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Abstract

In applied scientific areas such as economics, finance, biology, and medicine, it
is often required to find the relationship between a set of independent variables
(predictors) and a set of response variables (i.e., outcomes of an experiment).
If we model individual outcomes separately, we potentially miss information
of the correlation among outcomes. Therefore, it is desirable to model these
outcomes simultaneously by multivariate linear regressions. With the advent
of high-throughput technology, there is an enormous amount of high dimen-
sional multivariate regression data being generated at an extraordinary speed.
However, only a small proportion of them are informative. This has imposed
a challenge on modern statistics because of this high dimensionality. In this
work, we propose methods and algorithms for modelling high-dimensional mul-

tivariate regression data. The contributions of this thesis are as follows.

Firstly, we propose two variable screening techniques to reduce the high
dimension of predictors. One is a beamforming-based screening method which
is based on a statistic called SNR. The second approach is a mixture-based
screening where the screening is conducted through the so-called likelihood

fusion.

Secondly, we propose a variable selection method called principal variable
analysis (PVA). In PVA we take into account the correlation between response
variables in the process of variable selection. We compare PVA with some of
well-known variable selection methods by simulation studies, showing that

PVA can substantially enhance the selection accuracy.

v



Thirdly, we develop a method for clustering and variable selection simulta-
neously, by using the likelihood fusion. We show the feature of the proposed

method by simulation studies.

Fourthly, we study a Bayesian clustering problem through the mixture of
normal distributions where we propose mixing-proportion dependent priors for

component parameters.

Finally, we apply the proposed methods to cancer drug data. This data
contain expression levels of 13321 genes across 42 cell lines and the responses of
these cell lines to 131 drugs, recorded as fifty percent inhibitory concentration
(IC50) values. We identify 37 genes which are important for predicting 1C50
values. We found that although the expressions of these genes are weakly
correlated, they are highly correlated in terms of their regression coefficients.
We also identify a regression coefficient-based network between genes. We also
show that 34 out of 37 selected genes have played certain roles in at least one
type of cancer. Moreover, by applying the likelihood fusion model to real data

we classify the drugs into five groups.
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Chapter 1

Motivation and Contribution

1.1 Biological background and motivation

The research carried out in this thesis is motivated by a cancer drug study. In
the following, we first explain some of the concepts in cancer biology. Then,
we raise some issues that one may face in statistical modelling of cancer drug

data.

1.1.1 The nature of cancer

Cancer occurs when a cell grows uncontrollably as a result of mutation or
changes in gene expressions. Gene expression is a process through which the
coded information in a cell is transferred to protein (Lee, 2007). Since cancer
is mainly caused by changes in genes, it is genetically unique. As a result,
even the same type of cancer may still be different across individuals. Also,
the response of patients with the same type of cancer to a treatment may vary.
So there is no single treatment for cancer (Almeida and Barry, 2011). The
diversity in cancer disease and vast variety in responses of patients to different
drugs have turned the personalised treatment to a revolutionary matter in
modern oncology. The crucial task in personalised treatment is matching up

the right drug with the right patient (Yang et al., 2013).



The recent numerous research verifies that there is a strong link between
the mutations in genomic features of the cancer cell lines and the responses
to the treatment (Yang et al., 2013). Mostly, the sensitivity or resistance of
a cancer cell to a drug depends on multiple genomic features of each cell line.
However, identifying mutations involved in drug resistance is still challenging.

As a result, curing cancer is complex (Almeida and Barry, 2011).

The aim of advanced oncology is to develop therapies, such as targeted
therapies, to fight cancer cells with more precision. Targeted therapy is one of
the most effective therapies over the past ten years. Targeted cancer therapies
are drugs designed to interfere with specific molecules necessary for tumor
growth and progression. Since through such treatments, cancer causing genes
are attacked more specifically, the amount of damage that may affect normal
cells is minimised considerably (Kidd et al., 2015). Identifying these cancer

causing genes has become the foundation of targeted therapies.

1.1.2 Biomarker network identification

In order to determine which patients should or should not receive a certain
treatment, biomarkers must be tested and validated in clinical studies. A
biomarker is a biological process that we can measure to quantify the body’s
response to a particular medication. Biomarkers are critical components in
cancer treatment by providing information about the type of medicine patients
should receive (Vogel et al., 2010). Expressions of mutated genes are potential
biomarkers that measure the effectiveness of a given treatment. Genes usually
function in concert rather than alone. Therefore, gene expression profiles are
helpful tools in discovering the functional cooperativity between genes (Yang

et al., 2013), (Garnett et al., 2012).

An interaction network is a more precise way to represent the information
about genes and how closely they are connected (Bebek, 2012). Knowing the
interacting components can help with identifying molecular targets for specific

drugs. Such knowledge coupled with understanding the network behaviour



can lead to designing controlled systems with potential for producing disease-

specific cures and personalised care solutions (Kidd et al., 2015).

1.2 Cancer drug data

The cancer drug data considered in this thesis consist of two parts. The first
part is log-expression levels of 13321 genes across 42 cell lines and the second
part contains the responses of cell lines to different drugs, recorded as fifty
percent inhibitory concentration (IC50) values. According to encyclopaedia
of cancer (Schwab, 2008), IC50 is a concentration of drug that reduces a bio-
chemical activity such as cell multiplication to 50 percent of its normal value

in the absence of the inhibitor.

The data were extracted in 2013 from the website: Genomics of Drug
Sensitivity in Cancer (http://www.cancerrxgene.org). These data first studied
by Garnett et al. (2012). In their work, in order to identify the genomic features
associated with drug response, two analytical approaches are considered: A
multivariate analysis of variance (MANOVA) and elastic net. They regard
gene expressions, mutation status, tissue type and copy number as features
and used elastic net modelling to find out how these features are linked to
drug responses. In their modelling they consider each drug separately and

perform the analysis in a univariate multiple regression framework.

Cancer drugs exert their function through binding to one or more protein
targets. Early "one gene, one drug, one cancer" paradigm considers the role
of individual genes and their changes in drug-perturbed states, which largely
ignore a target’s cellular and physiological context (Wang et al., 2014). More-
over, many recent researches verify that drug combination therapy is more
effective in killing tumor cells and the drug resistance is reduced dramatically

when drugs are used simultaneously (Carter et al., 2016).

Motivated by these facts, we use a multivariate multiple linear regression

model to fit the cancer drug data, where we consider all drugs simultaneously.



Here, multivariate refers to the cases that we have several response variables in
the model. In the data, log-expression levels of 13321 genes across 42 cell lines
form the design matrix X ox13321 Where each column vector x; is regarded as
observations on the kth predictor. Also the IC50 values of 131 drugs across

42 cell lines form observations on 131 response variables in the form of matrix

Y42>< 131-

1.3 Challenges of cancer drug data analysis and

contribution of the thesis

The main interest in the analysis of cancer drug data is discovering the as-
sociation between genes and drugs. As pointed out earlier, one appropriate
model that follows the recent "multiple genes, multiple drugs" paradigm is
a multivariate multiple linear regression. More precisely, through this model
IC50 values of different cancer drugs can be regressed against the gene expres-
sion levels. However, most of the time it is not possible to fit this model to
the cancer data directly since the gene expression data are collected in large
scales. The number of genes in a single cell can be more than tens of thou-
sands, and each gene expression adds a dimension to the data. As a result,
high dimensionality has imposed a hurdle in statistical modelling of such data.
This makes it impossible to estimate all the parameters in the model without

imposing some constraints on the range of the parameters.

Here, we make a sparsity assumption that only a fraction of these genes is
significantly associated with the disease. We tackle this challenge and reduce
the dimension of gene expressions by proposing a variable screening method
in Chapter 3. This approach is a beamforming-based variable screening for
multivariate regressions where we wish to relate several response variables
against a common set of predictors. We also propose a mixture-based screening

approach in Chapter 5 to resolve the high dimensionality problem.

Another challenge in the analysis of cancer data is the high correlation
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between the genes. Many genes are strongly associated because they share
similarities in their expressions. Thus, an expression of a single gene may be
interfered by other genes. On the other hand, analysis of a single gene may
produce a biased result. To resolve this issue, in Chapter 4 we further improve
the proposed screening procedure. To lessen the interference of other genes,
we propose a selection process called PVA through which the interferences
from other genes are prevented. Therefore, by applying PVA, we can more

accurately select those genes that are associated with IC50 values of drugs.

Besides high correlations and large dimensions of gene expressions in the
cancer data, the heterogeneity among drugs is another aspect that needs to be
considered in the modelling. The drugs can be classified into groups based on,
for example, the type of disease that they can cure or the type of genes that
they can target. Therefore, we need to design an appropriate model to handle
high dimensionality and group structures in the data. One type of models
which is widely used in modelling of heterogeneous data is a mixture model.
Therefore, to accommodate the group structure in our modelling, in Chapter
5 we propose a mixture-based model to fit the cancer drug data. This model
is called likelihood fusion and is applied to screen the gene expressions and

classify the drugs simultaneously.

1.4 Organisation of the thesis

Our proposed methods to address the aforementioned challenges form the fol-
lowing chapters.
In Chapter 2 we give some preliminary and background literature on concepts

to which we refer in the following chapters.

In Chapter 3 we introduce a beamforming-based variable screening method
based on a new statistical filter called SNR. This new screening approach is
based on projections of the multivariate response variable into the predictor

space.



In Chapter 4 we propose an iterative variable selection procedure for mul-
tivariate regressions with high dimensional and correlated predictors, called

principal variable analysis (PVA).

In in Chapter 5 we propose a mixture-based model called likelihood fusion
and we introduce a two-stage procedure based on the proposed model to per-

form marginal variable screening and regression classification simultaneously.

In Chapter 6 we study the Bayesian clustering problem through finite mix-
ture of normal distributions. We propose a different prior for the component

means which depends on the component variances and mixing proportions.



Chapter 2

Introduction

In this chapter, we review some of the literature on concepts to which we
refer in the following chapters. In the first section, we review some of the
variable selection methods for both univariate and multivariate regressions.
Particularly, we introduce some of the well-known penalisation methods to

which we compare our proposed variable selection method.

After giving a brief introduction about these methods we discuss the ben-
efits of fitting a multivariate regression model over the univariate regression
model when we have a multivariate response variable. Multivariate regression
model refers to a model with a multivariate response variable where certain
number of observations are recorded on several response variables rather than
just one response variable. Then through simulation studies we show that the
outcomes obtained from fitting a multivariate regression model to data are
more reliable than fitting separate univariate regression models. This is fol-
lowed by introducing finite mixture models and finite regression models. We
also discuss the Expectation-Maximisation (EM) algorithm that is applied to
estimate the model parameters in finite mixture models which is related to the

material of Chapter 5. In the last part we introduce Bayesian mixture models.



2.1 Variable selection methods for univariate lin-

ear regressions

Univariate linear regression model

In a univariate linear regression model, we are interested in explaining the
linear relationship between a response (dependent) variable Y and a set of
predictors (independent) variables Xi,---,X,. Let y; and zy, k = 1,--- |p
denote the i-th observations on the response variable and predictors respec-

tively. Each y; can be specified by the following linear equation
Yi=DBo+ b+ -+ Gprpte, i=1--.n (2.1.1)

where e; is the Gaussian error term. Suppose we have already centralized y;s.
Then we can omit the intercept in the above equation. Thus, the above model

can be written in matrix form as
y = X8 +e, (2.1.2)

where each column of the n x p matrix X, denotes n observations on pre-
dictors Xi,k = 1,---,p and the vector y contains n observations on the
response variable. The vector € = (e, -+ ,e,) contains the error terms and
B = (B, ,B,)T is the vector of unknown regression coefficients. We wish
to estimate 3 using the observations (X,y). The commonly used approach
is the Least Squares Estimation. The absolute value of estimated coefficients
quantify the relative contribution of each regressor to the response variable. In
other words, large estimates indicate greater influence on the response variable.
Total sum of squares TSS = > (y; — )? is the total variability in the response
variable Y before performing the regression and residual sum of squares (RSS)
reflects the unexplained variability after performing regression and is obtained

by RSS =ef +---+ €2 (James et al., 2013).



In the linear regression we assume that there is a linear relationship between
y; and x;1,- -, x;. It is unlikely that any real-life problem truly has such a
simple linear relationship. So performing linear regression will undoubtedly
result in some bias. Ideally, a good model is the one with low bias and low
variance. In those cases where the actual relationship between the response
and the predictors is approximately linear, the least squares estimates will
have a low bias. If the number of observations, n, is larger than p, the number
of independent variables, then least squares estimates also tend to have low
variance. However, if n is not much larger than p, there can be much variability
in the least square fit, resulting in overfitting (James et al., 2013). This means
the model is very accurate for training data, but it has poor accuracy on
previously unseen data not used in model training (Miller, 1984). One way to
tackle this issue is to restrict the model flexibility by imposing some constraint
on regression coefficients. Later in this section, we introduce penalisation

methods which are designed for this purpose.

Variable selection

The advance of high-throughput technology has produced high dimensional
data. This has imposed a challenge on modern statistics. This challenge is
reflected in regression modelling as having p > n. As a result, the least square
coefficient estimate is not unique. In practice, it is often the case that only
a fraction of the predictors are informative and substantially associated with
the response variable (Bithlmann and Van De Geer, 2011). As an example,
consider cancer biology where the study of gene expressions is of high impor-
tance. Gene expression data invariably contain tens of thousands of genes,
while only a few dozen may be actually responsible for the disease. It is only
these genes which are potential targets of drugs. Therefore, it makes sense to
assume that only a small proportion of the predictors has non-zero coefficients.
Indeed, detecting a small, but informative, subset from such large data is one

of the most challenging aspects of modern statistics (Li and Xu, 2008).



Identifying the few significant predictors among a large set of possible vari-
ables is referred to as wariable selection. It is known as an effective way of
reducing model complexity while balancing model bias and model variance.
Fitting the model to the smaller set of important predictors will improve both
prediction accuracy and model interpretability (James et al., 2013). Vari-
able selection methods for regression models can be divided into three broad
classes of classical subset selection, penalisation and dimensionality reduction

methods.

2.1.1 Subset selection methods

In this section, some of the methods through which a subset of predictors is
selected are discussed. These include the best subset and stepwise selection
procedures. Miller (1984) suggests that by using only some of the predictors,
a more accurate prediction and estimation is attained. Moreover, eliminating
the uninformative variables enables us to describe the data parsimoniously
and the obtained regression coefficient estimates have small standard errors

particularly when some of the predictors are highly correlated.

Best subset selection

This method is performed through a two-stage process. In the first stage, all
possible subsets of predictors are obtained. Then a model is fitted to each of
these subsets separately. This gives us a set of 2P different model as candidates.
In the second stage of this method, the optimal model is selected according to
some selection criteria such as AIC, BIC, Mallow’s C),, R? which are defined

as follows.

Let m denote the number of predictors in the fitted model and &2 is an
estimate of the variance of the error term in model (2.1.1). The Akaike infor-
mation criterion (AIC) is based on the maximum likelihood. Since in the model

(2.1.1) errors are Gaussian, the maximum likelihood and the least squares are

10



the same thing. Therefore, AIC is calculated by AIC= -5 (RSS+2ma?) where
RSS denotes the residual sum of square and n is the sample size. Bayesian
information criteria (BIC) is derived by BIC = 1(RSS + log(n)mo?). The
statistic Mallow’s C, is obtained by C), = £(RSS + 2md?). The adjusted R?
statistic is calculated by 1 — % This method is summarised in the

following algorithm.

Algorithm 2.1 Best subset selection

1. Start with a model with no predictor which is called null model, M.

2. Fork=1,2,---,p, fitall (i) models with exactly m predictors and select
the best model M,,, with smallest RSS among models with m predictors.

3. Select the overall best model among My, --- , M, using some selection

criteria.

Although best subset selection is a simple and easy to apply approach, it
suffers from computational limitations. As the number of possible models
grows significantly by increasing the number of predictors, this method be-
comes computationally infeasible. In addition, due to the large 2 dimensional
search space, high variance of the coefficient estimates is expected. In the fol-
lowing section we introduce two computationally efficient alternatives to best

subset selection (James et al., 2013).

Forward and backward selections

Forward selection

Similar to best subset selection approach, forward stepwise selection algorithm

begins with the null model. In stepwise forward selection, candidate models
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are constructed by sequentially adding one predictor at a time, until all of
the predictors are in the model. At each step, while the predictor is added to
the model, the p-value corresponding to this predictor is calculated. Then the
predictor with the lowest p-value less than the critical value is selected and
added to the model. The procedure is repeated until no new predictors can

be added.

Backward selection

Unlike forward selection, the backward stepwise algorithm starts with the
model that all predictors are included. Then the predictor with the highest
p-value greater than the critical value is removed. The new model with one
less predictor is fitted again, and the remaining least significant predictors will

be removed similarly until all non-significant predictors are removed.

2.1.2 Penalisation methods

Although subset selection methods simplify the model and reduce the vari-
ance, they may be unstable. In other words, small changes in data could
result in drastic changes in regression equations. As a result of the instability
in subset selection methods, the prediction error is strongly affected by slight
variations in the data. Besides, these methods cannot handle high dimensional
data due to computational deficiency (Breiman, 1995). Since in subset selec-
tion variables are either selected or discarded, subset selection is a discrete
process. As a result this method often suffers from high variability. To tackle
this problem shrinkage or penalisation methods are proposed. These methods
are continuous and reduce the variance by putting constraints on coefficients
estimates (Hastie et al., 2009). The literature on penalisation methods is very
rich and considering all these methods is beyond the scope this thesis, there-
fore in the following sections some of the recent famous methods to which later

we compare our proposed method, are introduced.
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Ridge

Ridge regression (Hoerl and Kennard, 1970) is an improvement to the ordi-
nary least square (OLS) where model fitting is performed by minimising the
residual sum of squares while limiting the />-norm of coefficients. Consider
the regression model 2.1.1 introduced earlier then the optimisation problem in

ridge regression will have the form
B = argminlly — XBI3 + MBI,

where [|B]5 = >7_, 87 and A > 0 is a tuning parameter and it controls the
amount of shrinkage. As A\ — oo the amount of shrinkage increases which
results in variance reduction and therefore a better prediction accuracy. Al-
though ridge regression is a stable method, it shrinks small coefficients towards
zero but not set them to zero hence all predictors are retained in the model.
Therefore variable selection cannot be performed through the ridge regres-
sion. A nice feature of the ridge penalisation is the ability of this method to
shrink correlated variables towards each other. This property is referred to as
grouping effect. A new technique which is introduced in the next section was

proposed with the aim of improving the ridge regression.

Lasso

Lasso which was proposed by Tibshirani (1996) is an alternative to the ridge
regression which imposes the ¢;-norm penalty on coefficients. So the residual

sum of squares (RSS) will be minimised as follows
. 1 )
B= argémn§||y — X85 + A8l

where [|B][1 = >_7_, |5;]. Because of the nice geometric feature of the lasso
constraint this method has the property to set some of the coefficients equal

to zero. Unlike the strictly convex fs-norm in ridge regression, the ¢;-norm of
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coefficients hits the RSS contours which are defined by

n

3 (y -5 ﬁ) }

i=1

on the axes, so the corresponding coefficient will be set to zero.

B4 B4

Figure 2.1.1: RSS contours shown in red ellipses and green areas show penalty functions for
the lasso (left) with the constraint region, |51| 4 |82] < A and ridge regression (right) with
the constraint region, 87 + 35 < A (James et al., 2013).

This will lead to a sparse model which is more interpretable (Tibshirani,
1996). However, lasso does not have the grouping feature of the ridge regres-
sion. As a result, in the presence of correlated variables, lasso tends to select
one from the grouped correlated variables and discards others. This can occur
in biological data analysis. For example, gene expressions are highly corre-
lated when genes belong to the same pathway. This cannot be explored by
lasso because it lacks the grouping effect property. Another shortcoming of the
lasso is that when p > n it can select at most n predictors before it saturates,
also lasso may not be an ideal approach where the aim is building a predictive

model (Zou and Hastie, 2005) .
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Elastic net

Zou and Hastie (2005) proposed a new penalty called elastic net. This penalty
is a convex combination of ridge and lasso penalty and as a result, it pos-
sesses the nice features of both the ridge and the lasso, while it improves the
prediction accuracy of the lasso. Elastic net solves the following optimisation

problem

B = arg;ﬂinﬂy = XBIl3 + A8l + MlIBl1- (2.1.3)

Let a = ) then (2.1.3) can be equivalently written as

A2
(A1+A2
B = argmin|y — X8> st B2+ (1 —a)|B|: <t for some t.

B

Resulted estimates from elastic net regression can be regarded as the weighted
average of lasso and ridge solutions. This method also does the variable selec-
tion and shrinkage at the same time and is capable of selecting the grouped

variables.

Group lasso

An extension of lasso was introduced by Yuan and Lin (2006) where the se-
lection is performed at the group level. Unlike the elastic net, in this method,
the covariates are partitioned into non-overlap groups prior to penalisation.
In other words, the solution will be non-zero groups of coefficient estimates
instead of individual estimates. When the covariates are assumed to come

from m non-overlap groups, this method solves
N 1 m
B = axgminglly = 3 XUBOIE+ A3 villBVl:
=1 l

where X® is the submatrix of X columns of which are predictors in the [-th

group with corresponding coefficients B and p; is the length of 8.

15



2.1.3 Dimension reduction methods

Dimension reduction is an alternative approach to exclude irrelevant informa-
tion and noisy features in the data. Such approaches reduce the dimension of
data by projecting data onto a lower dimensional space, while the informative

and interesting structure in the data is preserved.

Definition 1. A linear projection R? — R¥ is a linear map A or k x p matriz
of rank k:
w=Ax, xR’ weR" (2.1.4)

The projection is orthogonal if the row vectors of A are orthogonal to each
other and have length one. If k = 1, then A reduces to a row vector a’ which

is called direction vector. A direction vector is a vector of norm one (Rao and

Rao, 1998).

Projection Pursuit introduced by Friedman and Tukey (1974) is a dimen-
sion reduction approach that pursues interesting low dimensional orthogonal
projections of data. Koch (2013) describes the projection pursuit as the search
for projections worth pursuing. This algorithm associates an index to each

projection to measure the interestingness of that projection.

Definition 2. Let x be a p-dimensional random vector, and let a € RP be
a direction vector. A projection index Q is a function which assigns a real

number to pairs (x, a) (Koch, 2013).

Through projection pursuit data are projected onto a lower dimensional
space, then the low dimensional projections are described by the projection
index. This index is then maximised to obtain interesting projections. Here,
we introduce a special case of projection pursuit methods where the projection
index is the variation in the data. In other words, the variation is the index
which needs to be maximised. This technique is called Principal Component
Analysis (PCA). Principal components capture directions with the highest

variation in the data. Principal components are calculated as follows. Let
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x ~ (i,Y) be a d-dimensional random vector, and let a € R? be a direction
vector. The projection index for x and a is the variance of projected data.
Hence,

9Q(x,a) = Var(a’x),

Since ¥ denotes the covariance matrix of x, to find the first principal compo-

nent the following optimisation problem is solved

max Var(alx) = max a] Ya, st aja; = 1. (2.1.5)
al al

Implementing the method of Lagrange multiplier and differentiating with re-
spect to a; gives (X — MIz)a; = 0, where I; is a d x d identity matrix.
Thus, A; is the eigenvalue of > and a; is the corresponding eigenvector. Since
alYa, = al'\ja; = )\ is to be maximised, \; should be as large as possible.
So a; is the eigenvector corresponding to the largest eigenvalue. Thus, the
maximiser of this projection index over direction vectors a; is the eigenvector

of ¥ with the eigenvalue of

A1 = max  Q(x,a).
{a:llal=1}

The second principal component is derived by solving the optimisation prob-
lem (2.1.5) with the additional normalisation constraint ala; = 0 to guarantee
that these principal components are uncorrelated. Consequently, the second
principal component is derived by constructing the following Lagrangian func-
tion

aQTEag — )\g(agaz —-1)— Ag(agal),

differentiating the above function with respect to a; and setting the equation
equal to zero gives (X — AI;)as = 0. Similarly, Ay is an eigenvalue of ¥ with

the corresponding eigenvector a;. Also \s is the second largest eigenvalue of

T

.. X where a,, is the

Y. Identically, the m-th principal component of x is a
eigenvector corresponding to the m-th largest eigenvalue (Jolliffe, 1986). It is

common to find the first few principal components to reduce the dimension of
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data. Indeed, PCA represents the data in a new orthogonal coordinate system
which optimally accounts for the variation in the data. The proportion of the
variance that each eigenvector represents can be calculated by dividing the

eigenvalue corresponding to that eigenvector by the sum of all eigenvalues.

Dimension reduction for regression model (2.1.1) is also performed by find-
ing the first ¢ principal components. These projections are in the lower dimen-
sional space spanned by the first ¢ eigenvectors of the predictors. Consider
the p-dimensional vector x! which is the i-th row of the design matrix X,,x,
in univariate regression model (2.1.2). We drop the index 7 in notations for
the rest of this section and use x instead. Suppose R(x) is a function of di-
mension less than p such that it carries all the information that x has about
the response variable Y. Hence, E(Y|x) = E(Y|R(x)). Cook (2007) defines

the dimension reduction as follows.

Definition 3. The action of replacing x with a lower dimensional R(x) pro-
vided that it captures all the information that x contains about Y so that

E(Y|z) = E(Y|R(x)) is called sufficient dimension reduction.

Dimension reduction is applied to the regression model (2.1.1) in two steps.
On the first step which is the reduction step, x is reduced linearly to G’ x
using some methodology that produces G € RP*? ¢ < p. The second step
is estimating the mean function E(Y|G'x) for reduced predictors. In the
following we show that this sufficient reduction is performed through principal

components.

Suppose Y is the n x 1 vector of centred response and X,,, be the centered

design matrix with rows (x;—x)7,i = 1,--+ ,n, where x = _ x/n is the sample
i=1

mean. Let 3 = x?x/n denotes the sample covariance and S = X7Y/n. If we

denote the OLS estimator by B, = fl_ls, then (Cook and Forzani, 2009)

ols
BG = PG(ﬁ])Bols = G(GTEG)_IGTS (216)

This estimator is the projection of Pg g, of /6;13 onto span(G) in the 3 inner
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product. If G =1, then BG =, ,,. If the columns of G are chosen to be the

ols*

first ¢ eigenvectors of 3 then G”x includes the first q principal components

and BG is the principal component regression estimator (Cook, 2007).

2.2 Extensions to multivariate linear regressions

Multivariate linear regression model

In the multivariate regression setting, we model several response variables by
using the same set of covariates. This model is widely used in applied areas
such as economics and biology where finding the linear relationship between
a set of predictors and several response variables is of interest. Consider the
dataset (Y,X) where Y = Y,; = (y;5) = (y1y2---ys) and X = X, 5, =
(xik) = (x1---%,), and y; and x;, are vectors of n observations made on
the j-th response variable and the k-th predictor. Then, we can formulate a

multivariate multiple regression model as follows:
Y = XB+E, (2.2.1)

where B = B,y = (bibs---b;) and E = E,; = (e162---€;) with b; and
g, respectively denote the values of the regression coefficients and the error

terms related to the j-th response variable.

Such models can be fitted utilizing two different approaches as follows.
Since the multivariate regression model (2.2.1) can be written as J separate

univariate regression models

we can fit each univariate regression separately to the data, or alternatively,
these univariate equations can be estimated jointly by fitting the single mul-

tivariate model (2.2.1) to the data. The key feature about considering model
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(2.2.1) is that through this model, the correlation structure between and within
the columns of the response variable Y, ; is taken into account. Although
when p < n, the least square solution, B = (X7X)'X”Y gives the same
coefficients as fitting J single multiple regression models separately, this so-
lution is not efficient when p > n or when we deal with high dimensional
data with p > n. By fitting separate regression models to y;’s, the correla-
tions among y,’s are ignored. Accordingly, such modelings are likely to suffer
from overfitting and high variability (Peng et al., 2010). Breiman and Fried-
man (1997) show that considering all response variables simultaneously can

improve prediction accuracy especially when the responses are correlated.

2.2.1 Multivariate subset selection methods

Subset selection for multivariate regression model (2.2.1) can be performed
by building J separate models for each response variable. For the same ratio-
nales pointed out earlier, this approach is also not efficient for subset selection.
The reason is, in many applications we require to find the best subset for all
response variables simultaneously. Moreover, implementing subset selection
methods using model (2.2.1) is computationally more efficient. Subset selec-
tion methods for multivariate regressions follow the same procedure as uni-
variate models. However, the selection criteria is formulated differently under
multivariate regression models. In the work done by Al-Subaihi et al. (2002),
these selection criteria are extended to the multivariate case. Suppose k spec-
ifies the number of predictors in the model and J is a J x J unit matrix. The

adjusted R? is defined by AR* =1 — % where,

R? = [[Y7 (1~ )Y Y GXX) X - DY), (223)

where, X}, is the sub-matrix of X containing vector 1 and the columns corre-

sponding to the k predictors in the model. AIC and BIC and Mallow’s C,

20



are defined as

oW + J(J+1
AIC — In[RSS|+ +n< 1)

1
BIC — In[RSS?|+ R0VK
n

C, = (n—pTSS'RSS + (2k —n)I
where,

TSS = Y [I-XX'X)'X"]Y.
RSS = Y'[I - X,(XiX,)'X7]Y.

2.2.2 Multivariate penalisation methods

Through the following sections, we introduce the multivariate regression model
and discuss the multivariate form of the penalisation methods which were

mentioned for univariate regressions.

Multivariate lasso, group lasso and sparse group lasso

The idea of the lasso (Tibshirani, 1996) introduced earlier for univariate re-
gressions, is generalised to the multivariate regressions by Peng et al. (2010)
and Vincent and Hansen (2014). The group-lasso of Yuan and Lin (2006) and
the elastic net (Zou and Hastie, 2005) penalisation methods are extended to
the multivariate regression models by Simon et al. (2013). In the work done by
Simon et al. (2013), the imposed penalty is an ¢;-norm penalty whereby vari-
ables are selected at the group level. However, this penalty does not encourage
the sparsity within selected groups. On the other hand, in this approach, the
dimensionality of the response variable is not taken into account. Therefore,
selected non-zero groups are either all zero or non-zero for all of the response
variables. In other words, if a predictor has a non-zero coefficient estimate,

this predictor is associated with all of the response variables. Although in
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regression models with multivariate response variable it is likely that the re-
sponse variables are correlated, and as a result, they may be associated with
the same set of predictors, in some cases these predictors may affect some of
the responses rather than all of them. This shortcoming is addressed in ap-
proaches proposed by Vincent and Hansen (2014) and Peng et al. (2010) where
a penalty which is a combination of ¢; and /5 norm is applied. The following

optimisation problem is solved in the Peng et al. (2010) method:

~

P p
B = argmin %HY —XB|F+ MY 1CBL 1 +X2 Y [ CBy |2,
BeRpxJ =1 =1
where C is the {-th row of C = (¢;;),xs which is a pre-specified p x J matrix of
0 and 1 indicating the coefficients on which penalisation is imposed. B, is the
[-th row of B and || . ||z denotes the Frobenius norm of matrices. The indicator
matrix C is pre-specified based on prior knowledge: if we know that predictor
x; affects the response y; then the corresponding regression coefficient [3;
will not be penalised and ¢;; is set to zero. When there is no such prior
information, C = (¢;;),xs can be set to a constant matrix C = (¢;;) = 1. The
{1 norm controls the overall sparsity of the coefficient matrix B and the /5
norm imposes a group penalty on rows of the coefficient matrix. The result
of the procedure is called multivariate lasso when Ay = 0 and multivariate
group lasso when A\; = 0. In addition,this penalty puts constraints on the
total number of predictors entering the model. This is achieved by treating
the coefficients corresponding to the same predictor (one row of B) as a group
and then penalising its ¢, norm which is equivalent to sparse group lasso.
The sparse group penalty simultaneously selects the important groups while
selecting some predictors within the selected group. This allows the situation
that a predictor can be associated with some of response variables but not

with all of them.

