘ 2 ‘ 752314703 — 3942429 ‘ SN P, — 1841609 ‘ CACGCCGT ‘ 0.02055 ‘ 0.00552 ‘ 3.78775 n ‘ LOC442006 ‘
‘ 2 ‘ 49934439 — 50000082 ‘ rs6736617 — 7517039375 ‘ CCAAAGGT ‘ 0.02347 ‘ 0.00757 ‘ 3.09136 ‘ 2.7 x 10710 ‘ NRXN1 ‘
‘ 2 ‘ 81525887 — 81577090 ‘ 751011364 — 517020239 ‘ GGATGTGC ‘ 0.03758 ‘ 0.0202 ‘ 1.96428 ‘ 1.3 % 10797 | LOC442021 ‘
‘ 3 ‘ 2557255 — 2599938 ‘ rs6787604 — 152619566 | AAGGACGA ‘ 0.07666 ‘ 0.04763 ‘ 1.64989 ‘ 3.1 % 10708 ‘ CNTN4 ‘
‘ 3 ‘ 14422977 — 14471151 ‘ 754684216 — 759834629 ‘ GATGATGC ‘ 0.01815 ‘ 0.00509 ‘ 3.67773 ‘ 8.7 x 10710 ‘ SLCG6AG ‘
‘ 3 ‘ 73461569 — 73510299 ‘ rs7647311 — rs3845868 | AGGCGCGG ‘ 0.03876 ‘ 0.01161 ‘ 3.98169 ‘ 6.9 x 10723 ‘ PDZRN3 ‘
‘ 3 ‘ 197256495 — 197339533 ‘ 56583286 — 159834962 ‘ TAGACTTA ‘ 0.0498 ‘ 0.02364 ‘ 2.17213 ‘ 2.5 x 1071 ‘ TFRC ‘
‘ 4 ‘ 3636361 — 3700212 ‘ 510025237 — rs16844722 ‘ GGGGAGGG ‘ 0.22491 ‘ 0.15492 ‘ 1.62473 ‘ 6.4 x 1071 ‘ FLJ35424 ‘
‘ 4 ‘ 167440772 — 167457521 ‘ 759995087 — 517047336 0.03434 ‘ 0.01139 ‘ 3.12327 ‘ 8.2 x 10714 ‘ TLL1 ‘
‘ 5 ‘ 124765522 — 124843518 ‘ 54836190 — rs13187198 ‘ TGAAGGCA ‘ 0.04275 ‘ 0.02795 ‘ 2.02205 99| LOC644659 ‘
‘ 5 ‘ 157267571 — 157303032 ‘ rs10071157 — 7517055168 ‘ GTGAGCAA ‘ 0.02135 ‘ 0.00701 ‘ 3.00771 ‘ 9.0 x 10710 ‘ CLINT1 ‘
‘ 5 ‘ 166764561 — 166801933 ‘ 56863935 — rs7724862 ‘ CTATGTGT ‘ 0.09145 ‘ 0.05448 ‘ 1.63602 ‘ 8.8 x 10799 ‘ 0DZ2 ‘
7 | 77695246 — TTT17237 | 7s2215379 — rsd515471 | TOCTAAAAA | 0.03291 0.01786 2.04961 | 1.7 x 10707 MAGI2
CTTGGAAA | 0.03609 0.01061 3.77003 | 7.3 x 10719
‘ 7 ‘ 153371858 — 153449397 ‘ 756464391 — rs1861139 ‘ CGGGTAGA ‘ 0.04119 ‘ 0.02159 2.31998 ‘ 1.7x 1071 ‘ LOC653748 ‘
‘ 8 ‘ 71022178 — 71086937 rsT836791 — rs388511 ‘ TACAGAAG ‘ 0.02204 ‘ 0.00555 3.68611 ‘ 41 %1071 ‘ SLCO5A1 ‘
‘ 9 ‘ 22088619 — 22120515 | rs2891168 — 1510965245 ‘ GGTGCCAG ‘ 0.34939 ‘ 0.29298 1.40724 ‘ 3.2 10713 ‘ CDKN2B ‘
‘ 9 ‘ 74180343 — 74241329 | 510114124 — 1517081046 ‘ GTATTTAT ‘ 0.21608 ‘ 0.13046 1.66562 ‘ 4.0 x 10717 ‘ RORB ‘
