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INSURANCE LOSS COVERAGE UNDER RESTRICTED RISK
CLASSIFICATION: THE CASE OF ISO-ELASTIC DEMAND

By MingJie Hao†, Angus S. Macdonald‡, Pradip Tapadar†and R. Guy
Thomas†

abstract

This paper investigates equilibrium in an insurance market where risk classification is restricted.
Insurance demand is characterised by an iso-elastic function with a single elasticity parameter.
We characterise the equilibrium by three quantities: equilibrium premium; level of adverse
selection (in the economist’s sense); and ‘loss coverage’, defined as the expected population
losses compensated by insurance. We consider both equal elasticities for high and low risk-
groups, and then different elasticities. In the equal elasticities case, adverse selection is always
higher under pooling than under risk-differentiated premiums, while loss coverage first increases
and then decreases with demand elasticity. We argue that loss coverage represents the efficacy
of insurance for the whole population; and therefore that if demand elasticity is sufficiently low,
adverse selection is not always a bad thing.
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1. Introduction

1.1 Adverse Selection and Loss Coverage
Insurance purchased voluntarily is usually underwritten, and premiums are charged

depending on individual risk. We call this ‘risk-differentiated pricing’. In certain cases,
however, insurers may be compelled to charge the same premiums regardless of some
factor known to be relevant to the risk. For example, in the European Union since 2012
insurers have been barred from using gender in underwriting. Arguments over the use of
genetic information in underwriting began in the mid-1990s and are still going on; many



2

countries have placed limits on insurers’ use of genetic test results. The possibility is not
merely theoretical.

This paper studies some of the implications of insurers not being allowed to use
risk-differentiated pricing. Our starting point is a population partitioned into subgroups
by reference to the level of risk of some undesired event, and an insurance company
or market (‘the insurer’) selling simple, standardised insurance contracts, covering the
undesired event, to the members of that population.

The actuary’s natural response to risk-differentiated pricing being banned is that ad-
verse selection will result. That is, whatever pooled premium is charged, lying somewhere
between the ‘correct’ premiums for the lowest-risk and highest-risk subgroups:

• the premium will appear high to the lowest-risk subgroups, so fewer in those sub-
groups will buy insurance; and

• the premium will appear low to the highest-risk subgroups, so more in those sub-
groups will buy insurance.

The resulting losses will force premiums higher, possibly resulting in an ‘adverse selection
spiral’ until equilibrium is reached at a level of premium that is attractive only to the
highest-risk subgroups. Actuaries’ natural concern is that losses will accrue, though it is
entirely possible that an equilibrium will be approached from the other side, if excessively
cautious pooled premiums are charged at first.

In this paper, we assume that an equilibrium has been reached and that the insurer
is charging ‘pooled’ premiums, to both high and low risks, that break even. We do not
consider how equilibrium was reached, or whether profits or losses were made along the
way. We model the insurance market as a timeless equilibrium, ‘equilibrium’ in the sense
that it focuses on the steady state where all insurers’ profits and losses are competed
away; and ‘timeless’ in the sense that it glosses over any sequence of profits and losses
which occur as insurers adjust the pooled premium towards the equilibrium level. Whilst
risk classification is restricted, the level of pooled premiums is not. Because insurers are
assumed to adjust the pooled premium to whatever level is necessary to ensure equilib-
rium, and competition between insurers in risk classification is not permitted, adverse
selection does not imply insurer losses.

An equilibrium under adverse selection is often regarded as bad, for several reasons.
Fewer low-risk individuals have insurance coverage, while those that remain are subsidising
a larger number of high-risk individuals. Also, there is usually assumed to be a reduction
in ‘gains from trade’ since fewer insurance contracts are written.

On the other hand, more high-risk individuals being insured is arguably a social good,
since coverage has shifted to where it is most needed. Thomas (2008, 2009) introduced the
idea of ‘loss coverage’, namely the expected claims under a given premium rating scheme
at equilibrium. It may be thought desirable, from a social policy point of view, for loss
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coverage to be as high as possible (depending on the nature of the undesired event).
Maximum possible loss coverage would be achieved only if everyone bought insurance,
which we assume is not the case. Then adverse selection, by increasing the proportion
of high-risk individuals buying insurance, may cause the loss coverage to rise. Since at
equilibrium the insurer makes neither profits nor losses, adverse selection could be a social
good, despite its name.

This paper follows Thomas (2008, 2009) which illustrated the concept of loss coverage
with simulations based on an exponential-power demand function suggested by De Jong
& Ferris (2006). This demand function is very flexible, but also rather intractable. Thus,
Thomas (2008, 2009) did not give a full mathematical account of loss coverage. Here, we
present a comprehensive mathematical analysis of equilibrium premia, adverse selection
and loss coverage, based on a more tractable iso-elastic demand function. In doing so, we
also give precise definitions of adverse selection and loss coverage, thus highlighting the
contrast between the two concepts.

1.2 Literature Review
This paper also follows others which investigate insurance market equilibrium when

risk classification is restricted. In the economics literature, recent surveys of such work in-
clude Hoy (2006) and Dionne & Rothschild (2014). The work summarised and advanced in
these papers typically takes a utility-based approach: individuals make insurance choices
to maximise their utility according to some utility function, and the outcomes of different
risk classification schemes are evaluated by a social welfare function which is a (possibly
weighted) sum of expected utilities over the entire population. For example Hoy (2006)
assigns equal weight to the expected utilities of all individuals. In the actuarial literature,
Macdonald & Tapadar (2010) also take a utility-based approach, while De Jong & Ferris
(2006) instead model insurance demand directly as an elasticity-driven function of the
pooled price, without explicitly considering utilities. The present paper follows this last
approach.

This paper can also be contrasted with another strand of empirical literature on
adverse selection, which focuses on variations in purchasing choices and risk level within
the group of insurance buyers, rather than between buyers and non-buyers. See for
example Chiappori & Salanie (2000) for auto insurance; Cardon & Hendel (2001) for
health insurance; Finklestein & Poterba (2004) for annuities; Finkelstein & McGarry
(2006) for long-term care insurance; and Cohen & Siegelman (2010) for a general survey.
We adopt a similar metric for adverse selection as in this literature, based on a positive
covariance of coverage and losses.
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2. Motivating Examples

We now give three heuristic examples of insurance market equilibria to illustrate the
concept of loss coverage and the possibility that loss coverage may be increased by some
adverse selection.

