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Abstract. Ant Colony Optimization (ACO) differs substantially from
other meta-heuristics such as Evolutionary Algorithms (EA). Two of
its distinctive features are: (i) it is constructive rather than based on
iterative improvements, and (ii) it employs problem knowledge in the
construction process via the heuristic function, which is essential for
its success. In this paper, we introduce the ACO encoding, which is a
self-contained algorithmic component that can be readily used to make
available these two particular features of ACO to any search algorithm
for continuous spaces based on iterative improvements to solve combina-
torial optimization problems.

1 Introduction

Hybrid meta-heuristics that combine skilfully elements of two or more meta-
heuristics are often superior to the original meta-heuristics when considered in
isolation [1] as it is the case, for example, of Memetic Algorithms [2], which
combine Evolutionary Algorithms [3] with Local Search, and more recent in-
carnations of Ant Colony Optimization [4] which also embed Local Search as
a standard sub-component. The success of hybrid meta-heuristics is rooted in
the combination of the complementary strengths of their compounding meta-
heuristics [1].

Leaving aside the compelling ant foraging behavior metaphor that inspired
the original design of ACO, from an algorithmic point of view, Ant Colony
Optimization differs greatly from most meta-heuristics. Perhaps the two most
characterizing algorithmic features of ACO are: (i) it is constructive rather than
based on iterative improvements; and (ii) beside the feedback obtained by the
evaluation of complete solutions, common to all other meta-heuristics, the heuris-
tic function provides extra problem knowledge fed directly in the construction
process.

One weakness of ACO is that the pheromone update rules are not guaranteed
to find always the optimal pheromone levels that lead to the construction of the
best solution. This is because the update rules make small incremental changes
to the pheromone levels—which can be seen as a form of hill-climbing in the
pheromone space—that may lead the pheromone levels to converge to a point
which is only locally optimal. It would be interesting, therefore, to replace the
search done in the pheromone space by the update rules with more global types



of search algorithms, such as Evolutionary Algorithms, which may be less prone
to get stuck in local optima.

Beside the standard hybridization of ACO with Local Search, there are a
number of works on hybrid ACO algorithms, see for example [5-7]. In this paper,
rather than introducing one more hybrid ACO algorithm, we intend to present a
self-contained algorithmic component obtained by distilling a distinctive feature
of ACO behind its success—namely the use of heuristic information in the solu-
tion construction—in a way that it can be used as an off-the-shelf component in
any search algorithm for continuous spaces to solve combinatorial problems. The
new algorithmic component will be termed the ACO Encoding. This component
was derived derandomizing the ACO construction mechanism and interpreting
it as a decoding procedure for solutions of combinatorial problems represented
as real vectors formed by pheromone levels, as illustrated in the next section.
This component has advantages from two different perspectives: (i) it can be
seen as endowing (a de-randomized variant of) ACO with a more global search
in the pheromone space than that using the standard pheromone update rule,
and, at the same time, (ii) it feeds extra problem knowledge via the heuristic
function to the base search algorithm (e.g., an evolutionary algorithm) using the
ACO encoding, which normally does not have such knowledge at its disposal.

2 The ACO Encoding

Search algorithms are normally characterized by:

1. the search space S defining the set of candidate solutions to the problem at
hand P (i.e., the set of feasible solutions).

2. the underlying representation R of the candidate solutions (e.g., real vectors,
permutations, binary strings) on which the search operators O are acting on.

3. the search strategy A that the search algorithm employs to search the given
search space (e.g., local search, population-based search, annealing search).

Whereas perhaps ACO is not normally looked at this way, it is insightful to
ask what its search space, its solution representation and its search strategy are.

Let us consider a basic ACO without local search for a specific problem, e.g.,
TSP (i.e., P=TSP). The problem being addressed is clearly a combinatorial
problem. A standard solution representation for the TSP are permutations (i.e.,
R=permutations), which naturally encode the order of the cities to be visited by
the traveling salesperson (i.e., S=permutations (genotypes) encoding cities tours
(phenotypes)). As ACO constructs TSP solutions encoded using permutations, it
may be argued that the construction procedure employed by ACO corresponds
to the “ACO search operator” in the space of permutations (i.e., O=construction
procedure). However, this way of aligning ACO to the algorithmic framework
outlined above is partially unsatisfactory because there are no elements in ACO
that directly correspond to search operators acting on such a representation. As
a consequence, the search strategy A of ACO cannot be explicitly characterized
on the permutation space.