In our simulation studies we use lsgl R-package (Vincent and Hansen,

2014) to perform multivariate lasso and multivariate sparse group lasso. In
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this package the following optimisation problem is solved:

. 1 D J p
B = argmin —[|Y —XBH%H{(l —a)) By |l2 +aZZ|bm},
=1

n
BeRrx/ j=1 i=1

where B, is a J-vector or the [-th row of px J coefficient matrix B = (b;;). This
penalty is equivalent to: multivariate lasso penalty when a = 1, multivariate
group lasso penalty when o = 0 and multivariate sparse group lasso penalty

for a € [0, 1].

Multivariate elastic net

Multivariate elastic net proposed by Simon et al. (2013) for multivariate re-
gressions implies a penalty which is a convex combination of the ridge and the
group-lasso penalty. The following optimisation equation is solved by multi-

variate elastic net

~

1 1- 2
B:argmln—HY—XBH%—l—/\{( ) | B ||% +aZH B, H2}7
=1

(6%
BeRpxJ n 2

for a € [0,1] and By, is a J-vector or the [-th row of p x J coefficient matrix
B. As special cases o = 1 corresponds to multivariate group lasso and o = 0
corresponds to ridge penalty. Setting o = 0.5 will give equal weight to both

penalties and corresponds to multivariate elastic net.

2.2.3 Multivariate dimension reduction methods

Likewise the univariate regression models, dimension reduction methods for
multivariate regression models also specify a set of orthogonal linear combi-
nations of predictors. Then this lower dimensional set is regarded as a new
set of predictors which are regressed against the responses. Considering the
data set (Y, X) introduced above, dimension reduction for the multivariate

regression model (2.2.1) is performed through principal component regression.
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The corresponding principal component estimator is defined as follows. Let
T,; = XA, denote the n x d orthogonal matrix which contains d orthogo-
nal linear combinations of predictors. The columns of the p x d matrix Ay
are direction vectors. Then, the regression coefficient matrix obtained by the

reduced set of predictors is of the form
By = Ay(T]Ty) ' T]Y,

now if the columns of A, are chosen to be the first d eigenvectors of XX, then
the linear transformation matrix T4 consists of the first d principal components
and By is the principal component estimator (Abraham and Merola, 2005).
Later, Yuan et al. (2007) introduce a different dimension reduction approach
which is also based on the linearly transformed predictors. In this method,
response variables are regressed against lower dimensional predictors called
factors. In principal components regression, the factors are chosen to be the

principal components of the predictors. Factor regression model is of the form
Y =FQ+E, (2.2.4)

where F = XTI" and I is a p x r matrix for some » < min(p, J) and Q is an r x.J
matrix. The columns of F are referred to as factors. Note that model (2.2.4)
is just a different representation of the model (2.2.1) where the coefficient
matrix is replaced by B = I'Q2. To fit the above model first the factors or I"
is estimated and then €2 is estimated by least squares. Thus, to estimate the
coefficient matrix Yuan et al. (2007) suggests a novel penalty wherein the sum
of the singular values or the Ky Fan norm (Fan and Hoffman, 1955) of the
coefficient matrix is constrained. Since this penalty encourages sparsity among
singular values, besides shrinkage, dimension reduction is also performed. In
this proposed method, the choice of the number of factors, determining them
and estimating the factor loadings €2 are performed at the same time. Suppose
that the singular value decomposition of B is factorised as B = UDV? where

V is a J x J orthonormal matrix and D,y ; = (d);; is a diagonal matrix with
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the i-th largest singular values on diagonal i.e. d;; = 0;(B) where o;(.) denotes
the i-th largest singular value of a matrix. So the estimate of B is obtained
by solving the optimisation problem of
min(p.q)
min [tr {(Y = XB)(Y — XB)"}] subject to Y oi(B) <t,
i=1
where ¢ > 1 and the constraint Z;n:irf(p 9 5,(B) is called the Ky Fan (p or

¢)-norm of B.

Despite all developments in variable selection methods for multivariate re-
gression, some of these methods cannot handle high dimensional data. More-
over, the correlation between responses is not taken into account for variable
selection in these methods. To address these issues, in Chapter 4, we extend
the idea of principal component analysis and propose a different variable selec-
tion method called principal variable analysis (PVA). This method attempts
to capture the maximum variation in the data with a small number of principal

variables.

2.3 Criterion for performance evaluation

In this section, we introduce the concept of sensitivity and specificity, two
quantities that we use through the thesis to examine and compare the selection

accuracy of different variable selection approaches.

Sensitivity and specificity are statistical measures of the performance of a
binary classification test. Specificity, or true negative rate, measures the pro-
portion of negatives in a binary classification test which are correctly identified.
Sensitivity, or true positive rate, measures the proportion of true positives cor-
rectly detected by a binary classification test (Asche, 2015). A test that has
high values of both sensitivity and specificity is considered as a good test.
In variable selection framework, these notions are defined as follows. Sensi-

tivity is the survival rate of true active or non-zero predictors and specificity
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refers to the survival rate of true non-active or zero predictors in selection
procedures. In simulation settings, we consider a predictor as true active if its
corresponding coefficient is set to a not zero value and true non-active if the
corresponding coefficient is set to zero. Let T" and T denote sets of true active
and true non-active predictors, respectively. Also assume that T and T° are
their estimators obtained after carrying out a variable selection approach. The
symbol |.| denotes the size of a set. Accordingly, sensitivity and the specificity

are defined as R
T NT)|
|T|

|T¢ N T

SEN =
7|

, SPE =

|T| < n where n is the sample size and TUT® = T UT*® = {1,2,...,p} where p
is the number of predictors. Also the following inequality holds for specificity
values that reads

|T¢ —T¢NT]| >p—n—|T|

SPE = >
|| p—IT]|

So the specificity is close to 1 when p > |T| + n. This holds for most of our
simulations, for example for n = 42, p = 2000, |T| = 37 we have SPE > 0.978.

2.4 Simulation studies

In this section, our main focus is on the performance of penalisation-based
variable selection methods which are introduced in previous sections. Our

simulations serve two purposes:
(a) To investigate whether multivariate regression offers any improvement
over separate univariate regression.
(b) To compare the performance of the introduced multivariate penalisation

methods in variable selection in terms of sensitivity and specificity.

All simulations were programmed and conducted in R software. In our sim-

ulation studies, the glmnet R-package (Friedman et al., 2010) was used to
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apply univariate and multivariate penalisation methods with elastic net and
lasso penalties. Note that the multivariate lasso in glmnet imposes a group
lasso penalty and not a lasso penalty. Therefore, we used the lsgl R-package
(Vincent and Hansen, 2014) to apply the multivariate lasso and multivariate

sparse group lasso penalties.

2.4.1 Data generation

In all simulations the design matrix X, «, was generated by sampling n number
of p-vectors x;, i = 1,--- ,n from a multivariate normal N,(0, X,,) where ¥

is the covariance matrix of the gene expressions in our real data.

In order to monitor how correlations among response variables influence
the selection accuracy, we considered two different correlation structures in
simulating the coefficient matrix B as follows. Let matrix (IC),x; where
J = 131, denote the IC50 values of 131 drugs across n cell lines in real data,
and matrix R;c = (r;;) be the correlation matrix. Suppose that J = J; + Js
and those columns of IC with correlation r; < 0.3 form the sub-matrix IC! n
and columns with 7 ; > 0.5 form the sub-matrix IC", ; with the corresponding
covariance matrix of (£2;),xs, and (£25)s,xJ, respectively. We generated the

coefficient matrix B under two different scenarios.

Scenario 1 (Strongly correlated coefficient matrix): In this scenario,
the coefficient matrix BZX 7, Was generated by sampling p number of J;-vectors

from Ny, (0,,).
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Figure 2.4.1: The correlation structure of (a) simulated coefficient matrix and (b) simulated

response variable under scenario 1 with strong correlation structure.

Scenario 2 (Weakly correlated coefficient matrix): In this scenario,
the coeflicient matrix B;X 5, Was generated by sampling p number of J-vectors
from Ny, (0,€;). The correlation structure in B! and B" are represented in

Figure 2.4.1a and Figure 2.4.2a.
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Figure 2.4.2: The correlation structure of (a) simulated coefficient matrix and (b) simulated

response variable under scenario 2 with low correlation structure.

28



According to our model assumption the coefficient matrix is sparse hence,

in scenario 1 the non-zero elements were placed in columns of BQX T with r;; >

l

0.5 and in scenario 2 we placed the non-zero elements in those columns of B, ;

with low correlations r;; < 0.3. The error matrix, E, ., was generated by
sampling J times from a multivariate normal distribution N, (0, 021,), where
0? = 0.1. Finally, the simulated multivariate response variable satisfies the

following multivariate regression model
YnXJ = XnXpoXJ +En><Ja (241)

where B,,; € {B. , ,B"

pxJy» B, }- For all penalisation methods prior to model

fitting, predictors and response variables are standardised. The correlation
structure in simulated response variable resulted from scenario 2 with weakly
correlated coefficient matrix and scenario 1 with strongly correlated coefficient

matrix are shown in Figure 2.4.2b and Figure 2.4.1b.

In all simulations and for all penalisation methods, the regularisation path
corresponding to each penalty was computed at a grid of values for the regu-
larisation parameter A\. Therefore, different values of A yield a different number
of selected variables which leads to different values of specificity. To make a
fair comparison, we fixed the specificity of each method at the same level and
then compared the sensitivities. Suppose we want to fix the specificity on 97%,
since it is not possible to have the same number of selected variables for each
A, we searched for a particular value of A such that the specificity of which
satisfied the condition |SPE — 97%]| < 0.01. Thus, the specificity values did
not differ much and were approximately the same and we could compare the

sensitivity values.

2.4.2 Simulation results

(a) Comparing multivariate variable selection with multiple separate

univariate variable selection: In this section, we examine the variable
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selection performance of two different approaches to the problem of multivari-
ate regression modelling. We utilised the single multivariate regression model
(2.2.1) and imposed the multivariate lasso and multivariate elastic net penalty
to estimate the coefficient matrix B. Taking a different path, we also con-
sidered each column y;;j = 1,---,J of the response variable Y, ; together
with the predictor matrix X, «, and fit J separate univariate regression where
the univariate lasso and univariate elastic net penalties were applied. We then
compared the sensitivity values obtained from each approach under scenario
1 and scenario 2 with low and high correlation structure among response vari-
ables. Although using multivariate regression might give the same result as us-
ing separate univariate regressions, through simulations we present some cases
where applying multivariate regression model gives better results. To this aim,
we ran 50 simulations with combination of (n, p, J, |T|) = (88,2000, 20, 70) and
compared sensitivities while fixing specificities at the level 97%. Results are

presented in Figure 2.4.3 and Figure 2.4.4.
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Figure 2.4.3: Sensitivity box plots obtained from 50 simulations with p = 2000,n = 88, J =
20, |T'| = 70, where specificities are fixed. Results are corresponding to variable selection
through lasso penalisation when multivariate (M) and univariate (sep.lasso) models were

applied with (a) high correlation and (b) low correlation among among response variables.

As we expected, when we consider all the response variables simultaneously
through the multivariate regression model (2.2.1) the variable selection per-

formance of lasso was improved. According to sensitivity values, under both
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scenarios, the selection accuracy of the multivariate regression model is higher

than separate univariate regressions.
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Figure 2.4.4: Sensitivity box plots obtained from 50 simulations with p = 2000,n = 88, J =
20, |T| = 70, where specificities are fixed. Results are corresponding to variable selection
through elastic net penalisation when the multivariate elastic net (menet) and the univariate
elastic net (sep.enet) penalties were applied with (a) high correlation and (b) low correlation

among response variables.

Results presented in Figure 2.4.4 show that when response variables are
highly correlated, the selection accuracy of elastic net is almost the same for
both univariate and multivariate regression models. Since response variables
are highly correlated, detection of important predictors becomes easier. As a
result, even if multiple univariate regressions are fitted to data, the selection
accuracy of elastic net is almost the same or even better than fitting a mul-
tivariate regression model. However, for weakly correlated response variables,
the univariate elastic net performs poorer and selection accuracy of the mul-
tivariate elastic net is noticeably higher. Therefore, for datasets with weakly
correlated response variables, fitting a multivariate regression would be prefer-
able. These results also reveal that when the correlation among the response
variables is high, the sensitivity is higher. This means that when the correla-
tion among response variables is high, detection of non-zero predictors is easier
for both multivariate and univariate model when elastic net and lasso penalty

are imposed to the coefficient estimates.
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(b) Comparing penalisation methods for multivariate regressions:
Results shown in Figure 2.4.5 evaluate the selection accuracy of introduced
penalisation methods for multivariate regression model. In both scenarios with
high and low correlations among response variables, the multivariate sparse
group lasso (MSGL) outperforms all other penalisation methods. The reason
is that this penalty possesses the nice property of within group selection as well
as the grouping feature which results in sparsity at group and within group
level. Thus, this property allows for some zero coefficients inside the groups

which leads to a more accurate selection.
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Figure 2.4.5: Box plots of sensitivity values where the specificity is fixed. Results obtained
from 50 simulations where p = 2000, n = 88, .J = 20, |T'| = 70 with (a) high correlations, (b)
low correlations among response variables. From the left, methods are multivariate elastic
net (menet) multivariate lasso (ML), multivariate sparse group lasso (MSGL), multivariate

group lasso (MGL).

2.5 Finite mixture models

In applied statistical modelings, data under investigation often have an unob-
servable group structure. So it is reasonable to partition data into groups. For
example, in medicine, it is often desired to categorise diseases that have the
same treatment. Also in cancer biology, grouping those mutations that cause

the same type of cancer plays a significant role in enhancing the treatment.
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In this situations, we may need finite mixture models. These models are of
great interest in many areas of science where one wants to uncover the latent
group structure in the data. Flexibility and the ability to capture unobserved
heterogeneity in data are crucial aspects of mixture models that mark them

as one of the appropriate methods for statistical modelling.

A finite mixture model is a weighted sum or a convex combination of a finite
number of densities. These densities may have different sets of parameters. In
finite mixture models we assume that observations come from these densities

with certain probabilities, respectively.

Let x1, -+ ,X, be a random sample of random variable X where each x;
is a p-dimensional vector. We suppose that there is a group structure in these
data but there is no information available about the group index of each x;.
If we assume that there are K different groups in the data then a probability
density function of a mixture model with parameter set ® = (0, 7r) is defined

by the following combination of K densities

K
f(xi; @) = Zﬂkfk(xz‘;gk), (2.5.1)
k=1

where fi(x;|0) is the density corresponding to the component & and (6, 7) =
(01, ,0k,m, - ,mk). Parameters ms are mixing proportions with the fol-

lowing property

0<m <1, zK:Wk:L k=1,--- K.
k=1
Note that each fi(x;;0) is a density function, hence, the Equation (2.5.1)
defines a probability density function (McLachlan and Basford, 1988). In cases
where component densities are Gaussian, the model is known as Gaussian
mixture models (GMM). Finite mixture of regression model introduced by
Quandt (1975) is a widely applied model which is a special case of the GMM.

These models are defined as follows.

Assume that we are interested in explaining the relationship between a
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univariate response variable Y and a p-dimensional vector of predictors x.
Also assume that n independent observations on Y and x are denoted by
Y1, ,Yn and Xy, -+ X, with x; = (x1,- -+ ,Xx;) for i = 1,---  n. Suppose

the dependency of Y and x is expressed through the simple regression model
Yi = X3 + €, e ~ N(0,0%).

In this framework it is assumed that the vector of regression coefficients 3 is
fixed for all observations. This assumption can be considered as a drawback of
regression models since it leads to the ignorance of unobserved heterogeneity in
data. More precisely, in the existence of a group-structure in data, regression
coefficients may not be the same for all response variables. The extent to which
explanatory variables are associated with response variable may vary across
different observations of response variable and this induces a group-structure
in data (Frithwirth-Schnatter, 2006). A more suitable alternative to the linear
regression model is a finite mixture of regressions model. These models possess

a combination of properties of mixture models as well as regression models.

Consider the pair of observations (y;,x;) on variables (Y,x) introduced
above. If the response variable follows a mixture distribution then a mixture
of regressions is obtained. Accordingly, within the scope of linear regression
models, the linkage between the response variable and predictors can be ex-
pressed by finite mixture of regressions. In this framework, the conditional
distribution of Y given x is a mixture model. This implies that each pair of
(y:,%;) belongs to one of the K components in the mixture model. Given that

observation (y;,x;) comes from component k, the following regression holds
yi:Xi/Bk+€i7 eiNN(an-Iz)a

Accordingly a mixture of regression models with K components is formulated

through the following conditional distribution

Flyilx) = mfulyilxiBy, o7), (2.5.2)
k=1
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where each fi.(.|x;3,07) is the normal density with mean x;3, and variance
0%, As a result of the group structure in the response variable, the coefficients
and the error terms in regression model (2.5.2) are not homogeneous across
all observations ¢ = 1,--- ,n. Yet, these parameters are homogeneous within

each group or component (Faria and Soromenho, 2010).

In a mixture model, the parameter set & = (0,7) is unknown. A mix-
ture model is specified by estimating the unknown parameters of the model.
Hence, the objective in fitting mixture models is to calculate the maximum
likelihood estimates of model parameters and use these estimates in calculat-
ing the probability of membership for each object. Assuming that xi,--- ,x,
are independently distributed, the likelihood function corresponding to the

mixture model (2.5.1) is given by

L(CD) - H Xza
= H (Z kak xl,Gk > s (253)

The above likelihood function is now maximised with respect to all model
parameters. Taking derivatives of L(®) with respect to all model parameters
gives the maximum likelihood estimators. Therefore, we need to find the

solution to equation
OL(D)

25 =0 (2.5.4)

It is more straightforward to maximise the logarithm of this likelihood function
due to useful mathematical features that logarithm possesses. Since logarithm

is a monotonically increasing function the following equality holds

arg max L(®) = arg max [(D).
PEP I
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Now the log-likelihood function corresponding to (2.5.3) is of the form

I(®) = log [H <Z7kak(xi;9k))]

=1 k=1

n K
= ) log Y mifi(xi; O)- (2.5.5)
i=1 k=1
Therefore, the maximum likelihood estimates can be obtained by solving the

equation

oD

% =0. (2.5.6)
Maximising the above log-likelihood is not feasible due to the appearance of
the summation in this function. This summation is not decomposable as we
do not have any information about the group from which each observation
is drawn. This means the data contain unobservable or missing variables.
In such instances, the most common and powerful approach for estimating

the maximum likelihood estimates of model parameters is the Expectation-

Maximisation algorithm which is introduced in the next part.

2.5.1 Expectation-Maximisation (EM) algorithm

As pointed out earlier, in the mixture models framework it is assumed that
the data arise from K different components, however, in reality the compo-
nent label of each observation is unknown. Therefore the vector of component
labels which provides us with some information about the origin group of each
observation is regarded as unobserved or latent part of data. To find the maxi-
mum likelihood estimates for such incomplete data, Expectation-Maximisation
(EM) algorithm (Dempster et al., 1977) is utilised. This iterative algorithm
alters between two steps in each iteration. The Expectation step or E-step
and the Maximisation step or M-step. The idea is to augment the incomplete
data with an auxiliary variable and calculate the expectation of the incomplete

log-likelihood.
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EM algorithm starts by augmenting the incomplete data with the hid-
den variable which is the unobserved component indicator. Let X denote
the incomplete data and Z specifies the hidden indicator. Let vector Z =
(21, - ,2,) denote n observations of indicator variable where z; = (21, - , zix)
1 =1,---,n. z; is a Bernoulli random variable which indicates the component

origin of each observation

1 x;, € C

0 X ¢ Ck
This means that if x; comes from component Cj, then z;, = 1 and it is
zero otherwise. Random variables z,, zo, - - - , z,, are independently and identi-

cally distributed according to multinomial distribution Multk (1, 7) consisting

of one draw on k categories with corresponding probabilities 7y, w9, -+ , Tx

(McLachlan and Krishnan, 2007)

Z1,22, " ,Z zfl\/d MU,ltK(l 7T)

Having completed the data, the likelihood is constructed as follows

n K
— HH?T lkfk Xz‘ek Z““

i=1 k=1

In practice, the above complete-data likelihood is not observable, hence in
the E-step of the algorithm, log L.(®) is replaced by its expectation. More
precisely, in the m-th iteration, the conditional expectation of the complete-

data log-likelihood given the observed data and the current estimates of @ is

calculated
Q(2|2™) = E[log L.(®)|X,®"™)] (2.5.8)
n K
= FE Z Z [zik log 7 + 2 log fr(x, Ok)]>
i=1 k=1

3

K
= ZE(Zik)long + E(zik) log fi(xi, 0)
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In the above expression, the information about the latent part of the data
is specified by posterior of latent variables given the observed data and the

current estimates of ®. This posterior is is calculated as

E(zixi, @) = w{™ (x;, ™) (2.5.9)
" fi(xis 00)

K .
> ™ fi(xi;6™)
t=

In the M-step of the EM algorithm, the expectation (2.5.8) is maximised with

respect to @™ . More precisely, we find ®(™*1) such that
P+l — arg;nax Q(®|d™)
or equivalently
Q(®[d™) < Q™ HV[dt™). (2.5.10)

These steps are alternated iteratively until the log-likelihood function con-

verges. In other words for some ¢ > 0
|L(@ ) — L(@™)| < . (2.5.11)

Dempster et al. (1977) showed a nice feature of EM algorithm called mono-
tonicity of the EM algorithm which means the incomplete likelihood L(8) is

not decreased after each iteration. That is
L(®MHDY > 1(pm), (2.5.12)

Once EM algorithm has converged, parameter estimates obtained in the last
iteration ® 1 give the set of maximum likelihood estimates. These estimates
consist of the component parameters and the mixing proportions correspond-
ing to each component. The posterior (2.5.9) also gives the optimal classifica-

tion of the data. Often we wish to compare the obtained classifications with
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the true one or with other classifications resulted from other methods. In the
next section we introduce one of the commonly used criterion to validate and

compare the classification accuracy.

2.5.2 Adjusted Rand index

Rapid technological advancements have led to the emergence of large databases
in many areas in science. Cluster analysis is one practical approach to tackle
the inevitable hurdles such databases bring about. The aim of cluster analysis
is revealing groups in the data. This technique seeks classifying or partitioning
data objects in some way that the objects within each group or cluster are
similar and share common characteristics whereas, they are different from
objects in other groups. As a result of representing the data in terms of a
smaller set of groups, describing the data becomes feasible, and the information
can be extracted more efficiently (Everitt et al., 2011). Most of the time we
are interested in comparing two classifications or partitions of the same data
set. For example, we wish to measure the agreement between two partitions
resulted from applying two different methods to the data. Here we review one
of the widely used methods that we use in this thesis to compare two different

classifications.

The Rand index attributed to Rand (1971) is a measure by which a classi-
fication is evaluated. Rand index quantifies the degree of agreement between
two partitions or classifications based on the class labels of objects. Suppose
we have n objects to classify and P, = {C4,--- ,C,} is a partition that assigns
these objects into r classes and P, = {C1, -+, Cs} assigns them into s classes.
Each pair of objects, either have the same class label or a different one. Since
the number of classified objects is n, we have the total number of n(n — 1)/2
pairs to compare. Let a be the number of pairs that the two partitions agree
by assigning the elements to the same classes and b be the number of pairs that
partitions agree by assigning them to different classes. Considering all pairs,

the proportion of agreement between P, and P, is evaluated by the following
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Rand index (RI)
a+b

RI(Py, P,) = nn—1))2

(2.5.13)

Since the expectation of Rand index for two random partitions is not a con-
stant, Hubert and Arabie (1985) proposed a normalised Rand index to provide
a more appropriate measure. This measure which is called Adjusted Rand In-

dex (ARI) is the corrected Rand index for chance and is defined as follows.

Rand index — Expected value of Rand index

ARI = .
Maximum value of Rand index — Expected value of Rand index

The adjusted Rand index assumes the generalised hyper geometric distribution
as a model of randomness (Dhaenens and Jourdan, 2016). Let n;; be the
number of elements which happen to be in cluster 7 in partition P, and in
cluster j in P,. Then the adjusted Rand index is formulated by
R — E[R] 2
ARI(P, P,)) = ——————, R= 2.5.14
ST e M G S

]

where the expected and the maximum value of Rand index are defined as

PEIRING

; .

&
=
I

In the above expressions, n; denotes the number of elements in ¢th cluster of
partition P, and n; is the number of elements in cluster j in partition P.
When two partitions completely agree, the adjusted Rand index is 1 which
is the maximum value for this index. Higher values of ARI indicates greater

degree of agreement between two partitions (Xu et al., 2005).
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2.6 Bayesian inference of mixture models

In this part we review finite mixture models in a Bayesian framework. One
appealing aspect of Bayesian approaches to mixture modelling is that they
allow for prior information or expert opinion to be combined with the data.
Another aspect is that, probability statements can be made about the unknown
parameters. In particular, the posterior provide a convenient device to infer

the number of components when it is unknown.

Suppose that we have N observations y,--- ,ynx, on random variable Y
which comes from a population with K groups. Also suppose we do not
have any information about the group of origin that each observation comes
from. This means we are dealing with a finite mixture model which was
introduced earlier. If the parameters of the mixture model is shown by vector

¥ = (64, ,0k,n) then the mixture density function is given by

K
p(uil®) = mp(vil6),
k=1

As it was pointed out earlier in Section 2.5, in order to fit the above mixture
model, all parameters in the model need to be estimated from the data. Under
a Bayesian paradigm, the unknown parameters are treated as random variables
and described with a probability distribution which is called prior. In other
words, this is the distribution before having observed the data and is based

on previous experiment (McLachlan and Peel, 2004).

In Bayesian inference, the main task is finding the distribution of the pa-
rameter after having observed the data which is the posterior distribution
of the parameter. Posterior distribution is obtained through Bayes’ theorem
where the prior information about the parameter of interest is combined with

the data

p(Vy) < p(y|9)p(¥), (2.6.1)
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where y = (y1, -+ ,yn). Therefore, from a Bayesian point of view, all the
knowledge contained in the data about the unknown parameters is specified

through the posterior distribution of parameters (Dey and Rao, 2005).

Note that similar to what was discussed in frequentist inference of mix-
ture models in Section 2.5, the group labels are the missing part of the data.
Following Frithwirth-Schnatter (2006), let S = (Sy,- -, Sy) be the allocation
vector which is missing and .S; denote the group label corresponding to the
i-th observation. The posterior probability of membership in group k for the
i-th observation, Pr(S; = kly;, ), is obtained by utilising Bayes’ rule (Bayes
and Price, 1763) as follows
Pr(Y = y|S; = k,9)Pr(S; = k|9)

K Y

ler(y = y;|S; = 4, 9) Pr(S; = j|9)
=

Pr(S; = kly;, 9) = (2.6.2)

where Pr(S; = k|9) is the prior probability that the i-th observation is drawn
from the k-th group. As Pr(S; = k|) = ny, the posterior probability (2.6.2)
is equivalently rewritten as

(Y| Ok) 1
K

le(yz-\ﬁ’j)m
j=

(2.6.3)

The denominator does not change as k changes therefore it is common to

express Bayes’ rule proportionality as follows
Pr(S; = klyi, 9) o< p(vi|0x)nk (2.6.4)

The incomplete-data likelihood corresponding to the mixture model under the
assumption that the data are sampled independently is given by
N

p(ylS.0) = p(y|S.61. - ,0x) = [ [ p(1:105,), (2.6.5)

i=1
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Suppose we denote the complete data as (y,S), then the complete-data likeli-
hood is defined by

p(y, S|9) = p(y[S, 9)p(S|9) = przws (S;|9). (2.6.6)

Since p(y;|S; = k,9¥) = p(y;|0x) and Pr(S; = k|9) = n therefore the

complete-data likelihood function can be rewritten as
K
p(y.S19) = TTTIw(wil0mm) s

= H( p(yz-lﬁ’k)) <H?7ff’“(s)> (2.6.7)
:S;=k

where Ni(S) is the number of observations in group k. We also denote the

mean and the variance of the k-th group as

:S;=k

W) = g O
1

Sy = N (S) > (i — s(9))? (2.6.8)

2.6.1 Mixture of univariate normals

In this section we consider the mixture model when component densities are
gaussian and we derive the posterior distributions for parameters correspond-
ing to each component density. Posterior distributions for o7 and s are calcu-
lated given the complete data (y,S). We first derive the posterior distribution
of the mean for each component. In the following we use the same notation

as Frithwirth-Schnatter (2006).

Suppose the group label for observation y; is k£ and each observation is
normally distributed, y; ~ N(ju,02),a = 1,--- , N, and the vector of param-

eters corresponding to component k, is 0, = (g, 0%). Then the following
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hierarchical model is considered

Yy ~ N(,ukao—lz))
Mk|013 ~ N(MkO’O—Izo)a
O'z ~ IG(ao,bo).

The priors in the above model are priors that are suggested by Friithwirth-
Schnatter (2006). For observation y; in component k the probability density

function is of the form

1 1
) 2 — 1/2 I P 2
p(yiliw, o) = (5——) eXp{ 207 (yi — ) }

2
k

therefore, the complete-data likelihood function is given by

p(Y|/Lk,0'2,S H H

k=114:S;=k

1
S)/2 i § _ 2
27mk exp{ 202 (i = 1) }

ki:Si=k

According to the Bayes’ rule, the posterior probability of yy given the complete
data (S,y) is given by

p(l“ﬁb’? S7 O-I%) X p(Y|:uk7 027 S)p<:uk)7

when the variance o? is fixed, the posterior is obtained by

p(uly; S, o) o H H eXp{_g%g Z <yi_“’“)2}

k=11:8;=k

1 1
X (—2)1/2 exXp {—202 (o — szO)Q} )

Tko

by doing simple algebra we get

1 /Ny(S) 1 Sy o)
p(urly,S,0%) o< exp ——< +— ) | — + == ,
2 01% ‘7130 01% O-I%O

therefore the obtained posterior is the kernel of a normal distribution with the

-1
. Ni(S Ni(S)oz,+o N (S)gpo2,+0?
variance of ( &(S) | > — Me®)7io+o} ond with the mean MeETTigtoiim
Tho TiRo oio%,
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Thus the posterior distribution of py is the following normal distribution

p(uly,S,07) ~ N((S), Bi(S)), (2.6.9)
By(S)™' = o + 0 "Ni(S)
bi(S) = Bi(S) (03, Ni(S)3i(S) + o5 ko) -

Now we find the posterior distribution of ¢7 which according to Bayes’ rule is

defined

p(okly, S, m) o< p(y|ux, o2, S)p(or),

hence by fixing s, under the conjugate Inverse Gamma prior introduced above

we obtain

>

1
~N(8)/2 — LS

k=1
X (0,% _“0_1exp {—bo/ai} ,

p(ak’ya S7 :uk) X

Q
?T‘I\DH

this posterior is also an Inverse Gamma with

plorly, S, ) ~ G (ex(S), Ci(8)), (2.6.10)
Ck(S) = CL()‘F%N]C(S)
Cr(S) = bo+% > (i — )
:5;=k

2.6.2 Mixture of multivariate normals

Now suppose we have N multivariate observations that follow a multivariate
normal distribution. Let y = (y1,- -+ ,yn~) denote a set of observations where
each y; is a d-dimensional vector. Also assume y; ~ Ny(py, Xx). In this

section also we follow Frithwirth-Schnatter (2006) and consider the following
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conjugate priors for the parameters of normal densities

My ~ Nd(b07 B0)7
Elzl ~ Wr(Cm CO)7

where Wy(c, C) denotes the Wishart distribution. Let V., is a symmetric,
positive definite matrix which follows a Wishart distribution. Then according
to McLachlan and Peel (2004), for ¢ > (d — 1)/2, the density function of V is

given by

CI°

Toc )IVI (D2 exp {~tr (CV)},

Wd(C, C)

where

d .
_ 2c+1—
Fa(o) = a0 (**5)
]:

The aim is finding the posterior distribution of Xy, ;. given the complete data,
S,y, which is derived by applying the Bayes’ rule as before and combining the
prior information and the information from all observations which belong to
group k. Suppose observation y; belongs to the k-th component, then the

density function for this observation is of the form

_ _ 1 _
p(yi‘l"’ka Ek) = (27T) d/lek‘ 12 exp {_§<Yi - .u‘k)Tzkl(yi - Hk)} .

