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cAnt-Miner: An Ant Colony Classification

Algorithm to Cope with Continuous Attributes

Fernando E. B. Otero, Alex A. Freitas and Colin G. Johnson

Computing Laboratory, University of Kent, Canterbury, UK
{febo2,A.A.Freitas,C.G.Johnson}@kent.ac.uk

Abstract. This paper presents an extension to Ant-Miner, named cAnt-
Miner (Ant-Miner coping with continuous attributes), which incorpo-
rates an entropy-based discretization method in order to cope with con-
tinuous attributes during the rule construction process. By having the
ability to create discrete intervals for continuous attributes “on-the-fly”,
cAnt-Miner does not requires a discretization method in a preprocessing
step, as Ant-Miner requires. cAnt-Miner has been compared against Ant-
Miner in eight public domain datasets with respect to predictive accuracy
and simplicity of the discovered rules. Empirical results show that creat-
ing discrete intervals during the rule construction process facilitates the
discovery of more accurate and significantly simpler classification rules.

1 Introduction

Data mining is a multi-disciplinary field which aims to extract knowledge from
databases [1]. The data mining task addressed in this paper is the classification
task, where the goal is to predict the class of an example, given the values of
a set of attributes for that example. In essence, the classification task consists
of inducing a model from the data by observing relationships between predic-
tor attributes and classes, which can be used later to classify new examples.
The discovered knowledge is often represented in the form of IF (conditions)
THEN (class) classification rules, which has the advantage of representing a
comprehensible model to the user [2].

In the context of discovering classification rules in data mining, Ant Colony
Optimization (ACO) [3] algorithms have been successfully applied to different
classification problems [4]. Ant-Miner [5], [6], the first implementation of an ACO
algorithm for the classification task of data mining, has been shown to be com-
petitive with the well-known C4.5 [7] and CN2 [8] classification-rule discovery
algorithms.

Although real-world classification problems are often described by nominal
(with a finite number of nominal or discrete values) and continuous (real-valued)
attributes, Ant-Miner has the limitation of being able to cope only with nominal
attributes in its rule construction process. In order to overcome this limitation,
a commonly used approach is to discretize continuous attributes in a prepro-
cessing step. In essence, a discretization method aims at converting continuous



attributes into nominal (discrete) attributes by creating interval boundaries (e.g.
a continuous attribute age might be discretized into “0−14”, “15−24”, “25−64”
and “65+” intervals). A potential disadvantage of this approach is that less in-
formation will be available to the classifier – since the discrete intervals have a
coarser granularity – which can have a negative impact on the accuracy of the
discovered knowledge.

This paper proposes an extension to Ant-Miner, named cAnt-Miner (Ant-
Miner coping with continuous attributes), which incorporates an entropy-based
discretization method in order to cope with continuous attributes during the rule
construction process. cAnt-Miner has the ability to create discrete intervals for
continuous attributes “on-the-fly”, taking advantage of all continuous attributes
information, rather than requiring that a discretization method be used in a
preprocessing step. Note that, although many Ant-Miner variations have been
proposed – as reviewed in [4] – none of them can discretize attributes “on-the-fly”
(during the rule construction process) as proposed in this paper.

The remainder of this paper is organized as follows. Section 2 presents an
overview of Ant-Miner. Section 3 discusses some Ant-Miner variations proposed
in the literature. In Section 4, the proposed cAnt-Miner algorithm is introduced.
Section 5 presents the computational results evaluating cAnt-Miner. Finally,
Section 6 presents the conclusion of the paper and future research directions.

