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CHAPTER 1: Detecting Beak and feather disease virus in Psittacines: an assessment of 

research trends and knowledge gaps  

Deborah J. Fogell1, Rowan O. Martin2,3 and Jim J. Groombridge1 

1Durrell Institute of Conservation and Ecology, University of Kent, Canterbury CT2 7NZ, UK 

2World Parrot Trust, Glanmor House, Hayle, Cornwall, TR27 4HB, UK 

3Percy FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, University 
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ABSTRACT 

The occurrence of Psittacine Beak and Feather Disease (PBFD) has been reported in both wild 

and captive parrot populations since the mid-1970s. PBFD has been found to be widely 

infectious and often fatal, affecting both Old and New World psittacine species. Consequently, 

determining routes of transmission and developing pathological and serological tests for 

screening for presence of the Beak and Feather Disease Virus (BFDV) have emerged as 

important priorities for biodiversity managers. Here, we consolidate information collected 

from 82 PBFD- and BFDV-based publications on the primary screening methods being used 

and identify important  knowledge gaps regarding potential global disease hotspots. We 

present trends in research intensity in this field, and critically discuss advances in screening 

techniques and their applications to both aviculture and to the management of threatened 

wild populations. Finally we provide an overview regarding estimates of BFDV prevalence in 

captive and wild flocks alongside a complete list of all psittaciform species known to be 

susceptible. Advances in BFDV screening and diagnostic tools currently available allow for a 

broader application of results to conservation management strategies. Our evaluation 

highlights the need for standardised diagnostic tests and more emphasis on studies of wild 

populations, particularly when considering the intrinsic connection between global trade in 

companion birds and the spread of novel BFDV strains into wild populations. Increased 

emphasis should be placed on the screening of captive and wild parrot populations within 

their countries of origin across the Americas, Africa and Asia. 

KEY WORDS Emerging Infectious Disease, PBFD, BFDV, screening, prevalence estimate, 

susceptible species 
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1.1 INTRODUCTION 

Pathogens responsible for emerging infectious diseases (EIDs) have become a major 

concern in conservation biology owing to their potential for rapid evolution and the 

implications an epidemic may have on vulnerable species (Altizer, Harvell & Friedle 2003). 

Consequently, understanding EIDs and their management in wildlife populations has 

become increasingly important to conservationists (Bradley & Altizer 2007). Assessing the 

prevalence and impacts of disease can be challenging, particularly during the outbreak of a 

novel pathogen (Artois et al. 2001). Data collected and used in these circumstances often 

vary in sampling or assessment method, frequently with imperfect diagnostic tests providing 

the only available insight into infection incidence within a population (Williams & Moffitt 

2010; Lachish et al. 2012). Consequently, synthesising multiple sources of information 

across many species can provide insight into how to improve management of EIDs, identify 

knowledge gaps and reveal where improvements in surveillance methods might be 

required.  

The occurrence of Psittacine Beak and Feather Disease (PBFD) has been reported in 

both wild and captive parrot populations since the mid-1970s. The disease has been found 

to be widely infectious and often fatal, affecting both Old and New World psittacine species. 

PBFD is thought to have originally been documented in the late 1880s in wild Australian 

Psephotus parrots as feathering abnormalities that impaired their flight (Ashby 1907). Most 

commonly affecting immature and fledgling birds, classical symptoms include symmetrical 

loss of contour, tail and down feathers before replacement by dystrophic and necrotic 

feathers that fail to grow soon after emergence from the follicle (Perry 1981; Pass and Perry 

1984; Ritchie et al. 1991a).  Beak deformities such as fractures, abnormal elongation and 

palatine necrosis are also typical symptoms of PBFD but their presence and severity vary 

from species to species (Ritchie et al. 1989a). Other clinical symptoms include lethargy, 

depression, diarrhoea and immunosuppression which are individually variable, sometimes 

lead to death and may depend on the virulence of the viral strain or the route of viral 

exposure (Ritchie et al. 1989b).  

BFDV was tentatively placed in the Circoviridae family (Studdert 1993), consisting of 

the smallest known autonomously replicating pathogenic animal viruses (Ritchie 1995; Todd 

2000; Delwart & Li 2012), which was later confirmed when the first complete BFDV genome 
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was sequenced (Bassami et al. 1998). The structure of the Beak and Feather Disease Virus 

(BFDV) isolated from viral inclusion bodies was determined to be a non-enveloped, 

icosahedral virion between 14 and 16 nm in size and containing a single stranded DNA 

genome approximately 1.7 to 2.0 kilo-bases in length (Ritchie et al. 1989a).  

Until the early 1990’s histology and recovery of virions were the primary means of 

determining whether a bird was infected with BFDV. The first haemagglutination (HA) and 

haemagglutination inhibition (HI) assays for PBFD were then developed as a technique for 

both the identification and quantification of virus recovered from BFDV-positive birds 

(Ritchie et al. 1991b). Since the initial description of the syndrome, several attempts have 

been made to culture the virus in-vitro in order to provide a source of antigen for 

vaccinations, but as of yet these have not been successful (Pass et al. 1985; Bassami et al. 

1998; Robino et al. 2014). The lack of effective vaccine has compelled researchers to 

develop techniques to further interrogate the molecular genetics of the virus instead; 

encouraging development of oligonucleotide probe based methodologies such as dot-blot 

DNA hybridization, DNA in-situ hybridization and a polymerase chain reaction (PCR) based 

assay (Latimer et al. 1992; Latimer et al. 1993). These techniques provided a means to 

determine whether infection was present, even if the individual being studied was 

asymptomatic. Due to their small size, whole-genome sequencing has now become a 

commonplace tool in the analysis of circoviruses, assessing their phylogenetic relationships 

both with other taxa within the family and between strains of the same virus occurring in 

different hosts or global regions (Phenix et al. 2001; Olvera, Cortey & Segales 2007; Regnard 

et al. 2015a). 

PBFD has become a major cause for concern to conservationists and aviculturists as 

the disease has spread rapidly across the world, owing to BFDV’s high environmental 

persistence and ability to shift between closely related host species (Peters et al. 2014, 

Sarker et al. 2014a). BFDV is easily transmitted through contact with contaminated feather 

dust, surfaces or objects (Ritchie, Anderson & Lambert 2003), and can also be passed 

directly from a female to her offspring (Ritchie et al. 1989a; Kundu et al. 2012). The 

management of PBFD in captivity is economically important in some countries; for example, 

it is estimated that aviculturists in South Africa lose up to 20% of their flock to the disease 

annually (Heath et al. 2004). Worryingly, many wild populations of vulnerable species are 
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also affected including: the kakapo (Strigops habroptilus) and kaka (Nestor meridionalis) of 

New Zealand (Massaro et al. 2012), the Australian orange-bellied parrot (Neophema 

chrysogaster) (Peters et al. 2014) and swift parrot (Lathamus discolour) (Sarker et al. 2013a), 

and the Mauritius (or “echo”) parakeet (Psittacula eques) (Kundu et al. 2012). Therefore, 

understanding the mechanics behind the spread of BFDV and how to test for its prevalence 

has taken on a renewed global relevance. 

Concern over the implications for conservation, aviculture and biosecurity together 

with methodological advances in the detection of the virus has prompted an upsurge in 

research effort. Methodological developments have provided the basis on which 

researchers are now able to model the potential routes of transmission around the world 

(Harkins et al. 2014), link BFDV prevalence to management related tools for endangered 

species recovery (Tollington et al. 2015) and determine the ways in which anthropogenic 

activities have changed the way in which the virus is evolving due to recombination (Julian 

et al. 2013). Remarkably, whilst there are many research teams worldwide working on BFDV 

and PBFD there is a severe lack of synthesised knowledge on the primary screening methods 

being used, the species affected and, consequently, potential disease hotspots that have 

lacked attention. Here, we aim to consolidate the most pertinent patterns and methods 

emerging from the literature published since the first scientific description of PBFD in 1984 

to provide both a qualitative and quantitative overview of approaches and screening results. 

Our review provides a much-needed source of information regarding BFDV prevalence 

estimates in captive and wild flocks for use by conservation practitioners. Our objective was 

not to provide an exhaustive description of each technique but to analyse the trends in how 

screening has progressed over the last three decades and provide an overview of prevalence 

estimates for this EID alongside broader implications to biosecurity and conservation.  

1.2 METHODS 

1.2.1 Literature search 

Searches for literature were conducted by entering English key words and terms into 

Google Scholar and were selected to balance search sensitivity with specificity. The terms 

were: “Beak and Feather Disease Virus”, “Psittacine Beak and Feather Disease”, “Beak and 

Feather Disease”, “Psittacine circovirus”, “BFDV screening”, “PBFD screening”, “BFDV 
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detection” and “PBFD detection”. Acquisition of literature was restricted to only those 

articles that had been published in academic journals or as conference proceedings up to 

and including July 2015, thus excluding any theses and organisational reports.  

1.2.2 Analysis 

Information extracted from each publication included the year published, whether 

the birds studied originated in the wild or captivity, host species, country of origin of all 

specimens, tissue types and laboratory methods used in the detection of PBFD or BFDV and 

the outcome of diagnostic tests including detection prevalence. If a total population 

prevalence estimate was provided this value was also recorded. 

The publications were grouped in five year intervals to examine the trend in the 

number of publications produced over time. If multiple species from the same country of 

origin were involved in the same study the country of origin was recorded once per 

publication. If the study was based on captive individuals, and a different country of origin 

for a specimen was not otherwise clearly stated in the publication, it was assumed that the 

country in which the study was undertaken was the country of origin. Where a study used 

specimens from both captive and wild individuals from the same country, the country of 

origin for each specimen was recorded once per category for each publication. For example: 

Regnard et al. (2015b) screened specimens from both captive and wild populations of 

Poicephalus robustus and this information was recorded by adding South Africa once to 

each category. Maps were produced using ArcGIS 10.2.1 (ESRI 2011) displaying the results of 

captive and wild specimens independently. Seven publications did not declare whether the 

specimens obtained were of wild or captive origin; comprising five incidences from 

Australia, one from the United States of America (USA) and one from Brazil. These 

incidences were all excluded from the analyses of geographical patterns. The common 

names of species historically recorded as positive for PBFD/BFDV were aligned to current 

nomenclature as per the International Union for Conservation of Nature (IUCN) Red List 

database, alongside additional information regarding their current IUCN status and native 

geographic region. 

Screening methods were recorded once per publication. The annual trends in the 

five most frequently used screening methods were assessed, along with the overall most 
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commonly combined mixed-methods approaches. As with country of origin, tissues used for 

screening and diagnostics were divided into wild and captive specimens and, where a study 

used a certain tissue type from both captive and wild individuals, that type was recorded 

once per category for each publication. 

1.3 RESULTS 

1.3.1 Publication trends and affected species 

There has been a linear increase in the number of publications involving testing for 

BFDV since the first scientific description of PBFD to present (Figure 1.1, R2 = 0.96), with the 

total number of screening based publications reaching 82 by July 2015. The total number of 

publications on BFDV screening and prevalence is by far the highest between 2011 and July 

2015, being 30% higher than the number of publications for the five-year period preceding it 

and more than three times higher than the first full categorical period from 1986-1990. 

Research has been focused predominantly on captive populations, encompassing 33 

different countries and with the highest number of specimens originating from the USA 

followed by South Africa, Australia and Japan (Figure 1.2). Conversely studies on wild 

populations have only been undertaken in eight nations, with 12 of the 38 studies including 

specimens of Australian origin and none conducted on New World parrots. Three of these 

38 studies were based on screening for BFDV among exotic introduced populations of non-

native species; from the United Kingdom (Sa et al. 2014), Mauritius (Kundu et al. 2012) and 

New Zealand (Jackson et al. 2014a). A BFDV or PBFD positive result was reported at least 

once in both wild and captive specimens tested from all included countries aside from 

Senegal (Figure 1.3). 

Of the 88 species in which BFDV or PBFD has been detected in wild or captive birds 

(Table 1.1) approximately 65% (57 species) are categorised as Least Concern by the IUCN 

(2015), 10% are considered to be Near Threatened and just over a quarter are classified in 

Threatened categories. A declining population was observed in over 60% of BFDV affected 

host species. Of the 20 species in which BFDV or PBFD has been detected among wild 

populations, 70% (n=14) are currently categorised as Least Concern, two are classified as Near 

Threatened and the remaining four are classified in Threatened categories. Half (n=10) were 

determined to have host populations increasing in population size (IUCN 2015). In addition 
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wild populations of three subspecies have also tested positive for BFDV, all of which are native 

to the Oceania region.  

The summarised captive and wild population BFDV/PBFD prevalence estimates are 

reported in Table 1.2. Prevalence estimates have been provided for nine national captive 

populations globally; comprising four from Europe (two of which were for Poland), two from 

Oceania, two from East Asia and one from Central America. These estimates vary in their 

scope from describing prevalence in a subset of species (e.g. parakeets, Ha et al. 2009) to 

estimating BFDV prevalence across entire national captive populations (e.g. Bert et al. 

2005). Among wild populations, seven of eight publications reporting prevalence estimates 

are from the Oceania region, with four from New Zealand alone. Cacatua galerita 

populations in Australia were estimated to have a prevalence of between 10-20% (McOrist 

et al. 1984), slightly below the minimum estimate provided for populations in New Zealand 

two decades later (Ha et al. 2007). The lower limits of the 95% confidence interval 

surrounding BFDV prevalence in wild Platycercus eximius populations in New Zealand 

provided by two separate research groups, five years apart, are comparable (Ha et al. 2007; 

Massaro et al., 2012). However the upper limit varies from 20.4% to more than double, at 

42.3%. Similarly, the two estimates for Cyanoramphus novaezalandiae populations differ 

greatly from one another (Ortiz-Catedral et al. 2009; Massaro et al., 2012), with the upper 

limit of the 2012 estimate approximately 12% lower than the total estimate provided in 

2009. The only estimates for African populations are from Mauritius, where the endemic 

parakeet population was screened annually throughout the duration of the study. From 

2004 to 2009 the estimated total prevalence varied from 11-41% (Kundu et al. 2012).  

1.3.2 Most frequently-used laboratory methods 

Of the 82 publications evaluated, 47% (n=39) of them used a single method 

approach for detecting BFDV; with standard PCR-based assays the most frequently applied 

(43%), followed by whole genome sequencing (26%) and histology (18%) respectively. 

Histology using both light and scanning electron microscopy has been one of the 

most popular and consistently used methods from 1984 to present. Of the 14 methods 

available for screening and diagnostics, histology has been used at least once in combination 

with all but quantitative (or real-time) polymerase chain reaction (qPCR), blocking ELISA and 
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duplex shuttle PCR. An ELISA test was first developed for screening in the mid-1980s (Pass et 

al. 1985) but wasn’t used in a BFDV/PBFD screening based publication until more than two 

decades later (Table 1.3), after which it was never used again. Similarly the duplex shuttle 

PCR method has been used only once. Both HA and HI were used on 12 occasions since their 

first application in 1991 (Table 1.3). However, HA was not used at all in the 2011 to July 

2015 publication period (Figure 1.4). 

The standard PCR based assay closely follows histology in terms of widespread use 

and is the most frequently used screening method overall, applied in 49% of reported 

studies (Table 1.3). Of the 35 publications that used standard PCR from 2000 onwards, 24 

used the protocol and/or oligonucleotide primers developed by Ypelaar et al. (1999). The 

application of both PCR and whole genome sequencing is considerably higher than any 

other mixed method approach; used together as the only methods in nine publications and 

in a total of 12 mixed method studies. In the 2011 to July 2015 period, whole genome 

sequencing became the only method to exceed the number of applications of standard PCR 

for BFDV screening since it increased in popularity from 1996 to 2000 (Figure 1.4); used in 

70% of publications since its first application in 2004. 

1.3.3 Tissue types used for screening 

A total of 13 tissue types have been used for BFDV and PBFD screening since 1984: 

beak, blood, bone marrow, cloacal swabs, crop samples, embryonated and non-embryonated 

eggs, faeces, feather dust, feathers, muscle tissue, skin and viscera. All tissue types, aside from 

beak, have been used for screening on at least one occasion in captive populations; with 

feathers used the most frequently (34%), followed by blood (32%) and skin (9%) respectively. 

Conversely, only six tissue types have been used in the screening of wild populations. As with 

captive populations, blood (41%) and feathers (37%) were the most commonly used source 

for samples, with viscera studied 10% of the time and beak only used on one occasion.  

1.3.4 Descriptions of clinical signs  

Basic visual body condition assessments were mentioned in 36 of the 82 publications 

and ranged from a brief statement of the presence or absence of feather disorder (Latimer 

et al. 1992; Ogawa, Yamaguchi & Fukushi 2005) to more in-depth observations regarding 

overall body condition (Sa et al. 2014; Jackson et al. 2014b). More thorough scoring systems 
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for the classification of clinical symptoms were applied in eight studies. The most descriptive 

of these systems was by Regnard et al. (2015b), consisting of six different clinical symptoms, 

with each broken down into five different scores of overall physical condition, which was 

then compared to individual viral load. Other scales, such as that applied by Ritchie et al. 

(1991a, b) descriptively scored only clinical feather and beak lesions. 

1.3.5 Field methods used to obtain wild specimens 

Only 16 of the 38 studies reporting BFDV or PBFD incidence in wild birds discussed the 

field methods used to obtain their specimens. The most frequently used method was mist 

netting, reported in 11 of the 16 publications (Massaro et al. 2012; Jackson et al. 2014a; 

Regnard et al. 2015b). The second most preferred method was trapping, either whilst 

individuals were in nests (McOrist et al. 1984; Eastwood et al. 2015) or with walk-in traps 

(Eastwood et al 2014, 2015). Other studies were undertaken on specimens gathered 

opportunistically from mortality cases and individuals brought in for health checks (Ha et al. 

2009). 

1.4 DISCUSSION 

1.4.1 Patterns in global PBFD and BFDV research 

Interest in the screening for, spread and impacts of BFDV/PBFD globally has steadily 

increased over the last three decades, with a particular focus on wild populations in the last 

five years. Over the course of this period the focus in research has shifted from basic 

descriptions of presence or prevalence in populations, towards question-driven studies 

relating to viral recombination, evolution and phylogenetics (e.g. Henriques et al. 2010; 

Julian et al. 2013), the drivers of outbreaks in wild populations (e.g. Jackson et al. 2014; 

Peters et al. 2014), and their implications for improving the management of captive and wild 

populations. However, despite the burgeoning interest in assessing incidence in wild 

populations there are some conspicuous research gaps which future research should aim to 

fill. Oceania is undoubtedly the most heavily researched regarding the incidence of BFDV or 

PBFD in both wild and captive populations globally. This finding may partly be due to 

evolutionary studies indicating that the virus likely originated from this region and BFDV has 

been listed as a “Key Threatening Process” to biodiversity in Australia (Eastwood et al. 
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2015). In contrast, there has been very little research on BFDV in proximate geographical 

regions of high parrot diversity such as South East and Southern Asia. 

Given that Cacatua was the genus from which PBFD was first described, 11 species of 

which have proven to be susceptible to BFDV infection, to date there has been very little 

research into areas of South East Asia to which many of these species are native. The virus 

has been found in specimens from both wild and captive populations in Indonesia, a country 

that contains many psittacine breeding farms (Ogawa et al. 2013) and is heavily exploited 

for both the legal and illegal trapping and export of companion birds for the pet trade (IUCN 

2015). Equally, with high levels of parrot endemicity in South and Central America, it is 

surprising that no studies have been published on BFDV or PBFD incidence in wild 

populations. Only two studies have been conducted on captive individuals originating from 

these geographical regions; one from Costa Rica (Dolz et al. 2013) and another that included 

specimens of Guyanese origin (Ogawa et al. 2013). Whilst one study from Brazil did not 

specify whether the individuals studied were of captive or wild origin and were therefore 

not included in Figure 1.2 (Soares, Guimaraes & Durigon 1998), this anomaly makes little 

difference to the overall picture. Similarly most of the African continent is data deficient, 

with no BFDV studies published on wild populations north of Zambia (Warburton & Perrin 

2002) or from any of the Indian Ocean islands aside from Mauritius. The captive studies 

have been slightly more inclusive, with specimens from Cameroon and the Ivory Coast, but 

they were not conducted within the country of origin and therefore provided little 

information on the state of captive flocks locally. Also, as the specimens from captive birds 

originating from these nations tested positive for BFDV (Bert et al. 2005) it would be 

beneficial to investigate wild populations further for the occurrence of any spill over from 

the aviculture industry.   

Notably, one species that requires further research focus is Psittacula krameri; the 

most introduced parrot globally with breeding populations in approximately 35 countries, 

across five continents (Tayleur 2010). No BFDV or PBFD screening has been conducted on any 

of the wild populations of P. krameri across its extensive native range. However, feral 

populations within its invasive range and captive individuals have both tested positive for 

BFDV (Kundu et al. 2012; Julian et al. 2013; Sa et al. 2014). It is therefore highly likely that the 
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virus is present in wild flocks which may act as a reservoir with potential spill over into other 

sympatric vulnerable psittacine species.  

1.4.2 Advances in methods 

The methods used to screen specimens for BFDV have also changed along with the 

questions being asked. The variety of optimised diagnostic tests and technologies available for 

BFDV screening have increased and improved substantially since its first scientific assessment. 

Whole genome sequencing has become a particularly prominent tool in recent years due to 

the small size of the BFDV genome, reduced costs of this technique and the availability of 

comparable sequence data through collective resources such as GenBank. Other methods, 

such as blocking ELISAs, duplex shuttle PCRs and dot-blot DNA hybridization have been used 

once or twice but were not as effective as other methods available or in common use at the 

time. Unlike the ELISA, the HI assay, currently the leading assay for anti-BFDV antibody 

detection, does not require a secondary antibody and is widely suitable for detection for a 

large proportion of psittacine species (Kahlesi et al. 2005). 

