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Abstract: The experimental evidence suggests that groups are inefficient at providing 

threshold public goods. This inefficiency appears to reflect an inability to coordinate over how 

to distribute the cost of providing the good. So, why do groups not just split the cost equally? 

We offer an answer to this question by demonstrating that in a standard threshold public good 

game there is no collectively rational recommendation. We also demonstrate that if full 

agreement is required in order to provide the public good then there is a collectively rational 

recommendation, namely, to split the cost equally. Requiring full agreement may, therefore, 

increase efficiency in providing threshold public goods. We test this hypothesis experimentally 

and find support for it.  
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1. Introduction 

A threshold public good is a public good that is provided if and only if contributions reach a 

certain threshold. The classic example would be a capital fundraising project where, say, $1 

million is needed to build a new school, cancer unit or theatre (Andreoni 1998). The potential 

applications of the threshold public good concept are, however, far more general than this 

archetypal example (e.g. Hardin 1982; Taylor and Ward 1982; Hampton 1987, Van Lange et 

al. 2013). For instance, the fixed costs associated with running any charity, or group activity, 

require a minimum, and often quite large, amount be reached to make the activity viable. It is 

crucial, therefore, to understand the conditions under which threshold public goods can be 

efficiently provided. 

The provision of threshold public goods does not generate the tension between 

individual rationality and group outcomes typically associated with public goods (Bagnoli and 

Lipman 1989). In particular, there are Nash equilibria where the good is produced at the 

efficient level. Financing the public good does, however, require people to solve a non-trivial 

coordination problem, because they must coordinate on how to distribute the cost of providing 

the public good (Isaac, Schmidtz and Walker 1989). Experimental evidence suggests that 

groups are not good at solving this problem; the success rate of providing threshold public 

goods is typically around 40 to 60 percent, even after experience (Croson and Marks 2000, 

Alberti and Cartwright 2015, Cartwright and Stepanova 2015). Such low success is inefficient 

and potentially very costly to the group.1  

This level of inefficiency is intriguing when one takes into account a seemingly obvious 

solution to the coordination problem, namely, split the cost of providing the good equally 

(Issac, Schmidtz and Walker 1989). Speaking generally, we know that groups can coordinate 

well when there is a focal point that aids coordination (Schelling 1960; Mehta et al. 1994; 

Bardsley et al. 2010). For some reason the ‘split the cost equally’ focal point is not enough, in 

itself, to help groups coordinate in standard threshold public good games (Issac, Schmidtz and 

Walker 1989). This is most powerfully illustrated by (Croson and Marks 2001) who find that 

recommending the equal split did not increase success rates above 60%.2   

                                                           
1 Various institutions have been considered that can increase efficiency such as voting (Rauchdobler et al. 
2010), money back guarantee (Cartwright and Stepanova 2015), and communication (Tavoni et al. 2011, 
Krishnamurthy 2001). But no silver bullet has been found. We discuss the potential role of communication 
more in the conclusion.  
2 In more detail, they found that recommending the equal split had no effect on success rates in a symmetric 
threshold public good game (see below for a definition of symmetry). It did significantly increase success rates 
in an asymmetric treatment, but only to the level seen in the symmetric treatments, from 48% to 57%. 
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 This raises two fundamental questions: (a) why is the focal point of ‘split the cost 

equally’ not sufficient to enable coordination in a standard threshold public good game, and 

(b) is there any way to encourage groups to successfully coordinate using this focal point. 

Answering these two questions is fundamental in understanding the conditions under which 

threshold public goods can be efficiently provided. In this paper we offer an answer to both 

questions. In doing so, we also add to the emerging literature on focal points in asymmetric 

coordination games (Crawford et al. 2008; Isoni et al. 2013, 2014).    

In explaining our approach we begin by noting that the standard threshold public good 

game sees group members make individual contributions towards the public good. All, 

therefore, an individual decides is her contribution, e.g. ‘I will contribute $15’. If interaction is 

repeated (as it is in standard threshold public good experiments) then an individual’s choice 

can be a signal to others what to contribute (Fatas, Godoy and Ramalingam 2013), or 

demonstrate commitment to a pattern of contributions (Sell and Wilson 1991). This can be 

viewed as a form of indirect communication. The messages an individual can send, however, 

are limited to own contribution.  

In applications one often observes the potential for more complex strategies. For 

instance, a group member may say what everyone in the group should do, e.g. ‘we should each 

contribute $15’. This allows a richer form of indirect communication. In addition, a group 

member may make their contribution conditional on others, e.g. ‘I will contribute $15 if and 

only if everyone else contributes $15’. Such conditional giving changes the rules governing 

public good provision because agreement is needed. And it is this latter possibility that will be 

the main focus in this paper. In particular we shall consider a full agreement game that can be 

briefly described as follows. Each group member specifies a vector of contributions detailing 

what they and others in the group should contribute. The public good is then provided if and 

only if every group member states the same vector of contributions (and the sum of individual 

contributions reach the threshold). Any disagreement amongst group members means the 

public good is not provided. 

We shall demonstrate that the full agreement game has some interesting theoretical 

properties. We would argue that the game is also of applied interest. To give some context to 

this, let us consider some applications (which will be discussed more in the conclusion). At one 

extreme, an individual giving a small donation to charity has little chance to say what others 

should contribute or make her giving conditional on others. This scenario fits well the standard 

threshold public good game. At the other extreme consider residents living in an apartment 

building where unanimity is neccessary in order to progress on some project to change the 
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building. Or, consider decision making in the EU where unanimity is required for a change in 

policy on, say, the EU budget or common agriculatural policy. These scenarios fit well the full 

agreement game. The crucial thing is that group members cannot act unilaterally if no 

agreement is reached. The appartment resident cannot start changing the building without the 

agreement of others. Similarly, members of the EU cannot change the EU budget without the 

agreement of others. 

Note that the full agreement game pre-supposes some form of instituition that only 

allows public good provision in the event of agreement. This could be an exogenous institution, 

such as property right legislation in the case of an apartment building. Or it could be 

endogenous, as in the case of the EU where state member states have voted to have such an 

institution. Some institution, though, has to exist. To illustrate the point consider climate 

change negotiations. Here, countries are not shy in saying what other countries should do. So, 

we can talk of countries specifying a vector of contributions. It is ultimately, though, up to 

individual countries (and citizens) how much they contribute to climate change abatement. 

Europe, for instance, is free to reduce emissions even if the US will not meet previous 

commitments like those in the Kyoto Protocol. So, climate change (at least at the moment) is 

not a full agreement game (Gerber and Wichardt 2009, Cherry and McEvoy 2013).   

The direct consequence of requiring full agreement is to make the group’s task more 

difficult: Group members not only need to be individually willing to contribute enough to 

finance the good but also need to agree with each other on what they should each contribute. 

We will argue, however, that this direct, negative effect can be outweighed by an indirect, 

positive effects. In particular, the fact that contributions are made conditional on what others 

do has two basic consequences: (i) it increases the criticality of each individual’s decision, 

while (ii) offering a guarantee that others cannot exploit a willingness to contribute. The prior 

literature suggests these two consequences will be positive. There is evidence, for instance, that 

a perception of increased criticality increases contributions (Au, Chen and Morita 1998; De 

Cremer and van Dijk 2002) and a fear of exploitation discourages contributions (e.g. Isaac et 

al. 1989; Rapoport and Eshed-Levy 1989). Consider also Bchir and Willinger (2013), who find 

that the requirement to pay a small fee in order to benefit from a threshold public good increases 

success at providing the good. This effect partly reflects the reduced chance of exploitation that 

the fee provides.  

A need for agreement can only succeed, though, if group members have the means and 

desire to coordinate. Increased criticality, for example, can only work if group members know 

what is expected of them. This is much more likely if there is a focal point around which to 
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coordinate. In short, criticality makes every individual feel as though their decision is necessary 

in order to achieve a successful outcome, while the existence of a focal point makes it possible 

for the group members to successfully coordinate. As already discussed, however, evidence 

from the standard threshold public good game does not seem consistent with a strong focal 

point. Bchir and Willinger (2013), for instance, found that the introduction of a fee makes a 

difference by increasing the number of subjects that contribute. It did not increase average 

contributions or particularly help subjects to coordinate.3 Will, therefore, group members be 

able to reach agreement? 

To formally analyze the consequences of requiring agreement we apply the seminal 

theory of focal points due to Sugden (1995). In the theory, a focal point is captured by the 

concept of a collectively rational recommendation (CRR). The key thing to note at this stage 

is that CRR is a signficant strengthening on Nash equilibrium. Specifically, if a group member 

deviates from the CRR then all players (not just the deviating player) become worse off. If a 

CRR exists then it is unique, but in most games one does not exist. Our main theoretical result 

can be summarized as follows: (i) in a standard threshold public good game there is no CRR, 

but (ii) if full agreement is required to provide the public good there is a unique CRR, namely, 

to split the cost equally. This result explains why members find it difficult to finance the public 

good in a standard threshold public good game. It also suggests that a requirement for full 

agreement will help groups coordinate and successfully finance the good, because it increases 

the prominence of the equal split focal point.  

We test experimentally the hypothesis that a need for agreement increases efficiency in 

providing the public good and find support for it. At this point we remind that a need for 

agreement inevitably brings with it a richer means of indirect communication because group 

members specify a vector of contributions. Our experimental design allows us to distinguish 

whether the opportunity to specify a vector of contributions or the need for agreement is more 

important in aiding coordination, and we come down strongly on the side of the need for 

agreement. Indeed, the requirement to specify a vector of contributions appears to make no 

difference to success in providing the public good. By contrast, a need for agreement increases 

success, provided subjects are sufficiently experienced. The finding that people can 

successfully coordinate when they need to reach agreement is consistent with the evidence that 

                                                           
3 The introduction of a fee may make providing the public good more focal. It does not, however, help 
coordinate on how to split the cost of providing the public good. 
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people can coordinate in ‘matching games’ because of team reasoning or collective rationality 

(Schelling 1960; Sugden 1993; Mehta et al. 1994; Bacharach 2006, Bardsely et al. 2010).             