2 Ant-Miner Overview

The goal of Ant-Miner is to extract IF-THEN classification rules of the form IF

(term1) AND (term2) AND ... AND (termn) THEN (class) from data. Each
term in the rule is a triple (attribute, operator, value), where operator represents
a relational operator and value represents a value of the domain of attribute (e.g.
Sex = male). The IF part corresponds to the rule’s antecedent and the THEN

part is the rule’s consequent, which represents the class to be predicted by the
rule. An example that satisfies the rule’s antecedent will be assigned the class
predicted by the rule. As the original Ant-Miner only works with nominal (cate-
gorical or discrete) attributes, the only valid relational operator is “=” (equality
operator). Continuous attributes need to be discretized in a preprocessing step.

Algorithm 1 presents a high level pseudo-code of Ant-Miner [6]. In essence,
Ant-Miner works as follows. It starts with an empty rule list and iteratively
adds one rule at a time to that list while the number of uncovered training
examples is greater than a user-specified maximum value (while loop). In order
to construct a rule, a single ant starts with an empty rule (no terms in its
antecedent) and adds one term at a time to the rule antecedent (repeat-until

loop). It probabilistically chooses a term to be added to the current partial rule
based on the values of the amount of pheromone (τ) and a problem-dependent
heuristic information (η) associated with the term. A pheromone value and a
heuristic value are associated with each possible term – i.e. each possible triple
(attribute, operator, value). As usual in ACO, heuristic values are fixed (based
on an information theoretical measure of the predictive power of the term), while



Algorithm 1: High level pseudo-code of Ant-Miner.

begin Ant-Miner
training set← all training examples;
rule list← ∅;
while |training set| > max uncovered training examples do

τ ← initializes pheromones;
rulebest ← ∅;
i← 1;
repeat

rulei ← CreateRule();
ComputeConsequent(rulei);
Prune(rulei);
UpdatePheromones(τ, rulei);
if Q(rulei) > Q(rulebest) then

rulebest ← rulei;
end

i← i + 1;
until i ≥ max number rules OR convergence ;
rule list← rule list ∪ rulebest;
training set← training set \ CorrectlyCoveredExamples(rulebest);

end

end

pheromone values are iteratively updated based on the quality of the rules built
by the ants. The ant keeps adding a term to the partial rule until any term
added to the antecedent would make the rule cover less training examples than
a user-specified threshold, which would make the rule too specific and unreliable,
or all attributes have already been used by the ant. The latter rule construction
stopping criterion is necessary because an attribute can only occur once in the
antecedent of a rule, in order to avoid inconsistencies such as (Sex = male)
AND (Sex = female). Once this process of rule construction has finished, first
the rule constructed by the ant is pruned to remove irrelevant terms from the
rule antecedent. Then, the consequent of the rule is chosen to be the class value
most frequent among the set of training examples covered by the rule. Finally,
pheromone trails are updated and another ant starts to construct a new rule.
The process of constructing a rule is repeated until a user-specified number of
rules has been reached, or the current ant has constructed a rule that is exactly
the same as rules constructed by a predefined number of previous ants, which
works as a rule convergence test. The best rule, based on a quality measure
Q, found along this iterative process is added to the rule list and the correctly
classified training examples are removed from the training set. An example is
considered correctly classified if it satisfies the rule antecedent and has the class
predicted by the rule consequent.

In [5], [6], Ant-Miner was compared against the well-known C4.5 [7] and
CN2 [8] rule induction algorithms. In terms of predictive accuracy, the results
have shown that Ant-Miner is competitive with both C4.5 and CN2. The biggest



difference found was related to the complexity of the discovered rules. Ant-Miner
was able to find significant simpler rules, both in terms of a smaller number of
rules and a smaller number of terms (conditions) per rule, than C4.5 and CN2.

3 Related Work on Ant-Miner Variations

Following the introduction of Ant-Miner, several variations were proposed [4].
They involve different pruning and pheromone update procedures, new rule qual-
ity measures and heuristic functions, discovering fuzzy classification rules and
discovering rules for multi-label classification problems.