Let Ng(S) denote the number of observations in component k, then, for each

component the sample mean y,(S) is defined as follows

yk(s - S Z yi
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The complete-data likelihood function is defined by

p(ylp, =, S) H [T pvil6x) (2.6.11)
k=114:S;=k
s 1
o< [ [ 127 exp {—5 > (yi—m) "=y - uk)}
k=1 1:5;=k

We start by finding the posterior of p;,, when holding the variance covariance
matrix X fixed. Choosing the conjugate prior p, ~ Ny(bg, Bg), the posterior

density of p,;, given ¥ and all observations in the k-th component is given by

K
- 1 _
P13, S, y) o H || V2 exp {—5 Z (yi — m) "2 (i — Nk)}

k=1 1:S;=k

1 _
X |Bo| /2 exp {—g(ﬂk —bo) By (1, — bo)}
K
x H lzk‘—Nk(S)/2
k=1
1 _ _
X exp {—5 < Z (yi — 1) "5 (v — 1) + (e — Do) By (1, — bo)) }

i:S; =k

simplifying the bracket inside the exponential function in the last expression,

we get

> TSy = 29 NK(S)E, iy + Nu(S)pd =y g

+ul By, — 2ur By by + bi By by
= pp (Ne(S)Z," + By — 21 (3, Ni(S)y + By 'bo)

+ ) (v =0y,) + b By by

:5;=k

rearranging the above expression, we obtain the following expression which is

the kernel of a multivariate normal distribution

1 — (ST NU(S)Y + By'bo) (NVi(S)Z; + By!) | (SIS 4By
1y — (ST NU(S)Y + By'bo) (NVi(S)Z + B!) |
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Therefore the posterior of p,, is again a multivariate normal distribution i.e.

wilXk, S,y ~ Ny(br(S),Bk(S))
Bi(S) = (Ni(S)Z;'+Byl)

bi(S) = Bi(S) (X' Nu(S)y,(S) +Bg'by) .

(2.6.12)

Suppose that g, is fixed. Considering the conjugate Wishart prior 3,1 ~

Wa(co, Co), we now find the posterior of Z,;l given p, and all observations in

the k-th component as

p(Z s Sby)

X

X

K
_ 1 _
H | 2k] NS/ exp {—5 Z (v — ,U'k)TEk 1(Yi

Pl :5;=k
‘Ek |co*(d+1)/2 exp {—tr (Cozl;1> }
K

[ 1Sl NS 2reo—tasn)y2

k=1

_Pl'k:)}

exp {—% Z (yi — 1) 2y — ) — t (COEkl)}

1:5;=k
K
H |Ek’*Nk(S)/2+CO*(d+1)/2
k=1
1 Tws—1
exp q —tr 2 Z (Vi = )" 2 (ys — )
1:5;=k

tr (CoXi)}

K
H |Ek|—Nk(S)/2+co—(d+1)/2
k=1

exp {—tr (% > vi—m)yi—m)" + Co) 2;1} :

The latter expression is the kernel of the Wishart distribution. Therefore, the

posterior distribution of 3! is the Whishart distribution

S S,y ~ Wa(e(S), Cr(S))

ck(S) = co+ Ni(S)/2
1

Ci(S) = Co+ B Z (vi — b (yi — )"

:9;,=k
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2.6.3 Estimation of mixture of normals through Markov

chain Monte Carlo (MCMC) methods

As mentioned earlier, a mixture model can be regarded as an incomplete
data problem where the allocation vector S is the missing part (Dempster
et al., 1977). Therefore, Bayesian estimation of a mixture model is performed
through data augmentation where augmented parameters (S, 1) are estimated
by sampling from the complete-data posterior distribution p(S,d|y) which is
given by

p(S,9y) o< p(y[S, 9)p(S[9)p(I). (2.6.14)

Sampling from the above posterior is carried out through MCMC methods
where 9 is sampled given the allocation S and allocation vector S is sampled
given ¥ (Frithwirth-Schnatter, 2006). In order to estimate the parameters of a
mixture of normals, Diebolt and Robert (1994) used Gibbs sampling. In their
work, in implementation of MCMC methods for mixture models, 9 is aug-
mented by allocation vector S using Gibbs sampling. Through this sampling,
samples of allocation vector S and parameter vector ¥ are alternately gener-
ated resulting in a allocation vector chain and a parameter chain (McLachlan
and Peel, 2004). Gibbs sampling algorithms for mixture of univariate normals
and multivariate normals (Frithwirth-Schnatter, 2006) are given in Algorithm
2.2 and Algorithm 2.3. Before we introduce these algorithms, we need to

specify the posterior distribution of weights which is used in these algorithms.

Since the allocation vector S is multinomially distributed with probability
7, the conjugate prior for the weights is a Dirichlet distribution (Richardson

and Green, 1997). This distribution with the concentration parameter eq is
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given by:

K

o - L

- Keo H . (2.6.15)

=1

Considering the above prior, the posterior distribution for weights is of the

form
p(n|S) x HnNk(S) (2.6.16)

Let Dir(eg, - - - , eg) denote the Dirichlet distribution with concentration param-
eter eg, then the above posterior is denoted by Dir(e;(S),- -« ,ex(S)) where
ex(S) = eg + Ni(S), k = 1,--- , K. The algorithm of Gibbs sampling for

univariate normals is given below.

Algorithm 2.2: Gibbs sampling for univariate normals

Step 1. Parameter simulation conditional on the classification S:

(a) Sample n from the posterior Dir(e;(S),---,ex(S)) in Equation
(2.6.16).

(b) Sample o7 in each group k from posterior G~!(cx(S), Ci(S) in
Equation (2.6.10).

(c) Sample iy in each group k from posterior N (by(S), Bi(S) in Equa-
tion (2.6.9).

Step 2. Classification of each observation y;, for ¢ = 1,--- | N condi-

tional on knowing u, o? and m by sampling from Equation (2.6.4):

Pr(S; = klyi, 9) o< p(vi|0r)mi
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Note that Algorithm 2.2 starts with sampling the parameter ¥ based on
allocations S(® . These steps could be reversed and in that case the algorithm
starts with sampling the allocation S based on a parameter 9». This also

applies for steps of the following multivariate case.

Algorithm 2.3: Gibbs sampling for multivariate normals

Step 1. Parameter simulation conditional on the classification S:

(a) Sample n from the posterior Dir(e;(S),---,ex(S)) in Equation
(2.6.16).

(b) Sample X, in each group k from posterior Wy(cx(S), Cx(S)) in
Equation (2.6.13).

(¢) Sample p,, in each group k from posterior Ny(bi(S), Bi(S)) in
Equation (2.6.12).

Step 2. Classification of each observation y;, for : = 1,--- | N condi-

tional on knowing p, o2 and i by sampling from:
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Chapter 3

Variable Screening for

Multivariate Regression Models

3.1 Introduction

In multivariate regression analysis, variable screening in a high dimensional
predictor space is challenging. To overcome this challenge, we propose a new
screening approach based on projections of the multivariate response variable
into the predictor space. Concepts from different fields inspire the proposed
method. One is high-dimensional data analysis and the other, called beam-
forming, is a staple of signal processing. Beamforming refers to the technique
of removing unwanted interference from a signal by controlling the direction
that the signal flows. In our proposed procedure, variable selection is carried
out by calculating an index for each predictor and threshold these indices at
an appropriate threshold level. The appealing property about the proposed
screening index is that it allows us to take advantage of the covariance struc-

ture of the multivariate response variable in the selection process.

This chapter is organised as follows. In Section 3.2 an existing variable
screening method for univariate multiple regression is reviewed. Since our
main focus in this thesis is on multivariate multiple regression models where

we have several response variables, we revise the existing method introduced in
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Section 3.3 to become applicable to the multivariate regression models. A brief
introduction on beamforming is given in 3.4. In Section 3.4.1 we construct
our proposed screening statistic, called Predictive Information Index. This
statistic is based on the response covariance matrix estimation. The predictive
information index is normalised in Section 3.4.2 to define signal-to-noise ratio
(SNR) statistic. Since the response covariance matrix estimator can be ill-
posed due to high dimensions in the response relative to the sample size, in
Section 3.4.3 the response covariance matrix is shrunk in certain ways. In the
last two sections, we compare the performance of the aforementioned indices
in screening on both simulated and real data. We also compare the Predictive
Information Index-based and the SNR-based screening with the likelihood-
based screening approach for both simulated data in Section 3.5 and real data

in Section 3.6.

3.2 Variable screening

In modelling of large regression data sets, where the number of predictors p far
exceeds the number of observations n, identifying important predictors is a cru-
cial yet a complex task. In previous chapter, variable selection was introduced
to deal with such high dimensional data and reduce the dimension by selecting
important variables. We also discussed a branch of variable selection methods
called regularisation methods. These methods perform variable selection and
parameter estimation simultaneously by imposing a sparsity-inducing penalty
on the residual sum of squares function. Although regularisation methods fa-
cilitate the analysis of data with p > n, they may not be practically efficient
in high dimension settings where the number of predictors is as large as a
few thousand. For example, in many modern applications, where the data are
collected from areas such as genomics, microarrays, finance and brain images,
these methods often suffer from computational deficiency. Moreover, condi-
tions that are necessary to hold for selection to be consistent may not hold

due to the significant difference between p and n (Wang et al., 2015); (Fan
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et al., 2009). To address these challenges, variable screening can be applied to
reduce the dimension. In the variable screening, a measure is defined to evalu-
ate and rank the importance of each variable. This is followed by thresholding
the ranked variables to end up with a reasonable size of the variables. In the
linear regression context with high dimension in predictors, the importance
of predictors is specified according to the influence of the predictors on the
response variable. Therefore, predictors with a weak impact on the response

variables are removed.

Variable screening procedures fall into two main categories: model-free
and model-based procedures. Unlike model-based approaches, in model-free
screening procedures, imposing a specific model structure on regression func-
tions is not necessary. The recent literature in screening procedures is very
rich and covers a broad variety of models such as linear regression models,
generalised linear models, parametric and non-parametric regression models
and even nonlinear models. Liu et al. (2015) provide an excellent overview of

these feature screening methods for high dimensional data.

Here, our focus is on model based screening procedures for linear regres-
sions. We review a pioneering work in this field called sure screening. The
concept of sure screening was first introduced by Fan and Lv (2008) where
the aim is to reduce the dimension of variables to a moderate size as small
as sample size n, while maintaining the informative part of the variables in
the model. A variable screening procedure has sure screening property if the
survival probability of important variables after screening tends to one. The
Sure Independence Screening (SIS) proposed by Fan and Lv (2008), is a selec-
tion technique based on the marginal Pearson correlations of predictors with
the response variable. Through this technique, the importance of predictors
are evaluated based on their marginal correlations with the response variable,
and as a result, predictors that have a weak correlation with the response are

discarded. Consider the following univariate multiple regression model

y=XB+e, (3.2.1)
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where each column of the matrix X,,, denote n observations on each predictor
Xp;k = 1,--- ,p and the vector y contains n observations on the response
variable Y and € = (eq,--- ,e,) is the error term and 8 = (64, -, 5,) is the
regression coefficient vector. If we denote the estimated coefficient vector by
B = (Bl, e ,Bp), by applying (SIS) the regression coefficients corresponding
to each predictor k are ranked and thresholded. Then, the predictors with
the highest regression coefficients are selected. The following reduced model

is obtained through the SIS technique. For any given v € (0, 1),
M, ={1<j<p: |B]| is among the first [yn| largest of all}, (3.2.2)

where /3’]- = X]Ty;j =1,---,p and [yn]| denotes the integer part of yn. Here,
the assumption is that both X and y are standardised which implies that B]-
is actually the Pearson correlation between the jth predictor and the response
variable. As a result of this screening, the full model M = {1,--- ,p; p > n}

is shrunk to the submodel M., of size d = [yn] < n.

Since SIS procedure is based on the marginal correlations, it may not be
perfectly efficient in practice. The reason is that, an important predictor
which is marginally uncorrelated but jointly correlated with the response is
neglected by SIS; whereas, an unimportant predictor that is highly correlated
with important predictors are more likely to be selected than other impor-
tant predictors with weak correlation with the response variable. To address
this issue and enhance the screening accuracy, Fan and Lv (2008) proposed
an iterative sure independent screening process (ISIS). The first step of this
iterative process starts by selecting a subset of important variables using a
variable selection method, say Lasso, then a regression model is fitted to this
subset and the fitted residuals are obtained. In the next step, these residuals
are treated as response variables. Thus, a model is fitted to these residuals
and the remainder of unimportant predictors in the previous step. In such
an iterative procedure, the unselected important variables in previous steps
can survive. Although the aim of screening is to reduce the high dimension of

variables to a dimension as small as sample size n, a model with size d > n
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can also be shosen. In fact by choosing large d, the probability that the true
model is included in the submodel M, is increased. The possible drawback
of such choices is the computational cost. Fan and Lv (2008) chose d =n — 1
and d = [n/logn| in implementing SIS. According to their numerical results,
choosing a submodel of size [n/logn] is consistent with the sure screening

property of SIS.

SIS is designed in linear regression framework and Pearson correlation cap-
tures the linear dependancy, so to extend this correlation to a nonlinear case,
Hall and Miller (2009) proposed a generalised correlation that captures both

linear and nonlinear correlations.

Despite the fast growing research in variable screening for univariate re-
gression models wherein one response variable is regressed against a set of
predictors, less progress has been made in screening methods that are suitable
for multivariate regressions where multiple response variables are regressed
against a set of predictors. In this thesis, modelling multi-response data is
a centre of attention hence, in the next section we revise the SIS procedure
to become applicable to the regression models with multivariate (multiple)

response variables.

3.3 Likelihood-based variable screening

Consider the data (Y,X) where Y = Y,.; = (vi5) = (y1y2---ys) and
X = Xpuxp = (Tir) = (x17°%p), and y;51 < j < Jand x331 < k < p
are the vectors of n observations made on the response variables and the pre-
dictors respectively. Since we have several response variables in these data, the
univariate regression model (3.2.1) is extended to the following multivariate

multiple regression model

Y = XB +E, (3.3.1)
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where B = B,y = (b;;) = (biby---b,)T and E = E,,; = (g189---€)
with b; and e, respectively denote the values of the regression coefficients and
the error terms related to the jth response variable. Also suppose that the
errors are Gaussian. We normalise both response variables and predictors.
Suppose Tr = 1/n) "  xy; k = 1,---,p, then predictors are centered by
subtracting the column means Z;,--- ,Z, of the predictor matrix from their
corresponding column and standardised by dividing the centered columns by
their standard deviations. The response variables y; = (yij,- -+ ,ynj)’;J =
1---,J are centralised by subtracting the mean y = %ijlyj from the
corresponding column and standardised by dividing the centered column by

the standard deviation.

In order to conduct screening with the aim of reducing the dimension, we
marginally fit a multivariate regression to each of (Y,xs,xx),1 < k < p as
follows

Y=xb,+E, k=1,---,p. (3.3.2)
where E contains the error terms. To obtain the corresponding least square

estimates by of br,1 < k < p, we consider the following optimisation

l;k = argmin ||Y — xkkaQF,
b cR/

where ||.||r denotes the Frobenius norm of matrices. Least square estimates
minimise the following expression

HY - Xkka%ﬂ = tr |:(Y — Xkbk>T(Y — Xkbk)} y

where tr (.) is the trace of a matrix. Differentiating the above equation with
respect to the J-dimensional coefficient vector by and setting it equal to zero,

we get

0
0 = a—bktl" [(Y — Xk;bk)T(Y — Xkbk)}

= —2X£(Y — Xkbk),
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therefore the marginal least square estimate corresponding to a single predictor

X, is of the form
by = (xIx) ' xIY, k=1,---,p, (3.3.3)

which is the k-th row of the estimated coefficient matrix Bpx s. To distinguish

predictors that have the highest effect on the response variable, we calculate

the squared Euclidean norm of estimated coefficient vectors [|by||2,- - - , [|by]3
where
~ AT ~
Ibell; = by by

= Y'xp(xixp) xiY

= (xpx5) %L YYTx;. (3.3.4)

Since response variables are centralized, the response sample covariance is of
the form S = %Zj:l Yj}’f = %YYT. Substituting S in the Equation (3.34),

the squared Euclidean norm of each coefficient is obtained by
b3 = J (x xi) x5 S, (3.3.5)

Predictors with larger squared Euclidean norms are selected as important and

will be included in the following reduced model
M;={1<k<p:|bg? is among the first § largest of all}, (3.3.6)

where 0 is a pre-specified cutoff point. Since the errors are assumed to be
Gaussian, the least square estimates and maximum likelihood estimates are
equivalent. Therefore, we refer to the above procedure as likelihood-based
marginal screening (LMS). In implementing the LMS, if ¢ is chosen to be
large, the probability that the true model is included in the reduced model
M is high. However, the reduced model will not be parsimonious and the
computational cost might be expensive. Zhong and Zhu (2015), Fan and Lv
(2008) and Zhu et al. (2011), in different works, empirically show that setting
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the cutoff point to [n/logn] in their proposed screening methods gives good
results in simulation studies. In another work by Hall and Miller (2009), p/2
was chosen as the cutoff point. This choice may contain too many irrelevant
or false positives in cases that dimension of variables is high. Since there is no
universal method to choose the cutoff point, this value is mostly user specified
and varies based on areas that theses methods are applied. For example, con-
sider the analysis of gene expression data in cancer biology. In such datasets,
usually the number of variables (genes) exceeds tens of thousands while the
sample size is very small. Suppose we apply variable screening on such data
to determine the important variables (genes) which play a role in a particular
type of cancer. Since only a small fraction of genes may be responsible for the
disease (Moosa et al., 2016), choosing p/2 as cutoff point may not be a good

choice for such data, while [n/logn] seems to be a more reasonable choice.

Although the above screening is suitable for multivariate regressions, there
is a crucial drawback in conducting such screening. When the regression model
is built upon more than one response variable, covariance structure of Y,
is simply ignored by applying the above screening approach. To address this
issue, in the following sections we introduce our proposed screening procedure
that applies to the cases with the multivariate response variable and also takes

into account the response covariance structure.

3.4 Beamforming-based variable screening

In the field of signal processing, it is often desired to estimate the signal radi-
ating from a specific location, in the presence of noise and interfering signals.
When the disruption caused by interfering signals is strong, the target signal
may be masked by the interference. To address this issue beamforming which
controls the direction of the target signal is utilised and as a result, received
signal is improved. In other words, beamforming aims to enhance the sig-
nals coming from a particular location while reducing the signals from other

directions. This is accomplished through implementing specific filters known
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as beamformers which reject signals from different directions except for the

desired location.

Technically, a beamformer is an operator which is used to estimate the
strength or power of a signal at a particular location. One of the widely
known beamformers is the minimum-variance filter where the cost function is
the signal output variance at the desired location. The output power is often
contaminated by not only the noise but also some unwanted signals from other
locations than the desired one. Therefore, the minimisation of the output
power is done subject to a linear constraint. The linear constraint forces the
filter to pass the signal from a specified location while the power minimisation
prevents interferences caused by signals from other locations (Van Veen et al.,

1997), (Sekihara and Nagarajan, 2008).

3.4.1 Predictive information index (PII)

In this section we formulate our proposed variable screening index. The con-
cept of information index is inspired by beamforming technique in the field
of signal processing. The proposed index is based on the projections of the
response variable into the predictor space and it allows for the response co-

variance to come to play in the screening process.

We estimate the predictive information index for each predictor vector,
Xr; 1 < k < p by minimising the sample variance of the projected data points
wly;;1 < j < J along a weight vector wy. Note that this is inline with
beamforming through minimum-variance beamformer for which the cost func-
tion is the variance of the output power at particular location and the aim is
minimising this variance subject to a linear constraint on the specified loca-
tion. To construct the predictive information index, say for the k-th predictor,
we first project each response variable into the k-th predictor space along an

n-dimensional weight vector, w1

WgY: (W£Y17 ’WZYJ))
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now we need to find a direction w such that the projected data onto predictor
space along this direction carry some useful information. To this aim, we
minimise the sample variance of the projected data with respect to the weight
vector w subject to the constraint w’x;, = 1, i.e.

min S(wjY), st wix, =1, (3.4.1)

Wk

where S(.) denotes the sample variance operator. The minimisation problem

in the above equation can be rewritten as follows

min (wi Cwy), st wix, =1, (3.4.2)
In the above equation, C is replaced by an estimator C of C. This estimator
can be, for example, the sample covariance matrix C = C,,», which is defined

by

J
~ 1 _ _
Cron = 5 v, -9y -9
j=1

where y = % Z}]=1 y;- Note that from a population perspective, the covariance

matrix Cnxn is defined by
. 1
Cuxn =5 D Blly, - By )y, — Ely,)7)
j=1

In Equation (3.4.2), the constraint guarantees that any information related
to the k-th predictor passes through the filter while interferences from other
predictors are reduced simultaneously by minimising the variance of projected

data.

We implement the method of Lagrange multiplier to solve the optimisation
problem in Equation (3.4.2) and obtain the optimal weight vector. If we denote

the Lagrange multiplier by A, then the Lagrangian function £ is expressed as

L(Wi,\) = Wl Cwy, — MN(wlx, — 1).
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We require to differentiate the Lagrangian £(wyg, A) with respect to wy. To
attain the first and second order derivatives with respect to the vector wy,

we invoke the following rules. For any matrix A and any vector w, we have

owTAw __ T daTw, _ owTa __
o - =(A+ A )wand G =GR =a

OL(Wp, A 0 .
(aTkk) = 8—Wk[WZCWk — )\(szk —1)]
= 2CWk — /\X]C7

setting the last equation above equal to zero gives us the following solution
Wi = —-C Xk, (343)

substituting this w into the constraint we get

2

~—1
ng X,

A:

finally substituting this A in Equation (3.4.3) we get the optimal weight vector

Note that the above optimal weight or direction vector depends on a estimator
of the covariance matrix. In Section 3.4.3 we introduce different estimators
of covariance matrix and in simulation studies, we demonstrate how these

estimators affect the screening results.

Correspond to each predictor x;, the .J-vector vAva obtains the amount
of information that the k-th predictor carries about response variables. If
we ignore the correlations between response variables, this is equivalent to
regression coefficient estimates in linear regression modelling framework. In
other words, if we replace C by I,, then W;{Y is equivalent to the least square
estimate by, expressed in Equation (3.3.3)

xFY

-7 - To \=1 TV
W, Y = =% by = (x, %) X%, Y; k=1,---p,
X Xk

2
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Note that the minimisation of the variance is also inline with the minimisation
of residual sum of squares in the setting of multivariate simple linear regression

which is expressed in Equation (3.3.2).

Having found the direction that minimises the variation, we can now define

the Predictive Information Index or predictive power for predictor x; as

A A 1
o . AT AN~
v = min w} Cwy, = W, CWy, = —_—

k=1, ,p. (3.4.4)
wlxp=1 ch Xk

This index measures the amount of information that each predictor holds for
response variable prediction. The higher this index, the more information the
predictor carries about the response variable and therefore the more important

the predictor.

Similarly, the predictive information index can be defined for a particular
subset of predictors. This subset could be specified by some prior information
or experts’ knowledge. For example, in analysis of gene expressions, this subset
could be a group of genes with the same pathways. Suppose X,,x, = (X1 - - X,)
denotes all predictors in the model and we are interested in finding the PII or
predictive power for subset v = {ky, -+, k,} of these predictors. Let X, =
(Xpy,* -+, Xk, ) denote this subset in a matrix form. Then the joint predictive
information index of this subset which is called predictive information matriz,
can be found by solving the following optimisation problem

min (WICW), st W'X, =1, (3.4.5)

where, W is an n X m direction matrix and the constraint matrix [,, is an
m x m identity matrix. Note that WX, = I, define m linear filters which
null each other. Similar to what we did before, using Lagrange multiplier and
differentiating with respect to the matrix W, gives the optimised direction of

W = C'X,(XZC'X,)"!. Thus the joint predictive information matrix of
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subset X, is defined by

7, = (Xfé’lxy) - (3.4.6)

In the next section we show how the introduced predictive information

index can be standardised to define signal-to-noise ratio statistic.

3.4.2 Signal-to-noise ratio (SNR)

The predictive information index in equation (3.4.4) is often contaminated
by the background noise or some unwanted interferences from undesired di-
rections. In such cases, although the estimated predictive information index
might be high, when compared to the noise level, it may not be considered as
a high value anymore. Moreover, the background noise may be heterogeneous
across the projected data. We address this issue by standardizing the PII for
each predictor via dividing these values by the white noise. The obtained ra-
tio is called signal-to-noise ratio. SNR is the ratio of the strength of a signal
carrying information to that of unwanted interference (Sekihara and Nagara-
jan, 2008). In variable screening framework, SNR value can be regarded as
a measure of how much useful information each predictor contains about the
response variables. When observations on response variables are white noises,
the predictive power of the kth predictor reduces to O'ZVAVZVAVk. Accordingly,
the SNR which is the ratio of the desired useful information to the level of
background noise is defines as
Tk

O2W, Wy,

1

~—1
oW Wi, (xIC xy)

SNR, =

Since 02 is assumed to be the same for all response variables, we omit it from
a—1
the calculations. If we substitute the optimised weight vector w; = fcj’“ in
Xk Xk

the above equation, then the estimated SNR corresponding to each predictor
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Xy, is defined as

-1
x;C xy

SNR,, = k=1,2,---,p. (3.4.7)

A

=
xI'C “xg

Now, in order to find principal predictors, we calculate the SNR values cor-
responding to each predictor x;;1 < k < p. Then these values are ranked
and the highest ones are selected by thresholding. Predictors that the SNR
indices of which are higher than the threshold value are classified as principal
predictors. The higher the SNR index, the more important the predictor. If
the covariance matrix C is consistent with the covariance matrix of y;, then
under certain conditions, screening by SNR can have the sure screening prop-
erty such that for an appropriately chosen threshold all the true predictors can

be detected with a probability one (Zhang and Oftadeh, 2016).

3.4.3 Shrinkage of covariance matrix

The PII and consequently the associated SNR value introduced above, are es-
tablished upon an estimator of the response variable covariance matrix. The
most well-known unbiased estimator of covariance matrix is the sample covari-
ance matrix. We remind that the sample covariance matrix estimator utilised

in SNR formulation is of the form
.1
€= J Zyjyjr —-yy" = (é), (3.4.8)
=1

where y = Zj:l Yi/d = (1, 9n)" and & = 3 (ya — 5:) (s — 9;)/J. In
spite of having some desirable properties, such as being maximum likelihood
estimator and easy to compute, the sample covariance is known to perform
poorly when the dimensionality is large. In many applied contexts, where the
sample size is small relative to the number of variables, sample covariance is
either singular or ill-conditioned. The reason is that sample eigenvalues are
biased. The sample eigenvalues are positive real numbers therefore the small-

est eigenvalues tend to zero while the largest tend to infinity. This causes
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the sample covariance matrix to become ill-conditioned or even singular. In
particular, under high dimensions eigenvalues of sample covariance are known
as poor estimates for the true ones (Daniels and Kass, 2001). One approach
to address this problem is to shrink the eigenvalues. Shrinkage was first in-
troduced by Stein (1955) and in the Stein-type shrinkage estimation, a convex
combination of the sample covariance and a well-conditioned target matrix is

used to estimate the covariance matrix, i.e.
Costein = (1 = N)C + AT, (3.4.9)

where A € (0, 1) is the shrinkage intensity and T is the target matrix. Through
this shrinkage the eigenvalues of C are shrunk to that of 7' which results in a
positive definite, better conditioned and non-singular estimate for any dimen-
sionality. The well-conditioned target matrix is chosen to be positive definite
and representative of the true covariance matrix. The major drawback of
shrinkage estimator is that the target and the intensity should be specified
(Fisher and Sun, 2011). Ledoit and Wolf (2004) tackle this difficulty by in-
troducing a well-conditioned covariance matrix estimator which is an optimal
trade-off between the sample covariance matrix and the identity matrix. Op-
timality here means with respect to a quadratic loss function. Suppose X is
the true covariance matrix. The goal is finding ¥* which is a linear combi-
nation of the identity matrix and the sample covariance matrix such that the
expected quadratic loss E[||X* — X||?] is minimum. Accordingly, Ledoit and
Wolf’s shrinkage estimator is of the form

b2 2 b2

Copt = C, (3.4.10)

where

~ A

M = <C7In>7 di = <C - ,unIna C - /anIn>7
J

= Z<YjY§F - C,YjYJT —C), b2 =min(h2,d?)

n 'n
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and (A,B) = tr (AB”)/n for any n x n matrices A and B and tr is the
trace of a matrix. This estimator is consistent as the sample size and the
dimension go to infinity together (Ledoit and Wolf, 2004). These estimators
shrink the overdispersed sample covariance eigenvalues but they do not change
the eigenvectors which are also inconsistent and they do not result in sparse
estimators (Bickel and Levina, 2008). To resolve this drawback, Bickel and
Levina (2008) threshold the sample covariance by thresholding the entries as

follows
Ch, = C(7us) = (¢51(155] > h7s)),

where I(-) is the indicator and 7,,; = +/log(n)/J with the tuning constant
h > 0. Although under certain conditions the thresholded covariance matrix
is consistent with the true covariance matrix (Zhang and Liu, 2015), it may
still be degenerate when the dimension J is close to or smaller than the sample
size n. In the work done by Zhang and Liu (2015), a thresholded estimator
is used in calculating the beamformers. This thresholded estimator is defined
as C(7,7) = (&;1(|éi;] > Tns)) where 7, is a varying constant in .J and n.
As pointed out above, this estimator may not be well-conditioned in high
dimensions. Therefore following Bickel and Levina (2008) we first threshold
the elements of the covariance matrix, then following Ledoit and Wolf (2004),
we further shrink the thresholded covariance estimator to a diagonal matrix

as follows:

R 2P .
Chs = d_Q’M”I" + d2 Ch, (3411)

where

ﬂn = < Chy I, >, dygl =< éh - ﬂn]na éh - ﬂn]n >,
1 J 1 n n 2
b2 = 5 Z - Z ' Wik — Ui)Wrj — ;) — G5 | 1(|Ci5] > hTas),
k=1 i=1 j=1
b2 = min{b?,d?},
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¢ is the jth column of C, and (A, B) = tr (AB”)/n for any n x n matrices
A and B where tr (.) is the trace of a matrix. We also define the constant h
by h =€ 3" | ¢;; where ¢o € {0.01,0.005,0.001}. The estimator Chs 10t only
shrinks the eigenvalues of the covariance matrix, but also sets small eigen-
values to zero which results in a sparse estimator. This sparsity is a result
of thresholding the elements of the covariance matrix. The thresholded and

shrunk éhs is the consistent estimator that we use in finding the SNR index.

Taking a different approach, we also shrink the covariance matrix by adding

a A= A, % 0.01 to the sample covariance matrix
Ceig1 = C + M, (3.4.12)

where Ay, satisfy the following inequality

Mt ety g on
AL X4+ A,

and A, Ao, -+, A\, are eigenvalues of the sample covariance matrix. We also

considered the following shrinkage estimator of covariance matrix.