Recall that the need for agreement has two indirect benefits. The discussion so far has 

focussed on the benefit of increased criticality. Let us look in more detail at the benefit of 

avoiding exploitation. A need for full agreement gives each group member veto power over 

how the public good will be financed. Thus, a member cannot be ‘unexpectedly’ exploited by 

others. This may give increased confidence to contribute by solving the assurance problem 

(Issac et al. 1989; Bchir and Willinger 2013). It does not, however, completely rule out 

‘exploitation’. In particular, if endowments are asymmetric then the equal split focal point is 

commonly seen as unfair (see van Dijk and Wilke 1993, 1995). Given that all members 

contribute the same to the public good one can think of those with a high endowment as 

exploiting those with a low endowment. This creates a tension between the focal point and 

fairness, or between efficiency and fairness. Indeed, those with a relatively low endowment 

may shun the equal split focal point. 

The notion that ‘unfair’ focal points can create a tension in games with asymmetric 

outcomes is not new (Schelling 1960). Relatively few experimental studies, however, have 

looked at behaviour in asymmetric coordination games.4 To explore the tension between focal 

points and fairness in more detail we compare a setting with symmetric endowments to settings 

with progressively more asymmetric endowments. In the case where full agreement is required, 

we find that increasing asymmetry has no effect on success of providing the public good. This 

suggests that subjects were willing to trade efficiency for equity. Isoni et al. (2013) obtain a 

similar result when looking at tacit bargaining games.5 This apparent willingness of subjects to 

trade equity for efficiency demonstrates the power of focal points.  

We proceed as follows: In Section 2 we introduce the threshold public good games we 

shall study. In Section 3 we provide our main theoretical results. In Section 4 we describe our 

experimental design and in Section 5 we provide the results. In Section 6 we conclude and 

relate our results to the recent literature on climate treaties (see, in particular, Barrett 2013, 

Barrett and Dannenberg 2012, 2014, Tavoni et al. 2011).  

                                                           
4 Crawford, Gneezy and Rottenstreich (2008) find that slight asymmetry reduces the power of focal points. 
Other studies, however, paint a more positive picture. For example, Cooper et al. (1993) and Holm (2000) find 
that a focal point can help players coordinate in the battle of the sexes game.  
5 In the battle of the sexes game all efficient equilibrium are asymmetric and so focal points may merely aid 
coordination. In a threshold public good game and bargaining game there can be a focal asymmetric 
equilibrium (e.g. split the cost equally) and a less focal symmetric equilibrium (e.g. split the cost 
proportionally). This creates a tension between the focal point and fairness. 
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2. Threshold public good games 

We begin by describing what we shall call the standard type of game. The prior literature has 

focussed on this type of game when considering simultaneous threshold public good games 

(e.g. Suleiman and Rapoport 1992, Cadsby et al. 2008). The standard type of game will then 

be contrasted with three other types of game that progressively differ in the feedback given to 

players, strategy set, and the payoff function. The differences are summarized in Table 1 and 

will be explained in more detail below.  

In all the games we shall consider there is a set of n players 𝑁 = {1, … , 𝑛}. Each player 

𝑖 ∈ 𝑁 is endowed with 𝐸𝑖 units of a private good where 𝐸𝑖 is some positive integer. If 𝐸𝑖 = 𝐸𝑗  

for all 𝑖, 𝑗 ∈ 𝑁 then we say the game is symmetric. Otherwise we say that it is asymmetric. 

There also exist positive integers  𝑇 and 𝑉 that we shall refer to respectively as the threshold 

and the individual value of the public good. The importance of 𝑇 and 𝑉 will become clear 

shortly. To clarify terminology, a particular game is characterized by two things, the type of 

game – standard, full agreement etc. – and the set of parameters of the game – n, E, T and V. 

In a standard game, independently and simultaneously all players must decide how 

much of their endowment to contribute towards a public good. The strategy set, therefore, of 

any player  𝑖 ∈ 𝑁 is the set of integers 𝑆𝑖 ≡ {0,1, … , 𝐸𝑖}. A strategy profile (𝑐1, … , 𝑐𝑛) details 

the strategy of each player, where 𝑐𝑖 ∈ 𝑆𝑖 will be called the contribution of player 𝑖 ∈ 𝑁. Let 

𝐶 = ∑ 𝑐𝑖
𝑛
𝑖=1  denote total contributions. If total contributions equal or exceed the threshold T 

then each player receives an additional 𝑉 units of the private good. We also say that the group 

was successful in providing the public good. If contributions are below the threshold each 

contribution is refunded. The payoff of player i, given strategy profile (𝑐1, … , 𝑐𝑛), is, therefore,  

𝑢𝑖(𝑐1, … , 𝑐𝑛) = {
𝐸𝑖 − 𝑐𝑖 + 𝑉     if  𝐶 ≥ 𝑇
𝐸𝑖       otherwise

                                      (1) 

At the end of the game each player is told total contributions, 𝐶, but is not told the individual 

breakdown of contributions. In a standard game with feedback players are informed at the end 

of the game on the list of individual contributions 𝑐1, … , 𝑐𝑛, but all other details remain the 

same. The difference between a standard game and standard game with feedback was 

considered by Croson and Marks (1998). 

In a vector game with feedback the strategy set of a player differs to that of a standard 

game or standard game with feedback. Independently and simultaneously all players must 

decide on a vector of contributions saying how much they ‘suggest’ each player should 

contribute towards the public good. The strategy set of any player  𝑖 ∈ 𝑁 is, therefore, 𝑆𝐶𝐺 ≡



8 
 

𝑆1 × … × 𝑆𝑛 . Strategy profile (𝑣𝑐1, … , 𝑣𝑐𝑛) details the strategy of each player where 𝑣𝑐𝑖 =

(𝑐𝑖1, … , 𝑐𝑖𝑛) ∈ 𝑆𝐶𝐺  denotes the vector of contributions chosen by player 𝑖 and 𝑐𝑖𝑗 is the amount 

that player i ‘suggests’ player j should contribute. Let 𝑐𝑖 = 𝑐𝑖𝑖 be the amount that player i is 

willing to contribute and, as before, let 𝐶 = ∑ 𝑐𝑖
𝑛
𝑖=1  denote total contributions. The payoff 

function remains the same as in a standard game (see equation (1)), and so, given strategy 

profile (𝑣𝑐1, … , 𝑣𝑐𝑛), the payoff of player i, is  

𝑢𝑖(𝑣𝑐1, … , 𝑣𝑐𝑛) = {
𝐸𝑖 − 𝑐𝑖 + 𝑉     if  𝐶 ≥ 𝑇
𝐸𝑖       otherwise

 

Note, that only the value of 𝑐𝑖 for all 𝑖 ∈ 𝑁 has any direct bearing on the game.  At the end of 

the game players are, however, informed on the vector of contributions chosen by each player, 

as well as total contributions. The value of 𝑐𝑖𝑗  for 𝑗 ≠ 𝑖  is, therefore, a means of indirect 

communication between players over time. We know that such indirect communication can 

make a difference in public good games (e.g. Fatas, Godoy, and  Ramalingam 2013).  

In a full agreement game the strategy set is the same as in a vector game with feedback 

but the payoff function is different. The public good is provided if and only if total contributions 

equal or exceed the threshold and all players choose the same strategy. This means every player 

must agree on what every other player should contribute, 𝑐𝑖𝑗 = 𝑐𝑙𝑗  for any 𝑖, 𝑗, 𝑙 ∈ 𝑁 . 6 

Formally, given strategy profile (𝑣𝑐1, … , 𝑣𝑐𝑛), the payoff of player i is  

𝑢𝑖(𝑣𝑐1, … , 𝑣𝑐𝑛) = {
𝐸𝑖 − 𝑐𝑖 + 𝑉     if  𝐶 ≥ 𝑇   and 𝑣𝑐1 = ⋯ = 𝑣𝑐𝑛

𝐸𝑖       otherwise
           (2) 

At the end of the game players are informed on the vector of contributions suggested by each 

player, and total contributions, as in a vector game. As discussed in the introduction a full 

agreement game requires some institution that does not allow public good provision in the 

event there is not full agreement.  

 

[INSERT TABLE 1 AROUND HERE] 

   

 We finish this section by introducing some notation and assumptions that will prove 

useful in the remainder of the paper. Let 𝑚𝑖 = min {𝐸𝑖, 𝑉} and let 𝑀 = ∑ 𝑚𝑖𝑖 . Informally, we 

can think of 𝑚𝑖 as the maximum that player 𝑖 can or will be willing to contribute, and 𝑀 as 

the maximum that all players can or will be willing to contribute. We shall use 𝑀−𝑖 = 𝑀 −

𝑚𝑖 and 𝐶−𝑖 = 𝐶 − 𝑐𝑖 to denote, respectively, the amount that could be and are contributed by 

                                                           
6 This does not in any way imply symmetry of contributions, i.e. 𝑐𝑖𝑗 = 𝑐𝑖𝑙 . 
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players other than 𝑖. Finally, we shall assume throughout the following that 𝑀 > 𝑇 and 

𝑛𝑚𝑖 ≥ 𝑇 for all 𝑖 ∈ 𝑁. Thus, it is socially efficient to provide the public good, and players 

can, if they choose, split the cost of providing the public good equally.  

 

3. Nash equilibria, and focal points 

Given that it is socially efficient to provide the public good it is clearly crucial that players 

collectively contribute the threshold amount, 𝑇, or more. Typically, however, there will be 

many ways to distribute the cost amongst players. This leads to a non-trivial coordination 

problem with conflict of interest. We begin this section by briefly illustrating how this problem 

is encapsulated in a multiplicity of Nash equilibria. We then look at whether the existence of a 

focal point can help players ‘resolve the problem’ by coordinating on one of the equilibria.     

 

3.1. Nash equilibria 

Consider, first, a standard game, and standard game with feedback. In these games, strategy 

profile (𝑐1, … , 𝑐𝑛) is a Nash equilibrium if and only if 𝑢𝑖(𝑐𝑖, 𝑐−𝑖) ≥ 𝑢𝑖(𝑐𝑖
′, 𝑐−𝑖) for all 𝑐𝑖

′ ∈ 𝑆𝑖.
7 

We say the Nash equilibrium is strict if 𝑢𝑖(𝑐𝑖, 𝑐−𝑖) > 𝑢𝑖(𝑐𝑖
′, 𝑐−𝑖) for all 𝑐𝑖

′ ∈ 𝑆𝑖, 𝑐𝑖
′ ≠ 𝑐𝑖. One 

can easily derive that strategy profile (𝑐1, … , 𝑐𝑛)  is a Nash equilibrium with public good 

provision if and only if 

𝐶 = 𝑇   and 𝑐𝑖 ≤ 𝑉 for all 𝑖 ∈ 𝑁. 