Suppose that in a population of 1,000 risks, 16 losses are expected every year. There
are two risk-groups. Each individual in the high risk-group of 200 individuals has a
probability of loss four times higher than that of an individual in the low risk-group. This
is summarised in Table 1.

We further assume that probability of loss is not altered by the purchase of insurance,
i.e. there is no moral hazard. An individual’s risk-group is fully observable to insurers
and all insurers are required to use the same risk classification regime. The equilibrium
price of insurance is determined as the price at which insurers make zero profit.

Under our first risk classification regime, insurers operate full risk classification, charg-
ing actuarially fair premiums to members of each risk-group. We assume that the propor-
tion of each risk-group which buys insurance under these conditions, i.e. the ‘fair-premium
proportional demand’, is 50%. Table 1 shows the outcome, which can be summarised as
follows:
(a) There is no adverse selection, as premiums are actuarially fair and the demand is at

the fair-premium proportional demand.
(b) Half the losses in the population are compensated by insurance. We heuristically

characterise this as a ‘loss coverage’ of 0.5.

Table 1: Full risk classification with no adverse selection.

Low risk-group High risk-group Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16

Break-even premiums (differentiated) 0.01 0.04 0.016
Numbers insured 400 100 500
Insured losses 4 4 8

Loss coverage 0.5

Now suppose that a new risk classification regime is introduced, where insurers have
to charge a single ‘pooled’ price to members of both the low and high risk-groups. One
possible outcome is shown in Table 2, which can be summarised as follows:
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(a) The pooled premium of 0.02 at which insurers make zero profits is calculated as the
demand-weighted average of the risk premiums: (300 x 0.01 + 150 x 0.04)/450 =
0.02).

(b) The pooled premium is expensive for low risks, so fewer of them buy insurance (300,
compared with 400 before). The pooled premium is cheap for high risks, so more of
them buy insurance (150, compared with 100 before). Because there are 4 times as
many low risks as high risks in the population, the total number of policies sold falls
(450, compared with 500 before).

(c) There is moderate adverse selection, as the break-even pooled premium exceeds
population-weighted average risk and the aggregate demand has fallen.

(d) The resulting loss coverage is 0.5625. The shift in coverage towards high risks more
than outweighs the fall in number of policies sold: 9 of the 16 losses (56%) in the
population as a whole are now compensated by insurance (compared with 8 of 16
before).

Table 2: No risk classification leading to moderate adverse selection but higher loss cov-
erage.

Low risk-group High risk-group Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16

Break-even premiums (pooled) 0.02 0.02 0.02
Numbers insured 300 150 450
Insured losses 3 6 9

Loss coverage 0.5625

Table 2 exhibited moderate adverse selection. Another possible outcome under the
restricted risk classification scheme, this time with more severe adverse selection, is shown
in Table 3, which can be summarised as follows:
(a) The pooled premium of 0.02154 at which insurers make zero profits is calculated as

the demand-weighted average of the risk premiums: (200 x 0.01 + 125 x 0.04)/325 =
0.02154.

(b) There is severe adverse selection, with further increase in pooled premium and signif-
icant fall in demand.

(c) The loss coverage is 0.4375. The shift in coverage towards high risks is insufficient
to outweigh the fall in number of policies sold: 7 of the 16 losses (43.75%) in the
population as a whole are now compensated by insurance (compared with 8 of 16 in
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Table 1, and 9 out of 16 in Table 3).

Table 3: No risk classification leading to severe adverse selection and lower loss coverage.

Low risk-group High risk-group Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16

Break-even premiums (pooled) 0.02154 0.02154 0.02154
Numbers insured 200 125 325
Insured losses 2 5 7

Loss coverage 0.4375

Taking the three tables together, we can summarise by saying that compared with
an initial position of no adverse selection (Table 1), moderate adverse selection leads to a
higher fraction of the population’s losses compensated by insurance (higher loss coverage)
in Table 2; but too much adverse selection leads to a lower fraction of the population’s
losses compensated by insurance (lower loss coverage) in Table 3. This argument is quite
general: it does not depend on any unusual choice of numbers for the examples.

3. The Model

Based on the motivation in the previous section, we now develop a model to analyse
the impact of restricted risk classification on equilibrium premium, adverse selection and
loss coverage. We first outline the model assumptions and define the underlying concepts.

3.1 Population Parameters
We assume that a population of risks can be divided into a low risk-group and a high

risk-group, based on information which is fully observable by insurers. Let µ1 and µ2

be the underlying probabilities of loss, of an individual in the low-risk group and high
risk-group respectively (µ1 < µ2). Let p1 be the proportion of the population in the low
risk-group and p2 = 1 − p1 be the proportion of the population in the high risk-group.
For simplicity, we assume that all losses are of unit size. All quantities defined below
are for a single risk sampled at random from the population (unless the context requires
otherwise).

Define L to be the loss in respect of a person chosen at random from the population.
L is a random variable, the randomness arising from the existence of different risk-groups,
and the fact that a loss may or may not eventuate. The expected loss is given by:
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E[L] = µ1p1 + µ2p2. (1)

E[L] corresponds to a unit version of the third row of the tables in Section 2.
Information on risk being freely available, insurers can distinguish between the two

risk-groups accurately and charge premiums π1 and π2 for risks in risk-groups 1 and 2
respectively. Moreover, individuals themselves know to which risk-group they belong, and
in that light they will adjust their demand for insurance according to its price. Define
the demand function d(µ, π) to be the probability that an individual, whose probability
of loss is µ, will buy one unit of insurance if they are offered it for premium π.

Given an individual picked at random from the population, define the insurance
coverage Q as follows: Q = 1 if the individual buys insurance, and Q = 0 otherwise. Q
is a random variable, because the demand function governs only the probability that an
individual will buy insurance. The expected insurance coverage is given by:

E[Q] = d(µ1, π1)p1 + d(µ2, π2)p2. (2)

E[Q] corresponds to a unit version of the fifth row of the tables in Section 2.
Note that we do not assume that individuals within each risk-group are homogeneous,

except for their common probability of loss. They may have different characteristics and
preferences, which are unobserved, so their insurance purchasing decisions appear to be
random. We represent this apparent randomness with this simplest possible probabilistic
model, a Bernoulli random variable.

