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ABSTRACT: We describe a model for polymerization at a surface, in which local kinks within the chain,
excited at the free end, may diffuse to the surface, causing termination by disengagement. A model in
which kinks do not interact gives a monomodal but broad distribution when kink diffusion is slow. In a
more realistic model that permits kink-antikink annihilation, some of the chains escape the kink-
controlled population and produce a “living”, high molecular weight fraction. A reaction for which this
has been characterized is the Wurtz-type reductive coupling of organosilanes, though the phenomenon
may be more general.

1. Introduction
Silicon chemistry does not allow the ready synthesis

of stable precursors to polysilanes that provide the
means for easy and controllable polymerization reac-
tions such as those found in carbon chemistry. Thus,
despite a continuing search for alternative synthetic
procedures, most polysilanes are synthesized by the
condensation of the corresponding dichlorodiorganosi-
lane using dispersed alkali metal, usually sodium, i.e.,
using the Wurtz-type reductive dehalogenation reaction
shown in Figure 1.1 To this day it remains the most
general and common procedure for the synthesis of
polysilane homopolymers and copolymers. It is a com-
monplace feature of all such syntheses that the molec-
ular weight distributions of the immediate reaction
products are broad and polymodal. One such distribu-
tion, that of a poly(methylphenylsilane), (SiMePh)n, is
shown in Figure 2 and is seen to consist of low (Mr,w <
1000), intermediate (Mr,w ) 1000 to 5 × 104), and high
(Mr,w ) 5 × 104 to several million) molecular weight
fractions. The formation of the low molecular weight
fraction is well understood. It consists of cyclic oligo-
mers, predominantly of cyclopentasilanes and cyclohex-
asilanes, respectively formed either by end-biting in the
early stages of chain growth or by a back-biting reaction
at any subsequent stage. However, the underlying
reasons for the bimodal polymeric fraction are not easily
understood. The molecular weights at peak of the
polymeric fractions tabulated by Miller and Michl in
their review of polysilanes2 reveal the generality of this
phenomenon over a wide range of polysilane polymers
and copolymers prepared using the Wurtz reaction but
until recently, nothing approaching a reasonable expla-
nation has been forthcoming.

Polysilanes are not simple random coil polymers but
should be viewed as consisting of a random coil of
semirigid segments (a form of persistent chain). Each
particular polymer is considered to have a characteristic
structure that facilitates the semirigidity of the seg-
ments. Typically, in the case of (SiMePh)n, the polymer
chains have long been considered to consist of sequences

of silicon atoms in all-trans conformation, over which
the σ-electrons of the backbone are delocalized.2 These
sequences are separated by strong gauchelike turns in
the chain. However, this is now known to be an
oversimplification, and the chain, in both the solid and
solution, is best described as a random-coil consisting
of a mixture of irregular P and M helical segments.3
These segments are again separated by chain defects,
though in this case they consist of atoms at which
reversals occur. For either description, the segments
have a specific average length,4,5,6,7 which for (SiMePh)n
corresponds to 35 silicon atoms, a value that is in
excellent agreement with the degree of polymerization
at peak for the intermediate molecular weight fraction
identified as the product of the Wurtz synthetic method.8
Illustrated by reference to (SiMePh)n, the following
descriptive model of the polymerization reaction has
been developed from the above structural consider-
ations.8,9 There may be other polymerization reactions

† University of Leeds.
‡ University of Kent.

Figure 1. Scheme for sodium-surface polymerization of
polysilanes.

Figure 2. Representative molecular weight distribution of a
poly(methylphenylsilane) prepared by Wurtz-type reductive-
coupling in refluxing toluene. Reprinted from ref 8. Copyright
1998 American Chemical Society.
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in which similar influences determine the molecular
weight distribution, but to the best of our knowledge,
this is the first for which it has been characterized since
the model requires the notion of an increasing stability
with chain length up to a limiting value. That notion
applies to the Wurtz-type synthesis of polysilanes.