The payoff of player 𝑖 is 𝐸𝑖 − 𝑐𝑖 + 𝑉. Any, ceteris paribus, change in player 𝑖’s strategy would 

strictly lower her payoff, either to 𝐸𝑖 if she decreases her contribution or to 𝐸𝑖 − 𝑐𝑖
′ + 𝑉 if she 

increases her contribution to 𝑐𝑖
′ > 𝑐𝑖.  

The assumption that 𝑀 > 𝑇 guarantees the existence of several Nash equilibria with 

public good provision.8  To illustrate, we refer to Table 2 which introduces three sets of 

parameters that will be important in the rest of the paper. Strategy profiles (25,25,25,25,25) 

and (15,35,25,25,25) are two, of many, Nash equilibria that exist with these parameters. 

Clearly, the first of these equilibria is preferred by player 2, and the second preferred by player 

1. More generally, individual preferences over the set of Nash equilibria will inevitably differ 

                                                           
7 Where 𝑢𝑖(𝑐𝑖 , 𝑐−𝑖) denotes the payoff of player 𝑖 if she contributes 𝑐𝑖  and the contributions of others are 
denoted 𝑐−𝑖.  
8 There may exist Nash equilibria with no public good provision, but given that every perfect Nash equilibrium 
is a Nash equilibrium with public good provision (Bagnoli and Lipman 1989), we shall not dwell on this 
possibility.  
At least one such equilibria will exist if 𝑚𝑖 < 𝑇 for all 𝑖 ∈ 𝑁. In this case, player 𝑖 receives payoff 𝐸𝑖  and no, 
ceteris paribus, change in her strategy would change her payoff.  
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amongst the group. Hence, there is a conflict of interest between players on how to coordinate 

and split the cost of the public good (Isaac et al. 1989; Rapoport and Eshed-Levy 1989).  

  In a vector and full agreement game strategy profile (𝑣𝑐1, … , 𝑣𝑐𝑛) is a Nash equilibrium 

if and only if 𝑢𝑖(𝑣𝑐𝑖, 𝑣𝑐−𝑖) ≥ 𝑢𝑖(𝑣𝑐𝑖
′, 𝑣𝑐−𝑖) for all 𝑣𝑐𝑖

′ ∈ 𝑆𝐶𝐺. In a vector game strategy profile 

(𝑣𝑐1, … , 𝑣𝑐𝑛) is a Nash equilibrium with public good provision if and only if 

𝐶 = 𝑇   and 𝑐𝑖 ≤ 𝑉 for all 𝑖 ∈ 𝑁. 

This condition is identical to that in the standard game and standard game with feedback.9 In 

the full agreement game strategy profile (𝑣𝑐1, … , 𝑣𝑐𝑛) is a Nash equilibrium with public good 

provision if and only if 

𝐶 = 𝑇 and 𝑐𝑖 ≤ 𝑉 for all 𝑖 ∈ 𝑁 and 𝑣𝑐𝑖 = 𝑣𝑐𝑗  for all 𝑖, 𝑗 ∈ 𝑁. 

Clearly, this adds the additional requirement that all players should agree.  

Table 2 details the number of Nash equilibria with public good provision in a standard 

or full agreement game for each set of parameters. Clearly, the number of equilibria is very 

large. ‘Standard’ equilibrium refinements do nothing to reduce this number. So, if the problem 

players’ face is to coordinate on a unique Nash equilibrium then they clearly have a potentially 

tough problem (Isaac et al. 1989, Asch, Gigliotti and Polito 1993). The experimental evidence 

with regards to the standard type of game confirms this. While groups successfully provide the 

public good up to 60 percent of the time (Croson and Marks 2000), it is rare to observe a Nash 

equilibrium. Perhaps more importantly, groups that do play a Nash equilibrium in one round 

(of repeated interaction) appear no more likely to play a Nash equilibrium in future rounds 

(Cadsby and Maynes 1999). This likely reflects the desire of at least one player to transition 

towards a ‘better for them’ Nash equilibrium. Coordinating on a Nash equilibrium, therefore, 

is like looking for a needle in a haystack, with the temptation to throw the needle away when 

you find it in hope of finding a better one. No wonder we observe inefficiency in providing the 

public good. Or, is there a trick to solving this problem?  

 

[INSERT TABLE 2 AROUND HERE] 

 

3.2. Focal points 

We know in general that the existence of a focal point is one means by which players can 

coordinate on a Nash equilibrium (Schelling 1960). It has been suggested that a threshold 

                                                           
9 The expansion of the strategy space dramatically increases the number of Nash equilibria. This is because a 
player’s suggestion of what others should contribute is irrelevant in determining the Nash equilibrium. 
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public good game has a natural focal point, namely to split the cost of providing the public 

good equally (e.g. Isaac, Schmidtz and Walker 1989; Suleiman and Rapoport 1992; see also 

Holmström and Nalebuff 1992). We know, however, that split the cost equally is not a good 

description of how players behave in the standard type of game (e.g. Isaac, Schmidtz and 

Walker 1989; Suleiman and Rapoport 1992; Marks and Croson 1999; Croson and Marks 2001; 

Coats et al. 2009). That leaves the puzzle and challenge discussed in the introduction: why is 

split the cost not ‘focal enough’, and is there any way to make it ‘more focal’?  

To answer these questions it is natural to apply a theory of focal points. In this paper 

we shall apply the seminal theory of focal points due to Sugden (1995). The theory uses a 

principle of collective rationality. 10  The basic idea behind collective rationality, or team 

reasoning, is that a player will recognize a common interest in trying to coordinate on some 

equilibrium (Sugden 1993; Bacharach 1999). Thus, players look for a decision rule that if 

followed by all is most likely to produce successful coordination; ‘less ambiguous’ and ‘more 

obvious’ rules should tend to be favoured (Schelling 1960). In order to apply the theory imagine 

someone giving advice to each player on how much to contribute, or what vector of 

contributions to suggest. The advice should consist of a decision rule that can be interpreted as 

a comprehensive plan to play the game (we shall have more to say on this shortly). A 

recommendation 𝑅 = (𝑅1, … , 𝑅𝑛) details a decision rule 𝑅𝑖 for every player 𝑖 ∈ 𝑁.  

A recommendation 𝑅 is said to be collectively rational (CRR) if there exist payoffs 

𝑢1
∗, … , 𝑢𝑛

∗  such that (i) if every player 𝑖 ∈ 𝑁 follows her advice 𝑅𝑖 then expected payoffs are 

given by 𝑢1
∗, … , 𝑢𝑛

∗ , and (ii) if some player 𝑖 ∈ 𝑁 does not follow her advice 𝑅𝑖 then, whatever 

the decision rule of the other players, the expected payoff of any player 𝑗 ∈ 𝑁 is strictly less 

than 𝑢𝑗
∗.11 The definition of CRR is stronger than that of Nash (or correlated) equilibrium in 

two important respects: it requires that any deviation from the recommendation results in all 

players getting a lower payoff irrespective of whether others follow their recommendation. 

This is a tough condition to satisfy. Tough enough that, in general, there can be at most one 

collectively rational recommendation and in many games there will be none. Sugden (1995) 

convincingly argues that if a CRR exists then each player should act on that recommendation. 

A CRR is thus akin to a focal point of the game. 

                                                           
10 Gauthier (1975), Bacharach (1993), Casajus (2001) and Janssen (2001) also use variants of the principle of 
collective rationality. 
11 This definition is a reduced form of the definition given by Sugden (1995).  Sugden (1995) allows that advice 
be conditional on a player’s private description of the game and that it can consist of a set of acceptable 
decision rules. Note also that Sugden (1995) considers a game with two players and we consider the natural 
extension to more than two players. 
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In a standard game (or standard game with feedback) one can think of a decision rule 

as a contribution or set of contributions. Thus, 𝑅𝑖 ⊂ 𝑆𝑖, and player 𝑖 is advised to randomly 

choose a contribution from set 𝑅𝑖. For example, the advice might be ‘contribute 25’, 𝑅𝑖 = {25}, 

or ‘contribute something between 25 and 35’, 𝑅𝑖 = {25, … ,35}. Analogously, in a vector game 

or a game with full agreement one can think of a decision rule as a vector of contributions or 

set of vector of contributions. Thus, 𝑅𝑖 ⊂ 𝑆𝐶𝐺, and player 𝑖 is advised to randomly choose a 

vector of contributions from set 𝑅𝑖. For example, the advice might be ‘split the cost equally’ 

𝑅𝑖
𝐸: = {(

𝑇

𝑛
, … ,

𝑇

𝑛
)} 

or ‘contribute zero and split the cost amongst others’, which if 𝑖 = 1 gives  

𝑅1 = {(0,
𝑇

𝑛 − 1
, … ,

𝑇

𝑛 − 1
)}. 

Crucial, at this point, is to explain the information players have about the labels in the 

game. We can contrast the opposite extremes of common knowledge and a scrambled labelling 

procedure (Crawford and Haller 1990; Sugden 1995). In either case it is assumed that every 

player knows the parameters of the game, 𝑛, 𝐸1, . . . , 𝐸𝑛, 𝑇, 𝑉. What may or may not be known 

are player labels. With common knowledge every player knows which player is ‘player 1’ with 

endowment 𝐸1, and knows that everyone knows that etc. With a scrambled labelling procedure 

every player knows that there is a ‘player 1’ with endowment 𝐸1 but they don’t know who that 

player is. This distinction is most easily explained with an example.    

Consider the advice ‘player 𝑛 contributes zero and split the cost amongst others’. In the 

case of common knowledge this equates to  

𝑅𝑖 = {(
𝑇

𝑛 − 1
, … ,

𝑇

𝑛 − 1
, 0)}. 

With a scrambled labelling procedure it is ambiguous who player 𝑛 is. The advice is, thus, 

more appropriately read as ‘let someone else contribute zero and split the cost amongst the rest 

of us’. This advice, therefore, if 𝑖 = 1, equates to 

𝑅1 = {(
𝑇

𝑛 − 1
, 0,

𝑇

𝑛 − 1
, … ,

𝑇

𝑛 − 1
) , (

𝑇

𝑛 − 1
,

𝑇

𝑛 − 1
, 0, … ,

𝑇

𝑛 − 1
) , … , (

𝑇

𝑛 − 1
, … ,

𝑇

𝑛 − 1
, 0)}. 

The crucial point to recognise is that the scrambling of labels constrains how specific advice 

can be. The advice ‘let someone else contribute zero ....’ is ambiguous because there are 𝑛 − 1 

potential candidates for the ‘someone else’. 