Chan & Freitas [9] have proposed a new rule pruning procedure for Ant-
Miner. They have observed that the original Ant-Miner’s pruning procedure
processing time increases significantly with a large increase in the number of
attributes, which affects the scalability of the method. To overcome this limita-
tion, it was proposed a new prune procedure that led to the discovery of simpler
(shorter) rules and improved the computational time in datasets with a large
number of attributes.

Martens et al. [10] have introduced a new classification algorithm, named
AntMiner+, based on Ant-Miner. It differs from the original Ant-Miner imple-
mentation in several aspects. Firstly, it makes a distinction between nominal and
ordinal attributes. Nominal attributes have unordered nominal values (e.g. gen-
der has unordered values “male” and “female”). Ordinal attributes are those cat-
egorical or discrete attributes whose values are ordered (e.g “0”, “1”, “2”, “3” and
“4 or more”, which may be the domain of an attribute that represents the number
of children in a family). Instead of creating a pair (attribute = value) for each
value of an ordinal attribute, AntMiner+ creates two types of bounds that repre-
sent the interval of values to be chosen by the ants. The first type represents the
lower bound of the interval and takes (attribute ≥ valuei) form, and the second
type represents the upper bound of the interval and takes (attribute ≤ valuej)
form (valuei and valuej are values from the attribute domain). Moreover, it
employs different pheromone initialization and update procedures based on the
MAX −MIN ant system (MMAS) [11]. For additional details refer to [10].

Galea & Chen [12] presented an ACO approach for the induction of fuzzy
rules, named FRANTIC-SRL (Fuzzy Rules from ANT-Inspired Computation
- Simultaneous Rule Learning). FRANTIC-SRL runs several ACO algorithm
instances in parallel, where each instance generates rules for a particular class.
By having separate ACO instances, separate pheromone matrices are maintained
for each class.

Swaminathan [13] proposed an extension to Ant-Miner which enables inter-
val conditions in the rules. While it still uses a discretization method to define
discrete intervals for continuous attributes in a preprocessing step, the continu-
ous values are not replaced in the dataset. For each discrete interval, a node (e.g.
humidity ≤ 75 ) is added to the construction graph and the pheromone value
associated to the node is calculated using a mixed kernel probability density
function (PDF).



Chan & Freitas [14] proposed a new ACO algorithm, named MuLAM (Multi-
Label Ant-Miner) for the multi-label classification task. In a nutshell, MuLAM
differs from the original Ant-Miner in three aspects. First, a classification rule
can predict one or more class attributes, as in multi-label classification problems
an example can belong to more than one class. Second, at each iteration, each
ant constructs a set of rules instead of a single rule as in the original Ant-
Miner. Third, it uses a pheromone matrix for each class attribute and pheromone
updates only occur on the matrix of class attributes that occur in the rule’s
consequent.

Despite the Ant-Miner variations proposed in the literature, to the best of
our knowledge, extending Ant-Miner to discretize continuous attributes “on-the-
fly” (during the rule construction process) is a research topic that has not yet
been explored. We believe that extending Ant-Miner to cope with continuous
attributes “on-the-fly” would enhance its predictive accuracy given that the use
of a discretization method in a preprocessing step can lead to loss of predictive
power – since less information is available to the classication algorithm.

4 Handling Continuous Attributes in Ant-Miner

There are numerous discretization methods for handling continuous attributes
available in the literature [15], [16]. These methods can be grouped according
to different discretization strategies. Methods that make use of the examples’
class information are referred to as supervised, while unsupervised methods do
not use the class information (supervised vs. unsupervised). Global methods use
the entire example space to define discrete intervals while local methods use a
subset of example space (global vs. local). One can also categorize discretization
methods as static, if they are applied in a data preprocessing phase before the
classification algorithm is run, or as dynamic, if they are applied while a classifier
is being built (static vs. dynamic). For a more detailed overview of different kinds
of discretization methods, see [15], [16].

