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Dichotomous Choice Contingent Valuation with ‘Dont Know’ Responses and

Misreporting.

Summary

A new approach is presented that simultaneously deals with Misreporting and Don’t

Know (DK) responses within a Dichotomous Choice contingent valuation framework. Util-

ising a modification of the standard Bayesian Probit framework, a Gibbs with Metropolis-

Hastings algorithm is used to estimate the posterior densities for the parameters of interest.

Several model specifications are applied to two CV data sets. The first is on Wolf Man-

agement Plans. The second on the US Fee Demonstration Program. In contrast to other

studies we find that DKs are more likely to be from people who would be predicted to

have a positive utility for the bid. Therefore, a DK is more likely to be a YES than a NO.

We also find evidence of misreporting, primarily in favour of the NO option. Finally, our

willingness-to-pay estimates are both less than and greater than those previously reported

which reflects the fact that inclusion of DK responses has no a priori impact on the key

parameters of interest in this literature.

KeyWords: Contingent Valuation, Don’t Knows, Uncertainty, Misreporting, Bayesian

Probit

JEL: C25, C11, Q51
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1. Introduction

The expressed preference (EP) literature has long recognised that psychological and

cognitive factors play a role in determining the values that are elicited from individuals, and

may also lead to uncertainty by the individual about their own choices/preferences (e.g.

Kahnmand and Tversky, 2000, Li and Mattson, 1995, Samnaliev et al. 2006). Likewise,

research has also identified that people may either intentionally or unintentionally report

preferences that would not be ‘revealed’ in a real situation i.e., misreport (e.g., Balcombe

et al. 2007).4 The practical consequences of uncertainty and/or misreporting are that

the willingness to pay (WTP) estimates derived from EP studies may be subject to

hypothetical bias and therefore highly inaccurate.

In this paper we develop a new econometric approach for the treatment of uncertainty

and misreporting for dichotomous choice contingent valuation data. To date most research

has been directed to resolving the issue of uncertainty, either via the inclusion of the Don’t

Know (DK) option or through the use of certainty scales that ask respondents to rate the

certainty of their response. Our approach is to assume that uncertainty may be one

reason for misreporting, although that misreporting may also occur for other reasons. It

is also based on the view that the selection of DK represents a failure of the individual

to recognise their own preferences and, in this sense, constitutes a form of misreporting.

However, we entertain the possibility that uncertainty may not just lead to the selection

of a DK response but may lead to the falsely reported acceptance or rejection. Some may

find our terminology problematic since the word ‘misreporting’ may harbour connotations

that such responses are somehow deliberately misleading. However, our use of the word

4The concept of misreporting is based on the idea of misclassification introduced by Hausman et al.

(1998) and employed by Caudhill and Mixon (2005).
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‘misreporting’ is not meant to imply that respondents necessarily intend to deceive, though

this is another potential reason for misreporting and one which can equally well be dealt

with within the structure we adopt.

As Samnaliev et al. (2006) argue, there is no precise definition of uncertainty, meaning

that it can emerge for many reasons. For example, Li and Mattsson (1995) argued that

survey respondents will have incomplete knowledge and this gives rise to preference uncer-

tainty. Alternatively, Meyerhoff and Liebe (2006) examine protest responses and there is

no reason to suggest that some of these manifest themselves as DKs. Thus, our approach

simultaneously allows for a probability of misreporting on behalf of respondents as well

as capturing uncertainty. That is, it embodies the notion that somebody can report one

thing, when their utility suggests that they should report another. Our approach allows for

probabilities of replying DK or misreporting to depend on the expected levels of utilities of

individual respondents. Hence, our models can investigate whether respondents are more

likely to answer DK if they are predicted to be a YES or NO, and whether YES’s are more

likely to misreport NO and vice versa. The extreme case where DKs can legitimately be

pooled with YESs or NOs, a model specification examined in this literature, can also be

tested. Therefore, models without misreporting or where DKs are pooled emerge as special

cases. In addition, our model allows the misreporting probabilities or the probabilities of

reporting DK, to depend on the expected level of utility of the respondent. Overall, our

approach is both general and more flexible than models currently in the literature.

The Probit models introduced in this paper can be estimated using either a Classical or

Bayesian approach. However, due to the necessary constraints on an number of probability

parameters, a Bayesian approach is advantageous. The Bayesian approach also allows for

an approach to inference that allows non-nested models to be compared using marginal
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likelihoods and associated Bayes Factors . In this paper we describe and show how a

Bayesian approach can be implemented which adds to a small but growing number of

Bayesian applications in the contingent valuation literature (e.g., Arana and Leon, 2005

and Leon and Leon, 2003).

The paper is structured as follows. Section 2 briefly reviews the antecedent literature

in this area. The next section develops the theoretical framework and assumptions we

employ to develop our model. models we propose that taken account of uncertainty and

misreporting. In Section 4 we present the modified Probit we employ in our analysis,

describing the various models that emerge from the structure presented as well as our

estimation methodology. The models developed in the paper are then used to analyse the

Contingent Valuation (CV) data sets of Chambers andWhitehead (2003) and Samnaliev et

al. (2006) in Section 5. Our analysis presents the empirical results along with a discussion

of the key issues identified. Finally in Section 6 we conclude.

2. Antecedent Literature

2.1. Uncertainty

The appropriate treatment of DKs, and uncertainty more generally, has been exten-

sively debated in the EP literature since the NOAA panel’s recommendation to include

a DK (or opt out) option (i.e., Arrow et al. 1993). Despite the importance of this is-

sue many dichotomous choice contingent valuation studies assume that respondents are

certain about their responses such that DK responses, if included, can be discarded with-

out question. However, the situation is changing. Li and Mattson (1995) and Ready et

al. (1995) were the first to address the question of the role of uncertain values in WTP

studies and subsequent authors (e.g. Alberini et al. 2003, Carson et al. 1998, Cham-

bers and Whitehead, 2003, Champ et al. 1997, Loomis and Ekstrand, 1998, Van Kooten,
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2001, Wang, 1997) have catalogued, modified and extended these approaches. Within this

literature uncertainty has been be rationalised by a number of different mechanisms (six

are examined in Shaikh et al. (2007)) which is a reflection of the complex meaning of

uncertainty.

In general, it has become common practice to assess levels of uncertainty using either

an explicit DK option as part of the WTP question or via the use of certainty scales that

require respondents to score the certainty of responses after the WTP question has been

answered. In an effort to determine the relative merits of these two approaches there are

now a number of papers that examine both approaches simultaneously (e.g., Samnaliev et

al. 2006, Whitehead and Cherry, 2006).