 In order to formalize terms in the context of a standard game we say that strategy profile 

(𝑐1, … , 𝑐𝑛)  is an 𝑖 -permutation of strategy profile (𝑐1
′ , … , 𝑐𝑛

′ )  if there exists a one-to-one 

mapping 𝑔: 𝑁 → 𝑁 such that 𝑐𝑗 = 𝑐𝑔(𝑗)
′  for all 𝑗 ∈ 𝑁 and 𝑔(𝑖) = 𝑖. In short, the contribution of 
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player 𝑖 remains the same while the contributions of all others are potentially swapped around. 

We say that there is a scrambled labelling procedure if any permissible decision rule 𝑅𝑖 

satisfies the following condition: if (𝑐1, … , 𝑐𝑛) ∈ 𝑅𝑖  and (𝑐1
′ , … , 𝑐𝑛

′ )  is an 𝑖 -permutation of 

(𝑐1, … , 𝑐𝑛) then (𝑐1
′ , … , 𝑐𝑛

′ ) ∈ 𝑅𝑖. We say that there is not a scrambled labelling procedure if 

any decision rule 𝑅𝑖 ⊂ 𝑆𝑖 is permissible. This definition naturally extends to a vector game and 

full agreement game. 

We can now state our main theoretical result. This shows that there exists a collectively 

rational recommendation if and only if (i) full agreement is required, (ii) labels are scrambled, 

and (iii) the number of players is sufficiently large. The CRR is to split the cost equally. 

Intuitively, this is because split the cost equally is unambiguous while all other advice is 

ambiguous. Recall that collective rationality will favour decision rules that are less ambiguous.  

Theorem 1: There exists a collectively rational recommendation if and only if the game is of 

the full agreement type, there is scrambled labelling, and  

𝑇

𝑛𝑉
< 1 − (

1

𝑛 − 1
)

𝑛−1

.                                                      (2) 

When it exists, the collectively rational recommendation is to split the cost equally, 𝑅 =

(𝑅1
𝐸 , … , 𝑅𝑛

𝐸). 

Proof: Consider a standard game and suppose that 𝑅 = (𝑅1, … , 𝑅𝑛) is a CRR. Without loss of 

generality we can assume 𝑅𝑖  consists of a single strategy 𝑟𝑖 ∈ 𝑆𝑖 . Note that it is irrelevant 

whether labels are scrambled or not. If players follow the recommendation then payoffs are 

either 𝑢𝑖
∗ = 𝐸𝑖 − 𝑟𝑖 + 𝑉 for all 𝑖 ∈ 𝑁, or 𝑢𝑖

∗ = 𝐸𝑖  for all 𝑖 ∈ 𝑁. Let 𝑋 denote the set of strict 

Nash equilibria with public good provision. We know, because 𝑀 > 𝑇, that the set 𝑋 contains 

at least two equilibria. This means that there exists a strategy profile (𝑐1, … , 𝑐𝑛) ∈ 𝑋 that differs 

from 𝑅 , in the sense that 𝑐𝑖 ≠ 𝑟𝑖  for at least one player 𝑖 ∈ 𝑁 . If players play this Nash 

equilibrium then payoffs are 𝑢𝑖
′ = 𝐸𝑖 − 𝑐𝑖 + 𝑉 > 𝐸𝑖 for all 𝑖 ∈ 𝑁. If 𝑐𝑖 < 𝑟𝑖 then clearly 𝑢𝑖

′ >

𝑢𝑖
∗. If 𝑐𝑖 > 𝑟𝑖 then either (a) 𝑢𝑖

∗ = 𝐸𝑖 in which case 𝑢𝑖
′ > 𝑢𝑖

∗ or (b) there exists some 𝑗 ∈ 𝑁 such 

that 𝑐𝑗 < 𝑟𝑗 and 𝑢𝑗
′ > 𝑢𝑗

∗. Either way, if players behave according to (𝑐1, … , 𝑐𝑛) rather than 𝑅 

at least one player will receive a strictly higher payoff. This contradicts 𝑅 being a CRR. A 

similar argument can be used in a standard game with feedback. 

 Consider next a vector game and CRR 𝑅 = (𝑅1, … , 𝑅𝑛). In this case we can assume, 

without loss of generality, that 𝑅𝑖  consists of a single vector of contributions 𝑅𝑖 ⊂ 𝑆𝐶𝐺 . 

Consider the recommendation 𝑅𝑖 = (0, … ,0, 𝑟𝑖, 0, … ,0)  for all 𝑖  where each player is 
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‘recommended’ to contribute 𝑟𝑖. This recommendation is valid whether labels are scrambled or 

not. Using the argument of the previous paragraph we see that this cannot be a CRR. The zeros, 

however, are merely cheap talk and so changing these cannot make any difference. Thus, there 

does not exist a CRR.  

 We turn now to a full agreement game in which labels are not scrambled. Consider a 

CRR 𝑅 = (𝑅1, … , 𝑅𝑛) . Again, we can assume that 𝑅𝑖  consists of a single vector of 

contributions 𝑣𝑟𝑖 ∈ 𝑆𝐶𝐺 . Let 𝑋′  denote the set of strict Nash equilibria with public good 

provision. We know that 𝑋′ contains at least two equilibria. Moreover, because there is not a 

scrambled labelling procedure any strategy profile (𝑣𝑐1, … , 𝑣𝑐𝑛) ∈ 𝑋′ is a permissible decision 

rule. The argument used for a standard game can now be used again to obtain a contradiction.         

Finally, consider a full agreement game with scrambled labelling. Also, consider the 

recommendation to split the cost equally. If players follow this recommendation then they will 

play a strict Nash equilibrium with public good provision. Payoffs will be given by 𝑢𝑖
∗ = 𝐸𝑖 −

𝑇

𝑛
+ 𝑉 > 𝐸𝑖 for all 𝑖 ∈ 𝑁. We need to rule out the possibility that a player could expect to do 

better than this. Without loss of generality we shall attempt to increase the payoff of player 1. 

To do so, we need that player 1 contributes some amount 𝑐1̅ <
𝑇

𝑛
 and that the public good is 

provided. The least ambiguous way for others to provide the public good is to split the 

remaining cost equally. Suppose, therefore, that player 1 uses decision rule 

𝑅1 = {(𝑐1̅,
𝑇 − 𝑐1̅

𝑛 − 1
, … ,

𝑇 − 𝑐1̅

𝑛 − 1
)} . 

The scrambled labelling procedure means that player 2 can only possible agree with player 1 

if she uses the decision rule 

𝑅2 = {(𝑐1̅,
𝑇 − 𝑐1̅

𝑛 − 1
, … ,

𝑇 − 𝑐1̅

𝑛 − 1
) , (

𝑇 − 𝑐1̅

𝑛 − 1
,
𝑇 − 𝑐1̅

𝑛 − 1
, 𝑐1̅, … ,

𝑇 − 𝑐1̅

𝑛 − 1
) , … , (

𝑇 − 𝑐1̅

𝑛 − 1
, … ,

𝑇 − 𝑐1̅

𝑛 − 1
, 𝑐1̅)} . 

The same applies for all 𝑖 > 1. The probability of full agreement is given by the probability 

that every player 𝑖 > 1 randomly selects player 1 to contribute amount 𝑐1̅. The probability 

player 𝑖 selects player 1 is given by 
1

𝑛−1
. The probability that every player 𝑖 > 1 randomly 

selects player 1 is, therefore, (
1

𝑛−1
)

𝑛−1

.  

If all players do agree then the payoff of player 1 increases to 𝐸1 − 𝑐1̅ + 𝑉 > 𝑢1
∗. If 

there exists a player 𝑗 who chooses 𝑣𝑐𝑗 ≠ 𝑣𝑐1 then the payoff of player 1 drops to 𝐸𝑖 < 𝑢𝑙
∗. So, 

the expected payoff of player 1 is greater than 𝑢𝑖
∗ if and only if 
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𝐸1+ (
1

𝑛 − 1
)

𝑛−1

(𝑉 − 𝑐1̅) > 𝐸1 −
𝑇

𝑛
+ 𝑉. 

This is ruled out by assumption. Given that we began with the least ambiguous alternative 

decision rule that could increase the payoff of player 1, split the cost equally is a CRR. ∎ 

Theorem 1 is potentially a very powerful result. It offers a solution to the puzzle of why 

split the cost equally is not ‘focal enough’ in a standard game: split the cost is not a CRR and 

so it is no surprise that groups fail to coordinate or maintain coordination. In addition, Theorem 

1 suggests a novel hypothesis on how efficiency can be increased in threshold public good 

games: if the existence of a CRR helps players to coordinate then a requirement for full 

agreement may increase efficiency. It’s important to be clear exactly what this hypothesis 

entails: (i) The direct effect of full agreement is to make coordination more difficult because 

all players need to agree. (ii) If the existence of a CRR makes it easier for players to coordinate 

then full agreement may indirectly make coordination easier. If this indirect benefit outweighs 

the direct cost then a requirement for full agreement can increase efficiency. We view this as 

an empirical hypothesis to test, and so we shortly turn to our experimental results.12 Before 

doing so we shall look in a bit more detail at the role of endowment asymmetry and scrambling 

of labels.  

A scrambling of labels encapsulates two things, that player identity is private 

information and that endowment is private information. It seems very natural that player 

identity be private information; for instance, if players agree on the decision rule ‘someone 

contribute zero and split the cost amongst others’ it seems unlikely they would all 

independently know who the ‘someone else’ should be. This, in itself, is enough to argue that 

scrambled labelling is the appropriate thing to consider in symmetric games. In asymmetric 

games, however, the issue of common knowledge warrants more consideration. To illustrate 

Table 3 gives some decision rules that are conditional on player endowments.13 Decision rules 

‘split the cost proportionally’ and ‘split the cost so payoffs are fair’ are intuitive (van Dijk and 

Wilke 1993, 1995). They are, however, only possible if player endowments are common 

                                                           
12 The only empirical results we are aware of looking at similar issues are due Van de Kragt, Orbell and Dawes 
(1983) and Bornstein (1992). In a binary threshold public good game they find that subjects who have agreed 
with fellow group members how to finance the public good stuck to the agreement. This, however, gives little 
insight on how group members can successfully reach agreement, particularly in continuous threshold public 
good games where the task is considerably more difficult. For example, Rauchdobler, Sausgruber and Tyran 
(2010) find that voting on the size of threshold before playing a threshold public good game makes no 
difference to efficiency.  
13 See Table 2 for details on the parameters of the symmetric, asymmetric and very asymmetric games. 
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knowledge. A scrambled labelling procedure, by making player endowments private 

information, rules them out.  