As mentioned in the previous section, the current version of Ant-Miner does
not cope with continuous attributes directly. It requires continuous attributes to
be discretized in a preprocessing step. In the experiments reported in [5], [6], the
discretization method C4.5-Disc [17] was applied prior to Ant-Miner in a data
preprocessing phase. In essence, the C4.5-Disc discretization method consists in
using the well-known C4.5 [7] decision tree induction algorithm to create discrete
intervals for each continuous attribute separately. For each continuous attribute,
C4.5 is applied to a reduced dataset which only contains the attribute to be
discretized and the class attribute. After the decision tree which contains binary
splits referring only to the single attribute being discretized is built, each path
of the tree from a leaf node to the root node corresponds to a discrete interval.
For further details, refer to [17]. The C4.5-Disc discretization method would be
categorized as supervised, global and static based on the criteria described above.

In this paper, we propose a dynamic discretization method which is incor-
porated into Ant-Miner’s rule construction process and consequently avoids the



need for running a discretization method in a preprocessing step. First of all,
we have extended the original Ant-Miner to support continuous attributes in
the rule antecedent taking the form of (attributec < value) or (attributec ≥
value), where value is a value belonging to the domain of the continuous at-
tribute attributec. Furthermore, we incorporated an entropy-based discretiza-
tion method into Ant-Miner’s rule construction process to dynamically create
thresholds on continuous attributes domain values. The entropy measure, which
is derived from information theory and often used in data mining, quantifies the
impurity of a collection of examples and it is the same measure used as heuris-
tic function in Ant-Miner. Details of the proposed Ant-Miner extension, named
cAnt-Miner, are provided in the next sub-sections.

4.1 Construction Graph

The original Ant-Miner’s construction graph consists of a fully connected graph
in which for each nominal attribute ai and value vij (where ai is the i-th attribute
and vij is the j -th value belonging to the domain of ai), a node (ai = vij) is
added to the graph representing the termij used to create a classification rule.

We have extended the construction graph to cope with continuous attributes
as follows. For each continuous attribute ai, we add a node (ai) to the graph
representing the termi. Then, the node (ai) is connected to all previous nodes
of the construction graph. It should be noted that at this point the continuous
values have not been discretized. The discretization occurs when an ant selects
a node that represents a continuous attribute to be added to its current partial
rule, as described in sub-section 4.3.

4.2 Heuristic Problem-Dependent Information

The heuristic value associated with each termij in Ant-Miner involves a measure
of entropy. In the case of nominal attributes, where every termij has the form
(ai = vij), the entropy for the attribute-value pair is computed as in equation
(1) – used in the original Ant-Miner:

entropy(ai = vij) ≡
k∑

c=1

−p(c | ai = vij) · log
2
p(c | ai = vij) (1)

where p(c | ai = vij) is the empirical probability of observing class c conditional
on having observed ai = vij and k is the number of classes. Note that the entropy
is a measure of the impurity in a collection of examples, hence higher entropy
values correspond to more uniformly distributed classes and smaller predictive
power for the term in question.

However, the equation (1) cannot be straightforwardly applied to compute
the entropy of nodes representing continuous attributes (termi) since these nodes
do not represent an attribute-value pair. In order to compute the entropy of



termi, we need to select a threshold value v to dynamically partition the con-
tinuous attribute ai into two intervals: ai < v and ai ≥ v. The best threshold
value is the value v that minimizes the entropy of the partition, given by:

epv(ai) ≡
|Sai<v|

|S|
· entropy(ai < v) +

|Sai≥v|

|S|
· entropy(ai ≥ v) (2)

where |Sai<v| is the total number of examples in the partition ai < v (partition
of training examples where the attribute ai has a value less than v), |Sai≥v|
is the total number of examples in the partition ai ≥ v (partition of training
examples where the attribute ai has a value greater or equal to v) and |S| is
the total number of training examples. After the selection of the threshold vbest,
the entropy of the termi corresponds to the minimum entropy value of the two
partitions and it is defined as:

entropy(termi) ≡ min (entropy(ai < vbest), entropy(ai ≥ vbest)) (3)

We select the lowest entropy value since it corresponds to the value associated
with the “purest” partition (the partition with more examples belonging to the
same class) and it represents the expected predictive power (quality) of the termi

(when termi is added to the rule). It should be noted that the entropy of every
termi – i.e. every term having a continuous attribute – is always the same as
the entropy value of every termij – every term representing an attribute-value
pair of a nominal attribute. Therefore, the entropy of all termi and termij are
computed as a preprocessing step to save computational time.