Suppose the insurer charges premium π1 to individuals in the low risk-group and
π2 to individuals in the high risk-group. Given an individual picked at random from
the population, the premium they pay is a random variable, denoted Π, the randomness
arising from membership of one or other risk group, and the decision to buy insurance,
or not. The expected premium is given by:

E[Π] = d(µ1, π1)p1π1 + d(µ2, π2)p2π2. (3)

E[Π] corresponds to the final column of the fourth row in the tables in Section 2. Since
individuals who do not buy insurance pay premium zero, we can also write E[Π] = E[QΠ].

The insurance claim actually made by an individual chosen at random is QL. The ex-
pected insurance claim — equivalent to the ‘loss coverage’ heuristically defined in Section
2 — is given by:

Loss coverage: E[QL] = d(µ1, π1)p1µ1 + d(µ2, π2)p2µ2, (4)

where we assume no moral hazard, i.e. purchase of insurance has no bearing on the risk.
Loss coverage can also be thought of as risk-weighted insurance demand. Note that we do
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not normalize loss coverage, i.e. define it to be E[QL]/L, because L is a random variable
and not a deterministic amount of loss.

A formal probabilistic framework for the above set-up is provided in Appendix A.

3.2 Demand for insurance
In the previous section, we have introduced the concept of proportional demand for

insurance, d(µi, πi), when a premium πi is charged for risk-group with true risk µi (in fact,
d(µi, πi) was defined to be a probability). In this section, we specify a functional form for
d(µi, πi) and its relevant properties.

This form of demand function differs from others found in the literature, in that
we assume that everyone either does or does not buy insurance which fully covers their
potential loss. Other approaches would be that individuals decide what level of cover to
buy (possibly zero) or what deductible to choose. This would be a useful area for future
research.

De Jong & Ferris (2006) suggested axioms for an insurance demand function, adapted
below using our notation:
(a) d(µi, πi) is a decreasing function of premium πi for all risk-groups i;
(b) d(µ1, π) < d(µ2, π), i.e. at a given premium π, the proportional demand is greater for

the higher risk-group;
(c) d(µi, πi) is a decreasing function of the premium loading πi/µi; and
(d) for our model, where all losses are of unit size, we need to add d(µi, πi) ≤ 1, i.e. the

highest possible demand is when all members of the risk-group buy insurance.

The case of actuarially fair premiums, πi = µi, is of special interest. We define
τi = d(µi, µi) to be the “fair-premium demand” for insurance for risk-group i, which can
be regarded as the proportion of risk-group i who buy insurance at an actuarially fair
premium

De Jong & Ferris (2006) suggested a “flexible but practical” exponential-power de-
mand function, and this approach was also followed by Thomas (2008, 2009). However the
exponential-power function, whilst very flexible, is also rather intractable. In the present
paper, we use a more tractable function which satisfies the axioms above and for which
the price elasticity of demand in risk-group i is a positive constant λi, i.e.:

− πi
d(µi, πi)

∂d(µi, πi)

∂πi
= λi. (5)

Solving Equation 5 leads to the following functional form for demand:

d(µi, πi) = τi

(
πi
µi

)−λi
. (6)

This equation specifies demand as a function of the “premium loading” (πi/µi). When the
premium loading is high (insurance is expensive), demand is low, and vice versa. The λi
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parameter controls the shape of the demand curve. The “iso-elastic” terminology reflects
that the price elasticity of demand is the same everywhere along the demand curve.

Clearly, iso-elastic demand functions satisfy axioms (a) and (c) of De Jong & Ferris
(2006). Axioms (b) and (d) appear superficially to require conditions on the fair-premium
demands τ1 and τ2. However, if we define fair-premium demand-shares α1 and α2 as:

Fair-premium demand-share: αi =
τipi

τ1p1 + τ2p2
, i = 1, 2 (7)

then it turns out that the properties of most interest in the model depend just on α1

(clearly, α2 = 1 − α1). It will suffice to analyse the model for the full range of fair-
premium demand-shares 0 ≤ α1 ≤ 1 without specifying the pi and τi. It is enough to
know that for every possible α1 there must exist some combination of pi and τi which
satisfies the axioms (b) and (d) above.

4. Equilibrium

In the model in Section 3, an insurance market equilibrium is reached when the
premiums charged (π1, π2) ensure that the expected profit, f(π1, π2) = 0, where:

f(π1, π2) = E[Π]− E[QL] (8)

= d(µ1, π1)(π1 − µ1)p1 + d(µ2, π2)(π2 − µ2)p2. (9)

4.1 Risk-differentiated Premiums
The profit equation f(π1, π2) = 0 is obviously satisfied if (π1, π2) = (µ1, µ2). Setting

premiums equal to the respective risks results in an expected profit of zero for each risk
group and also in aggregate. We shall refer to this case as risk-differentiated premiums.

Following the notation introduced in Section 3, the expected insurance coverage in
this case is given by:

E[Q] = τ1p1 + τ2p2. (10)

Also, (π1, π2) being equal to (µ1, µ2), the expected premium and expected claim are equal
and given by:

E[Π] = E[QL] = τ1p1µ1 + τ2p2µ2. (11)

4.2 Equilibrium Pooled Premium
Next we consider the case of an equilibrium pooled premium. This is where risk

classification is banned, so that insurers have to charge the same premium π0 for both
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risk-groups, i.e. π1 = π2 = π0, leading at equilibrium to f(π0, π0) = 0. For convenience,
we omit one argument for all bivariate functions if both arguments are equal, e.g. we
write f(π) for f(π, π).

Equation 8 leads to the following relationship for the equilibrium pooled premium π0:

π0 =
E[QL]

E[Q]
. (12)

The existence of a solution for f(π) = 0 within the interval (µ1, µ2] is obvious, because
f(π) is a continuous function with f(µ1) < 0 and f(µ2) ≥ 0. However, uniqueness of the
solution is not guaranteed.

The equilibrium pooled premium π0 depends on the demand elasticities λ1 and λ2. If
λ1 = λ2 then π0 should satisfy some constraints which are easily deduced from economic
considerations, and in Section 4.2.1 we show that this is so. However, it is more realistic
to expect that λ1 < λ2, because of the income effect on demand (i.e. for high risks the cost
of insurance represents a larger part of an individual’s total budget constraint, so their
elasticity of demand for insurance is likely to be higher). We consider unequal demand
elasticities in Section 4.2.2, and find that the key to the properties of π0 lies in a linear
relationship between λ1 and λ2 for fixed values of π0.