The approach presented in this paper is most closely associated with the inclusion of the

DK option and how to deal with these responses.5 For example, Li and Mattson (1995)

simply down-weight the responses of people that are uncertain, while other approaches

make the restrictive assumption that uncertainty arises only because options have similar

levels of utility, and that respondents are only able to make choices if utility thresholds are

exceeded (e.g. Alberini et al. 2003, Wang 1997). This rationale gives rise to ordered logit or

probit specifications such as that used by Groothuis and Whitehead (2002). Other authors

such as Carson et al. (1998) and Chambers and Whitehead (2003) employ a multinomial

Logit treatment of DK’s. As in Hanener and Adamowicz (1998), Chambers andWhitehead

investigate whether DK’s are more like NO’s than YES’s. These results suggest that a DK

is more likely to be a NO than a YES. However, while Carson et al. suggest that a DK can

be taken as a NO, Chambers and Whitehead reject this hypothesis. Unfortunately, the use

5A useful summary and comparison of the various certainty scale methods employed in the literature

is presented by Shaikh et al. (2007).
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of the multinomial Logit (in this context) departs from the utility maximisation framework,

whereby respondents answer YES or NO according to preferences characterised by a unique

set of utility parameters, unless a restriction can be made across the parameter sets that

effectively pool DKs with YES or NO responses. Therefore, if the responses cannot be

pooled, then WTP estimates must effectively ignore the DK responses if the multinomial

model is used.

The paper which is nearest to our research is that of Caudhill and Groothuis (2005).

They explain that there are observed choices from the contingent valuation experiment

and that there are also a number of unobservable choices that relate to the true meaning

of a DK. That is a DK might be a YES, NO or DK. Using a logit specification this implies

that there are five alternatives and they specify a likelihood function as an estimation

problem in missing data. In addition, they also examine various constraints that pertain

to the DK response that allow them to test if DK responses can be pooled with YES or

NO responses. The method we propose is similar in spirit in that we also examine if

DK is really a YES, NO or DK. However, we simultaneously allow for misreporting which

significantly complicates the model we present.

Finally, Svensson (2006) provides an interesting study of how various efforts to deal

with uncertainty associated with hypothetical bias can in turn give rise to other forms of

bias. It is shown that the exclusion of uncertain responses in CV of WTP for traffic risk

reduction biased results in favour of older respondents. These findings provide support

for the use of all data collected and not just that part of the data that appears to meet

researchers requirements regarding certainty of responses.

2.2. Misreporting

Misreporting in EP studies can happen in two or more ways. First, there may be differ-
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ences between stated and actual preferences (or intentions), where the respondent is aware

of the difference. This type misreporting can be inferred to exist from the misreporting

of past behaviour by individuals (e.g., Granberg and Holmberg, 1991). Second, respon-

dents may be imperfect predictors of their own behaviour/preferences and misreport their

preferences for this reason (and will therefore arguably report DK).

Work on a statistical approach to account for misreporting within the EP literature has

been conducted by Caudill and Mixon (2005) and Balcombe, et al. (2007). These research

papers share a lineage with the misclassification approach employed by Hausman et al.

(1998) using a logit specification.6 They key finding in this research is that there is evidence

of misreporting. For example, Caudhill and Mixon estimate that actual undergraduate

cheating in exams is probably 20 percent higher than findings based on direct questioning

of students. The method employed in this research simply takes the basic logit model and

modifies the likelihood function directly to take account of the possibility of misreporting.

Balcombe et al. employ a similar method, although the way in which they modify the

likelihood function of the logit is different from that of Caudhill and Mixon who follow

Hausman et al. Furthermore, to overcome some of the econometric difficulties, in particular

model selection and identification, that emerge within a Classical context they employed a

Bayesian methodology. In their EP study of consumer food choice and the use of pesticides

Balcombe et al. found strong empirical support for misreporting. This existence of

misreporting resulted in significant downward revision in WTP estimates, of almost 30

percent, for food produced without the use of pesticides.

6The use of the Probit in this paper is not the first time that the Probit has been employed to consider

issues of misclassification. For example, Leece (2000) employed a Probit to examine issues associated with

household choice of mortgage type.
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3. The Theoretical Framework and Assumptions

Utility Ui is represented as:

Ui = α
′zi − bi + vi (1)

where bi is the bid level of respondent i(i = 1..n), α
′zi is the mean WTP for a person with

attributes zi (including an intercept) and vi is a mean zero normal variate with precision

(inverse variance) θ. An individual that is fully aware of their preferences will accept a bid

if Ui > 0 and otherwise reject. The model can be scaled to have unit variance/precision

by taking

√
θUi =

√
θα′zi −

√
θbi +

√
θvi

ui = µ′zi −
√
θbi + ei

= x′iβ + ei (2)

Denoting fN
(
x|µ, θ−1

)
as the normal density with mean µ and variance θ−1 the error in

the normalised utility function is iid normal:

ei ∼ fN (ei|0, 1) (3)

This assumption gives a probit model that is identified through the variance being 1, where

the estimate of WTP can be recovered as µ
′zi√
θ
. If bi is the logged bid then this represents

the logged WTP, in which case the WTP estimate is exp(µ
′zi√
θ
). Under these assumptions

it follows that

ui ∼ fN
(
ui|x′iβ, 1

)
(4)

ui ∼ φ
(
ui − x′iβ

)
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where φ (.) denotes a standard normal density function.

Next we define

yi = 0, 1, •

where 0 denotes a rejection of the bid, 1 for and acceptance and • for a DN. We also define

an indicator variable

δi = 1 if ui > 0 and zero otherwise.

The indicator variable simply tells us whether an individual has positive or negative utility

at a given bid, independent of misreporting. Thus, in the absence of both misreporting

and uncertainty δi=yi. Unlike a standard probit model, a distinction is made between δi

and yi. The variable δi can only take two values (not three) and δi may or may not be

equal to yi where yi is zero or 1. Therefore, people may make choices that diverge from

their preferences.

We now develop our model by attaching probabilities to each of the events and these

probabilities are (as we demonstrate) estimable. First we define the following (where

P (a|b) defines the probability of a given b ) :

P (δ|y, xi) = Ψδ|y,i (5)

P (y|δ, xi) = Θy|δ,i (6)

P
(
ei < x

′
iβ
)
= Φi (7)

P (δ|xi) = Φδi (1−Φi)1−δ (8)

P (y|xi) = Λy,i (9)
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The following conditions hold axiomatically:

Λy,i =
1∑

δ=0

Θy|δ,iΦ
δ
i (1−Φi)1−δ (10)

Ψδ|y,i =
Θy|δ,iΦ

δ
i (1−Φi)1−δ∑

1

δ=0Θy|δ,iΦ
δ
i (1−Φi)1−δ

Θy|δ,i =
Ψδ|y,iΛy,i

Φδi (1−Φi)1−δ

These conditions on the key model parameters {Λy,i} ,
{
Ψδ|y,i

}
and

{
Θy|δ,i

}
allow us

to generalise the Probit model so that we can examine uncertainty and misreporting. The

structure of the model above share simililarities to a specification based on mixtures, where

the population is divided into groups according to δ. However, unlike a mixtures approach,

the underlying utility parameters are homogeneous accross the population.