Concerning the computational complexity, the process of finding a thresh-
old value can be divided into two steps. First, the continuous attribute values
have to be sorted in order to facilitate the computation of the number of exam-
ples belonging to each candidate interval. The time complexity of this step is
O(n log n), where n is the number of examples under consideration. Second, the
evaluation of candidate threshold values has the complexity of O(n), where in
this case n represents the number of candidate values to be evaluated. It should
be noted that not all candidate threshold values are evaluated, only those that
form boundaries between classes, as proposed by [18]. Therefore, the efficiency
of the evaluation is increased since less candidate threshold values need to be
checked.

4.3 Rule Construction

As every term in the antecedent of a rule must be a triple (attribute, operator,
value), when an ant chooses a node that represents a continuous attribute ai

to add to its current partial rule, a relational operator and a threshold value
are selected as follows. First, the best threshold value for attribute ai is selected
as described in sub-section 4.2, subject to one restriction: only the examples
covered by the current partial rule are considered in the evaluation of threshold
values. Therefore, the selection of a threshold value is influenced by the terms



occurring in the current partial rule. This is what makes the proposed discretiza-
tion method a dynamic one, so that the choice of a threshold value is tailored
to the current candidate rule. The only exception to this restriction is when the
current partial rule is empty. In those cases, all training examples are used in
the evaluation of threshold values, as given by equation (2).

Then, after selecting the threshold value vbest, a relational operator op is
selected based on the entropy values of the two partitions generated. If the par-
tition ai < vbest has a lower entropy, then the operator “<” (less-than operator)
is selected. If the partition ai ≥ vbest has a lower entropy, then the operator
“≥” (greater-equal operator) is selected. The operator selection has a bias of
selecting the more “pure” partition, given that lower entropy values are favored
over higher entropy values.

Once the threshold value vbest and the operator op are selected, a term in
the form of a triple (ai, op, vbest) is added to the ant’s current partial rule (e.g
age ≥ 25) and the rule continues to undergo the Ant-Miner’s rule construction
process.

4.4 Pheromone Updating

In the original Ant-Miner, every termij has an associated pheromone value which
undergoes the pheromone updating (increasing and decreasing) process. In sum-
mary, the pheromone updating process works as follows. The pheromone asso-
ciated with each termij occurring in the rule created by an ant is increased
in proportion to the quality of the rule in question. The pheromone associated
with each termij that does not occur in the rule is decreased, simulating the
pheromone evaporation effect observed in real ant colonies.

We have extended the original Ant-Miner’s pheromone updating process to
cope with termi (a term that represents a continuous attribute ai) as follows.
Since the pheromone value is associated with a continuous attribute ai, and not
the triple (ai, op, vbest) that is added to the current partial rule (see sub-section
4.3), the operator op and the threshold value vbest are discarded in the updating
process. In other words, there is a single entry for each continuous attribute ai

in the pheromone matrix, in contrast to multiple entries for nominal attributes,
which have an entry for every (ai, vij) pair (where ai is the i-th nominal attribute
and vij is the j -th value belonging to the domain of ai).

In the proposed cAnt-Miner, pheromone is still used to indicate the quality of
continuous attributes, but the actual choice of the threshold for each continuous
attribute is dynamically customized to each rule being constructed by the ants.
This effectively incorporates task-dependent knowledge into the algorithm, which
tends to increase its effectiveness.