A polymer molecule in the early stages of growth
extends away from the metal surface as a semirigid
sequence of increasing length. As the number of atoms
in the chain increases, its stability increases as a
consequence of the increasing delocalization of the
σ-electrons of the backbone that is facilitated by the
adoption of this structure. When the chain is on average
a given number of units long (in the case of (SiMePh)n,
30-40 units) there is no further energetic advantage
to be gained in maintaining the conformation, and it is
inevitable that a defect will eventually appear, most
probably at the free chain end. The chain then under-
goes a conformational reorganization to minimize the
energy of what are now two sequences, so the defect is
translated along the chain. If it travels as far as the
metal surface, the molecule is then conformationally
well disposed for a backbiting reaction. If that occurs,
a cyclic oligomer is clipped out, the chain disengages
from the metal surface, and its growth is terminated.
If it does not occur, the polymer molecule continues to
grow at the metal surface, the two sequences attain the
maximum stability associated with them each being on
average the same defined number of units long, another
defect introduces itself, and another conformational
reorganization ensues. The first defect is again propelled
toward the metal surface, but the probability of its
getting there is reduced because of the greater overall
stability associated with average sequence lengths that
are determined by the distribution of two defects over
double the number of units (about 70 in the case of
(SiMePh)n). If it does reach the metal surface, then the
same backbiting considerations will apply. It follows
that the probability of disengagement of polymer chains
from the metal surface leading to termination of growth,
as represented in Figure 3, decreases with increasing
chain length. Eventually, those chains that remain
associated with the metal surface reach such a length
that the probability of disengagement is effectively zero.

The weakness of this descriptive model is that it
assumes that the chains that remain attached to the
metal surface will continue to grow to a very high degree
of polymerization in a termination free process. It also
ignores the residual mobility of defects along the grow-
ing chain that may cause them either to terminate the
polymerization or interact with each other. It does

suggest that the polymerization will have assumed
living characteristics and that it is in this mode that
the high molecular weight fraction is formed. However,
there is nothing in the arguments presented to indicate
that the polymeric fraction should be bimodal. This
paper presents a mathematical analysis that demon-
strates that the model is essentially valid but overlooks
one vital point which, when taken into account, results
in a bimodal distribution.

2. A Model for Kink Propagation and
Termination

The chain itself is taken to grow by monomer addition
at one end, attached to a solid surface, leaving the other
end (where the chain was initiated) free in the solution.
We assume that monomer is added at a rate of v
monomers per second. This may be thought of as a
velocity of propagation of the surface site in the frame
of reference fixed with respect to the initiation site; in
what follows, we measure all distances along the chain
in units of monomers. The chain continues to grow with
time t with degree of polymerization N ) vt until either
all monomer is exhausted or until a structural defect,
which we may think of as a “kink”, arrives at the metal
surface.

We treat a simplified model for these general chain
defects that may propagate along a polymerizing chain,
though we may think of them as local gauche states in
an otherwise trans-dominated chain, or as the defects
separating sequences of P and M helical segments as
discussed in the Introduction. In this model, they may
be formed only very near the free end (this is motivated
by the prohibitive requirement for cooperative motion
of large pieces of chain if they are to be nucleated
anywhere else) randomly at rate τk

-1. The defect-
nucleation rate will depend on the details of the chain
dynamics, and on the energetics of the σ-bond stabiliza-
tion. These details will not affect the conclusions of the
model. We take the distance of the kink nucleation site
from the free end to be the (small) distance x0. Once
nucleated, the kinks undergo one-dimensional diffusion
along the polymerizing chains until they disappear at
the free end (which has no effect on the chain) or at the
surface (which causes the polymerization to terminate).
The model is illustrated in Figure 4.

Note that the model already contains several length
scales (or, equivalently, characteristic molecular weights).
As well as x0 (which is necessarily nonzero because of
the absorbing boundary condition for chain defects at
the free end), there is the typical distance grown by the
chain in the interval between introduction of defects,
τkv. A third important distance scale is set by the kink
diffusion. It is the distance Nc over which a kink will
typically diffuse in the same time that the chain takes
to convect it. This distance is therefore set by the
approximate equality

Figure 3. Schematic of the progress of a defect-diffusion-
controlled, catalyzed polymerization.