To operationalise the model we need to make a number of assumptions. Furthermore,

as we explain there are number of different ways in which we can proceed and this gives

rise to a number of different model specifications.

4. Modified Probit: Alternative Model Structures

We can parameterise our model in a number of ways which yields distinctly different

specifications. Four restrictions on the parameters {Λy,i} ,
{
Ψδ|y,i

}
and

{
Θy|δ,i

}
(apart

from adding up restrictions and those in equation set (10)) are required. Importantly, not

all of the parameters can be simultaneously fixed across i. The choice of which parameters

to fix (as well as parameters to be estimated), is a question of model choice. For example,

Θ1|0,Θ0|1,Θ•|0,and Θ•|1 can be specified as the parameters that require estimation (over

and above β), with Θ1|1 and Θ0|0 being determined by adding up. However, this choice is

by no means unique. Ψδ|y (i.e. Ψδ|y,i = Ψδ|y for all i) might instead be chosen as parameters

to be estimated. However, one cannot, in general, simultaneously fix parameters such as

Θ1|1 and Ψ1|1 since there is an implied relationship between the two that requires at least
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one must be a function of variables in the utility function. To aid understanding we now

present four unique models that result from this characterisation. As we discuss, one of

the approaches is impractical because of various statistical issues.

4.1. Model 1: The Fixed Probability of Misreporting

Model one is where:

• Θ1|0,Θ0|1,Θ•|0,Θ•|1 are fixed probabilities (and therefore Θ1|1,Θ0|0 by adding up)

This model is in the spirit of Hausman et al. (1998). Under these restrictions, the

remainder of the parameters can be calculated as:

Θ1|1 = 1−Θ0|1 −Θ•|1 (11)

Θ0|0 = 1−Θ0|0 −Θ•|0

Λ1,i = Θ1|0 (1−Φi) + Θ1|1Φi (12)

Λ0,i = Θ0|0 (1−Φi) + Θ0|1Φi

Λ•,i = Θ•|0 (1−Φi) + Θ•|1Φi

Ψ1|1,i =
Θ1|1Φi

Θ1|0 (1−Φi) + Θ1|1Φi
; Ψ0|1,i = 1−Ψ1|1,i (13)

Ψ0|0,i =
Θ0|0 (1−Φi)

Θ0|0 (1−Φi) + Θ0|1Φi
; Ψ1|0,i = 1−Ψ0|0,i

Ψ1|•,i =
Θ•|1Φi

Θ•|0 (1−Φi) + Θ•|1Φi
; Ψ0|•,i = 1−Ψ1|•,i

This model is quite tractable, since their need be no restrictions on the parameters Θy|δ

other than that they lie between zero and one.

4.2. Can other probabilities be treated as estimable parameters?

An alternative approach to treating misreporting and DK’s is to assume that given a

respondent has replied YES, NO or DK, then they have a constant probability of having
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either positive or negative utility, that depends only on what their response was. However,

these restrictions do not fully define the model. A fourth restriction is required. Examples,

of potential models of this sort are:

• Ψ1|1,Ψ1|0 andΨ1|• are fixed probabilities (and thereforeΨ0|1,Ψ0|0 andΨ0|• by adding

up)

• Λ•,i is either also fixed, or a known function of the data.

Alternatively, an identified model could be obtained by fixing

• Ψ0|1,Ψ1|0,Θ•|0,Θ•|1

Unfortunately, these approaches do not prove to be practical. While the remaining

parameters can easily be calculated, feasible values for Ψδ|y can easily lead to the other

parameters in the model being outside the unit interval unless they are highly constrained.

For example, under either set of assumptions above:

Λ0,i =
1(

Ψ1|1 −Ψ1|0
)
[
Ψ1|•Λ•,i −Ψ1|1 (Λ•,i − 1)−Φi

]
(14)

Λ1,i =
1(

Ψ0|0 −Ψ0|1
)
(
Ψ0|•Λ•,i −Ψ0|0 (Λ•,i − 1)− (1−Φi)

)

Since Λ0,i or Λ1,i must be bounded between 0 and 1, then if Φi is either very small or

very large for any individual in the sample, then Ψ1|1 or Ψ0|0 must be large in order for

Λ0,i or Λ1,i to maintain their bounds. Thus, for any data set Ψ1|1 and Ψ0|0 need to depend

on Φi such that Ψ1|1 → 1 as Φi → 1 and Ψ0|0 → 1 as Φi → 0. A similar problem arises if

the parameter set becomes
{
Ψ0|1,Ψ1|0,Θ•|1,Θ•|0

}
. In short fixing Ψ0|1,Ψ1|0 and Ψ1|1 is

an impractical option. It might be possible to functionalise Ψ1|1,i in a different way from

equation (13). However, we propose a more straight forward approach below.
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4.3. Model 2: Variable Probabilities for Don’t Knows.

Should the Θy|δ,i be constants? Arguably, the probability that a respondent with

positive utility for a bid replies DK is likely to increase as the bid increases. That is, if a

respondent is expected to have a very large positive utility, they may also be more aware

that their preference is for the affirmative. This type of reasoning gives rise to alternative

model specifications, the simplest being as follows

Θ•|1,i = Θ∗•|1 (1−Φi)ρ (15)

Θ•|0,i = Θ∗•|0Φ
ρ
i

where ρ is an additional parameter. In order for the probabilities Θ•|1,i and Θ•|0,i to be

globally bounded on the unit interval, Θ∗•|1 and Θ
∗
•|0,i also need to be on the unit interval

and ρ > 0. This extension creates no significant problems for estimation, although the

nature of the sampler requires an additional step (for β) and the estimation of an additional

parameter.

4.4. Model 3: Variable Probabilities of Misreporting

A similar type of adjustment as in equation (15) can also be made for the misreporting

parameters Θ0|1,i and Θ1|0,i. Arguably, the probability of falsely reporting NO given a

positive utility might decrease as the expected level of utility increases. This argument is

perhaps less compelling than for the case of the DKs. If misreporting is deliberate, then

there is no reason to believe that the probability that the person will report falsely will

change with their expected utility. However, if misreporting is due to uncertainty on the

part of the respondent about their own preferences, then Θ0|1,i and Θ1|0,i are likely to

depend on Φi. For example, somebody is more likely to misreport that they would accept

a bid, when they have negative utility, the higher their (negative) level of utility ui. This
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supports a third specification where, in addition to the conditions in equation (15) above:

Θ0|1,i = Θ∗
0|1 (1−Φi)ρ (16)

Θ1|0,i = Θ∗
1|0Φ

ρ
i

A further expansion of the model would be to differentiate between ρ across the different

probability parameters. However, these extensions are not investigated here. Importantly,

as the parameter ρ converges to zero for both Models 2 and 3, the constant probability

model (Model 1) is supported, suggesting that individuals’ misreporting or DK responses

are independent of their level of utility. Such a circumstance would occur if people were

ignoring the bid information.

