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Abstract 

To prevent response biases, personality questionnaires may use comparative response 

formats.  These include forced choice, where respondents choose among a number of items, 

and quantitative comparisons, where respondents indicate the extent to which items are 

preferred to each other. The present article extends Thurstonian modeling of binary choice 

data (Brown & Maydeu-Olivares, 2011a) to “proportion-of-total” (compositional) formats. 

Following Aitchison (1982), compositional item data are transformed into log-ratios, 

conceptualized as differences of latent item utilities. The mean and covariance structure of 

the log-ratios is modelled using Confirmatory Factor Analysis (CFA), where the item utilities 

are first-order factors, and personal attributes measured by a questionnaire are second-order 

factors. A simulation study with two sample sizes, N=300 and N=1000, shows that the 

method provides very good recovery of true parameters and near-nominal rejection rates. The 

approach is illustrated with empirical data from N=317 students, comparing model 

parameters obtained with compositional and Likert scale versions of a Big Five measure. The 

results show that the proposed model successfully captures the latent structures and person 

scores on the measured traits. 

 

Keywords: Thurstonian factor models, compositional data, multiplicative ipsative data 
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Thurstonian Scaling of Compositional Questionnaire Data  

In personality and similar assessments that rely heavily on respondent-reported 

measures, comparative judgments may be preferred to absolute judgments. This is because 

direct comparisons between questionnaire items facilitate differentiation and calibration 

(Kahnemann, 2011), thus reducing halo effects, and remove uniform biases such as 

acquiescence and leniency (Cheung & Chan, 2002). The most popular comparative format – 

forced choice – requires participants to select one of two items, or rank three or more items 

within so-called blocks. Until recently, forced-choice items have been scored by considering 

their relative positions in blocks – and thus yielding ipsative data, which is characterized by 

the total score on the test being the same for everyone (e.g., Clemans, 1966). Ipsative scores 

are centered on the persons’ mean, and obviously present a problem in applications where 

inter-individual comparisons are sought. Thurstonian IRT models (Brown & Maydeu-

Olivares, 2011a) were developed to overcome the problems of ipsative data in 

multidimensional forced-choice questionnaires. The approach uses SEM with categorical 

outcomes to model the mean and covariance structure of pairwise decisions – binary 

observed variables reflecting choices (prefer A to B, or prefer B to A) in every pair of items 

that respondents compare within forced-choice blocks. The pairwise decisions in these 

models are underlain by latent item utilities being compared (Thurstone, 1927; 1929), which 

in turn are underlain by psychological attributes the items are designed to measure. 

Simple choice, however, is not the only way of expressing preferences between items. 

Quantitative information about the extent of preferences can also be captured. In 

compositional preference tasks, respondents have to distribute a fixed number of points (for 

instance, 100) between several items according to the extent the items describe their 

personality or represent their attitude, etc. A questionnaire may be compiled of many such 

tasks (compositions). With this format, preferences are expressed as proportions with respect 
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to a common basis, also dubbed multiplicative ipsative data (Chan, 2003). This type of 

ipsative data requires a model that would capture the quantitative information contained in 

the compositions, and would enable proper scaling of psychological attributes to allow inter-

individual comparisons. The aim of the present article is to develop such a model.  

Attempts to analyze the general covariance structure of multiplicative ipsative data in 

psychometric applications have been made before. Chan and Bentler (1993) used the first-

order Taylor series approximation to restore the “true” pre-ipsative covariance structure of a 

single compositional task, which did not yield results of desired accuracy. More recently, 

Coenders, Hlebec and Kogovsek (2011) applied a general statistical approach of Aitchison 

(1982), mostly known outside of psychometrics in disciplines such as geology – to analyze 

compositional survey data. Aitchison suggested to log transform ratios of compositional 

responses, turning them into convenient differences, which Coenders and colleagues then 

modelled using a multitrait-multimethod (MTMM) design. Embedding compositional data in 

the SEM framework is a very attractive proposition in psychometrics, since latent variables of 

substantive interest – such as personality traits or attitudes – may be measured. Unlike in 

survey data, where the focus is on estimating parameters of stimuli (such as population means 

or covariances of each alternative in a composition), the focus in psychometric tests is on 

estimating person parameters (for example, person score on Extraversion). To date, however, 

no model has been suggested to infer proper measurement of individual differences from 

multiplicative ipsative questionnaire data. This article aims to address this gap. 

The article is organized as follows. First, the compositional data analysis tradition 

based on the seminal work of Aitchison (1982) is applied to responses collected within 

personality and similar questionnaires. It is shown that in the context of psychological 

assessment, the units of analysis – the log-transformed ratios of points – are readily 

interpretable as the difference of utilities that respondents feel for questionnaire items. This 
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interpretation enables the use of log-ratios as the continuous observed outcomes in an SEM 

framework. Thurstonian factor models are used to model the mean and covariance structure 

of the log-ratios. The article develops identification constraints and other technical detail 

required for estimating these models, and discusses how to deal with zeros that may be 

present in the compositions. To prove that the method recovers well the true item parameters 

and the true latent trait correlations, a simulation study is conducted using a simple 

compositional design and two sample sizes. Finally, an empirical data analysis example is 

provided to illustrate the approach.  

Compositional Questionnaire Data Analysis 

Compositional Format and Response Process 

Consider blocks consisting of n  2 stimuli (here, questionnaire items), among which 

respondents have to distribute a fixed number of points C (for example, C = 100) according 

to some instruction, for instance, the extent to which the items describe respondents’ 

personality, or reflect their attitudes, etc. Regardless of the exact values of n and C, the points 

assigned to each item divided by the block total are proportions – hence such blocks are 

called compositions, and collections of such blocks compositional data (Aitchison, 1982). 