With the impact of PBFD evident in a number of declining and vulnerable wild parrot 

populations and the wider economic impact of PBFD on aviculture it would be valuable to 

standardise an approach to basic viral screening, improving on both accuracy and 

repeatability. Standardisation would allow for more reliable modelling, extrapolation and 

population prevalence estimates that are comparable between countries, species or 

breeding facilities. Managers of captive breeding facilities used in the pet-trade may want to 

increase the confidence in diagnostic tests to prevent the introduction of infected 

individuals into healthy collections. Similarly conservation managers may require better 

detection accuracy in order to increase the probability of success in establishing a disease-

free base population when undertaking translocations in species recovery and 

reintroduction programmes. Whilst steps have recently been taken to improve the standard 

PCR protocol by quantifying DNA extraction concentrations prior to screening (Eastwood et 

al. 2015), still lacking in the literature is an assessment of detection accuracy at variable DNA 

concentrations and how this impacts the repeatability of a result.  

Quantitative (real-time) PCR techniques are now being more regularly applied to 

determine individual viral load (Shearer et al. 2009a; Eastwood et al. 2015; Regnard et al. 
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2015b) as probe-based assays are able to detect viral DNA at much lower concentrations 

than recorded by the naked eye when visualizing a gel. However, the reagents and 

equipment required for screening through standard PCR are currently substantially cheaper 

than those used for probe-based assays and are thus likely to have continued wide-spread 

use for the purpose of general BFDV screening. 

1.4.3. Tissue types used for screening 

 Extracted DNA samples can vary greatly in yield depending on the type and amount of 

tissue used. For example, feathers typically produce very low genomic DNA yields, particularly 

when extracted from those that are cut off from the blood supply once fully grown (De Volo 

2008), only representing viral incidence during the initial growth phase. Concentrations can 

considerably affect the sensitivity of PCR assay (Khalesi et al. 2005) as the amount of viral DNA 

obtained from any sample will be dependent on the infection level within the host at the time 

of sampling (Knowles et al. 2011; Lachish et al. 2012), making higher DNA yields preferable to 

increase the probability of detection. A number of studies have proven that there are 

inconsistencies in detection of BFDV between tissue types (Ramis et al. 1998; Hess, Scope & 

Heincz 2004; Khalesi et al. 2005; Eastwood et al. 2015). Feathers have been found to test 

positive for BFDV in the absence of clinical signs (Hess, Scope & Heincz 2004), where no HI 

antibody is detectable (Khalesi et al. 2005) and when an individual’s blood or tissue tested 

negative (Eastwood et al. 2015).  

Whilst samples from wild populations may be easier and require less veterinary 

expertise to obtain through non-invasive techniques, such as the collection of feathers, there 

is a higher risk of cross contamination between samples (Taberlet, Waits & Luikart 1999) and 

thus may increase the proportion of false-positives when screening. Also, as a primary 

symptom of PBFD is feather loss the collection of dropped feathers (for example from a roost 

site) may further bias the estimated proportion of infected individuals. Therefore, as with the 

variation in diagnostic methods, it would be valuable to standardise a protocol each for blood 

and feathers, the two most commonly screened tissue types, for widespread use between 

managers of both wild and captive populations. As the screening of muscle tissue and blood 

have been found to provide highly comparable results with standard and qPCR techniques 
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(Eastwood et al. 2015), a standardised blood screening protocol could therefore also be 

extended to use with other internal tissues such as muscle or viscera. 

1.4.4 The under-reporting of body condition assessments and field techniques 

 Both the reporting of body conditions of screened individuals and the techniques used 

to capture wild birds have been highly inconsistent in the literature. As it has been shown that 

some individuals can remain asymptomatic despite testing positive for BFDV (Ritchie 1989a) it 

is difficult to determine whether body condition assessments are of value in informing 

management guidelines. However, overall physical condition has been found to correlate with 

viral load in Cape parrots (Regnard et al. 2015b) and consequently it may be of value to 

implement a robust and standardised scale of clinical signs as a primary means of assessment 

in the field. This finding will need to be tested in a number of other parrot species to 

determine its repeatability across the Psittacidae family before further reliance can be placed 

on this as a means of roughly estimating host prevalence without a diagnostic assay. 

 Mist nets and traps, the most frequently used field techniques used to catch wild 

birds, may facilitate the horizontal spread of infection between individuals if equipment is not 

adequately cleaned between uses. BFDV has been found to be highly environmentally 

persistent (Peters et al. 2014) and conservation managers should therefore be aware of the 

risks of increased transmission when a thorough cleaning regime is not implemented. 

1.4.5 Applications 

The application of screening and diagnostic tests for BFDV has developed from trying 

to understand the structure of the virus, how it is transmitted between individuals and the 

nature of the disease, to assessing what incidence and prevalence means for management 

and interrogating evolutionary relationships between strains occurring in different parts of 

the world. These methodological developments have proven to be  particularly valuable 

when considering translocation and reintroduction programmes for wild populations 

(Cunningham 1996; Jackson et al. 2015), highlighted by a complete loss of a new founder 

population of Endangered Psittacula eques to PBFD in 2005 (Tollington et al. 2013, 2015). 

Initially the virus was thought to be limited in its diversity (Ritchie et al. 1990) and 

some attempts were made to produce a protective vaccine (Pass et al. 1985; Raidal, Sabine 
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& Cross 1993; Bonne et al. 2009) but little attention has been given to this in recent years. 

Instead researchers and practitioners have taken a proactive stance, placing a closer focus 

on closer monitoring and management of the disease, trying to avoid spill over into 

vulnerable species (Jackson et al. 2014; Peters et al. 2014).  

This review highlights the need for more focus on wild populations, particularly 

when taking into consideration the intrinsic connection between the trade in companion 

birds and the spread of novel BFDV strains into the wild. It is also clear that there are still 

many opportunities to study the impacts of disease in captive and wild parrot populations 

within their countries of origin across the Americas, Africa and Asia. Many parrot species 

have declining populations and exist within highly fragmented and degraded habitats (IUCN 

2015) and consequently it would be of great value in the future conservation of wild 

populations to determine how the spread of infectious disease further impacts on survival 

or persistence. Only a few total prevalence estimates exist for captive and wild populations, 

valuable information for geographical and cross-species comparisons that, in some 

incidences, could be relatively easily reported with modelling existing data. The progression 

and refinement of the screening and diagnostic tools currently available for the study of 

BFDV allows for a broader application of results in management strategies and disease 

transmission prevention protocols. However further work still needs to be done on the 

standardisation of diagnostic tests to allow for more reliable extrapolation of results in the 

management of both captive and wild populations.  



 

1. 15 
 

1.5 REFERENCES 

Albertyn, J., Tajbhai, K. M. and Bragg, R. R. (2004). Psittacine beak and feather disease virus 

in budgerigars and ring-neck parakeets in South Africa. The Onderstepoort Journal of 

Veterinary Research, 71(1), 29–34. 

Altizer, S., Harvell, D. and Friedle, E. (2003). Rapid evolutionary dynamics and disease 

threats to biodiversity. Trends in Ecology and Evolution, 18(11), 589-596. 

Artois, M., Delahay, R., Guberti, V. and Cheeseman, C. (2001). Control of infectious diseases 

of wildlife in Europe. The Veterinary Journal, 162(2), 141-152. 

Ashby, E. (1907). Parrakeets Moutling. Emu, 6(4), 193-194. 

Baker, J. R. (1996). Survey of feather diseases of exhibition budgerigars in the United 

Kingdom. The Veterinary Record, 139(24), 590-594. 

Bassami, M. R., Berryman, D., Wilcox, G. E. and Raidal, S. R. (1998). Psittacine beak and 

feather disease virus nucleotide sequence analysis and its relationship to porcine 

circovirus, plant circoviruses, and chicken anaemia virus. Virology, 249(2), 453-459. 

Bassami, M. R., Ypelaar, I., Berryman, D., Wilcox, G. E. and Raidal, S. R. (2001). Genetic 

diversity of beak and feather disease virus detected in psittacine species in Australia. 

Virology, 279(2), 392-400. 

Bert, E., Tomassone, L., Peccati, C., Navarrete, M. G. and Sola, S. C. (2005). Detection of beak 

and feather disease virus (BFDV) and avian polyomavirus (APV) DNA in psittacine birds 

in Italy. Journal of Veterinary Medicine, Series B, 52(2), 64-68. 

Bonne, N., Shearer, P., Sharp, M., Clark, P. and Raidal, S. (2009). Assessment of recombinant 

beak and feather disease virus capsid protein as a vaccine for psittacine beak and 

feather disease. Journal of General Virology, 90(3), 640-647. 

Bradley, C. A. and Altizer, S. (2007). Urbanization and the ecology of wildlife diseases. Trends 

in ecology and evolution, 22(2), 95-102. 



 

1. 16 
 

 Cooper, J. E., Gschmeissner, S., Parsons, A. J. and Coles, B. H. (1987). Psittacine beak and 

feather disease. Veterinary Record, 120(12), 287-287. 

Cunningham, A. A. (1996). Disease risks of wildlife translocations. Conservation Biology, 349-

353. 

Das, S., Sarker, S., Forwood, J. K., Ghorashi, S. A. and Raidal, S. R. (2014). Characterization of 

the whole-genome sequence of a beak and feather disease virus isolate from a Mallee 

Ringneck parrot (Barnardius zonarius barnardi). Genome Announcements, 2(4), 

e00708-14. 

De Kloet, E. and De Kloet, S. R. (2004). Analysis of the beak and feather disease viral genome 

indicates the existence of several genotypes which have a complex psittacine host 

specificity. Archives of Virology, 149(12), 2393-2412. 

De Volo, S. B., Reynolds, R. T., Douglas, M. R. and Antolin, M. F. (2008). An improved 

extraction method to increase DNA yield from molted feathers. The Condor, 110(4), 

762-766. 

Delwart, E. and Li, L. (2012). Rapidly expanding genetic diversity and host range of the 

Circoviridae viral family and other Rep encoding small circular ssDNA genomes. Virus 

Research, 164(1), 114-121. 

Dolz, G., Sheleby-Elías, J., Romero-Zuñiga, J. J., Vargas-Leitón, B., Gutiérrez-Espeleta, G. and 

Madriz-Ordeñana, K. (2013). Prevalence of Psittacine Beak and Feather Disease Virus 

and Avian Polyomavirus in Captivity Psittacines from Costa Rica. Open Journal of 

Veterinary Medicine, 3, 240–245. 

Doneley, R. J. T. (2003). Acute Beak and Feather Disease in juvenile African Grey parrots‐an 

uncommon presentation of a common disease. Australian Veterinary Journal, 81(4), 

206-207. 

Eastwood, J. R., Berg, M. L., Ribot, R. F., Raidal, S. R., Buchanan, K. L., Walder, K. R. and 

Bennett, A. T. (2014). Phylogenetic analysis of beak and feather disease virus across a 

host ring-species complex. Proceedings of the National Academy of Sciences, 111(39), 



 

1. 17 
 

14153-14158.Eastwood, J. R., Berg, M. L., Spolding, B., Buchanan, K. L., Bennett, A. T. 

and Walder, K. (2015). Prevalence of beak and feather disease virus in wild Platycercus 

elegans: comparison of three tissue types using a probe-based real-time qPCR test. 

Australian Journal of Zoology, 63(1), 1-8. 

ESRI (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research 

Institute. 

Greenacre, C. B., Latimer, K. S., Niagro, F. D., Campagnoli, R. P., Pesti, D. and Ritchie, B. W. 

(1992). Psittacine beak and feather disease in a scarlet macaw (Ara macao). Journal of 

the Association of Avian Veterinarians, 95-98. 

Ha, H. J., Anderson, I. L., Alley, M. R., Springett, B. P. and Gartrell, B. D. (2007). The 

prevalence of beak and feather disease virus infection in wild populations of parrots 

and cockatoos in New Zealand. New Zealand Veterinary Journal, 55(5), 235-238. 

Ha, H. J., Alley, M. R., Cahill, J. I., Howe, L. and Gartrell, B. D. (2009). The prevalence of 

psittacine beak and feather disease virus infection in native parrots in New Zealand. 

New Zealand Veterinary Journal, 57(1), 50-52. 

Harkins, G. W., Martin, D. P., Christoffels, A. and Varsani, A. (2014). Towards inferring the 

global movement of beak and feather disease virus. Virology, 450, 24-33. 

Heath, L., Martin, D. P., Warburton, L., Perrin, M., Horsfield, W., Kingsley, C., Rybicki, E. P. 

and Williamson, A.-L. (2004). Evidence of Unique Genotypes of Beak and Feather 

Disease Virus in Southern Africa Evidence of Unique Genotypes of Beak and Feather 

Disease Virus in Southern Africa. Journal of Virology, 78(17), 9277–9284. 

Hess, M., Scope, A. and Heincz, U. (2004). Comparative sensitivity of polymerase chain 

reaction diagnosis of psittacine beak and feather disease on feather samples, cloacal 

swabs and blood from budgerigars (Melopsittacus undulates, Shaw 18005). Avian 

Pathology, 33(5), 477-481. 



 

1. 18 
 

Henriques, A. M., Fagulha, T., Duarte, M., Ramos, F., Barros, S., Luís, T., Bernardino, R. and 

Fevereiro, M. (2010). Phylogenetic analysis of six isolates of beak and feather disease 

virus from African grey parrots in Portugal. Avian diseases, 54(3), 1066-1071. 

Hsu, C. M., Ko, C. Y. and Tsai, H. J. (2006). Detection and sequence analysis of avian 

polyomavirus and psittacine beak and feather disease virus from psittacine birds in 

Taiwan. Avian Diseases, 50(3), 348-353. 

Huff, D. G., Schmidt, R. E. and Fudge, A. M. (1988). Psittacine beak and feather syndrome in 

a blue-fronted Amazon (Amazona aestiva). AAV Today, 2(2), 84-86. 

IUCN. 2015. [Online] IUCN Red List of Threatened Species. Version 2015.1. Available from: 

www.iucnredlist.org [Accessed 8 August 2015] 

Jacobson, E. R., Clubb, S., Simpson, C., Walsh, M., Lothrop Jr, C. D., Gaskin, J., Bauer, J., 

Hines, S., Kollias G. V. Poulos, P. and Harrison, G. (1986). Feather and beak dystrophy 

and necrosis in cockatoos: clinicopathologic evaluations. Journal of the American 

Veterinary Medical Association, 189 (9), 999-1005. 

Jackson, B., Lorenzo, A., Theuerkauf, J., Barnaud, A., Duval, T., Guichard, P., Bloc, H., 

Baouma, A., Stainton, D., Kraberger, S., Murphy, S., Clark, N., Dillon, C., Knight, T. and 

Varsani, A. (2014a). Preliminary surveillance for beak and feather disease virus in wild 

parrots of New Caledonia: implications of a reservoir species for Ouvea Parakeets. 

Emu, 114(3), 283-289. 

Jackson, B., Harvey, C., Galbraith, J., Robertson, M., Warren, K., Holyoake, C., Julian, L. and 

Varsani, A. (2014b). Clinical beak and feather disease virus infection in wild juvenile 

eastern rosellas of New Zealand; biosecurity implications for wildlife care facilities. 

New Zealand Veterinary Journal, 62(5), 297-301. 

Jackson, B., Varsani, A., Holyoake, C., Jakob-Hoff, R., Robertson, I., McInnes, K., Empson, R., 

Gray, R., Nakagawa, K. and Warren, K. (2015). Emerging infectious disease or evidence 

of endemicity? A multi-season study of beak and feather disease virus in wild red-

crowned parakeets (Cyanoramphus novaezelandiae). Archives of Virology, 160(9), 

2283-2292. 



 

1. 19 
 

Jergens, A. E., Brown, T. P. and England, T. L. (1988). Psittacine beak and feather disease 

syndrome in a cockatoo. Journal of the American Veterinary Medical Association, 

193(10), 1292. 

Julian, L., Lorenzo, A., Chenuet, J. P., Bonzon, M., Marchal, C., Vignon, L., Collings, D. A., 

Walters, M., Jackson, B. and Varsani, A. (2012). Evidence of multiple introductions of 

beak and feather disease virus into the Pacific islands of Nouvelle-Caledonie (New 

Caledonia). Journal of General Virology, 93, 2466-2472. 

Julian, L., Piasecki, T., Chrząstek, K., Walters, M., Muhire, B., Harkins, G. W., Martin, D. P. and 

Varsani, A. (2013). Extensive recombination detected among beak and feather disease 

virus isolates from breeding facilities in Poland. Journal of General Virology, 94, 1086-

1095. 

Katoh, H., Ohya, K., Ise, K. and Fukushi, H. (2010). Genetic analysis of beak and feather 

disease virus derived from a cockatiel (Nymphicus hollandicus) in Japan. Journal of 

Veterinary Medical Science, 72(5), 631-634. 

Khalesi, B., Bonne, N., Stewart, M., Sharp, M. and Raidal, S. (2005). A comparison of 

haemagglutination, haemagglutination inhibition and PCR for the detection of 

psittacine beak and feather disease virus infection and a comparison of isolates 

obtained from loriids. Journal of General Virology, 86(11), 3039-3046. 

Kiatipattanasakul-Banlunara, W., Tantileartcharoen, R., Katayama, K. I., Suzuki, K., 

Lekdumrogsak, T., Nakayama, H. and Doi, K. (2002). Psittacine beak and feather 

disease in three captive sulphur-crested cockatoos (Cacatua galerita) in Thailand. 

Journal of Veterinary Medical Science, 64(6), 527-529. 

Knowles, S. C., Wood, M. J., Alves, R., Wilkin, T. A., Bensch, S. and Sheldon, B. C. (2011). 

Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird 

population. Molecular Ecology, 20(5), 1062-1076. 

Kock, N. D. (1990). Confirmation of psittacine beak and feather disease in Lillian's lovebirds, 

(Agapornis lillianae) in Zimbabwe. Zimbabwe Veterinary Journal, 21(2), 73. 



 

1. 20 
 

Kock, N. D., Hangartner, P. U. and Lucke, V. (1993). Variation in clinical disease and species 

susceptibility to psittacine beak and feather disease in Zimbabwean lovebirds. The 

Onderstepoort Journal of Veterinary Research, 60(2), 159-161. 

Kondiah, K., Albertyn, J. and Bragg, R.R., 2005. Beak and feather disease virus 

haemagglutinating activity using erythrocytes from African Grey parrots and Brown-

headed parrots: research communication. Onderstepoort Journal of Veterinary 

Research, 72(3), 263–265. 

Kondiah, K., Albertyn, J. and Bragg, R.R., 2006. Genetic diversity of the Rep gene of beak and 

feather disease virus in South Africa. Archives of Virology, 151(2), 2539–2545. 

Kundu, S., Faulkes, C. G., Greenwood, A. G., Jones, C. G., Kaiser, P., Lyne, O. D., Black, S. A., 

Chowrimootoo, A. and Groombridge, J. J. (2012). Tracking viral evolution during a 

disease outbreak: the rapid and complete selective sweep of a circovirus in the 

endangered Echo parakeet. Journal of Virology, 86(9), 5221-5229. 

Lachish, S., Gopalaswamy, A. M., Knowles, S. C. and Sheldon, B. C. (2012). Site‐occupancy 

modelling as a novel framework for assessing test sensitivity and estimating wildlife 

disease prevalence from imperfect diagnostic tests. Methods in Ecology and Evolution, 

3(2), 339-348. 

 Latimer, K. S., Rakich, P. M., Steffens, W. L., Kircher, I. M., Ritchie, B. W., Niagro, F. D. and 

Lukert, P. D. (1991). A novel DNA virus associated with feather inclusions in psittacine 

beak and feather disease. Veterinary Pathology Online, 28(4), 300-304. 

Latimer, K. S., Niagro, F. D., Rakich, P. M., Campagnoli, R. P., Ritchie, B. W., Steffens III, W. L., 

Pesti, D. A. and Lukert, P. D. (1992). Comparison of DNA dot-blot hybridization, 

immunoperoxidase staining and routine histopathology in the diagnosis of psittacine 

beak and feather disease in paraffin-embedded cutaneous tissues. Journal of the 

Association of Avian Veterinarians, 165-168. 

Latimer, K. S., Niagro, F. D., Campagnoli, R. P., Ritchie, B. W., Pesti, D. A. and Steffens III, W. 

L. (1993). Diagnosis of concurrent avian polyomavirus and psittacine beak and feather 



 

1. 21 
 

disease virus infections using DNA probes. Journal of the Association of Avian 

Veterinarians, 7(3), 141-146. 

Massaro, M. et al. (2012). Molecular characterisation of beak and feather disease virus 

(BFDV) in New Zealand and its implications for managing an infectious disease. 

Archives of Virology, 157(9), 1651–1663. 

McOrist, S., Black, D. G., Pass, D. A., Scott, P. C. and Marshall, J. (1984). Beak and feather 

dystrophy in wild sulphur-crested cockatoos (Cacatua galerita). Journal of Wildlife 

Diseases, 20(2), 120-124. 

Niagro, F. D., Forsthoefel, A. N., Lawther, R. P., Kamalanathan, L., Ritchie, B. W., Latimer, K. 

S. and Lukert, P. D. (1998). Beak and feather disease virus and porcine circovirus 

genomes: intermediates between the geminiviruses and plant circoviruses. Archives of 

Virology, 143(9), 1723-1744. 

Ogawa, H., Yamaguchi, T. and Fukushi, H. (2005). Duplex shuttle PCR for differential 

diagnosis of budgerigar fledgling disease and psittacine beak and feather disease. 

Microbiology and Immunology, 49(3), 227-237. 

Ogawa, H., Katoh, H., Sanada, N., Sanada, Y., Ohya, K., Yamaguchi, T. and Fukushi, H. (2010). 