‘ 9 ‘ TT341767 — 77366988 | 12889774 — rs3780296 ‘ ATGGAAAT ‘ 0.06672 ‘ 0.042 1.69537 ‘ 1.2 %1077 ‘ GNA14 ‘
‘ 9 ‘ 119506057 — 119537035 | 752191675 — 1510984648 ‘ GTTGGCTA ‘ 0.08762 ‘ 0.03361 2.8056 ‘ 1.8 x 1072 ‘ CDK5RAP2 ‘
‘ 9 ‘ 135269746 — 135320703 | 75731533 — 57870302 ‘ TGTCTCCC ‘ 0.03175 ‘ 0.01296 2.57076 ‘ 9.3 % 1071 ‘ OLFM] ‘
‘ 10 ‘ 11879196 — 11924252 | 756602535 — rs11257355 ‘ TCTGCCGG ‘ 0.1694 ‘ 0.12811 1.57916 ‘ 1.3 x 10712 ‘ C100rf47 ‘
‘ 10 ‘ 14795325 — 14817082 | 752688827 — rs12246518 ‘ ATGACCGC ‘ 0.34815 ‘ 0.32333 1.71018 ‘ 4.1 %1079 ‘ FAM107B ‘
11 8165969 — 8200374 754758310 — 1511041816 | ATAATGGG | 0.36298 0.3164 1.34831 | 2.8 x 107% | LOC644497
GCTGTAGA | 0.05243 0.02741 2.24619 | 7.5 x 10712
‘ 11 ‘ 36361306 — 36410807 75330255 — rs331485 ‘ GCGATTAA ‘ 0.0309 ‘ 0.00779 4. 5.6 x 10718 ‘ FLJ14213 ‘
‘ 11 ‘ 69213458 — 69295251 | 751192923 — rs3168175 ‘ TCGTGGCA ‘ 0.10225 ‘ 0.05587 2.24141 | 5.7 x 1072 ‘ FGF4 ‘
‘ 11 ‘ 83230307 — 83256927 | rs1878266 — rs1878264 ‘ TATATTCA ‘ 0.03571 ‘ 0.01807 2.24283 ‘ 6.3 x 10799 ‘ CCDCY0B ‘
‘ 11 ‘ 99383206 — 99391536 | 53911286 — 1510501939 ‘ TTAGATAT ‘ 0.03303 ‘ 0.01472 2.21561 ‘ 9.3 x 10799 ‘ CNTN5 ‘
‘ 11 ‘ 112952870 — 113015533 ‘ 754936278 — 1512577253 ‘ CCTCGTGC ‘ 0.05824 ‘ 0.03474 75496 ‘ 1.9 x 107% ‘ DRD2 ‘
‘ 11 ‘ 129102667 — 129124330 ‘ 75532427 — rs691197 ‘ ACCGCOGGA ‘ 0.08519 ‘ 0.05612 1.73953 ‘ 2.1 x 1071 ‘ TMEM45B ‘
11 | 133079508 — 133113640 | rs4937817 — 754937826 | CCGGCCCG | 0.05747 0.04018 1.89429 | 5.6 x 10710 | LOC646522
GTAGCCCG | 0.04001 0.02779 1.90705 | 9.3 x 107%
GTAGTGCC | 0.04216 0.02425 2.30133 | 8.2 x 10712
‘ 12 ‘ 5619429 — 5628923 ‘ rs11063791 — rsd54704 ‘ TACATAAA ‘ 0.02897 ‘ 0.0124 ‘ 2.50152 ‘ 8.0 x 10710 ‘ TMEM16B ‘
‘ 12 ‘ 112703139 — 112738033 ‘ 7511066758 — rs7137339 ‘ ACGGTCAC ‘ 0.02681 ‘ 0.01286 ‘ 3.14709 ‘ 1.5 % 10712 ‘ RBM19 ‘
‘ 12 ‘ 116500495 — 116514298 ‘ 7510850852 — 51400593 ‘ CTCTCTTT ‘ 0.14523 ‘ 0.12089 ‘ 3.21401 ‘ 8.3 x 1072 ‘ NOS1 ‘
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Table 2: Continuation of Table 1.