 

[INSERT TABLE 3 AROUND HERE] 

 

If recommendations such as ‘split the cost proportionally’ are permissible then there is 

no CRR in an asymmetric full agreement game.14 The intuition for this being that there is no 

sense in which, say, the equal split is any less ambiguous than the proportional split, according 

to the definition of a CRR. Note, however, that even if player endowments are common 

knowledge, some players have an ‘incentive’ to ignore this information in the hope of 

coordinating on split the cost equally. An expectation that information about endowments may 

be ignored by at least one player is enough to break common knowledge and make it ‘as if’ 

labels are scrambled. One could argue, therefore, that the equal split is focal in a full agreement 

game even if labels are procedurally not scrambled.15 

We finish this section by noting how the above argument, and the whole analysis of 

this paper, depends critically on the ‘framing’ of the contribution decision. In the games we are 

considering here group members choose how much of their endowment to contribute. This is 

the standard framing in the public goods literature. Consider, however, an alternative framing 

in which group members choose what proportion of their endowment to contribute. Theorem 

1 can easily be revised to show that the proportional split is now the CRR in the full agreement 

game. The framing of the contribution decision clearly, therefore, can make a big difference. 

 

 

 

4. Experimental Design  

We initially considered four treatments, with each of the four types of game presented in Table 

1 corresponding to a treatment. Following the advice of a referee we subsequently considered 

a further two treatments with variations on the vector and full-agreement game (more details 

to follow shortly). We reiterate that our standard treatment corresponds to the benchmark 

                                                           
14 In a symmetric game ‘split the cost proportionally’ and other alternatives are equivalent to split the cost 
equally. 
15 This more liberal interpretation of label scrambling would make no difference in a standard game or vector 
game. 
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treatment used in the threshold public goods literature. The game used in the standard treatment 

with feedback, vector treatments, and full agreement treatments differ as detailed in Section 2.  

Each experimental session was divided into three parts, as summarised in Table 4. In 

part 1, subjects played a game with parameters corresponding to those in the symmetric game, 

as already detailed in Table 2, for 10 rounds. In part 2 they played a game with parameters 

corresponding to those in the asymmetric game for a further 10 rounds, and in part 3 they 

played a game with parameters corresponding to those in the very asymmetric game for a final 

10 rounds. The type of game played, standard, standard with feedback, vector or full agreement, 

was the same in all three parts of a session. Note that subjects retained their role within the 

group throughout a part. Thus, a subject endowed with, say, 70 in an asymmetric game was 

endowed with 70 in all 10 rounds.   

The groups, of five, were randomly assigned at the beginning of each part but remained 

fixed during the part. Fixed matching during each part of the session allows us to look for 

dynamic and learning effects as observed in previous threshold public good experiments (e.g. 

Cadsby et al. 2008). Indeed, given our interpretation of the vector of contributions as a form of 

indirect communication it is natural to think of the 10 rounds within each part as part of one 

big game. With this interpretation the final round of the ten takes on special importance as 

culmination of the game. In this last round there is nothing to be gained by indirect 

communication and so the only relevant objective is to maximize round payoff.   

The use of three different sets of parameters allows us to consider symmetric and 

asymmetric games.16 More specifically, the use of the benchmark parameters in part 1 allows 

an unambiguous comparison of behaviour across treatments in the standard, symmetric case 

considered in the literature. Parts 2 and 3 allow us to compare behaviour across treatments as 

subjects are exposed to progressively more asymmetric endowments. Of primary interest is 

whether groups coordinate on the equal split even though this becomes increasingly 

inequitable.   

 

[INSERT TABLE 4 HERE] 

 

                                                           
16 The random matching between parts potentially allows us to treat the success of groups in one part as 
independent from the success of groups in other parts. We shall not push this claim too far, as it is natural to 
imagine some learning effects over the 30 rounds. Note, however, that both the group and game change in 
each part and so a claim of independence is not too extreme. The data analysis will control for part. 
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In relating our experiment design to Theorem 1 we remind that Theorem 1 points to 

three important factors – the type of game, number of players, and label scrambling. Our focus 

in this experiment is primarily to compare different types of game, and in particular to compare 

a vector game to a full agreement game. Such focus reflects our belief that the type of game is 

the most interesting and important factor to consider. In order to focus on the type of game the 

number of players and scrambling of labels should be fixed throughout. In terms of the number 

of players, we note that condition (2) is satisfied for all the parameters we consider. In terms 

of label scrambling, more detailed comment is needed. 

The vector and full agreements treatments were designed in a way that player identity 

was scrambled but endowment was not. So, players in the asymmetric games could have agreed 

to condition contribution on endowment. Theoretically, therefore, Theorem 1 directly applies 

to the symmetric game but not the asymmetric games. The instructions given to subjects made, 

however, no explicit mention of player labelling or how the game would appear to other 

members of the group.17 (The instructions are available in online supplementary material.) In 

line with the reasoning at the end of the previous section we suggest this will likely make it ‘as 

if’ labels were scrambled.  

Following the comments of a referee we ran two further treatments, labelled vector-S 

and full agreement-S, in which both player identity and endowment were scrambled. 

Specifically, subjects were told only own endowment and the distribution of endowments. This 

did not change the instructions but did make it virtually impossible to condition suggested 

contribution on endowment.18 This allows us to explore the effects of label scrambling. More 

generally, our experiment design allows us to directly test Theorem 1 while also exploring the 

information that groups choose to exploit.   

The experiments were run at the University of Kent (in the UK) with subjects recruited 

from the general university population. The interactions were anonymous and the experiments 

were computerized using z-Tree (Fischbacher 2007). We took care to recruit subjects who had 

not taken part in similar experiments before. We ran 12 sessions in all giving a total of 215 

subjects. Subjects were paid in cash at the end of the session an amount equal to their payoff 

over the 10 rounds multiplied by one pence for one of the three parts. The relevant part was 

                                                           
17 No subject asked a question about this. 
18 Why ‘virtually impossible’? Given that subjects were matched for 10 periods they could have ‘signalled’ to 
each other what endowments they have. For example, in the highly asymmetric game anyone that contributes 
more than 25 must have a high endowment.  
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randomly selected for each subject. Each session lasted about 40 minutes and the average 

payment was £6.13.19 

 

4.1 Hypotheses 

The standard game has been extensively studied in the previous literature and so we ‘know’ to 

expect success rates of around 40-60% (e.g. Croson and Marks 2000). Our first hypothesis is 

that success at providing the public good will be similar in the standard game with feedback 

and vector game. This is a natural assumption given that there are no strategic differences 

between these three games.  

Hypothesis 1: The success rate of providing the public good is the same in the standard, 

standard with feedback, and vector and vector-S treatments. 

Croson and Marks (1998) compare the standard game and standard game with feedback in a 

symmetric setting, and find no significant difference in outcomes.20 We shall extend this by 

considering asymmetric games and the vector game. Note, however, that Hypothesis 1 is not 

our main concern and the standard and standard with feedback treatments were primarily 

included to check consistency of our results with the previous literature.21    

 Our main hypothesis concerns the comparison between a vector game and full 

agreement game. On the basis of Theorem 1 we argue that groups may be better at coordinating 

in the full agreement game because of the collectively rational recommendation to ‘split the 

cost equally’.   

Hypothesis 2: The success rate of providing the public good in a full agreement and full 

agreement-S treatments will be higher than that in the vector and vector-S treatments. Groups 

will agree to split the cost equally. 

                                                           
19 At the end of each part subjects were asked to fill in a short questionnaire regarding their general 
experience in the 10 rounds. At the end of part 3 subjects were asked to fill in a further questionnaire. Subjects 
were not paid for answering the questionnaires but had to answer all of the questions in order to proceed with 
the experiment. The analysis of the questionnaire responses is beyond the scope of the current paper. 
20 Our standard treatment corresponds to Croson and Mark’s (1998) group treatment and our standard with 
feedback treatment corresponds to their individual-identifiable treatment. They also considered a third, 
individual-anonymous treatment. Significant differences in outcomes were observed between the individual-
anonymous treatment and the group and individual-identifiable treatments. 
21 This is reflected in the relative low number of groups in the standard and standard with feedback 
treatments. Note, however, that four groups per treatment is not low by the standards of this literature, e.g. 
Croson and Marks (1998) only consider five groups per treatment. 
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Hypotheses 1 and 2 together suggest that a requirement of full agreement can increase success 

rates in threshold public good games. We reiterate that the conditions for providing the public 

good are much more stringent in a full agreement game than in a vector game. It is far from 

trivial, therefore, that Hypothesis 2 will hold. It will only hold if all players react to the change 

in incentives in the way we have predicted.  

  Our final hypothesis concerns endowment asymmetry. The more asymmetric are 

endowments the less equitable is split the cost equally. For example in a game with very 

asymmetric endowments players 1 to 3 get payoff 50 while players 4 and 5 get payoff 125. 

This creates a tension between the focal point and fairness. Our null hypothesis is that subjects 

will sacrifice fairness in order to coordinate.  

Hypothesis 3: The success rate of providing the public good will be the same in a symmetric, 

asymmetric and very asymmetric full agreement game. 

An alternative to Hypothesis 3 would be to say that when endowments are asymmetric or very 

asymmetric groups will be less successful at providing the public good. This can occur if those 

with the smallest endowment ‘reject’ to split the cost equally on fairness grounds. It can also 

happen, recalling Theorem 1, if subjects try to coordinate on, say, the proportional split or fair 

split. Hypothesis 3 encapsulates, therefore, the idea that subjects will act ‘as if’ information on 

endowments is scrambled. This idea also feeds into Hypotheses 1 and 2 where the vector-S and 

full agreement-S treatments are treated as synonymous with the vector and full agreement 

treatments.   

 

5 Experimental Results 

Before we begin analyzing the results let us clarify some issues. We reiterate that our main 

focus is to compare different types of game and, in particular, to compare the vector and full 

agreement game. In order to do that we shall compare both: (a) the unscrambled treatments, 

vector versus full agreement, and (b) the scrambled treatments, vector-S versus full agreement-

S. This approach takes into account that the scrambled and unscrambled treatments were run 

at different times and so there is increased potential for unobserved heterogeneity. If we obtain 

similar results for both (a) and (b) then our findings appear robust. In an appendix we explore 

in more detail the role of label scrambling. 
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5.1 Success Rates 

We begin the discussion of our experimental results with some aggregate data on success rates 

and total contributions. Table 5 summarizes the success rate at providing the public good in the 

first five rounds and last five rounds of each treatment in each part. Table 6 summarizes total 

contributions.22 At the overall level, the success rate is similar in the full agreement treatments 

as the standard and vector treatments.23 Look a little deeper, however, and differences emerge. 