Figure 4. Illustration of the model of kink (filled diamonds)
diffusion simultaneously with growing chain at a metal surface
(gray rectangle).
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Here D is the effective one-dimensional diffusion con-
stant for the motion of defects along the polymerizing
chain, v the rate of polymerization and t the time after
initiation of a defect. So the critical distance is given
by

Since the kinks propagate diffusively as t1/2, while the
chain grows “ballistically” as t, we might expect two
regimes of behavior in molecular weight: vτ < Nc, in
which diffusing kinks rapidly kill growing chains, and
vτ > Nc, in which most chains “escape” the kinks by
polymerization before they typically reach the critical
length. We will find in the following that this picture
holds qualitatively but not quantitatively.

A second consideration examines the interaction
between the kinks themselves. In the first model we
treat, they are assumed not to interact with each other,
but this is not necessarily realistic. For example, gauche
conformations may be of either sign; if diffusion brings
two opposite defects into contact, they may annihilate.
This would have an important effect on the molecular
weight distribution, for if kinks self-annihilate, they will
be less effective in terminating the chain. A key question
to ask of both noninteracting and interacting models is
whether and under what conditions the kink-termina-
tion alone is sufficient to control the entire distribution,
including the high molecular weight tail. The alterna-
tive is that the long chains outstrip all effective termi-
nation by kinks nucleated at the free end, themselves
only terminating in a living polymerization when the
supply of monomer or growth-enabling surface is ex-
hausted.

In this way, the model we have outlined contains both
the ingredients of defect mobility and the possibility of
interaction that have been left out of descriptive ac-
counts to date. In the following part, we shall first treat
the noninteracting case and then introduce kink-kink
annihilation, deducing the possible forms of molecular
weight distribution produced in each case.

3. Molecular Weight Distribution from
Noninteracting Defects

To treat this case quantitatively, we first derive an
expression for the rate at which kink defects arrive at
the surface and then apply this to the calculation of a
molecular weight distribution function.

3.1. Expression for the Kink Diffusion Current.
We are interested in the rate (probability) with which
diffusing kinks introduced at a distance x0 at one end
of a chain of length N arrive at the other end (surface)
at a time t, since it is this process that controls the
MWD. (At a later point we will allow the position of this
other absorbing end to propagate with time as N ) vt.)
If we know the probability distribution p(x, t) for the
density of kinks, then the probability current j arriving
at the surface is just

and where p(x, t) satisfies the following diffusion equa-
tion and boundary conditions:

The probability distribution function p is readily solved
by eigenfunction expansion to give

Substituting in eq 3 gives the expression for j:

Because for all cases of interest x0/N , 1, we may
usually take just the first term of the series expansion
of the sin so that

This expression may be further approximated in the two
cases in which N is greater than or less than the typical
diffusion distance xDt. When N , xDt, only the first
term in the sum for j is significant and

The current of diffusers reaching the surface at N falls
very rapidly in the diffusion-dominated domain as most
have diffused off the chain at a fixed time t. On the other
hand, for N > xDt, the sum may be replaced by an
integral and

which is independent of N. So some diffusers escape far
beyond the typical length and contribute to a steady
termination of chains by arriving at the surface. This
will be important in the following calculation of the
resulting molecular weight distribution.

3.2. Molecular Weight Distribution. We will find
it convenient in the first instance to calculate the
complementary cumulative number distribution func-
tion, that is the probability that a randomly chosen
chain has a degree of polymerization greater than N,
P>(N). For chains growing at a polymerization rate v,
this is equivalent to the statement that the chain has
not been terminated by a time t ) N/v. We expand this
probability in a sum over the number of kinks nucleated
in the chain (this approach will be useful in the case of
interacting kinks in the next section). So, conceptually

Nc ) xDt ) vt (1)

Nc ) D
v

(2)

j(N, t) ) -D∂p
∂x|x)N

(3)

∂p
∂t

) D∂
2p

∂x2
; p(0, t) ) p(N, t) ) 0; p(x, 0) ) δ(x - x0)