Finally, other models/hypotheses are of interest. In particular, the hypothesis that

Θ0|1,i = Θ1|0,i = 0 . If this hypothesis holds then there is no support for misreporting

in the model. Also, we will be interested in whether DKs should be treated as YES or

NO (i.e., pooling of DKs), and finally, the difference between results for those models that

incorporate DKs and a model which simply does not use DKs. How we examine these

various model specification is explained in Section 4.6.

4.5. Estimation Methodology

The parameters to be estimated are, in addition to β for each of the models 1,2 and 3

are:

Ω1 =
{
Θ1|0,Θ0|1,Θ•|0,Θ•|1

}
(17)

Ω2 =
{
Θ1|0,Θ0|1,Θ

∗
•|0,Θ

∗
•|1, ρ

}
(18)

Ω3 =
{
Θ∗
1|0,Θ

∗
0|1,Θ

∗
•|0,Θ

∗
•|1, ρ

}
(19)

Each of the three models can be estimated using a Bayesian or Classical approach. The
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classical approach would maximise the log-likelihood

lnL =
∑

yi=0

ln (Λ0,i) +
∑

yi=1

ln (Λ1,i) +
∑

yi=•
ln (Λ•,i) (20)

with respect the to the parameters in each model using the expressions in the previous

section.

As we have already stated a Bayesian approach is employed here. A note on the priors

that we use and the Bayesian algorithm we employ is presented in detail in the appendix

to this paper. The algorithm is a Gibbs with Metropolis-Hastings algorithm. Only slight

differences are made to the algorithm to estimate each of the models.

In general the Bayesian approach to estimation uses a latent variable approach. There

are advantages in employing Bayesian methods as opposed to Classical in that all of the

parameters in the model (with the exception of β) require inequality constraints, since they

represent probabilities and are therefore between 0 and 1, and this is easily accommodated.

The Bayesian approach to estimation is highly intuitive in the current context, since in

order to model misreporting and/or DKs the latent variables that are generated within

the algorithm can be derived using the probability calculations in the equation set (10).

In addition, by introducing a rejection step within the algorithm we place an inequality

restriction on the bid coefficient as it must be negative.

4.6 Hypothesis Testing

In order to evaluate the performance of the models the marginal likelihoods for each

model were calculated. The marginal likelihood for a model M with parameters P is :

∫
LM (P ) fM (P ) dP

where LM () is the likelihood for model M and fM (P ) are the priors. The ratio of two

marginal likelihoods is referred to as a Bayes Factor. A Bayes factor represents the poste-
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rior odds in favour of the numerated model if the prior odds of each model are equal. The

marginal likelihoods for each model are estimated using the Gelfand and Dey method (see

Gelfand and Dey, (1994) or Koop (2003) pp.104-106, for details). The marginal likelihood

for each of the models can be compared, with the best performing model being the one

with the largest likelihood. This enables Bayesian hypothesis testing for the hypothesis

that ρ = 0. We can also test hypothesis such as (in the case of model 1) Θ1|0 = Θ0|1 = 0,

in which case there is no misreporting in the model.

4.6.1. DK meaning YES or NO?

Previous authors have tested for the "pooling hypothesis", that DK means NO or,

alternatively, YES. In the multinomial Logit this takes the form of restricting across para-

meter sets (e.g., Caudhill and Groothuis, (2005)). In the context of the current model, the

"pooling hypothesis" takes a different form. The concept that DK means YES (or NO)

is not entirely unambiguous once misreporting exists. The best interpretation would be

that:

Ψ1|•,i = Ψ1|1,i (21)

That is, the chance that a respondent has positive utility for a bid is the same for somebody

that answers YES or DK. This is quite different from the hypothesis that people never

report DK if it is NO. Taking again the case of Model 1:

Θ•|0 = 0

⇒ Θ1|0 +Θ0|0 = 1 (22)

⇒ Ψ0|•,i = 0 and Ψ1|•,i = 1

It would somewhat odd to impose this condition if Ψ1|1,i < 1, whereby someone who

replied DK is more likely to have positive utility for the bid than somebody who replied
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YES! Under the constant probability case (Model 1), the hypothesis that Ψ1|•,i = Ψ1|1,i

implies that:

Θ1|1Φi
Θ1|0 (1−Φi) + Θ1|1Φi

=
Θ•|1Φi

Θ•|0 (1−Φi) + Θ•|1Φi

⇒ Θ1|1Θ•|0 = Θ•|1Θ1|0 (23)

In the absence of misreporting, this would imply that Θ•|0 = 0. However, with misreport-

ing, clearly what is required for the last ratio to be positive to be preserved. Thus we have

the two hypotheses:

DK as a YES

Θ1|1Θ•|0 = Θ•|1Θ1|0 (24)

DK as a NO

Θ0|0Θ•|1 = Θ•|0Θ0|1 (25)

In the case where the parameters Θy|δ are not constants (as in Models 2 and 3), these

restrictions can be imposed. However, it leads to a certain arbitrariness in the model,

since one of the parameters Θ•|0,i or Θ•|1,i needs to be solved in terms of the others, thus

they cannot both be set as in Model 2. For this reason, we only consider this test in

the case of Model 1. These conditions can be imposed on the model and tested by using

the marginal likelihood in the standard way. These calculations have been performed for

all models estimated and the results are reported in the next section. Finally, although

a testable hypothesis, it will be useful to consider the difference (in terms of estimated

WTP) between models that incorporate DKs, and those that simply eliminate them from

the sample. All these submodels are also considered in the next section.

4.7. Estimating WTPs
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The WTP estimates can be calculated as described in Section 2, where exp(µ
′zi√
θ
) can

be used to compute a WTP estimate for an individual if the bid option is logged or µ
′zi√
θ

otherwise. For the sample as a whole, it is more informative to map the distribution of

exp
(
µ′z̄√
θ

)
or µ

′z̄√
θ
where z̄ is the sample mean. With no loss of generality, all elements of zi

other than the intercept can have a zero mean (by subtracting their means). In this case,

the WTP estimate at the mean point is simply exp( µ0√
θ
) or µ0√

θ
where µ0 is the intercept.