Here is an example block, in which a hypothetical respondent distributed 100 points 

according to the extent the adjectives described his/her personality:  

 Points 

A. Dependable 50 

B. Curious 20 

C. Modest 20 

D. Calm 10 
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Since all points add to a constant, questionnaires in this format give rise to ipsative 

data. Regardless of the absolute psychological values a respondent may attach to the items, 

his/her responses reveal only relative strengths of preferences within blocks.  

We can presume that the observed composition is a result of a response process, in 

which respondent j evaluates the actual psychological values (vj1, vj2, …, vjn) he/she feels for 

the items, but is able to express them only as proportions of the given total C,  

 
1

n

ji ji jq

q

y C v v


  .  (1) 

We may also assume the values vji on a ratio scale, with 0 representing no value to the 

respondent, and the ratio x between two items meaning that the first item has x times the 

value to the respondent compared to the second item.  

Transformation of Compositions into Differences of Utilities 

The compositional format constrains respondents to express only proportions of the 

psychological values they feel for the items; however, the responses maintain the original 

ratios between the values: 

 
1
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.  (2) 

From the responses in our earlier example, we may infer that: (1) the psychological 

value of A to the respondent was five times greater than the value of D (ratio A/D = 5); (2) 

the value of B was two times greater than D (ratio B/D = 2); (3) the value of C was two times 

greater than D (ratio C/D = 2), etc. Note that the ratios of three items (arbitrarily, A, B and C) 

to the remaining item (arbitrarily, D) capture information about the composition fully. From 

these ratios, one can derive that the psychological values of B and C were equal (B/D:C/D = 
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B/C = 1); or that the value of A was two and a half times stronger than the values of either B 

or C (A/B = A/C = 2.5). 

More generally, responses of person j to a compositional block consisting on n items 

can be fully described by n – 1 ratios of points, whereby ratios of all but one items to a 

referent item k (arbitrarily, the last item in the block) are computed. Each ratio ji jky y

reflects how many times the value of item i is greater (or smaller) than the value of item k for 

the respondent.  

-------------------------------------------------------------- 

INSERT FIGURE 1 ABOUT HERE 

-------------------------------------------------------------- 

Figure 1 (panel a) illustrates a typical distribution of ratios of points given to 

questionnaire items within the same composition. It can be seen that the distribution is 

approximately lognormal. It was Aitchison’s (1982) idea to transform the bounded-by-zero 

and positively skewed ratios of compositional data using the natural logarithm function,  

    { , } ln ln ln
ji

j i k ji jk

jk

y
y y y

y

 
    

 

,  (3) 

to yield outcome variables yj{i,k} that are unbounded and approximately normally distributed 

(see Figure 1, panel b). The advantage of the log-ratio transformation is that it places 

compositional data in the unconstrained “multivariate real space, opening up all available 

standard multivariate techniques” (Aitchison & Egozcue, 2005; p. 831). Indeed, the 

transformation converts unworkable ratios into convenient differences. Given that the ratios 

of original psychological values are preserved in the observed data, as equality (2) shows, the 

log-ratios of observed scores yji represent the differences of logarithms of the latent 

psychological values vji. We can label the logarithms of latent values, ln(vji), as tji 

    { , } ln lnj i k ji jk ji jky v v t t    .  (4) 
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After log-ratio transformations have been applied to the observed responses, the 

resulting pairwise outcomes yj{i,k} can be conceptualized as the differences of arbitrarily 

scaled item utilities tji. Utility is a well-established concept introduced by Thurstone to 

describe the “affect that the object calls forth” (Thurstone, 1929; p.160). Here, we use the 

term for two reasons. First, to separate the “utility” tji from the previously used “value” vji, 

which, although representing the same psychological phenomenon are scaled and distributed 

differently. While ratio-scaled values vji are distributed log-normally, interval-scaled utilities 

tji are distributed normally. Second, to connect to the large body of literature on comparative 

data analysis using Thurstonian law of comparative judgment (Thurstone, 1927), to which the 

notion of utility is central.  Indeed, very clear parallels can be drawn between choice behavior 

driven by utility maximization, and assigning values in compositions. Thus, when the ratio of 

observed points in (3) is greater than one, the pairwise outcome yi{i,k} is positive, indicating 

that the first item in the pair has higher utility than the second item. In a choice task, this 

utility judgment would result is selection of the first item over the second. When the ratio of 

observed points in (3) is less than one, the pairwise outcome yi{i,k} is negative, indicating that 

the first item in the pair has lower utility than the second item. When the ratio of points is 

exactly 1, the pairwise outcome is zero, indicating that the two items in the pair have equal 

utilities. 

Treatment of Zeros in Compositions 

A challenge to computing log-ratios arises whenever respondents reject one or more 

items completely, assigning those zero points. Ratios including zeros yield either zero (when 

item i is given 0 points and item k is given a positive number of points) or infinity (when item 

k is given 0 points), for which natural logarithms cannot be computed. An effective solution 

to this problem was given by Martín-Fernández, Barceló-Vidal and Pawlowsky-Glahn 

(2003), who suggested replacing any zero with a fixed imputed value , which is smaller than 
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the smallest number of points actually possible to express in compositions (“smallest 

detectable value”). In geology applications where compositional analysis was originally 

developed, the rationale for this replacement strategy is that zeros typically result from 

rounding in measurement of very small values, or insufficient sensitivity of a measurement 

tool. In psychological assessment, it is reasonable to assume that zero may be a result of a 

very small subjective psychological value that falls below the smallest integer that can be 

provided as a response (or, more precisely, below a threshold that separates the felt value 

from the smallest integer). For example, if the smallest positive number of points that can be 

given to any one alternative is 1, then any value that feels to a respondent subjectively 

“smaller” than that gets expressed as 0. 