Total contributions are relatively high in the full agreement treatment. There are also some 

noticeable dynamic differences.   

 

[INSERT TABLES 5 AND 6 AROUND HERE] 

 

These dynamic differences are clearly apparent in Figure 1, which plots the success rate 

at providing the public good over time in the two full agreement treatments and two vector 

treatments (ignore, for now, the FULL ALL HP data). 24 Broadly speaking, the success rate 

appears stable or decreasing across the 10 rounds of each part in the vector treatments while it 

is increasing in the full agreement treatments.  Indeed, in the first round of the full agreement 

treatments the success rate is always near zero, but by the end of the ten rounds, the success 

rate reaches 56 percent in part 1 and a relatively high 67 percent in part 2 and 73 percent in part 

3. It is also noteworthy that the success rate is increasing across the three parts in the two full 

agreement treatments (see Table 5). This contrasts with a decreasing success rate in the vector 

treatment (but not vector-S treatment).  

 

[INSERT FIGURE 1 AROUND HERE] 

  

To more formally test Hypotheses 1 and 2, we report results of random-effects probit 

regressions with the probability of success as the dependent variable. The vector treatment was 

used as comparator for the unscrambled regressions and the vector-S treatment for the 

scrambled regressions. This directly allows us to test whether success was higher in the full 

agreement treatments than in the vector treatments (Hypothesis 2) and whether success was the 

                                                           
22 Notice that, in all four treatments, total contributions are obtained by adding up own contributions even if 
the public good is not provided.  
23 The average success rates and average contributions in the standard treatment are consistent with those 
observed in earlier studies (e.g. Cadsby et al. 2008). 
24 Given that scrambling makes little difference we provide aggregated data. The standard treatments are 
omitted to avoid clutter. 
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same in the vector treatment as in the standard treatments (Hypothesis 1). The results are 

reported in Table 7. 

 

[INSERT TABLE 7 AROUND HERE] 

 

Consider first the unscrambled regressions. The results in Table 7 confirm an increasing 

success rate in the full agreement treatment in all three parts. By contrast, in part 1, the success 

rate is decreasing in the other three treatments; in part 2, it is increasing in the standard 

treatment but stable in the standard with feedback and vector treatments; in part 3, it is stable 

in the other three treatments.25 This is clear evidence of a dynamic difference between the full 

agreement treatment and the other three treatments. This dynamic effect needs to be weighed 

against the negative coefficient on the dummy variable for the full agreement treatment. The 

end result is a prediction of lower success rates in the full agreement treatment in earlier rounds 

but higher success rates by later rounds. By the end of part 3, for example, success rates are 

predicted to be 95.2 percent in the full agreement treatment compared to 19.3 percent in the 

vector treatment and 46.6 and 59.3 percent in the standard and standard with feedback 

treatments; the difference between the full agreement and vector treatment is highly 

significant.26 

Consider now the scrambled regressions reported in Table 7. Here the evidence is less 

strong, but that is not unexpected given the smaller number of observations. The main thing to 

note is that we again see a clear dynamic difference between the full agreement-S and vector-

S treatments. As before, the success rate is increasing in the full agreement-S treatment. 

Moreover, the coefficients on FULL and FULL_Round are consistent across the scrambled and 

unscrambled regressions. 

To test whether the success rate was stable across the three parts in the full agreement 

treatments (Hypothesis 3), we report the results of a random-effects probit regression with a 

dummy for each part except part 1 (used as a comparator). To account for possible dynamic 

effects, we also include interaction variables of round crossed with part, as well as a dummy 

for last round success (which can be ignored for the moment). Table 8 reports the results. In 

the full agreement treatments we see no evidence of a difference between parts 2 and 1 and 

                                                           
25 To claim that success rate is increasing in the full agreement treatment in part 1, we need to take account of 
the negative Round coefficient. Doing so we still find a highly significant effect (Wald test, p < 0.001). 
26 To illustrate, consider the 5% confidence intervals for the predicted probabilities of success in the last round. 
For the full agreement treatment the lower and upper bounds of the confidence interval were, respectively, 
0.77 and 0.995. For the vector treatment the lower and upper bounds were, respectively, 0.043 and 0.491. 
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only weak evidence of a difference between parts 3 and 1. We also tested for a difference 

between parts 2 and 3 and did not find one (for the average, p > 0.25 and round, p > 0.45).  

For comparison, Table 8 reports analogous results using the vector and standard 

treatments (other) and vector-S treatment. In the ‘other’ treatments we observe significantly 

lower success rates in parts 2 and 3 compared to part 1. That we should observe a lower success 

rate with asymmetric endowments is consistent with prior results (Croson and Marks 2001). 

The main thing we would highlight about this finding, is that it suggests the consistency of our 

results with Hypothesis 3 is not solely due to an order effect. In particular, if the sole reason 

groups maintain a consistent success rate across parts in the full agreement treatment is due to 

experience and learning then we would expect to see something similar in the other treatments, 

and we do not.     

 The data we have reviewed so far is consistent with Hypothesis 1 in that there is no 

strong evidence of any significant difference between the two standard treatments and the 

vector treatments. It is also consistent with Hypothesis 3 in that there is no evidence of a 

difference in success in the full agreement treatments because of asymmetry. Evaluating 

Hypothesis 2 is a little trickier. One might have hoped that groups would be able to successfully 

coordinate in round 1 of the full agreement treatments. Clearly, that did not happen. With 

experience, however, success rates in the full agreement treatments were high, and significantly 

higher than in the vector treatments. This provides some support for Hypothesis 2. But, it also 

suggests we need to look a little bit deeper at how groups were able to learn to successfully 

provide the public good.  

 

5.2 Coordinating over time 

As well as giving the actual success rates in the full agreement and vector treatments, Figure 1 

shows the success rate that would have been achieved in the full agreement treatments if the 

rules for the provision of the public good had been the same as in the vector treatment (the 

FULL ALL HP line). Observe that success rates would have been very high. This tells us that 

very different things are causing inefficiency in the full agreement treatments compared to the 

vector treatments. In the vector treatments we know that any failure to provide the public good 

must be caused by the total contribution being insufficient. In the full agreement treatments it 

is clear that failure to provide the public good was primarily caused by a lack of agreement, 

and not the total contribution being insufficient. This allows us to reconcile the high 

contributions we observe in the full agreement treatment (see Table 6) with the not so high 

success rate (see Table 5). 
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 Figure 1 suggests that increasing success in the full agreement treatments reflects 

groups learning how to coordinate. One way to capture this learning effect is to look at whether 

group success is permanent or temporary. We know from the previous literature that success 

in the standard treatment tends to be temporary, i.e. success in one period is no guarantee of 

success in subsequent periods (Alberti, Cartwright and Stepanova 2013). If groups in the full 

agreement treatments are learning how to coordinate then we would expect success to be more 

permanent, i.e. once the group finds how to coordinate they will stick with it. Such a difference 

between the full agreement and vector treatments would be consistent with Theorem 1 and the 

notion of collective rationality, provided that groups learn to coordinate on split the cost 

equally.  

We find strong evidence that group success is more permanent in the full agreement 

treatments. For instance, in the full agreement treatments, 27 out of the 52 groups successfully 

provide the public good in every round after their first success; this meant sustaining success 

for an average of 6.0 out of ten rounds.27 In the vector treatments, only 6 out of the 51 groups 

sustained successful provision; they did so for an average 5.3 rounds. This difference is 

significant for both the unscrambled (LR, p < 0.001) and scrambled treatments (p = 0.06). Also, 

in the full agreement treatments, initial success was maintained for an average of 4.7 rounds 

compared to only 3.2 rounds in the vector treatments. This difference is again significant for 

both the unscrambled (Mann-Whitney test, p = 0.05) and scrambled treatments (p = 0.02).28  

To provide some additional evidence we can return to Table 8 and the success(-1) 

coefficients. Success(-1) is a dummy variable that takes value one if the public good was 

successful provided in the previous round. In the full agreement treatments we see that success 

in the previous round is a strong predictor of success in the current round. We also obtain a 

similar effect in the full agreement and full agreement-S treatments. In the other treatments, 

consistent with the previous literature, we see that in the symmetric game success in the 

previous round is not a predictor of success in the current round. In the asymmetric treatments 

success is more permanent, but still considerably less permanent than in the full agreement 

treatments.  

                                                           
27 For simplicity we have aggregated over both treatments and all parts given no observed differences. For 
example, the numbers for the full agreement treatment are 19 out of 36 groups and for the full agreement-S 
treatment 8 out of 16. Similar, the numbers are 7 out of 18 in part 1, 11 in part 2 and 9 in part 3.  
28 This holds despite the data for the full agreement treatments being highly censored by the ten round cut off 
We have no idea how long the 27 groups who successfully sustained provision up to period 10 could have 
continued to maintain their success.  
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At this point it is interesting to mention again the findings of Bchir and Willinger 

(2013). Recall, that in studying symmetric threshold public good games they find that a 

requirement to pay a small fee in order to benefit from a public good increases efficiency in 

providing the good. 29 The fee worked by increasing the number of subjects that contribute, 

rather than enabling better coordination. This leads to important dynamic differences, relative 

to our findings. In particular, the fee leads to an immediate increase in success but significant 

inefficiency remains over time. By contrast, we have seen that the need for agreement, 

decreases initial success but with sufficient experience results in high efficiency. These 

differences reflect how the need for agreement is a ‘stronger’ intervention than that of a small 

fee. This is formally captured by Theorem 1, once we note that the introduction of a fee still 

leaves no collective rational recommendation.         

It remains to question whether groups coordinated on the CRR of split the cost equally. 

Figure 2 details individual choices in round 10 of each part.30 We distinguish choices into three 

categories: split the cost equally, symmetric but inefficient choice, e.g. vector of contributions 

(30,30,30,30,30), and any non-symmetric choice. In the full agreement treatment the vast 

majority of choices are symmetric, and the majority of these choices are split the cost equally. 