Let us now consider an alternative way of looking at ACO, attempting at
equating the search space of ACO with the set of all pheromone values. In
this case, TSP solutions are constructed using the information stored in the
pheromone values (i.e., S=pheromones vectors (genotypes) encoding cities tours
(phenotypes)). Importantly, the pheromone updates rule acting on pheromone
levels can be interpreted as search operators acting on such a representation (i.e.,
R=pheromones vectors and O=update rules). The solution construction can be
then interpreted as a growth function that maps pheromone levels (genotypes)
to permutations (intermediate phenotypes), which are in turn mapped to cities
tours (phenotypes). Interestingly, in ACO the growth function maps a continuous
space to a combinatorial space, hence ACO, seen in this way, searches a com-
binatorial space indirectly by searching a continuous space. Can the pheromone
space, therefore, be considered as the search space searched by ACO? The an-
swer is negative as an essential property of a solution representation is missing
when we consider the pheromone levels as representation. This is the ability of
the genotype to identify uniquely a phenotype. This is essential, as in lack of it,
it would not be possible to determine the fitness of the genotype unambiguously,
and as a consequence, the optimal genotype would not be well-defined.

If we are willing to allow for a change of the ACO solution construction
procedure, we could indeed identify the pheromone space with the search space
of ACO. There are two aspects of the ACO solutions construction procedure
that are problematic when it is interpreted as a growth function: (i) normally,
the ACO construction procedure returns more than one solution (one for each
ant on the graph); and (ii) it is a probabilistic procedure which does not always
construct the same solutions from the same pheromone levels. The first issue can
be simply solved by using always a single ant. The second issue can be solved
by de-randomizing the construction procedure. This can be done by placing the
ant on a fixed initial node (i.e., the nest) and by de-randomizing its decisions
about which node to go next by always choosing the alternative with highest
probability, i.e. by treating transition probabilities as priorities and returning
deterministically only the most probable solution. The priorities used in the
de-randomized construction are obtained with the traditional ACO transition
probability formula which combines heuristic information and pheromone levels.
Since the heuristic information does not change in the course of the search, these
priorities are uniquely determined by the pheromone levels on the construction
graph, and consequently, given the same pheromone levels, the TSP tour built
by the ant is unique. So, this construction procedure is a well-defined growth
function.

The above derandomized variation of ACO is a degenerate form of ACO,
which, as it is, does not perform any useful search. This is because it produces
deterministically a single solution from the current pheromone levels, and when
the pheromone update rule is applied, the pheromone values corresponding to
that solution are reinforced, hence, fixating the search to that single solution.
However, the interesting aspect of this derandomized variation of ACO is that it
forms a conceptual bridge between the traditional ACO and other types of meta-



heuristics as this algorithm can now be characterized in terms of search space,
solution representation and search operators. Seen in this algorithmic framework,
the ACO representation of solutions (pheromone levels) together with the ACO
encoding (deterministic solution construction procedure) can be naturally decou-
pled from the specific ACO search (pheromone update rule). This, interestingly,
allows us to use the ACO encoding as a self-contained algorithmic component
in combination with any search algorithm for continuous optimization. So, for
example, we could use it in combination with a standard Evolutionary Algo-
rithm based on a real vector representation. Each real vector (individual in the
population) corresponds to a combination of pheromone levels. The fitness of
that individual would be the fitness of the solution constructed by the ant us-
ing those pheromone levels. Then, the evolutionary algorithm would proceed as
it normally does by selecting above average individuals, recombining and mu-
tating them with standard search operators, to produce the next population of
individuals.

The conceptual link between ACO and other meta-heuristics via the ACO
Encoding is interesting, as the same real values assume two quite distinct mean-
ings when they are understood in the two different contexts: as pheromone values
in an ACO construction graph, and as solution representation in the genotype of
an individual. Let us consider more closely this difference for the specific case of
TSP. For this problem, in the ACO practice, the pheromone is normally stored
on edges rather than on nodes of the construction graph, because its function
is understood being that of “modifier” of the heuristic information, which is
associated with the edges of the construction graph (since it is based on the
distance between the cities). On the other hand, if we look at pheromone values
as a solution representation for an EA, as a rule of thumb, we want to have
the most compact representation that can represent any TSP solution, because
larger spaces take normally more time to be searched. This would require to put
pheromone on the nodes of the construction graph, for a total of n pheromone
locations, rather than pheromone on edges which would amount to a total of n?
pheromone locations, hence giving rise to a much larger search space to search.
Note that putting pheromone on nodes is enough to represent any solution of
the TSP, as when the heuristic information is set to zero, the pheromone levels
on the nodes, in fact, specify the order of the cities to include in the salesperson
tour by their ranks. This is known in the literature as the random-keys encoding
for permutations [8]. Therefore, there seems to be a very interesting inter-play
between heuristic information injected in the ACO Encoding and its redundancy.