Because the replacement of zeros with imputed values  distorts the original 

compositions, non-zero responses also have to be adjusted to preserve the total C and the 

ratios among responses. The following replacement formula  

 ( )

0

,                            if 0

1
1 ,    if 0

ji

ji

ji r

ji ji

y

y

y
y y

C 




  
    

 





  (5) 

is recommended since it preserves the compositions (Martín-Fernández et. al., 2003). 

Specifically, ratios for all non-zero values are preserved, which also ensures preservation of 

the covariance structure of non-zero elements of compositions. The latter feature is extremely 

important to psychometric applications considered in the present paper. 

When deciding on the actual value of   to use for imputation, it is reasonable to aim 

for a value that is representative of a typical uncensored latent response. Research with 

geological compositional data showed that when the proportion of zeros in data was below 

10%, the replacement procedure performed best with  = 0.65 of the threshold (or the 

smallest detectable value; Martín-Fernández et al., 2003). Sandford, Pierson and Crovelli 
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(1993) suggested imputing value  = 0.55 of the threshold in the same type of applications. 

However, in psychological applications the actual threshold for assigning either 0 or the 

smallest permissible number of points (e.g. 1) is not known. A sensitivity analysis on the 

choice of the imputed value is recommended in such applications, particularly if the amount 

of zeros is substantial. 

Thurstonian Factor Models for Differences of Utilities 

The main goal of analysis of questionnaire data is to model broader factors underlying 

item responses (personal attributes that a questionnaire is designed to measure). 

Conceptualizing the observed variables in compositional questionnaires as the differences of 

item utilities provides a straightforward connection to established models of choice data – 

Thurstonian factor models (Maydeu-Olivares & Böckenholt, 2005). These models have been 

applied to forced-choice questionnaires (Brown & Maydeu-Olivares, 2011a; 2012), where the 

observed comparative judgments are binary (prefer item i or item k). In such choice formats, 

the differences of utilities are not observed, only their dichotomizations are observed. In the 

case of compositional data, the differences of utilities are observed directly. These are the 

pairwise log-ratios (4) – continuous variables, which we assume normally distributed. This 

section describes Thurstonian factor models for continuous outcomes, and shows how to 

estimate these models.  

Mean and covariance structure of utility differences. The utility judgment about a 

questionnaire item is assumed a random process, with systematic influences from 

psychological attribute(s) the item is designed to measure and a random error.  The most 

common model for item utilities is a linear factor model (e.g., McDonald, 1999),  

 
1

λ ε
d

ji i ia ja ji

a

t


     , (6) 
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where i is the mean of utility ti, 1 2, ,...,j j jd    are factor scores (latent traits) weighted by 

factor loadings 1 2, ,...,i i id   , and ji is the unique factor. Because respondents are sampled 

randomly from the population of interest, we can treat all person-specific parameters 

(subscripted j) as random effects, and present the utilities (6) in matrix form 

   t μ Λη ε . (7) 

The common factors  1 2, ,..., d
   η  are distributed across people as multivariate 

normal with the covariance matrix The error terms  are normally distributed and 

uncorrelated with the common factors and with each other so that their covariance matrix 
2  

is diagonal. In a questionnaire with p compositional blocks containing n items each, there are 

pn items, therefore the vector of item means  contains pn elements.  is a (pn  d) matrix of 

the factor loadings of pn items on d factors. Most often, questionnaire items are designed to 

measure one factor only, so that the matrix of factor loadings  has only one non-zero entry 

in every row (has an independent clusters basis; McDonald, 1999). The items within one 

block may indicate the same trait (unidimensional comparisons) or different traits 

(multidimensional comparisons).  

According to expression (4), the observed variables and the units of analysis in 

compositional questionnaires – the log-ratios of items i and k – are the differences of item 

utilities, yj{i,k} = tji – tjk. Because each composition of n items yield only n 1 pairwise 

outcome variables , with p compositions there are p(n  1) observed variables, written in 

matrix form as 

 y Αt . (8) 

In this expression, A is a (p(n  1)  pn) block-diagonal design matrix, representing the 

contrasts between all but one item in a block to the referent item (arbitrarily, the last item). 
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When n = 2, each block in A is A2 =  1 1 , whereas when n = 3, and n = 4, they are, 

respectively, 

 3

1 0 1

0 1 1

 
  

 
A ,    

4

1 0 0 1

0 1 0 1

0 0 1 1

 
 

 
 
  

A . (9) 

Expressions (8) and (7) give the basis of modeling the observed log-ratios as a higher-

order factor structure. Figure 2 illustrates this structure for a hypothetical test measuring four 

latent traits with three blocks of size n = 4. It can be seen that the latent utilities t are 

modelled as first-order factors according to (8). Each observed log-ratio is determined by two 

latent utilities (note that there is no error term in equation (8)); the utility loadings are fixed to 

1 and 1 respectively. All but one of n utilities in each block is indicated by one observed 

log-ratio; only the utility of the referent item in the block is indicated by all n–1 log-ratios. 