A

Ceig2 = C + (0.001 X Appaz) Iy, (3.4.13)

where )\, denotes the maximum eigenvalue of the sample covariance matrix.
These estimators are examined in simulation studies and through simulations

we explore how they affect the screening accuracy.

3.5 Simulation studies

In this section, we conduct simulations to monitor the performance of two
different screening tools proposed in this chapter: the Predictive Information

Index (PII) and SNR. Our simulations serve three purposes:

(a) To investigate whether implementing different shrinkage approaches to
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shrink the covariance matrix influence the selection accuracy and if so
which of the introduced shrinkage methods enhances the selection accu-

racy of both PII and SNR .
(b) To compare the screening performance of PII with SNR.

(¢) To compare the screening accuracy of surpassing approach in part (b)
with the likelihood-based marginal screening (LMS) discussed in Section

3.3.

3.5.1 Simulation setup

Scenario 1 (Highly correlated B): In each simulation, similar to the pre-
vious chapter, the covariate matrix X,,»,, was generated by sampling n num-
ber of p-vectors x;,4 = 1,--- ,n from N,(0,%,x,) where ¥ is the variance-
covariance matrix of gene expressions in our real data. Coeflicient matrix
BZX ; with high correlations between its columns was generated by sampling
p number of J-vectors from N;(0,€2;,). The details about how we generated
the covariance matrix €2, is explained in the previous chapter in Section 2.4.1.
The error matrix, €,x;, was generated by sampling J number of n-vectors
from a multivariate normal distribution N(0,02I,), where o = 0.1. Finally,
multivariate response variables were simulated according to the following mul-

tivariate regression model
YTLXJ — anpoxj + €7Z><J' (3.5.1)

Scenario 2 (Weakly correlated B): The data set (Y, X) for this setting
was generated from the model (3.5.1) as described in setting 1 except the
coefficient matrix. In this setting there is a weak correlation between columns
of B. Therefore the coefficient matrix B! was generated form N;(0,€Y;). Also
the non-zero or active elements in the coefficient matrix were placed in columns
with high correlations for scenario 1 and in columns with low correlations for

scenario 2. For each simulation setup, we generated 50 datasets. In each

69



dataset we set the number of active covariates |T'| = 10. We applied each
approach to each of 50 dataset, and obtained the sensitivity and specificity
values that introduced in Section 2.3. To make a reasonable comparison, the
specificity percentages were compared when the sensitivity values were fixed

at the same level.

Suppose we want to evaluate the screening accuracy of SNR. For each
scenario, we first calculated the SNR values corresponding to all covariates
SNR;;2 = 1,--- ;p. Then we thresholded these values at SNR values corre-
sponding to each of active predictors as follows. We denote the SNR values
corresponding to the 10 active covariates in an increasing order as SNR(;) <
SNR(2) < SNR(3) < -+ < SNR(109). We thresholded the SNR indices SNR;; 1 <
i < p at levels of SNR;); 1 < j < 10 respectively. For instance, if we set the
threshold level at SNR(;), we selected those predictors with SNR index not
less than SNR(;). Note that SNR(;) values of active predictors were ordered
increasingly. So by thresholding at the level of SNR(y), the selected subset
of covariates contained all active covariates which gave a sensitivity value of
100%. Similarly, setting the threshold level at the largest value SNR ) gave
a sensitivity of 10%. This way, we obtained a set of 10 different sensitivity
values of 10%, 20%, 30%, - - - , 100%. We then calculated the specificity values

corresponding to each of these sensitivity values.

3.5.2 Results

(a) Comparing the PII and SNR with different covariance matrix

estimators

In this section, we investigate how applying different covariance estimators
influence the screening performance of the PII and SNR. To this aim, in cal-
culating SNR and PII, each time we utilised one of the following covariance
estimators: optimal estimator Copt introduced through Equation (3.4.10), the

thresholded and shrunk estimator Cy, in Equation (3.4.11), Ceigl and Ceigg.
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While calculating the thresholded and shrunk covariance estimator, Chs, we
considered three different values of tuning constant h = 0.01,0.005,0.001 de-
noted by hsl, hs2 and hs3 respectively. As pointed out earlier, we illustrate the
comparisons between covariance shrinkage methods by comparing specificity
percentages of predictive power and SNR values while we fix the sensitivity at
levels (1005/10)%;1 < j < 10. The higher the specificity, the more accurate
the screening. In other words, a high specificity percentage signifies that a
high proportion of unimportant predictors have been detected and discarded
correctly by the screening procedure. The following result show the specificity

values when sensitivities are fixed.

Sensitivity-Specificity plots of Predictive Information Index (PII)
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Figure 3.5.1: Comparing PII performance with different covariance matrix estimators. Re-
sults obtained from 50 simulations where (p,n, J, |T|) = (2000, 88,20, 10) for settings with
(a) Highly correlated B. (b) Weakly correlated B. Here, sh, corresponds to PII built upon

C,pt estimator and hsl, hs2 and hs3 refers to PII built upon the thresholded and shrunk
estimator Cj, with tuning constants h = 0.01,0.005,0.001 respectively. Also eigl and eig2

correspond to the PII built upon Ceigl and Ceigg estimators.

Simulation results in Figure 3.5.1 show that in both settings with highly
correlated and weakly correlated B, the PII has a higher specificity when it is
built upon the estimators éeigl and éeigZ- However, in setting 1 with highly
correlated B, Figure 3.5.1 (a), the specificity is significantly higher than the
specificity obtained for setting with weakly correlated B, Figure 3.5.1 (b). The
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reason that PII performs exactly the same for both Ceigl and Ceigg estimators
and same for other four estimators, is the particular simulation setting which is
used here. Note that we cannot give a specific reason about why PII performs
better with Ceigl and Ceigg estimators and we just rely on numerical results.
Justification of this phenomenon is a complicated task and beyond the scope
of this thesis.

Sensitivity-Specificity plots of Signal-to-Noise Ratio (SNR)
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Figure 3.5.2: Comparing SNR performance with different shrinkage methods applied on co-
variance matrix. Results obtained from 50 replicates where (p,n, J, |T|) = (2000, 88, 20, 10)
for settings with (a) Highly correlated B. (b) Weakly correlated B. Here, sh, corresponds
to the SNR built upon Copt estimator and hsl, hs2 and hs3 refers to SNR built upon the
thresholded and shrunk estimator Cj,; with tuning constants h = 0.01,0.005,0.001 respec-
tively. Also eigl and eig2 correspond to the SNR built upon (A}eigl and Ceigg estimators.

Simulation results in Figure 3.5.2 reveal that when columns of B are highly
correlated there is no significant difference in SNR performance using different
covariance estimators whereas, in the setting with weakly correlated B the in-
fluence of using different estimators is more noticeable. SNR screening based
on the shrunk estimator Copt and also thresholded and shrunk estimator Chs,
result in a more precise detection. These estimators shrink the overdispersed
sample covariance eigenvalues more efficiently due to the particular shrinkage
intensity placed on the target matrix which is discussed in Section 3.4.3. How-
ever, the screening accuracy does not change much by using Chs instead of

Copt. Note that the SNR value resulted from using Chs becomes h-dependent
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since we set the constant h to different values of {0.01,0.001,0.005}. Similar
to part (a) the reason that SNR has the same performance based on both Copt
and Chs for all values of h, is a result of our particular simulation setting. In
settings that the noise part in data is more substantial, the difference becomes

more noticeable (Zhang and Liu, 2015).

As it was mentioned earlier, our proposed method has explored the estima-
tion of response covariance in each screening procedure. The results depicted
above validate this declaration perfectly. Scenarios wherein there exist a high
correlation in the coefficient matrix have much higher specificity level than
the weakly correlated cases. The reason is that the simulated response inher-
its some high correlations from the coefficient matrix and this high correlation
magnifies the screening accuracy of both PII and SNR. The reason is that

these high correlations provide more information leading to a higher accuracy.

(b) Comparing PII with SNR performance

The optimum screening results for PIT and SNR presented earlier are not based
on the same covariance matrix estimator. In other words, PII performs better
based on Ceigl and Ceigz estimators, whereas SNR does not. This makes it
difficult to make a faire comparison on the performance of these statistics.
Therefore, to come to a final conclusion about which of these statistics gives
more reliable screening results, we compared the specificity of each of these
statistics based on all covariance estimators where we fixed the sensitivity at
levels (1005/10)%;1 < j < 10. Results presented in Figure 3.5.3, uncover
that in both scenarios with high and weak correlation structures in coefficient
matrix, the SNR-based screening procedure outperforms the PII-based screen-
ing. Although the PII based on Ceigl and Ceng estimators performs well, it
cannot gain the accuracy of the SNR all the time and specificity percentages
justify the correctness of SNR screening in both scenarios with high and weak

correlations. Accordingly, we opt for SNR as our screening statistic.
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Box plots of Signal-to-Noise Ratio and Predictive Information Index
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Figure 3.5.3: Comparing SNR with PII statistics based on different shrinkage methods
applied on covariance matrix. Results obtained from 50 replicates where (p,n,J,|T|) =
(2000, 88,20, 10) for settings with (a) weakly correlated B and (b) Highly correlated B.
Here, sh, corresponds to the statistics built upon Copt estimator and hsl, hs2 and hs3
refers to the statistics built upon the thresholded and shrunk estimator Chs with tuning
constants h = 0.01,0.005,0.001 respectively. Also eigl and eig2 correspond to the statistics

built upon ceigl and Ceigg estimators.
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(c) Comparing SNR-based screening with likelihood-based marginal
screening (LMS)

In this section, we compare the SNR-based screening based on C,s with
the likelihood-based marginal screening procedure introduced in Section 3.3.
The comparison was accomplished based on the corresponding sensitivity and
specificity values for each method. We considered the multivariate regression
model (3.5.1) with 10 nonzero or active coefficients. In order to carry out the
LMS, we fitted a single multivariate regression to each covariate x;;1 < k <p
and the multivariate response variable denoted in the matrix form as Y, ;.
We estimated the corresponding J-dimensional coefficient vector bl <k< P

which is expressed in the Equation (3.3.3).

Having found the estimates, we calculated the squared Euclidean norm of
estimated coefficient vectors |[by||2,-- - , ||by||2. We took the same approach as
previous Sections to threshold the norm values at different levels. We indicate
the norm of 10 active predictors in an increasing order as ||l3(1)||§ < ||B(2)||§ <
e, < |]f)(10)]|§. We thresholded the values of ||bgl[;1 < k < p at levels of
Hf)(j)H%; 1 < j < 10 respectively. Therefore the reduced model corresponding

to each level 1 < j < 10 was obtained as
M ={1<k<p st B3> [by31 << 10}, (3.5.2)

Since norm of active predictors are ordered increasingly, by thresholding at the
level of ||E)(1) |2, the selected subset of covariates contained all active covariates
which gave a sensitivity value of 100%. However, setting the threshold level at
the largest value ||B(10)\|§ gave a sensitivity of 10%. This way, we obtained a
set of 10 different sensitivity values of 10%, 20%, 30%, - - - , 100%. We then cal-
culated the specificity values corresponding to each of these sensitivity values.
We repeated this procedure for 50 simulations wherein data were simulated
from a multivariate regression model according to the settings explained in
Section 3.5.1. We then standardised the data according to what explained in
Section 3.3 and set the number of active predictors to |7'| = (10, 100).
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Figure 3.5.4: Box plots of specificity corresponding to SNR-based screening and likelihood-
based marginal screening (LMS). Results obtained from 50 replicates where (p,n, J,|T|) =
(2000, 88, 20, 10) for settings with (a) Weakly correlated B (b) Highly correlated B.

Results illustrated in both Figure 3.5.4 and Figure 3.5.5 are another ev-
idence of SNR-based screening efficiency. These results also reflect the ben-
eficial effect of employing the covariance matrix of the response variable in
enhancing the screening accuracy. Existing high correlations in the coefficient
matrix, and as a result in the response variable, does not improve the LMS
performance since the correlation is not taken into account in this type of
screening. However, this high correlation can substantially increase the SNR-

based screening accuracy.

In the following results which are depicted in Figure 3.5.5, we can see that
in the setting with a larger number of active variables |7 = 100, identifying
active predictors becomes more difficult in both approaches. This is a result of
a higher correlation structure caused by a larger number of active predictors.

This effect is reflected in having lower specificity values for setting with 100
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active coefficients. This phenomenon called mask effect is studied in more

detail in Section 5.7.2.1
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Figure 3.5.5: Box plots of specificity corresponding to SNR-based screening and likelihood-
based marginal screening (LMS). Results obtained from 50 replicates where (p,n, J,|T|) =
(2000, 88, 20, 100) for settings with (a) Weakly correlated B (b) Highly correlated B.

3.6 Real data application

All three introduced screening approaches were applied to real data where the
predictor variables are of high dimension. The real data contain gene expres-
sion levels of 13321 genes and the (IC50) values of 131 drugs across 42 cell lines.

All gene expression values and IC50 values were log-transformed. Let X45x13321
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denote a design matrix, each column of which contain the expression levels of
42 cell lines and columns of Y9131 contain IC50 values of drugs across the
same cell lines. Prior to any calculation data were standardised as explained in
Section 3.3. We considered the multivariate multiple regression model (3.3.1)
where (p, J,n) = (13321, 131,42) and we used the PII and the SNR statistics
to screen the gene expressions. To this aim, we calculated the PII and SNR
values corresponding to each gene expression xi;k = 1,---,13321. Then we

sorted all these values in a decreasing order.

SENC SNR Pl
0.005-
1.5-
0.11-
0.004-
S o 0.00- SENC
= SNR
> : PIl
0.003-
0.07 -
0.5-
0.002-
0.05-
0 5000 10000 0 5000 10000 0 5000 10000

Predictor index

Figure 3.6.1: First and second from right: Predictive Information Index (PII), Signal-to-
Noise Ratio (SNR) curves wherein PIT snd SNR values obtained based on fitting a multivari-
ate multiple regression to gene expressions and IC50 values. PII and SNR values obtained
using shrunk estimator Cps with tuning constants i = 0.005. First plot on the left shows the
squared Euclidian norm of estimated coefficients (SENC) obtained from fitting multivariate
single regression to each gene expression and IC50 values of all drugs. In all calculations

the dimensions of the are (p,n,J) = (13321,42,131).

We also performed likelihood-based marginal screening (LMS) by fitting a
multivariate single regression to each predictor as it was explained in Section
3.3 and we found the corresponding estimates shown in Equation (3.3.3). Then
we calculated the squared Euclidian norm of these estimates shown in Equation

(3.3.5). The plots in Figure 3.6.1 show the SNR and PII values together
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with the squared Euclidian norm of estimated coefficients (SENC) for all gene

expressions.

In order to select the most important predictors we thresholded the above
values at the elbow point of each curve, i.e. the point at which the curvature is
maximum. Elbow criterion is a graphical way to select the number of clusters
in data. To find the elbow point we considered the vector between the highest
and the lowest value on each curve then we found the distance between each
point on the curve and this vector. The point on the curve with the largest
distance from this vector was selected as elbow point. The following plot

explains this on a subset of SNR values.

Figure 3.6.2: Finding elbow point on a curve

sub.sort

T
0 500 1000 1500

Suppose we have n sorted SNR values. If we denote the vector between
the largest value and the i-th point on the curve by p, (the dark orange vec-
tor), then the vector d; = p; — proji*,i = 1,--- ,n gives the distance vec-
tor corresponding to each point on the curve. We find the length of vectors
d;;i = 1,--- ,n and the point on the curve with the maximum distance will

be the desired elbow point.

Having obtained the PII, SNR and SENC values corresponding to all gene
expressions, we then found the elbow point of each curve in Figure 3.6.1. We

selected gene expressions that their PII, SNR and SENC values are larger than
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the elbow point. The following table shows the number of selected genes and

the time taken for each screening procedure.

Method of screening No.of selected genes Time taken (s)
PII 1037 3.8
SNR 1316 3.6
LMS 1038 1.3

Table 1: The number of selected genes after applying different screening methods on real
data containing p = 13321 expression levels of n = 42 cell lines together with IC50 values

of J = 131 drugs across these cell lines. Time is recorded in seconds.

These methods have 215 genes in common which means that these 215
genes have been selected by all three methods after thresholding at elbow point.
However, the number of common genes selected by SNR and PII method is

686.

Now we need to examine the screening validity which was performed by
these methods on real data. Suppose we wish to evaluate the screening proce-
dure conducted by PII. To this aim, we calculated the PII values corresponding
to all predictors in real data. Then we sorted these values in a decreasing order
and we chose a subset of predictors with the highest values of PII. For example,
we chose predictors the PII values of which were among the first m highest

values. Let these predictors form the design matrix Xj,,,, = (XZ‘l) = -xz“m)).

We then fitted a multivariate multiple regression to Xj,.,, and IC50 values,

*

Yiox131. So we obtained the estimated coefficients bfl), . ,b(m) with the

corresponding variance of Uf(l), N Then, we used these estimates to

*(m)”
generate bootstrap samples. To simulate bootstrap samples we generated the

bootstrap response variable Y}, 15, from the following model

b ~ ~
Y42><131 = X42><13321B13321><131 + E42><1317

where B is a sparse matrix with all rows except bz‘l), e ,bz‘m) equal to zero.
The error term E42X131 is simulated from the multivariate normal distribu-

tion N(0,0%L,) with 02 = L ™" af(i). This was followed by PII, SNR and

m
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likelihood-based marginal screening on these bootstrap data. We applied all
three screening methods on 2000 sets of generated bootstrap data and calcu-
lated the corresponding sensitivity and specificity. The result of screening on
bootstrap data is shown Figure 3.6.3. The first row shows the results when
PII was applied to real data as we explained above. We repeated the above

procedure for two other methods and generated bootstrap samples.
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Figure 3.6.3: Box plots of sensitivity (red boxes) and fixed specificity values (straight dark
lines) obtained from applying screening methods on 2000 bootstrap samples. The first row
shows the results when PII was applied to real data then the first (a) m =5, (b) m = 15,
(¢) m = 30 predictors were considered as active in bootstrap data. The second row shows
the results when SNR was applied to real data then the first (d) m = 5, (e) m = 15, (f)
m = 30 predictors were considered as active in bootstrap data. The third row shows the
results when LMS was applied to real data then the first (g) m =5, (b) m = 15, (i) m = 30

predictors were considered as active in bootstrap data.

81



The first row of Figure 3.6.3 shows the screening result when PII was
first applied to the real data and the values sorted decreasingly and the first
m = 5,15,30 predictors were selected to be used as active predictors in the
bootstrap samples. The second and third row show the result when SNR and
LMS first applied to the real data. As we expected from simulation studies
reported in previous section, SNR-based screening surpasses both PIT and LMS
methods. Sensitivity percentages show the proportion of correctly identified
active predictors and the specificity percentages quantify the proportion of
correctly discarded non-active predictors. Since we set the number of active
predictors to m = 5,15,30; for each m, the number of non-zero predictors
and as a result the specificity levels are equal for all methods. However, the
ability of recovering the true active predictors vary across the three methods
leading to different values of sensitivity. Higher sensitivity levels corresponding
to screening by SNR reflect that this method possesses a higher ability of

detecting the true actives compare to other two methods.

The results obtained in simulation study and in bootstrapping from real
data, approve that our final proposed screening method i.e. screening by SNR,
is promising and this motivates us to further employ SNR in our variable

selection procedure introduced in the next chapter.
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Chapter 4

Principal Variable Analysis

4.1 Introduction

In the previous chapter, we have pointed out that some of the existing vari-
able screening methods have not taken into account the correlation structure
of multivariate response variables. This shortcoming may lead to a biased
result in variable screening. To address this issue, we have proposed a selec-
tion procedure based on the response covariance matrix and showed that the

proposed method improves the performance of variable screening.

Here, we further improve the above screening procedure, considering not
only the correlation structure in the multivariate response, but also the high
correlations between predictors. We reduce the effect of these correlations, by
introducing a procedure called principal variable analysis (PVA). In PVA we
add more constraints to the optimisation procedure in order to suppress the

interference with other predictors. This results in a more accurate selection.

4.2 Principal variable selection

The PVA contains the following steps. In the first step, we initialise the

procedure by finding the maximum SNR value of predictors. In the second
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step, we iteratively run a forward nulling and selection until the stopping

criterion in section 4.2.2 is met.

4.2.1 Forward nulling and selection

In the following, to facilitate the presentation, we first show the details of the

first three iterations followed by a generalisation to any iteration.

Consider the dataset (Y, X) and the corresponding multivariate regression
model (3.3.1) where Y = Y,xy = (vi5) = (y1¥2---¥s), X = Xpxp = (i) =
(x1---%p), and y;;1 < j < J and x4;1 < k < p are the vectors of n ob-
servations made on the response variables and the predictors. The process is
designed as follows. In the first iteration, we optimise the following objective
function

H‘:Iikn (WiCwy), st wix, = 1
and we find the optimal direction and obtain the predictive information index
(PII) as it was calculated in the previous chapter. Then, we normalise the PII
and obtain the SNR statistic. Therefore, in the first iteration the SNR values

for each predictor x,;k = 1---p are calculated by

A1
x;‘gC X}

~ 9
xJ'C "xy

SNR{" =

or equivalently, the SNR expression in the first iteration can be expressed in

terms of the optimal weight vector as

LTG0

(1 _ Wi Wy
SRy = = —Fm-m
Wi W

Let xj, be the predictor in which the SNR attains the maximum, in the sense
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that

WTOE 0

SNRj, = max —*& k

1<k<p WD

Having found x;, as the predictor with the highest SNR, in the next (second)

iteration, we null x;, and solve the following optimisation problem:

min (w.Cwy), st wix, = 1
Wk
wixp, = 0. (4.2.1)

We utilise the method of Lagrange multiplier to solve the above optimisation
problem. Let A = (A1, \2) denote the Lagrange multiplier vector. Then the

Lagrangian function £ is of the form
L(We,A) = wiCwy—A [(xk, %8, ) Wi — (1,0)7] .

Differentiating the Lagrangian function £(wy, A) with respect to wy, gives

—/ 07 = 2Cwy — A(xp, Xk ) .
oW, k (Xk» X, )
Setting the above equation equal to zero yields the optimum direction vector

A—1

. 1
Wi = 5(/\1, AQ)(Xk,Xkl)TC . (422)

To obtain the Lagrange multiplier vector A = (A1, A2), we substitute the op-
timal direction vector Wy into the constraints, (x,xz, ) Wi = (1,0)7. This

results in

A -1

O h) = 2 (x5, 30,)7C (xk,x,ﬂ))_1 (1,0).

Finally, substituting this vector into (4.2.2), we have the optimal direction

) ~—1 ~—1

~ (2 T ! T
Wi = € ) (0003%0)7C T (s x1)) - (1LO)T
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Substituting w?v,(f) in to the objective function W;{ka, we have

~T2) AL (2)
@ _ W, C w,
SNR, = = (4.2.3)
k k
where
. A1 A1 -1
(OCT W = (1,0) ((00%)"CT (i xe)) (1,007,
and
R R A1 -1 A =2
w, Ow? = (1,0) <(Xk7Xk1)TC (Xk, Xkl)) (%6, Xp, )T C 7 (X X, )

A -1

—1
(Gor0) "€ (e xi)) - (1,0)T.
Lastly, the second iteration is completed by finding ks such that
SNRj, = max SNR§€2)7
k#k1

Now given that {xy,,X,} are identified predictors in the previous steps, in

the third iteration we solve

min (wi Cwy), st wix, = 1
Wi
T
wpxp, = 0
T
W, Xp, = 0.

Similar to the second iteration, implementing the Lagrange multiplier method,

the optimal direction in the third iteration is derived as

A1

—1
VAV]S;) =C (kaxk’laxkz) ((Xk,Xkl,sz)TC (Xk‘?Xle?XkIQ)) (17 07 O)T7

accordingly, the SNR values in the third iteration are attained through the

expression
~TE) AL (3)
3 _ W, C Wy
k k
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. . 1
VAVZ(?))C 1VAVI(€3) = (1,0,0) ((Xk,Xkl,XkQ)TC 1(Xk,Xk1,Xk2)> (1,0,O)T,
and
. . 1
VAV;—C(S)VAVI(S) = (1,0,0) ((Xk, Xky, Xk ) C 1(Xk, Xkl,Xk2)>

A~ —2
(Xka Xk Xk2)TC (Xka Xk Xk2)

~—1

-1
((Xk7xk17XkQ)TC (Xk7xklaxk2>> (17070>T'

This iteration is terminated by finding the predictor for which the following
expression holds

SNRy, = max SNR\?.
kg{ki,k2}

We now generalise the above process to the m-th iteration as follows. Suppose
Xpxp = (x1,--+,x,) represents all the predictors in the data and S,,—; =
{ki,-++ ,km_1} denotes the set of indices corresponding to predictors with
maximum SNR values prior to the m-th iteration. Thus, the rest of predic-
tors form the matrix X = X,.sc | where §&_; = {1 < i < pji & Spr}-
Hereafter, we shall use x;)us,,_, to denote a vector, the first element of which
is the predictor x;, k € S;;,_;. The rest of the elements of x;us,,_, are the
identified predictors in the previous m — 1 steps. More precisely, we have
X{k}USm_1 = (Xks X1, ,Xpm—1). In the the m-th iteration the optimization

problem to be solved is of the form

min (w.Cwy), st wix, = 1
Wi
wixp, = 0
wixg, , = 0, (4.2.5)

where £ € & ;. Hence, the Lagrangian function with the corresponding
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Lagrange multiplier vector A™ = (A1, -+, Ap) takes the form
E(m)(wk,A(m>) — W;{(jwk _Am (ka}usm_lwk _ eg) :

where e,, = (1,0,---,0) is an m-vector. The first element of e,,, which
is equal to one, guarantees that the information related to the k-th predictor
under consideration passes through the filter. Zeros imply that no information
from other predictors, which have already been detected in the previous steps,
is included in the calculation. Differentiating the Lagrangian £ (W, )\(m))
function with respect to wj, and setting the equation equal to zero, the optimal

direction is obtained as

. 1.m A1

To obtain the Lagrange multiplier vector A, we substitute the above optimal

direction vector wj, into the constraints, X{Tk}us w, = el which yields

m—1

m ol B
A" = -2 (Xr{k}usm_lc XWUS’”*) em:

Substituting this vector into Equation (4.2.6), we obtain the optimal direction

in the m-th iteration

~—1

~(m A1 B
vv;(g e X{k}USm_1 (X{Tk}usm_lc X{’“}Usm*) e

Consequently, the nulled predictive information indexr in the m-th iteration,

which is expressed as the variance of the projected data along w, is of the form

~ ~T(m)~—1 ~ (m A1 -1
Tk|Sm—1 — Wk:( )C Wl(c ) =©€n (X%ﬂk}usch X{k}USm—1> eg@'
and we have
~T(m) _~ (m) T A1 p -1 T ~—9
Wk( )W/(C = €en (X{k}U$m71C X{k}USm71> X{k}USm71C X{k’}USm_l

X

A1 —1
(X{Tk}USm_1C X{k}usm,1> e%.
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As a result, the SNR value in iteration m for each predictor x;, where k ¢

S,_1, is calculated by

R T(m)éfl ~ (m)

SNR{™ oc Wk T(m)A::]f , kg S (4.2.7)
Wi Wi

Once we have found the above nulled SNR,(gm) values, the algorithm proceeds

by finding k,, such that

SNRy,, = max SNR!™. (4.2.8)

Sm—l

The predictor x;, . is removed from X. Accordingly, the index set S,,_; =

{k1,++ ,km_1} is updated to the set S, = {k1, -+ ,km}-

This is called the forward nulling phase since it is based on nulling the
previously identified predictors by imposing multiple constraints on the min-
imum variance filter. Consequently, the minimum variance filters with such
constraints are called nulled-beamformers. Indeed, the aim of the forward
nulling and selection is to scan through the predictor space with a series of
nulled-beamformers, each is tailored to a particular region in the space and
resistant to interference effects originating from other regions. After a certain
number of iterations, the SNR values start leveling off, such that the maximum
SNR value does not differ substantially from the rest of the values anymore.

This motivates us to define a stopping rule for the forward nulling.

4.2.2 Stopping criterion

Leveling off the SNR values gradually conveys that the remaining predictors
are not outstanding any more and do not contain much information about
the response variable. If no significant information is left in the remaining
predictors we terminate the selection. To be concrete, in iteration m, after
calculating SNR,(cm) values for all predictors x;; k € S,,_1, we sort these values

decreasingly and identify the elbow point 9, as discussed in Section 3.6.
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Algorithm 4.1: Principal Variable Analysis (PVA)

1. Calculate snry, for all predictors x; k=1,---,p.

2. In the first iteration, find k; such that snry, = 12132{ SNR;, and

p
define the nulled indices set &1 = {k1}.

3. In iteration m > 2, calculate SNR](Cm)’Sm_l = {SNRIS,m);k ¢ Sm_1}

and find k,,, such that sNnry = kg‘lsax SNR]im).

m—1

4. Order SNR](Cm) |S,—1 values and find the elbow point d,, of this curve.

5. Identify the noise set Ny, = {x; | SNR!™ < §,,}.
kEZSm—1

6. Find pp; and oy, -

7. If [sNRy,, — pje| < agon;,, is true stop and set S, = Sp—1 U {km };

else return to step 3.

Predictors with SNR values higher than the the elbow point are considered
as an approximate signal set, and the remainder is classified as noise. Hence, in

iteration m, the approximate signal set A;, is defined as {x;, | SNR,(Cm) > Om}
k&S 1

and the noise set N, is defined as {x; | SNR,(gm) < Om}. Now we check
k€8m71
whether the maximum of SNR values in iteration m, SNRy, , satisfies the

following condition

ISNRy,, — :u/\/sm| < apong;,, (4.2.9)

where gy is the mean and oy is the standard deviation of the noise set.
In order to specify ay we considered three-sigma rule (Hazewinkel, 1993) and
five-sigma rule (Collins, 2014) which is mostly used in practical experiments in
physics (Acton, 2013). Accordingly, in PVA process we consider ag € {5, 3}.

If SNRy,, falls into the above interval, iterations will stop. Otherwise k,, is
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merged with the set of nulled indices S,,—1, i.e. S, = Spo1 U {kn} and itera-
tions will continue. Once the process stops, we obtain a list of highly ranked
predictors called principal predictors. The steps of PVA are summarised in

Algorithm 4.1.

4.3 Theoretical support

In this section we provide some theoretical support to show the properties of
the predictive information index (PII) and the PVA. Some of the theories are
beyond the scope of this thesis so the details are provided in the paper (Zhang
and Oftadeh, 2016) which is based on this chapter and Chapter 3. Note that
all theory in this part is based on PVA with an ideal setting where C is known.
PVA with estimated C is discussed in the paper in details.