The idea of injecting heuristic information in the decoding procedure from
genotype to phenotype is not new in the ACO Encoding, as it has been used
before, for example, in encoding procedures for scheduling problems using the
genotypes to guide the choice of scheduling policies [9]. However, the ACO En-
coding makes it possible to use heuristic information in a much more standard-
ized way and for a much larger class of problems, borrowing from the large and
rapidly increasing library of previously solved problems using ACO.



3 Experiments and Discussion

Let us consider the ACO Encoding included as a component in a evolution-
ary algorithm for real-vectors. The ACO Encoding raises a number of interest-
ing questions. In the previous section, we decoupled the ACO Encoding (solu-
tion representation and construction) from the ACO search in pheromone space
(pheromone update rule). The first natural question is: given the same ACO
Encoding of the problem at hand, is the more global search done by an EA
better than the search done by the ACO pheromone update rule? A second in-
teresting aspect of the ACO encoding is that it allows the inclusion of heuristic
information in the EA. So, a second question is: since the use of this information
is essential in ACO to obtain good performance, is the heuristic information of
any help to the EA? A third question relates with the dual interpretation of the
real-vector as pheromone in a construction graph and as genotype to represent
a solution, as discussed in the previous section. So, we ask which of the two fol-
lowing options is better: (i) locating pheromone on the edges of the construction
graph, which from an ACO perspective it is meaningful for the TSP, or alter-
natively (ii) locating pheromone on the nodes of the construction graph, which
makes sense from an EA perspective as it gives rise to a smaller search space to
search.

In the following, we present three sets of experiments using 10 TSP instances
from the TSPLIB to give preliminary answers to the above questions. As our
aim is to compare directly algorithmic components rather than reaching state-of-
the-art performances, we use the ACO Encoding with a very simple evolutionary
algorithm for real-vectors (a generational scheme with discrete uniform crossover,
creep mutation and tournament selection). Furthermore, we do not include local
search neither in ACO nor in the EA and, for fairness, we give the same number
of fitness evaluations (number of solutions constructed and evaluated) to each
of the algorithms in the comparison.

We have selected two well-known ACO algorithms, namely ant colony system
(ACS) [10] and MAX-MIN ant system (MMAS) [11,12]. For the ACO algo-
rithms, the following default parameter settings from the literature are used:
=2, a = 1, m = n (where m is the number of ants and n is the number of cities)
and p = 0.98 (where p is the evaporation rate). In the case of our EA using the
proposed ACO Encoding, we have used three variations: EA-ACO, EA-ACO-
b0 (EA-ACO without heuristic information) and EA-ACO-n (EA-ACO with
pheromone on the nodes). We have performed a systematic (but coarse) param-
eter tuning in order to determine a suitable combination of values, leaving o = 1
and B = 2 parameters fixed—the only exception is that in EA-ACO-b0, 3 is
set to 0 since it does not use heuristic information. For the remaining param-
eters, we have tested the following values: population_size = {n - 10, n - 10},
crossover_rate = {0.5, 1.0}, mutation_rate = {1/n, 2/n} and tournament_size
= {2, 4}. The values in bold represent the best combination of values out of the
16 possible combinations and the ones used in our experiments. Although the
parameter tuning did not show significant differences between the combinations
of values, the EA seems to be more sensitive to the tournament_size parameter,



Table 1. Computational results for symmetric (upper section) and asymmetric (lower
section) instances from the TSPLIB. The number following the instance name corre-
sponds to the number of cities. The column ‘opt’ indicates the known optimal tour
length for each instance. A value in the remaining columns represents the average
tour length of the best tour found by the correspondent algorithm over 25 runs (av-
eragetstandard deviation); the value closer to the optimal tour length is shown in
bold.

instance opt ACS MMAS EA-ACO EA-ACO-b0 EA-ACO-n

berlin52 7542 7868.9+192.7 7562.8457.4 7849.84+68.7  9585.14+460.2 7886.0+31.6
eil51 426 468.5£11.8 428.7+1.6 430.6+4.1 504.8+13.3 439.9+2.9
kroA100 21282 28497.84+562.6 21492.84+145.2 21852.84148.2 69800.5+2424.2 22306.5+131.0
st70 675 806.6+15.2 681.5+4.5 715.148.1 1206.9+48.6 712.9+11.6
brl7 39 39.0+0.0 39.0+0.0 41.7+6.4 39.04+0.2 39.74+3.4
ft70 38673 45072.3+£320.0 39586.24331.2 39732.4+200.3 44474.24+689.3 39370.8+154.4
p43 5620 5630.94+1.3 5629.31+0.9 5652.61+6.8 5673.5+15.5 5638.54+6.4

ry48p 14422 16147.9£335.9 14598.3+70.6 14534.6+46.6 17252.44+631.5 14721.4+145.2

where the combinations using the smaller value 2 perform better than the ones
using the greater value 4. The stopping criteria for all algorithms was set to
14 - 10* fitness evaluations. Therefore, even though the algorithms use a differ-
ent number of ants (ACO algorithms) and population size (EA algorithms), the
comparison is based on the total number of candidate solutions evaluated, which
will be the same for all algorithms.