Interestingly, however, groups did successfully coordinate on alternatives to split the cost 

equally. For example, in part 1 we saw groups coordinate on (30,30,30,30,30)  and 

(40,40,40,40,40) ; in part 2 we saw groups coordinate on (15,15,15,40,40)  and 

(19,19,19,34,34); in part 3 we saw one group coordinate on (9,9,9,49,49).31 

 

[INSERT FIGURE 2 AROUND HERE] 

 

 The predominance of split the cost equally in the full agreement treatments is consistent 

with Hypotheses 2 and 3. Indeed, when endowments were very asymmetric, all bar one of the 

groups that successfully coordinated used split the cost equally. We know that split the cost 

equally is typically considered unfair (van Dijk and Wilke 1993, 1995). Indeed, it shows up in 

a preference for the proportional split in the vector treatment (as observed in other studies, e.g. 

                                                           
29 The threshold public good game considered is different to that considered in this paper in that there was no 
refund and there was a rebate (in the form of increased public good provision). 
30 We have again aggregated together the full agreement treatments and vector treatments given that the 
picture is similar in both cases. 
31 We can only speculate on why groups would coordinate on a symmetric but inefficient outcome like 
(30,30,30,30,30) but we feel it probably reflects a desire to ‘be on the safe side’. And, when seen from the 
point of view of 10 rounds this need not be ‘irrational’. Suggesting (30,30,30,30,30) in the first round leaves 
room for manoeuvre but can then become a focal point for agreement. 
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Cadsby and Maynes 1998). We see, therefore, strong evidence that subjects were willing to 

sacrifice equity in order to coordinate on the focal point. As discussed in the introduction this 

finding is consistent with recent results by Isoni et al. (2013) and points to the power of focal 

points in asymmetric games. The support we find for Hypothesis 3 is also consistent with the 

idea that players behave ‘as if’ information about endowments is scrambled.  Some groups did 

use information about endowments and successfully coordinate on outcomes similar to the 

proportional or fair split, but the vast majority did not.  

 

6. Conclusions 

Many public goods can be implemented as threshold public goods and so it is very important 

to question whether such goods can be provided efficiently. The experimental evidence to date 

suggests that inefficiency is to be expected. In this paper we offer an explanation for this 

inefficiency and a potential solution by applying a model of focal points due to Sugden (1995). 

To explain the inefficiency we show that in a standard threshold public good game there is no 

collectively rational recommendation (CRR). This means that there is no ‘easy way’ for group 

members to agree on how to split the cost of providing the public good. In offering a solution 

we show that if full agreement is required to provide the public good then there is a CRR. That 

recommendation is to split the cost equally. 

The need for full agreement encapsulates two things: the chance to specify what others 

should contribute and a requirement for unanimity. Together these allow each group member 

to say ‘I will contribute if and only if ...’. The strict definition of full agreement that we 

considered is clearly somewhat stylized. The basic notion, however, that group members can, 

and would want to make contributions conditional on what others are doing seems very natural. 

It is encapsulated, for instance, in the matched funding schemes that are commonly used for 

capital fundraising projects. Less natural is the notion that a strict requirement of full agreement 

would ‘help’ groups coordinate. After all, the direct effect of requiring full agreement is to 

make it more difficult for the group to provide the public good; all group members need to 

agree. It is, thus, an empirical question whether a requirement of full agreement is a help or 

hindrance for groups.  

We reported experimental results to explore this question. These results show that when 

group members first interacted, the requirement for full agreement led to significantly 

decreased efficiency; this reflects the difficulty of all members reaching agreement. With 

experience, however, efficiency increased and increased to relatively high levels. Our results 
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clearly demonstrate that a requirement for full agreement need not be ‘too tough’. Indeed, of 

the 54 groups in the full agreement treatments only 9 failed to provide the public good at least 

once. This compares to 4 out of 51 in the vector treatments. Our results also suggest the 

requirement for full agreement increased criticality as predicted. In particular, success proved 

relatively permanent when full agreement was required.   

Our theoretical and experimental results provide evidence that a requirement for full 

agreement can increase efficiency. The indirect benefit of increased criticality can overcome 

the direct cost of requiring agreement. We believe that this finding could be usefully extended 

to applied settings. As an informal illustration let us contrast EU decision making and climate 

change negotiations.  

A strict notion of agreement, including unanimity, is central to EU decision making. 

Whether it be the EU budget, trade negotiations with the US, the bailout of Greece, sanctions 

against Russia, fishing quotas in the Atlantic, or the Syrian refugee crises, full agreement (a 

few caveats aside) is needed before action can take place. This strictness is often criticized as 

a potential cause of bottleneck. Many would argue, however, that the EU has been surprisingly 

successful in achieving its objectives.32 So, the need for full agreement may be an advantage 

and not a problem. Note that the EU could change its rules to allow unilateral action. The 

requirement for full agreement is, therefore, endogenous. Interestingly, rapid EU enlargement 

has done little to shake the requirement for full agreement on many policy issues.  

Contrast EU decision making with climate change negotiations. These negotiations take 

place without the need for full agreement, as we have defined it (see also McEvoy 2010). In 

particular, the various international treaties that have been signed leave the onus on individual 

countries to reduce emissions. In other words, countries are free to act unilaterally. This, we 

would argue, is a key reason for the lack of progress on climate change abatement (see also 

Gerber and Wichardt 2009, Cherry and McEvoy 2013). Admittedly, we cannot envisage how 

an EU style need for agreement could be implemented at the global level. Full agreement is, 

therefore, unlikely to be the answer. But, at least we gain insight on the problem, namely that 

environmental treates are not a CRR.  

With this in mind let us relate our approach to the recent literature on climate treaties. 

Barrett (2013) is representative of this literature in implicitly assuming that a treaty will be self-

                                                           
32 As an interesting anecdotal example of EU decision making, consider the £1.7bn surcharge the UK was 
required to pay towards the EU budget in 2014. It would be an understatement to say that this surcharge was 
unpopular within the UK. The real headline grabber, however, was that France and Germany would receive 
rebates and so the ‘UK taxpayer was subsidising the French and Germans’. It is the vector of contributions and 
not individual contributions that countries need agreement on. And agree they quickly did. 
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enforcing if it is a Nash equilibrium (Cherry and McEvoy 2013). Our starting point for this 

paper was a belief that Nash equilibrium does not appear self enforcing in threshold public 

good games. As we have discussed above, and will discuss more below, in the experimental 

lab we repeatedly observe groups deviating from Nash equilibrium. This suggests that a 

stronger equilibrium concept is needed and we argue that the collectively rational 

recommendation fits the bill. With this interpretation a treaty would be self-enforcing if and 

only if it is a CRR. Put differently, a treaty may unravel if it is not a CRR. 

In motivating this point suppose (as considered by Tavoni et al. 2011, Barrett and 

Dannenberg 2012, 2014) that group members are allowed to make a public pledge of how much 

they plan to contribute before actually contributing. Moreover, suppose the pledges equate to 

a Nash equilibrium. If one person deviates from their pledge then there is no reason for others 

to stick to their pledges (Dawes, van de Kragt and Orbell 1988, Chen and Komorita 1994, 

Tavoni et al. 2011). Indeed, the mere belief that at least one person will deviate from a pledge 

may be enough for others to ignore theirs (Palfrey and Rosenthal 1991). Note that this incentive 

to deviate follows because the Nash equilibrium is not a CRR. The results of Tavoni et al. 

(2011) and Barrett and Dannenberg (2012, 2014) show that many subjects do indeed deviate 

from pledges. More evidence on the instability of Nash equilibria in threshold public good 

games is provided by McEvoy et al. (2011) and Croson and Marks (2001). McEvoy et al. 

(2011) found that around 30% of subjects deviated from a commitment to contribute to public 

good provision even though this meant they could incur a fine for doing so. Croson and Marks 

(2001) found that most subjects did not follow a recommended (Nash equilibrium) 

contribution. By definition a collectively rational recommendation should be immune to such 

instability.  

We are not, however, arguing that a requirement for full agreement is necessarily the 

optimal way to go. Full agreement requires an authority that may be difficult to implement. 

Also, as group size increases and the benefits of the public good become highly asymmetric 

we may find situations in which it does not make sense to require all group members agree. 

Instead, it may be more appropriate to require some level of agreement below full agreement 

(Orbell, Dawes and can de Kragt 1990). Indeed, there may be an optimal level of agreement 

required in order to trade-off the benefit of increased criticality with the difficulty of getting 

many to agree. It may also be appropriate to consider rounds of cheap talk before a decision 

has to be made, and to allow side-payments between players that have highly asymmetric 

endowments. These are issues that can be explored in future work. 
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The role of cheap talk seems particularly worthy of more consideration. If there is a 

focal point then communication is likely to be of limited benefit (Schelling 1960, Isoni et al. 

2014). If there is no focal point (as we suggest there is not in the standard threshold public good 

game) then communication may be efficiency enhancing (Van de Kragt, Orbell, and Dawes 

1983, Isaac and Walker 1988, Isoni et al. 2011, Palfrey, Rosenthal, and Roy 2015). Evidence 

on this, however, is lacking. While communication has been extensively studied in linear public 

good games (see Balliet 2010 for a survey), in threshold public good games the evidence is far 

more limited. In particular, there is no study, as far as we are aware, that considers 

communication in the standard game considered in the paper. The evidence we do have is also 

somewhat mixed (Palfrey and Rosenthal 1991, Ledyard 1995, see also Chamberlin 1978). For 

instance, Feltovich and Grossman (2015) find that the effect communication has on cooperation 

decreases as group size increases from 2 up to 15.  

 

Appendix: Label scrambling  

Given that the scrambled and unscrambled coordination and full agreement treatments were 

run at different times there is increased potential for unobserved heterogeneity. So, any 

comparison of scrambled versus unscrambled treatments needs be tentative. Still, in Table A1 

we report the results of random effects probit regressions that make use of all the data. This 

allows some insight on whether scrambling makes a difference. Note that the communication 

treatment is used as comparator. Also we have used a dummy for a full agreement treatment 

(scrambled or unscrambled) and a separate dummy for the full agreement-S treatment. This 

allows a clearer comparison of whether scrambling makes a difference. 

The highly significant coefficients on FULL_ALL reaffirm that success starts from a 

low base but is increasing in the full agreement treatments. These coefficients can be compared 

to those in Table 7. Our primary interest here is to see whether scrambling makes a difference. 

Somewhat surprisingly we find that scrambling makes a difference in part 1. This is a surprise 

because scrambling is irrelevant for the symmetric game used in part 1. There is evidence, 

therefore, that we are picking up unobserved heterogeneity. This is why in the main body of 

the paper we report the unscrambled and scrambled treatments separately.  

If scrambling is going to make a difference then this should come in the asymmetric 

games played in parts 2 and 3. In part 2 we see no evidence that scrambling makes a difference. 