4.2.1 Equal Demand Elasticities
Assuming an iso-elastic demand function with λ1 = λ2 = λ, Equation 12 provides a

unique solution:

π0 =
α1µ

λ+1
1 + α2µ

λ+1
2

α1µλ1 + α2µλ2
. (13)

This can be written as a weighted average of the true risks µ1 and µ2:

π0 = vµ1 + (1− v)µ2, where v =
α1

α1 + α2

(
µ2
µ1

)λ . (14)

Note that π0 does not depend directly on the individual values of the population
fractions (p1, p2) and fair-premium demands (τ1, τ2), but only indirectly on these parame-
ters through the demand-shares (α1, α2). In other words, populations with the same true
risks (µ1, µ2) and demand-shares (α1, α2) have the same equilibrium premium, even if the
underlying (p1, p2) and (τ1, τ2) are different.

Figure 1 plots the pooled equilibrium premium against demand elasticity, λ, for two
different population structures with the same true risks (µ1, µ2) = (0.01, 0.04) but different
fair-premium demand-shares (α1, α2).

The following observations can be derived from Equations 13 and 14, and are illus-
trated by Figure 1:
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Figure 1: Pooled equilibrium premium as a function of λ for two populations with the
same (µ1, µ2) = (0.01, 0.04) but different values of α1.

(a)
lim
λ→0

π0 = α1µ1 + α2µ2. (15)

Intuitively, if demand is inelastic, changing the premium makes no difference, and
so the equilibrium premium will be the same as the expected claim per policy if
risk-differentiated premiums were charged. In Figure 1, this is 0.013 and 0.019 for
fair-premium demand-shares of α1 = 0.9 and α1 = 0.7 respectively.

(b)
π0 is an increasing function of λ. (16)

Intuitively, an increase in demand elasticity means that at any premium between µ1

and µ2, there will be less demand than before from low risks and more demand than
before from high risks; the premium for which profits on low risks exactly balance
losses on high risks will therefore be higher. In Figure 1, both curves slope upwards.
In Equation 14, increasing λ reduces the weight w on low-risk, resulting in an increase
in the equilibrium premium π0.

(c)
lim
λ→∞

π0 = µ2. (17)
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Intuitively, if demand elasticity is very high, demand from the low risk-group falls to
zero for any premium above their true risk µ1. The only remaining insureds are then
all high risks, so the equilibrium premium must move to π0 = µ2. In Figure 1, both
curves converge to µ2 = 0.04 as λ increases.

(d)
π0 is a decreasing function of α1. (18)

Intuitively, if the fair-premium demand-share α1 of the lower risk-group increases, we
would expect the equilibrium premium to fall. In Figure 1, the curve for α1 = 0.9
lies below the curve for α1 = 0.7.

4.2.2 Different Demand Elasticities
Where demand elasticities are not the same, any equilibrium premium π0 can be con-

sistent with many different elasticity pairs (λ1, λ2). For iso-elastic demand, the elasticity
pairs consistent with any particular equilibrium premium turn out to be linearly related.
This is illustrated in Figure 2.
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Figure 2: Equilibrium premium as a function of (λ1, λ2) for α1 = 70% and α1 = 90%,
when (µ1, µ2) = (0.01, 0.04).

Figure 2 shows contour plots of constant pooled equilibrium premiums. The left-hand
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panel shows a population with fair-premium demand-share α1 = 70%, and the right-hand
panel shows a population with α1 = 90%. Each straight dashed line represents all the pairs
of λ1 and λ2 values consistent with one particular equilibrium premium. As expected,
each straight dashed line has negative slope: if one elasticity parameter rises, the other
elasticity parameter must fall, if the equilbrium premium is to stay the same. Note that
the 45-degree diagonal (λ1 = λ2) in each panel corresponds to the case of equal demand
elasticities represented by the respective curves in Figure 1.

The patterns in the plots in Figure 2 can be explained conveniently if Equation 9,
with the iso-elastic demand function, is re-arranged as follows:

λ1 log

(
π0
µ1

)
+ λ2 log

(
µ2

π0

)
= log

(
α1(π0 − µ1)

α2(µ2 − π0)

)
. (19)

We observe the following:
(a) Equation 19 expresses a linear relationship between λ1 and λ2, for a fixed value π0

of the equilibrium pooled premium. This produces the linear patterns in the contour
plots of Figure 2.

(b)
lim

(λ1,λ2)→(0,0)
π0 = α1µ1 + α2µ2. (20)

This follows directly from Equation 19. Intutively, if demand is inelastic, the equilib-
rium pooled premium will be close to the expected claim under fair premiums.

(c)
π0 ≥ α1µ1 + α2µ2. (21)

This follows from the fact that µ1 ≤ π0 ≤ µ2, λ1 ≥ 0, λ2 ≥ 0 and the relationship in
Equation 19. Intuitively, the equilibrium pooled premium is never smaller than the
expected claim under fair premiums.

(d)
lim

(λ1,λ2)→(∞,λ2)
π0 = µ2, (22)

which again follows from Equation 19. Intuitively, high demand elasticities lead to
an equilibrium where only high risks purchase insurance.

(e) Given π0:

log (π0/µ1)

log (µ2/π0)
is an increasing function of π0, (23)

i.e., the (absolute value of the) slope of the line, in Equation 19 increases with π0.
Intuitively, a higher equilibrium premium π0 is consistent with higher sensitivity to
λ2 and lower sensitivity to λ1. In the limit, as π0 → µ2, the straight line in Equation
19 becomes perpendicular to the λ1-axis, as can be seen from Figure 2.
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(f) Given π0:

lim
λ1→0

λ2 =
log
(
α1(π0−µ1)
α2(µ2−π0)

)
log
(
µ2
π0

) is an increasing function of π0, (24)

i.e., the intercept on the λ2-axis in the plots of Figure 2 increases with π0. Intuitively,
if the low-risk group is insensitive to premiums, a higher equilibrium premium π0 is
consistent with higher demand elasticity λ2 for of high risks, because this increases
the demand from that group at any premium π0 < µ2.