A novel genotype of beak and feather disease virus in budgerigars (Melopsittacus 

undulatus). Virus Genes, 41(2), 231-235. 

Ogawa, H., Chahota, R., Ohya, K., Yamaguchi, T. and Fukushi, H. (2013). Relatedness 

between Host Species and Genotype of Beak and Feather Disease Virus Suggesting 

Possible Interspecies Cross Infection during Bird Trade. Journal of Veterinary Medical 

Science, 75(4), 503-507. 

Olvera, A., Cortey, M. and Segales, J. (2007). Molecular evolution of porcine circovirus type 2 

genomes: phylogeny and clonality. Virology, 357(2), 175-185. 

Ortiz-Catedral, L., McInnes, K., Hauber, M. E. and Brunton, D. H. (2009). First report of beak 

and feather disease virus (BFDV) in wild Red-fronted Parakeets (Cyanoramphus 

novaezelandiae) in New Zealand. Emu, 109(3), 244-247. 



 

1. 22 
 

Ortiz-Catedral, L., Kurenbach, B., Massaro, M., McInnes, K., Brunton, D. H., Hauber, M. E., 

Martin, D. P. and Varsani, A. (2010). A new isolate of beak and feather disease virus 

from endemic wild red-fronted parakeets (Cyanoramphus novaezelandiae) in New 

Zealand. Archives of Virology, 155(4), 613-620. 

Pass, D. A. and Perry, R. A. (1984). The pathology of psittacine beak and feather disease. 

Australian Veterinary Journal, 61(3), 69-74. 

Pass, D., Perry, R., Rosskopf Jr., W. J. and Grahman, D. L. (1985). Psittacine Beak and Feather 

Disease. AAV Newsletter, 103-109. 

Perry, R. A. (1981). A Psittacine Combined Beak and Feather Disease Syndrome with 

particular reference to the Australian Cockatoos Cacatua galerita (Sulphur crested 

cockatoo), Cacatua leadbeateri (Major Mitchell or Pink Cockatoo), Cacatua 

roseicapella (Galah or Rose breasted Cockatoo) and Cacatua sanguinea (Little Corella). 

Proceedings, 55, 81-108. 

Peters, A., Patterson, E. I., Baker, B. G., Holdsworth, M., Sarker, S., Ghorashi, S. A. and Raidal, 

S. R. (2014). Evidence of psittacine beak and feather disease virus spillover into wild 

critically endangered orange-bellied parrots (Neophema chrysogaster). Journal of 

wildlife diseases, 50(2), 288-296. 

Phenix, K. V., Weston, J. H., Ypelaar, I., Lavazza, A., Smyth, J. A., Todd, D., Wilcox, G. E. and 

Raidal, S. R. (2001). Nucleotide sequence analysis of a novel circovirus of canaries and 

its relationship to other members of the genus Circovirus of the family Circoviridae. 

Journal of General Virology, 82(11), 2805-2809. 

Piasecki, T. and Wieliczko, A. L. I. N. A. (2010). Detection of beak and feather disease virus 

and avian polyomavirus DNA in psittacine birds in Poland. Bulletin of the Veterinary 

Institute in Pulawy, 54, 141-146. 

Rahaus, M., Desloges, N., Probst, S., Loebbert, B., Lantermann, W. and Wolff, M. H. (2008). 

Detection of beak and feather disease virus DNA in embryonated eggs of psittacine 

birds. Veterinarni Medicina, 53(1), 53–58. 



 

1. 23 
 

Raidal, S. R., Sabine, M. and Cross, G. M. (1993). Laboratory diagnosis of psittacine beak and 

feather disease by haemagglutination and haemagglutination inhibition. Australian 

veterinary journal, 70(4), 133-137 

Raidal, S. R., McElnea, C. L. and Cross, G. M., (1993). Seroprevalence of psittacine beak and 

feather disease in wild psittacine birds in New South Wales. Australian Veterinary 

Journal, 70(4), 137–139. 

Raidal, S. R. and M. Cross, G. (1994). The haemagglutination spectrum of psittacine beak and 

feather disease virus. Avian Pathology, 23(4), 621-630. 

Ramis, A., Latimer, K. S., Niagro, F. D., Campagnoli, R. P., Ritchie, B. W. and Pesti, D. (1994). 

Diagnosis of psittacine beak and feather disease (PBFD) viral infection, avian 

polyomavirus infection, adenovirus infection and herpesvirus infection in psittacine 

tissues using DNA in situ hybridization. Avian Pathology, 23(4), 643-657. 

Ramis, A., Latimer, K. S., Gibert, X. and Campagnoli, R. (1998). A concurrent outbreak of 

psittacine beak and feather disease virus, and avian polyomavirus infection in 

budgerigars (Melopsittacus undulatus). Avian Pathology, 27(1), 43-50. 

Rahaus, M. and Wolff, M. H. (2003). Psittacine beak and feather disease: a first survey of the 

distribution of beak and feather disease virus inside the population of captive 

psittacine birds in Germany. Journal of Veterinary Medicine, Series B, 50(8), 368-371. 

Raue, R., Johne, R., Crosta, L., Bürkle, M., Gerlach, H. and Müller, H. (2004). Nucleotide 

sequence analysis of a C1 gene fragment of psittacine beak and feather disease virus 

amplified by real-time polymerase chain reaction indicates a possible existence of 

genotypes. Avian Pathology, 33(1), 41-50. 

Regnard, G. L., Boyes, R. S., Martin, R. O., Hitzeroth, I. I. and Rybicki, E. P. (2015a). Beak and 

feather disease viruses circulating in Cape parrots (Poicephalus robustus) in South 

Africa. Archives of Virology, 160(1), 47-54. 



 

1. 24 
 

Regnard, G. L., Boyes, R. S., Martin, R. O., Hitzeroth, I. I. and Rybicki, E. P. (2015b). Beak and 

feather disease virus: correlation between viral load and clinical signs in wild Cape 

parrots (Poicephalus robustus) in South Africa. Archives of Virology, 160(1), 339-344. 

Ritchie, B. W. (1995). Avian viruses: Function and Control. Wiley-Blackwell 

Ritchie, B. W., Niagro, F. D., Lukert, P. D., Steffens, W. L. and Latimer, K. S. (1989a). 

Characterization of a new virus from cockatoos with psittacine beak and feather 

disease. Virology, 171(1), 83-88. 

Ritchie, B. W., F. D. Niagro, P. D. Lukert, K. S. Latimer, W. L. Steffens III and N. Pritchard. 

(1989b). A review of psittacine beak and feather disease: characteristics of the PBFD 

virus. Journal of the Association of Avian Veterinarians, 143-149. 

Ritchie, B. W., Niagro, F. D., Latimer, K. S., Lukert, P. D., Steffens III, W. L., Rakich, P. M. and 

Pritchard, N. (1990). Ultrastructural, protein composition, and antigenic comparison of 

psittacine beak and feather disease virus purified from four genera of psittacine birds. 

Journal of Wildlife Diseases, 26(2), 196-203. 

Ritchie, B. W., Niagro, F. D., Latimer, K. S., Steffens, W. L., Pesti, D. and Lukert, P. D. (1991a). 

Haemagglutination by psittacine beak and feather disease virus and use of 

hemagglutination inhibition for detection of antibodies against the virus. American 

Journal of Veterinary Research, 52(11), 1810-1815. 

Ritchie, B. W., Niagro, F. D., Latimer, K. S., Steffens, W. L., Pesti, D., Ancona, J. and Lukert, P. 

D. (1991b). Routes and prevalence of shedding of psittacine beak and feather disease 

virus. American Journal of Veterinary Research, 52(11), 1804-1809. 

Ritchie, P.A., Anderson, I.L. and Lambert, D.M. (2003). Evidence for specificity of psittacine 

beak and feather disease viruses among avian hosts. Virology, 306(1), 109-115. 

Robino, P., Grego, E., Rossi, G., Bert, E., Tramuta, C., Stella, M. C., Bertoni, P. and Nebbia, P. 

(2014). Molecular analysis and associated pathology of beak and feather disease virus 

isolated in Italy from young Congo African grey parrots (Psittacus erithacus) with an 

“atypical peracute form” of the disease. Avian Pathology, 43(4), 333-344. 



 

1. 25 
 

Sa, R. C., Cunningham, A. A., Dagleish, M. P., Wheelhouse, N., Pocknell, A., Borel, N., Peck, H. 

L. and Lawson, B. (2014). Psittacine beak and feather disease in a free-living ring-

necked parakeet (Psittacula krameri) in Great Britain. European Journal of Wildlife 

Research, 60(2), 395-398. 

Sanada, Y., Sanada, N. and Kubo, M., 1999. Electron microscopical observations of psittacine 

beak and feather disease in an Umbrella cockatoo (Cacatua alba). The Journal of 

Veterinary Medical science, 61(9), 1063–1065. 

Sanada, N. and Sanada, Y. (2000). The sensitivities of various erythrocytes in a 

haemagglutination assay for the detection of psittacine beak and feather disease 

virus. Journal of Veterinary Medicine, Series B, 47(6), 441-443. 

Sarker, S., Forwood, J. K., Ghorashi, S. A., McLelland, D., Peters, A. and Raidal, S. R. (2014a). 

Whole-genome sequence characterization of a beak and feather disease virus in a wild 

regent parrot (Polytelis anthopeplus monarchoides). Genome Announcements, 2(1), 

e01243-13. 

Sarker, S., Ghorashi, S. A., Forwood, J. K., Bent, S. J., Peters, A. and Raidal, S. R. (2014b). 

Phylogeny of beak and feather disease virus in cockatoos demonstrates host 

generalism and multiple-variant infections within Psittaciformes. Virology, 460, 72-82. 

Sarker, S., Das, S., Ghorashi, S. A., Forwood, J. K. and Raidal, S. R. (2014c). Molecular 

characterization of genome sequences of beak and feather disease virus from the 

Australian twenty-eight parrot (Barnardius zonarius semitorquatus). Genome 

Announcements, 2(6), e01255-14. 

Sarker, S., Patterson, E. I., Peters, A., Baker, G. B., Forwood, J. K., Ghorashi, S. A., 

Holdsworht, M., Baker, R., Murray, N. and Raidal, S. R. (2014d). Mutability dynamics of 

an emergent single stranded DNA virus in a naïve host. PLoS ONE, 9(1), p.e8537 

Sarker, S., Ghorashi, S. A., Forwood, J. K. and Raidal, S. R. (2013a). Whole-genome sequences 

of two beak and feather disease viruses in the endangered swift parrot (Lathamus 

discolor). Genome Announcements, 1(6), e00842-13. 



 

1. 26 
 

Sarker, S., Ghorashi, S. A., Forwood, J. K., Metz, S. and Raidal, S. R. (2013b). Characterization 

of the complete genome sequence of a beak and feather disease virus from a 

Moluccan red lory (Eos bornea). Genome Announcements, 1(6), e00844-13. 

Shearer, P. L., Bonne, N., Clark, P., Sharp, M. and Raidal, S. R. (2008). Beak and feather 

disease virus infection in cockatiels (Nymphicus hollandicus). Avian Pathology, 37(1), 

75-81. 

Shearer, P. L., Sharp, M., Bonne, N., Clark, P. and Raidal, S. R. (2009a). A quantitative, real-

time polymerase chain reaction assay for beak and feather disease virus. Journal of 

Virological Methods, 159(1), 98-104. 

Shearer, P. L., Sharp, M., Bonne, N., Clark, P. and Raidal, S. R. (2009b). A blocking ELISA for 

the detection of antibodies to psittacine beak and feather disease virus (BFDV). 

Journal of Virological Methods, 158(1), 136-140. 

Soares, P., Guimaraes, M. B. and Durigon, E. L. (1998). The haemagglutination spectrum of 

psittacine beak and feather disease virus in Brazilian psittacine birds. In Proceedings of 

International Virtual Conferences in Veterinary Medicine: Diseases of Psittacine birds. 

Studdert, M. J. (1993). Circoviridae: new viruses of pigs, parrots and chickens. Australian 

Veterinary Journal, 70(4), 121-122. 

Taberlet, P., Waits, L. P. and Luikart, G. (1999). Noninvasive genetic sampling: look before 

you leap. Trends in Ecology and Evolution, 14(8), 323-327. 

Tayleur, J.R. (2010). A comparison of the establishment , expansion and potential impacts of 

two introduced parakeets in the United Kingdom. The impacts of non-native species: 

1–12. 

Todd, D. (2000). Circoviruses: immunosuppressive threats to avian species: a review. Avian 

Pathology, 29(5), 373-394. 

Tollington, S., Jones, C. G., Greenwood, A., Tatayah, V., Raisin, C., Burke, T., Dawson, D. A. 

and Groombridge, J. J. (2013). Long-term, fine-scale temporal patterns of genetic 



 

1. 27 
 

diversity in the restored Mauritius parakeet reveal genetic impacts of management 

and associated demographic effects on reintroduction programmes. Biological 

Conservation, 161, 28-38. 

Tollington, S., Greenwood, A., Jones, C. G., Hoeck, P., Chowrimootoo, A., Smith, D., Richards, 

H., Tataya, V. and Groombridge, J. J. (2015). Detailed monitoring of a small but 

recovering population reveals sublethal effects of disease and unexpected interactions 

with supplemental feeding. Journal of Animal Ecology, 84, 969–977. 

Varsani, A., de Villiers, G. K., Regnard, G. L., Bragg, R. R., Kondiah, K., Hitzeroth, I. I. and 

Rybicki, E. P. (2010). A unique isolate of beak and feather disease virus isolated from 

budgerigars (Melopsittacus undulatus) in South Africa. Archives of Virology, 155(3), 

435-439. 

Warburton, L. and Perrin, M. R. (2002). Evidence of psittacine beak and feather disease in 

wild Black-cheeked Lovebirds in Zambia. Papageien, 5, 166-169. 

Williams, C. J. and Moffitt, C. M. (2010). Estimation of fish and wildlife disease prevalence 

from imperfect diagnostic tests on pooled samples with varying pool sizes. Ecological 

Informatics, 5(4), 273-280. 

 Ypelaar, I., Bassami, M. R., Wilcox, G. E. and Raidal, S. R. (1999). A universal polymerase 

chain reaction for the detection of psittacine beak and feather disease virus. 

Veterinary microbiology, 68(1), 141-148. 

 

 

  



 

1. 28 
 

0

10

20

30

40

50

60

70

80

90

N
u

m
b

e
r 

o
f 

p
u

b
lic

at
io

n
s

Years

Total produced
per 5-year period

Cumulative

1.6 FIGURES AND TABLES 

Figure 1.1 The number of PBFD and BFDV screening based publications produced between 

1984 and July 2015. 
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Figure 1.2 The geographical distribution of research into BFDV and PBFD during the period 1984-

July 2015. Countries are coloured according to the number of publications involving specimens 

originating from that country.  
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Figure 1.3 The geographical distribution of BFDV positive results (red fill) during the period 1984-

July 2015.  
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Table 1.1 Psittacine prevalence estimates and the screening tests used in publications from 1984 to 2015 for both wild and captive psittacine 

populations. All recorded psittacine species that have tested positive for BFDV from 1984 to 2015. Those that have tested positive in wild 

populations are marked with a (*)   

Common name Scientific name 
IUCN 

category 

Population 

trend 
Continental region 

New World     

Turquoise-fronted Amazon Amazona aestiva LC Decreasing South America 
White-fronted Amazon Amazona albifrons LC Increasing North and Central America 
Orange-winged Amazon Amazona amazonica LC Decreasing South America 
Yellow-naped Amazon Amazona auropalliata  VU Decreasing Central and South America 
Red-lored Amazon Amazona autumnalis LC Decreasing North, Central and South America 
Yellow-shouldered Amazon Amazona barbadensis VU Decreasing South America 
Yellow-crowned Amazon Amazona ochrocephala LC Decreasing Central and South America 
Vinaceous-breasted Amazon Amazona vinacea EN Decreasing South America 
Blue-and-yellow macaw Ara ararauna LC Decreasing South America 
Red-and-green macaw Ara chloropterus LC Decreasing South America 
Scarlet macaw Ara macao LC Decreasing South and Central America 
Military macaw Ara militaris VU Decreasing North and South America 
Red-fronted macaw Ara rubrogenys EN Decreasing South America 
Blue-crowned parakeet Aratinga acuticaudatus LC Decreasing South America 
Sun parakeet Aratinga solstitialis EN Decreasing South America 
Burrowing parrot Cyanoliseus patagonus LC Decreasing South America 
Northern red-shouldered macaw Diopsittaca nobilis LC Stable South America 
Brown throated parakeet Eupsittula pertinax LC Increasing South and Central America 
Pacific parrotlet Forpus coelestis LC Stable South America 
Golden parakeet Guarouba guarouba VU Decreasing South America 
Green-thighed parrot Pionites leucogaster EN Decreasing South America 
Black-headed parrot Pionites melanocephalus LC Stable South America 
Bronze-winged parrot Pionus chalcopterus LC Decreasing South America 
Blue-winged macaw Primolius maracana NT Decreasing South America 
Crimson-fronted parakeet Psittacara finschi LC Increasing Central America 
Green-cheeked parakeet Pyrrhura molinae LC Stable South America 

http://www.iucnredlist.org/details/22685745/0
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Old World     

Nyasa lovebird Agapornis lilianae NT Decreasing East Africa 
Black-cheeked lovebird Agapornis nigrigenis* VU Decreasing East Africa 
Peach-faced lovebird Agapornis roseicollis  LC Decreasing Southern and Central Africa 
Australian king parrot Alisterus scapularis LC Decreasing Oceania 
Red-winged parrot Aprosmictus erythropterus LC Increasing Oceania and South East Asia 
Australian ringneck Barnardius zonarius (barnardi)* LC Increasing Oceania 
White cockatoo Cacatua alba EN Decreasing South East Asia 
Solomon’s corella Cacatua ducorpsii LC Stable Oceania 
Sulphur-crested cockatoo Cacatua galerita* LC Decreasing Oceania and South East Asia 
Triton cockatoo Cacatua galerita triton Not assessed Oceania 
Tanimbar corella Cacatua goffiniana NT Decreasing South East Asia 
Philippine cockatoo Cacatua haematuropygia CE Decreasing South East Asia 
Major Mitchell's cockatoo Cacatua leadbeateri LC Stable Oceania 
Moluccan cockatoo Cacatua moluccensis VU Decreasing South East Asia 
Blue-eyed cockatoo Cacatua ophthalmica VU Decreasing Oceania 
Bare-eyed corella Cacatua sanguinea* LC Increasing Oceania and South East Asia 
Yellow-crested cockatoo Cacatua sulphurea CE Decreasing South East Asia 
Citron-crested cockatoo Cacatua sulphurea citrinocristata Not assessed South East Asia 
Eastern long-billed corella Cacatua tenuirostris* LC Increasing Oceania 
Gang gang cockatoo Callocephalon fimbriatum* LC Increasing Oceania 
Red-tailed black cockatoo Calyptorhynchus banksii*  LC Decreasing Oceania 
Glossy black cockatoo Calyptorhynchus lathami LC Decreasing Oceania 
Vasa parrot Coracopsis vasa LC Stable East Africa 
Yellow-fronted parakeet Cyanoramphus auriceps* NT Decreasing Oceania 
Red-fronted parakeet Cyanoramphus novaezelandiae (saisseti)* NT Decreasing Oceania 
Antipodes parakeet Cyanoramphus unicolor VU Stable Oceania 
Eclectus parrot Eclectus roratus LC Decreasing Oceania and South East Asia 
Galah Eolophus roseicapilla* LC Increasing Oceania 
Red lory Eos bornea* LC Decreasing South East Asia 
Horned parakeet Eunymphicus cornutus VU Increasing Oceania 
Musk lorikeet Glossopsitta concinna LC Stable Oceania 
Purple-crowned lorikeet Glossopsitta porphyrocephala LC Decreasing Oceania 
Swift parrot Lathamus discolor* EN Decreasing Oceania 
Budgerigar Melopsittacus undulatus LC Increasing Oceania 

http://www.iucnredlist.org/details/22684744/0
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Orange-bellied parrot Neophema chrysogaster* CE Decreasing Oceania 
Kea Nestor notabilis VU Decreasing Oceania 
Bluebonnet Northiella haematogaster LC Decreasing Oceania 
Cockatiel Nymphicus hollandicus LC Stable Oceania 
Crimson rosella Platycercus elegans* LC Decreasing Oceania 
Adelaide rosella Platycercus elegans adelaidae* Not assessed Oceania 
Yellow rosella Platycercus elegans flaveoulus* Not assessed Oceania 
Eastern rosella Platycercus eximius* LC Increasing Oceania 
Brown-headed parrot Poicephalus cryptoxanthus LC Stable Southern and East Africa 
Red-fronted parrot Poicephalus gulielmi LC Decreasing West, Central and East Africa 
Cape parrot Poicephalus robustus* LC Decreasing West, Central, East and Southern Africa 
Rϋpell's parrot Poicephalus rueppellii LC Decreasing Southern and Central Africa 
Red-bellied parrot Poicephalus rufiventris LC Stable East Africa 
Senegal parrot Poicephalus senegalus LC Stable West Africa 
Regent parrot Polytelis anthopeplus* LC Decreasing Oceania 
Palm cockatoo Probosciger aterrimus LC Decreasing Oceania and South East Asia 
Red-rumped parrot Psephotus haematonotus LC Increasing Oceania 
Red-breasted parakeet Psittacula alexandri  NT Decreasing South East and South Central Asia 
Echo parakeet Psittacula eques* EN Increasing East Africa 
Plum-headed parakeet Psittacula cyanocephala LC Decreasing South Asia 
Lord Derby’s parakeet Psittacula derbiana NT Decreasing East Asia 
Alexandrine parakeet Psittacula eupatria NT Decreasing South East and South Central Asia 
Rose-ringed parakeet Psittacula krameri* LC Increasing West, Central, East Africa; South Central Asia 
Edwards' fig-parrot Psittaculirostris edwardsii LC Stable Oceania 
African grey parrot Psittacus erithacus VU Decreasing West, Central and East Africa 
Timneh parrot Psittacus timneh VU Decreasing West Africa 
Scaly-breasted lorikeet Trichoglossus chlorolepidotus LC Stable Oceania 
Olive-headed lorikeet Trichoglossus euteles LC Stable South East Asia 
Scarlet-breasted lorikeet Trichoglossus forsteni NT Decreasing South East Asia 
Rainbow lorikeet Trichoglossus haematodus* LC Decreasing Oceania and South East Asia 
Deplanche's rainbow lorikeet Trichoglossus haematodus deplanchii* Not assessed Oceania 
Red-collared lorikeet Trichoglossus rubritorquis LC Decreasing Oceania 
Yellow-tailed black-cockatoo Zanda funerea  LC Stable Oceania 

 

http://www.iucnredlist.org/details/22684739/0
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Table 1.2 Prevalence estimates and the screening tests used in publications from 1984 to 2015 for both wild and captive psittacine populations  

Population location Test prevalence Methods used Reference 

Captive 

Germany 39.2% from 32 captive breeding facilities PCR Rahaus & Wolff 2003 

Australia 23% (PCR) / 66.7% (HA) of samples submitted by veterinarians  PCR, HA, HI Khalesi et al. 2005 

Italy 8.05% for entire national captive population PCR Bert et al. 2005 

Taiwan 41.2% of birds submitted by private owners PCR Hsu, Ko & Tsai 2006 

New Zealand <7% cumulative parakeet species PCR, Histology Ha et al. 2009 

Poland 25.3% for entire national captive population; 22.12% - small aviaries; 
25.23% - medium aviaries; 25.99% - large aviaries 

PCR Piasecki & Wieliczko 2010 

Costa Rica 19.7% for entire national captive population PCR Dolz et al. 2013 

Japan 31.3% of imported birds for breeding PCR Ogawa et al. 2013 

Poland 20.6% across 50 captive breeding facilities PCR, Whole genome sequencing Julian et al. 2013 

Wild 

Australia Cacatua galerita - 10 - 20% (200 - 1000 individuals) over 4 years Histology McOrist et al. 1984. 