The latent traits  are modelled as second-order factors according to (7). The second-order 

factors are indicated by the latent utilities of their respective items; the factor loadings are 

freely estimated. The first-order latent variables – the utilities – have error/disturbance terms 

. 

-------------------------------------------------------------- 

INSERT FIGURE 2 ABOUT HERE 

-------------------------------------------------------------- 

Given the assumption of normally distributed log-ratios, only the means and 

covariances are needed to describe the observed data. The mean and covariance structure of y 

is given by 

 y  μ Αμ γ ,  and     2

y
  Σ A ΛΦΛ Ψ A , (10) 

where  is the (p(n  1)) vector of intercepts replacing the differences of utility means
i
.  
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Estimable parameters. The following fixed parameters are estimated in a 

questionnaire with p compositions, each containing n items:  

1. Intercepts. One intercept {i,k} is estimated for each outcome variable y{i,k}, making 

p(n  1) estimable intercepts in total.  

2. Factor loadings (the elements of ). These are the factor loadings of item utilities. 

When every item measures only one attribute, one loading per item is estimated, pn 

loadings in total. Items may measure more than one attributes; more factor loading 

parameters are estimated in this case. 

3. Error variances, the diagonal elements of 
2 . These are the residual variances of 

item utilities, pn in total.  

4. Factor covariances, the matrix . There are d(d 1)/2 covariances to estimate.  

Model identification. To identify the model, one needs to set metrics for the second-

order factors , the first-order factors t, and the residuals . The second-order factors’ (traits) 

variances are set to one, and their means are set to zero. The first-order factors’ (utilities) 

means and the means of their residuals are set to zero. Conveniently, all latent variable means 

are set to zero by default in Mplus. These are the only identification constraints needed in the 

general case
ii
.  

A special case arises when compositions contain only two items (n = 2). In this case, 

the residual variances of the two utilities underlying just one observed outcome are not 

separately identified, and need to be constrained equal to identify the model. An additional 

special case arises when compositions consist of two items (n = 2), each measuring one of 

two assessed attributes (d = 2). Because this model is essentially an exploratory factor model 

(i.e. each observed log-ratio variable indicates both second-order factors), additional 

identification constraints need to be imposed on some factor loadings.  
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The important feature of measurement of individual differences with compositional 

questionnaires, and other comparative response formats (e.g. forced-choice format), is that 

the scales of the latent traits are generally identified (i.e. their proper covariance matrix  can 

be estimated). Thus, ipsative data do not arise, and interpersonal comparisons can be made. 

Brown (2014) shows that identifiability of the latent traits is made possible by multiple items 

indicating each trait, and a full-rank matrix of contrast loadings A. Empirical non-

identification is possible when, for example, factor loadings within every block are equal, or 

when factor loadings within every attribute are equal.  This is in contrast to the general 

indeterminacy of the scale origin of the item utilities (Böckenholt, 2004), which results from 

impossibility to uniquely determine n utilities from n – 1 contrasts. For instance, one cannot 

estimate the covariances of utilities from single compositions without imposing further 

constraints (Maydeu-Olivares & Böckenholt, 2005), which is a natural limitation in 

applications focused on stimuli rather than broader traits underlying them.  

Model and person parameters estimation. The mean and covariance structure (10)

of the utility differences can be estimated using general-purpose SEM software, using 

maximum likelihood estimation.  Mplus (L.K. Muthén & B.O. Muthén, 1998-2012) 

conveniently combines all necessary features
iii

. After the model parameters have been 

estimated, person scores on the attributes measured by a questionnaire may be estimated. 

When all outcomes are continuous, the regression method with correlated factors (Lawley & 

Maxwell, 1971) is used for estimating the factor scores by Mplus. Conveniently, Standard 

Errors for all estimated traits are also provided. 

Simulation Study: Estimating Item Parameters in a Short Compositional Test 

To investigate how well the proposed approach can recover true model parameters, a 

simulation study was carried out. The study considered an extremely simplified 
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compositional test with four traits measured by three blocks of four items (quads), or 12 items 

in total. The structural model for the test is presented in Figure 2; an Mplus input code to test 

this model is provided in Appendix A. Each trait is measured by exactly three items; the first 

item in each block measures Trait 1, the second item in each block measures Trait 2, etc. The 

true model parameters for this design were taken from the numerical Example 2 in Brown 

and Maydeu-Olivares (2012), to enable parallelism and easy comparison between the present 

study using the compositional format and the previously published study using the forced-

choice format. The true generating parameter matrices – the item intercepts , the factor 

loadings , the residual variances 
2
, and the trait covariances  – are provided in Appendix 

B.  

The study generated 12 normally distributed utilities conforming to the given factor 

structure (with the given intercepts, factor loadings and residual variances), and the given 

covariances between the latent traits. Note that this stage does not involve compositional data 

at all – the generated utilities can be directly analyzed with the usual confirmatory factor 

model for rating scale data. Next, the differences of utilities were computed in each block 

between the three first items and the last (referent) item according to (4). The compositional 

model depicted in Figure 2 was then fitted to the utility differences. The model estimated 39 

parameters (12 factor loadings, 12 error variances, 9 intercepts and 6 factor correlations), and 

had 15 degrees of freedom. 