(g) Given π0, changing the fair-premium demand-share α1 results in parallel shifts of
the straight lines given in Equation 19, as the slopes remain unchanged while the
intercepts are adjusted accordingly. In Figure 2, changing α1 from 70% to 90% has
the effect of translating the contours towards the top-right corner. It also confirms
that increasing the fair-premium demand-share α1 results in a decrease in equilibrium
premium, because the impact of the low risk-group increases.

4.3 Multiple Equilibria
In Section 4.2, we noted that the existence of an equilibrium pooled premium in

our model is obvious, but its uniqueness is not. That multiple equilibria can arise was
demonstrated by Thomas (2009) using the exponential power demand function proposed
by De Jong & Ferris (2006). Thus, for any choice of demand function, we must determine
whether or not multiple equilibria can arise, and if they can, whether or not they are
material. We can show that multiple equilibria can arise under an iso-elastic demand
function, but only under two conditions that are practically ruled out by economic con-
siderations, so that that multiple equilibria are unlikely to be troublesome in any practical
application. These conditions are as follows.

• Demand elasticity λ1 for the low risk-group is substantially higher than demand
elasticity λ2 for the high risk-group. This is the opposite of what we would expect,
because of the income effect on demand mentioned in Section 4.2.

• The low risk-group has fair-premium demand-share within a very narrow range of
very high values. Loosely speaking, this means that the high risk-group must be
very small relative to the total population.

However, in a competitive market only the smallest equilibrium premium should
matter (see Hoy & Polborn (2000)), and the proof of the above conditions is lengthy, so
we omit it.
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5. Adverse Selection

Evidence of adverse selection is typically demonstrated in the economics literature
as positive correlation (or equivalently, covariance) of coverage and losses (e.g. for a
survey see Cohen & Siegelman (2010)). Using the notations developed in Section 3,
this can be quantified by the covariance between the random variables Q and L, i.e.
E[QL]−E[Q]E[L]. We prefer to use the ratio rather than the difference, so our definition
is:

Adverse selection: S(π1, π2) =
E[QL]

E[Q]E[L]
. (25)

Using Equations 7, 10 and 11, adverse selection under risk-differentiated premiums
is:

S(µ1, µ2) =
τ1p1µ1 + τ2p2µ2

τ1p1 + τ2p2
× 1

E[L]
=
α1µ1 + α2µ2

E[L]
. (26)

In the particular case of pooled equilibrium premium, π0, by Equation 12, we have:

S(π0) =
π0
E[L]

. (27)

However, since by Equation 21, π0 ≥ α1µ1 + α2µ2, we have:

S(π0) ≥ S(µ1, µ2). (28)

In other words, adverse selection is always higher under pooling than under risk-differentiated
premiums. Therefore it cannot serve as a measure of better outcomes for society as a whole
(Table 2 in the motivating examples in Section 2) or worse outcomes for society as a whole
(Table 3 in the motivating examples in Section 2). This leads us to the concept of loss
coverage ratio discussed in the next section.

6. Loss Coverage

The motivating examples in Section 2 suggested loss coverage — heuristically char-
acterised as the proportion of the population’s losses compensated by insurance — as a
measure of the social efficacy of insurance. This can be formally quantified in our model
by the expected insurance claim, E[QL], defined in Section 3 as:

Loss coverage: LC(π1, π2) = E[QL]. (29)

To compare the relative merits of different risk classification regimes, we need to define
a reference level of loss coverage. We use the level under risk-differentiated premiums,
and so define the loss coverage ratio, as follows:
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Loss coverage ratio: C =
LC(π1, π2)

LC(µ1, µ2)
. (30)

In the following sections we consider the loss coverage ratio when the equilibrium
pooled premium is charged, i.e. π1 = π2 = π0. We are particularly interested in es-
tablishing when the loss coverage ratio may exceed unity, The case of unequal demand
elasticities is considered in Section 6.2. As with the equilibrium pooled premium π0 itself,
the properties of the loss coverage ratio are explored by finding relationships between λ1
and λ2 for fixed values of π0. In this case, the relationships are log-linear rather than
linear. It is then possible to determine values of λ1 and λ2 for which the loss coverage
ratio exceeds unity. Arguably, this region includes plausible values of λ1 and λ2.

6.1 Equal Demand Elasticities
As for the equilibrium pooled premium, we first analyse the properties of the loss

coverage ratio in the special case of equal demand elasticities, i.e. λ1 = λ2 = λ. Using
the iso-elastic demand function in Equation 4 leads to:

C(λ) =
1

πλ0

α1µ
λ+1
1 + α2µ

λ+1
2

α1µ1 + α2µ2

, (31)

where π0 is the pooled equilibrium premium given in Equation 13. The above can also be
conveniently re-expressed as:

C(λ) =

[
wβ1−λ + (1− w)

]λ [
w + (1− w)βλ

]1−λ
βλ(1−λ)

, where (32)

w =
α1µ1

α1µ1 + α2µ2

, and (33)

β =
µ2

µ1

> 1. (34)

Figure 3 shows loss coverage ratio for four population structures. Both plots in Figure
3 show the same example, with the right-hand plot zooming over the range 0 < λ < 1.
We make the following observations:
(a)

lim
λ→0

C(λ) = 1. (35)

This follows directly from Equation 31. Intuitively, if demand is inelastic then pooling
must give the same loss coverage as fair premiums.

(b)

lim
λ→∞

C(λ) = 1− w =
α2µ2

α1µ1 + α2µ2

. (36)
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Figure 3: Loss coverage ratio as a function of λ for four population structures.

This follows from Equation 32, by taking the denominator, βλ(1−λ), inside the second
term in the numerator and noting that β > 1. Recall that for highly elastic de-
mand, equilibrium is achieved when only high risks buy insurance at the equilibrium
premium π0 = µ2, which explains the above result. The left-hand plot of Figure 3
shows that the limiting loss coverage ratio increases with increasing weight (1−w) of
high risks’ contribution to loss coverage under fair premiums. When the population
structure and relative risks are such that the high risks and low risks each contribute
equal weight to the loss coverage under fair premiums, the limiting loss coverage ratio
is 0.5.

(c) For λ > 0,
λ Q 1⇒ C(λ) R 1. (37)

The proof of this result is outlined in Appendix B. The result implies that pooling
produces higher loss coverage than fair premiums if demand elasticity is less than 1.