Table 1 presents the computational results. For each of the algorithms, we
report the average tour length of the best tour found in 25 independent runs of
the algorithms. The value closer to the optimal tour length is shown in bold in
Table 1. The results show that generally MM AS achieves the best performance.
The only exception are the ‘ft70’ and ‘ry48p’ asymmetric instances, where the
EA-ACO and EA-ACO-n achieve best performance. It is interesting to note
that EA-ACO and EA-ACO-n outperform ACS, except on ‘brl7’, where ACS
found the optimal solution, and on ‘p43’. However, EA-ACO-b0 performs poorly
compared to the other algorithms, except for the ‘brl7’ instance, where it out-
performs the other two EA variations. In terms of computational time, both
ACS and MMAS require on average 27 seconds to complete the 14 - 10* fitness
evaluations, EA-ACO-n is a factor of 2.6 slower than ACS and MMAS, while
EA-ACO and EA-ACO-n are a factor of 110 slower than ACS and MMAS.

Let us now consider the questions that were posed at the beginning of the sec-
tion in the light of the experimental results obtained. Given the same encoding,
is the EA search (EA-ACO) better than the ACO search (ACS and MMAS) by
means of the update rule? From the experiments, it seems that the EA search
reaches better solutions than the simple ACS, but it does not as well as the more
sophisticated MMAS. Note that one of the major differences between ACS and
MMAS is the ability of the latter to change adaptively the learning rate to
prevent getting stuck in local optima in the phenotype space. This seems to be



consistent with our initial hypothesis that the EA search is more global than
the simple search done by ACS. However, the adaptive search of MMAS seems
to be very effective. The EA used in this work is a very simple one. It would
be, therefore, interesting in future work to consider EA with an adaptive type of
mutation and compare it with MMAS. In terms of CPU time, the ACO systems
are much more efficient than the EA-ACO. The critical component seems to be
the crossover operator that takes quadratic time with respect with the number
of cities. However, this problem may be overcome by using a parameter set for
the EA that requires to apply crossover only a limited number of times.

A second question was about the impact of the heuristic information injected
in the EA using the ACO Encoding. From the experiments, it is evident that
the heuristic information in EA-ACO clearly allows it to outperform the same
algorithm when this information is not available (EA-ACO-b0). This is a very
interesting result as it shows that the ACO Encoding is indeed able to inject
heuristic information in a EA in a way that can be usefully employed to reach
better performance. More generally, the ACO Encoding may open up at the
possibility to inject heuristic information in any search algorithm operating on
a continuous representation and systematically boost its performance.

A third question we put forward was about whether it is better to locate
the pheromone on edges (as in EA-ACO) or on the nodes (as in EA-ACO-n). In
terms of efficiency, which is, CPU time needed, EA-ACO-n is much more efficient
than the EA-ACO, as the time required by the crossover operator is now linear
with the number of cities in a solution. In terms of performance, the pheromone
on edges seem to be more advantageous than the pheromone on nodes, but not of
much. This is interesting as it shows something very counter-intuitive from an EA
point-of-view: a heavily redundant representation corresponding to a much larger
than necessary search space to search seems to lead to a better performance
than a more compact one. It is also interesting to note that EA-ACO-n, which
incorporates heuristic information, is both superior to and much more efficient
than EA-ACO-b0, which has pheromone on edges and it does not incorporate
heuristic information. Therefore, EA-ACO-n seems to be an interesting trade-off
in terms of performance, efficiency and use of heuristic information.

Finally, we can consider the experimental results above as representing a
test of whether the effectiveness of ACO is due to the encoding/representation
or to the search algorithm. The results tentatively suggest that the encod-
ing/representation is at the core of the power of ACO, as replacing one search
algorithm by another does not compromise the effectiveness of the search. Natu-
rally, more experimentation across problem domains is needed to provide stronger
support for this argument. This constitutes an important piece of future work.

4 Conclusions

This paper has introduced the ACO Encoding, an algorithmic component ob-
tained by decoupling the encoding used in ACO from the search component, so
that the encoding can be used with other search techniques. We have demon-



strated some basic experiments on TSP instances, consisting of combining this
encoding with a very simple EA search, showing a similar rate of success to a
good ACO variant, and presented an analysis of these results. In future work, we
will use the ACO encoding with state-of-the-art algorithms for continuous op-
timization, such as differential evolution and self-adaptive evolution strategies,
in the attempt to reach top performance on hard combinatorial optimization
problems.
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