| cap |
‘ Chr ‘ Region ‘ SNP range ‘ Haplotype ‘ P(H;|case) ‘ P(H;|control) ‘ OR P-Value Gene ‘
‘ ‘ ‘ ‘ CTCTCTTC ‘ 0.28034 ‘ 0.26232 ‘ 2.85847 5x 1071 ‘
‘ 13 ‘ 108372995 — 108432811 ‘ rsd773010 — 753842945 ‘ AGAGACCC ‘ 0.27486 ‘ 0.19222 ‘ 1.59282 | 1.3x 102! | MYO16 ‘
‘ 14 ‘ 25140850 — 25159405 ‘ 758020556 — 751951062 ‘ AGTAAACT ‘ 0.09084 ‘ 0.02999 ‘ 3.36068 | 1.2 x 10737 LOCr’101767‘
‘ 14 ‘ 53221435 — 53244046 ‘ rs1563719 — rs210351 ‘AGATAGGT‘ 0.15385 ‘ 0.10566 ‘ 1.56278 | 1.2 x 10712 BMP4 ‘
‘ 14 ‘ 65343491 — 65401760 ‘ 53924222 — 512896836 ‘ TATAACTC ‘ 0.0462 ‘ 0.01904 ‘ 2.70766 | 1.1 x 10716 FUTS ‘
‘ 15 ‘ 20624103 — 21246055 ‘ 7s7T166056 — rs8024346 ‘ GTGACGTG ‘ 0.08093 ‘ 0.04109 ‘ 1.90364 | 2.7x 1072 | NIPAlL ‘
‘ 15 ‘ 21729952 — 21760003 ‘ rs4778264 — 19796712 ‘ TGATAGGG | 0.03064 ‘ 0.00783 ‘ 3.91789 | 2.2 x 10716 | MAGEL2 ‘
‘ 15 ‘ 37962389 — 38014169 ‘ rs11633436 — rs534757 ‘ TTACAACC ‘ 0.07798 ‘ 0.03763 ‘ 231448 | 1.1x 1078 | GPR176 ‘
‘ 16 ‘ 55207138 — 55253047 ‘ 58055724 — 512447986 ‘ TTCTCCTC ‘ 0.03044 ‘ 0.01113 ‘ 2.89551 | 1.5 x 10799 MTIL ‘
‘ 16 ‘ 79852394 — 79892297 ‘ 56564863 — 511639552 ‘ TTCGTTAT ‘ 0.02663 ‘ 0.01053 ‘ 3.15992 | 2.7 x 10710 | BCMO1 ‘
‘ 17 ‘ 27921023 — 27963104 ‘ 75225215 — rs17780520 ‘ GGGTTAAC ‘ 0.0205 ‘ 0.00465 ‘ 4.05617 | 2.7x 107 | MYOID ‘
‘ 17 ‘ 74629176 — 74682195 ‘ rs2612793 — 58072667 ‘ CGAGGTTG | 0.06276 ‘ 0.03471 ‘ 1.82966 | 4.4 x 107 | FLJ21865 ‘
‘ 18 ‘ 8212591 — 8279839 ‘ rs10468776 — 511876033 ‘ GGGACAAG ‘ 0.02689 ‘ 0.00982 ‘ 204852 | 1.7x 107" | PTPRM ‘
‘ 18 ‘ 2291328 — 22715430 ‘ 753974646 — SN Py ‘ TGOGGAGT ‘ 0.05382 ‘ 0.02751 ‘ 1.98739 | 2.3 x 10710 AQP4 ‘
‘ 18 ‘ 32033296 — 32083366 ‘ 758095718 — 58082899 ‘ CAAAACCA ‘ 0.0592 ‘ 0.04484 ‘ 1.65827 | 1.7x 107°7 | MOCOS ‘
‘ 19 ‘ 6641966 — 6717213 ‘ 753745566 — rs7248911 ‘ TAAGCTAC | 0.02312 ‘ 0.00521 ‘ 4.97801 | 1.0 x 107 C3 ‘
‘ 19 ‘ 15365766 — 15477256 ‘ rs7257156 — 756512039 | AAGCGCGG | 0.08169 ‘ 0.05278 ‘ 1.69741 | 1.1x 107 | AKAPSL ‘
‘ 19 ‘ 17595848 — 17649789 ‘ 510419511 — 757252308 ‘ TTGGTATG ‘ 0.04657 ‘ 0.01971 ‘ 2.8095 | 1.1x 10717 | UNCI13A ‘
‘ 19 ‘ 18225800 — 18277972 ‘ 510417536 — rs4808781 ‘ CTCCGCAA ‘ 0.04034 ‘ 0.02211 ‘ 1.94095 | 6.7 x 10798 ‘ LOCT729966 ‘
‘ 19 ‘ 52946204 — 53026777 ‘ 510402957 — rs4427918 ‘ CATTCAGC ‘ 0.0741 ‘ 0.04321 ‘ 1.81613 | 4.1x 10710 ‘ GLTSCR2 ‘
20 5604763 — 5643174 rs8118780 — rs805726 | CCGTAGTA | 0.05455 0.03836 1.76976 | 1.3 x 107% | C200rf196
CTTTAGTA | 0.01801 0.00794 2.81211 | 2.7 x 107
CTTTAGTG | 0.01698 0.00777 2.7096 | 1.6 x 10707
20 6055964 — 6078025 756117090 — rs3897509 | AGGCCGCA | 0.09945 0.05857 1.89101 | 9.9 x 10713 | C200rf42