5 Computational Results and Discussion

In order to evaluate the proposed cAnt-Miner algorithm, we have selected eight
datasets from the UCI Irvine machine learning repository [19] which had at least



one continuous attribute. Table 1 shows a summary of the selected datasets.
All experiments were conducted running a well-known 10-fold cross-validation
procedure [2]. Since the original version of Ant-Miner requires the data to be
discretized in a preprocessing step, for each cross-validation fold we separately
discretized (using the C4.5-Disc discretization method [17]) the training set and
the created discrete intervals were used to discretize the test set. This was nec-
essary because, if we had discretized the entire dataset before creating the cross-
validation folds, the discretization method would have access to the test data,
which would have compromised the reliability of the experiments. Also, we re-
moved the duplicated instances (instances with the same values for all attributes)
from the resulting discrete dataset to avoid the possibility that a test set contains
an example that is the same as a training example.

We have compared the performance of cAnt-Miner against Ant-Miner, with
respect to predictive accuracy and simplicity of the discovered rule lists. In all
experiments, the user-defined parameters of cAnt-Miner and Ant-Miner were set
to: No of ants = 3000, min cases per rule = 5, max uncovered cases = 10 and
No rules converg = 10 (detailed explanation of these parameters can be found
in [6]). We have made no attempt to optimize these parameters for the datasets
used in the experiments. It should be noted that for cAnt-Miner, the original –
with nominal (or discrete) and continuous attributes – datasets were used, and
for Ant-Miner, the discrete – with only nominal (or discrete) attributes – datasets
were used. To make the comparison as fair as possible, the same cross-validation
folds were used in both datasets, with the exception that in the discrete datasets
we removed the duplicated examples.

Table 2 summarizes the results comparing the predictive accuracy of Ant-
Miner and cAnt-Miner. Each entry in the table shows the average value of the
accuracy obtained via the cross-validation procedure followed by the standard
deviation. An entry in the cAnt-Miner column is shown in bold if, for the cor-
responding dataset, the accuracy achieved with cAnt-Miner was significantly
greater than the accuracy achieved with Ant-Miner for that dataset – according
to a two-tailed Student’s t-test with significance level α = 5%. In two datasets,
namely hepatitis and glass, cAnt-Miner was significantly more accurate than
Ant-Miner. Both Ant-Miner and cAnt-Miner achieved similar (with no signifi-
cant difference) accuracies in the remaining six datasets.

Table 3 summarizes the results concerning the simplicity of the discovered
rule lists, measured by the total number of terms (conditions) in all discovered
rules. Each entry in the table shows the average rule list size obtained via cross-
validation procedure followed by the standard deviation. An entry in the cAnt-
Miner column is shown in bold if, for the corresponding dataset, the rule list
discovered by cAnt-Miner was significantly simpler than the rule list discovered
by Ant-Miner for that dataset – according to a two-tailed Student’s t-test with
significance level α = 5%. Concerning the simplicity of the discovered rule lists,
cAnt-Miner discovered significantly simpler rule lists than Ant-Miner in six out
of eight datasets. In two datasets, namely crx and australian, both cAnt-Miner
and Ant-Miner discovered rule lists with similar simplicity.



Table 1. Summary of the datasets used in the experiments. The first column gives the
dataset name, the second and third columns give the number of nominal and continuous
attributes respectively, the forth column gives the number of classes, the fifth column
gives the number of instances in the original dataset and the sixth column gives the
number of instances in the discrete dataset (after the removal of duplicated examples).

Dataset Attributes Classes Size
Nominal Continuous Original Discrete

wdbc 0 30 2 569 366

crx 9 6 2 690 639

hepatitis 13 6 2 155 116

glass 0 9 7 213 119

ionosphere 0 34 2 350 292

wine 0 13 3 178 126

australian 8 6 2 690 637

heart 6 7 2 270 232

Table 2. Predictive accuracy (mean ± standard deviation) of Ant-Miner and cAnt-
Miner after the 10-fold cross-validation procedure. An entry in the cAnt-Miner column
is shown in bold if, for the corresponding dataset, the accuracy achieved with cAnt-
Miner was significantly greater than the accuracy achieved with Ant-Miner for that
dataset – according to a two-tailed Student’s t-test with significance level α = 5%.