(d)

max
w,λ

C =
1

2

(
4

√
µ2

µ1

+ 4

√
µ1

µ2

)
=

1

2

(
4
√
β +

1
4
√
β

)
. (38)

The proof of this result is also provided in Appendix B. As can be seen from the
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right-hand plot of Figure 3, for a given value of relative risk, β, the loss coverage
ratio attains its maximum when λ = 0.5 and w = 0.5. Moreover, the maximum
loss coverage ratio increases with increasing relative risk. This implies that a pooled
premium might be highly beneficial in the presence of a small group with very high
risk exposure. Hoy (2006) obtained a similar result based on social welfare, so there
are at least two different normative justifications for pooling very different insurance
risks.

6.2 Different Demand Elasticities
In the general case, where the demand elasticities are allowed to be different, the loss

coverage ratio is given by:

C(λ1, λ2) =
α1µ1

(
π0
µ1

)−λ1
+ α2µ2

(
π0
µ2

)−λ2
α1µ1 + α2µ2

, (39)

where π0 is an equilibrium premium satisfying Equation 19. Using the relationship be-
tween λ1, λ2 and π0 in Equation 19, we can express loss coverage ratio in Equation 39 in
either of these two alternative forms:

logC = −λ1 log

(
π0
µ1

)
+ log k1, where k1 =

α1(µ2 − µ1)π0
(α1µ1 + α2µ2)(µ2 − π0)

, (40)

logC = +λ2 log

(
µ2

π0

)
+ log k2, where k2 =

α2(µ2 − µ1)π0
(α1µ1 + α2µ2)(π0 − µ1)

. (41)

Equations 40 and 41 show that given an equilibrium premium, π0, the loss coverage
ratio can be expressed as a log-linear function of either λ1 or λ2. Figure 4 shows the
graphical representations of Equations 40 and 41, for different values of α1 when (µ1, µ2) =
(0.01, 0.04). We make the following observations:
(a) Given an equilibrium premium, π0, the loss coverage ratio is an increasing function

of λ2 and, consequently, a decreasing function of λ1. Recall that Equation 19 implies
that, in order to keep the equilibrium premium constant, increasing λ2 would require
decreasing λ1. But both increasing λ2 or decreasing λ1 have the same effect of in-
creasing demand from the respective risk-groups, leading to an overall increase in the
loss coverage ratio.

(b) As a consequence, given an equilibrium pooled premium, π0, the loss coverage ratio
is:
(1) maximum when λ1 = 0 and takes the value k1 ; and
(2) minimum when λ2 = 0 and takes the value k2.
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Figure 4: Loss coverage ratio (log scale) as functions of λ1 and λ2 for different values of
equilibrium premiums, when (µ1, µ2) = (0.01, 0.04) and α1 = 90% and 99%.
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(c) For a given value of λ2, the loss coverage ratio is a decreasing function of λ1. This
can be obtained as follows:

d

dλ1
logC =

∂

∂λ1
logC +

(
∂

∂π0
logC

)(
dπ0
dλ1

)
< 0, since (42)

∂

∂λ1
logC = − log

(
π0
µ1

)
< 0, by Equation 40, (43)

∂

∂π0
logC = −λ2

π0
− µ1

π0(π0 − µ1)
< 0, by Equation 41, (44)

dπ0
dλ1

> 0, provided the equilibrium premium is unique. (45)

All else being fixed, including λ2, the equilibrium pooled premium can only increase if
λ1 increases. Higher demand elasticity and higher equilibrium pooled premium both
imply a fall in low-risk demand. A higher equilibrium pooled premium also reduces
high-risk demand. Since demand from both risk-groups falls, the loss coverage ratio
falls.

(d) However for a given value of λ1, there is no monotonic relationship between the loss
coverage ratio and the equilibrium pooled premium, π0, as Equation 40 gives:

∂

∂π0
logC = 0⇒ π0 =

λ1 − 1

λ1
µ2, (46)

with positive second derivative, indicating a possible minimum for π0 in the range
µ1 < π0 < µ2. So a non-monotonic relationship between loss coverage ratio and λ2
is possible. This is illustrated in the left panel of Figure 4, where the crossover of
the lines for different equilibrium pooled premiums implies a non-monotonic ordering
of premiums by loss coverage ratio for some values of λ1. This effect arises because
for high risks, an increase in premium and increase in elasticity have opposite effects
on demand. The sum of these effects plus the fall in low-risk demand determine the
change in the loss coverage ratio, which can either rise or fall.

(e) Focussing on demand elasticities less than 1, Figure 5 demarcates the regions where
the loss coverage ratio is greater than or less than 1. We make the following observa-
tions:
(1) For 0 < λ1 < λ2 < 1, loss coverage ratio exceeds 1. Given λ1 < λ2, let π∗0 be

the resulting equilibrium premium. Then by Equation 19, there exists a common
demand elasticity, λ∗, for both risk-groups, where λ1 < λ∗ < λ2, which leads
to the same equilibrium premium, π∗0. However we know that, if the demand
elasticities are equal and less than 1, then the loss coverage ratio exceeds 1, i.e.
C(λ∗, λ∗) > 1. But, as λ2 > λ∗, by Equation 41, C(λ1, λ2) > C(λ∗, λ∗) > 1.

(2) For 0 < λ2 < λ1 < 1, the curve showing loss coverage ratio of 1 becomes in-
creasingly more convex up to certain limit, as β increases. In other words, as the
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relative risk increases, more combinations of (λ1, λ2) produce loss coverage ratio
greater than 1.

As discussed below in Section 7, there is some empirical evidence that insurance
demand elasticities are typically less than 1 in many markets. Also, any gradient in
demand elasticity from low to high risks might be expected to be positive, because of
the income effect on demand. That is, for high risks the cost of insurance represents
a larger part of consumers’ total budget constraint, so their elasticity of demand for
insurance might be larger. Hence Figure 5 suggests that for realistic levels of demand
elasticities, loss coverage ratio may typically exceed 1. This result gets stronger with
increasing relative risks (the curve above which the loss coverage ratio is greater than
1 becomes more convex).
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Figure 5: Curves demarcating the regions where loss coverage ratio is greater than and
less than 1 for different values of µ1 when α1 = 0.9 and µ2 = 0.04.

7. Summary and Conclusions

The results in preceding sections can be summarised and interpreted as follows.
Adverse selection — at an equilibrium where the insurer just breaks even — is always

higher under pooling than under risk-differentiated premiums. On the other hand, loss
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coverage can be be higher or lower under pooling than under risk-differentiated premiums.
Loss coverage — the expected losses compensated by insurance — is higher under pooling
if the shift in coverage towards higher risks more than compensates for the fall in number
of risks insured.