New Zealand Platycercus eximius - 8.6-20.4%, Cacatua galerita - 22-33% PCR, Histology Ha et al. 2007 

New Zealand 4–7 %  across all native species PCR, Histology Ha et al. 2009 

New Zealand Cyanoramphus novaezalandiae - 28% PCR Ortiz-Catedral et al. 2009 

    

New Zealand Cyanoramphus novaezalandiae - 10.5 % (95 % CI: 6.1 %–16.4 %); 
Cyanoramphus auriceps - 26.7 % (95 % CI 12.3 %–45.9 %); 
Platycercus eximius -  22.9 % (95 % CI 9.9 %–42.3 %) 

PCR, Whole genome sequencing Massaro et al. 2012 

Mauritius Psittacula eques - 2004/05 - 38%; 2005/06 - 41%; 2006/07 - 11%; 
2007/08 - 25%; 2008/09 - 17% 

PCR Kundu et al. 2012. 

New Caledonia Trichoglossus haematodus deplanchii - 25% (11-45%) PCR, Whole genome sequencing Jackson et al. 2014a 

Australia Platycercus elegans - 45-50%; Platycercus elegans adelaidae - 95-
100%; Platycercus elegans flaveoulus - 18-22%, WS hybrids - 8-10% 

qPCR, HI Eastwood et al. 2014 
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Table 1.3 A summary of all methods used in screening for BFDV in wild and captive psittacine populations, a count of how many times each has 

been used and examples of where each has been applied. 

Method Description Times used Example references 

Blocking ELISA A blocking ELISA is a method used to immobilize biomolecules, primarily proteins, to 

a plate via passive or covalent interactions, minimising non-specific 

binding to the surface by saturating unoccupied binding sites with a 

blocking reagent. 

1 Shearer et al. 2009b 

DNA in-situ hybridization DNA in-situ hybridization is a technique used in the localisation of specific nucleic 

acid targets within fixed tissues and cells using an oligonucleotide probe before 

microscopically visualizing the results. 

4 Greenacre et al. 

1992; Ramis et al. 

1998 

Dot-blot DNA hybridization Dot blot hybridization is a technique used to determine the abundance of certain 

DNA in an extraction dotted onto a membrane through hybridization with universal 

and specific oligonucleotide probes. 

2 Latimer et al. 1992; 

Latimer et al. 1993  

Duplex shuttle PCR Duplex PCR is a process that allows the co-amplification of separate regions of a 

gene in a single PCR reaction using different pairs of primers in the same reaction 

mixture.  

1 Ogawa, Yamaguchi & 

Fukushi 2005 

Endochrinological response Endochrinological response is a method used to challenge the host immune system 

with a hormone that encourages the production and release of a stress hormone to 

evaluate whether any differences exist between healthy and infected individuals. 

1 Jacobson et al. 1986 

Haemagglutination Assay Haemagglutination assay (HA) is a method used to quantify the amount of virus 

attached to molecules on the surface of host red blood cells in a series of dilutions of 

a viral suspension. 

12 Raidal & Cross 1994; 

Sanada & Sanada 

2000 

Haemagglutination Inhibition A modified version of the HA where a standard amount of virus and host blood cells 

are used with the addition of a serially diluted antiserum to determine which 

concentration inhibits agglutination of the cells. 

12 Ritchie et al. 1991a; 

Khalesi et al. 2005 

Haematology Haematology is the study of the morphology and physiology of blood and, in this 

context, relates to the diagnosis and monitoring of diseases present in the blood 

stream. 

3 Jacobson et al., 1986; 

Jergens, Brown & 

England 1988  
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Histology Histology is the microscopal examination of stained tissues and is applied in the 

screening of BFDV to determine if viral inclusion bodies are present. Techniques 

include light and electron microscopy. 

28 Kiatipattanasakul-

Banlunara et al., 

2002; Shearer et al., 

2008. 

Immunohistochemical tests Immunohistochemistry (IHC) is a technique used to observe the physical 

characteristics of antibodies, their concentration and distribution within host tissue. 

In screening for BFDV specimens are stained using avidin-biotin complex (ABC) 

immunoperoxidase technique and then exposed to a primary antibody. 

5 Ramis et al. 1994; 

Robino et al. 2014 

Quantitative (Real Time) PCR Quantitative (or real-time) polymerase chain reaction (qPCR) is a technique used to 

both amplify and quantify target DNA through the use of either: non-specific 

fluorescent dyes that intercalate with double-stranded DNA, or with a sequence-

specific fluorescent probe that hybridizes with the target. 

6 Eastwood et al. 2014; 

Regnard et al. 2015b 

Standard PCR Polymerase chain reaction (PCR) is a technology used to amplify a piece 

of DNA across several orders of magnitude through a process of thermal cycling in 

combination with oligonucleotide probes synthesised to bind to the target region 

and a DNA polymerase enzyme. 

41 Ypelaar et al. 1999; 

Kondiah, Albertyn & 

Bragg 2005 

Viral Purification Viral purification allows for the careful study of viral synthesis within cells by 

combining ultracentrifugation, adsorption chromatography, electrophoresis, and 

partition in liquid phases to separate virions from incomplete protein fragments and 

cell debris. 

3 Ritchie 1990; Raidal 

& Cross 1994 

Whole genome sequencing Whole genome sequencing is a laboratory process that determines the complete 

DNA sequence of an organism's genome at a single time and can be used for 

multiple tissue types and when only very small quantities of a full DNA copy are 

present. 

22 Ortiz-Catedral et al. 

2010; Sarker et al. 

2013a  
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Figure 1.4 The five most common screening and diagnostic methods used from 1984 to July 

2015 in BFDV and PBFD based screening publications.  
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CHAPTER 2: Optimisation of the standard PCR diagnostic test for the Beak and Feather 

Disease Virus. 

Deborah J. Fogell1, Jim J. Groombridge1, John G. Ewen2 and Simon Tollington1 

1Durrell Institute of Conservation and Ecology, University of Kent, Canterbury CT2 7NZ, UK 

2 Institute of Zoology, Zoological Society of London, Regents Park, London, NW1 4RY, UK 

 

ABSTRACT 

Accurate screening when assessing the prevalence and impacts of infectious disease in 

wildlife populations is crucial for the construction of management guidelines. However, the 

data collected and used in these circumstances often vary in assessment method with 

imperfect diagnostic tests providing an incomplete or biased insight into infection incidence 

within a population. One such pathogen of concern to conservationists is the Beak and 

Feather Disease Virus (BFDV); responsible for Psittacine Beak and Feather Disease (PBFD). 

This study aims to reduce uncertainty by quantifying the role that DNA concentration has in 

detection accuracy when screening for BFDV using the standard PCR assay. No significant 

differences were present in BFDV detection between highly variable undiluted blood 

extractions and those screened at standardised concentrations of approximately 50 ng/µl by 

NanoDrop, or approximately 25 ng/µl by Qubit. At lower concentrations the margin of error 

surrounding detection is too large to provide an accurate assay of infection at the individual 

level or within the affected study population. If DNA is quantified prior to screening more 

reliable results can be used for modelling overall prevalence. This is important when 

assessing reintroduction and recovery programmes of threatened wild-populations, the 

management of captive flocks for conservation and the trade in companion birds.   

KEY WORDS BFDV, test prevalence, uncertainty, quantification, diagnostic odds ratio   
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2.1 INTRODUCTION 

Population biologists recognize infectious disease as an integral and constant 

mechanism within natural populations, alongside processes such as predation and 

competition (Lyles & Dobson 1993). Pathogens act as powerful agents of natural selection 

and ecosystem regulation, altering whole species compositions and host population genetic 

diversity (Altizer, Harvell & Friedle 2003). However, emerging infectious diseases (EIDs), 

defined as those caused by newly discovered pathogens or with increased incidence or 

range expansion (Daszak, Cunningham & Hyatt 2001; Dobson & Foufopoulos 2001; Morens, 

Folkers & Fauci 2004) may increase the risk of extinction for vulnerable species and 

populations, thereby reducing global biodiversity (Lips et al. 2006). Pathogens generally 

have short generation times which allow them to adapt rapidly to novel hosts (Altizer, 

Harvell & Friedle 2003), and amongst these, single-stranded DNA viruses have some of the 

highest rates of mutation (Duffy, Shackleton & Holmes 2008). Consequently many EIDs are 

caused by viruses which are infectious across a wide host range (Altizer, Harvell & Friedle 

2003). 

Assessing the prevalence and impacts of infectious disease in free-living wildlife 

populations can be challenging, particularly during the outbreak of a novel pathogen (Artois 

et al. 2001).  Reliable and accurate screening of individual infection status is crucial in the 

construction of management guidelines. However, the data collected and used in these 

circumstances often vary in sampling or assessment method, frequently with imperfect 

diagnostic tests, therefore providing an incomplete or biased insight into infection incidence 

within a population (Williams & Moffitt 2010; Lachish et al. 2012). For example, some 

pathogens, such as the bacterium responsible for bovine tuberculosis (bTB), have limitations 

to detection in vivo at the individual level (Schiller et al. 2010). This is problematic when 

trying to manage affected endangered wildlife populations like the Iberian lynx, Lynx 

pardinus. Remaining populations of this species are small, divided, in decline and only 

remain in isolated areas of Spain and Portugal which makes them difficult to monitor 

(Briones et al. 2000). Others, such as amphibian chytridiomycosis, are comparatively easy to 

detect in an infected individual through a variety of screening techniques (Kriger, Hero & 

Ashton 2006) but many of these are time consuming, relatively expensive or impractical 

when working with small or endangered populations (Knapp & Morgan 2006). Additionally 
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conservationists need to correctly interpret the value of pathogen prevalence results and 

apply them to a managed system, but this is not straightforward as infection incidence and 

the presentation of clinical disease are fundamentally different (McCallum & Dobson 2002). 

An individual can be infected with a pathogen without being adversely affected by it 

(Cunningham 1996), which may make prevalence a poor indicator of impact (Tollington et 

al. 2015). Modelling is often used to estimate the overall prevalence (proportion of 

individuals in a population that are infected), but assumes that data derived from screened 

individuals consists of results assigned to a category of pathogen-positive or -negative 

without misclassification error (Conn & Cooch 2009). Conservation managers need to both 

acknowledge and incorporate these uncertainties into their planning processes and 

management approach instead of simply assigning a classification status to an individual.    

One such pathogen of concern to conservationists is the Beak and Feather Disease 

Virus (BFDV); responsible for Psittacine Beak and Feather Disease (PBFD) which is the most 

common viral disease in wild psittaciformes (Khalesi et al. 2005). The disease has been 

implicated in the decline of free-living parrot populations in Australia (Peters et al. 2014) 

and Mauritius (Kundu et al. 2012) and has now been listed by the Australian government as 

a “Key Threatening Process” to biodiversity (Eastwood et al. 2015). PBFD, first described in 

the 1970s, originated in the South Pacific (Ritchie et al. 1989a; Latimer et al. 1991; Heath et 

al. 2004) and subsequently spread rapidly across the world. Globally, parrots are one of the 

most vulnerable avian taxa with over a quarter of all extant species classified within 

threatened categories by the International Union for Conservation of Nature; 75% of which 

are in population decline (IUCN 2015). BFDV has been reported in a total of 88 species, both 

Old and New World (Chapter 1), including many Endangered or Critically Endangered 

species such as Cape parrots (Poicephalus robustus) (Regnard et al. 2015), swift parrots 

(Lathamus discolor) (Sarker et al. 2013), orange-bellied parrots (Neophema chrysogaster) 

(Peters et al. 2014), and Mauritius parakeets (Psittacula eques) (Kundu et al. 2012).   

BFDV belongs to the family Circoviridae, comprising a circular, single-stranded, 

approximately 2000 nucleotide long DNA genome and lacking a non-coding region (Ritchie 

et al. 1989b). It contains a highly conserved replication associated protein (replicase gene) 

(Kondiah, Albertyn & Bragg 2006; Kundu et al. 2012; Peters et al. 2014) and a capsid protein 

responsible for viral encapsidation and host cell penetration (Heath et al. 2004; Kundu et al. 
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2012). PBFD is typically characterized by chronic symmetrical feather abnormalities and 

dystrophy but can also induce severe claw and beak deformities (Latimer et al. 1991; 

Bassami et al. 1998; Heath et al. 2004; Kondiah, Albertyn & Bragg 2006) and 

immunosuppression (Ritchie et al. 1989a; Ritchie, Anderson & Lambert 2003; Kondiah, 

Albertyn & Bragg 2006; Peters et al. 2014). BFDV has demonstrated high environmental 

persistence owing to its ability to shift between closely related host species (Peters et al. 

2014) and is transmissible both horizontally; through contact with contaminated feather 

dust, surfaces or objects (Ritchie, Anderson & Lambert 2003), and vertically; from a female 

to her offspring (Ritchie et al. 1989a; Kundu et al. 2012). Whilst PBFD can be fatal and most 

frequently affects birds up to three years of age (Ritchie et al. 1989a), infected individuals 

frequently recover from acute presentation of the disease; which usually only lasts for a 

number of months (Todd 2000). 

Screening for BFDV across global psittacine species has been conducted using a 

variety of tissue types; including blood, skin, faeces and feathers, as well as various methods 

such as histology (Shearer et al. 2008), haemagglutination (HA) (Raidal & Cross 1994) and 

haemagglutination inhibition assays (HI) (Khalesi et al. 2005), standard and quantitative real-

time polymerase chain reaction (PCR and qPCR respectively) (Ypelaar et al. 1999; Shearer et 

al. 2009). A combination of both tissues and methods are commonly used for BFDV 

detection (for examples see Raue et al. 2004; Khalesi et al. 2005; Robino et al. 2014) but in 

wild populations this may be problematic as this often relies on presentation of the disease 

through feather lesions or dystrophy, shedding of infected feather dust or diarrhoea. Whilst 

samples from wild populations may be easier and require less veterinary expertise to obtain 

through non-invasive techniques, such as the collection of feathers, there is a higher risk of 

cross contamination between samples (Taberlet, Waits & Luikart 1999) and thus may 

increase the proportion of false-positives when screening. Also, as a primary symptom of 

PBFD is feather loss the collection of dropped feathers (for example from a roost site) may 

further bias the estimated proportion of infected individuals. Conversely, non-invasive 

sampling may also provide a far lower estimate of prevalence as some individuals remain 

asymptomatic despite carrying the virus (Ritchie et al. 1989a). This makes results obtained 

in screening for BFDV difficult to interpret and often a combined methodological approach 

is used to try to provide greater detection accuracy.  
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The standard PCR assay is the most frequently used single method for the detection 

of BFDV and is also one of the most commonly used tools in mixed methods studies 

(Chapter 1). Usually, for a standard PCR assay a master mix is made up consisting of target 

primers, MgCl2, NH4 buffer, dNTP and a polymerase catalyst which is then added to 

template DNA prior to amplification (Nichols, Bruford & Groombridge 2001; Raue et al. 

2004; Kundu et al. 2012). However, new and improved pre-made master mixes that lack 

only the target primers are now readily available on the market; claiming to produce higher 

yields of amplified target genes for better results (for example MyTaqTM HS Red Mix from 

Bioline and AmpliTaq Gold® from Applied Biosystems®). The difference in detection 

accuracy between these two methods when screening for BFDV has not yet been compared. 

Whilst steps have recently been taken to improve the standard PCR protocol by quantifying 

DNA extraction concentrations prior to screening (Eastwood et al. 2015), also lacking in the 

literature is an assessment of detection accuracy at variable DNA concentrations and how 

this impacts the repeatability of a result. This would ensure greater confidence in results, 

with the ability to estimate the probability of obtaining a false-negative test result for 

extrapolation purposes. To date only three publications have reported confidence intervals 

surrounding a viral prevalence in wild populations (Ha et al. 2007; Massaro et al. 2012; 

Jackson et al. 2015), two of which were based on an assumed estimate of test specificity and 

none were provided on the basis of repeated screenings to determine test variation.  

Accurate screening methods and confidence in a negative result are important when 

trying to understand the impacts and management of disease in a wide variety of contexts, 

managers of captive breeding facilities used in the pet-trade may want to increase the 

confidence in diagnostic tests to prevent the introduction of infected individuals into 

healthy collections. Similarly conservation managers may require better detection accuracy 

in order to increase the probability of success in establishing a disease-free base population 

when undertaking translocations in species recovery and reintroduction programmes. 

Consequently this study aims to reduce uncertainty by: testing the variation in protocols 

currently used in the screening for BFDV using the standard PCR assay and quantifying the 

role that DNA concentration has in detection accuracy. Ultimately this will provide a more 

reliable and repeatable diagnostic test for use across psittacine populations.  
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2.2 MATERIALS AND METHODS 

2.2.1 Sample collection and DNA extraction 

Opportunistic blood samples were drawn from fledged Mauritius parakeets from 

1993 to 2004 and then from all offspring produced annually since 2005 as part of ongoing 

species monitoring and management. This has provided a unique opportunity to analyse 

BFDV prevalence and evolution prior to, during and after an outbreak event in the 2004/05 

breeding season (Kundu et al. 2012; Raisin et al. 2012; Tollington et al. 2015). These samples 

are collected by the by the Mauritian Wildlife Foundation’s parakeet field team from 45 day 

old Mauritius parakeet nestlings, assigned a studbook ID and systematically recorded with 

standard data regarding nest site, parents and number of offspring.  

Prior to screening for BFDV, an ammonium acetate DNA extraction method was used 

to extract both bird and BFDV DNA (Bruford et al. 1998). In brief, approximately 50 to 100 μl 

of whole blood was used from each sample and digested in 250 μl of DIGSOL lysis buffer 

with 10 μl of 10 mg/mL proteinase K. Virus specific primers were then used to determine 

presence of viral DNA within that of the host. 

2.2.2 Determining the best master mix 

The first measure undertaken to standardise and improve upon prior protocols was 

conducted on individuals from the 2009/10 breeding season of known BFDV infection status 

(S. Kundu, unpublished data). A simple comparison was made between results obtained 

from using a PCR master-mix consisting of a standard combination of MgCl2, NH4 buffer, 

dNTP and Taq polymerase, as set out by Kundu et al. (2012), and using MyTaqTM HS Red Mix 

(Bioline; henceforth Red Mix) as a substitute. Eight individuals were tested once each using 

both solutions through PCR assay targeting a 717-bp region of the replicase gene (Ypelaar et 

al. 1999) comprising 1 μl of extracted DNA template, 5 μl master mix, 0.2 μl each of the 

forward and reverse primers at 10 pmol/μl and made up to 10 μl with double-distilled 

water. PCR conditions replicated those of Kundu et al. (2012) with annealing temperature 

set to 57⁰C for 30 cycles and products were visualized on a 1.5% agarose gel. A negative 

control was included in each PCR batch to ensure no contamination was present. To ensure 

that the bands visualized on a gel represented a BFDV-positive result, a subset of PCR 
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products were sent to Macrogen Europe (Amsterdam) to obtain the sequence of the 

amplified replicase gene fragment. 

2.2.3 DNA concentration standardisation 

A study of repeatability was conducted on a matrix of 15 individuals of known BFDV 

infection status from the 2009/10 breeding season (S. Kundu, unpublished data) in which: 

each blood sample was extracted for DNA in four separate batches, with six PCR screenings 

run on each extraction, at three different concentrations: undiluted and unstandardised 

DNA template and two lower, standardised concentrations. Extraction concentrations were 

quantified using both a NanoDrop and a Qubit Fluorometer (Qubit dsDNA Assay Kit). The 

Qubit system is considered to be far more accurate than the simple UV spectrophotometric 

NanoDrop as it is able to distinguish between DNA, RNA and other contaminants that may 

present in the extraction through the use of photosensitive dyes (O’Neill et al. 2011). 