AAGCCGAA | 0.03039 0.01269 2.66015 | 1.2 x 1079
‘ 20 ‘ 51996013 — 52017348 ‘ 512480336 — 756013853 ‘ CACCGATC ‘ 0.02844 ‘ 0.01511 ‘ 2.17303 ‘ 1.5 x 10707 ‘ BCAS1 ‘
‘ 20 ‘ 55607831 — 55637003 ‘ rs17498081 — 7517414380 ‘ CAATGTCC ‘ 0.02768 ‘ 0.01127 ‘ 2.6821 ‘ 1.2 x 1079 ‘ TMEPAI ‘
‘ 22 ‘ 16871076 — 16895136 ‘ 58142200 — 5975826 0.03219 ‘ 0.00253 ‘ 12.43113 | 5.4 x 10728 ‘ LOCT729269 ‘
‘ 22 ‘ 35324014 — 35335429 ‘ 0.1967 ‘ 0.14314 ‘ 1.46774 ‘4,7><10’“‘ CACNG2 ‘

Table 3: The risk haplotypes for hypertension of WT'CCC data detected by permutation method.

| ur |
‘ Chr ‘ Region ‘ SNP range ‘ Haplotype ‘ (H;|case) ‘ P(Hj|control) ‘ OR ‘ P-Value ‘ Gene ‘
‘ 2 ‘ 39199834 — 39248354 ‘ rs6758330 — 1510184046 ‘ CGCCAAAA ‘ 0.03665 ‘ 0.00147 ‘ 26.83195 -3t ‘ SOs1 ‘
‘ 4 ‘ 17856580 — 17878437 ‘ 7511941617 — 751503880 ‘ GTATTTGT ‘ 0.0584 ‘ 0.00019 236.45945 ‘ 1.2 %107 ‘ LCORL ‘
‘ 6 ‘ 107236669 — 107248636 ‘ rs3121432 — 152354550 | TGATTGTC ‘ 0.07759 ‘ 0.00247 ‘ 6.5 x 10752 ‘ QRSL1 ‘
10 | 30990752 — 31024312 | rs16931828 — rs7078126 | AGTGTTGC | 0.47318 0.47676 1.45455 | 1.0 x 10-% | LOC645954