In part 3 there is weak evidence of a higher success rate when labels are scrambled. This is also 

reflected in the raw numbers reported in Table 5. We would not, however, want to draw too 
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strong a conclusion from this evidence. Our interpretation of the data is that label scrambling 

made no difference. This seems an apt point to also mention the results of Marks and Croson 

(1999). They compare a setting where endowments are public information to settings where 

endowments are private information. This limiting of  information about endowments is not 

too dissimilar to label scrambling and Marks and Croson find it has no effect on success rates 

or group contributions.  
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Table 1: Comparison of the four games we consider. 

Type of game Feedback Strategy set Public good provided 

Standard  Total 

contributions. 

Own contribution. Achieve threshold 

Standard with 

feedback 

Individual 

contributions 

Own contribution Achieve threshold 

Vector with 

feedback 

Individual vectors 

of contributions 

Vector of 

contributions 

Achieve threshold 

Full agreement  Individual vectors 

of contributions 

Vector of 

contributions 

Achieve threshold and all agree 

on a vector of contributions 

    

 

Table 2: The set of parametes used in the experiment, and the number of Nash equilibria in the 

standard and full agreement game. 

  Parameters of the game 
Number of Nash 

equilibria  
N Endowment V T 

 Players 1-3 Players 4-5   

Symmetric  5 55 55 50 125 4,052,751 

Asymmetric 5 45 70 50 125 3,075,111 

Very 

asymmetric 

5 
25 100 50 125 254,826 

 

 

 

Table 3: Decision rules for the parameters we consider. 

Decision rule Benchmark Asymmetric Very asymmetric 

Equal split (25,25,25,25,25) (25,25,25,25,25) (25,25,25,25,25) 

Proportional split  (25,25,25,25,25) (21,21,21,31,31) (11,11,11,46,46) 

Fair split (25,25,25,25,25) (15,15,15,40,40) (0,0,0,62.5,62.5) 
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Table 4: Experimental design. 

Session 
Treatment  

(Type of game) 

Part 1 

Rounds 1-10 

Part 2 

Rounds 11-20 

Part 3 

Rounds 21-30 

No. of 

groups  

5 Standard Symmetric Asymmetric Very asymmetric 4 

2 
Standard with 

feedback 
Symmetric Asymmetric Very asymmetric 4 

3, 6, 7 Vector Symmetric Asymmetric Very asymmetric 12 

1, 4, 8 Full agreement Symmetric Asymmetric Very asymmetric 12 

9, 11 Vector S Symmetric Asymmetric Very asymmetric 5 

10, 12 Full agreement S Symmetric Asymmetric Very asymmetric 6 

 

 

Table 5: Success rates over the ten rounds of each part.  

  Success rate for provision % 

 Part 1 Part 2 Part 3 Overall 

Treatment 

First 

five 

Last 

five 
All 

First 

five 

Last 

five 
All 

First 

five 

Last 

five 
All All 

Standard 55 45 50 40 75 57.5 25 50 37.5 48.3 

Standard with 

feedback 
90 60 75 80 60 70 55 55 55 66.7 

Vector 73.3 53.3 63.3 50 53.3 51.7 33.3 28.3 30.8 48.6 

Full agreement 16.7 53.3 35 21.7 66.7 44.2 36.7 73.3 55 44.7 

Vector-S 44 52 48 48 56 52 68 80 74 58 

Full agreement-S 20 46.7 33 26.7 70 48.3 56.7 86.7  71.7 51 

 

 

Table 6: Total group contributions over the ten rounds of each part.  

 
  Average group contribution  

 Part 1 Part 2 Part 3 Overall 

Treatment 
First 

five 

Last 

five 
All 

First 

five 

Last 

five 
All 

First 

five 

Last 

five 
All  

Standard 133.5 123.8 128.6 128 134.4 131.2 109 119.3 114.2 124.7 

Standard with 

feedback 
156.3 131.8 144.1 134.5 126.9 130.7 126.3 122.7 124.5 133.1 

Vector 139.1 122.4 130.7 125 128.9 126.9 108.7 98.25 103.5 120.4 

Full agreement 165.7 159.5 162.6 154.3 151.4 152.9 124.4 121.3 122.8 146.1 

Vector-S  117.8 110.8 114.3 120.2 121.7 121 130.3 126.3 128.3 121.2 

Full agreement-S 151.4 134.6 143 125.4 124.9 125.1 131.3 124.3 127.8 132 
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Table 7: Results of a random-effects probit regression of the probability of success, round 

number (Round), treatments (FULL, STF, ST), and interactions between round number and 

treatment (FULL_Round, STF_Round, ST_Round). The unscrambled regressions use the 

vector and full agreement treatments. The scrambled regressions use the vector-S and full 

agreement-S treatments. Standard errors in brackets; * indicates significant at the 10% level, 

** at the 5% level, and *** at the 1% level. 

 

Covariate Part 1 Part 2 Part 3 

 unscrambled scrambled unscrambled scrambled unscrambled scrambled 

Round 
-0.158***  

(0.048) 

0.002 

(0.065) 

-0.020  

(0.045) 

0.032 

(0.066) 

-0.011  

(0.050) 

0.032 

(0.070) 

FULL 
-3.572***  

(0.590) 

-1.329* 

(0.759) 

-2.534***  

(0.642) 

-2.107** 

(0.918) 

-0.947  

(0.668) 

-0.874 

(0.788) 

STF 
0.097  

(0.722) 

- 0.474  

(0.761) 

- 0.791  

(0.854) 

- 

ST 
-1.050  

(0.658) 

- -1.193  

(0.785) 

- -0.240  

(0.916) 

- 

FULL_ 

Round 

0.460***  

(0.078) 

0.142 

(0.095) 

0.393***  

(0.083) 

0.344*** 

(0.116) 

0.348***  

(0.082) 

0.186* 

(0.107) 

STF_ 

Round 

0.041  

(0.093) 

- 0.008  

(0.089) 

- 0.031  

(0.088) 

- 

ST_ 

Round 

0.098  

(0.085) 

- 0.248**  

(0.096) 

- 0.102  

(0.100) 

- 

Constant 
1.316***  

(0.364) 

-0.086 

(0.512) 

0.176  

(0.385) 

-0.096 

(0.583) 

-0.754  

(0.466) 

0.547 

(0.565) 

No. obs. 320 110 320 110 320 110 

No. 

groups 

32 11 32 11 32 11 
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Table 8: Results of a random-effects probit regressions of the probability of success, round 

number (Round), part (Part_2, Part_3), last round success (Success(-1)), and interactions 

between round number and part (Part_2_Round, Part_3_Round) and  last round success and 

part (Part_2_Success(-1), Part_3_Success(-1)). The ‘Other’ regression includes the standard, 

standard with feedback and vector treatments. Standard errors in brackets; * indicates 

significant at the 10% level, ** at the 5% level, and *** at the 1% level. 

 

Covariate Full agree Full agree-S Other Vector-S 

Round 
0.161** 

(0.072) 

-0.086 

(0.102) 

-0.125*** 

(0.041) 

-0.005 

(0.065) 

Part_2 
0.454 

(0.614) 

-0.538 

(0.730) 

-1.546*** 

(0.474) 

0.027 

(0.65) 

Part_3 
1.003* 

(0.598) 

0.659 

(0.673) 

-1.880*** 

(0.479) 

1.341* 

(0.744) 

Part_2_ Round 
-0.050 

(0.099) 

0.243 

(0.151) 

0.162*** 

(0.057) 

0.012 

(0.094) 

Part_3_ Round 
-0.108 

(0.091) 

0.080 

(0.151) 

0.138** 

(0.058) 

0.102 

(0.102) 

Success(-1) 
1.732*** 

(0.401) 

2.55*** 

(0.614) 

-0.135 

(0.239) 

0.405 

(0.405) 

Part_2_Success(-1) 
0.094 

(0.545) 

-1.102 

(0.846) 

0.807** 

(0.316) 

0.036 

(0.578) 

Part_3_Success(-1) 
0.141 

(0.533) 

-0.772 

(0.906) 

0.739** 

(0.334) 

-1.744** 

(0.693) 

Constant 
-1.822*** 

(0.465) 

-0.946* 

(0.513) 

1.157*** 

(0.366) 

-0.206 

(0.463) 

No. obs. 324 162 540 135 

No. groups 36 18 60 15 
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Figure 1: Success rate in the two vector treatments combined (VEC ALL), full agreement 

treatments combined (FULL ALL), and full agreement treatments if we remove the condition 

that all players must agree (FULL ALL HP). 

 

 

Figure 2: Choices in round 10 of each part distinguished by whether the group was successful 

or not in providing the public good. The data from the two full agreement treatments and two 

vector treatments has been aggregated. 
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Table A1: Results of a random-effects probit regression of the probability of success, round 

number (Round), treatments (FULL_ALL, STF, ST, FULL_SCRAMBLE, 

VEC_SCRABMLE), and interactions between round number and treatment (FULL_Round, 

STF_Round, ST_Round). Standard errors in brackets; * indicates significant at the 10% level, 

** at the 5% level, and *** at the 1% level. 

 

Covariate Part 1 Part 2 Part 3 

Round -0.159*** -0.0202 -0.0113 

 (0.0476) (0.0452) (0.0495) 

FULL_ALL -3.585*** -2.710*** -0.931 

 (0.586) (0.678) (0.642) 

STF 0.0949 0.474 0.768 

 (0.726) (0.784) (0.818) 

ST -1.189* -1.199 -0.241 

 (0.658) (0.808) (0.879) 

FULL_SCRAMBLE 0.870 0.312 1.328* 

 (0.689) (0.852) (0.784) 

VEC_SCRAMBLE -1.406** -0.275 1.292* 

 (0.619) (0.711) (0.779) 

FULL_ALL_Round 0.461*** 0.421*** 0.341*** 

 (0.0771) (0.0875) (0.0802) 

STF_Round 0.0411 0.00820 0.0309 

 (0.0928) (0.0890) (0.0881) 

ST_Round 0.135 0.249*** 0.101 

 (0.0844) (0.0962) (0.0995) 

FULL_SCRAMBLE_Round -0.160* -0.0224 -0.0960 

 (0.0901) (0.114) (0.102) 

VEC_SCRAMBLE_Round 0.161** 0.0523 0.0434 

 (0.0800) (0.0800) (0.0863) 

Constant 1.320*** 0.178 -0.730 

 (0.365) (0.396) (0.446) 

No. Obs. 430 430 430 

No. Groups 43 43 43 

 

 