The denominator must be constrained to be positive unless researchers are prepared to

admit that respondents have a negative utility for money. However, even very small values

for
√
θ will lead to very large estimates of the WTP. Therefore, it may be sensible to place

a rejection step within the sampler to impose the condition that exp
(
µ0√
θ

)
or µ0√

θ
is less

than the maximum bid within the sample. This has little or no effect on the resulting

posterior medianWTP, but a very large impact on the mean of the posterior. The posterior

distribution of this quantity can be calculated using the posterior distributions for µ and

√
θ produced by the sampler. Also, providing the same constraints are put on all models,

then by constraining exp
(
µ
0√
θ

)
or µ

0√
θ
to be less than some value, creates no problems for

the calculation of the marginal likelihoods.7

5. Model Applications

5.1. Data and Model Specification

In this Section we employ two data sets. The first is Chambers and Whitehead (2003)

who estimated the WTP for a wolf management plan in Minnesota. This data set was

also analysed by Caudhill and Groothuis (2005) in an analysis of DK responses. The

7Constraints on the magnitude of the WTP do create problems for testing the hypothesis that the

either logged price or unlogged price should enter the model. This form of modification means that the

integrating constant for the prior will change. For this reason we do not consider this issue in this paper.
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results they present do not include all the explanatory variables used by Chambers and

Whitehead and they pool the data from the two areas in which the survey was collected,

St. Cloud and Ely. Chambers and Whitehead use the CV method where respondents are

asked questions about their attitudes and "non use motives" in addition to age, sex etc.

Importantly, they also include a DK response option in the CV and a large number of

respondents answered DK. Chambers and Whitehead use a multinomial logit model to

differentiate between DK and NO responses. Among other issues, they explore whether

the DKs are equivalent to NOs as suggested by Carson et al. (1998). They reject this

hypothesis. However, their results suggest that DKs are more similar to NOs than YESs.

The second data set we use was produced by Samnaliev et al. (2006). In this paper

the authors examined WTP for access to public land as part of the US Fee Demonstration

Program (FDP). Two versions of the survey were employed, one of which was a dichoto-

mous choice CV with DK option. In our analysis we estimate almost the same WTP

function, the only difference being that we did not have the Round variable which in the

analysis presented by Samnaliev et al. was found to be statistically insignificant. Using a

logit, Samnaliev et al. estimated a number models in which the DKs were dropped from

the analysis, assumed to be YES responses and assumed to be NO responses. They found

that when DK are dropped the resulting WTP is less than when they assumed YES and

WTP is greater than when DK is assumed NO.

The results presented in this section used the algorithms described in detail in the

appendix. These algorithms were tested using Monte Carlo data and we established that

they accurately identified the various data generating processes examined. For both sets

of data, the burn in phase was set to 2,000 iterations, followed by another 100,000 itera-

tions in which every 10th observation was sampled (so as to decrease the dependence in
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the sequence). Convergence was monitored using visual plots of the sequences of values

produced by the sampler and by modified t-tests for each of the parameters (allowing for

the dependence in the series).

5.2. Marginal Likelihoods and Model Selection

We begin by examining the three model specifications outlined in Section 4. For both

data sets and all models the marginal likelihoods are presented in Table 1.

{Approximate Position of Table 1}

The results in Table 1 clearly indicate that the models with constant probabilities for

misreporting and DKs (Model 1) are preferred to all other model specifications. For exam-

ple, the St. Cloud data Model 1 has a Bayes Factor relative to Model 2 of approximately

exp(191.56−189.5)=7.8. You interpret this as indicating that Model 1 has posterior odds

of nearly eight to one over Model 2 (where prior and posterior odds are equal). For the

Ely data, Model 3 is the least supported, with posterior odds of nearly six to one. We also

find the same result the FDP data although the difference between Model 1 and Model

3 is small. Importantly, for all data sets the marginal likelihoods support the use of the

misreporting model over the model without misreporting Θ1|0 = Θ0|1 = 0. If this restric-

tion is imposed then all data sets see large reductions in their marginal likelihoods relative

to all three other models that incorporate misreporting. Notably, the fall in the marginal

likelihood for the St.Cloud is larger than for the Ely and FDP data, suggesting that for

some reason their is a greater degree of misreporting for this data set. With regard to the

pooling tests, it can be seen that pooling DKs with either YESs or NOs in all data set

reduces the marginal likelihoods, although pooling with the YESs yields a relative lower

marginal likelihood for all data sets. Overall, we would reject the pooling of DKs with
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other responses. In summary, these results imply that while DKs should not be treated as

YESs or NOs, they are more like a YES than a NO. This finding is in contrast with the

previous findings of Chambers and Whitehead (2003) and Caudhill and Groothius (2005).

Given these findings in our remaining analysis, we restrict our discussion to the results

generated by Model 1 since it was the best performing model.

At this point it is also worth commenting on the estimates of the parameter ρ in Models

2 and 3, which were close to zero (around 0.01) in for both data sets. An examination of the

posterior distribution for all of the ρ revealed it to be densely packed near 0 with the tail

of the distribution around 0.05. The posterior distributions of ρ are consistent with the

results for the marginal likelihoods which imply that respondents propensity to misreport

or report DK is not related to the level of their expected utility. Our interpretation of

this finding is that respondent’s misreporting or reporting of DK is, therefore, not due to

being indifferent between options and making a mistake. These results are more consistent

with respondents making arbitrary/or predetermined choices that do not depend on the

bid level. This finding tends to support the view that some respondents are not making

informed choices as is required if the CV is to be meaningful.

5.3. WTP Function Parameter Estimates

The parameter estimates for the preferred models are presented in Table 2 Ely and

St.Cloud, and for FPD in Table 3. The results in Table 2, correspond to the results in

Table III of Chambers and Whitehead (2003) and the results in Table 3 with Table 3 in

Samnaliev et al. (2006). In our analysis a y = 1 means YES, such that the signs of

the coefficients will be roughly opposite to the NO results in Chambers and Whitehead.

There is no reason to expect that the coefficient magnitudes should be the same for any of

the data sets given that we employed a Probit framework rather a Logit. Moreover, in a
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Bayesian analysis, standard deviations are not equivalent to standard errors in a Classical

analysis.

{Approximate Position of Tables 2 and 3}

In general there is a strong correspondence between our results (i.e., parameter signs)

and those reported in the earlier research. There are some differences regarding the sta-

tistical robustness. For example, for the ELY data we find that a minority of the variables

have means that are larger in absolute value than the standard deviations. This holds for

INCOME, ETHICAL, EDUCATION, AGE, and GENDER. Chambers and Whitehead

(2003), in contrast, find that INCOME and GENDER are significant. For the St. Cloud

data, exactly half of the variables have absolute posterior means larger than their standard

deviations which is in keeping with Chambers and Whitehead. The FDP results in Table

3 our results are equivalent to Samnaliev et al. (2006) in terms of signs and in most cases

similar in terms of statistical importance. We are not able to include the ‘round’ variable

that is included in Samnaliev et al.since this was not included in the data set given to us.