We remind that we consider a sample (Y,X) of size n on the response
variables and predictors, where Y = Y,; = (v;;) = (y1y2---ys) and X =
Xoxp = (Tig) = (X1-+-%,), and y;;1 < 7 < J and x4;1 < k < p are vectors
of n observations made on the response variables and the predictors. Suppose

the data follows the multivariate multiple regression model
Y =XB+E, (4.3.1)

where B = B,x; = (bj;) = (B1Bs---B,) and E = E,,,; = (e162--- &) with
b, and €; respectively denote the values of the random regression coefficients
and the error terms related to the jth response variable. Assume that B and
E are independent and that the covariance matrices of y;, b; and €;, denoted
by C = (¢ij)nxn, & = (Vij)pxp and oI, respectively, where I, is the n x n
identity matrix. Also assume that these covariances are independent of index
j. Therefore, for all j =1,---,J we have C = cov(y,), also form a population
perspective we have cov(y;) = C = E[(y; — Ely,])(y; — Ely;])"]. Since the
regression coefficients are assumed to be random, the covariance structure of

each response variable is determined by the covariance of random coefficients
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and the error term:

C = X2X" +o%1,. (4.3.2)

Without loss of generality, assume that x}x; = n,1 < k < n. Otherwise,
this can be achieved by a standardisation procedure. Let v denote 7y in
the covariance matrix of regression coefficients ¥, which corresponds to the
regression coefficient at the predictor k. The variable selection aims to detect
predictors that their regression coefficients have non-zero variances. Let set
{1,2,...,p} denote all the predictors in the data and vy be the true predictor
set. If v = {ky, ..., kp, } denotes any subset of predictors {1,2,...,p}, then the
(K1, ..., kp, )th columns of X form the matrix X,. Let e, be a p x p; selection
matrix in which for 1 < j < py, its (k;, j)-th entry takes value of 1 and the
other entries take values of 0, then we can write X, = Xe,. Thus with this

notation for the true predictor set we have

C = X,,e] Se, X[ + Ay, (4.3.3)
where, A,, denote the remainder of C after the term X, e}, Ze,,OX:‘,FO is taken

away. In the following proposition we show that the predictive information or
the predictive power at vy, which was defined in (3.4.6), can be decomposed
into the underlying predictive information matrix of the predictors in vy plus

the interferences from the predictors not in vy and from the white noise.

Proposition 4.3.1. If e Ye,, and A,, are invertible and X,, has the rank

equal to the size of vy, then the predictive information matrix
T T A -1 -1
Tvy = €,,2€,, + (XZ,OAV0 XVO) .

If v = 0, k & v and as the sample size n is large enough, the minimum

eirgenvalue of XZOXVO/n 1s bounded below from zero, then

Ty, = eZZ)EeVO + O(1/n).

Proof: It follows from the definition that C > o021, which implies C~! has
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positive eigenvalues. Together with the fact that X,, has the rank equal to
|1o|, this shows that XfoC_lX,,0 has positive eigenvalues. Similarly, we show
that XZ;A;;XUO is invertible. Now we invoke the Woodbury matrix identity.
According to Hager (1989) Woodbury formula expresses the inverse of a matrix
after a small rank perturbation in terms of the inverse of the original matrix.

Using Woodbury formula for inverse of C, we have
_ _ _ _ _ -1 _
C'=A"—A'X, ((e, e, " +X A 'X,) X A
substituting the above expression for C™' gives

X" C'X,, = XLAZ'X,, —XTA'X,, (X Se,) ' + X AZIX,,)
X X}COA;;X,,O
— XTAIX,, (eFSe,,) '+ XL AX,,)
x ((el Te,,) ' + XL AIX,, — X[ A X))
— X" A'X,, (el Te,) " + XD AIX,,) " (el Se,,) !

— (&7 e, + (XEAIX,,) )

By the definition, we have
rp = (XEC'X,,) " = el Se,, + (XL A;IX,,) "

When 12 = 0, k € 1, we have A = 0], and
2 1

(XEA'X,,) " = % (XZX,,/n)" =0 (1/n).

The above proposition shows a local consistency of the predictive power with

the underlying power e}, Se,, at vy.

Most of the concepts and the related theory are not presented here as they
are beyond the scope of this thesis. The following properties have been dis-

cussed and proved in the related paper (Zhang and Oftadeh, 2016).

93



(a) The global consistency property: The predictive power or predictive
information index also has a global sparsistency property when the sample
size tends to infinity. This property implies that for true active predictors that
their regression coefficients have a positive variance, the predictive information
index has a positive limit, whereas for non-active predictors the predictive

information index tends to zero.

(b) Sure screening property: The screening procedure can have a sure
screening property that for an appropriately chosen threshold, all predictors in
1y can be detected with a probability approaching to one. It can be shown that
the forward nulling improves the accuracy of selection and the nulled predictive

information index has higher values than non-nulled predictive information.

(¢) Compared to the underlying predictive information matrix, e Ye,,,
the predictive information matrix r,, may not be consistent if the correlation
between the predictors do not converge to zero as n tends to infinity. It can be
shown that under certain conditions, for any true predictor & € v, the predictor
does have positive predictive power although the power has deteriorated due
to the interferences from other predictors. In the next section we introduce a

concept which is used in the real data analysis.

4.4 Biological network

A biological network is a graphical representation through which several nodes
are linked to each other. These nodes may be disease, protein, gene or other
molecular characteristics. In the field of medicine, molecular networks play
a crucial role in understanding human genetic disease by uncovering some
hidden genomic associations. Human genetic disease are classified into three
categories of monogenic, oligogenic and polygenic based on the number of
genes that causes the disease. In monogenic disease mutation in single gene

is essential and sufficient to cause the disease. Oligogenic diseases occur as a
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result of interaction between a few genes. Complex disease such as neurolog-
ical and cancers which are multifactorial and involve many genes are called
polygenic (Emmert-Streib, 2012). Because of the high influence that gene
interactions may have in the disease progression, identifying disease causing
genes and their associations can facilitate identifying the drug targets. Gene
network is versatile tool for uncovering gene interactions. Through a detailed
study of a gene network one can find potential drug targets for producing
disease-specific treatments. Here, we focus on one type of network which is
based on correlations between genes. We first give a mathematical definition
of such a network and then we apply the method to the real data in the next

section.

A network is a collection of inter-connected objects which is frequently
presented as a number of points connected with a collection of lines. Networks
conceptualise the interactions or relationships between a class of items. In
mathematics, networks are often represented and referred to as graphs. A
graph G = (V, E) is a mathematical object composed by a set V of vertices
or nodes which are connected by a set E of edges or links where elements
of E are unordered pairs (u,v) of distinct vertices w,v € V. The number of
vertices is called the order and the number of edges is referred to as size of the
graph. The connectivity of a graph is specified by the concept of adjacency.
Two vertices u,v € V are said to be adjacent if they are connected by an edge
in £. A vertex v € V is incident on an edge e € F if v is an endpoint of e
therefore the degree of a vertex v is defined as the number of edges incident
on v. A network is characterised by an adjacency matrix. Suppose graph
G = (V, E) corresponds to a network with N nodes. The adjacency matrix of
graph G is an N x N symmetric matrix A = (a;;) with entries

1 ifi,jer
Ajj = (4.4.1)
0 otherwise,

where an edge e € F is denoted by an unordered pair of vertices 7,7 € V.

a;; = 1 if there is an edge between node ¢ and j in graph G and a;; is zero
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otherwise (Barabéasi, 2016).

4.5 Real data application

In the following sections we apply the PVA on the cancer data to find the prin-
cipal genes. We then fit a multivariate regression to the selected set of genes
and find the corresponding least square estimates. Then we identify a network

of selected genes based on the correlation of their estimated coefficients.

4.5.1 Principal variable analysis on cancer data

As mentioned before, our real data contain log-expression levels of 13321 genes
and the median inhibitory concentration (IC50) values of 131 drugs across 42
cell lines. Let X denote the log-expression levels and Y be the IC50 values.
We consider the multivariate multiple regression model (4.3.1) for the data
set (Y,X) where the sample size is n = 42 with p = 13321 predictors and
J = 131 response variables. Evidently this is an ill-posed problem with high
dimension predictors p > n and p > J. We apply PVA to the data to
identify the principal predictors. To this aim, we implement the PVA which
is built upon the thresholded and shrunk covariance matrix Chs presented
in Equation (3.4.11) with tuning constant h = 0.001. The result are not
sensitive to the choice of ¢y for this particular data and we obtained the same
set of selected predictors for different values of A = 0.01,0.005,0,001. We
also set the stopping rule to ag = 5, since choosing ag = 3 is computationally
expensive. Simulation studies show that using three-sigma rather than five-
sigma as stopping rule in PVA, does not improve the accuracy of selection
substantially and just makes the process significantly longer. Therefore we set
ap = 5 in application of PVA on real data which is more appropriate for such
high dimensional data. The computational time for applying PVA on real data
was 1.6 minutes on CPU with Intel Core i5-3470 processor and 8 GB RAM.
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Figure 4.5.1: Correlations between 37 principal genes after performing variable selection

by PVA. Circles show the magnitude of correlation between two variables, the darker the

colour, the higher the correlation. Blue indicates negative correlation and yellow indicates

negative correlation.

As a result of applying PVA on these data, 37 out of 13321 gene expressions

were selected as principal predictors denoted by xq, - - -

,X37. Now we consider

the regression model (4.3.1), but this time based on the data (X,Y) where

the columns of the design matrix Xysx37 contains the selected predictors by

PVA and Y contains the IC50 values

Y42><131 = X42><37B37><131 + E42><131-
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Figure 4.5.2: Correlations between least square coeflicient estimates of principal genes.
Circles show the magnitude of correlation between two predictors, the darker the colour,
the higher the correlation. Blue indicates negative correlation and yellow indicates negative

correlation.

The estimated least square coefficients form the matrix B37X131. Fig-
ure 4.5.1 illustrates the correlation between 37 principal predictors Xy, - - - , X37.
The correlation between least square estimates f)l, ceey b3y is also shown in Fig-
ure 4.5.2. These correlation patterns uncover some appealing features about
selected genes. These graphs demonstrate two entirely different correlation
structure: a weak correlation between principal genes and a strong correlation
structure between the estimated regression coefficients of these genes. The

graphs show that although the principal genes are weakly correlated, once
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we take the IC50 values of drugs into account through the regression model
(4.5.1), these selected genes become strongly correlated. In other words, the
uncorrelated genes are highly correlated in their coefficients when they are
linked to the IC50 values through the regression model. From biological point
of view, this phenomena conveys valuable information about these genes. The
fact that these genes are highly correlated based on their responses to cancer
drugs, confirms that linking the gene expressions and IC50 values through a
multivariate regression model is beneficial and can uncover some hidden infor-
mation which cannot be recovered in the analysis of gene expressions. In the
next section, we build a network of these genes for further investigation and

extracting more information about these genes.

4.5.2 Predictive network of principal genes

In this section we intend to identify a network between the 37 principal
genes selected by PVA. This network is based on the regression coefficients
131, e ,1337 of principal selected genes. We are interested in discovering more
about the interactions between these genes, through establishing a network
between their estimated coefficients. To this end, we consider the coefficient
matrix ]337X131, the rows of which 61, e ,637 are 131-dimensional coefficient
vectors correspond to the principal genes. We construct two different networks
based on the coefficient matrix ]337X131. One network is constructed with 37
nodes which are the rows of the coefficient matrix and another network is

established based on the columns of this matrix with 131 nodes.

As explained in Section 4.4, a primary tool for constructing a network is
an adjacency matrix. Therefore, we first define an adjacency matrix based on
the correlations between the nodes. For the network with 37 nodes we find
the pairwise Pearson correlation coefficient between the rows of regression
coeflicient matrix 1§37X131. Let Rjx; = () denote the correlation matrix
between p = 37 vectors. The idea is thresholding these correlations r;; at

some level of significance so that r;;s with values higher than the threshold
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level are set to one in adjacency matrix and zero otherwise. So we need to
perform a hypothesis test with Hy : r;; = 0 versus H; : r;; # 0 to test the
significance of r;;s. To carry out this test we need to convert r;;s to a normally

distributed variable. Hence, we invoke Fisher’s Z-transformation and calculate

1 [(1—r;

1+7"i]’

As a result, z;s are normally distributed and if they are independent and
therefore uncorrelated, then z;;s are i.i.d normally distributed variables z;; ~
N(0,1/(J—3)) where J = 131. Since R, = (z;;) is symmetric we just consider
the upper diagonal elements of this matrix where ¢ < j and we test whether
z;; is significantly away from zero. If we consider the off-diagonal elements in

R, = (z;j), there are p(p — 1)/2 tests to be carried out simultaneously.

It is known that in multiple testing where we perform a large number of
hypothesis tests, it is very likely to have false discoveries just due to chance.
In order to avoid making wrong decision multiple testing theory provides some
approaches to control the error rates. According to McDonald (2009), multiple
comparisons is an area of active research and there is no universally accepted

approach for dealing with this issue.

Here, we invoke the classical yet widely used technique of Bonferroni cor-
rection which sets the significance cut-off at «a//t to adjust the error rates, as
pointed out in Norman and Streiner (2008). « is the desired significance level
at which we want to test the set of hypotheses and ¢ is the number of tests to
be performed. Followed by this, in testing the hypotheses Hy : 2;; = 0 versus
Hy : z; # 0 at a = 1% significance level, by applying Bonferroni correction,
this value is replaced with o’ = a/t; t = p(p — 1)/2. Since z;;s are normally
distributed, z = v/J — 3z;; N(0, 1). Therefore we claim that z;; is significantly

away from zero if z >z , and we can construct the adjacency matrix

~ 1 lf |Z| > Zal
Ay = 2 (4.5.3)
0 otherwise.
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The predictive network of principal genes with 37 nodes presented in Figure

4.5.3 is formed by assigning an edge between nodes 7 and j if A;; = 1.

S
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Figure 4.5.3: Network of estimated regression coefficients corresponding to 37 principal
genes selected by PVA. These coefficient vectors are of dimension 131. Each node represent
one of the selected genes. Size of each node depicts the degree of that node. Vertices with
larger size are correlated with larger number of genes. The thickness of edges represent the
magnitude of this correlations. The higher the correlation, the thicker the edge between two
genes. The largest and smallest node size belongs to gene QKI with size 22 and gene STX7

with size 3, respectively.

This network is based on the regression coefficients of these genes so A;; =1
implies that these genes have a significant correlation based on their regres-

sion coefficients. The network is presented in Figure 4.5.3 is strongly connected
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which shows these genes are highly correlated based on their regression coeffi-
cients. The thickness of the lines show the magnitude of existing correlations
between genes. Another network with 131 nodes is constructed based on the
pairwise Pearson correlation coefficients between the columns of the coefficient
matrix Bary131. Therefore for this case in the above procedure of finding ad-
jacency matrix we have J = 37 and p = 131. The resulted network between

131 coeflicient vectors is shown in Figure A.0.2 in Appendix A.

To reveal the roles played by these principal genes in different types of can-
cer, we investigated their protein staining in 20 common cancers as the protein
products would dictate their functions (Stewart et al., 2017). The tables in
Appendix A provide some information gathered from the Human Protein At-
las Portal at http://www.proteinatlas.org/cancer. In these tables, according
to the information reported in the Portal, we classified the protein expres-
sion/staining levels into four categories: high, medium, low and not detected.
We assigned the scores of 3,2,1 and 0 to the four categories respectively. If a
gene did not play a role in a cancer, it receives a score of zero as its protein
staining at that cancer would be hardly detectable. We found that 34 of the
selected genes had positive staining levels for at least one of these cancers.
This implies that these genes might play certain functional roles in the growth
of some of these cancers. In the Portal, there were no information available

on the remaining 3 of the selected genes.

4.6 Simulation studies

In this section, we assess the ability of PVA procedure in identifying the infor-
mative and ruling out the uninformative predictors on simulated data. This
assessment was carried out by calculating the sensitivity and specificity of the
PVA which reflects the ability of correctly identifying the non-zero coefficients

(sensitivity) and discarding the zero coefficients (specificity).

Similar to the previous chapter, we considered PVA based on four different
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covariance estimators introduced in Section 3.4.3. The Ledoit-Wolf’s shrunk
estimator Copt and the thresholded and shrunk estimator Chs with tuning
constants h = 0.01,0.005,0.001. Although results in Chapter 3 showed that
SNR is not sensitive to these constants, here, we still use different values to
explore how these constants affect the selection accuracy. Results are reported

for two different values for the constant in the stopping criteria, ag = 3, 5.

Moreover, we compared the PVA performance with four well-known penali-
sation methods for multivariate regression by comparing the sensitivity values.
These methods introduced in Section 2.2.2 are the multivariate group lasso
(mgl), multivariate elastic net (menet). We used glmnet R-package (Friedman
et al., 2010) to perform variable selection with these two methods. We also
compared PVA with the multivariate lasso (ml) and multivariate sparse group
lasso (msgl). Since the multivariate lasso in glmnet imposes a group lasso
penalty and not a lasso penalty, we used the lsgl R-package (Vincent and
Hansen, 2014) to apply the multivariate lasso and multivariate sparse group
lasso penalties. The performances of these methods were examined by com-
paring the sensitivity values while specificity values were approximately the
same. More details about how we fix this specificity is explained in Section

2.4. All simulations were programmed and conducted in R software.

4.6.1 Simulation setup

To investigate whether high correlations among response variables hinder or
enhance the detection of true active predictors for the above variable selection

methods, we designed two different settings.

Scenario 1 (Strongly correlated coefficient matrix): As it was ex-
plained in Section 2.4.1, the design matrix X,,, was generated by sampling n
number of iid p-vectors x;, i = 1,--- ,n from a multivariate normal N, (0, 3,,)
where X is the covariance matrix of the gene expressions in our real data. The

coefficient matrix BZX ; was generated by sampling p number of J-vectors
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from N;(0,€,) wherein the non-zero elements were placed in strongly corre-
lated columns. The error matrix, E, s, was generated by sampling J times
from a multivariate normal distribution N,(0,0?L,), where 0% = 0.1. Finally,
the multivariate response variable was generated from multivariate regression

model
Yn><J = XnXpoXJ + En><J' (461)

Scenario 2 (Weakly correlated coefficient matrix): For this setting,
data were generated as explained in scenario 1 except that for this setting
the coefficient matrix Béx ; was generated by sampling p number of J-vectors
from N;(0, €;), wherein the non-zero elements are placed in weakly correlated

columns.

In all simulations we generated 50 datasets of (Y,,x.s, X;,xp) for each combi-
nation of (n,p, J, |T|) where n = 42,88, 150 is the sample size, J = 20, 34, 131
is the dimension of the response variable and p = 2000 is the dimension
of the covariates. The non-zero elements or the active size was also set to
|T| = 10,37,70. These simulations are based on stopping point ag = 5. We
also conducted some simulations with stopping criterion ay = 3. Although
the obtained results showed a negligible improvement in selection accuracy in
terms of specificity, the computational cost was expensive and the selection
process became significantly slow. Therefore, we chose ay = 5 in the following
simulations and just report one setting in Figure 4.6.4 and Figure 4.6.5 where

we set ag = 3.
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4.6.2 Results
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Figure 4.6.1: Box plots of the sensitivity percentages when specificity values are approxi-

mately the same. Here, sh, corresponds to PVA based on Ledoit-Wolf’s shrunk estimator

Copt and hsl, hs2 and hs3 refers to PVA based on the thresholded and shrunk estimator
Chs with tuning constants A = 0.01,0.005,0.001 respectively with the stopping criteria’s
constant ag = 5. Results obtained under (a) scenario 1 with strongly correlated coefficient
matrix and (b) scenario 2 with weakly correlated coefficient matrix. Settings with |T| = 10,

n = 88, p = 2000 with (a),(b) J =20 and (c), (d) J = 34.

Results shown in Figure 4.6.1 illustrate that the sensitivity of PVA is much
higher relative to other penalisation methods. This conveys that the accuracy
of PVA in correctly detecting non-zero predictors is comparative. Similar to
SNR-based screening, the selection accuracy is not affected by varying the
tuning constant h. We also conducted more simulations with a larger number

of active (non-zero) predictors to explore to what extent the selection process
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is influenced by the number of active predictors. Hence, we increased the
number of active predictors to |T'| = 70 and we report the result for different
combinations of (n, J). The sensitivity and specificity percentages are depicted

in Figure 4.6.2.
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Figure 4.6.2: Scenario 1 (Strongly correlated coefficient matrix): Box plots of the
sensitivity percentages when specificity values are approximately the same. Here, sh, cor-
responds to PVA based on Ledoit-Wolf’s shrunk estimator Copt and hsl, hs2 and hs3
refers to PVA based on the thresholded and shrunk estimator Chs with tuning constants
h = 0.01,0.005,0.001 respectively with the stopping criteria’s constant ag = 5. In all set-
tings |T'| = 70 and p = 2000 where in (a) J = 20, n = 88; (b) J = 20, n = 150; (c¢) J = 34,
n = 88; (d) J = 34, n = 150.

Comparing results presented above in Figure 4.6.2 (a), where the number
of non-zero predictors is || = 70 with the same combinations of (p,n,J) =
(2000, 88,20) in Figure 4.6.1 (a) where |T'| = 10 verifies that increasing the

number of active predictors reduces the accuracy of all methods significantly.
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This is not surprising as this decline is the consequence of the mask effect
caused by correlated predictors and as a result of these correlations, detecting
the true non-zero predictors becomes more challenging. It can be seen that
even when we increase the number of active predictors PVA still outperforms
the competitors. Results obtained from the same combinations as Figure 4.6.2

but with weakly correlated coefficient matrix are presented in Figure 4.6.3.
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Figure 4.6.3: Scenario 2 (Weakly correlated coefficient matrix): Box plots of the
sensitivity percentages when specificity values are approximately the same. Here, sh, cor-
responds to PVA based on Ledoit-Wolf’s shrunk estimator Copt and hsl, hs2 and hs3
refers to PVA based on the thresholded and shrunk estimator Chs with tuning constants
h = 0.01,0.005,0.001 respectively with the stopping criteria’s constant ag = 5. In all set-
tings |T'| = 70 and p = 2000 where in (a) J =20, n = 88; (b) J = 20, n = 150; (¢) J = 34,
n=88; (d) J =34, n = 150.

These results show much lower sensitivity level for PVA for all settings.

This was expected since in PVA the correlation between response variables is
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taken into account. However, comparing the results in Figure 4.6.2 and Fig-
ure 4.6.3 reveals that other methods are not affected when there is a weaker
correlation structure between response variables. This was also expected since
these methods do not take the correlation between the response variables into
account in the selection process. Moreover, comparing the results obtained in
Figure 4.6.2 (a) with n = 88 and (b) with n = 150 reveals that increasing the
sample size improves the performance of all methods. Also comparing the first
and second row shows that increasing the number of columns J has a positive
effect on the performance of these methods. PVA shows an outstanding accu-
racy compared to all other methods when the sample sizes J and n are large

enough.

Since the number of selected predictors by PVA in real data is 37 and
the sample size is 42 and we have 131 observations for the response vari-
able, we conducted more simulations with the combinations of (p,n, J,|T|) =

(2000, 42, 131, 37).
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Figure 4.6.4: Box plots of the sensitivity percentages when specificity values are approxi-
mately the same. Here, sh, corresponds to PVA based on Ledoit-Wolf’s shrunk estimator
Copt and hsl, hs2 and hs3 refers to PVA based on the thresholded and shrunk estimator
Cps with tuning constants h = 0.01,0.005,0.001 respectively and with the stopping crite-
ria’s constant ag = 5. Settings with (p,n,J,|T|) = (2000, 42,131,37) (a) corresponds to

scenario 1 with highly correlated B and (b) corresponds to scenario 2 with low correlations.
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Here we also considered two different constants of ag = 3,5 in the stopping

criteria. Results presented in Figure 4.6.4 are obtained with ag = 5 and in

Figure 4.6.5 with a¢ = 3.
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Figure 4.6.5: Box plots of the sensitivity percentages when specificity values are approxi-

mately the same. Here, sh, corresponds to PVA based on Ledoit-Wolf’s shrunk estimator

C,pt and hsl, hs2 and hs3 refers to PVA based on the thresholded and shrunk estimator
Cj, with tuning constants h = 0.01,0.005,0.001 respectively and with the stopping crite-
ria’s constant ag = 3. Settings with (p,n, J,|T|) = (2000, 42,131,37) (a) corresponds to

scenario 1 with highly correlated B and (b) corresponds to scenario 2 with low correlations.

To sum up, results presented in Figure 4.6.4 and Figure 4.6.5 together
with previous previous outcomes also verifies that correlation structures in
the coefficient matrix which impose the same correlation structure in the re-
sponse variable can influence the selection accuracy of PVA. For example, in
settings where the coefficient matrix is highly correlated PVA is more efficient
and leads to a more accurate selection with higher sensitivity. The reason is
that PVA takes the correlation structure of the response variable into account
whereas other methods lack this interesting property. We can also see that
in all scenarios with different simulation settings with n > J and n < J, our

proposed PVA surpasses all the penalisation methods.

Tables 2 and 3 show the mean and standard errors of all methods across 50
simulations. The improvement obtained by PVA against penalisation methods

is also reported in these tables.
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The upper part of these tables illustrate mean values of sensitivity percent-
ages across b0 simulations together with standard errors resulted from dividing
the standard deviation of sensitivity percentages across all simulations by 50.
The lower part provides the improvement percentages by PVA obtained from

the following ratio

mean(SENpya ) — mean(SENpy)
mean(SENpy

Improvement by PVA =

?

where PM stands for the penalization method. In order to find standard errors

we calculated the following ratio

_ SENpys — SENpy
N SENpu ’

d

then we calculated the standard error of the above ratio by calculating

04

N

Standard errormprovement =

The improvement obtained by PVA in both scenarios with strong correlations
and weak correlations against all penalisation methods under consideration
is noticeable. For example, under scenario 1 with strongly correlated coeffi-
cient matrix, PVA improves the selection accuracy by 47%, 26%, 70%, 91%
and 223% compared to the multivariate sparse group lasso (msgl) which is a
well-known penalisation method. This improvement by PVA is also remark-
able under scenario 2 with 41%, 116%, 66%, 135% and 62% increase against

multivariate sparse group lasso method.
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|T| =170 |T| =37

J =20 J =34 J =131
n =388 n =150 n=2388 n=150 n =42
Mean of sensitivity and standard error in %
PVA 44.25 57.45 47.71 70.97 42.81
Standard error (0.55)  (0.48) (0.71)  (0.80) (0.89)
mgl 27.40 41.77 25.31 33.20 12.81
Standard error (0.58)  (0.68) (0.52)  (0.70) (0.44)
menet 18.2 29.54 15.51 19.48 7.62
Standard error (0.46) (0.84) (0.50) (0.66) (0.35)
ml 23.37 36.31 23.51 30.45 11.72
Standard error (0.55) (0.79) (0.54) (0.61) (0.53)
msgl 30.05 45.37 27.94 37.05 13.24
Standard error (0.52) (0.71) (0.58) (0.64) (0.43)
Sensitivity improvement by PVA(hs3) and standard error in %
Against mgl 61 37 88 113 234
Standard error (4) (2) (5) (6) (20)
Against menet 143 94 207 264 461
Standard error (7) (6) (14) (18) (51)
Against ml 89 58 102 133 264
Standard error (4) (4) (5) (6) (35)
Against msgl 47 26 70 91 223
Standard error (3) (2) (4) (4) (19)

Table 2: Scenario 1 (Strongly correlated coefficient matrix): Mean sensitivity and
mean improvement obtained from 50 simulations when specificity is fixed approximately
at the same level for all methods. PVA(hs3) is the PVA when the covariance matrix is
estimated by the shrunk and thresholded estimator Cps with h = 0.001.
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|T| =170 |T| =37

J =20 J =34 J =131
n =388 n =150 n=2388 n=150 n =42
Mean of sensitivity and standard error in %
PVA 26.71 55.91 38.34 67.51 26.91
Standard error 0.73)  (1.05) (0.61)  (1.17) (0.89)
mgl 16.80 22.65 20.51 25.82 14.74
Standard error (051)  (0.56) 047)  (0.59) (0.56)
menet 15.41 20.97 16.08 20.17 9.83
Standard error (0.44) (0.54) (0.40) (0.58) (0.43)
ml 18.65 25.42 21.31 27.45 14.70
Standard error (0.46) (0.52) (0.58) (0.60) (0.59)
msgl 18.85 25.82 22.97 28.71 16.59
Standard error (0.50) (0.51) (0.49) (0.56) (0.63)
Sensitivity improvement by PVA(hs3) and standard error in %
Against mgl 59 146 86 161 82
Standard error (6) (8) (5) (8) (11)
Against menet 73 166 138 234 173
Standard error (8) 9) 8) (15) (20)
Against ml 43 119 79 145 83
Standard error (5) (6) (6) (9) (13)
Against msgl 41 116 66 135 62
Standard error (5) (6) (5) (6) (10)

Table 3: Scenario 2 (Weakly correlated coefficient matrix): Mean sensitivity and
mean improvement obtained from 50 simulations when specificity is fixed approximately
at the same level for all methods. PVA(hs3) is the PVA when the covariance matrix is
estimated by the shrunk and thresholded estimator Cps with h = 0.001.
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4.7 Discussion

Although according to the simulation studies, PVA possesses a higher selec-
tion accuracy compared to other methods, the number of variables selected
by PVA is limited to the sample size. The selection process in PVA is based
on forward nulling which is accomplished through null-beamformers. Setting
specific constraints in these null-beamformers which assume that projections
are orthogonal to each other imposes a limitation on PVA selection. Due to
this orthogonality assumption, PVA selection becomes restricted to the sample
size. Another factor that has an impact on the number of selected variables
by PVA is the stopping rule which is used in Algorithm 4.1 in Section 4.2.2.
For example, using 3-sigma rule as the stopping criterion is computationally
more expensive than using 5-sigma rule but results in selecting a larger num-
ber of variables. PVA performance is also sensitive to the choice of tuning
constant which is used in Cy, covariance estimator yet this sensitivity is not
substantial in our simulated data. PVA does not show any sensitivity to the
choice of tuning parameter in real data application, and it selects the same set

of predictors based on constants h = {0.01,0.005,0.001}.
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Chapter 5

Likelihood Fusion for Multivariate

Regression Models

5.1 Introduction

The study in this chapter is also motivated by the cancer drug data introduced
earlier. We propose a two-stage mixture-based model and a procedure based
on the proposed model to perform marginal variable screening and regression
classification, simultaneously. The rationale behind the new proposal is as
follows. Response variables in our real data are the IC50 values of different
drugs. Naturally, it makes sense to assume that these drugs have a group
structure. For example, these drugs can be classified into different groups
based on the types of cancers which are treated by these drugs. Or they can

be classified based on their effectiveness on different gene expressions.

The model that we propose resembles the mixture of regression models
introduced in Chapter 2. We remind that the IC50 values form the matrix
Y ,.«s, which contain n observations on J response variables. We wish to
cluster these response variables into groups. To this aim, we calculate the
likelihood function for each response variable. Then we construct a mixture-
based model wherein these likelihoods are regarded as density functions. Note

that the idea is pulling the information from different columns, or response
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variables, together. This proposed mixture-based model is called likelihood

fusion. This model is specified in detail in the next section.

5.2 Likelihood fusion models for multivariate re-

gressions

In this section, we introduce likelihood fusion model and we implement this
model in a two-stage screening and clustering procedure. This two-stage pro-
cedure was initially introduced by Zhang (2017) for screening and clustering of
sparse regressions with finite non-Gaussian mixtures. The model we propose
here is designed for multivariate regression models where we wish to regress
several response variable against high dimensional predictors p > n. In the
first stage of this procedure, we use the likelihood fusion to perform a marginal
variable screening for multivariate regression models. In the second stage, the
proposed model is fitted to the reduced predictors to classify regressions. Ac-
cordingly, through this procedure for high dimensional regressions, variable
screening and classification is carried out simultaneously. We start by giving
a definition of likelihood fusion model followed by model estimation. Then we

explain the second stage of the procedure which is the classification stage.

Suppose we are interested in clustering J independent multivariate re-
sponse variables y;;j = 1,---,J into K groups. For each of these response
variables, n observations are recorded i.e. y; = (Yjt, 3 Yjn),J = 1,---, J.
Let matrix X,,«, be a design matrix formed by n observations on p covariates.
The dependence of y; on X is expressed through the conditional distribution

of y;|X which is modelled by the following mixture of regressions

K
f(yj|X7 P) = Zﬂkfk(}’ﬂxﬁkagi)a (5.2.1)
k=1
where & = (3, ,8k,01, - ,0k,m, -+ ,Tg) and these parameters vary

across the components. fi(y;| X8y, 0?) is the conditional density of y; given
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(X84, 03) in the kth component. This implies that each y; can come from
any of these K components with probability of 7. The mixture of regressions
that is expressed through Equation (5.2.1) is quite different from the classical
mixture of regressions model. Here, each density function f.(y;|X8, o?)is a

likelihood or a joint distribution of n iid observations given by

Fely; [ XBeop) = [ FiwisxiBy. o3)
=1

n

_ 1 (?/z - Xzﬂk)z
- Wmgmee 5™ )

o (X050 )

(2mo2)n/? o 202

Accordingly, the above model is a mixture of multivariate normal density func-
tions. In other words, this model is a weighted sum or a convex combination
of K density functions. We refer to this method as likelihood fusion. In this
model, regression coefficients and error terms are heterogeneous across the

components.