However, the NanoDrop technology attempts to account for this issue through the 260/280 

and 260/230 absorbance ratios which are an indication of the ratio of proteins or peptide 

bonds to DNA present in solution. To determine the presence of any significant variation in 

the values obtained via each quantification tool, a paired t-test was performed in R3.2.1. (R 

Core Team 2015) 

2.2.4 Tests of repeatability 

The repeated sample matrix thus consisted of 24 repeat BFDV screenings performed 

per individual at each of the three concentrations (Undiluted, Dilution H and Dilution L; Table 

2.1), totalling 1080 data points (Figure 2.1). The PCR products were run out on a 1.5% agarose 

gel and analysed through visual inspection and the presence/absence results recorded. During 

visual interpretation of the gels it became apparent that there was notable variation in band 

intensity and based on this results were classified into: “dark” positives which were invariably 

present at every concentration, “light” positives which were clear but much fainter bands of 

variable intensity and “absent” (Figure 2.2). To ensure that the light, variable bands 

represented a BFDV-positive result, a subset of PCR products were sent to Macrogen Europe 

(Amsterdam) to obtain the sequence of the amplified replicase gene fragment. 

Mark-Recapture models have been used in other viral repeatability studies as a 

method of determining the probability of recording a false-negative (for example see 
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Lachish et al. 2012). However, this approach was not a suitable means of analysis for the 

dataset because of low encounter rates (high number of zero values) recorded at lower DNA 

concentrations. It was common to observe no “capture” events across all 24 repeats for an 

individual; valuable data that would have been discounted to make the model possible and 

consequently reducing the false-negative estimate. Instead, results were analysed in R3.2.1. 

(R Core Team 2015) using a logistic regression (1 = Positive, 0 = Negative) to determine 

whether viral detection at each of the two standardised concentrations differed significantly 

from a baseline of the higher, but variable concentration undiluted DNA template. The 

probability of obtaining a negative PCR result was calculated for each of the standardised 

concentrations as follows where: P is the probability of obtaining a negative result at a given 

concentration, α is the Y intercept and β is the regression coefficient at each concentration. 

 

 

The results were then converted into a diagnostic odds ratio (Deeks 2001) of increased 

likelihood of recording a negative BFDV result at each standardised concentration where: 

Act. Prop. Neg. is the cumulative proportion of negatives present when the undiluted DNA 

template was screened. 

 

 

2.3 RESULTS 

Red Mix was found to produce consistently clearer BFDV-positive bands than a 

manually produced master mix when visualized on an agarose gel post-amplification. This 

made the assignment of infection status less ambiguous and consequently all further 

screenings were conducted using Red Mix. 

When assessing the differences between quantification tools it was found that the 

extraction concentrations provided by the NanoDrop were consistently significantly lower 

than those produced by the Qubit Fluorometer across samples (Table 2.1).  

The logistic regression determined that the number of BFDV-positive results 

recorded at standardised concentration Dilution L were significantly lower than in variable 

P(Negative|Concentration) = 
eα + β₁Ẋ₁ + β₂Ẋ₂ 

1 + eα + β₁Ẋ₁ + β₂Ẋ₂ 

ORConc.1  = 
P(Negative|Conc.1)/1 - P(Negative|Conc.1)

 

Act. Prop. Neg. /1 - Act. Prop. Neg. 
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undiluted DNA template, with the odds of recording a false-negative calculated to be 1.66 

times higher. Whilst the number of negatives recorded at standardised concentration 

Dilution H was also lower, this difference was not significant as the odds of recording a false-

negative at these standardised concentrations was only 1.04 times higher than when 

undiluted (Table 2.2, 2.3). For example: in a sample of 100 individuals where the actual 

number of positives is approximately 93 individuals, when DNA concentrations are 

standardised to Dilution L you would expect to obtain approximately 31 positives (95% CI: 

22 – 40) as opposed to 48 (95% CI: 39 – 58) in variable undiluted DNA template. Where DNA 

concentrations are standardised to Dilution H you would expect to obtain approximately 47 

positives (95% CI 37 – 56). 

2.4 DISCUSSION  

Conservationists and managers of wildlife populations use BFDV screening results to 

improve and inform processes and protocols. For example, the Mauritian Wildlife 

Foundation has recently translocated the first cohort of a new sub-population of Mauritius 

parakeets to the east of the island. However this was undertaken only after carefully 

monitoring fledglings for clinical signs of PBFD and screening individuals selected for 

translocation before being moved and four months after (D. F. personal observation). 

Careful selection and screening protocols are required as PBFD is suspected to have been 

responsible for the failure of a reintroduction attempt in 2004/2005 when 32 out of 36 

released individuals disappeared after presenting with clinical signs (Tollington et al. 2013; 

2015). Similarly, in New Zealand, the management and translocation of red-crowned 

parakeets (Cyanoramphus novaezelandiae) is also heavily dictated by the understanding of 

BFDV prevalence and impacts on the island, as well as the potential reservoir species in 

which it occurs (Jackson et al. 2015). In situations such as these, screening results are a 

major component upon which decisions are based – a system that could hinder overarching 

recovery objectives if uncertainty was so high that results were uninformative. 

2.4.1 Use of a pre-made master mix 

The use of a pre-made master mix specifically designed for higher specificity and 

better amplification does appear to produce consistently clearer results. Not only would 

using a pre-made master mix reduce the ambiguity surrounding a lighter band on a gel, but 

also the time taken to set up the reaction in the laboratory and the risk of contamination. 
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Added benefits of only using a single solution of reagents that has already been designed 

with specificity in mind is that further optimization of NH4 and MgCl2 concentrations are not 

required, thus also reducing the risk of human error each time a PCR is run.  

2.4.2 DNA yields and concentration standardisation 

The significant differences in BFDV detection between DNA concentrations highlight 

an area of concern with PCR screening protocols currently used by researchers and 

practitioners working within BFDV affected systems. Extracted DNA samples can vary greatly 

in yield depending on the type and amount of tissue used. Feathers typically produce very low 

genomic DNA yields, particularly when extracted from those that are cut off from the blood 

supply once fully grown (De Volo 2008), only representing viral incidence during the initial 

growth phase. Whole (avian) blood samples, however, can produce good quality, high 

concentration extraction products: often in excess of 200 ng/μl, depending on the initial 

sample volume (D. F. personal observation). Concentrations can considerably affect the 

sensitivity of PCR assay (Khalesi et al. 2005) as the amount of viral DNA obtained from any 

sample will be dependent on the infection level within the host at the time of sampling 

(Kriger, Hero & Ashton 2006; Knowles et al. 2011; Lachish et al. 2012), making higher DNA 

yields preferable to increase the probability of detection. False-negatives from PCR assays can 

also occur if the quality of the extraction is low and other biological materials interfere with 

amplification (Khalesi et al. 2005). Whilst feathers from birds shedding contaminated feather 

dust can be used to accurately screen for BFDV due to high viral load (Hess, Scope & Heincz 

2004), this may not always be suitable, particularly in the case of nestlings or asymptomatic 

individuals.  

As there was no significant difference in BFDV detection between highly variable 

undiluted blood extractions and those screened at standardised concentrations of 

approximately 50 ng/µl by NanoDrop, or approximately 25 ng/µl by Qubit, we recommend 

that all standard PCR assays should be conducted on quantified, standardised DNA template 

at this concentration. At lower concentrations the margin of error surrounding detection is 

too large to provide an accurate assay of infection at the individual level or within the 

affected study population. If DNA extractions are quantified prior to BFDV screening and the 

quality or concentration is low, it provides the researcher with a solid basis on which to 

either discount that individual from population estimates, re-extract if sample volume 
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allows, or repeat screen the individual to gain confidence in any result obtained. However, 

as the Mauritius parakeet population represents a unique system from which it is currently 

relatively easy to obtain blood samples from all annually produced offspring, we 

acknowledge that this protocol may not be readily applicable to other wild study 

populations. A similar repeatability study should thus be conducted in future on quantified 

DNA extractions from feather samples of both symptomatic and asymptomatic individuals 

and paired with blood screening results to provide estimates in detection error when only 

this tissue type is available for analysis. 

To remove some of the uncertainty surrounding standard PCR based assays 

quantitative (real-time) PCR techniques are now being more regularly applied to determine 

individual viral load (Shearer et al. 2009, Eastwood et al. 2015, Regnard et al. 2015). Probe-

based assays are able to detect viral DNA at much lower concentrations than recorded by 

the naked eye when visualizing a gel. However, the reagents and equipment required for 

screening through standard PCR are currently substantially cheaper than those used for 

probe-based assays and are thus likely to have continued wide-spread use for the purpose 

of general BFDV screening.  

2.4.3 Conclusion 

There are still elements of the standard PCR screening and analysis process that 

require refinement, particularly regarding repeatability of results when screening tissue 

types that produce lower DNA extraction yields than blood. Despite the generally high DNA 

yield from blood samples, the detection of BFDV in 100 samples at the variable undiluted 

concentrations used for this study is still approximately 50% lower than the actual 

prevalence. Consequently, if standardised protocols surrounding DNA quantification prior to 

screening are applied within the laboratory more reliable results can be used for modelling 

overall prevalence within a host population and provide greater confidence in the margin of 

error when assigning infection status to an individual. This information is particularly 

important when assessing reintroduction and recovery programmes of threatened wild-

populations but is also valuable when considering the management of captive flocks for 

conservation, as well as the breeding of and trade in companion birds. 
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2.6 FIGURES AND TABLES 

Table 2.1 Mean DNA extraction concentrations from blood according to the NanoDrop and 

Qubit Flourometer when undiluted and at two standardised diluted concentrations where 

Dilution H represents the higher standardised concentration and Dilution L represents the 

lower standardised concentration. 

Concentration Ẋ NanoDrop Ẋ Qubit δ NanoDrop δ Qubit df p 

Undiluted 169.70 61.37 94.45 37.20 58 <0.001 

Dilution H 53.77 24.23 2.66 18.97 58 <0.001 

Dilution L 15.56 7.448 2.79 6.02 58 <0.001 
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Figure 2.1 Screening results matrix of 15 individuals of known BFDV infection status using 

Undiluted, Dilution H and Dilution L DNA extraction concentrations, where each individual 

was screened six times over each of four repeat DNA extractions from the same blood 

sample. “D” – Dark Positive, “L” – Light Positive, “-“ – Negative.   
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Figure 2.2 Visualisation of PCR products on an agarose gel depicting the classification of 

BFDV screening results into “dark” positives which were invariably present at every 

concentration and “light” positives which were clear but much fainter bands of variable 

intensity.   
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Table 2.2 Cumulative BFDV screening results of 24 repeat PCRs for each of 15 individuals at 

three DNA concentrations where: Dilution H is approximately 50 ng/µl (NanoDrop) or 

25ng/µl (Qubit) and Dilution L is approximately 16 ng/µl (NanoDrop) or 7ng/µl (Qubit). 

Concentration No. Positives No. Negatives Proportion Positives Proportion Negatives 

Undiluted 175 185 0.49 0.51 

Dilution H 168 192 0.47 0.53 

Dilution L 112 248 0.31 0.69 
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Table 2.3 Logistic regression analysis of the deviation in BFDV detection from the Constant 

(undiluted extracted DNA) when DNA template is diluted to approximately 50 ng/µl (Dilution 

H - NanoDrop) or 25ng/µl (Dilution H - Qubit) and approximately 16 ng/µl (Dilution L - 

NanoDrop) or 7ng/µl (Dilution L - Qubit). 

Predictor β SE β Z p 

Constant (Undiluted) 0.056 0.105 -0.527 0.598 

Dilution H 0.078 0.149 -0.522 0.601 

Dilution L 0.739 0.155 -4.765 <0.001 
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ABSTRACT 

Psittacine Beak and Feather Disease (PBFD), the most common viral disease in wild parrots 

(Psittaciformes), currently affects numerous endangered island endemics including the 

Mauritius parakeet (Psittacula eques). An outbreak of PBFD in Mauritius interrupted active 

management for the recovery of the parakeet population and a set of standard biosecurity 

protocols was implemented in an attempt to reduce human-facilitated viral transmission. 

This study is the first to assess the efficacy of Beak and Feather Disease Virus (BFDV) 

biosecurity protocols in a parrot population. We investigated relationships between 

population management tools, cleaning protocols and viral prevalence in annually produced 

nestlings; through both a reciprocal design experiment and in the context of a 10-year 

temporal dataset on viral prevalence. Proximity of nests to a supplemental feeding hopper, 

alongside differences between subpopulations, explained annual viral prevalence. 

Reciprocal field experiments revealed that cleaning protocols successfully reduced viral 

prevalence in nestlings, and particularly in nests further away from feeding hoppers. Our 

findings indicate that the disinfection of nest sites between breeding seasons and wearing 

disposable medical barrier when accessing nest sites may reduce viral prevalence in the 

Mauritius parakeet population. Similar adaptive management solutions may be necessary 

for the recovery of other endangered species affected by infectious disease. 

KEY WORDS Biosecurity, PBFD, population management, parrot, hygiene protocols, 

experiment  
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3.1 INTRODUCTION 

Psittaciformes (parrots) are one of the most vulnerable avian taxa with over a 

quarter of all extant species Red-listed as in need of conservation efforts by the 

International Union for Conservation of Nature, 75% of which are in population decline 

(IUCN 2015). One major threat to parrots has been the emergence and global spread of 

Psittacine Beak and Feather Disease (PBFD), the most common viral disease in wild parrots. 

Caused by the Beak and Feather Disease Virus (BFDV), the disease has been implicated in 

the decline of wild parrot populations and has now been listed by the Australian 

government as a “Key Threatening Process” to biodiversity (Eastwood et al. 2015). PBFD was 

first described in the mid-1970s, originating in the South Pacific (Ritchie et al. 1989a; Latimer 

et al. 1991; Heath et al. 2004) and spreading rapidly across the world. Affected parrot 

species include many endangered island endemics such as the kakapo (Strigops habroptilus) 

and kaka (Nestor meridionalis) of New Zealand (Massaro et al. 2012), the Australian orange-

bellied parrot (Neophema chrysogaster) (Peters et al. 2014) and the Mauritius (or “echo”) 

parakeet (Psittacula eques) (Kundu et al. 2012). Small, isolated populations such as those of 

island endemics are considered to be particularly vulnerable to emerging infectious diseases 

as their populations frequently have low genetic diversity (Wikelski et al. 2004; Carrete et al. 

2009; Trinkel et al. 2011) and have usually evolved in the presence of an impoverished 

pathogen community (Wikelski et al. 2004; Carrete et al. 2009; Spurgin et al. 2012).  

PBFD is typically characterized by chronic symmetrical feather abnormalities and 

dystrophy but can also induce severe claw and beak deformities (Latimer et al. 1991; 

Bassami et al. 1998; Heath et al. 2004; Kondiah, Albertyn & Bragg 2006) and its 

immunosuppressant nature increases host susceptibility to secondary infection (Ritchie et 

al. 1989a; Ritchie, Anderson & Lambert 2003; Kondiah, Albertyn & Bragg 2006; Peters et al. 

2014). BFDV belongs to the family Circoviridae and it comprises a circular, single-stranded 

DNA genome, which is approximately 2000 nucleotides long and lacks a non-coding region 

(Ritchie et al. 1989b). It contains a highly conserved replication associated protein (replicase 

gene) (Kondiah, Albertyn & Bragg 2006, Kundu et al. 2012; Peters et al. 2014) and a capsid 

protein responsible for viral encapsidation and host cell penetration (Heath et al. 2004; 

Kundu et al. 2012). BFDV is considered to demonstrate high environmental persistence 

owing to its ability to infect a broad range of closely related host species (Peters et al. 2014) 

and is transmissible both horizontally (through contact with contaminated feather dust, 
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surfaces or objects; Ritchie, Anderson & Lambert 2003), and vertically (from a female to her 

offspring; Ritchie et al. 1989a; Kundu et al. 2012). Whilst PBFD can be fatal and most 

commonly affects birds up to three years of age (Ritchie 1989a), infected individuals 

frequently recover from acute presentation of the disease, which usually lasts only for a 

number of months (Todd 2000). Other individuals may not display any clinical signs of 

infection despite carrying the virus (Ritchie 1989a). 

The Mauritius parakeet was once the world’s rarest parrot (Jones 1987; Kundu et al. 

2012). The species experienced a severe population bottleneck after declining to fewer than 

20 individuals in the early 1980s (Duffy 1993; Lovegrove, Nieuwland & Green 1995) due to 

introduced predators and habitat loss (Tatayah et al. 2007). Intensive conservation 

management has been conducted on the population since the mid-1970s in an attempt to 

rapidly increase population numbers, intensifying in 1987 through the collaborative efforts 

of the Mauritian Wildlife Foundation (MWF), the National Parks and Conservation Service 

(NPCS), Durrell (Jersey, UK) and a number of other external organisations (Tatayah et al. 

2007; Raisin et al. 2012). Intensive management included brood manipulation, supplemental 

feeding, provision of artificial nest sites, captive-breeding, reintroduction, and control of 

invasive alien predators (Tatayah et al. 2007; Taylor & Parkin 2010). This management 

successfully resulted in a steady population increase to approximately 600 individuals and 

102 known breeding pairs by the 2013/14 breeding season (Henshaw et al. 2014). However, 

these efforts were interrupted by a severe outbreak of PBFD in 2005. Subsequent screening 

of historical samples using molecular probes for BFDV confirmed its presence in the 

population prior to this outbreak (Kundu et al. 2012). This study also detected a selective 

mutation in the replicase gene of the virus which may have enhanced its virulence, with its 

capacity to spread facilitated by recovery and management efforts at the time (Kundu et al. 

2012). .  

Following this outbreak, PBFD was considered a severe threat to the parakeet’s 

recovery, prompting the immediate cessation of some elements of the recovery such as the 

transfer of individuals and eggs between nest sites, whilst the provision of artificial nest 

boxes, control of alien predators, the use of supplemental feeding hoppers and a minimal 

regime of visits to nest sites for monitoring purposes remained in place (Tollington et al. 

2013). However, managers are concerned that these ongoing field activities are promoting 
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horizontal transmission of the virus. Two management activities are considered high risk: 

the provision of supplemental food in fixed feeding hoppers and visits by field staff to access 

nesting sites for banding and nest box maintenance. Therefore, since 2005, the field team 

has attempted to reduce or eliminate any potential human-mediated transmission of BFDV 

by restricting activities to weekly disinfection of feeding hoppers with Virex (Kilco) and a 

rigorous biosecurity and hygiene protocol at nest sites. This nest site protocol comprises 

two elements: (i) wearing medical barrier suits whilst accessing nests (disinfected with Virex 

between nest visits and reused about 3 times each prior to disposal), and (ii) disinfecting all 

nest boxes with Virex at the end of each season. However, these mitigation strategies are 

difficult, increasingly time consuming (with the annual addition of new nest sites to be 

monitored as the population grows) and expensive to implement, and it is currently not 

known whether they reduce overall prevalence of the virus in the population.  

Here, we test whether these mitigation strategies reduce transmission of BFDV in 

the Mauritius parakeet population. To our knowledge this is the first study of any parrot 

population (both wild and captive) to assess the efficacy of BFDV transmission mitigation 

protocols. In this study we focus on nest site management but we account for the influence 

of feeding hoppers on the results. We achieve this in two steps. First we use long-term 

systematic sampling of the population across ten years to quantify annual fluctuations in 

BFDV. We predict that despite mitigation protocols there will be some variation in annual 

BFDV prevalence associated with climatic or environmental parameters and perhaps further 

viral mutation. Second, we determine experimentally whether prevention protocols are 

effective by using a reciprocal design experiment implemented by MWF conducted during 

the two most recent consecutive breeding seasons, 2013/14 and 2014/15. We predict that 

mitigation protocols will reduce prevalence of BFDV in nestlings from nests where current 

management is in place and, conversely there will be higher BFDV prevalence in nestlings 

from nests where no where no protocol was enforced.  
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3.2 MATERIALS AND METHODS 

3.2.1 Longitudinal field sampling and experimental design 

Blood samples have been drawn opportunistically from post-fledged Mauritius 

parakeets since 1993 and routinely from all 45 day old nestlings produced annually since 

2005 as part of ongoing species management. Each nestling is assigned a Studbook ID which 

is recorded by the Mauritius parakeet field team alongside standard data regarding nest 

site, parents and number of offspring per nest during each breeding season (September to 

May). This sample regime provides a unique opportunity to screen the offspring from each 

breeding season for BFDV and to examine temporal trends in the host-pathogen dynamic 

prior to, during and after the outbreak (Kundu et al. 2012; Tollington et al. 2015) and in 

doing so provides important context for the field experiment. 

Experimental groups were allocated based on geographic separation. Prior to the effects of 

intensive population management, the Mauritius parakeet individuals surviving in the Bel 

Ombre region (Figure 3.1, group i) represented a genetically distinct group due to their 

relative geographic isolation from the rest of the population (Figure 3.1, group ii) (Raisin et 

al. 2012). With little migration observed between these two subpopulations this distribution 

provided a natural division to use for the experiment. For the 2013/14 breeding season the 

field team wore medical barrier suits whilst accessing the nests of group ii and disinfected 

these nest boxes with Virex at the end of the breeding season (henceforth “treatment”), 

with group i used as a control where no measures were taken to reduce BFDV spread. All 

other processes remained as normal including blood sampling and data collection. Over the 

2014/15 breeding season these groups were reversed to complete the reciprocal design of 

the experiment.  