Two sample sizes were tested in the simulation study, N = 300 and N = 1000, with 

1000 replications each. To determine the percentage of parameter bias, the true parameter 

was subtracted from the average parameter value across 1000 replications; the result was 

divided by the true parameter and multiplied by 100. To determine standard error bias, the 

standard deviation of the parameter estimates across 1000 replications (with the large number 
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of replications this is considered population standard error) was subtracted from the average 

of the estimated standard errors across replications; the result was divided by the population 

standard error and multiplied by 100. 

The results were very encouraging for both the smaller and the larger sample sizes. 

For N = 300, the average 
2
 was 15.745 (df = 15), with the rejection rate .073, which was 

only slightly higher than the nominal rate .05. The parameter bias ranged from –3.65% to 

1.40%, and the standard error bias ranged from –3.95% to 5.68%. For N = 1000, the average 


2
 was 15.119 (df = 15), with the rejection rate .047, extremely close to the nominal rate .05. 

The parameter bias ranged from –1.29% to 0.56%, and the standard error bias ranged from –

5.96% to 6.03%. For both sample sizes, the utility residual variances were least accurately 

estimated, with predominantly negative parameter bias (the residual variances were slightly 

underestimated). The other parameters were estimated very precisely, with the average bias 

close to zero.  

Empirical Study: A Big Five Measure in Compositional Format 

Materials 

Items from the English version of the Forced-Choice Five Factor Markers (FCFFM; 

Brown & Maydeu-Olivares, 2011b) were used in this study. The items measure broad 

markers of the Five Factors of personality (Neuroticism, Extraversion, Openness to 

experience, Agreeableness and Conscientiousness). The FCFFM questionnaire consists of 60 

behavioral statements (e.g. “I leave a mess in my room”), with 12 statements measuring each 

of the Five Factors. The 60 items are organized in 20 blocks of three (triplets) so that each 

item in a block measures different trait, and equal numbers of pairwise comparisons are made 

between different traits. For more detail on the rationale and development of the FCFFM see 

Brown and Maydeu-Olivares (2011b). 
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In the original version of the questionnaire, respondents have to rank order the 

statements within blocks according to the extent the statements are true of them. For the 

purpose of this study, the response format was changed so that the blocks of three items 

became compositions, in which respondents had to distribute C = 15 points according to the 

extent the statements were true of them. In addition, the respondents were asked to rate the 

statements using a 5-point scale (“very untrue” – “somewhat untrue” – “in between” – 

“somewhat true” – “very true”). Compositional and rating tasks for the same three items were 

performed consecutively: first the respondents rated block 1, then provided compositional 

ratings for block 1, then moved to block 2, etc. 

Participants and Procedure 

Psychology students from a UK university completed the questionnaire online in 

return for research credits. Out of N = 317 participants, 80.1% were female. Age ranged from 

18 to 51 years (median = 19.0; mean = 19.9; SD = 4.3 years). The participants were asked to 

“complete a short personality questionnaire using a conventional rating format and an 

alternative format”, and were then debriefed.  

Analyses 

Sensitivity analysis to determine the optimal imputed value. Before fitting a CFA 

model to the compositional questionnaire responses, any zeros had to be imputed with a small 

value . To determine the optimal imputed value in the present questionnaire, sensitivity 

analyses were conducted. Typically, such analyses would measure discrepancies between 

“true” data (data with no zeros but potentially very small values present) and imputed data 

(where any small values below the “smallest detectable value” or threshold would be 

replaced with ), for multiple chosen values . The imputed value yielding the smallest 

discrepancy with the true data would be then selected as optimal. In the present study, 
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however, the “true” psychological values behind “censored” zero entries are not known. An 

acceptable strategy in this situation would be to use available proxies of the items’ 

psychological values vji, from which “true” compositions can be inferred using (1). 

Fortunately, Likert ratings of the items can help obtain such proxies.  

The Likert ratings can be assumed the observed indicators for the underlying item 

utilities tji. Given the relationship between the utility and the psychological value tji = ln(vji), 

the psychological values were obtained as vji = exp(tji), and then were transformed into 20 

compositions of three items using (1). The resulting compositions were considered proxies 

for “true” compositions
iv

, which possessed the necessary feature of absence of zeros (i.e. all 

resulting values were positive). In the constrained simplex space, the discrepancy between the 

proxy “true” composition vj = (vj1, vj2, …vjn) and the observed composition yj = (yj1, yj2, …yjn) 

of n items for person j is the Aitchison distance (Aitchison, 2002)  

         
1 2

2

1

, ln ln g
n

A j j ji j ji j

i

d y g v


 
   
 
v y v y .  (11) 

The Aitchison distance is simply the Euclidean distance between two log-ratio 

transformations centred at the geometric mean of each composition,  
1

1

n
n

j ji

i

g x


 
  
 
x . 

With this, the overall measure of discrepancy for each block across N respondents is the 

mean squared Aitchison distance, 

  2

1

1
msd ,

N

A j j

j

d
N 

  v y .  (12) 

The value  that minimized the mean squared distances across all 20 compositions was 

considered optimal, and was adopted for imputing any zero values in observed responses. 

Fitting the measurement models. First, the rating scale (single-stimulus) responses 

were analyzed using a straightforward confirmatory factor model with five correlated traits. 



THURSTONIAN SCALING OF COMPOSITIONAL QUESTIONNAIRES  19 

 

The five-point ratings were treated as continuous data, which is considered a reasonable 

approach to analysis of ordinal responses with five or more categories (Rhemtulla, Brosseau-

Liard, & Savalei, 2012). Twelve observed item scores indicated each of the five factors.  