Note that in the real data we have a small sample size. Due to the lack of
information caused by the small sample size, we are not able to deal with cor-
relations among response variables. Therefore, here we assume the ideal case
that the response variables are independent and we construct the likelihood.
Accordingly, what we calculate in the next section is actually a pseudo or ar-
tificial likelihood and can be regarded as an approximation of the dependent

case.

5.3 Estimation of likelihood fusion models

In order to fit the model (5.2.1) we need to estimate all model parameters. We
obtain these estimates by applying maximum likelihood method. The likeli-

hood function corresponding to the model (5.2.1) and observations yq,- -,y
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is given by

L(®) = Hf(yj|x7 )

J K

= I mfily; XBy. o). (5.3.1)

=1 k=1

<.

We estimate model parameters by maximizing the logarithm of this likelihood

function

J K
> log [Z kak(}’ﬂxﬁkaai)] : (5.3.2)
j=1 k=1

Due to the lack of information about group indices, the summation appeared
in the log-likelihood function is not decomposable. In the next section, we
invoke the Expectation-Maximization(EM) algorithm introduced in Chapter
2 to deal with this problem.

5.3.1 EM algorithm for computing the maximum fused-

likelihood estimator

The likelihood function expressed in Equation (5.3.2) is called an incomplete-
data log-likelihood. As it was explained in Section 2.5.1, to attain the maxi-
mum likelihood estimates, EM algorithm is an adequate tool to be utilised in
the existence of latent variables in the data. To this aim, the incomplete-data
(y;,X) is augmented by defining a component label vector, z. Having com-
pleted the missing part of the data with this component indicator variable, we
can now construct a likelihood for complete data (yj, X, z). The complete-data

likelihood corresponding to the model (5.2.1) and complete-data (y;, X, z) is
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given by

J K
L@ = [T fily;1XBy. o)

j=1k=1
T @rod) ™" exp { 2y, — X8 (v, Xﬂk)}
—= k’ Y
j=1k=1 203,

with the corresponding log-likelihood

ij( - XB,)" (v Y, X/Bk):|‘

J
— 20k

K
nz;
Z [zjk log 71, — Tjk log(2mo}) —
1

=1 k=

(5.3.4)

Now we can invoke the EM algorithm on the complete-data log-likelihood in

Equation (5.3.4).

E-Step

In the expectation phase of the algorithm we calculate the expectation of
the complete-data log-likelihood, i.e. Elog(L(®)). Note that there is still no
information about the latent variables z;;, but we can calculate the expectation
of these variables instead. This is attainable through posterior probabilities
of these variables, given the observed data and the model parameters. These
variables are discrete so this probability can be found using the Bayes’ theorem

as follows. In the mth iteration of the EM algorithm we have

E(zly; @) = “”)(yj,qﬂ >>
m)
7Tk fk(YjS k )
= — o (m), (5.3.5)
t_Zlm ft(yj;et )

where & = (mw,0) = (mq,- -+ , 7k, 01, -+ ,0k) are model parameters. The vec-
tor 7 indicates mixing proportions and the parameters corresponding to K

likelihood functions are denoted by (6y,--- ,0x) = (By,01) -+ ,(Bk,0K). The
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above expectation defines the posterior probability of belonging for each ob-
servation j. This posterior yields the probability that observation j belongs
to the group k. In order to avoid the overflow and underflow in numerical cal-

culations of the EM algorithm, we re-arrange the Equation (5.3.5) as follows

(m) (m) T
™ (v;— )" (v, ~XB™)
(271_0.2’2:""))71/2 eXp {_ 2("”) }

K m m
5 XAy, X))
= (27ro‘2(m>)"/2 20.‘3("0

W (y;, &)

20

K _20m) \ /2 (m)yp Y
( '_Xﬁs )('_Xﬁs )
z7r§m>( <) exp{— R }

s=1

- (m) T -X (m)
7?;(@ )eXp{_(y )2(% B! )}

2(m) 2(m)

/2
Using the substitution (U‘§<m>> = exp (%1 g(%)) and re-arranging the

Os

latter expression we get

K
(m)( (m)y — E L
y‘]7® ) - m m m
=1 exp {glog (ai< >) XA (v, XL ’)}

) 520m) 2520
1
X
(v;~XBU™)T (y,~XB™)
€xp 2 20m)
T

Now going back to the expectation step, in the complete log-likelihood (5.3.4),
the indicators are replaced with their expectations obtained in (5.3.5). For
this reason, this step is called Expectation step or referred to as E-step in the
EM algorithm. The E-step for the complete data log-likelihood is obtained as

follows. In the m-th iteration, the expectation of complete log-likelihood gives
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the following equation

Q(2|2™) = Elog(L(®))

J K K J .
= ZZE Zjk logﬂC ZZ§E z;i) log( 27T0k( N
7=1 k=1 k=1 j=1
J
> Elz)(y; — X8 (v, — XB")

K 24
j=
- Z 2(m)

k=1 20,

If we substitute the expression (5.3.5) in the above equation we obtain

Q(®|D™) = FElog(L(®)) (5.3.6)
J K K J
= ZZ ]k)logﬂk ZZ ]k log 27rak( ))
j=1 k=1 k=1 j=1
L m (m)
ijk( Xﬁ )(j_XIBk )

K —
- Z] 2(m)

k=1 20},

The next step in EM algorithm is the Maximization step through which we

maximize Q(®,®™)) with respect to all parameters in the model i.e. ® =

(m,0).

M-Step

We start by finding the maximum likelihood estimate of 7, which can be
obtained by solving the equation g—ﬁi = 0 subject to i m, = 1 and m, >
0. Since we have this condition, we use the Lagrange rﬁultiplier in order to
solve this constrained optimisation problem. The corresponding Lagrangian

function is of the form

7Tk, ZZwk lOgﬂ'k— Zﬂ'k—l

7=1 k=1
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differentiating the Lagrangian function with respect to 7, and setting equal

to zero gives

(m)
aﬁ(ﬂ'k,)\) K wjk
_— - A
aﬂk ;; Tl
K J
- Yl om
1 j=1

I
=T

Solving the last equation leads to the optimum estimate of mixing probability

T (m)
Y = (5.3.7)

K
substituting the optimal weight (5.3.7) in constraint » ﬂ,im) = 1, the Lagrange
k=1

multiplier is obtained as

L )
Z Wik
7c(_(m+1) _ Jj=1
J K )
> 5wl
j=1k=1

K
finally, using the fact that w;;s are probabilities, we have ) wz(,’j‘)

k=1

=1, hence

J
A = > 1= J. Thus the maximum likelihood estimate of 7 in the m-th
j=1

iteration is given by

~(mt1) 1 (m)
m =< > wi (5.3.8)
j=1
Now we are going to obtain the maximum likelihood estimates of parameters
0r = (B4, 0%) corresponding to the kth component which is derived by solving
oQ

the equation 56, = 0- To obtain the maximum likelihood estimate of regression
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coefficients 3, we differentiate the Equation (5.3.6) with respect to [3,(;”’ as

follows
oQ o 0 Zzwjk (Yj Bi”’) (y] Bi”)
m o m 2(m
852 ) aﬁi(c ) k=1 j=1 2‘7k( :
L —2uXT (y; — XB™)
= > S : (5.3.9)
; 20
j=1 k

setting the above equation equal to zero, in the m-th iteration, the optimal

m-+1)

solution for regression coefficients ,Bk = (Bk1,- -+, Brp) corresponding to

the kth component is obtained as

B = L= . (5.3.10)
X wyi
j=1

Now to avoid the overflow and underflow issue in numerical applications, we

re-arrange the obtained optimal estimate as follows

J
. (m41) XX ;wﬂn)XTyj
B, = A(jnm . (5.3.11)
Tk

Lastly, differentiating the Equation (5.3.6) with respect to a,z(m) gives

m+1) (m+1)
zluék(J X8,y - xBY)
J:
+
20.2("1)

Setting the above equation equal to zero results in the maximum likelihood

estimate of component errors in the m-th iteration

m+1 m+1
Z w ( X/Bk ) ( X/Bk )
gomtl) = - . (5.3.12)
ny wj(.zn)
=1
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In numerical applications we use the following expression for the estimated

variance

J
m ~ (m+1) ~(m+1)
% Z w]('k )(Yj - XB, )T(y]' - Xg, )
&2(m+1) . Jj=1
k - ~(m+1)
T

k

To sum up, in the M-step of the EM algorithm, and in the iteration m with
corresponding model parameters @™ the aim is finding a set of parameters

®(m+1) such that
dm+) — argmax Q(®|d™).
®

The EM algorithm alternates between the above E-step and the M-step until
convergence. The stopping rule that we impose to confirm the convergence is
based on the relative change in the log-likelihood. We say the convergence is

attained when the following inequality holds

[(@UmHDY — (@lm)
@

| <, (5.3.13)

where € is a reasonably small value such as 107! and [(®) is calculated by

- S —X3) (v, — X
(D) = ZIOgZ W exp {— y; Bk;ggyj Br) } .
Jj=1 k=1 k p

Once the algorithm has stopped, the optimal estimates of the model param-
eters and the optimal classification of observations y;;j = 1,---,J are ob-
tained. We shall refer to the above procedure of estimating the likelihood
fusion model as fitting the likelihood fusion model. In the next section we

marginally fit the likelihood fusion model to perform variable screening.
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5.4 Marginal variable screening by likelihood fu-

sion

This section explains the first stage of our two-stage procedure which is variable
screening for high dimensional multivariate regressions where p > n. We
conduct variable screening by marginally fitting the likelihood fusion model to
data as follows. Consider the pair of (Y,,x, X, x,) Where each column Vi J =
1,---,J of Y,x, indicates J independent multivariate response variables for
each of which n observations are recorded, therefore each column is a vector
of the form y;, = (yj1, -, Yjn);j = 1,--+,J. Let X,, denotes the design
matrix where each column x;,¢ = 1,--- , p records n observations on covariate
x;. Thus each column of X,,«, is a vector of the form x; = (x4, -+ ,X4,). Also
suppose that we deal with a high dimensional case where p > n. To screen
out the unimportant covariates with weak influence on the response variables
we marginally fit the likelihood fusion model to each covariate x;,t = 1,--- . p.
Note that in the model (5.2.1) the conditional distribution of each response
variable given the design matrix X, i.e. y;|X, is considered whereas in the
marginal likelihood fusion, the marginal conditional distribution yj|xt for j =
1,---,J is considered. This means for each x;,¢t = 1---,p the conditional

distribution of y|x; is expressed by a marginal likelihood fusion as

K
fely;lxe, @) = Zwkfkt(yj'|xtﬁk70'2)y (5.4.1)

k=1
where ® = (f1,- -+, Bk, 01, ,0K,71, - ,Tk) is the vector of model param-

eters. Each function fi(y;[x: 5%, 0?) is a likelihood function formulated as

=1

_ H exp (yz‘j - xtiﬁk)Q
27m 1/2 20,%

=1

_ 1 b {_ (v; — %) (v; — %) } '

(2mo2)n/? o 202

fkt(yg‘|xt5kaaz> = H Jre yw|$tzﬁk70k)
n
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Similar to what we did in Section 5.3, the incomplete-data is augmented by
defining indicator variables (zj;) j=1... jk=1, x leading to a complete-data like-

lihood

AGESSY {ij log m, — "2 log(2r07) — 2(y; — XeBr)” (¥ Xtﬁk)} |

202
j=1 k=1 K

In the m-th iteration, the probability of belonging to component k for each

observation j is phrased by

™ exp 4 — (y]'_xtﬁj(gM))T(y]' —Xtﬁl(cm))
(271‘ 2("”))n/2 p 20.2(7”)

K m m ’
Z xlm) exp _(yjfxtﬁg ))T(yj*Xtﬂé )
= o2m)yn/2 20207

w(y,, o) =

therefore in the E-step of the EM algorithm for marginal model, the indica-
tors are replaced with the above equation to form the function Q(®|®(™) =
Elog(L(®)) with parameters ® = (w,0) = (7, -+ , 7, (f1,01) -+, (B, 0K)).
This is followed by differentiating the @-function with respect to the model
parameters which yields the maximum likelihood estimates of the model pa-

rameters. In the m-th iteration the mixing proportion is given by
1
- (m+1) § : (m)
7Tkm = j ’UJJZL s

Jj=1

and the maximum likelihood estimates of the parameters corresponding to all

components in the model (6, ,0x) = (81,01) -+, (Bk, oK) are defined by

( xy) ! Zwkxtyj

B}E;erl) _
5wl
j=1
I m (m+1) (m41)
S iy, = xB (v — xBY)
GAm+) J=1

QIR
ny wy
j=1
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The stopping criteria for EM algorithm in marginal model fitting is the same

as Equation (5.3.13) where the likelihood is defined by

J By —x,
(@) =) log) (QWZ-TW exp {— b; Bk;g}éyj i) } :

K
j=1 k=1

To sum up, our proposed screening procedure through the model (5.4.1) starts
with fitting the model marginally to each covariate x;;¢t = 1,--- ,p with dif-

ferent number of components, 1 < K < K . Then we calculate BIC values

BIC; 1, -+, BIC, g corresponding to each covariate x; and each K
1
BIC, x = 7 [—20,(®) + (|0] x K + K — 1) log(J)], (5.4.2)

where [;(®) is the maximum log-likelihood, |0x| denotes the number of com-
ponent parameters and J is the sample size of the response variable that we
are aiming to classify into groups. As we fit the model marginally to each
of covariates, we have a simple regression corresponding to each component
rather than a multiple regression. Therefore we need to estimate two param-
eters S, 07 corresponding to each component i.e |[fx] = 2 and K — 1 mixing

proportions.

The screening process is continued by finding the minimum BIC value for
each covariate ¢, i.e. BfCtj( = BIC,,,, = min (BIC; ). Having found the
optimal BIC value BIC, . for all covarialtié{iK: 1,---,p, we then use the
reciprocal of BIC values RBIC, = 1/BIC,; . ;t = 1,---,p as our criteria to

select variables. To this aim, we classify the RBIC; values into two groups

using k-means classification.

The k-means classification starts by considering K randomly chosen ob-
servations as K initial cluster centres pq,--- , ur. Then at each iteration the
distance between these means and each data point is calculated and the data
point is assigned to the cluster with the smallest distance. Then the mean
of the cluster to which the data point is mapped is updated. This process is

repeated until there is no change in assignment. In this algorithm the aim is
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minimizing the sum of squared distances from each data point to its corre-

sponding cluster centre (MacQueen et al., 1967).

In order to perform k-means classification we use the built-in function
kmeans in R-software. We set the algorithm of the kmeans function to the
default algorithm which is the algorithm of Hartigan and Wong (1979). We also
set the number of clusters to two when we apply kmeans function. Therefore,
we obtain two clusters, where each cluster has a different mean value. Let
Gy, denote the cluster with larger mean value and G; denote the cluster with
smaller cluster mean value. The screening process is completed by selecting
the predictors which their corresponding RBIC belong to the cluster G, with

larger cluster mean. Therefore, the signal set § is defined as

S={x;; 1<t<p | RBIC, € G} (5.4.3)

This process is summarised through Algorithm 5.1.
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Algorithm 5.1: Marginal variable screening by likelihood fusion

10.

. Repeat fort=1,--- ,p;

. Repeat for K =1, -+, K';

Initialize By, ok, 7r and calculate the initial log-likelihood.

E step. In the m-th iteration given the current parameters calcu-
late posterior probabilities

k
(27T0.i(m))n/2 20.i(m)

)
i ng) exp { — (Yj —Xtﬁgm) )T (Yj —xtﬁgm) )
= @rad™)n/2 252(™)

Wi (y;, &™) =

. M step. Update parameters using posterior probabilities in 4.

J
1
~(m+1 m
AT = J3ulp
j=1

J
(%)™ 3wy,
J:

A(m+1)
‘ - L (m)
> Wik
=
el (m) (m+1)\T (m+1)
> W (y; — %, ) (y; — X8y )
H2m+1) J=1

I (m)
ny, Wi
i=1

. Calculate new log-likelihood, if the convergence criterion is not

satisfied return to step 4.

. Calculate BIC, .
. End repeat K.

. Find min (BICk)

1<K<K'

End repeat t.
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5.5 Classification by likelihood fusion

We recall that the second stage of our proposed procedure is the classification
stage. In this stage, the likelihood fusion model (5.2.1) is fitted to the selected
predictors in the screening stage and the response variables. Let columns of
matrix X contain the selected predictors Xy, - - - ,X; in the screening stage.
Then, in the classification stage, the likelihood fusion model is fitted to data

(y;j, X) as follows
~ K ~ o~
f(y]’X,q)) :Zﬂ-kfk<yj’X/Bkaalz)a J=1-J (551)
k=1

where Bk is a p-dimensional coefficient vector. In classification stage we wish
to find the optimal classification for the data. To this aim, we fit the model
(5.3.1) with an EM algorithm (as it is explained in Section 5.3.1) to the data
(v;,X) with different number of components 1 < K < K’ and calculate the
corresponding BIC values BICy,--- , BIC%. These BIC values are calculated

according to the following expression

BIC, = [—21(@) (0] x K+ K —1) 1og(J)] , (5.5.2)

~l =

Similar to the BIC calculated in screening stage, [(®) is the maximum log-
likelihood, |6)| denotes the number of component parameters and .J is the
number of response variables that we wish to classify. Here, the regression
coefficient vector is a p-dimensional vector B = (Bl, e Bﬁ). Therefore, the
number of parameters corresponding to each component is |6, = p + 1. We

also need to estimate K — 1 mixing proportions.

Having found these BIC values, the optimal number of components is the
one with the minimum BIC value, i.e., BIC; = min (BICk). Accordingly,
1<K<K'
the classification corresponding to K yields the optimal classification.
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5.6 Initialisation of EM algorithm

Finding proper initial values to start the EM algorithm is challenging since
the algorithm is sensitive to the choice of starting points. To get an idea we
first carried out some random choices to initialise the algorithm and conducted
a few simulations but the performance was very poor in both screening and
clustering stage. Therefore, to choose more reasonable initial values, we fit-
ted a simple linear regression to the dataset (y;,x;) where j = 1,---,J and
t =1,---,pand both y; and x; are n-vectors. Corresponding to each single
regression we recorded two estimated parameters Btj and 0. This provided
us with a set of size |p x J| contained regression coefficient estimates f;; and
a set of size |p x J| which contained afj values. Then we applied the Mclust
(Fraley et al., 2012) R-software to classify each set of parameters into different
number of components, K = 1,--- , K’. This software fits a normal mixture
model to classify the data. For each parameter and corresponding to each
1 < K < K’, we extracted the K dimensional mean vector to be used as
initial values. For example to fit a marginal likelihood fusion model with K

components, the initial values for parameter 3, were the elements of the mean

K
mean

2

vector 3 = (61, -+ ,Pk). Likewise, the initial values for parameter o*,

were the elements of the mean vector 025 = (0y,--- ,0x). Applying this
technique slightly improved the accuracy of both screening and classification

outcomes.

To enhance the performance of screening and classification, even more, we
modified the above approach as following. We first explain how we did the
initialisation for the screening stage. We first classified the response variables
yj;j = 1,---,J into K number of components using Mclust (Fraley et al.,

2012). Suppose that K components and their corresponding elements are
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denoted by

01 = {yjl,i1 |Z1:1> ,7’L1}

Cy = {yj27i2 | ig=1,--- ,ny}

Cr = {Vikix lix =1+ ,ng}, (5.6.1)

where Zle ni = J. Since in the screening stage we fit a marginal likelihood
fusion model to each predictor x;, in the initialisation step, we also fitted a
multivariate simple linear regression to the elements of each component and
each x;. For example, consider the kth component C} with n; number of
elements. Let these elements form the columns of matrix Y¢, . The following
multivariate simple regression was fitted to the predictor x; and all response

variables in the kth component Y¢,
Yo, =xByc, +€cy, (5.6.2)

therefore, for the kth component we got the set of estimated parameters
{Bt,Ck7 a’?,ck} where Bt,C’k = (Bt,la e 7Bt,nk) and &?,ck = (6,1, ;01 )- Then
the initial values for the parameters in the kth component, i.e. (S5, 07527 ,) were
set to Bup = 1/ni Y 0% Bt,ik and oy = 1/mp > 00 67, respectively. The
parameters for the rest of components (8y2,075), -, (Bix, 07 i) Were found
similarly. These values were used as initial values to start the algorithm. With
this approach the screening performance of our method was improved signif-
icantly. In the classification stage of our method we took the same path for
initialisation but the fitted regression model was a multiple regression rather

than a single regression.

Parameter initialisation for the classification stage also starts by classifying
y;;j =1,---,J into K number of components using Mclust. These compo-
nents and the elements are shown in (5.6.1). Suppose that the set of selected
covariates in the screening stage is denoted by X = {X1,--+ ,%z}. Also assume

that the subset 5(10 = {x3, -+ ,Xjp} contains the first ten selected covariates
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with highest reciprocal BIC. Considering the kth component as an example,

we fitted a multivariate multiple regression model to the dataset (Y, , X10)
Ye, = X10Bioc, + €c,., (5.6.3)

where Y¢, is a matrix, columns of which are the elements in the kth com-
ponent i.e. {y;z; | % = 1,---,nx}. Therefore we obtained the param-
eters corresponding to the kth component which were the coefficient esti-
mates Bioo, = (Bij)ioxn, = (Bis---,B1)" where B0 = 1,---,10 is a
ni-dimensional vector. The estimated variance for the kth component was
&%k = (61,---,0y,). Having found these estimates, we then set the ini-
tial values for the parameters of the kth component to 8o, = (81, -, fi0)
where 3; = iZ;LL Bijyi = 1,---,10 and og, = n—lkzg“l 6;. After finding
component parameters for the rest of components Cs, - - - | C'x, these parame-

ters were used as initial values to fit the likelihood fusion model to the data

(Yj7X1o);j =1,---,J as follows

K
f(y;1X10, P10) = Z Tefi (Y51 X10810.4: 1) (5.6.4)
k=1

where 3y, is a 10-dimensional coefficient vector. The optimal mixing propor-
tion 7« = (my,--- ,mg) obtained through fitting the above model to the first
ten covariates was used to update the above classification, shown in (5.6.1),
to Cj,k =1---, K. Note that this classification is different from the one ob-
tained by implementing Mclust. Consider the k-th component as an example,

we fitted a multivariate regression model to the dataset (Y@k, X) as follows
Yo =XBg +eg,, (5.6.5)

as pointed out before, Y is a matrix columns of which are the elements
in the k-th component i.e. {yj.; | i = 1,---,nt}. The columns of X
are the selected covariates in the screening stage. From fitting the above

model the regression coefficient estimates B@ék — (Bi;)pxn, and the estimated
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variances &2@ = (61, ,0p,) were obtained. Similar to what we explained

above we took the mean of regression coefficients across columns of Bﬁ,ék as

initial value of coefficient vector. Therefore, the initial value for the coefficient

vector corresponding to the kth component was set to Bék = (Bl, sl Bﬁ)
1

where §; = o Z;‘i 1 Bij,z' =1,---,p. The initial value for the variance of the

2 — LN\ 5
kth component was set to ¢, = - > 2", 6;.

5.7 Simulation studies

Simulations conducted in this part serve the following purposes:
(a) To assess the accuracy of screening which is the first stage of our proposed
two-stage procedure.

(b) To compare the marginal screening based on the likelihood fusion of

regressions with SNR-based screening.

(¢) To compare the classification performance of our method with that of

normal mixture model introduced in Section 2.5.

5.7.1 Data generation

We conducted 30 simulations wherein 131 multivariate observations y; =
(Yj1, - Yjm)’; j = 1,-++,131 were generated from a data fusion mixture
model with K = 2 and K = 5 components. Suppose that observation y; is a
member of component £, then the following regression model holds for any y;

which belongs to this component:
y; = XB + €. (5.7.1)

In the above model, X is a n X p covariate matrix which is fixed across all

components k = 1,---, K. This matrix was generated by simulating n iid
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samples from N,(0,X,y,) where 3,., is the variance-covariance matrix of a
random subset of gene expressions in cancer data. The error term is an n-
dimensional vector such that €, ~ N,(0,071,) and 3, is a p-dimensional

coeflicient vector.

We designed two scenarios with different settings. Scenario 1 wherein com-
ponent variances are not equal for all components in the model and scenario
2 with equal variances for all components. In each of these scenarios we also
considered models with well separated and not well separated components.
In scenarios where the components are well separated, there is no substantial
differences between the classification performance of Mclust and likelihood fu-
sion model (LFM). Therefore, we present those cases where LFM noticeably
outperforms Mclust in classifications. For each of these scenarios various set-
tings differing in sample size, the number of covariates and the number of true

active covariates were considered.

Scenario 1 (Non-equal variances for components): In this scenario
we considered various settings through the following combinations of (p,n,a)
where p = 500,1000 denotes the number of covariates, n = 42,84 is the
sample size and a = 3,8 denotes the number of non-zero or active covari-
ates in the model. The variances were set to 0% = (1.1,0.4,0.9,0.8,0.2) and
0% = (0.2,0.7) for the model with five and two components respectively. Also
mixing proportions were set to m, = 0.2 for k = 1,--- .5 and 7 = (0.4, 0.6).
The coefficient vector 3, is a sparse vector wherein non-zero elements were
simulated from N (g, 0.001). The position of these non-zero covariates were
selected randomly. For K = 2, we set u; = 0.8 and g2 = 1 and where we have

K =5 components we set (i1, fo, i3, fa, it5) = (0.4,0.6,0.8,1,1.2).

Scenario 2 (Equal variances for all components): In this scenario
we considered the same various settings as scenario 1 but with o7 = 0.7;k =
1,---,5 for the model with five components and ¢ = (0.7,0.7) for the model

with two components.
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5.7.2 Performance of likelihood fusion

As we mentioned earlier, we implement the likelihood fusion model to screen
high dimensional predictors and then we apply the likelihood fusion to the
reduced set of predictors and classify the response variables. In this section,
in the first part, the marginal screening explained in Section 5.4 is applied to
screen the predictors. To evaluate the performance of likelihood fusion, the
screening accuracy is reported in terms of sensitivity and specificity percent-
ages. Then in the second part, we perform the two-stage procedure. In the first
stage, we implement the marginal screening to screen covariates then we fit the
model (5.2.1) to the selected covariates and the response variables to classify
the response variables in the data. To assess the performance of likelihood fu-
sion classification, we compare the result with the classification performed by
normal mixture model. This comparison is based on the adjusted Rand index
(Hubert and Arabie, 1985) which was introduced in Section 2.5.2. In order to
perform normal mixture modelling to classify the data, we implement Mclust
package (Fraley et al., 2012) written in R-software. All the programming for

this chapter is also written in R software.

5.7.2.1 Performance in screening

In this section, we intend to evaluate the screening performance of likelihood
fusion model based on the accuracy of this approach in correctly detecting non-
zero covariates, reported as sensitivity, and also in discarding zero covariates
reported as specificity. We conducted 30 simulations for scenariol (non-equal
variances) and scenario 2 (equal variances). In each simulation we marginally
fittd the likelihood fusion model to each covariate x;;¢t = 1,---p as it was
explained in Section 5.4. After doing a few pilot studies we observed that the
number of components alternated between K = 2 and K = 3. In other words,
the lowest BIC for each predictor x; was attained at K = 2,3. Therefore to
reduce the computational cost, we restricted the number of components to

1 < K < 4 for the setting with K = 2. For the same reason in settings with
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K =5, we restricted the number of components to 3 < K < 7. Through these

simulations we also explore how the sample size, the dimension of covariates

and the number of active covariates can influence the screening accuracy.

Effect of increasing active size on screening accuracy
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Figure 5.7.1: Scenario 1 (Non-equal variances for components): Sensitivity and

specificity percentages where all components in mixture model have different variances,

with p = 500, n = 42 and a = 3,8 active number of covariates where mixture model has (a)

K=2 and (b) K=5 number of components.

()

K=2

= =

100

75

Value

50 B e

25

a;g aés
Settings

1001

=

601 E spe

Value

404

a;3 a;8
Settings

Figure 5.7.2: Scenario 2 (Equal variances for all components): Sensitivity and

specificity percentages where all components in mixture model have same variance, with

p =500,n = 42 and a = 3,8 active number of covariates where mixture model has (a) K=2

and (b) K=5 number of components.
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Results presented in Figure 5.7.1 and 5.7.2 uncover that increasing the
number of active covariates leads to a noticeable decline in the sensitivity
percentages. This means that the ability of the process in correctly capturing
the active or non-zero covariates becomes poor when there are more active
covariates in the model. The reason behind this reduction is the correlation
between the active covariates, a phenomena called masking effect (Farrar and

Glauber, 1967), (Wang, 1996). We study this in more details in the following.

Masking effect

In this part, we explore how the correlation between covariates can affect the
accuracy of variable screening and as a result alter the sensitivity percentage.
We show that when we increase the number of non-zero or active covariates
in the model, the sensitivity decreases. Despite the fact that having more
active covariates in the model should make it easier for the process to detect
them, recognising the active covariates becomes more difficult. The follow-
ing results illustrate a phenomena known as masking effect which is induced
by correlations between covariates. These correlations act like a mask and
cause some difficulties in identifying the important covariates in the variable
screening procedure (Berry and Feldman, 1985). To monitor this effect more
carefully we simulated data according to scenario 1 with the number of covari-
ates p = 500 and the sample size n = 42 where the number of components is
K =5. We first set the number of active or non-zero covariates to a = 20 and
after screening via marginal likelihood fusion model the obtained sensitivity
was 30% with the corresponding specificity of 85.20%. We removed 3 of the
covariates for which the correlation with at least one of the other covariates
was higher than 0.5. Then we performed the marginal screening procedure
again on this reduced set of covariates. As it was expected in the absence of
these highly correlated covariates, the sensitivity percentage increased by 5%

to the value of 35% with the corresponding specificity of 86.35%.
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Figure 5.7.3: Correlation structures among active covariates with active size a = 8, p = 500

and n = 42 under scenario 1.

In another case, we set the number of non-zero covariates to a = 8 and we
applied likelihood fusion to screen covariates. We obtained the sensitivity of
62.5% and the specificity of 83.9%. The correlation structure among these 8
active covariates is shown in Figure 5.7.3. We removed two of active covariates
POLD2 and LMBRD1 with the correlation coefficient —0.57 and repeated the
screening procedure on the model with 6 active covariates. Correlations among
these 6 covariates is depicted in Figure 5.7.4. In the absence of these two
correlated variables, the sensitivity improved to 83.3% with the corresponding

specificity of 83.8%.
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Figure 5.7.4: Correlation structures among active covariates with active size a = 6.