3.2.2 Laboratory analysis 

Where present, viral DNA was extracted from 50 to 100 μl of host whole blood using a 

combination of DIGSOL extraction buffer and 10 mg/mL proteinase K. Extractions were 

quantified using a Qubit dsDNA Assay Kit and standardised to approximately 25 ng/μl prior 

to screening for BFDV (Chapter 2). Infection of an individual with BFDV was assessed using 

PCR following the protocols detailed in (Kundu et al. 2012). In brief, the PCR assay targeted a 

717-bp region of the replicase gene (Ypelaar et al. 1999) and comprised 1 μl of extracted 
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host DNA template, 5 μl MyTaqTM HS Red Mix (Bioline), 0.2 μl each of the forward and 

reverse primers at 10 pmol/μl and was made up to 10 μl with double-distilled water. PCR 

annealing temperature was set to 57⁰C for 30 cycles and products were visualized on a 1.5% 

agarose gel. A negative control was included in each PCR batch to ensure no contamination 

was present. 

3.2.3 Data analysis 

3.2.3.1 Analysis of breeding season data  

A total of 887 samples were screened for BFDV across all breeding seasons from 2009/10 to 

2014/15 and added to an existing viral prevalence dataset initiated by Kundu et al. 2012. 

Combined, these data resulted in a cumulative 10-year viral prevalence dataset for all 

annually screened nestlings together with their corresponding life-history data. To eliminate 

any potential inflation in viral prevalence caused by the experiment, only infection data 

from the subpopulation with continued treatment were included for the 2013/14 and 

2014/15 breeding seasons. 

We investigated the relationships between viral prevalence in nestlings and four fixed 

factors in R 3.1.2 (R Core Team 2015) using the AICcmodavg package (Mazerolle 2012). 

General linear mixed models (GLMMs) were run using a binomial response variable 

accounting for the proportion of infected nestlings per nest site (number of positives, 

number negatives) and setting a binomial error distribution and a logit link function. We 

evaluated a set of candidate models investigating the effects of combinations of year, nest 

type (cavity or artificial box), distance to the nearest feeding hopper and subpopulation (Bel 

Ombre or Camp, henceforth BO or CA) on BFDV prevalence. Whilst supplemental feeding 

status of the parents of each brood is also annually recorded only one hopper is watched 

daily, thereby making this variable imperfectly observed. An independent-samples t-test 

found a significant difference in the mean distance to feeding hopper between 

subpopulations where adults nesting at CA (M = 0.8 km, SD = 0.86) had on average shorter 

distance to travel from nest-site to feeding hopper than those nesting at BO (M = 2.4 km,  

SD = 0.95); t(240) = 18.06, p < 0.001. Therefore the interaction between subpopulation and 

distance to nearest feeding hopper was also included in the candidate model set to account 

for this difference. Female parent was used as a random effect to account for both the 

vertical and horizontal viral transmission pathways, as females generally nest at the same 

http://onlinelibrary.wiley.com.chain.kent.ac.uk/doi/10.1111/j.1472-4642.2012.00938.x/full#ddi938-bib-0048
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site year on year. In a second set of GLMMs we also considered year as a second random 

effect to control for the substantial annual variation in BFDV prevalence. This parameter 

was a means to explore the effects of the remaining management-related fixed factors as 

this variation is likely a result of unmeasured environmental or climatic factors. In both 

model sets we compared the most parsimonious models based on the AICc; models within 2 

ΔAICc’s were considered equally plausible.  

3.2.3.2 Analysis of transmission prevention protocol experiment 

In the analysis of the protocol experiment all 2013/14 and 2014/15 breeding season 

data were isolated from the long-term dataset. We used GLMMs with binomial errors and a 

logit link function to explore the effect of four factors on the proportion of BFDV infected 

nestlings per brood, with female included as a random effect. The experiment was designed 

to explore the effectiveness of treatment but our longitudinal analysis highlighted three 

additional factors that may directly influence or interact with its effectiveness. The 

candidate GLMMs therefore evaluated the relationship between BFDV prevalence and 

subpopulation, distance to the nearest feeding hopper, year and treatment (binary). The 

interactions between subpopulation and distance to nearest feeding hopper as well as 

treatment and distance to nearest feeding hopper were also included in the candidate 

model set. Year, subpopulation and treatment are all inherently linked due to the 

experimental design and therefore the interaction between these three factors could not be 

included. We selected the most parsimonious models based on the lowest AICc and 

determined AICc weights (AICcmodavg package; Mazerolle 2012); models within 2 ΔAICc’s 

were considered equally plausible.  

3.3 RESULTS 

3.3.1 Annual fluctuation in viral prevalence 

Figure 3.2a shows annual fluctuation in BFDV prevalence. The proportion of infected 

nestlings in the 2010/11 (38.7%) and 2013/14 (39.5%) breeding seasons was comparable to the 

2005/06 (39.4%) breeding season, the first annual systematic sampling period. The model 

evaluating the effect of year on the proportion of infected nestlings, using the initial “outbreak” 

2005/06 breeding season as a baseline, indicated significantly lower incidence in five 

subsequent breeding seasons: 2006/07, 2008/09, 2011/12, 2012/13 and 2014/15 (Table 3.1).  

http://onlinelibrary.wiley.com.chain.kent.ac.uk/doi/10.1111/j.1472-4642.2012.00938.x/full#ddi938-bib-0048
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Year was the only significant predictor of viral prevalence when included as an 

explanatory variable (AICc weight = 1). However when this was evaluated as a random 

variable instead, BFDV prevalence was most influenced by distance to the nearest feeding 

hopper, subpopulation and the interaction between these two factors (Table 3.2). Distance 

to the nearest feeding hopper was the primary predictor of viral prevalence (Table 3.3) as 

females breeding closer to supplemental feeding hoppers had a significantly higher 

proportion of nestlings infected with BFDV. Subpopulation was significant as nestlings at BO 

have experienced a consistently lower viral prevalence than those at CA over the last 

decade (Figure 3.2 b and c). The significance of the interaction between distance and 

subpopulation is explained by the increased proximity of nest sites to feeding hoppers in 

BO. The differences in nest-type (artificial box or natural cavity) were not found to be 

related to viral prevalence. 

3.3.2 Transmission prevention protocol experiment 

The models including all factors of treatment, distance to nearest hopper, 

subpopulation and year had the lowest AICc values. The top 9 models all included the factor 

of year which was highly correlated with viral prevalence (Table 3.4; 3.5) as there was a drop 

in average proportion of infected nestlings from 42.2% in 2013/14 to 15.5% in the 2014/15 

breeding season. The disease prevention protocol was the next most important predictor of 

BFDV prevalence (Table 3.5) where treated sites had significantly lower proportions of 

infected nestlings than those in the control population (β = -1.189, SE = 0.417, χ2 = -2.853,  

p < 0.01). 

When the interaction between treatment and distance to nearest feeding hopper 

was evaluated independently, there was a highly significant negative effect of treatment on 

viral prevalence with increasing distance between nest site and feeding hopper (β = -0.763, 

SE = 0.260, χ2 = -2.934, p < 0.01).  Within each subpopulation, whilst both showed a 

significant effect of treatment on reduction in viral prevalence, the effect was greater at BO 

(β = -3.108, SE = 0.790, χ2 = -3.934, p < 0.001) than at CA (β = -0.723, SE = 0.296, χ2 = -2.443, 

p < 0.05). 
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3.4 DISCUSSION 

3.4.1 Annual fluctuation in viral prevalence 

The prevalence of BFDV on Mauritius has fluctuated cyclically between periods of 

high and low viral prevalence since the first widespread outbreak in 2005. Cyclical seasonal 

or annual fluctuations in prevalence of infectious diseases in wildlife have been attributed to 

climatic and environmental factors or changes in behaviour of an infected host. For 

example, the prevalence and transmission of West Nile virus is dependent on the suitability 

of climatic factors for the persistence of mosquito vectors and parasitic replication 

(Campbell et al. 2002). For other pathogens, such as Mycoplasmal conjunctivitis, the social 

nature of house finches and their propensity to aggregate at domestic bird feeders for 

extended periods in the winter months has been linked to increased transmission (Hotchkiss 

et al. 2005). BFDV is thought to be highly environmentally stable (Ritchie 1995; Todd 2000; 

Jackson 2014) and cleaning recommendations to reduce infectivity include disinfectants 

such as glutaraldehyde (Raidal 2012) but it is currently unknown whether, for example, a 

high rainfall year would in itself reduce environmental build-up on feeding hoppers and on 

perches within field aviaries. The effect of reduced movement to and from feeding hoppers 

in wetter years should also be considered as the plumage of most birds loses the ability to 

shed water over a period of prolonged exposure, reducing body temperature and easy flight 

(Kennedy 1970). This may decrease the number of individuals using supplemental feeding 

hoppers if it requires flying a long distance, consequently lessening the opportunity for 

infection to spread. The future incorporation of climatic variables into a GLMM in 

combination with management related factors would allow for a better assessment of 

whether annual BFDV prevalence is affected by seasonal changes or the severity of rainfall 

events. However, this is dependent on the availability of these data from weather stations in 

close enough proximity to each subpopulation for reliable analysis. 

The annual variation in BFDV prevalence within the Mauritius parakeet population 

may plausibly be attributed to a “boom-and-bust” epidemic pattern similar to other 

infectious diseases such as Avian influenza (Breban et al. 2009), with host-pathogen 

genotypic combinations playing a key role in prevalence and symptomatic presentation of 

disease (Thrall, Godfree & Burdon 2003). The selective sweep of a unique viral mutation in 

the replicase gene within the Mauritius parakeet population during the 2005 PBFD outbreak 
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may be indicative of this dynamic (Kundu et al. 2012). Further analysis of how the virus 

evolves on Mauritius could provide insight as to whether the peaks in viral prevalence post-

2005 are associated with the accumulation and persistence of specific mutations within the 

genome. 

BFDV can be shed through feather dust and faecal matter, making the accumulation 

of both in nest sites and around feeding hoppers a likely source of constant re-infection of 

individuals when there is an inadequate and irregular cleaning regime in place. Duck 

populations in North America have experienced recurrent outbreaks of Avian influenza in 2-

4 year intervals due to both direct contact between individuals and virion build up in the 

environment through faecal matter (Breban et al. 2009). Additionally, house finches 

infected with Mycoplasmal conjunctivitis have been observed to remain at feeding hoppers 

for longer durations due to reduced feeding efficiency, allowing for a longer contact period 

with the surrounding environment and thereby increasing the risk of transmission to other 

susceptible individuals (Hotchkiss et al. 2005). The higher prevalence of BFDV in nestlings 

produced in nests closer to feeding hoppers is therefore unsurprising. Those individuals 

breeding closer to supplemental feeding hoppers are likely to feed more regularly, thus 

repeatedly encountering accumulated virus present in the environment directly surrounding 

the stations and experiencing regular contact with high viral load individuals. The shorter 

distances between nest sites and hoppers dispersed throughout the forest habitat at CA 

allows more individuals to exploit supplemental food sources on a regular basis, accounting 

for the higher viral prevalence year-on-year within this subpopulation. 

3.4.2 Efficacy of transmission prevention protocols 

The repeated measures experiment conducted from 2013-2015 confirmed that 

disinfection reduces BFDV prevalence, implying that cleaning of nest sites should continue 

after the completion of each breeding season. The treatment appears to be particularly 

important for those nest sites situated further away from feeding hoppers, the 

interpretation being that parents feeding nestlings at these nests are less likely to be 

frequent users of supplemental food sources. Consequently this result has important 

implications for the management of the BO subpopulation as they have a larger proportion 

of nest sites situated far away from the single feeding hopper near the field station. To 

continue to maintain consistently lower BFDV prevalence within this subpopulation it will be 
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necessary to maintain a rigorous cleaning regime and continue to wear protective suits 

when visiting nest sites during the breeding season. Whilst the treatment appears to be 

having a lesser effect within the CA subpopulation, the reduction in prevalence is still 

significant but there are perhaps further implications with regards to the positioning of 

feeding hoppers within this subpopulation. Future research focus should be placed on 

quantifying food taken, both in and out of breeding season, with an assessment made as to 

whether any of the hoppers dispersed throughout the forest inhabited by the CA 

subpopulation could be removed without too detrimental an impact on survival or 

recruitment. This could potentially aid a reduction in viral prevalence at CA as the average 

distance to nearest feeding hopper would be increased, making cleaning protocols more 

effective for a larger number of nest sites.  

3.4.3 Implications for conservation 

We have demonstrated that, against a 10-year backdrop of viral prevalence in an 

endangered bird population infected with a BFDV, cleaning protocols significantly reduce 

viral prevalence depending on proximity to feeding hoppers. Crucially this finding is contrary 

to assumptions made to date that BFDV, like chicken anaemia virus, is resistant to 

disinfection (Ritchie 1995; Jackson et al. 2014). These findings are not only valuable for the 

future management of the Mauritius parakeet population but also for the recovery of other 

endangered or vulnerable psittacine species. For example, the recent outbreak of a novel 

virulent BFDV genotype in the last remaining Australian orange-bellied parrot population 

has been a cause for major concern to conservationists (Peters et al. 2014). More broadly, 

our study illustrates how endangered species’ recovery programmes can provide 

experimental test-beds for answering key management questions. Faced with outbreaks of 

infectious disease in wild populations, wildlife managers should not disregard the 

effectiveness of disease prevention protocols for mitigating the spread of infection.  
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3.6 FIGURES AND TABLES 

 

Figure 3.1 The Black River Gorges National Park with the two Mauritius parakeet 

subpopulations. BO = Bel Ombre (Experimental group i) and CA = Camp (Experimental group 

ii). Inset: location of the remaining Mauritius parakeet breeding populations in the south-

west of Mauritius.    
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Figure 3.2 (a) Total number of 45 day old nestlings screened for BFDV from 2005 to 2015, (b) 

total number of 45 day old nestlings within the Bel Ombre subpopulation screened for BFDV 

from 2005 to 2015 (excluding the 2013/14 experimental season) and (c) total number of 45 

day old nestlings within the Camp subpopulation screened for BFDV from 2005 to 2015 

(excluding the 2014/15 experimental season). All categorized by positive or negative status 

(stacked columns), as well as the average proportion of infected nestlings per nest in each 

breeding season (dashed line). The initial “outbreak” breeding season has been indicated 

with a red arrow. *Nest site prevalence reported for 2013/14 and 2014/15 reflects only 

nestlings screened from sites with the cleaning protocol in place.  
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Table 3.1 The effect of year on the proportion of infected nestlings where the “outbreak” 

2005/06 breeding season used as the baseline prevalence.  

Breeding season β SE β Z p 

Constant (2005/06) -0.628 0.249 -2.521 < 0.05 

2006/07 -1.377 0.438 -3.142 < 0.01 

2007/08 -0.508 0.367 -1.387 0.17 

2008/09 -1.592 0.368  -4.320 < 0.001 

2009/10 -0.321 0.315 -1.022 0.31 

2010/11 0.128 0.312 0.410 0.68 

2011/12 -0.693 0.336 -2.060 < 0.05 

2012/13 -2.649 0.486 -5.455 < 0.001 

2013/14 0.205 0.326 0.628 0.53 

2014/15 -2.767 0.767 -3.606 < 0.001 
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Table 3.2 A comparison of the 14 general linear mixed effect candidate models analysing 

the prevalence of BFDV in 45 day old Mauritius parakeet nestlings across the viral 

prevalence dataset extending from 2005/06 to 2014/15 (only cleaned nest sites for 2013/14 

and 2014/15). Factors related to viral prevalence include: distance to the nearest feeding 

hopper (NH), subpopulation (SP) and nest type (NT) based on Akaike’s information criterion 

corrected for finite sample size (AICc) and weights (AICc weights). All models were run with 

nesting female and year as random factors. K denotes the number of parameters in each 

model and models are ranked according to their ΔAICc. 

Rank Model K AICc ΔAICc AICc weights 

1 NH 4 773.02 0 0.36 

2 NH + SP + NH*SP 6 774.48 1.46 0.17 

3 SP*NH 6 774.48 1.46 0.17 

4 NH + SP 5 774.73 1.71 0.15 

5 SP 4 776.53 3.51 0.06 

6 NH + SP + NT + NH*SP 8 777.54 4.52 0.04 

7 NH + SP + NT 7 777.8 4.77 0.03 

8 NT 5 781.98 8.96 0 
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Table 3.3 Model average estimates for the effects of subpopulation (SP) and distance to the 

nearest feeding hopper (NH) on the longitudinal variation in the proportion of annually 

produced Mauritius parakeet nestlings infected with BFDV. 

Factor Model average estimate SE 95% CI 

SP -0.29 0.71 -1.68 – 1.09 

NH -0.39 0.24 -0.86 – 0.09 
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Table 3.4 A comparison of the 23 general linear mixed effect candidate models analysing 

the prevalence of BFDV in 45 day old nestlings over the 2013/14 and 2014/15 Mauritius 

parakeet breeding seasons. Factors related to viral prevalence include: treatment (T), 

distance to the nearest feeding hopper (NH), subpopulation (SP) and year (Y) based on 

Akaike’s information criterion corrected for finite sample size (AICc) and weights (AICc 

weights). All models were run with the nesting female as a random factor. K denotes the 

number of parameters in each model and models are ranked according to their ΔAICc. 

Rank Model K AICc ΔAICc AICc weights 

1 T + Y + SP 5 300.69 0 0.49 

2 T + NH + Y + SP 6 302.57 1.88 0.19 

3 T + NH + Y + SP + T*NH 7 303.3 2.61 0.13 

4 T + NH + Y 5 303.85 3.16 0.1 

5 T + NH + Y + T*NH 6 305.71 5.02 0.04 

6 T + Y 4 306.18 5.49 0.03 

7 Y + SP 4 309.74 9.05 0.01 

8 Y 3 311.28 10.59 0 

9 NH + Y + SP 5 311.77 11.08 0 

10 T*NH 5 322.88 22.19 0 

11 T + NH + SP + T*NH 6 325 24.31 0 

12 NH 3 329.52 28.83 0 

13 SP 3 329.64 28.95 0 

14 NH + SP 4 331.19 30.5 0 

15 T + NH 4 331.24 30.55 0 

16 T 3 331.64 30.95 0 

17 T + NH + SP 5 333.01 32.32 0 
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Table 3.5 Model average estimates for the effects of treatment (T), distance to the nearest 

feeding hopper (NH), subpopulation (SP) and year (Y) on the experimental 2013/14 and 

2014/15 Mauritius parakeet breeding seasons. 

Factor Model average estimate SE 95% CI 

Y -1.91 0.48 -2.85 – -0.97 

T  -1.26 0.55 -2.34 – -0.17 

SP 1.04 0.49 0.09 – 1.99 

NH -0.20 0.21 -0.60 – 0.21 
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ABSTRACT 

Psittacine Beak and Feather Disease (PBFD), caused by the Beak and Feather Disease Virus (BFDV), 

originated in the South Pacific in the 1970s before spreading rapidly across the world due to the pet 

trade in companion birds. An outbreak of PBFD in Mauritius in 2005 interrupted active management 

for the recovery of the endangered Mauritius parakeet. Time-calibrated phylogenies suggest the 

BFDV viral strain present in both the endemic Mauritius parakeet and invasive rose-ringed parakeet 

populations on the island was introduced in the late 1980s. It is therefore unlikely that the feral 

Asian rose-ringed parakeets that were introduced in the 1880s were the source of infection on the 

island. Mauritian viral isolates are instead most closely related to those originating from wild 

Senegalese rose-ringed parakeets, which may be evidence of the impact of the global pet bird trade. 

Nucleotide networks indicate that replicase isolates on Mauritius have diverged into 67 known 

haplotypes since 1993, seven of which have occurred over multiple breeding seasons in more than 

five Mauritius parakeet hosts and only one of which is shared by both Mauritius parakeet and rose-

ringed parakeet hosts. BFDV haplotypes found within Mauritius parakeet hosts are shared across the 

one captive and three wild subpopulations indicating a level of human-facilitated transmission 

despite strict hygiene protocols. This study also presents the first published report of BFDV in wild 

rose-ringed parakeets within their African and Asian native ranges, providing an important backdrop 

for our finding of a relatively recent introduction of BFDV to Mauritius. Ongoing transport of 

infectious disease around the world due to global pet trade risks introducing novel BFDV isolates 

into wild populations of vulnerable species. 

KEY WORDS PBFD, BFDV, infectious disease, pet trade, demographic expansion, viral recombination 
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4.1 INTRODUCTION 

Emerging infectious diseases (EIDs), defined as those caused by newly discovered pathogens 

or with increased incidence or range expansion (Daszak, Cunningham & Hyatt 2001; Dobson & 

Foufopoulos 2001; Morens, Folkers & Fauci 2004) may increase the risk of extinction for vulnerable 

species and populations, thereby reducing global biodiversity (Lips et al. 2006). Pathogens generally 

have short generation times which allow them to adapt rapidly to novel hosts (Altizer, Harvell & 

Friedle 2003), and amongst these, single-stranded DNA viruses have some of the highest rates of 

mutation (Duffy, Shackleton & Holmes 2008). Consequently many EIDs are caused by viruses which 

are infectious across a wide host range (Altizer, Harvell & Friedle 2003).   

Psittacine Beak and Feather Disease (PBFD), the most common viral disease in wild 

psittaciformes (Khalesi et al. 2005), is caused by the Beak and Feather Disease Virus (BFDV). BFDV 

belongs to the Circoviridae family and comprises a circular, single-stranded, approximately 2000 

nucleotide long DNA genome which lacks a non-coding region (Ritchie et al. 1989a). Both its size and 

structure make BFDV a relatively simple pathogen for studying molecular variation in the context of 

disease ecology and drivers of spread (Sarker et al. 2014a). The genome consists of a highly 

conserved replication associated protein (replicase gene) (Kondiah, Albertyn & Bragg 2006; Kundu et 

al. 2012; Peters et al. 2014) and a capsid gene responsible for viral encapsidation and host cell 

penetration (Heath et al. 2004; Kundu et al. 2012). BFDV is transmissible horizontally, through 

contact with contaminated feather dust, surfaces or objects (Ritchie, Anderson & Lambert 2003), 

and vertically, from a female to her offspring (Ritchie et al. 1989b; Kundu et al. 2012).  