For iso-elastic demand with equal demand elasticities in high and low risk-groups,
λ1 = λ2 = λ, the equilibrium pooled premium (EPP) and loss coverage ratio (LCR) can
be characterised as follows.
(a) Under pooling, EPP increases monotonically with λ, tending to an upper limit where

the only remaining insureds are high risks.
(b) Under pooling, if λ < 1 then LCR > 1.
(c) As λ increases from zero, LCR increases to a maximum at around λ = 0.5; then

decreases to 1 when λ = 1; and then flattens out at a lower limit for high values of
λ, where the only remaining insureds are high risks.

(d) The maximum value of LCR, attained for λ about 0.5, depends on the relative risk,
β = µ2/µ1. A higher β gives a higher maximum value of LCR.

For iso-elastic demand with different demand elasticities λ1 and λ2 in high and low
risk-groups, respectively, EPP and LCR can be characterised as follows:
(a) At a given EPP, there is a linear relationship between all the feasible pairs of demand

elasticities (λ1, λ2).
(b) Given λ2, LCR is a decreasing function of λ1.
(c) On the other hand, given λ1, LCR is not necessarily a monotonic function of λ2.
(d) For λ1 < λ2 < 1, LCR is always greater than 1.
(e) For other values of λ1 and λ2, LCR > 1 if λ1 is ‘sufficiently low’ compared with λ2.

The value of λ1 which is ‘sufficiently low’ may be greater or less than λ2. We did not
find any general conditions on (λ1 , λ2) that guaranteed LCR > 1.

(f) As relative risk β increases, more combinations of (λ1, λ2) result in LCR > 1.
(g) Multiple equilibria are theoretically possible, but they arise only for extreme pop-

ulation structures combined with implausible elasticity parameters, where both (i)
the fair-premium demand-share α1 of the low risk-group is in a narrow range of high
values and (ii) λ1 is substantially higher than λ2. Therefore multiple equilibria are
not likely to be a practical concern.

We suggest loss coverage — the expected losses compensated by insurance for the
whole population — as a reasonable metric for the social efficacy of insurance. If this
is accepted, and if our iso-elastic model of insurance demand is reasonable, then pooling
will be beneficial:
(a) in the equal elasticities case, whenever λ < 1; and
(b) in the different elasticities case, if λ1 is sufficiently low, compared with λ2.

There is some empirical evidence that insurance demand elasticities are typically less
than 1 in many markets. We defined demand elasticity as a positive constant in Equa-
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tion 5, but the estimates in empirical papers are generally given with the negative sign,
and so we quote them in that form. For example, for yearly renewable term insurance
in the US, an estimate of −0.4 to −0.5 has been reported (Pauly et al, 2003). A ques-
tionnaire survey about life insurance purchasing decisions produced an estimate of −0.66
(Viswanathan et al, 2007). For private health insurance in the US, several studies esti-
mate demand elasticities in the range of 0 to −0.2 (Chernew et al., 1997; Blumberg et
al., 2001; Buchmueller & Ohri, 2006). For private health insurance in Australia, Butler
(1999) estimates demand elasticities in the range −0.36 to −0.50. These magnitudes
are consistent with the possibility that loss coverage might sometimes be increased by
restricting risk classification.

Our model considers only two possibilities for risk classification, fully risk-differentiated
premiums or complete pooling. In practice, it is common to see partial restrictions on risk
classification, where particular risk factors such as gender or genetic test results or family
history are banned. Our model does not explicitly consider such scenarios. However, we
note that in our model, loss coverage is maximised when there is an intermediate level
of adverse selection, not too low and not too high. It is possible that in some markets,
complete pooling generates too much adverse selection; but partial restrictions on risk
classification generate an intermediate level of adverse selection, and hence higher loss
coverage than either pooling or fully risk-differentiated premiums.

Thus from a public policy perspective, the concept of loss coverage offers a possible
rationale for some degree of restriction on risk classification. Loss coverage also provides
a metric for assessing, in particular cases, whether the degree of restriction produces a
good or bad result for the population as a whole. Insurers typically take a different view,
arguing against any and all restrictions on risk classification. However, note that from the
insurance industry’s perspective, maximising loss coverage is equivalent to maximising
premium income. Our model assumes that insurers make zero profits in equilibrium
under all risk classification schemes, but in practice insurers hope to earn profits. If these
profits are proportional to premiums, restrictions on risk classification which maximise
loss coverage could be advantageous to the insurance industry. In other words, the concept
of loss coverage suggests that adverse selection is not always a bad thing, even for insurers.

We recognize that loss coverage is one among many possible measures of the benefit
that insurance markets may bring to society. An alternative perspective (suggested by a
referee) is that actuarially fair pricing reveals preferences, and therefore when we move to
pooling, more value is lost by those who cease to buy insurance than is gained by those
who now choose to buy insurance. Each measure will have its merits and demerits.

Future work to extend and apply these results could include: investigating equilib-
rium premium, adverse selection and loss coverage for other insurance demand functions;
investigation of the effects of partial restrictions on risk classification; and empirical in-
vestigations of insurance demand.
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Appendices

A. Probabilistic Framework of the Model

Consider a sample space Ω = {1, 2, . . . , N} of N risks. Let A1, A2, . . . , An denote a partition
of Ω (i.e. Ai ∩ Aj = ∅ for i 6= j and ∪ni=1Ai = Ω), where Ai represents the i-th risk-group.
Define the counting probability measure: P [{ω}] = 1/N for ω ∈ Ω, so that P [Ai] = #(Ai)/N ,
which will be denoted by pi for all i = 1, 2, . . . , n. Let X be any indicator random variable on
Ω, taking the values 0 or 1. Then:

E[X] =

n∑
i=1

P [Ai ]E[X |Ai ] (47)

=

n∑
i=1

pi P [X = 1 |Ai]. (48)

We define the following indicator random variables:

L(ω) = I[ individual ω incurs a loss ]

Q(ω) = I[ individual ω buys insurance ].