However, since this variable was insignificant in the analysis of Samnaliev et al. we would

not expect it to have a substantive impact on our results.

Next we examine the misreporting parameters (Θy|δ) in Tables 2 and 3. In Table 2 we

see that for Θ•|1,which indicates DKs reported when a YES should be reported (i.e., have

positive utility for the bid) that 40% and 25% of respondents report DK when they have

a positive utility for the bid. In Table 3 for the FDP data we find 13%. This contrasts

with only 13% and 16% In Table 2 and 10% in Table 3 of respondents reporting DK when

they have a negative utility for the bid.

With regard to the other misreporting parameters, for St. Cloud, misreporting seems
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to be fairly evenly split, with around 13% to 16% of respondents reporting NO when they

mean YES or YES when they mean NO. For the ELY data, there is more significant

evidence that respondents with a positive utility for the bid often reply NO. 23% of

respondents are expected to respond in this way, with only 5% reporting NO when they

mean YES. Finally, for the FDP data we find quite high levels of misreporting at 37%

saying NO when they mean YES and 33% the other way.

To explain the misreporting results in a different way we also present posterior densities

for each of the data sets in Figures 1 (St Cloud), 2 (Ely) and 3 (FDP).

{Approximate Position of Figures 1, 2 and 3}

For example, in the top half of Figure 1 we can see the "NO when YES" (Θ0|1)

density being packed towards zero, but the "YES when NO" (Θ1|0) having a symmetric

distribution away from zero. 8 Overall Figures 1, 2 and 3 are consistent with the marginal

likelihood results in Table 1. They confirm that a DK is more like a YES than a NO.

5.4. WTP Estimates

The final part of our analysis is a comparison of the WTP estimates for our preferred

models and those reported in the original research. These results are summarised in Table

4.

{Approximate Posistion of Table 4}

Beginning with Chambers and Whitehead (2003) we can see that compared with a

standard Bayesian Probit where the DKs have been eliminated from the sample and no

misreporting is assumed there is little difference in the mean for St Cloud and a small

8We also estimate the models using the unlogged bid levels. The substantive findings regarding misre-

porting were unchanged.
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mean for Ely. However, when we examine Model 1, our preferred model specification

for both sets of data we see some more significant differences. For Model 1 we obtain

mean/median WTPs of over $40 for St Cloud and around $4 median and $8 mean for

ELY. The large difference between the mean and median for ELY are due to the highly

skewed posterior which is illustrated in Figure 4 showing the distribution for the WTP

in ELY. The increase in the estimated WTP for St Cloud region relative to the standard

Probit is due to the fact that misreporting and DKs have largely been identified by the

model as YESs. Since the model integrates this information into its estimation procedure,

this increases the resulting WTP. If the mean WTPs are used, then the end result is a near

doubling of the estimated WTPs for both regions relative to the findings of Chambers and

Whitehead. However, if the medians are used, an increased estimate is only found for St.

Cloud. In our opinion the median rather than mean estimates should be used due to the

potentially volatile nature of the mean estimate when the bid coefficient can be close to

zero. It is also the case that by taking account of the uncertainty in the data in this way

the resulting standard deviations associated with the WTPs for Model 1 are quite large

indicating that we need to treat our point estimates with a certainty degree of caution.

Turning to the Samnaliev et al. (2006) data we find much less difference in the WTP

results produced by each method. This greater degree of conformity is reflected in the

WTP posterior distribution in Figure 4.

{Approximate Posiution of Figure 4}

6. Conclusion

In this paper we have introduced a new framework that simultaneously deals with

misreporting and DK responses within a dichotomous choice CV framework. A Bayesian
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approach to estimation using a Gibbs with Metropolis-Hastings algorithm to estimate the

posterior densities for the parameters of these models has been introduced and developed.

The various models developed have been applied to two CV data set that have been used

to publish research papers in the literature.

In accordance with previous studies in the literature we found strong evidence that

respondents might reply YES when the may mean NO and vice versa. In two out of the

three data sets we found evidence of misreporting, primarily in favour of the NO option and

the resulting WTP estimates were substantively different in some cases to those previous

reported. We also rejected the hypothesis that DKs could be pooled with YESs or NOs.

However, in contrast to both papers and results previously presented (and others in the

literature) we find that DKs are more likely to be from people who would be predicted to

have a positive utility for the bid. Therefore, a DK, in this model structure, is more similar

to a YES than a NO. This result is not without precedent in the literature. Indeed, Shaikh

et al. (2007) present empirical evidence that there is no systematic reason to assume that

including uncertainty within the analysis leads automatically to a reduction in WTP.

Interestingly we have found no evidence in favour of the hypothesis that DK responses

or misreporting are a function of the expected utility level of participants. This gives

rise to the conclusion that those reporting DK are not necessarily doing so because they

are close to being both a YES and NO (zero utility). Clearly, these findings are data

set specific and they need not apply to other data sets. Indeed, we expect that in many

circumstances ‘warm glow’ effects within EP studies are likely to work in a reverse fashion

to those found in this paper, though this supposition requires further research.

Finally, the procedures outlined here can, in principle, be applied in related contexts.

For example, other forms of CV and Choice Experiments. In CV studies it is becoming
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quite common to use scales of uncertainty rather than a simply DK. With this type of data

, probabilities of replying with different levels of uncertainty, given positive or negative

levels of utility could be estimated using an extension of the models herein. It is also

possible that these probabilities could be conditioned on the attitudinal variables. In the

case of Choice Experiments it may well be possible to include an opt out or DK option

using a.similar algorithm to that developed in this paper to investigate uncertainty.
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Appendix

A1:Priors

Bayesian estimation and inference requires priors to be specified for the parameters.

Inference using the marginal likelihood is priors requires that the priors are proper (in-

tegrate to 1). Our parameters are composed of β (the coefficient in the Probit) and Ω,

which has three variants specified in Section 4 of the paper. The priors for β (f (β)) are

normal with mean zero and variance V0. The variance is specified as (10
3I) for the results

in the paper. For the parmeters in Ω f (Ω) for Models 1,2 or 3 (and the subcases) the

priors are set as Beta(a1, a2). For the results in the paper the Beta priors Beta(1,2) for

giving a slight penalty for larger values as they tend towards one. This is consistent with

a prior belief that people do not misreport.