PBFD was first described in the 1970s (Pass & Perry 1984), originating in the South Pacific 

(Ritchie et al. 1989b; Latimer et al. 1991; Heath et al. 2004) and is considered to have spread rapidly 

across the world owing to its high environmental persistence and ability to shift between closely 

related host species (Peters et al. 2014; Sarker et al. 2014b). All Psittaciformes are considered to be 

susceptible to infection (Sarker et al. 2014a) and to date BFDV or PBFD has been recorded in a total 

of 88 species (26 New World and 62 Old World) and five subspecies globally (Chapter 1). Small, 

isolated host populations such as those of island endemics are considered to be particularly 

vulnerable to emerging infectious diseases as their populations frequently have low genetic diversity 

(Wikelski et al. 2004; Carrete et al. 2009; Trinkel et al. 2011) and have usually evolved in the 

presence of an impoverished pathogen community (Wikelski et al. 2004; Carrete et al. 2009; Spurgin 

et al. 2012). Island species are also increasingly at risk due to human-facilitated biological invasions 
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and the alteration of an often already limited habitat (Vitousek 1998), with the number of bird 

species introduced to oceanic islands being roughly equal to the number of species extirpated from 

them (Sax, Gaines & Brown 2002). 

The endangered Mauritius parakeet (Psittacula eques), confined to the Black River Gorges 

National Park in the south west of the island, was once the world’s rarest parrot (Jones 1987; Kundu 

et al. 2012) but by 2014 had been recovered to approximately 600 individuals and 102 known 

breeding pairs (Henshaw et al. 2014) through intensive captive breeding and reintroduction (Tatayah 

et al. 2007; Raisin et al. 2012). BFDV was first recorded in the Mascarene Islands in the early 1990s 

(Pers. Comm. R. Bristol) and low viral prevalence was detected in blood samples taken on an ad hoc 

basis from 1993 to 2004. However in the 2005/06 breeding season an outbreak of PBFD swept 

through the population, coinciding with a viral mutation in the replicase gene (Kundu et al. 2012). 

Since the outbreak, blood samples have been taken from all annually produced offspring, providing 

a unique opportunity to analyse the temporal evolution of BFDV on Mauritius over the last two 

decades and before, during and after the outbreak (Kundu et al. 2012; Tollington et al. 2015). 

Alongside interest in how the virus has evolved on Mauritius, it has also become crucial in 

the management of this EID to understand when, and from where the virus first reached the island. 

Historically there have been 56 exotic bird introductions to Mauritius including rose-ringed 

parakeets (Psittacula krameri) and Madagascar lovebirds (Agapornis cana). The Madagascar 

lovebirds were introduced in 1739 but were extirpated circa 1950 (Jones 1980, 1996). Asian rose-

ringed parakeets were introduced over a century later in the 1880s (Jones 1996), primarily due to 

the influx of Indian migrant labourers between 1834 and 1910 (Christopher 1992) and their 

descendants still persist on the island today (Jackson et al. 2015a). The rose-ringed parakeet is the 

world’s most widely introduced parrot with breeding populations in approximately 35 countries 

across five continents (Tayleur 2010). To date no BFDV or PBFD screening has been conducted on 

any free-living populations across its extensive native range (Chapter 1). However, populations 

within both its invasive range and captive individuals have tested positive for BFDV (Kundu et al. 

2012; Julian et al. 2013; Sa et al. 2014), implying that the virus is also likely to be present in wild 

flocks.  

It has been suggested that the introduction of BFDV to Mauritius occurred in 1959 (Kundu et 

al. 2012, 95% HPD 1920 and 1988), considerably later than the establishment of either the rose-

ringed parakeets or Madagascar lovebirds on the island. Whilst the most likely source of BFDV 



4. 4 
 

introduction on Mauritius is assumed to be the Indian subcontinent its true origin remains unknown. 

By applying phylogenetic analysis to viral haplotypes present in both the endemic Mauritius 

parakeet and invasive rose-ringed parakeet populations on the island, and alongside other globally 

affected psittacine species, we aim to infer the origin of the BFDV viral genotyopes present on 

Mauritius. We examine patterns of viral diversification that have occurred in isolation on Mauritius 

since 1993, look for evidence of viral recombination and compare the rate of mutation of the 

replicase gene on Mauritius to that found in other global regions. Our findings regarding the origin of 

BFDV on Mauritius have important implications for current trade and import of companion birds to 

other regions of high psittacine biodiversity. Importations may pose a threat to the ongoing 

conservation of the Mauritius parakeet, the last remaining endemic parrot of the Mascarene islands 

(Hume 2007).  

4.2 MATERIALS AND METHODS 

4.2.1 Mauritius parakeet sampling and DNA extraction 

Blood samples were drawn by the Mauritius parakeet field team from all 45 day old nestlings 

produced each breeding season (September to May) since 2005 and opportunistically from post-

fledged birds since 1993 as part of ongoing management of this endangered species. Each fledgling 

was assigned a Studbook ID which was recorded alongside standard data regarding nest site, parents 

and number of offspring in the nest. For this study a total of 887 samples were screened for BFDV 

across all breeding seasons from 2009/10 to 2014/15 and added to the standing Mauritius parakeet 

viral prevalence dataset (Kundu et al. 2012), now spanning over two decades. Prior to screening for 

BFDV, an ammonium acetate DNA extraction method was used to extract both bird and BFDV DNA 

(Bruford et al. 1998). In brief, approximately 50 to 100 μl of whole blood was used from each sample 

and digested in 250 μl of DIGSOL lysis buffer with 10 μl of 10 mg/mL proteinase K. Extractions were 

quantified using a Qubit dsDNA Assay Kit and standardized to approximately 25ng/µl prior to 

screening for BFDV (Chapter 2). 

Virus specific primers were then used to determine presence of viral DNA within that of the 

host. Screening was carried out through PCR assay targeting a 717-bp region of the replicase gene 

(Ypelaar et al. 1999). Reactions comprised 1 μl of extracted DNA template, 5 μl MyTaqTM HS Red Mix 

(Bioline), 0.2 μl each of the forward and reverse primers at 10 pmol/μl and made up to 10 μl with 

double-distilled water. PCR annealing temperature was set to 57⁰C for 30 cycles and products were 
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visualized on a 1.5% agarose gel. A negative control was included in each PCR batch to ensure no 

contamination was present. All positive PCR products were sent to Macrogen Europe (Amsterdam) 

for sequencing. 

4.2.2 Rose-ringed parakeet sampling and DNA extraction 

Wild rose-ringed parakeet blood samples from both the African and Asian native ranges sent 

to DICE as part of a separate whole-genome sequencing study were obtained from Pakistan, 

Bangladesh, Senegal and the Gambia. Additionally, ad hoc blood samples were taken from invasive 

wild individuals from Mauritius between 2009 and 2011 and a tissue extraction was provided from 

an individual from the introduced United Kingdom (UK) population by the Institute of Zoology, 

Zoological Society of London. All but the UK sample were extracted, quantified, screened and 

sequenced as described for the Mauritius parakeet samples. 

4.2.3 Sequence analysis 

Geneious 8.1.7 (Kearse et al. 2012) DNA editing software was used to align and edit all DNA 

sequences. Whole or partial BFDV genome sequences from both wild and captive strains sequenced 

globally were obtained and imported into Geneious from GenBank for phylogenetic comparison and 

analysis (Table 4.1). Replicase was selected for analysis as a selective mutation in this gene was 

identified to be the most likely cause for the “outbreak” of PBFD on Mauritius in 2005 (Kundu et al. 

2012).  Additionally, a positive result was far more frequently obtained from replicase PCR assay 

products than when conducting an assay using primers for capsid. The dataset was therefore larger 

enabling a finer-scaled analysis.  

No recombination events were present among the Mauritian BFDV isolates when the dataset 

was analysed using RDP4 (Martin et al. 2010) with default settings and the RDP (Martin & Rybicki 

2000), GENECONV (Padidam et al. 1999), BootScan (Martin et al. 2005), MaxChi (Smith 1992), 

Chimaera (Posada & Crandall 2001) and SiScan (Gibbs, Armstrong & Gibbs 2000) methods. Due to 

the lack of recombination, all Mauritian data could be used for molecular network and Bayesian 

analyses. 

4.2.3.1 Global phylogeny 

The GenBank accession numbers for all global BFDV sequences used in these analyses are 

listed in Table 4.1. The programme jModelTest 2.1.7 (Posada 2008) was used to infer the best fit 
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nucleotide substitution model. A transition model with gamma distributed rate variation and a 

proportion of invariable sites (GTR+I+G) was favoured. Evolutionary rates were then determined 

using the programme Beast v1.8.2 (Drummond et al. 2012). The constant population size coalescent 

demographic model was fitted to the data as the choice of coalescent prior has been shown to have 

little effect on estimates of viral movement dynamics (Lemey et al. 2009). Like Harkins et al. (2012) 

and Sarker et al. (2014a, b) we chose to employ the uncorrelated lognormal relaxed-clock model 

(Drummond & Suchard 2010). Tracer v1.6 was used to ensure thorough model mixing and that a 

reasonable effective sample size (ESS>200) had been reached for all parameters. Ten independent 

Monte Carlo-Markov chains (MCMC) were implemented for 100 million generations each, with trees 

sampled every 10 000 generations. TreeAnnotator v1.8.2 was used to obtain the tree with the 

highest clade credibility (Drummond et al. 2012) and FigTree v1.4.2 was then used to generate the 

consensus tree (Andrew 2009). 

4.2.3.2 Mauritius parakeet BFDV haplotypes 

Network 4.6.1.3 (Fluxus Technology Ltd. 2014) was used to construct a Median-Joining 

nucleotide haplotype network for the replicase gene sequences obtained from the Mauritius 

parakeet and rose-ringed parakeet populations, and the output was colour coded according to year 

of sampling. A second Median-Joining model was constructed from only the Mauritius parakeet 

BFDV dataset and colour coded according to subpopulation. 

We used Arlequin 3.5.2.2 (Excoffier & Lischer 2010) to examine whether the Mauritius BFDV 

population had experienced historical demographic changes. Departures from mutation–drift 

equilibrium were tested using Tajima’s D (Tajima 1989) and Fu’s FS (Fu & Li 1993). These tests were 

applied to the haplotypes present across the entire replicase dataset used in this study and the 

smaller Mauritius dataset analysed by Kundu et al. (2012), to determine whether a viral 

diversification event was detectable since the proposed selective sweep that was thought to have 

occurred in 2005.  

4.3 RESULTS 

4.3.1 Dating the introduction of BFDV to Mauritius 

The Bayesian analysis of replicase sequences isolated from both Mauritius parakeet and feral 

rose-ringed parakeet hosts on Mauritius indicates that this lineage is monophyletic (Figure 4.1). The 
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Mauritius clade was determined to be mostly closely related to the first BFDV sequences isolated 

from wild rose-ringed parakeets in Senegal, both of which clustered with an isolate obtained from a 

captive Zambian Black cheeked lovebird. The BFDV strain present on Mauritius was determined to 

have diverged from the Senegalese clade in 1986 or 1987, approximately 28 years before the 

2014/15 breeding season. The divergence between the Mauritius/Senegal clade and the Zambian 

isolate occurred approximately 3.5 years prior to that event, in 1983 or 1984. When all Mauritius 

replicase data were phylogenetically analysed alongside an outgroup BFDV sequence from Senegal, 

Zambia and South Africa, the time since divergence was in agreement with the global phylogeny 

(Figure 4.2); determined to be approximately 34 years prior to the 2014/15 breeding season. The 

estimated introduction date of BFDV to Mauritius was 27 years prior to the 2014/15 breeding 

season, in 1987 or 1988. All replicase sequences obtained from Mauritian hosts between 2009 and 

2015 have been deposited in GenBank (KT753406 – KT753526).    

Following its introduction to Mauritius, the BFDV isolates appeared to have diverged into four main 

clades (see Figure 4.2; shaded in grey, purple and blue and unshaded), only one of which currently 

persists on the island (Figure 4.2; grey shading). This clade included only one isolate originating from 

a rose-ringed parakeet, in the 2006/07 breeding season, whilst all other rose-ringed parakeet 

isolates were determined to fall within terminal lineages. The second clade (Figure 4.2; purple 

shading) predominantly consisted of the isolate determined to be the outbreak haplotype from the 

2005/06 breeding season (Kundu et al. 2012). The third clade (Figure 4.2; blue shading) consisted 

predominantly of isolates derived from rose-ringed parakeets, with Mauritius parakeet isolates 

within this group occurring most recently in the 2013/14 breeding season. This observed pattern is 

indicative of recent viral transmission between these two host species, with the most recent 

divergence between them having occurred in approximately 2008 or 2009. The unshaded clade 

consisted entirely of isolates originating from feral rose-ringed parakeets. Mean nucleotide 

substitution rates for the replicase gene for the BFDV strain present on Mauritius were estimated to 

be 1.92 x 10-3 per site per year (Table 4.2).  

4.3.2. Evolution of BFDV on Mauritius 

Since the first detection of BFDV in Mauritius parakeets in the 1993/94 breeding season the 

replicase isolates have diverged into 67 observed haplotypes (Figure 4.3). Of these, 55 haplotypes 

occurred in just single host individuals whilst seven occurred on more than five occasions and 

persisted over multiple breeding seasons. The distribution of these more persistent haplotypes 
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formed two evolutionary clusters, with the most abundant of these haplotypes (A in Figure 4.3) 

isolated from 56 Mauritius parakeet individuals and last detected in 2010/11. Subsequently, two 

predominant haplotype clusters emerged (B and C in Figure 4.3), isolated from 27 and 14 Mauritius 

parakeet individuals respectively. Both of these haplotypes occurred since the 2011/12 breeding 

season, with only a single nucleotide variation between haplotypes A and B, haplotypes B and C and 

two base pair changes between haplotypes A and C. Haplotype E consisted of 21 individuals and was 

the only viral isolate shared by Mauritius and rose-ringed parakeets. Haplotype G was the only 

haplotype to consist solely of isolates from rose-ringed parakeet hosts, first appearing in 1995 and 

occurring in 16 individuals in the 2006/07 breeding season.  

The results of both the Tajima’s D and Fu’s F tests suggested that viral population present on 

Mauritius between 1993/94 and 2014/15 analysed in this study underwent a recent selective sweep 

or genetic bottleneck (Simonsen, Churchill & Aquadro 1995) before expanding (Tajima’s D = -

1.81, p < 0.01, Fu’s FS = −24.59, p < 0.001). Whilst the significant decrease in viral diversity indicative 

of directional selection was identified by Kundu et al. (2012), the subsequent diversification in 

haplotypes that we report here was not detectable within the less extensive sample-set from 

1993/94 to 2008/09 (Table 4.3).  

4.3.3. Haplotype distribution between Mauritius parakeet subpopulations 

The distribution of haplotypes within only the Mauritius parakeet subpopulations is 

presented in Figure 4.4. Haplotypes A, E and F all comprised replicase sequences isolated from 

fledglings produced in both wild subpopulations, “Bel Ombre” and “Camp”, as well as the Gerald 

Durrell Endemic Wildlife Sanctuary (GDEWS), which was used as a captive breeding facility during 

intensive management. Haplotypes B and C both comprised isolates from the “Camp” and “Bel 

Ombre” subpopulations, as well as from those fledglings translocated to Le Vallée de Ferney after 

the culmination of the 2014/15 breeding season.  

4.3.4 Multiple variants of BFDV from single hosts 

Sporadic re-sequencing was conducted on Mauritius parakeet BFDV positive PCR products 

(n=10) across breeding seasons to ensure repeatability. During this process, two different replicase 

haplotypes were detected within single samples drawn from two individuals from the 2010/11 

breeding season. No other instances of multiple infections were recorded.  
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4.3.5 BFDV in other native and introduced populations of rose-ringed parakeets 

This study presents the first published report of BFDV in wild rose-ringed parakeets within 

their African and Asian native ranges. The isolates obtained from wild Bangladeshi rose-ringed 

parakeets within their Asian native range were found to be most closely related to one another and 

also to a single isolate originating from a wild Gambian individual from within the African native 

range (Figure 4.1). The isolates from Pakistan grouped with one another and formed a sister clade to 

the Bangladesh-Gambia clade. As a group, these isolates diverged from a clade consisting of a viral 

strain found to occur predominantly in captive hosts sampled in Poland in approximately 1996. This 

Polish clade also included the isolate obtained from the single feral UK rose-ringed parakeet sample 

included in this study. All replicase sequences obtained from rose-ringed parakeet hosts analysed in 

this study have been deposited in GenBank (KT725790 – KT725803).    

4.3.5. Wider global phylogenetic patterns 

The global tree consisted of a high proportion of clades containing sequences that were 

monophyletic by location including groups of isolates obtained from captive flocks in Thailand, 

another from captive flocks in South Africa, and a number of clades from Australasia and Oceania 

(Figure 4.1). Unlike captive hosts, those clades consisting of isolates from wild birds were 

predominantly monophyletic and did not display high divergence. The most basal global clade 

consisted of a monophyletic cluster of isolates originating from wild New Caledonian Rainbow 

lorikeets and their native subspecies, which were sister to captive Australian Rainbow lorikeets and a 

wild Moluccan red lory from Indonesia. Our study is the first to include an isolate originating from a 

wild Indonesian BFDV host. This basal group was determined to have diverged from the more 

recently evolved BFDV lineages in approximately 1951. Sequences from captive hosts of Polish, 

South African and Australian origin were widely dispersed throughout the phylogenetic tree. Mean 

nucleotide substitution rates for the replicase gene across all BFDV strains were estimated to be 1.70 

x 10-3 per site per year (Table 4.2).  

4.4 DISCUSSION 

 4.4.1 Dating the introduction of BFDV to Mauritius 

Unlike the patterns of divergence on other islands such as New Zealand (Jackson et al. 

2015b) the monophyletic nature of the BFDV strain present within both rose-ringed and Mauritius 
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parakeet hosts on Mauritius is indicative of a single introduction to the island. When Mauritius BFDV 

isolates were analysed alongside the global dataset, the date of introduction to the island was 

estimated to have occurred approximately 38 years later than when these data were analysed 

previously by Kundu et al. (2012). Our TMRCA estimate of 27.9 years before the 2014/15 breeding 

season (between 1987 and 1988) falls within the upper bounds of their prior estimate of between 

1920 and 1988 (Kundu et al. 2012) and has a much narrower confidence interval. Due to both the 

relatively recent global establishment of BFDV and the close phylogenetic relationship between 

isolates from Senegal, Zambia and those on Mauritius, it is likely that the feral Asian rose-ringed 

parakeets that were introduced in the 1880s (Jones 1996) were not the source of infection on the 

island. As a more likely scenario, there have been 354 recorded instances of live Psittaciforme 

imports on to Mauritius from 13 different countries since 1975 (CITES 2015), any of which may have 

acted as the source as they fall within the timeframe suggested by our time-calibrated phylogenetic 

analysis of the viral sequences. Therefore, as has been documented for wild Cape parrots in South 

Africa infected with BFDV (Regnard et al. 2015), it would seem most plausible that the strain of BFDV 

present on Mauritius was accidentally introduced as a product of the more recent trade in 

companion birds.  

4.4.2 Evolution of BFDV on Mauritius following introduction 

The mutation rate calculated for the viral replicase gene on Mauritius of 1.92 x 10-3 

substitutions per site per year is higher than but comparable to the rates inferred for all global 

strains when using a lognormal relaxed evolutionary clock. However, this estimate is considerably 

higher than those produced by both the lognormal relaxed and strict clock estimates for replicase 

nucleotide substitution in Australian cockatoos (Sarker et al. 2014a), and in previous strict clock 

estimates for Mauritius parakeet hosts (Kundu et al. 2012). This inconsistency is likely due to the 

much larger dataset analysed in this study, which was inclusive of a period of diversification in BFDV 

haplotypes across both of the endemic and introduced parakeet host populations on Mauritius since 

the proposed selective sweep that is thought to have occurred in 2005. The size of a host population 

has a profound effect on the ability of a pathogen to persist, with a minimum density required for 

establishment (Lyles & Dobson 1993). As the Mauritius parakeet population has increased in 

population size through intensive management over the past 28 years (Tatayah et al. 2007; Raisin et 

al. 2012), so too has the number of hosts available for infection by the virus. Additionally, the ability 

of a pathogen to establish in a host population has a direct relationship with its virulence and an 
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inverse relationship with its transmission efficiency (Lyles and Dobson 1993). Whilst BFDV has been 

found to be widely infectious (Chapter 1) and PBFD is frequently fatal in immature birds up to three 

years of age (Ritchie et al. 1989b), infected individuals commonly recover from severe clinical 

presentation of the disease, which usually lasts only for a number of months (Todd 2000). These 

attributes of BFDV would appear to have allowed it to become highly prevalent in the Mauritius 

parakeet population (with up to 40% prevalence in annually recruited nestlings; Chapter 3) whilst 

host numbers have continued to increase (Tollington et al. 2015). 

The rose-ringed parakeet population on Mauritius has been infrequently sampled, with no 

genetic data on viral isolates collected since 2011. The nominal number of shared BFDV haplotypes 

between the endemic and introduced parakeet species could therefore be indicative of either a 

relative lack of contact between the two species due to allopatry, or a sampling regime that is 

unable to detect fine-scale levels of viral transmission between host species on the island. 