Dataset Ant-Miner cAnt-Miner

wdbc 93.27 ± 1.44 95.57 ± 0.55

crx 85.32 ± 1.26 85.56 ± 1.16

hepatitis 74.61 ± 2.80 84.89 ± 2.57

glass 51.48 ± 4.84 65.69 ± 2.59

ionosphere 90.68 ± 2.32 90.00 ± 1.49

wine 94.58 ± 2.51 95.14 ± 2.01

australian 85.52 ± 1.60 86.60 ± 1.46

heart 77.62 ± 3.27 79.27 ± 2.74

The results obtained in the experiments can be summarized as follows. With
respect to predictive accuracy, cAnt-Miner was significantly more accurate than
Ant-Miner in the hepatitis and glass dataset. In the remaining six datasets, both
cAnt-Miner and Ant-Miner achieved similar accuracies. Hence, overall cAnt-
Miner was the most accurate algorithm for this set of eight datasets. Regarding
the simplicity of the discovered rule lists, in six out of eight datasets, cAnt-Miner
discovered rules significantly simpler than Ant-Miner’s rules. These results em-



Table 3. Simplicity of the discovered rule list (mean ± standard deviation), measured
as total number of terms in all rules, of Ant-Miner and cAnt-Miner after the 10-fold
cross-validation procedure. An entry in the cAnt-Miner column is shown in bold if,
for the corresponding dataset, the rule list discovered by cAnt-Miner was significantly
simpler than the rule list discovered by Ant-Miner for that dataset – according to a
two-tailed Student’s t-test with significance level α = 5%.

Dataset Ant-Miner cAnt-Miner

wdbc 54.60 ± 5.16 9.40 ± 0.70

crx 25.60 ± 1.86 22.80 ± 2.32

hepatitis 26.10 ± 2.51 16.00 ± 0.95

glass 38.70 ± 1.52 33.30 ± 1.87

ionosphere 21.90 ± 3.08 10.20 ± 1.00

wine 8.80 ± 0.79 6.30 ± 0.45

australian 18.30 ± 1.16 21.40 ± 1.45

heart 20.40 ± 1.53 16.40 ± 0.76

pirically show that the proposed dynamic-discretization cAnt-Miner facilitates
the discovery of more accurate and significantly simpler classification rules when
compared to the static-discretization Ant-Miner.

An important remark is that there was no significant increase in the com-
putational time of cAnt-Miner by comparison with Ant-Miner’s time, since the
number of examples that need to be considered when a continuous attribute is
added to the rule decreases proportionally to the number of terms present in the
current partial rule (see sub-sections 4.2 and 4.3).

6 Conclusion and Future Work

This paper has presented an extension to Ant-Miner, named cAnt-Miner, which
copes with continuous attributes during the rule construction process. By having
the ability to create discrete intervals for continuous attributes “on-the-fly”,
cAnt-Miner does not require a discretization method in a preprocessing step.

cAnt-Miner has been compared against Ant-Miner with respect to predic-
tive accuracy and simplicity of the discovered rule lists in eight public domain
datasets. Regarding predictive accuracy, cAnt-Miner significantly outperformed
Ant-Miner in two datasets. Regarding simplicity of the discovered rule lists,
cAnt-Miner found significantly simpler rule lists than Ant-Miner in six out of
eight datasets. Therefore, the results obtained by cAnt-Miner are promising.

As future research direction, it would be interesting to extend the entropy-
based discretization method used in the rule construction process to allow the
creation of intervals with both lower and upper bound values in the form vlower ≤
attribute ≤ vupper .
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