Now we investigate the mask effect in large scale simulations. We con-
ducted 20 simulations with p = 500, n = 42,a = 8 and K = 5 under scenario
1. We performed the screening procedure when all 8 active covariates were
included in the model and record the sensitivity values. In order to see the ef-
fect of correlations on the screening accuracy we removed the highly correlated
predictors and recorded the sensitivity. To this aim, we identified the active
predictors with a correlation higher than 0.5 with other active covariates. For
each predictor x;, we recorded the number of highly correlated predictors with
this predictor. Then we removed those predictors that were correlated with a
larger number of predictors. Therefore, we obtained a reduced set of predic-
tors with a weaker correlation structure. Then we performed screening on this
reduced set of predictors and recorded the sensitivity values. The resulted
sensitivity and specificity corresponding to the case with all 8 predictors in
the model and corresponding to the reduced set with lower correlations is

presented in Figure 5.7.5.
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Figure 5.7.5: Box plots of sensitivity and specificity values resulted from screening when all
active covariates are included in the model and when the highly correlated active covariates
are removed from the model. Results obtained from 20 simulations p = 500, n = 42,4 = 8

and K = 5 under scenario 1.

Another factor that can have an influence on screening accuracy is the
sample size. In the following we wish to investigate how sample size affect the
screening accuracy. To this aim, we conducted 20 simulations under scenariol
and scenario 2 with different sample sizes. Results presented in Figure 5.7.6
reveal that increasing the sample size can improve the selection accuracy under
both scenarios with equal and non-equal component variances. Moreover, in
settings with n = 42 even though the sample size is very small, the screening
accuracy of our proposed method is larger than 50%. Through the following
simulations we also show that when we have enough sample size, even when
the number of predictors are as large as a thousand, the marginal screening
performs well in identifying important predictors with the selection precision

as high as 75%. These results are presented in Figure 5.7.7.
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Effect of increasing sample size on sensitivity and specificity
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Figure 5.7.6: Sensitivity and specificity percentages for settings with p = 500,n =
{42,84},a = 8, K = {2,5} under (a), (b) scenario 1 where components in the mixture
model have different variances. Results obtained in (c) and (d) are under scenario 2 where

all components have the same variance.
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Figure 5.7.7: Sensitivity and specificity percentages under scenario 1 with non-equal com-
ponent variances for setting with ¢ = 8, K = 5 where we have (p,n) = (500,100) and
(p,m) = (1000, 200).

In the following we compare the performance of our two proposed screening
methods. Screening through the likelihood fusion model (LFM) and screening
via SNR. To this aim, we generated 30 datasets as explained in Section 5.7.1
under both scenario 1 and scenario 2 with p = 500,n = 42 and a = 8 and
applied the aforementioned screening methods on these data. We compared
the screening performance by comparing specificity values for both methods
while sensitivities were fixed. We explain how we fixed sensitivities in screen-
ing by marginal likelihood fusion. The same procedure was applied to fix the
sensitivities in SNR-based screening. We remind that the marginal screen-
ing explained in Section 5.4 is completed by finding the optimal BIC, . for
each covariate x;;t = 1,--- ,p and then thresholding the reciprocal of BIC
values RBIC, = 1/BIC;_, ;t = 1,---,p. We thresholded the RBIC; values
at levels of RBIC(;);j = 1,---,8 corresponding to the 8 active covariates.
We ordered the RBIC ;) values increasingly thus by thresholding RBIC, val-
ues at the level of RBICy), the selected subset of covariates by the screen-
ing process contained all active covariates which gave a sensitivity value of

100%. Similarly, setting the threshold level at the largest value RBIC 1) gave

142



a sensitivity of 10%. This way, we obtained a set of sensitivity values as

12.5%, 25%, 37%, 50%, 62%, 75%, 37%, 87.5%, 100%.
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Figure 5.7.8: Scenario 1 (Non-equal variances for components): Sensitivity and
specificity percentages resulted from two screening procedures: marginal screening through
the likelihood fusion model (LFM) and screening by SNR. Simulations were conducted
where p = 500, = 42 and a = 8 for the model with (a) K=2 and (b) K=5 components.
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Figure 5.7.9: Scenario 2 (Non-equal variances for all components): Sensitivity and
specificity percentages resulted from two screening procedures: marginal screening through
the likelihood fusion model (LFM) and screening by SNR. Simulations were conducted
where p = 500,n = 42 and a = 8 for the model with (a) K=2 and (b) K=5 components.
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The obtained results in Figure 5.7.8 and Figure 5.7.9 show that under
both scenarios with equal and non-equal component variances, when the data
have a hidden group structure, screening by likelihood fusion leads to a more

accurate selection compare to the SNR-based screening.

5.7.2.2 Performance in clustering

In this part we examine the classification performance of the likelihood fusion
model. Suppose we are interested in classifying multivariate response variables
yi, -,y into groups. To this aim, we implement the likelihood fusion model
to classify y;, -+ ,¥y;. Then we compare the classification obtained using like-
lihood fusion with that of the finite mixture model. The advantage of applying
our method is that we can take the covariates into account in the process of
classification and this leads to a more reliable classification.To classify multi-
variate response variables by fitting finite mixture model we use the Mclust
software. We assess the precision of these two classifications by calculating

the adjusted Rand index of clustering for each approach.

Consider the data set (Y, xs, X, xp) Where p > n and let y,,--- ,y; de-
note the columns of matrix Y. We intend to cluster y,,---,y; through our
proposed two-phase procedure. We generated 20 datasets under both scenario
1 and scenario 2 according to what was explained in the Section 5.7.1 and
applied our two-phase procedure to the simulated data. In the first stage,
we fitted the marginal likelihood fusion model (5.4.1) to perform a variable
screening and reduce the dimension of covariates. In the second stage we fitted
the full model (5.2.1) to the dataset (YnXJ,f(nXI;), where anﬁ Is a matrix
columns of which are the selected predictors by screening in the first stage. We
imitated our real data in some of simulation settings and set the sample size
n = 42. In such cases, even after screening, the number of selected covariates
p was still larger than n and the problem was ill-posed. Therefore we did a
forward selection to further reduce the number of selected predictors prior to

moving to the classification stage.
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Forward selection

Suppose the set of selected covariates in the screening stage is denoted by
{%;,l = 1,---,p} and their corresponding optimal BIC values RBIC;;[ =
1,---,p is ordered decreasingly. Forward selection starts by considering a
model which includes the predictor x; with the largest optimal BIC value.
To select the second predictor to be included in the model, for each x;, i =
2,---.p, we fitted the model (5.4.1) with different number of components
1 < K < K’ to the dataset (y;,%;); j = 1,---,J. Then we calculated the BIC
values BIC; g, = 2, -+, p and we found the optimal BIC value corresponding
to each predictor such that BIC, = 1<I§1(i<nK/(BIC,»7 k). Therefore we obtained a
set of optimal BIC values BiCi, 1= 2,_~~ . , p. Then the predictor which had the
smallest BIC was selected to be added to the model. This process was repeated
until the number of the predictors in the model reaches 40. Since the sample
size is 42, we fixed the number of predictors to 40 because otherwise XX was
not invertible for some of simulation settings. Then we moved on to the second
stage, which was the classification stage, and fitted the full model (5.2.1) to
Y1, -,y and the predictors selected in the forward selection stage. Once
the likelihood converged as explained in the very end of Section 5.3.1 then the
EM algorithm stopped iterating and the optimal classification was obtained.
Then we calculated the adjusted Rand index for the optimal classification. We
also applied the mixture model to classify the response variable and calculate
the corresponding adjusted Rand index. The result of these classifications are

presented in the following graphs.

Graphs in Figure 5.7.10 and 5.7.11, show the resulted adjusted Rand index
corresponding to each classification method. The results were obtained under
settings with p = 500, a = 3,8 and n = 42,84. In settings with small sample
size where n = 42, forward selection was performed after screening stage.
For example, in results shown in Figure 5.7.10, since the number of selected
predictors after screening was larger than 42, forward selection was applied

to reduce the dimension of predictors to 40. Then in the classification stage,
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the LFM was fitted to these 40 predictors selected with forward selection. In
settings with sample size n = 84, since the number of selected predictors in
the screening stage do not exceed the sample size, no forward selection was
applied. In this case after screening, in the classification stage, the LFM model
was fitted to the reduced set of predictors. In results shown in Figure 5.7.11, in
settings with n = 42, forward selection was applied after screening stage. Then

LFM was fitted to the 40 predictors that were selected by forward selection.

According to the adjusted Rand index shown in Figure 5.7.10 and 5.7.11,
LFM outperforms Mclust in all scenarios. This means that the classification
obtained by applying likelihood fusion model results in a higher accuracy than
that of normal mixture model. The reason is that through likelihood fusion
we take the covariates into account in the classification process and this sub-
stantially improves the classification accuracy. Unlike what we observed in
screening procedure, increasing the number of active covariates results in a
more accurate classification. This is because by having more non-zero covari-
ates, more information is contributed to the classification process which leads

to a more accurate classification.
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Figure 5.7.10: Box plots of the Adjusted Rand index obtained from 30 simulations. (a)

and (b) under scenariol with non-equal component variances. (c¢) and (d) under scenario

2 with equal variances for all components. The graphs compare the Adjusted Rand index

of clustering via likelihood fusion model (LFM) and clustering via mixture model (Mclust)

where p = 500, a = 8,3 with sample of size n = 42. Here, forward selection was applied after

screening stage then LFM was fitted to the set of selected predictors by forward selection.
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Effect of increasing the sample size on clustering performance
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Figure 5.7.11: Box plots of the Adjusted Rand index obtained from 30 simulations. (a) and
(b) under scenariol with non-equal component variances. (c¢) and (d) under scenario 2 with
equal variances for all components. The graphs compare the Adjusted Rand index of clus-
tering via likelihood fusion model (LFM) and clustering via mixture model (Mclust) where
p = 500,a = 8 with sample of size n = 42,84. In settings with n = 42 forward selection
was applied after screening stage then LFM was fitted to the set of selected predictors by

forward selection.
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Figure 5.7.12: Adjusted Rand index for classifications obtained through applying likelihood
fusion model (LFM) and Mclust for 20 simulations. There are a = 8 active covariates in the

model. Simulations were run under scenario 1 and without forward selection.

The above results show that having enough sample size can improve the
performance significantly even when the number of predictors is high. In these
cases that the sample size is enough there is no need to do forward selection

and the classification stage can be performed after screening.

5.8 Real data application

In this section, our two-phase proposed approach introduced in the previous
sections was applied to the real data. As mentioned before the cancer drug data
contain a high dimensional design matrix Xy9.13321 formed by gene expression

levels across 42 cell lines. These data also include the IC50 values of 131 drugs
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across the same cell lines which form 42 observations on 131 response vari-
ables denoted by Yi2x131. Let vectors y;,7 = 1,---,131 indicate the columns
of matrix Y and vectors x;,t = 1,--- ,13321 denote the columns of X. Prior
to applying our method on real data, gene expressions were log-transformed
and normalised and also log-transformed IC50 values were centralised by col-
umn mean. Since 42 < 13321 we face the issue of high dimensionality in the
analysis of these data. To resolve this issue we implemented the marginal like-
lihood fusion model to screen the predictors (which are gene expression levels)
and reduced the dimension. To this aim, for each x; we fitted the marginal
likelihood fusion model (5.4.1) to the data (y;,x¢),j =1, -+, 131 with differ-
ent number of components 1 < K < 10. Then we found the minimum BIC

value for each covariate t, i.e. BfCt # =BIC,, = min (BIC, k).
, 1<K <10

min

Reciprocal of BIC
0.00638 000839 0.00840 0.00841
l l
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Figure 5.8.1: Reciprocal of optimal BIC values corresponding to all genes in real data. The

result obtained after applying the marginal likelihood fusion to the real data.
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After finding the optimal BIC values BIC,_, corresponding to all covariates
t =1,---,13321, we then calculated the reciprocal of BIC values RBIC; =
1/BiCt’K; t = 1,---,13321 these values are plotted in Figure 5.8.1. Then
we clustered these values into two groups using k-means classification. The
predictors corresponding to the group with higher mean were regarded as
important predictors. As a result of k-means classification, a set of size 2179
was selected as signal set. This screening was performed on CPU with Intel
Core 15-3470 processor and 8 GB RAM. Time taken this screening to run on

real data was 13.65 hours.

Since the sample size is very small we had to reduce these selected covari-
ates before moving to the classification stage. Thus we selected 40 out of the
2179 selected covariates by forward selection as explained in Section 5.7.2.2.
Then in the classification stage we fitted the model (5.2.1) to the data using
40 selected covariates after forward selection. We varied the number of com-
ponents and fitted the likelihood fusion model for 1 < K < 10. The following

plot shows BIC values corresponding to different number of components.

Figure 5.8.2: BIC values for different components
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According to BIC values and comparing oq,---,0x it is reasonable to
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classify the drugs y;,---,y;s into 5 groups. The mixing proportions and
the variances of components corresponding to this classification are 7w =

(0.3,0.16,0.30,0.17,0.06) and o = (0.96, 1.54,2.84,1.49,4.31).

In comparison to the screening performed by SNR where 1316 genes were
selected, there are 230 genes in common out of 2179 genes that have been
selected by likelihood fusion. Computational time for screening performed by
SNR is 3.6 seconds which is much faster than screening by likelihood fusion
which takes 13.65 hours. According to the simulation study in the previous
section, the screening accuracy of likelihood fusion is much higher than SNR-
based screening. There are two aspects to be considered in deciding on what
approach we should take in the analysis of such data . From biological point
of view, drugs often have a group structure according to the type of disease
that they can cure. On the other hand, mixture models are known as pow-
erful models to capture the heterogeneity in data and discover the hidden
group structure. Therefore, it seems more reasonable to conclude that for
these particular data, applying the likelihood fusion model to screen the gene

expressions and to classify the drugs is an appropriate choice.
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Chapter 6

Bayesian Inference of Finite

Mixture Models

6.1 Introduction

As pointed out before, one of the prominent applications of finite mixture
models is in cluster analysis where the aim is exploring groups in the data
(Everitt et al., 2011). This application of finite mixture models has attracted
much attention in both frequentists and Bayesian paradigm. The main advan-
tage of the Bayesian over the frequentist approach is the possibility of putting
priors on the component parameters. Frithwirth-Schnatter (2006) states some
of the advantages that the Bayesian approach for clustering possesses. The
parameter estimation in fitting mixture model under frequentist framework
is carried out via EM algorithm which might lead to degenerate solutions.
This is unlikely in the Bayesian estimation since some prior information is
set on the variance of components. Moreover, there exist a more principled
way of posterior classification of the objects into clusters under the Bayesian
paradigm. Also cluster analysis under Bayesian framework could be performed
through finding the marginal posterior distribution of the hidden allocation
vector without estimating the component parameters. In Bayesian clustering

without parameter estimation, an observation is allocated to the component
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with the highest posterior probability. This inference can be performed under
two assumptions: when the number of components is known and when the
number of components is unknown. Here, we focus on the former assumption
and perform the analysis when the number of components is assumed to be
known. We aim to apply Bayesian inference to classify observations through
mixture models. Hence, we utilize Bayesian finite mixture models with normal
components to obtain the posterior distribution of the allocation vector. We
calculate this posterior by applying two different type of priors on component

parameters.

6.2 Bayesian mixture models

Suppose that we have N observations y,---,¥,, on a univariate random
variable Y which comes from a population with K groups. Let the vector
9 = (04, - ,0k,n) denote parameters of the mixture model then the mix-

ture density function is given by

K
p(yil®) =Y mp (i),
k=1

where p(y;|0%) is the component density with parameters 8. Fitting the above
mixture model is equivalent to estimating the parameters of the model. Under
a Bayesian framework, all the information about these unknown parameters
contained in the datay = (y1,--- ,yn) is extracted through finding the poste-
rior density p(d¥|y). Suppose the prior p(#) is known. According to the Bayes’

theorem the posterior density is defined as

p(Fy) o< p(y[d)p(d).

We discussed in section 2.6 that the allocation vector or group indicator vec-
tor S is the missing part of the data. Therefore, after completing data, the
complete-data likelihood is combined with a prior density p(1?) to obtain the
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mixture posterior density p(d¥|y). So the first step to be taken in Bayesian
framework for analysing mixture model is putting prior on the unknown pa-
rameters of the model, i.e. ¥ = (01, -+ ,0x,n). Choosing priors is a very

important task in Bayesian inference of mixture models.

6.2.1 Prior specification for model parameters

The priors for parameters can be chosen in two different manners. If the prior
is chosen such that it brings some background information into the problem,
then the prior is called subjective or informative. On the other hand, if the
prior is vague or flat and have almost no impact on the posterior distribu-
tion, it is called noninformative or objective (Press, 2009). A prior is called
improper if it is not integrable over the parameter space. Usually improper
priors are used where noninformative priors are desired and they lead to proper
posteriors. However, in a mixture context objective or noninformative priors
are not suitable choices for mixture models as they lead to improper poste-
riors (Roeder and Wasserman, 1997);(Richardson and Green, 1997). Besides
bringing additional information to the analysis, subjective priors are proper
and generally well behaved analytically (Press, 2009). Subjective priors for
mixture modes are often obtained by choosing conjugate priors to the com-
plete data likelihood. These subjective priors are highly dependent on the
parameters of the priors or hyperparameters. Therefore, to control the in-
fluence of these hyperparameters on the analysis it is usual to set priors on
these hyperparameters. In section 2.6.1 we introduced the hierarchical priors
for parameters of component densities. We now introduce the priors for the

allocation vector and the mixing proportions.

The allocation vector S is multinomially distributed with probability n.
Therefore the proper prior for the mixing proportions is the Dirichlet distri-

bution which is defined by

F(Zzlil ai) ﬁxail

(17 y LK G, ) K) Hfilr(al) 11 7 )
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where z; € (0,1) and 32X #; = 1. The Dirichlet distribution is the conjugate
prior for multinomial data (Richardson and Green, 1997). A Dirichlet prior

for the weights with the concentration parameter eg, is of the form

K
60

Zkl Hnol

Hkl kl

F Keo en—1
= T ano . (6.2.1)
k=1

p(nle) =

Now by integrating out the mixing proportions, 7, the prior on allocation

variables is given by

p(S) = / p(SIm)p(nleo)dn,

where the distribution of allocations is multinomial and is given by

where N (S) is the number of elements in component k. Hence, the prior for

allocations is obtained as follows

K ¢ K . K
ps) = [ D O T o T,

ket L (€0) (5 k=1

which according to definition of Dirichlet distribution can be rewritten as
Ke S)+e
RO )QH“ (Ne(S) + o)
F(Z Ni(S) + o)

(eo
I'(Keo) [Toey F(Nk(S) + €o)
['(Keg+ N)I'K(eg) '
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6.2.2 Bayesian clustering with mixture of Normals

Similar to any clustering technique, the main purpose in Bayesian clustering
is finding an optimal classification of data or the optimal allocation vector S.
One of the pioneering works in the field of Bayesian clustering is the work done
by Binder (1978). In this work the Bayesian clustering is formulated under a
bayesian decision theoretic framework and is based on a loss function R(S, S)
This function measures the amount of loss which is caused by choosing the
allocation vector S over the true classification S. Binder (1978) believes that
finding the best allocation vector S by maximizing the posterior does not take

into account how different this allocation is from the true one.

Our interest in this part is to take an alternative way and implement mix-
ture of normals to classify observations by finding the optimal allocation vector
S with the highest posterior. This clustering is preformed without estimating
the component parameters and is just based on the marginal posterior of the
allocation vector p(S|y). Therefore, the aim is finding the optimal allocation
vector S for data by maximising this posterior distribution. In order to evalu-
ate how different S is from the true allocation vector we measure the adjusted
Rand index Rand (1971) corresponding to S. We consider two different set of
hierarchical priors and calculate this posterior. In inference with mixture of
normals it is common to choose priors for the component parameters which
are independent of the mixing proportions 8. The posterior corresponding to
such priors is calculated in Section 6.2.2.1. Alternatively, in Section 6.2.2.2,
we propose a different prior for the mean of each component p; which is not

independent of the weight 7.

6.2.2.1 Mixing-proportion independent priors for components

We consider the mixture model (6.2.1) where p(y;|0%) is a normal density with

the corresponding parameters 6y = (ux, 07). Diebolt and Robert (1994) set

157



the following hierarchical prior distributions on parameters.

prlor ~ N(pro, o3 /No),
0'13 ~ IG(CL(),b()).

We also remind that the allocation vector corresponding to observations y =
(y1,+ -+ ,yn) is denoted by S = (S, -, Sy). Our aim is finding the optimal
allocation that gives the best classification. The optimal allocation vector is

obtained by finding the vector with the highest posterior distribution.

Let (y,S) denote the complete data and @ = (p1,--- , g, 0%, -+ ,0%).

Then, the joint distribution of data and parameters is expressed by the fol-

lowing factorization:

p(y,S,0,m) = p(yl|S,9)p(S|n)p(0)p(n) (6.2.2)

As pointed out earlier, the Bayesian clustering is based on the posterior dis-
tribution p(S|y) of the allocation vector. In order to find the marginal distri-
bution of allocations, i.e. p(Sly) from expression (6.2.2), we integrate out all
other parameters in the model denoted by vector ©¥. Therefore, we need to

calculate the following integration:

p(Sly) = // (y17. S, 8)p(S|n)p(n)p(8)d8dn

-/ ( [1ins e>p<e>de) p(SIm)p(m)dn

_ /(H //H (p(yi’ﬂk,Uk:)p(ﬂkagk’)dﬂkdak> p(SIn)p(n)dn

Since p(vi|S; = k,Y) = p(yi|, Ox) and Pr(S; = k|¥) = n, the complete-data

likelihood function is given by

N K
p(yIS. 9)pS) = [T TT (0wl o2)me) ="

i=1 k=1
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Therefore

p(y[S,9)p(S[n)p(0)p(n)

N K K
Is,—
= [T1I (il otyme) == T p(uslod)p(o)p(ne)
i=1 k=1 k=1
P N
ﬁ 1 zék(yz Mk) ﬁ i;]Sz:k
= exp { — 5 un
k=1 \ i:S;=k 277—0_13 ng k=1
K 1/2
Ny N,
X 20—
1T (27m,3> eXp{ 5 ’%<Uk ) }
k=1
K o
0 2\—ag—1 2
X o exp—bo/o
Ig F(CLQ) ( k:) { 0/ k
K K
L' =1 €0) H eo—1
K e
k=1 F(GO) k=1
K
£ e
/1 2 No\ 5% 1 oo \* T(Kep)
\2r 27 [(ap) ['(eg)®
K > (i — ) + No(pw — 10)? + 2bg
X Hexp _ = 53
k=1 Tk
K K 1
eo+Ni(S)—1
Xan H 2(ag+1)+Ny(S)+1
k=1 k=1

The expression > (y; — px)? in the above equations can be rearranged as
1:5;=k
follows

Z (yi —m)? = Z [(yi = 9)° + (5 — )]

:5;=k 1:5;=k
= > w2 ) Y vi—T+ >, G- m)
:5;,=k :5;,=k :5;=k
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1

substituting the variance S;,k = 7S

> is,—k(¥i— Ux(S))? in the above expres-

sion we get
> (i — )* = Nk(S)Sy . + Ne(S)(7 — 1),

hence

X ﬁ exXp {_Nk(S)Sg’k<S) + Ni(S)(gr(S) — pr)?* + No(pr — txo)? + 20 }

2
Pl 20},
K K 1
eo+Ng(9)-1
Xan H 2(ap+1)+Ng(S)+1
k=1 k=1 9k
_ i N/2 % K/2 bgo K F(Keo)
2m 2m [(ap) INCYA
2
N3, (S)7k (S)+ N,
) ﬁ N (NK(S) + No) [Nk — Dl J)Vi‘gé)ﬁ%““k“]
P 202
k=1
Niy(S)No /-
. ﬁe Ni(8)S24(8) + 2bo + 3= (4(S) — pro)?
X J—
P 20,%
k=1
K K .
eo+Ng(S)—1
Xan H 2(ag+1)+ Ny (S)+1
k=1 k=1 0k

Now we have to integrate out all the parameters in the model to obtain p(S|y).

We start from integrating out the parameter p; by calculating the integral

T 2
HK (N(S) + No) |y — e Nosio

/ exp - 20—2 duk’
k=1 i
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which is the kernel of a normal density. Hence

/ p(y. S0)p(SIm)p(O)p(n)dp

)G

K { Ni(8)S2,(S) + 2D + e (9(S) — um)?}
X Hexp —
k=1

2
20},

R ICRCR) | .
T 2(ao+1)+Ng(5)+1 Ni(S) + N,
kel k=1 Ok k=1 ’

Integrating out o} and 7, reads

) = ()" () Ty

k=1
1 K
X / Hnlivk(s)Jr@ofldn
0 k=1
Ni(S)No /-
y /ﬁex _Nk(S>S§,k(S)—|—2b0—|— Nk’?(S)Lﬁo(y(S) ko2
P 202
k=1
o 1 wmNps)+3
2 a0 g 02
X —_— 2 d

In the above equation, the first integral is the kernel of the Dirishlet distribu-

tion expressed in Equation (6.2.1). Therefore,

1 ﬁnﬁusmoldn = (F(Zﬁil Ni(5) + 6o)>_1 ' (6.2.3)

0 k=1 Hszl [(Nk(S) + eo)

Now if we use the following notation

Ny (S)No

= Ni(S)S? 2y + a0
B = Nu(S)S(8) + 2 + g

(5(S) — ro)?,
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then the second integral in Equation (6.2.3) can be reformed as

s B N (S)
H/eXp{——z} (7)) o,
k=1 Tk

the above integral is the kernel of Inverse Gamma density with parameters

(ap + N’“T(S), :B) therefore,

p(Sly) = /(H//ZS L P(Wil s o )p(1ins o dﬂkd0k>]95\77
i (1) (vy) T 11y o

[T, T(Ni(S) + eo) 11
P(K60+N)

X
—
=
=
+
el
@
u:jw
)
o
+
=
w

(6.2.4)
The logarithm of the allocation posterior obtained in (6.2.4) is of the form

log(p(Sly)) = K/2log(No) — N/2log(m) + Kaolog(by) — K logI'(ao)
+ logI'(Keg) — KlogT'(eg) + Kaglog(2) — T'(N + Keg)

K K
£ > logT(NU(S) +e0) D logT(ao +
k=1

K

DO | —

log(Ni(S) + No) = Y _(ao + Ni(8)/2) log B

(6.2.5)

6.2.2.2 Mixing-proportion dependent priors for components

We consider the mixture model where p(y;|0%) is a normal density with the
corresponding parameters 6 = (uy, 07). Here, we consider impose some de-
pendency between the parameters. Therefore we set a prior for the mean of

each component p;, which depends on the weight 7. To this aim, we propose
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the following prior distributions on parameters.

o} )
Nonw”’
0'2 ~ IG(CL(), bo)

pelor,me ~ N (o,

N D(€07"‘,€0)

According to the above hierarchical model, the joint distribution of the data

and the model parameters is formulated as

p(y[S,9)p(S|n)p(8)p(n)

N K K
Ig.—

=TI e(iliw, oome) ==+ T plloz. mi)p(o?)p(ne)

i=1 k=1 k=1

(yz - :uk)2 N

= ﬁ ! exp { —E2=h ﬁ UEI o
- 2 k

k=1 \ i:5i=k V 2mo® 20}, k=1
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Therefore,

p(y[S,9)p(S[n)p(0)p(n)

K
> NE(S)

() T ) () T

S (yi — ) + Nome(pr — o) + 2bg

K
% H exp :5;=k
202
k=1 k
K K 1
% H eo+Ni(S)—1/2 H
M 2(ao+1)+Ng (S)+1
k=1 k=1 Tk

After doing some simple algebra we get

p(y[S,9)p(SIn)p(8)p(n)

)G () e

2
N1.(S)7 (S)+N,

HK (Nk(S) + Nomw) [Mk — N J)VZ]Zé)EVo%ZWkO]
*LLEPA T 202
k=1 A

y ﬁ o _Nk(S)Sik(S) + 2bg + %(gk(s) — tio)?
k=1 b 2013

K K

o+ Ny (S)—1/2 1
X H Ik H 2(ag+1)+Ng(S)+1
k=1 k=1 9k

Now we are going to find the marginal posterior distribution of the allocation

vector p(S|y) by integrating out all parameters. We first integrate out py, from

the above expression and we get
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ﬁ / p(y, S|9)p(S|n)p(0)p(n)diu
k=1
- () (vty) ot Ly o ven

a { Ny, (S)S; 1, (S) + 2bo + ﬁ@k(s) — ftro)? }

Pty 20k
K K 1
eo+Ni(S)—1/2
X H "l H 2(ap+1)+Ni(S)+2
k=1 k=1 Tk

Finally integrating out oy and 7y, the posterior p(S|y) is obtained as

pSly) = / [ pvin.8.00p(Simpim)p@)doan

_ R 1 /2 be? KF(KeO)QKQO
0 T [(ag) NG

K

Hkl( k(S) +eo+1/2)
(N + Keg + K/2) kHlF

_ Nip(8)

2
X dny,
H/ +N077k)1/2 Mk

(6.2.6)

where

N (S) Nomi

B = N.(S)S? (S) + 20y + ——— 2L —1%
(k) = Ni(S)S, (S) + °+Nk(S)+N077k

(7k(S) — o).

As we can see for the case with dependent hierarchical priors there is no
explicit form for the posterior p(S|y). Due to this formulation, we faced some
challenges in calculating the integration in the expression (6.2.6). Calculating
this integration is not always possible in a usual way as a result of overflow or
underflow, depending on simulation settings. To address this issue we calculate

this definite integral by calculating Reimann sums over a partition of [0, 1].
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Suppose P partitions [a,b] into equal length subintervals [z;_i,z;];i =
1,---,n. For a continuous and integrable function f on interval [a,b] the

definite integral of f from a to b can be computed by

b n
Lfmngﬁzﬁmm%

for any z € [z;_1,x;] with Az, = ”_T“ and 7 = a+iAzx; i =1,---,n

(McGregor et al., 2010). Now we aim to calculate the following integration

using the above Reimann sums. We have

1
/ﬂmm—
0
Ni(S)

[ OHEIS) 20+ B0 )
0 (Nk(S) + Nomi,) /2 ’

we rearrange the above integrand expression as follows

(Ne(S)S2,(8)) =7 D(1py) 0~
Fm) = | N 1/2 ) (6.2.7)
Ny (S)/? (1 + N:gg)
where
1 Ni(S)Nom 2)
D(m) =1+ ez e | 20+ 7 feo o (5(S) —
o Ni(8)5y,1(S) ( 0T N (S) £ Nony V) ~ hx0)
(6.2.8)
We consider partition P of [0, 1] into subintervals [xq, z1], [x1, 2], - -, [Tn_1, Tp].

Hence, Ax; = 1/n and z} = iAxz;. This leads to

|t =3 L futai).
0 i=1

Even using the above approximation did not completely solve the problem
of overflow and underflow and we still got some infinity values in numerical

calculations. To tackle this problem we divide all summands by the largest
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element which is fy(z}) = fx(1). Therefore we calculate

| stmgan, = PSS S (6:2.9)

where according to the Equation (6.2.7) we have

frlap) _ U+ mi)”
* Nox} Dy (x)\ g0+ Nel) -~
fe@) (14 oo yu/2( Ded yao+ 2
Now according to the expression (6.2.8) we have
N (S)Noz; ,—
Di(ar)  Ne(S)S4(S) + 2o + %(yk(s) — Hxo)”
Dy(1) Ni(8)S; x(S) +2bo + %@k(s) — Hko)?

2b Noz
Sj,k(S) + Nk(OS) + Nk(S)OJrNox (Yr(S) — MkO)Q
Sik(s> + Nib(os) + Nk(s)_HVO (yk(s) - Mk0)2

In order to use the latter expression in computational programming and avoid

any possible underflow issue, we further rearrange the latter expression to get

Nox}
Dk(x;.*) _ 4 ( (S) Mko) (Nk(éV)OJrNo - Nk(S)O+N0x;>
D(1) Syr(S) + Nil?‘)s) RV AE )+N0 (9k(S) = firo)?

N (Ne(S)+No)x? \ (-~
_ Ni(S)+Ng (1 B N:(S)+N2z; ) (U4(S) — pro)?