4.4.3 The occurrence of multiple haplotypes within a single host 

Our detection of multiple BFDV viral haplotypes in an infected host individual has also been 

described in cockatoos (Sarker et al. 2014b). Therefore, whilst our haplotype network generated for 

the strain of BFDV present on Mauritius displays the viral population dynamics and diversification, it 

is unlikely to be exhaustive of all variants present on the island. The ability for multiple BFDV 

infections to persist within a single host, along with its high rate of mutation, allows for the rapid 

evolution of novel BFDV variants through recombination (Julian et al. 2013). Whilst captive-breeding 

facilities may have had a positive influence on endangered species’ conservation indirectly, the 

mixing of multiple parrot species from different geographic areas in a captive environment creates 

an ideal mechanism for viral transmission (Julian et al. 2013; Robino et al. 2014). If these novel BFDV 

variants leak into vulnerable wild host populations such as Mauritius parakeets, such an event may 

alter the virus’ pathogenicity and subsequently increase the threat imposed by infection (Jackson et 

al. 2015b).  

4.4.4 Shared haplotypes between Mauritius parakeet subpopulations 

The sharing of haplotypes between subpopulations of Mauritius parakeets is to be expected. 

During the intensive management and recovery of this host population, interventions such as brood 

manipulation, captive-breeding and reintroduction were undertaken to help rapidly increase 

numbers of parakeets (Tatayah et al. 2007; Taylor & Parkin 2010). The Mauritian Wildlife 
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Foundation’s parakeet field team has attempted to reduce or eliminate any potential human-

mediated transmission of BFDV with a rigorous biosecurity and hygiene protocol since 2005 (Chapter 

3). However despite these protocols, the recent translocation of parakeets to Le Vallée de Ferney on 

Mauritius to found a new subpopulation also included the transfer of BFDV to the east coast. The 

unavoidable regular movement of vehicles, equipment and staff between localities for ongoing 

species management is the most likely source of continued gene flow between viral populations. 

Whilst efforts to reduce BFDV transmission have been found to be effective (Chapter 3), the 

complete elimination of viral transfer between sites may not be possible. 

4.4.5 BFDV in other native and introduced populations of rose-ringed parakeets     

Alongside the introduction of BFDV to Mauritius, trade in companion birds is the most likely 

source of introduction of BFDV to the African and Asian native ranges of rose-ringed parakeets. This 

hypothesis is supported not only by the close phylogenetic relationship we have revealed between 

isolates from wild hosts in Mauritius and Senegal, but also by the unexpected identification of a 

Gambian isolate that is most closely related to those originating from Southern Asia. Gambia is 

geographically encompassed by Senegal, with a contiguous population of rose-ringed parakeets 

between these two countries (IUCN 2015). This finding confirms that multiple global BFDV strains 

are present within West and Central Africa. Rose-ringed parakeets are abundant in their native 

range and the confirmed presence of BFDV within these hosts may be indicative of a high risk of spill 

over into other vulnerable species with sympatric overlap such as Timneh parrots (Psittacus timneh) 

and Grey parrots (Psittacus erithacus) (IUCN 2015). Similarly, the presence of BFDV in rose-ringed 

parakeets from Bangladesh and Pakistan may act as an abundant reservoir host for infecting 

vulnerable sympatric species such as Red-breasted parakeets (Psittacula alexandri) and Blossom 

headed parakeets (Psittacula roseata) (IUCN 2015).  

The inclusion of the feral UK rose-ringed parakeet isolate in one of the many Polish clades 

dispersed throughout the global phylogeny (Figure 4.1) is most likely indicative of trade from captive 

breeding facilities in Eastern Europe. BDFV is highly prevalent in Polish breeding facilities (Julian et 

al. 2013), a large source of both companion birds and likely to add to the spread of infection 

worldwide (Harkins et al. 2014). Rose-ringed parakeets have successfully established feral 

populations across Europe (IUCN 2015; Jackson et al. 2015a) and given that captive parrots in 

Germany, Portugal, Spain, Italy and Poland (De Kloet & De Kloet 2004; Raue et al. 2004; Rahaus et al. 
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2008; Julian et al. 2013) have tested positive for BFDV it is likely that the virus is also present in other 

wild flocks outside of the UK.  

4.4.6 Implications for the conservation of vulnerable parrot species  

The Mauritius parakeet is the last remaining of ten parrot species that once occurred in the 

Mascarene islands (Hume 2007) and has only recently been recovered from fewer than 20 known 

individuals (Duffy 1993; Lovegrove, Nieuwland & Green 1995). Despite the initial concern that 

conservation managers had when PBFD was first detected within the Mauritius parakeet population 

the species has continued to recover in the face of disease. However, BFDV has evolved rapidly over 

the last decade, with regular fluctuation in viral prevalence on the island (Chapter 3) and two new 

haplotypes becoming prevalent in recent breeding seasons. The continued spread of infection 

between subpopulations on Mauritius as well as the connectivity of BFDV strains around the world 

highlights how easy the unintentional spread of virions can be, even when a strict hygiene protocol 

is in place. It has been estimated that aviculturists in South Africa lose up to 20% of their flock to the 

disease annually, with major economic impacts to breeders (Heath et al. 2004). However the 

benefits of conserving global parrot biodiversity within their native ranges extend far beyond their 

captive market value. Consequently we recommend that policy relating to the continued import of 

Psittaciforme species into Mauritius and other known psittacine biodiversity hotspots is re-

evaluated. The pet trade substantially increases the risk of introducing novel or recombined BFDV 

isolates that may prove to have higher pathogenicity than the strain currently present on the island.  

The first detection of BFDV in a wild parrot species native to both Asia and Africa highlights 

the need for further research in these global regions and has implications for the conservation of 

vulnerable sympatric species. Most of the African continent is data deficient on BFDV incidence as 

no studies have been published on wild populations north of Zambia (Chapter 1). Similarly, little 

work has been conducted in Asia outside of South-East Asian cockatoo species. These results, in 

combination with the presence of BFDV in feral rose-ringed parakeet flocks outside of the species’ 

native range, provide further support for recommendations to assess global breeding and trade in 

parrots (Jackson et al. 2015a).  
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4.6 FIGURES AND TABLES 

Table 4.1 Details of all global BFDV replicase sequences analysed in this study. AU = Australia, BD = Bangladesh, CN = China, GM = Gambia,  

DE= Germany, ID = Indonesia, IT = Italy, JP = Japan, MU = Mauritius, NC = New Caledonia, NZ = New Zealand, PK = Pakistan, PL= Poland,  

PT = Portugal, SN = Senegal, ZA = South Africa, TH = Thailand, GB = United Kingdom, US = United States of America, ZM = Zambia. 

Accession # Host Year Country Captive/Wild Accession # Host Year Country Captive/Wild 

KJ953861 Adelaide rosella  2005 AU Wild JF519618 Red fronted parakeet  2010 NZ Wild 

KJ953867 Adelaide rosella  2006 AU Wild JQ782201 Yellow crowned parakeet  2011 NZ Wild 

KF688548 Australian ringneck parrot  1996 AU Wild JQ782202 Yellow crowned parakeet  2012 NZ Wild 

KF688549 Australian ringneck parrot 1996 AU Wild KT725800 Rose-ringed parakeet  2014 PK Wild 

AF311295 Bluebonnet  2000 AU Captive KT725801 Rose-ringed parakeet  2014 PK Wild 

EF457974 Cockatiel  2007 AU Captive JX221018 African grey parrot  2007 PL Captive 

EF457975 Cockatiel  2007 AU Captive JX221020 African grey parrot  2007 PL Captive 

KJ953854 Crimson rosella  2006 AU Wild JX221036 Alexandrine parakeet  2008 PL Captive 

KJ953855 Crimson rosella  2006 AU Wild JX221042 Alexandrine parakeet  2009 PL Captive 

AF311297 Eastern long billed corella  2000 AU Captive JX221029 Australian king parrot  2008 PL Captive 

AF311298 Galah  2000 AU Captive JX221033 Australian king parrot  2008 PL Captive 

KF385401 Gang gang cockatoo  1996 AU Captive JX221040 Blue fronted amazon  2008 PL Captive 

KF499132 Gang gang cockatoo  2004 AU Captive JX221005 Budgerigar  2010 PL Captive 

KF385402 Gang gang cockatoo  2004 AU Captive JX221009 Budgerigar  2011 PL Captive 

KF385408 Glossy black cockatoo  2006 AU Captive JX221013 Cape parrot  2003 PL Captive 

AF311300 Major Mitchells cockatoo  2000 AU Captive JX221043 Crimson rosella  2009 PL Captive 

KJ866054 Malee ringneck parrot  2014 AU Wild JX221006 Crimson rosella  2010 PL Captive 

KC693652 Orange bellied parrot  2011 AU Wild JX221035 Eastern rosella  2008 PL Captive 

KF188695 Orange bellied parrot  2013 AU Captive JX221021 Orange winged amazon  2007 PL Captive 

KF188681 Orange bellied parrot  2013 AU Captive JX221024 Pacific parrotlet  2007 PL Captive 

AF311299 Rainbow lorikeet  2000 AU Captive JX221015 Red winged parrot  2006 PL Captive 

JX049195 Rainbow lorikeet  2009 AU Captive JX221016 Red winged parrot  2006 PL Captive 

KF385399 Red tailed black cockatoo  2013 AU Wild JX221002 Rose-ringed parakeet  2010 PL Captive 



4. 23 
 

Accession # Host Year Country Captive/Wild Accession # Host Year Country Captive/Wild 

KF385400 Red tailed black cockatoo  2013 AU Wild JX221007 Rose-ringed parakeet  2011 PL Captive 

KF850537 Regent parrot  2013 AU Wild JX221030 Senegal parrot  2008 PL Captive 

AF311296 Rosy faced lovebird  2000 AU Captive JX221031 Senegal parrot  2008 PL Captive 

AF311301 Sulphur crested cockatoo  2000 AU Captive JX221025 White cockatoo  2007 PL Captive 

AF311302 Sulphur crested cockatoo  2000 AU Captive AY521236 African grey parrot  2004 PT Captive 

KF385419 Sulphur crested cockatoo  2013 AU Unknown EU810207 African grey parrot  2008 PT Captive 

KF673335 Swift parrot  2004 AU Wild KT725797 Rose-ringed parakeet  2015 SN Wild 

KF673336 Swift parrot  2004 AU Wild KT725799 Rose-ringed parakeet  2015 SN Wild 

KJ953863 Yellow rosella  2005 AU Wild AY450435 African grey parrot  2003 ZA Captive 

KJ953873 Yellow rosella  2005 AU Wild HM748920 African grey parrot  2008 ZA Captive 

KT725792 Rose-ringed parakeet  2013 BD Wild AY450440 African red bellied parrot  2003 ZA Captive 

KT725793 Rose-ringed parakeet  2013 BD Wild HM748924 Amazon  2008 ZA Captive 

GQ386944 Budgerigar  2008 CN Captive HM748925 Amazon  2008 ZA Captive 

KT725790 Rose-ringed parakeet  2014 GM Wild GQ165756 Budgerigar  2008 ZA Captive 

AY521237 African grey parrot  2004 DE Captive KM188453 Cape Parrot  2011 ZA Wild 

KF673337 Moluccan red lory  2005 ID Wild KM188454 Cape Parrot  2011 ZA Captive 

KF723384 African grey parrot  2009 IT Captive HM748926 Eclectus parrot  2008 ZA Captive 

KF723385 African grey parrot  2009 IT Captive AY450441 Jardine  2003 ZA Captive 

AB277746 Budgerigar  2006 JP Captive HM748929 Rose-ringed parakeet  2008 ZA Captive 

AB277747 Budgerigar  2006 JP Captive AY450439 Ruppells parrot  2003 ZA Captive 

AB514568 Cockatiel  2010 JP Captive AY450434 White bellied caique  2003 ZA Captive 

HQ641492 Mauritius parakeet  1993 MU Wild AY450436 White cockatoo  2003 ZA Captive 

HQ641491 Mauritius parakeet 1995 MU Wild GU015012 African grey parrot  2006 TH Captive 

HQ641493 Mauritius parakeet 1996 MU Wild GU015013 African grey parrot  2006 TH Captive 

KT753417 Mauritius parakeet 2009 MU Wild GU015014 Alexandrine parrot  2006 TH Captive 

KT753449 Mauritius parakeet 2013 MU Wild GU015015 Alexandrine parrot  2006 TH Captive 

HQ641486 Rose-ringed parakeet  2007 MU Wild FJ685980 Blue and yellow macaw  2006 TH Captive 

KT753490 Rose-ringed parakeet  2009 MU Wild GU015017 Chestnut fronted macaw  2006 TH Captive 
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Accession # Host Year Country Captive/Wild Accession # Host Year Country Captive/Wild 

JX049213 Eclectus parrot  2011 NC Captive GU015019 Eclectus parrot  2006 TH Captive 

JX049214 Eclectus parrot  2011 NC Captive GU015020 Eclectus parrot  2006 TH Captive 

JX049220 New Caledonian parakeet  2011 NC Captive GU015023 Great green macaw  2006 TH Captive 

KF768545 New Caledonian rainbow lorikeet  2012 NC Wild FJ685985 Lovebird  2005 TH Captive 

KF768546 New Caledonian rainbow lorikeet  2012 NC Wild GU015022 Palm cockatoo  2006 TH Captive 

JX049196 Rainbow lorikeet  2011 NC Wild GU015021 Red and green macaw  2006 TH Captive 

JX049198 Rainbow lorikeet  2011 NC Wild GU015018 Red shouldered macaw  2006 TH Captive 

JX049199 Rainbow lorikeet  2011 NC Wild FJ685989 Salmon crested cockatoo  2006 TH Captive 

JX049219 Red rumped parrot  2011 NC Captive FJ685978 Sulphur crested cockatoo  2005 TH Captive 

JX049221 Rose-ringed parakeet  2011 NC Captive FJ685979 Yellow crested cockatoo  2005 TH Captive 

GU936287 Eastern rosella  2008 NZ Wild AY521238 African grey parrot  2004 GB Captive 

JQ782196 Eastern rosella  2009 NZ Wild  KT725791 Rose-ringed parakeet  2012 GB Wild 

JF519619 Eastern rosella  2010 NZ Wild AY521235 Rosy faced lovebird  2004 GB Captive 

KF467251 Eastern rosella  2012 NZ Wild AY521234 Rose-ringed parakeet  2004 US Captive 

GQ396652 Red crowned parakeet  2008 NZ Wild AY450442 Black cheeked lovebird  2003 ZM Captive 

GQ396653 Red crowned parakeet  2008 NZ Wild 
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Figure 4.1 Maximum clade credibility tree for the replicase dataset under GTR+I+G nucleotide substitution 
model and a constant population size, relaxed clock evolutionary model. Taxon names are coloured by global 
region and wild individuals have been marked with a *. The TMRCA for the Mauritius isolates is 1987/88 
(indicated by the yellow bar). 
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Figure 4.2 Maximum clade credibility tree for the Mauritius replicase dataset under GTR+I+G nucleotide 

substitution model and a constant population size, relaxed clock evolutionary model. Tips are labelled with the 

Mauritius parakeet breeding season from which the sample was collected. The outgroup comprises Senegal, 

Zambia and South Africa. The estimated TMRCA for Mauritius isolates is 1987/88 (indicated by the yellow bar, 

95% HPD Interval 1980/81 to 1992/93). Distinct clades have been shaded in grey, purple and blue.  
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Table 4.2 Mean evolutionary rate and the 95% HPD intervals estimated for the replicase gene of BFDV 

isolates from both the global phylogenetic analysis and the combined Mauritius parakeet and feral rose-

ringed parakeet data set. 

Tree Mutation rate 95% HPD Interval 

Global 1.70 x 10-3 1.22 x 10-3, 2.27 x 10-3 

Mauritius 1.92 x 10-3 1.26 x 10-3, 2.64 x 10-3 
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Figure 4.3 Haplotype network displaying the diversity and evolution of BFDV replicase haplotypes in both 

Mauritius parakeet and feral rose-ringed parakeet hosts on Mauritius from 1993 to 2015. The size of each 

circle is proportional to the number of individuals sharing that viral haplotype and the length of the lines 

between circles are proportional to the number of base pair changes between each haplotype. Haplotypes 

containing isolates from rose-ringed parakeets have been demarcated by a red box. The single viral 

haplotype that is shared by 6 rose-ringed parakeet and 15 Mauritius parakeet hosts has been indicated by a 

red *. 
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Table 4.3 The number of haplotypes (H), gene diversity (h) and nucleotide diversity (π) within sites as well as 

the tests of neutrality to indicate BFDV population stability between the full replicase dataset analysed in 

this study and the smaller dataset analysed by Kundu et al. (2012), where p < 0.05 is considered significant. 

Dataset Fu’s F (p) D (p) H h π 

This study -24.59 (< 0.001) -1.81 (< 0.01) 67 0.90 (± 0.01) 0.02 (± 0.01) 

Kundu et al. 2012 1.99 (0.79) 0.40 (0.69) 15 0.66 (± 0.05) 0.01 (± 0.01) 
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Figure 4.4 Replicase nucleotide network displaying the distribution of BFDV haplotypes between Mauritius 

parakeet subpopulations on Mauritius from 1993 to 2015 where: GDEWS = The Gerald Durrell Endemic 

Wildlife Sanctuary, Ferney = Le Vallée de Ferney, Camp and Bel Ombre subpopulations reside within the  

Black River Gorges National Park. Red has been used to indicate infected individuals where their geographic 

location is unknown. 
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CHAPTER 5: General discussion and conclusions

Global research on PBFD and BFDV in both wild and captive parrot populations has

steadily increased over the last three decades. The focus of this research has encompassed

developments into a thorough understanding of the virus, it pathogenicity and its modes of

transmission, as well as screening whole populations and using molecular phylogeographic

approaches to inform conservation and management strategies. Our research has included

many of these elements, with a particular focus on how they affect the continued recovery

and management of the Mauritius parakeet population in the face of infectious disease. The

review presented in Chapter 1 determined that whilst many advances have been made into

the way in which we screen for the presence of BFDV and can interrogate the results, little

has been done to standardise these processes across research groups. The variety of

optimised diagnostic tests and technologies available for BFDV screening and analysis have

improved substantially since its first scientific assessment. However the lack of

standardisation complicates the ability to compare prevalence estimates or screening

results between different species, captive breeding facilities or global regions. Therefore

one of the primary reasons for conducting a series of tests on repeatability in Chapter 2 was

to provide the first step to resolving this issue.

Currently 88 species are known to be susceptible to infection with BFDV, many of

which are in decline in the wild due to pressures such as habitat loss and introduced species

within their native ranges. Standard PCR is one of the most widely used screening

techniques and we hope that, with the provision of a known margin of error surrounding a

negative result using this method, conservation managers and aviculturists will be better

equipped to rear and maintain healthy flocks. A more reliable estimate of individual

infection status is of particular value to translocation and reintroduction programmes,

highlighted by the previous failure encountered by the Mauritian Wildlife Foundation in

2005 when an entire translocated cohort of Mauritius parakeets were lost to PBFD.

Since the outbreak of PBFD in Mauritius in 2005 a rigorous hygiene protocol was

implemented in an attempt to reduce human-facilitated transmission. The continued

monitoring and management of this population has provided a unique opportunity to use an

endangered species’ recovery programme as an experimental platform for answering key
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management questions. The results presented in Chapter 3 involving the reciprocal design

experiment conducted over two consecutive breeding seasons demonstrated that regular

disinfection does reduce the prevalence of BFDV. However we also found that other

management related tools such as the provision of feeding hoppers can become a source of

reinfection and thus reduce the effectiveness of these disinfection protocols. These findings

are widely applicable to the recovery of other endangered or vulnerable psittacine species,

such as the Australian orange-bellied parakeet. However many research gaps still exist

regarding the true geographic extent of BFDV globally so it is currently unknown how many

species would benefit from management strategies inclusive of infectious disease.

The analyses conducted in Chapter 1 highlighted regions of high endemism such as

Central and South America, Africa and South East Asia that are currently largely data

deficient with regards to the presence of BFDV in both wild and captive parrot populations.

The first known BFDV positive results for wild rose-ringed parakeets of both West African

and Southern Asian origin provided by our molecular study in Chapter 4 support the need

for further investigation into these areas. The widespread abundance of rose-ringed

parakeets in both their native and invasive ranges provides an ideal host for viral

maintenance and spill over into other sympatric vulnerable species. Surprisingly these two

geographic regions were linked by the occurrence of a BFDV strain in a Gambian parakeet

host that was most closely related to isolates obtained from the Indian subcontinent. Like

other studies into the transmission of BFDV around the world, these results implicate the

global trade in companion birds as a vector for disease.

The introduction and persistence of Asian rose-ringed parakeets on Mauritius was

thought to be the most likely source of BFDV on the island but our phylogeographic analyses

suggest that this is unlikely. Instead we propose that the BFDV strain currently prevalent on

the island is the result of a single introduction, between 1987 and 1988, facilitated by the

global pet trade due to the isolate’s monophyletic nature and genetic similarity to isolates

from Senegalese parakeet hosts. Despite the initial concern that conservation managers had

when PBFD was first detected within the Mauritius parakeet population the species has

continued to recover. However, BFDV has evolved rapidly over the last decade, with a

description of the regular fluctuation in viral prevalence on the island demonstrated in

Chapter 3. The increased population of Mauritius parakeets due to intensive management
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for recovery has also directly increased the ability for BFDV to persist and two new viral

haplotypes have become prevalent in recent breeding seasons.

The continued spread of infection between subpopulations on Mauritius as well as

the connectivity of BFDV strains around the world highlights how the virus can be

unintentionally spread with considerable ease, even when a strict hygiene protocol is in

place to prevent such an occurrence. We therefore conclude with the recommendation that

policy relating to the continued import of Psittaciforme species into Mauritius is re-

evaluated, along with broader assessments elsewhere into global breeding and trade in

parrots outside of their native ranges. We have demonstrated that with standardised

screening, sound hygiene protocols and ongoing research into data deficient global regions,

the presence of BFDV and PBFD does not prevent a small or endangered population being

successfully recovered from the brink of extinction.
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