A2:The Algorithm (all quantities are as defined in the text)

Given a starting set of values

• 1. {δi} draw: Draw the indicator variables {δi} according using the probabilities
{
Ψδ|y,i

}

• 2. {ui} draw: Draw the latent variables {ui} from the truncated normal distribution

with a mean x′iβ and a unit variance

• 3 β draw:

— 3.1. Draw the βprop from a normal with mean
(
V −1
0
+
∑
xix

′
i

)−1∑
xiui and a

variance
(
V −1
0
+
∑
xix

′
i

)−1
(where V −1

0
is set a priori)

— 3.2.

— For model 1, accept βprop with probability one.
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— For modelsm=2 and 3 accept βprop with probability (where I
({
Θprop
yi|δi,i

}
∈ (0, 1)

)

denotes an indicator variable)

α = min





1,

f (Ωpropm )
n∏

i=1

Θprop
yi|δi,i

f (Ωm)
n∏

i=1

Θyi|δi,i





× I

({
Θprop
yi|δi,i

}
∈ (0, 1)

)
(26)

or else stick with old β.

• 4. Ωm draw: Generate new parameters

Ωpropm = Ωm + v (27)

where v is a innovation with a symmetric distribution and accept with probability

α = min





1,

f (Ωpropm )
n∏

i=1

Θprop
yi|δi,i

f (Ωm)
n∏

i=1

Θyi|δi,i





I
({
Θprop
yi|δi,i

}
∈ (0, 1)

)
(28)

else, stick with old Ωm.(record Ωm)

• Return to step 1.

At each iteration the parameters are recorded and are then used to map the posterior

distributions as in Section 5 of the paper.

A3: Deriving the Posterior Distributions

The Posterior for the parameters and Latent Data where Y denotes all the data and

f (β) and f (Ω) (we do not notationally distinguish the different models below by sub-

scripting Ω) are independent priors:

f ({ui} , {δi} , β,Ω|Y ) ∝ f (Y, {ui} , {δi} |β,Ω) f (β) f (Ω) (29)
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A.3.1 The conditional posterior for the latent data can be factored as:

f ({ui} , {δi} |β,Ω, Y ) = f ({ui} | {δi} , β) f ({δi} |β,Ω, Y ) (30)

The first term is:

f ({ui} | {δi} , β) = Πni=1f (ui|δi, β) (31)

where f (ui|δi, β) is a normal with mean x′iβ and variance 1, truncated below zero if δi is

positive and above zero otherwise. The second term is:

f ({δi} |β,ΩM , Y ) = Πni=1f (δi|β,Ω, yi)

f (δi|β,ΩM , yi) = Ψδi|yi (32)

(which are calculated as in (10)). Therefore, the latent data can be conditionally generated

by generating δi using Ψδ|yi and ui from its truncated normal.

A.3.2. The conditional distribution for Ω

In making a conditioning statement such as f (Ω|β, {ui} , {δi} , Y ) then since the value

of δi is known with probability one given ui :

f (Ω|β, {ui} , {δi} , Y ) = f (Ω|β, {ui}Y ) (33)

Accordingly, the posterior for Ω is:

f (Ω|β, {ui} , Y ) ∝ f (Y, {ui} |β,ΩM) f (Ω) (34)

= f (Y | {ui}β,ΩM) f (Ω) f ({ui} |β,Ω)

where, only the sign of {ui} matters in the first term. Therefore:

f (Y | {ui} , β,Ω) = f (Y | {δi} , β,ΩM)

= Πni=1Θyi|δif (Ω) (35)
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and the second term is not dependent on Ω

f ({ui} |β,ΩM) = f ({ui} |β) (36)

Therefore:

f (Ω|β, {ui, δi} , Y ) ∝ Πni=1Θyi|δif (Ω)

For this posterior a Metropolis Hasting step can be used for Ω.

A.3.3. The Posterior for β

f (β|Ω, {ui} , Y ) ∝ f (Y, {ui} |β,Ω) f (β) (37)

∝ f (Y | {ui} , β,Ω) f ({ui} |β,Ω) f (β)

The first term

f (Y | {ui} , β,Ω) = f (Y | {δi} , β,Ω) = f (Ω)Πni=1Θyi|δi (38)

whereas in the second

f ({ui} |β,Ω) = f ({ui} |β) (39)

is as in the standard normal linear model (with {ui} being the dependent variable). In

model 1 Θyi|δi are not dependent on β. Therefore:

f (β|Ω, {ui} , Y ) ∝ f ({ui} |β,Ω) f (β) (40)

and the posterior for β would then be normally distributed. However, in the case of models

2 and 3.

f (Y | {δi} , β,Ω) ∝ f (Ω)Πni=1Θ∗yi|δiΦ
ρ
i (41)

and since Φρi is dependent on on β this proportionality must be accounted for.

31



References

[1] Alberini, A., Boyle, K. and Welsh, M. 2003. Analysis of Contingent Valuation Data

with Multiple Bids and Response Options Allowing Respondents to Express Uncertainty.

Journal of Environmental Economics and Management 45: 40-62.

[2] Arana, J.E. and Leon, C.J. 2005. Flexible Mixture Distribution Modeling of Di-

chotomous Choice Contingent Valuation With Heterogeneity, Journal of Environmental

Economics and Management, 50(1): 170-188.

[3] Arrow K., Solow, R., Portney, P., Leamer, E., Radner, R. and Schuman, H. 1993.

Report of the NOAA Panel on Contingent Valuation.

[4] Balcombe K., Bailey, A., Chalak, A. and Fraser, I. 2007. Bayesian Estimation

of Willingness to Pay where respondents misreport their preferences. Oxford Bulletin of

Economics and Statistics 69 (3) 413-437.

[5] Carson, R. T., Hanemann, W. M., Kopp, R.J., Krosnick, J.A., Mitchell, R.C.,

Presser, S., Ruud, P.A., Smith, V.K., Conaway, M. and Martin, K. 1998. Referendum

Design and Contingent Valuation: The NOAA Panel’s No-Vote Recommendation, Review

of Economics and Statistics 80: 484—487.

[6] Caudhill, S.B. and Groothuis, P.A. 2005. Modeling Hidden Alternatives in Random

Utility Models: An Application to “Don’t Know” Responses in Contingent Valuation.

Land Economics, 81(3): 445-454.

[7] Caudill, S. B. and Mixon, F. G. 2005. Analysing discrete responses: a logit model

based on misclassified data, Oxford Bulletin of Economics and Statistics, 67: 105—113.

[8] Chambers, C.M. and Whitehead, J. C. 2003. A contingent Valuation Estimate

of the Benefits of Wolves in Minnesota. Environmental and Resource Economics, 26:

249-267.

32



[9] Champ P.A., Bishop, R.C., Brown T.C. and McCollum D.W. 1997. Using dona-

tion mechanisms to value non-use benefits from public goods. Journal of Environmental

Economics and Management, 33: 151-162.