Second, the compositional responses to the FCFFM were analyzed. After replacing all 

zero responses with the optimal value  based on the result of the sensitivity analysis, and 

adjusting the remaining items in the compositions using formula (5), 40 log-ratios were 

computed, two in each of the 20 blocks, with the last item in each block used as referent. A 

higher-order factor model was fitted, with 60 latent utility variables underlying the 40 

observed log-ratios, and five second-order factors (the Big Five) underlying the latent 

utilities. Each second-order factor was indicated by 12 latent utilities.  

Both the rating scale and compositional models were fitted in Mplus 7.2, using robust 

maximum likelihood estimator. To judge goodness of fit, we considered the chi-square 

statistic (
2
), the Standardized Root Mean Square Residual (SRMR), and the Root Mean 

Square Error of Approximation (RMSEA). When testing covariance structures, SRMR values 

less than .08 are thought to indicate good fit; for RMSEA, values less than .06 are thought to 

indicate good fit (Hu & Bentler, 1999). 

Person scores and their standard errors. For each response format, model-based 

factor scores were estimated for each participant and saved by Mplus. The variances of the 

estimated factor scores and their Standard Errors (SE) are also printed. The SE values were 

squared to obtain the estimated population error variances of each scale. Reliability of each 

scale was computed using the classic definition – as the proportion of variance in the 

estimated factor score   due to the true score : 

 
 

 
   

 

2varvar

var var

SE  
  

 
. (13) 
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Results 

Sensitivity analysis to determine the optimal imputed value. The 20 compositions 

varied  in the proportions of zero values present. The proportions ranged from 1.1% zeros 

among its 3*317 observed responses for the composition {i13, i14, i15} to 10.7% zeros for 

the composition {i25, i26, i27}. The average proportion of zeros among all the compositions 

was 4.7%. Ten  values between 0.1 and 0.9 with an increment 0.1 were tried for imputation, 

for which the mean square Aitchison distances (msd) to the corresponding 20 compositions 

derived from ratings were computed. For any given value , the msd values  for the 20 

compositions were distributed with a large positive skew. Therefore, the median msd across 

the 20 compositions was judged the best measure of central tendency. The median msd for all 

imputed values   are plotted in Figure 3 (the mean msd are also plotted). It can be seen that 

the median discrepancy between the imputed compositional data and the rating scale proxies 

is the largest for the smallest value  = .1, it then rapidly decreases, reaches a minimum at  = 

.5, and then slowly increases again as the  value approaches the maximum of 0.9. The same 

is true for the mean msd. Exactly the same shape of the msd function when “true” small 

values were known was observed by Martín-Fernández et al. (2003). As the result of this 

sensitivity analysis, we chose to use the common value  = .5 for imputing all zeros in the 

empirical example. 

-------------------------------------------------------------- 

INSERT FIGURE 3 ABOUT HERE 

-------------------------------------------------------------- 

Measurement model for rating scale data. The exact fit of the model for rating 

scale responses was relatively poor, with 
2
 = 3897.13 on 1700 degrees of freedom (p < 

0.001), SRMR = .086; although approximate fit was almost acceptable with RMSEA = .064 

(90 percent confidence interval .061-.066). The largest modification index (
2
 = 126.08) 
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pertained to correlated residuals of item 25 (“I love to read challenging material”) and item 

36 (“I avoid difficult reading material”). The next largest modification index (
2
 = 67.72) was 

for correlated residuals of items 29 (“I get irritated easily”) and 47 (“I rarely get irritated”); 

and the next (
2
 = 62.59) was for correlated residuals of item 49 (“I leave a mess in my 

room”) and item 56 (“I like to tidy up”). The remaining modification indices were much 

lower in magnitude (
2
 = 30 or less). As can be seen, all areas of misfit can be easily 

understood as shared specific item content within the respective broad personality factors, 

rather than any cross-loadings or other problems.  

After adding correlated residuals for the three pairs of items identified above, the 

modified model fitted slightly better, with 
2
 = 3602.65 on 1697 degrees of freedom (p < 

0.001), SRMR = .085, RMSEA = .060 (90 percent confidence interval .057-.062). The 

model-based correlations of the five latent traits are given in Table 1 (above the diagonal).  

-------------------------------------------------------------- 

INSERT TABLE 1 ABOUT HERE 

-------------------------------------------------------------- 

Measurement model for compositional data. The compositional model yielded 

better goodness of fit than the rating scale model. Specifically, it had reasonable exact fit, 
2
 

= 1209.88 on 690 degrees of freedom (p < 0.001), SRMR = .072; and good approximate fit, 

RMSEA = .049 (90 percent confidence interval .044-.053). Just like in the rating model, the 

largest modification index (
2
 = 38.42) pertained to correlated residuals of items 25 and 36. 

The next largest was the index 
2
 = 31.06 pertaining to correlated residuals of item 18 (“I 

often forget to put things back in their proper place”) and item 49 (“I leave a mess in my 

room”). Other modification indices were of magnitude 
2
 = 17 or less. As in the rating model, 

the areas of misfit were due to similarity of item content within their respective scales, which 

was over and above their shared variance due to the broad personality factor.  
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After adding correlated residuals for the two pairs of item identified above (that is, the 

residuals of the first-order latent utilities were correlated), the modified model fitted slightly 

better, with 
2
 = 1135.96 on 688 degrees of freedom (p < 0.001), SRMR = .070, RMSEA = 

.045 (90 percent confidence interval .041-.050). The estimated correlations between the five 

latent dimensions in the compositional model are given in Table 1 (below the diagonal). It 

can be seen that the correlations yielded by both rating scale and compositional models were 

largely similar.  