We assume that both L and Q, restricted to the risk group Ai, are independent Bernoulli random
variables with parameters as follows:

P [L = 1 |Ai] = µi (49)

P [Q = 1 |Ai] = d(µi, πi) (50)

where πi is the premium the insurer charges persons in risk group Ai and d(x, y) is a demand
function with 0 < d(x, y) < 1. Without loss of generality, we will assume 0 < µ1 < µ2 < . . . <
µn < 1. The conditional independence means that insurance purchase is independent of the
outcome — moral hazard is absent — although it is generally not independent of the risk of the
outcome. Then from (48) above:

E[L] =

n∑
i=1

µipi (51)

E[Q] =

n∑
i=1

d(µi, πi)pi (52)

E[QL] =

n∑
i=1

d(µi, πi)µipi. (53)
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Noting that the premium Π as a function of ω is itself a random variable, if the same
premium πi is charged to everyone in risk group Ai, we can by similar methods show that:

E[Π] =
n∑
i=1

d(µi, πi)πipi. (54)

Equations 51–54 provide formal justifications for Equations 1–4.

B. Loss Coverage Ratio

The loss coverage ratio for the case of equal demand elasticity is given in Equation 31 and
can be expressed as follows:

C(λ) =
1

πλ0

α1µ
λ+1
1 + α2µ

λ+1
2

α1µ1 + α2µ2
, where π0 =

α1µ
λ+1
1 + α2µ

λ+1
2

α1µλ1 + α2µλ2
; (55)

=
[
wµλ−11 + (1− w)µλ−12

]λ [
wµλ1 + (1− w)µλ2

]1−λ
where w =

α1µ1
α1µ1 + α2µ2

; (56)

= Ew

[
µλ−1

]λ
Ew

[
µλ
]1−λ

, (57)

where Ew denotes expectation in this context and the random variable µ takes values µ1 and
µ2 with probabilities w and 1− w respectively.

Result B.1. For λ > 0,
λ Q 1⇒ C(λ) R 1. (58)

Proof. Case λ = 1: It follows directly from Equation 57 that C(1) = 1.

Case 0 < λ < 1: Holder’s inequality states that, if 1 < p, q < ∞ where 1/p + 1/q = 1, for

positive random variables X,Y with E[X]p, E[Y ]q <∞, E [Xp]1/pE [Y q]1/q ≥ E[XY ].

Setting 1/p = λ, 1/q = 1−λ, X = µλ(λ−1) and Y = 1/X, applying Holder’s inequality on
Equation 57 gives,

C(λ) = Ew

[
X1/λ

]λ
Ew

[
Y 1/(1−λ)

]1−λ
≥ Ew[XY ] = 1. (59)

Case λ > 1: Lyapunov’s inequality states that, for positive random variable µ and 0 < s < t,
E[µt]1/t ≥ E[µs]1/s.

So Equation 57 gives:

C(λ) =
Ew
[
µλ−1

]λ
Ew [µλ]

λ−1 =

[
Ew
[
µλ−1

]1/(λ−1)
Ew [µλ]

1/λ

]λ(λ−1)
≤ 1, (60)

as Ew
[
µλ−1

]1/(λ−1) ≤ Ew [µλ]1/λ for λ > 1 by Lyapunov’s inequality.
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Result B.2. For 0 < λ < 1,

max
w

C(λ) =
β − 1

βλ(1−λ)
(
βλ−1
λ

)λ (
β1−λ−1
1−λ

)1−λ , where β =
µ2
µ1

> 1. (61)

Proof. Proceeding from Equation 56, we have:

C(λ) =

[
wβ1−λ + (1− w)

]λ [
w + (1− w)βλ

]1−λ
βλ(1−λ)

(62)

⇒ ∂

∂w
logC(λ) =

λ(β1−λ − 1)

wβ1−λ + (1− w)
− (1− λ)(βλ − 1)

w + (1− w)βλ
(63)

⇒ ∂2

∂w2
logC(λ) = − λ(β1−λ − 1)2

[wβ1−λ + (1− w)]
2 −

(1− λ)2(βλ − 1)2

[w + (1− w)βλ]
2 < 0. (64)

⇒ ∂

∂w
logC(λ) = 0⇒ w =

λ(β − 1)− (βλ − 1)

(β1−λ − 1)(β1−λ − 1)
gives the maximum. (65)

Inserting the value of w in Equation 62, gives the required result.
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Figure 6: Maximum loss coverage ratio as a function of λ for specific values of β.

Figure 6 shows the plots of maxw C(λ) for β = 4, 5. This leads to the following result:
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Result B.3. For 0 < λ < 1,

max
w,λ

C =
1

2

(
4
√
β +

1
4
√
β

)
. (66)

Proof. Equation 61 can also be expressed as:

max
w

C(λ) =
1

2

(
4
√
β +

1
4
√
β

) 2
(

4
√
β − 1

4√β

)
(

(
√
β)
λ− 1

(
√
β)λ

λ

)λ(
(
√
β)

1−λ− 1

(
√
β)1−λ

1−λ

)1−λ , (67)

=
1

2

(
4
√
β +

1
4
√
β

)
R(½)

R(λ)
, (68)

where R(λ) =


(√
β
)λ − 1

(
√
β)
λ

λ


λ

(√
β
)1−λ − 1

(
√
β)

1−λ

1− λ


1−λ

. (69)

The result follows from R(λ) ≥ R(½), which in turn follows from the fact that R(λ) is symmetric
and convex over 0 < λ < 1. As symmetry is obvious, we only need to prove convexity of R(λ).

Note that,

logR(λ) = g(λ) + g(1− λ), where g(λ) = λ log


(√
β
)λ − 1

(
√
β)
λ

λ

 . (70)

If g(λ) is a convex function over (0,1), then g′′(λ) ≥ 0 and g′′(1− λ) ≥ 0, so logR(λ) is convex,
which in turn implies R(λ) is convex. So it suffices to show that:

g(x) = x log

(
ax − a−x

x

)
(71)

is convex over (0,1), where a =
√
β > 1. Now,

g′(x) = log

(
ax − a−x

x

)
+

(
ax + a−x

ax − a−x

)
x log a− 1. (72)

g′′(x) =
(ax + a−x)x log a− (ax − a−x)

x(ax − a−x)
+
a2x − a−2x − 4x log a

(ax − a−x)2
log a ≥ 0, (73)

as both [(ax+a−x)x log a−(ax−a−x)] and [a2x−a−2x−4x log a] are increasing functions starting
from 0 at x = 0. Hence proved.