[10] Gelfand, A. and Dey, D. 1994. Bayesian Model Choice: Asymptotics and Exact

Calculations. Journal of the Royal Statistical Society Series B, 56: 501-504.

[11] Granberg, D. and Holmberg, S. 1991. Self-Reported Turnout and Voter Validation,

American Journal of Political Science, 35 (2): 448-459.

[12] Groothuis P.A. and Whitehead J.C. 2002. Does don’t know mean no? Analysis

of don’t know responses in dichotomous choice contingent valuation questions. Applied

Economics, 34: 1935-1940.

[13] Haener, M. K. and W. L. Adamowicz 1998. Analysis of “Don’t Know” Responses

to Referendum Contingent Valuation Questions, Agricultural and Resource Economics

Review, 27: 218—230.

[14] Hausman, J. A., Abrevaya, J. and Scott-Morton, F. M. 1998. Misclassification

of the dependent variable in a discrete-response setting, Journal of Econometrics, 87:

239—269.

[15] Kahneman D. and Tversky A. 2000. Choices Values and Frames, Cambridge

University Press, New York.

[16] Koop G. 2003. Bayesian Econometrics. Wiley Publishers, West Sussex, England.

[17] Leece, D. 2000. Household Choice of Fixed Versus Floating Rate Debt: A Binomial

Probit Model with Correction for Classification Error, Oxford Bulletin of Economics and

Statistics, 62: 61-82.

[18] Leon, R. and Leon, C.J. 2003. Single or Double Bounded Contingent Valuation?

A Bayesian Test, Scottish Journal of Political Economy, 50 (2): 174-188.

33



[19] Li, C. and Mattsson, L. 1995. Discrete Choice Under Preference Uncertainty:

an Improved Structural Model for Contingent Valuation, Journal of Environmental Eco-

nomics and Management, 28: 256-269.

[20] Loomis, J. and Ekstrand, E. 1998. Alternative Approaches for Incorporating

Respondent Uncertainty when Estimating Willingness to Pay: The Case of the Mexican

Spotted Owl, Ecological Economics, 27: 29-41.

[21] Meyerhoff, J and Liebe, U. 2006. Protest beliefs in contingent valuation: Explain-

ing their motivation, Ecological Economics, 57: 583— 594

[22] Ready, R.C., Whitehead, J.C. and Bloomquist, G.C. 1995. Contingent valuation

when respondents are ambivalent, Journal of Environmental Economics Management, 29:

181—196.

[23] Samnaliev, M. Stevens, H. and Moore, T. 2006. A comparison of alternative

certainty calibration techniques in contingent valuation, Ecological Economics, 57: 507-

519.

[24] Shaikh S.L., Sun L.G. and van Kooten, C. 2007. Treating respondent uncertainty

in contingent valuation : A comparison of empirical treatments. Ecological Economics,

(forthcoming).

[25] Svensson, M. 2006. Why so (Un)certain? Calibration in Contingent Valuation

Using the Certainty Approach, Working Paper No. 6, Department of Business, Economics,

Statistics and Informatics, Orebro University, Sweden.

[26] van Kooten, G.C., E. Krcmar and E.H. Bulte 2001. Preference Uncertainty in

Nonmarket Valuation: A Fuzzy Approach, American Journal of Agricultural Economics,

83: 487-500.

[27] Wang, H. 1997. Treatment of ‘don’t know’ responses in contingent valuation sur-

34



vey: a random valuation model, Journal of Environmental Economics and Management,

32: 219—232.

[28] Whitehead, J.C. and Cherry, T.L. 2006. Willingness to Pay for a Green En-

ergy Program: A Comparison of Ex-Ante and Ex-Post Hypothetical Bias Mitigation Ap-

proaches, Memo, Department of Economics, Appapachian State University, Boone, NC.

35



Table 1. Marginal Likelihoods

St. Cloud Ely FDP

Model 1 -189.5 159.02 -632.85

Model 2 -191.56 -160.78 -635.13

Model 3 -191.32 -163.63 -633.15

Model 1 with Θ1|0 = Θ0|1 = 0 -199.06 -164.73 -638.71

Model 1. Pooling DKs and NOs -203.51 -165.31 -641.64

Model 1. Pooling DKs and YESs -192.39 -164.78 -637.23
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Table 2. WTP Function - Wolf Management Plan

St Cloud Ely

Param Mean St dev Mean St dev

Intercept 00.17 2.93

Price -3.90 1.32

Income -0.15 0.11

Plan trip 3.40 1.99

Altruism 3.46 2.43

Bequest 2.46 2.38

Exist 0.88 2.51

Ethical 3.26 2.23

Education 1.08 0.61

Age -0.07 0.08

Gender -3.47 1.9

Child 0.44 1.56

Θ1|0 0.13 0.05

Θ0|1 0.16 0.05

Θ•|0 0.13 0.05

Θ•|1 0.40 0.05

-1.18 2.92

-1.72 1.03

0.02 0.09

4.80 2.26

2.14 2.47

3.27 2.48

3.77 2.26

0.96 2.09

0.10 0.44

-0.07 0.07

-1.60 2.60

-2.02 1.92

0.05 0.03

0.23 0.10

0.16 0.04

0.25 0.07
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Table 3. WTP Function - FDP Data

Param Mean St dev

Intercept 3.53 1.96

Price -.88 0.42

Income 0.75 0.53

Visits -3.26 0.56

Size of Household -0.34 0.51

State 0.25 0.84

Age -0.54×10−1 1.57×10−1

Age2 1.09×10−3 1.30×10−3

Urban 0.68 2.00

Θ1|0 0.33 0.04

Θ0|1 0.37 0.07

Θ•|0 0.10 0.02

Θ•|1 0.13 0.03
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Table 4. Comparisons of WTP

Previous

Literature∗

Bayes Probit

-Ignoring DKs,

No Misreport

Model 1

St-Cloud

Mean

Median

(Stdv)

21.49

(5.52)∗∗

20.34

20.32

(4.04)

43.97

40.92

(18.61)

Ely

Mean

Median

(Stdv)

4.77

(2.52)∗∗

2.58

2.32

(1.76)

8.70

3.99

(12.98)

FDP

Mean

Median

(Stdv)

.

4.32

(0.54)***

3.26

3.22

(0.66)

3.99

1.12

(4.11)

* From Chambers and Whitehead (2003) and Samneliev et al. (2006)

** These are standard errors rather than standard deviations

*** These are approximate standard errors computed from CIs
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Figure 1: Distribution of Misreporting Parameters, St Cloud

Figure 2: Distributions of Misreporting Parameters, Ely
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Figure 3: Distribution of Misreporting Parameters FDP Data.

Figure 4: Distributions of Willingness to Pay
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