Score reliability. The standard errors and reliabilities of the estimated scale scores in 

the rating scale and compositional models are given in Table 2. All scales in both format 

yielded reliable scores in the range of .8–.9, except the scale Openness, which yielded low 

reliability in the compositional format ( = .611) but not in the rating scale format ( = .812). 

For other scales, the scores were slightly more reliable when the Likert ratings were used. 

Relationships between rating scale and compositional factor scores. Estimated 

factor scores from the two CFA models were used to explore the relationships between 

corresponding scales (hetero-method mono-trait correlations), which are given in Table 2. 

The estimated trait scores of the same concepts correlated highly, and were similar in 

magnitude to their respective reliability coefficients. The correlation coefficients corrected 

for unreliability of both estimated scores are provided in Table1 (on the diagonal). It can be 

seen that except the trait Agreeableness, for which the corrected correlation was .914, the 

other traits’ corrected correlations were very close to 1.  

-------------------------------------------------------------- 

INSERT TABLE 2 ABOUT HERE 

-------------------------------------------------------------- 
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Conclusions 

The present article extends the Thurstonian modeling approach beyond binary choice 

data to quantitative preferences collected in the form of compositions, or the “proportion-of-

total” response format. Analysis of compositional data has an established tradition based on 

the seminal work of Aitchison (1982). Here, this tradition is adopted for conceptualizing 

compositional responses collected within personality and similar questionnaires as 

proportional reflection of the strengths of psychological values that respondents feel for 

questionnaire items. Despite the constraint on the total of all the psychological values within 

each composition, the ratios of observed points preserve the ratios of the unobserved 

psychological values. This enables the use of ratios of points awarded to items within 

compositions to infer the psychological values, and through the values to infer the 

psychological attributes the questionnaire is designed to measure. All information contained 

in compositional blocks of size n is fully described by ñ = n – 1 ratios of points to an 

arbitrarily chosen referent item k (for example, the last item in the block). These pairwise 

ratio variables are distributed approximately log-normally; the log transformation is applied 

to the ratios to achieve approximately normally distributed outcome variables.  

The log-ratios of item points are the units of compositional analysis; they can be 

thought to represent arbitrarily scaled pairwise differences of items’ utilities (Thurstone, 

1927). The mean and covariance structure of log-ratios is analyzed using confirmatory factor 

analysis, assuming that two latent utilities determine each observed log-ratio, and that a 

number of second-order factors (attributes the questionnaire measures) underlie the latent 

utilities. The model is estimated using maximum likelihood, and the person attribute scores 

are estimated by the regression method with correlated factors (Lawley & Maxwell, 1971). 

The effectiveness of the proposed estimation procedure was assessed in a simulation 

study, where normally distributed utilities conforming to a simple factor structure were 
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generated. The differences of generated utilities representing arbitrarily scaled ratios of points 

in a hypothetical compositional questionnaire with blocks of size n = 4 were analyzed using 

the proposed approach with a second-order CFA model. The estimated parameters were very 

close to the true parameters; and the rejection rates were very close to nominal for both, a 

smaller sample with N = 300 and a larger sample with N = 1000. The conclusion from this 

study is that estimation of compositional questionnaire models is robust with the minimum 

sample size usually recommended for CFA (N = 300). 

Following recommendations of Martín-Fernández et al. (2003), any zeros in item 

scores are replaced with a small non-zero value before computing the log-ratios, to avoid zero 

and infinity ratios. After this non-parametric imputation procedure, the compositions are 

adjusted to maintain the original ratios of non-imputed values. This is important for ensuring 

that the covariance structure of the compositions stays intact. The imputed value must be 

smaller than the smallest non-zero value possible to submit as a response. Although general 

recommendations can be made (e.g. replacing zeros with .5 of the smallest admissible 

response); the exact choice may be determined by sensitivity analyses in each particular 

application. Considering the relative complication to otherwise straightforward analysis 

imposed by the presence of zeros in compositions, it may be sensible to bar participants from 

entering zero values, particularly when the total number of points C is large. This can be 

easily achieved in computerized administrations, where validation on the permissible entries 

can be implemented easily.  

Finally, the proposed approach was illustrated with empirical data. A comparison of 

confirmatory factor analyses based on compositional and Likert-type responses to the Forced-

Choice Five Factor Markers (FCFFM) using a sample of N=317 students was carried out. 

Sensitivity analyses, which minimized the Aitchison distances between the imputed 

compositions and the Likert-based proxies for item utilities, yielded the optimal imputed 
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value  = .5. A second-order CFA model was fitted to the imputed compositions, yielding a 

reasonable goodness of fit. The hypothesized response process and factorial structure were 

confirmed and cross-validated by very close similarity with the constructs based on Likert 

ratings. It is concluded that the proposed approach is a straightforward and effective way of 

analyzing compositional questionnaire data.   