Sir(S) + wotey + wrsyews (Fr(S) — hwo)?

(6.2.10)

Now the integration in the Equation (6.2.11) is obtained by calculating the

following summation

n —ag—E® —ap— Y
fu(x}) 3 filap)  _ 1(Nk(S)S;,(8)) = D(1)
n = fi(xz}) n Ni(S)1/2
- 1
X Z 0T k x¥ Ny (S)
=1 (1+ N( 5)! /2(%k((f)))ao+kT

(6.2.11)
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Substituting the above expression in the allocation posterior results in

p(Sly)

_ oyl N2 g pao KF(K60)2K%
0 T p(ao) F(GO)K
15, D(Na(S) + e + 1/2) 1
* TN+ Keo + K/2) gr 8)/2 + a)
2 —ag—NES) —ao—Ne&)
o LW(8)S,(S) ™= D)~z
n N, (S)1/2

1
D3
Nozx D (x* ao Nk(s)
=+ ) T

(6.2.12)

Taking the log of this posterior, we get

log(p(Sly)) =

K /2log(Ny) — N/2log(m) + Kaglog(by) — K logI'(ao)
logI'(Keg) — KlogI'(eg) + Kaglog(2) — I'(NV + Key + K/2)

K K
> 1ogT(Ni(S) + €0 +1/2) + > logT'(ag + 5

k=1

1
D _log(n) + 3 log ) —— Dale) g S

k=1 =i (U )2 (T

(6.2.13)

6.3 Simulation studies

In this section, we conduct simulations to compare the classification accuracy

of Bayesian normal mixture model with that of normal mixture models. We

implement the Bayesian normal mixture model based on both independent pri-

ors and dependent priors. In order to compare the classification performance of

Bayesian mixture model with the frequentist model we use the Mclust software
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which was also used in previous chapter. This software performs classification
by applying normal mixture models. The optimal classification is a result of
applying EM algorithm for finding the maximum likelihood estimates of the

model parameters.

6.3.1 Data generation

We generated data from a normal mixture model with three components. We

used the same setting as used in one of the examples in Frithwirth-Schnatter

(2006) to generate the data. The weights or mixing proportions denoted by

vector n = (n1,1m2,m3) are set to n = (0.3,0.2,0.5). Also, each component is
2

a normal mixture model with mean p; and variance ;. These component

parameters were set to u = (—3,0,2) and o2 = (1,0.5,0.8).

6.3.2 Results

We remind that our interest in this analysis is exploring the classification per-
formance of Bayesian mixture models. We utilised the Bayesian mixture model
under the following hierarchical priors where the component mean depends on

the weight or mixing proportion corresponding to that component

2
O

2
U b ~ N ) )
k| Oy Mk (Lko Nonk)

O',% ~ IG((I(), bo)

Ne  ~ D(607"' 760)7

which results in the allocation posterior in Equation (6.2.12). We also imple-
mented the Bayesian mixture model with hierarchical priors where the mean
of each component was independent of the weight or mixing proportion as

following
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02

2 k
~ N(po, =
1|0, (0, N

O'lz ~ [G((I(), bo),

N ~ D(607"' 760)7

The allocation posterior can be regarded as a function of hyperparameters
No, ag, bo, €0, firo- We followed Richardson and Green (1997) in order to choose
some of these hyperparameters. Richardson and Green (1997) set uxo to the
median of the data. The hyperparameters are chosen as ag = 2 and ¢y = 1
and for the parameter by they consider the prior by ~ G(0.2,10/R?) where R?
is the length of the interval of the variation of the data. In order to choose g

we followed Raftery et al. (1996) and set No = 2.6/ (Ymaz — Ymin)-

We found the optimal classification by maximising the logarithm of alloca-
tion posterior. To this aim, we applied an iterative algorithm through which
we updated the allocation vector in each iteration and we calculated the pos-
terior corresponding to the updated allocation vector. The algorithm started
with an initial allocation vector SO = S_,,rens. We chose this initial vector by
implementing Mclust to classify the data. This classification was obtained by
fitting a normal mixture model to the data. Let S© = (Sy,--- , Sy) denote the
allocation vector of observations y;; ¢ = 1,--- , N obtained by Mclust. In the
first iteration we updated the allocation S; corresponding to the first observa-
tion y; while allocation index of the rest of observations were fixed. To update
the allocation we generated a random number from the uniform distribution
U[0,1]. If U < py, the observation y; was assigned to the first component, if
U < p1+p2, the observation was assigned to the second component, otherwise
y; was assigned to the third component, where p; = ps = p3 = 1/3. This
resulted in an updated allocation vector S = Supdated- As a result of this up-
date, the number of elements in each component changed. If S7** = S; =k,
then no moving occurred whereas, if the observation moved to another compo-

nent, say [, then the number of observations in each component were updated
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as

NE(ST,S_1) = Ni(S) — 1,  Ni(S7“,S_1) = Ni(S) + 1,

correspondingly, the mean g, (S) and the variance S, ;(S) of each component
were updated. Then the log-posterior p((S7¢",S_1)]y) corresponding to the
updated allocation vector was calculated according to the expression (6.2.13).
The updated allocation for the first observation was accepted if the updated
posterior was greater than the current posterior, i.e. p((S7*,S_1)ly) >
p(S©ly). If the new allocation was accepted, then this updated allocation
was used as the current allocation in the next iteration Scyrrent = Supdatea and
the observation was moved to the component [. Otherwise, the observation
was kept in the current component k and the algorithm moved to the next ob-
servation y,. These steps were repeated until all observationsz=1---, N were
updated and also the posterior converges to the maximum possible value. Then
the allocation vector corresponding to this optimal posterior was recorded and
compared with that of Mclust classification by finding the adjusted Rand index
(Rand, 1971) which was introduced in the introduction chapter.

We simulated 300 datasets from a mixture of normals with three com-
ponents as explained earlier and we applied the above algorithm to find the
optimal classification for these data. While calculating posteriors in the above
process, we considered both dependent case (6.2.13) and independent case

(6.2.5) posteriors.
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Figure 6.3.1: Box plots of adjusted Rand index values corresponding to the classifications
performed by applying Bayesian mixture model with dependent priors (BMD), Bayesian
mixture model with independent priors (BMI) and the non-Bayesian mixture of normals
(Mclust) where No = 2.6/ (Ymaz — Ymin) and by ~ G(0.2,10/R?) where R? is the length of
the interval of the variation of the data. Other hyperparameters and sample size are chosen
as (a) N =50, a9 =2,¢e0 =1, (b) N =100, ag = 2, ¢9 = 1, (¢) N = 100,a9 = 5, eg = 1,
(d) N =100,a0 =5, eg =2
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Results presented in Figure 6.3.1 show that the Bayesian classification re-
sults in a more accurate classification particularly when the priors are depen-
dent. Due to the imposed dependency on priors, more information is brought
to the inference which leads to a more accurate classification. These results
show that the idea of setting dependent prior is promising and could be a

potential area for more investigation.

Note that the search strategy applied here to find the optimal allocation
vector is a naive way. The more principled way to find the optimal alloca-
tion vector, particularly when the sample size is large, is applying powerful
methods of MCMC. Unfortunately due to the time limit this part could not

be completed during this course and is remained for the future work.
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Chapter 7

Conclusion and Future Work

In analysing cancer drug data, in order to follow the recent "multiple genes,
multiple drugs" paradigm, we have suggested to use a multivariate multiple
linear regression which can accommodate all the response variables simultane-
ously. In this regression model there are a relatively large number of predic-
tors compared to the sample size. To address this high dimensionality issue,
in Chapter 3 we have proposed the SNR-based screening method to reduce
the number of predictors in the above multivariate regression model. In this
method, the SNR values of predictors are calculated. Then these values are
ranked and thresholded. The predictors with higher SNR values are selected.
Through simulation studies we showed that this approach outperformed the
Sure Independence Screening (SIS) method of Fan and Lv (2008). SNR-based
screening results in a higher accuracy by having higher sensitivity values. Since
in the SNR-based screening the correlation structure in the response variables
is taken into account, the ability of SNR-based screening is higher than SIS in
identifying the informative predictors. SNR-based screening also has the sure

screening property.

Based on the SNR statistic, in Chapter 4 we have developed a novel variable
selection method, called principal variable analysis (PVA)(Zhang and Oftadeh,
2016). Since high dimensional predictors are often highly correlated, we have

introduced a forward-nulling procedure to reduce the interferences from other
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predictors, while we calculate the SNR value for one predictor. By PVA, we
try to find a small number of principal variables to explain the maximum
amount of variation in the data. We have compared the PVA performance
with some of the existing methods through simulation studies. These methods
are multivariate lasso, multivariate elastic net, multivariate group-lasso and
multivariate sparse group-lasso. The result have shown that PVA has a much

higher selection accuracy compare to these methods.

The only limitation of PVA is that the number of iterations in the selection
algorithm is restricted to the sample size n. We have also assumed that the
error terms are iid distributed with mean zero and equal variances. However,
this assumption may be restrictive in some applications. Generalising this
algorithm to the one that is not restricted to the sample size is the next step

for this research.

In Chapter 5 we have introduced a mixture-based model which is called
likelihood fusion. Then we have used the likelihood fusion model in a two-
stage procedure wherein the screening of predictors and the classification of
the response variables have been preformed simultaneously. In this inference
the aim is to classify the response variable in a dataset which contains several
response variables with high dimensional predictors. Through the two-stage
procedure we have first screened the predictors in some way and then classi-
fied the response variables using the selected predictors. Since the number of
selected predictors may exceed the sample size n, to reduce the size of predic-
tors even further, we have applied a forward selection method after performing
screening. Then the reduced selected predictors have been used to classify the
response variables. Although forward selection could solve the issue and re-
duce the size of selected predictors, it is not an optimal method. The reason
is that forward selection is computationally expensive. The forward selection
stage could be improved by penalising the likelihood fusion model. This could

be a potential research area for further investigation.
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We have also compared the SNR-based screening with the screening per-
formed through likelihood fusion model. The results have shown that the
mixture-based screening outperforms the SNR screening when the data have
a group structure. Mixture-based screening has resulted in a higher accuracy

by taking into account the information from each group of response variables.

In the last chapter we have studied a Bayesian inference clustering by ap-
plying the mixture of normal distributions. The aim is to classify the data
without estimating the component parameters. Therefore in this inference we
wish to find the allocation vector of the data which yields the optimal classifi-
cation. To find this allocation vector we have maximised the posterior of the
allocation vector. To this aim, we have considered two different set of hierar-
chical priors and calculated the posterior of the allocation vector. In inference
with mixture of normals it is common to choose priors for the component pa-
rameters which are independent of the mixing proportions 8. Alternatively,
we have proposed a different prior for the mean of each component gy which
is not independent of the weight 7. Simulation results have shown that the
classification obtained by the mixing proportion dependant prior is more ac-
curate than the commonly used prior which is not dependant on the mixing
proportion. The search strategy applied in Chapter 6 to find the optimal al-
location vector is a naive way. The more principled way to find the optimal
allocation vector, particularly when the sample size is large, is applying pow-
erful methods of MCMC. Unfortunately due to the time limit this part could

not be completed during this course and is remained for the future work.
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Appendix A

Protein staining levels of the
selected genes in 20 common

calncers

In this appendix we present some information about the genes which were se-
lected by applying PVA to cancer drug data. To reveal the roles played by these
selected genes in cancer, we investigated their protein staining in 20 common
cancers. The Tables 4 ~8 presented here provide some information gathered
from the Human Protein Atlas Portal http://www.proteinforlas.org/cancer.
In these tables, as in the Portal, we classified the protein expression/staining
levels into four categories: high, medium, low and not detected. We assigned
the scores of 3,2,1 and 0 to the four categories respectively. If a gene did not
play a role in a cancer, it would receive a score of zero as its protein staining
for that cancer would be hardly detectable. We found that 34 of the selected
genes had positive staining levels on at least one of these cancers. This implies
that these genes might play certain functional roles in the growth of some
of these cancers. In the Portal, there were no information available on the

remaining 3 of the selected genes.
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Table 4: Mean scores of protein staining for cancers with standard errors in brackets. For
each cancer type, the highest mean score across all genes is highlighted. Genes that have

the highest mean score for at least one type of cancer are shown in colour.

Cancer type

Gene Breast Carcinoid Cervical Colorectal
IARS 0.9 (0.15) 025 (0.21) 033 (0.24)  1.36 (0.26)
CLASP1 09 (015 175 (021) 03 (0.2) 112 (0.32)
STAMBPL1 2 (0.00) 1.25 (0.41) 1.6 (0.25) 2.25 (0.12)
GSTM3 0.75 (0.29) 0 (0.00) 0 (0.00) 0 (0.00)
EML1 0  (0.00) 0 (0.00) 0.09 (0.08) 0 (0.00)
TRIM6-TRIM34 NA NA NA NA NA NA NA NA
DECR1 2 (0.11) 1.25 (0.25) 0.83 (0.23) 2.16 (0.16)
EP400 1.27 (0.22) 1.25 (0.41) 141 (0.22) 1.27 (0.31)
TADA2L NA NA NA NA NA NA NA NA
RPL39L 0.16 (0.16) 0  (0.00) 0.08 (0.08) 0 (0.00)
FAIM3 2.08 (0.08) 1.75  (0.54) 1.81 (0.22) 2.45 (0.15)
C180RF24 (SKAL) 2.25 (0.12) 1.5 (0.55) 1.8 (0.12) 2.09 (0.20)
CD1A 0  (0.00) 0  (0.00) 0  (0.00) 0  (0.00)
CIDEB 1.2 (0.23) 1.25 (0.21) 0.75 (0.17) 1 (0.47)
TP53 0.41 (0.27) 0  (0.00) 1 (0.31) 1.75 (0.33)
QKI 0  (0.00) 0  (0.00) 0.25 (0.12) 0.25 (0.17)
SNTB1 0.45 (0.15) 0  (0.00) 0.33 (0.13) 0.25 (0.12)
SEMA4C 0.75 (0.20) 0  (0.00) 0.58 (0.24) 1.36 (0.19)
NUDT?2 1.81 (0.12) 1.5 (0.25) 1.5 (0.22) 1.6 (0.19)
RFX2 0  (0.00) 0  (0.00) 0  (0.00) 0.08 (0.08)
GPSN2(TECR) 0.1 (0.10) 0  (0.00) 0.58 (0.24) 0.33  (0.18)
C210RF45 (MIS18A) 1.45 (0.20) 1.25 (0.21) 0.5 (0.18) 1.7 (0.24)
COLb/A1 0.44 (0.16) 0  (0.00) 1.33  (0.27) 0.6 (0.15)
RP1.153G14.3 (ZNF391) 2  (0.00) 2 (0.00) 1.25 (0.20) 2 (0.00)
MKL1 1.08 (0.22) 0.25 (0.21) 0.91 (0.22) 0.91 (0.25)
FKSG44 2.16 (0.11) 2 (0.35) 2 (0.00) 291 (0.09)
KIAA1856 2.63 (0.15) 2 (0.00) 2 (0.12) 24 (0.15)
HDGF2 NA NA NA NA NA NA NA NA
CROCC 0  (0.00) 0  (0.00) 0  (0.00) 0 (0.00)
WDRT76 0.3 (0.14) 0  (0.00) 0  (0.00) 0.54 (0.23)
RPS14 2.16 (0.16) 2 (0.00) 2.08 (0.08) 2.63 (0.15)
MAP3K6 1.25 (0.23) 1.5  (0.43) 1.83 (0.11) 1.41 (0.22)
LYGE 1.11 (0.36) 1.75 (0.21) 0.58 (0.18) 0.81 (0.28)
SLCO2B1 0  (0.00) 0  (0.00) 0  (0.00) 0  (0.00)
NR1D2 145 (0.20) 05 (0.25) 175 (0.12) 2 (0.00)
RHBDD3 1.58 (0.25) 0.5 (0.25) 0.5 (0.29) 0.81 (0.25)
STX7 0.16 (0.16) 0.66 (0.27) 0.27 (0.18) 0.5 (0.15)
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Table 5: Mean scores of protein staining for cancers with standard errors in brackets. For
each cancer type, the highest mean score across all genes is highlighted. Genes that have

the highest mean score for at least one type of cancer are shown in colour.

Cancer type

Gene Endometrial Glioma Hand and neck Liver
IARS 0.58 (0.27) 0.08 (0.08) 0.3 (0.28) 1.58 (0.27)
CLASP1 0.9 (0.27) 033 (0.18) 025 (0.21) 14 (0.20)
STAMBPL1 1.72  (0.14) 1.5 (0.22) 2 (0.00) 0.83 (0.25)
GSTM3 0 (0.00) 0 (0.00) 0 (0.00) 0.08 (0.08)
EML1 0  (0.00) 0.09 (0.08) 0 (0.00) 0 (0)
TRIM6-TRIM34 NA NA NA NA NA NA NA NA
DECR1 2.16 (0.16) 2 (0.16) 175 (0.21) 2.83 (0.11)
EP400 118 (0.25) 141 (0.30) 15 (0.25) 1 (0.26)
TADA2L NA NA NA NA NA NA NA NA
RPL39L 0 (0.00) 0.4 (0.15) 0 (0.00) 0.83 (0.23)
FAIM3 1.91 (0.25) 1.08 (0.25) 175  (0.21) 1.36  (0.32)
C180RF24 (SKA1) 141 (0.22) 2 (012) 166 (0.28) 15 (0.25)
CD1A 0  (0.00) 0  (0.00) 0 (0.00) 0.16 (0.16)
CIDEB 13 (013) 091 (0.25) 15 (025) 125 (0.12)
TP53 0.25 (0.23) 1.08 (0.38) 125 (0.64) 0.3 (0.14)
QKI 0.08 (0.08) 2.83 (0.11) 0.75  (0.41) 0 (0.00)
SNTB1 0.08 (0.08) 0.25 (0.17) 0 (0.00) 0.25 (0.12)
SEMA4C 0.7 (0.14) 0.25 (0.12) 0.5 (0.25) 0.91 (0.22)
NUDT2 1.36  (0.26) 1.90 (0.16) 2 (0.00) 1.63  (0.23)
RFX2 0 (0.00) 0.3 (0.20) 0 (0.00) 0.08 (0.08)
GPSN2(TECR) 0.36 (0.14) 0  (0.00) 0 (0.00) 0.58 (0.18)
C210RF45 (MIS18A) 1.16  (0.16) 0.18 (0.11) 1 (0.00) 1.75 (0.17)
COL5A1 0.54 (0.19) 0.09 (0.08) 2.3 (0.35) 0.16 (0.16)
RP1.153G14.3 (ZNF391) 183 (0.11)  1.09 (0.20) 125  (0.41) 2 (0.00)
MKL1 0.41 (0.18) 0.83 (0.28) 133 (0.72) 0.75 (0.20)
FKSG44 190 (0.20) 1.83 (0.11) 225 (0.21) 137 (0.39)
KIAA1856 1.33  (0.29) 1.91 (0.09) 2.5 (0.25) 14 (0.32)
HDGF2 NA NA NA NA NA NA NA NA
CROCC 0.27 (0.18) 0  (0.00) 0 (0.00) 0.09 (0.08)
WDR76 0 (0.00) 0.25 (0.23) 0.3 (0.28) 0 (0.00)
RPS14 2.25 (0.12) 2.18 (0.17) 2.33  (0.28) 1.81 (0.12)
MAP3KG6 1 (026) 16 (0.28) 175 (021) 141 (0.18)
LYG6E 0.54 (0.23) 1 (0.22) 0.75  (0.41) 0  (0.00)
SLCO2B1 0 (0.00) 0 (0.00) 0 (0.00) 0.27 (0.13)
NR1D2 1.16 (0.26) 0.91 (0.25) 175 (0.21) 1.2 (0.23)
RHBDD3 1.5 (0.3 0.36 (0.23) 0.75  (0.21) 1.08 (0.32)
STX7 0.1 (0.09) 0.00 (0.00) (0.25) (0.21) 0.25 (0.12)
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Table 6: Mean scores of protein staining for cancers with standard errors in brackets. For
each cancer type, the highest mean score across all genes is highlighted. Genes that have

the highest mean score for at least one type of cancer are shown in colour.

Cancer type

Gene Lung Lymphoma Melanoma Ovarian

TARS 0.2 (0.17) 0.16 (0.10) 0.1 (0.10) 0.75  (0.26)
CLASP1 1.33 (0.21) 1.5 (0.22) 1.5 (0.22) 0.58 (0.21)
STAMBPL1 14 (0.20) 0.9 (0.26) 2.58 (0.14) 2.5 (0.14)
GSTM3 0.09 (0.08) 0  (0.00) 0  (0.00) 0.18 (0.17)
EML1 0  (0.00) 0  (0.00) 0  (0.00) 0  (0.00)
TRIM6-TRIM34 NA NA NA NA NA NA NA NA

DECRI1 1 (0.33) 1.41 (0.18) 1.8 (0.13) 1.81 (0.12)
EP400 1.2 (0.23) 1.18 (0.30) 0.9 (0.30) 141 (0.18)
TADA2L NA NA NA NA NA NA NA NA

RPL39L 0.08 (0.08) 0  (0.00) 0  (0.00) 0.08 (0.08)
FAIM3 1.33 (0.24) 1.5 (0.20) 1 (0.20) 1.2 (0.23)
C180RF24 (SKAI) 1.16 (0.23) 0.66 (0.21) 1.9 (0.19) 1.41 (0.18)
CD1A 0  (0.00) 0  (0.00) 0.08 (0.08) 0  (0.00)
CIDEB 0.91 (0.18) 0.41 (0.14) 1.63 (1.19) 1.2 (0.15)
TP53 1.08 (0.32) 0.25 (0.12) 0.90 (0.24) 1.5  (0.43)
QKI 0  (0.00) 0.08 (0.08) 0.91 (0.22) 0.27 (0.18)
SNTB1 0.25 (0.12) 0  (0.00) 0  (0.00) 0.16 (0.16)
SEMA4C 0.41 (0.22) 1 (0.25) 0.41 (0.41) 0.75 (0.23)
NUDT?2 1 (0.31) 1.66 (0.21) 1.36  (0.19) 141 (0.14)
RFX2 0  (0.00) 0  (0.00) 0  (0.00) 0  (0.00)
GPSN2(TECR) 0.4 (0.25) 0  (0.00) 0.3 (0.20) 0.45 (0.15)
C210RF45 (MIS18A) 0.63 (0.28) 0.66 (0.18) 1.66 (0.24) 0.83 (0.19)
COL5A1 0.18 (0.11) 0  (0.00) 0.54 (0.26) 0.7 (0.20)
RP1.153G14.3 (ZNF391) 1.54 (0.20) 0.33  (0.13) 1.63 (0.25) 1.91 (0.09)
MKL1 0.08 (0.08) 1.27  (0.29) 0.16 (0.10) 0.27 (0.13)
FKSG44 2 (0.20) 0.6 (0.15) 1.7 (0.22) 1.91 (0.27)
KIAA1856 0.8 (0.36) 0.83 (0.19) 1.83  (0.20) 141 (0.22)
HDGF2 NA NA NA NA NA NA NA NA

CROCC 0  (0.00) 0  (0.00) 0.08 (0.08) 0  (0.00)
WDR76 0  (0.00) 0.09 (0.08) 0.25 (0.17) 0  (0.00)
RPS14 2.1 (0.20) 2.36 (0.19) 2.54 (0.15) 241 (0.15)
MAP3K6 1.44 (0.27) 0.16 (0.10) 0.66 (0.24) 1 (0.26)
LY6E 0.33 (0.21) 0  (0.00) 0.5 (0.22) 0.91 (0.25)
SLCO2B1 0  (0.00) 0  (0.00) 0  (0.00) 0  (0.00)
NR1D2 1.66 (0.14) 0.66 (0.21) 1.54 (0.23) 1.16  (0.20)
RHBDD3 1.33  (0.29) 0  (0.00) 0.9 (0.32) 1.2 (0.30)
STXT7 0.2 (0.12) 2.09 (0.27) 2.45 (0.30) 0.5 (0.25)
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Table 7: Mean scores of protein staining for cancers with standard errors in brackets. For
each cancer type, the highest mean score across all genes is highlighted. Genes that have

the highest mean score for at least one type of cancer are shown in colour.

Cancer type

Gene Pancreforic Prostfore Renal Skin

IARS 0.16 (0.10) 0.33 (0.22) 0 (0.00) 0.08 (0.08)
CLASP1 111 (029) 19 (0.24) 183 (0.11) 03 (0.14)
STAMBPL1 2.1 (0.30) 1.25 (0.26) 0.16 (0.10) 1.5 (0.30)
GSTM3 0 (0.00) 0 (0.00) 0 (0.00) 0.08 (0.08)
EML1 0  (0.00) 0  (0.00) 0.36 (0.23) 0 (0.00)
TRIM6-TRIM34 NA NA NA NA NA NA NA NA
DECR1 1.3 (0.40) 2 (0.12) 1.58 (0.25) 0.09 (0.08)
EP400 1 (0.22) 1.33  (0.35) 1 (0.33) 1.22 (0.21)
TADA2L NA NA NA NA NA NA NA NA
RPL39L 0  (0.00) 0.08 (0.08) 0  (0.00) 0 (0.00)
FAIM3 1.8 (0.14) 0.8 (0.23) 1.90 (0.10) 0.33  (0.18)
C180RF24 (SKAL) 1.41 (0.22) 2 (0.11) 1.41 (0.25) 1.54 (0.23)
CD1A 1.08 (0.08) 0  (0.00) 0.54 (0.19) 0  (0.00)
CIDEB 1.25 (0.17) 0.25 (0.12) 0.54 (0.19) 1.12  (0.12)
TP53 2 (0.31) 0  (0.00) 0.09 (0.08) 0.90 (0.27)
QKI 0  (0.00) 0  (0.00) 0  (0.00) 0.5 (0.21)
SNTB1 0.18 (0.11) 0.72  (0.13) 0  (0.00) 0  (0.00)
SEMA4C 0.41 (0.14) 0.33 (0.18) 0.08 (0.08) 0.41 (0.14)
NUDT?2 1.90 (0.10) 1.91 (0.09) 1.18 (0.25) 1.2 (0.18)
RFX2 0.2 (0.12) 0  (0.00) 0  (0.00) 0 (0.00)
GPSN2(TECR) 0.11 (0.10) 0.54 (0.29) 0  (0.00) 0.5 (0.16)
C210RF45 (MIS18A) 1.1 (0.17) 1.66 (0.16) 0.5 (0.18) 0.9 (0.22)
COLb/A1 0  (0.00) 0.22 (0.13) 0.2 (0.12) 1 (0.28)
RP1.153G14.3 (ZNF391) 1.90 (0.10) 2,16 (0.11) 1.16  (0.16) 0.5 (0.14)
MKL1 0.41 (0.18) 0.5 (0.22) 0  (0.00) 0.2 (0.18)
FKSG44 1.5 (0.22) 1.72 (0.23) 0.25 (0.12) 1.33 (0.18)
KIAA1856 24 (0.27) 1.7 (0.27) 1.36  (0.19) 2 (0.16)
HDGF2 NA NA NA NA NA NA NA NA
CROCC 0.1 (0.10) 0  (0.00) 0  (0.00) 0 (0.00)
WDRT76 0.09 (0.08) 0  (0.00) 0  (0.00) 0.09 (0.08)
RPS14 1.90 (0.20) 1.5 (0.17) 1.36 (0.19) 2.6 (0.15)
MAP3K6 141 (0.22) 1.33 (0.21) 1.66 (0.21) 0.58 (0.24)
LYGE 1.2 (0.27) 0.16 (0.16) 0.08 (0.08) 0.58 (0.21)
SLCO2B1 0  (0.00) 0  (0.00) 0  (0.00) 0  (0.00)
NR1D2 14 (025) 141 (0.18) 0.5 (0.07)  1.25 (0.20)
RHBDD3 1.5 (0.32) 1.71  (0.26) 0.08 (0.08) 0.27 (0.13)
STX7 0.09 (0.08) 0  (0.00) 0.3 0.16 0.45 (0.19)

181



Table 8: Mean scores of protein staining for cancers with standard errors in brackets. For
each cancer type, the highest mean score across all genes is highlighted. Genes that have

the highest mean score for at least one type of cancer are shown in colour.

Cancer type

Gene Stomach Testis Thyroid Urothelial
IARS 01 (009 05 (0.21) 1 (000) 054 (0.29)
CLASP1 127 (0.22)  1.16 (0.23) 15 (055 141 (0.22)
STAMBPLI 2 (011) 145 (020) 175 (0.59) 209 (0.15)
GSTM3 0 (0.00) 0 (0.00) 0 (0.00) 05 (0.32)
EMLI 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
TRIM6-TRIM34 NA NA NA NA NA NA NA NA
DECR1 19 (017) 127 (029) 275 (0.21) 2 (0.31)
EP400 154 (0.30) 1 (016) 125 (0.21) 090 (0.27)
TADA2L NA NA NA NA NA NA NA NA
RPL39L 0 (0.00) 0  (0.00) 0.25 (0.21) 0  (0.00)
FAIM3 118 (0.11) 091 (0.25) 225 (021) 166 (0.21)
C180RF24 (SKA1) 158 (025) 15 (021) 166 (0.28) 118 (0.31)
CDI1A 1.45 (0.23) 0.83  (0.10) 0  (0.00) 1.09 (0.15)
CIDEB 141 (0.14) 133 (0.18) 15 (0.75) 108 (0.22)
TP53 1 (0.49) 1.16  (0.23) 0  (0.00) 1.81 (0.33)
QKI 0.1 (0.09) 0.2 (0.14) 0 (0.00) 0.6 0.16
SNTB1 0  (0.00) 0  (0.00) 0.5 (0.25) 0.08 (0.08)
SEMA4C 018 (0.11) 05 (022) 075 (041)  0.75 (0.20)
NUDT2 158 (0.14)  1.83 (0.11) 1 (0.35) 183 (0.11)
RFX2 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
GPSN2(TECR) 0  (0.00) 009 (0.008) 03 (028 018 (0.11)
C210RF45 (MISISA) 054 (0.32) 1.6  (0.32) 2 (0.35) 1 (0.23)
COL5A1 027 (0.13) 04 (0.17) 025 (021) 091 (0.27)
RP1.153G14.3 (ZNF391) 1.90 (0.10)  1.63 (0.15) 1 (000) 1.9 (0.09)
MKL1 0.09 (0.08) 1 (0.22) 0 (0.00) 1 (0.15)
FKSG44 166 (0.40) 04  (0.17) 1 (000)  1.33 (0.21)
KIAA1856 16 (025) 25 (0.25) 25 (0.25) 209 (0.20)
HDGF2 NA NA NA NA NA NA NA NA
CROCC 0.1 0.10 0  (0.00) 0 (0.00) 0 (0.00)
WDRT76 0  (0.00) 0.7 (0.28) 0.25 (0.21) 0 (0.00)
RPS14 209 (0.15) 188 (0.12) 26 (0.43) 172 (0.14)
MAP3K6 158 (0.18)  1.33  (0.24) 2 (0.00) 2 (0.16)
LY6E 0.72  (0.31) 0.36  (0.14) 0  (0.00) 0.58 (0.18)
SLCO2B1 0  (0.00) 0  (0.00) 0 (0.00) 0 (0.00)
NRID2 172 (0.14) 2 (000) 175 (021) 1.9 (0.26)
RHBDD3 0.6 (0.28) 0.54  (0.26) 0.75  (0.41) 0.63 (0.23)
STXT7 0.5 027 0.3  0.20 0.75  (0.41) 0.45 (0.15)
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Figure A.0.2: Network between columns of estimated coefficient matrix. Each vertex corre-
sponds to one drug and is a vector of dimension 37. Size of each node represents the degree
of each node. This is a strongly connected network which shows that drugs are highly

correlated.
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