AACGTTGT | 0.06589 0.00314 29.93248 | 3.1 x 1077

AGCTCTGC | 0.24167 0.24983 1.41785 | 1.2 x 107%

GGCGCCGC | 0.10573 0.10377 1.49364 | 4.1 x 107
‘ 11 ‘ 55290776 — 55324792 ‘ 511825590 — 1517501618 ‘ GOCTGTGT ‘ 0.04351 ‘ 0.00947 ‘ 4.47895 ‘ 4.1x 1072 ‘ OR5D14 ‘
‘ 11 ‘ 121093256 — 121139818 ‘ 7592061 — 754936651 ‘ AATGCTGG ‘ 0.86672 ‘ 0.79508 ‘ 2.49843 ‘ 1.4 x 10730 ‘ SORLI1 ‘
‘ 18 ‘ 73486971 — 73493301 ‘ 51553419 — 54890980 ‘ TTGGGTTC ‘ 0.03825 ‘ 0.00893 ‘ 4.49948 )2 ‘ LOCT728864 ‘
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5 Discussion and conclusion

In this paper, we have adopted the region-based strategy that segments the genome into 61218
regions with around 8 SNPs each. For each region, a list of distinct genotypes with their frequencies
in cases and controls have been worked out. The problem facing us is of the sparse distribution
of these genotypes. To circumvent it, people often first infer haplotypes from the genotypes and
then cluster the haplotypes into a number of groups. The association analysis is conducted on
the basis of the inferred groups, for example, by using multiple Z-tests (Zhu et al., 2010). There
is a drawback of the above approach: The in-silico reconstruction of haplotypes can generate a
proportion of false haplotypes which may hamper the finding of rare but true haplotypes. We have
proposed an alternative two-stage approach to the association analysis with GWAS data. Our major
contribution is to develop a method for co-classifying genotypes by use of permutation. In Stage 1,
we selected the potential risk genotypes through a permutation technique, followed by estimating
the potential risk haplotypes by using the software PHASE. In Stage 2, we refine the above selected
risk haplotypes from the estimated risk genotypes by using the odds ratio thresholding.

We have conducted a wide range of simulations to compare our method to the multiple Z-
test approach, demonstrating a substantial improvement can be achieved by use of the proposed
method in terms of average sensitivity and specificity. We have also examined the performance of
the proposed procedure by applying it to the CAD data and HT data in the WTCCC. Compared
to the standard multiple Z-testing method, the proposed procedure has been shown to be more
powerful in terms of sensitivity and specificity for detecting the true risk haplotypes. In the real
data analysis, we have rediscovered some existing risk gene and haplotypes and identifying many
more risk haplotypes than did the multiple Z-test based approach. This is not surprising as the
simulations have already demonstrated that the the proposed method can perform better than the
multiple Z-test. The Bonferroni adjustment for multiple testing has been applied when multiple
tests or thresholding are involved. We note that the results may be further improved if we use

advanced multiple testing adjustment methods.

Appendix: PHASE

PHASE is a Bayesian haplotype reconstruction method developed by Stephens et al. (2001) to
tackle the problem of statistically inferring haplotypes from unphased genotype data for a sam-

ple of unrelated individuals from a population. Based on the so-called coalescent model, it treats
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the unknown haplotypes as random quantities and combine prior information on haplotypes with
the data likelihood to calculate the posterior distribution of the unobserved haplotypes (or hap-
lotype frequencies) given the observed genotype data. The haplotypes themselves can then be
reconstructed from this posterior distribution: for example, by choosing the most likely haplotype

reconstruction for each individual.
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