 

Endnotes

                                                 

i
 Utility means are usually not of interest and are not estimated here.   There are more 

means to estimate in each block (n) than there are observed intercepts (n – 1); thus the means 

sub-model is over-parameterized. The means can be estimated only when additional 

constraints are implemented; for instance, the mean of one referent item in each block can be 

set to 0. For more detail, see Maydeu-Olivares & Böckenholt (2005).   

ii
 For the reader familiar with Thurstonian IRT modelling, the identification constraints 

needed for compositional data are exactly the same as imposed with binary forced-choice 

data, except there is no need to set the residual variance of one utility per block, since these 

are identified with continuous outcomes. 

iii
 An Excel macro, which automates syntax building for testing compositional 

questionnaire data using Mplus can be obtained from the author upon request. 

iv
 Considering the compositions of ratings rather than the ratings themselves gives the 

advantage of removing any uniform response biases that may be present in ratings, making 

the rating data more robust proxies for true item utilities. 
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Appendix A. Mplus Syntax for Fitting the Model Presented in Figure 2 

DATA: FILE = 3quads.dat; 

 

VARIABLE: 

 NAMES =y1-y12;  !observed compositions 

 USEVARIABLES   !these are the log-ratios produced by the DEFINE command  

 i1i4 i2i4 i3i4 

 i5i8 i6i8 i7i8 

 i9i12 i10i12 i11i12;  

 

DEFINE:   

 ! computation of log-ratios for 3 blocks 

 i1i4=ln(y1/y4);   i2i4=ln(y2/y4);   i3i4=ln(y3/y4); 

 i5i8=ln(y5/y8);   i6i8=ln(y6/y8);   i7i8=ln(y7/y8); 

 i9i12=ln(y9/y12);  i10i12=ln(y10/y12);   i11i12=ln(y11/y12);  

 

ANALYSIS: ESTIMATOR=MLR; 

 

MODEL: 

 !utilities - first order factors 

 t1  BY  i1i4@1;  t2  BY  i2i4@1;  t3  BY  i3i4@1; 

 t4  BY  i1i4@-1 i2i4@-1 i3i4@-1; 

 

 t5  BY  i5i8@1;  t6  BY  i6i8@1;  t7  BY  i7i8@1;  

 t8  BY  i5i8@-1 i6i8@-1 i7i8@-1; 

 

 t9  BY  i9i12@1;  t10  BY  i10i12@1;   t11  BY  i11i12@1; 

 t12  BY  i9i12@-1 i10i12@-1 i11i12@-1; 

 

 !errors of log-ratios are zero since they are determined by the utility differences 

 i1i4-i11i12@0; 

 

 !latent traits - second order factors 

 F1 BY t1* t5 t9; 

 F2 BY t2* t6 t10; 

 F3 BY t3* t7 t11; 

 F4 BY t4* t8 t12; 

 

 F1-F4@1; 

 

OUTPUT: STDY;   !standardized solution 

 

SAVE:  !saves estimated trait scores and their SEs 

 FILE=3quadsResults.dat; SAVE=FSCORES; 
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Appendix B. Population Parameters for the Simulation Study 

 

 2

0,0.5, 1,0.5,0.5,0.2,0.2, 0.3, 0.5,1,1.5,0

1,1,1,1,1,1,1,1,1,1,1,1

1 0.4 0 0.4

0.4 1 0.3 0.3

0 0.3 1 0

0.4 0.3 0 1

diag

   



 
 
 
 
 
 

 







   

1 0 0 0

0 0.8 0 0

0 0 1.3 0

0 0 0 0.8

1.3 0 0 0

0 1 0 0

0 0 0.8 0

0 0 0 1.3

0.8 0 0 0

0 1.3 0 0

0 0 1 0

0 0 0 1

 
 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
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Table 1 

Estimated correlations between the Big Five markers based on the rating scale and 

compositional versions of the FCFFM in the empirical example  

 

 N E O A C 

Neuroticism (N) 1.015 -.258** -.193** .033 .132 

Extraversion (E) -.303** 1.012 .307** .195** -.091 

Openness (O) -.184* .139 1.070 .295** .030 

Agreeableness (A) .107 .115 .350** .914 .171* 

Conscientiousness (C) .228** -.207* -.249* .046 .983 

 

Note: The mono-method hetero-trait latent correlations from the rating scale model 

are above the diagonal, from the compositional model are below the diagonal. The hetero-

method mono-trait correlations of estimated factor scores corrected for unreliability are on 

the diagonal. ** Correlations are significant at the .01 level, two-tailed. * Correlations 

significant at the .05 level, two-tailed. 
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Table 2 

Standard errors of measurement and reliabilities of the Five Factor markers based on the 

rating scale and compositional versions of the FCFFM in the empirical example  

 Rating scale  Compositional  

  SE    var      SE    var     corr ,R C   

Neuroticism (N) .306 .907 .897  .367 .865 .844 .883** 

Extraversion (E) .298 .911 .903  .383 .853 .828 .875** 

Openness (O) .398 .841 .812  .529 .720 .611 .754** 

Agreeableness (A) .319 .898 .887  .399 .841 .811 .775** 

Conscientiousness (C) .339 .885 .870  .423 .821 .782 .811** 

Note: ** Correlations are significant at the .01 level, two-tailed. 
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Figure 1.  Example distribution of ratios of points given to two questionnaire items within the 

same composition, and the corresponding log-ratio. 
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Figure 2.  Measurement model for a simple design consisting of three compositional blocks 

of four items (quads) used in the simulation study.  

Note. Asterisks mark freely estimable parameters. There are 30 parameters pertaining 

to the covariance structure shown in this Figure, plus there are 9 intercept parameters (one per 

each observed outcome) that are not shown. To scale the second-order factors , their 

variances are set to 1 and means to 0; to scale the utility errors, their means are set to 0. 
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Figure 3.  Sensitivity of measure of distortion (the mean and the median of “msd” between 

imputed data and compositions of proxy values across 20 blocks) to changes in the imputed 

value  

 