(4)

p(x, t) )
2

N
∑
n)1

∞

sin(nπx0

N )sin(nπx

N )e-Dn2π2t/N2
(5)

j(N, t) )
2πD

N2
∑
n

n sin(nπx0

N )e-Dn2π2t/N2
(6)

j(N, t) =
2π2Dx0

N3
∑
n

n2e-Dn2π2t/N2
(7)

j(N, t) =
2π2Dx0

2

N3
e-Dπ2t/N2

(8)

j(N, t) =
2π2Dx0

2

N3 ∫0

∞
dn n2e-Dn2π2t/N2

= x x0
2

4πDt3
(9)
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Each term of this series has simple mathematical form.
The probability that no kinks have nucleated in time t
is just e-t/τk ) e-N/vτk. The probability that just one kink
nucleated at time t1 is the product

Finally the probability that the kink did not reach the
surface site at N is just J(N, t - t1), the integrated
probability flux for all times later than t:

The general nth term in eq 10 is therefore found by
integration over all the intermediate times at which the
kinks may be nucleated, so the expression for P>
becomes

The n integrals in the time-ordered product may be
simply factorized by losing the time-ordering at the
expense of dividing by the n! ordering permutations. The
series then becomes that of an exponential expansion,
and may be exactly summed to give at t ) N/v:

If we are interested in the high molecular weight tail
of the distribution, N > Nc, then the sum in the full
expression for P>(N) can be replaced by an integral,
arriving at the compact approximation

Finally the weight-distribution function f (N) may be
calculated by f (N) ∼ - N(dP>/dN), giving

where Nh is the chain length set by the mean distance
between successively introduced kinks vτk, and â )
4x0

2/π2Dvτk
2 which will generally be a small number. Ω

is the necessary normalization. The distribution func-
tion becomes comparable to the simple exponential term
when âxNh is of order one, setting the condition for
strong departure from simple exponential form to

which means that kinks are introduced at a rate that
matches or exceeds their reabsorption by diffusion at
the free end. If this is the case, then the single-
exponential distribution, arising from the typical elimi-
nation by a kink after the waiting time τk, is strongly
modified in favor of higher molecular weights. Alterna-
tively, in the limit of high kink diffusion constant, the
molecular weight distribution tends toward the single
exponential that corresponds to waiting for only one
kink to appear, (when the chain has grown to a mean
degree of polymerization of vτk) then rapidly to propa-
gate to the surface, there to terminate the chain. In
Figure 5, we show the single-exponential distribution
function (â ) 0) and the modified distribution (bold) with
â ) 0.4 in the approximation of eq 16. Although the
extreme high molecular weight tail tends to the same
exponential form as the â ) 0 distribution, the peak is
already considerably broader.

However, it is already clear that the noninteracting
model is always controlled by kink diffusion. The
distribution P>(N) always tends to 0 near-exponentially
as N f ∞, so the distribution f (N) is automatically
normalizable. This model is not an explanation of the
high molecular peak observed in some experiments,
where some chains seem to have escaped the kink-
controlled distribution altogether.

4. Distribution from Interacting Defects
We now turn to some simple models for interacting

kinks, which have a radically different behavior from
the noninteracting model studied above.

4.1. Single Kink Model. In reality, kinks may self-
annihilate when of opposite sign and when they come
into close proximity. If this occurs, then the supply of
defects able to terminate the chain will be reduced, and
the average molecular weight will increase. We need to
examine this case for the possibility that a dynamic
phase transition occurs, permitting some fraction of the
chain population to grow without bound (so that its
molecular weight is governed by supply of monomer).
A simple way of seeing how the mathematical structure
of the problem may be modified by such a process is to
consider that the efficiency of kinks in destroying a
growing chain decreases with chain length, say by e-γ′N.
Then the leading behavior of the cumulative distribution
function is just P>(N) ∼ e-N/vτ+γ′N ) e-(1/vτ - γ′)N. When
γ′ ) 1/vτ, there is a critical transition, and the limit of
P>(N) as N f ∞ become finite. This limit then repre-
sents that part of the distribution (which in this “toy”
case is the whole distribution) that consists of growing,

P>(N) ) prob(0 kinks) (10)

+ prob(1 kink, nucleated at t1) × prob
(kink did not reach N)

+ prob(2 kinks, nucleated at t1, t2) × prob
(kinks did not reach N)

+ ...

e-t1/τk(dt1/τk)e
-(t-t1)/τk ) e-t/τk(dt1/τk)

J(N, t) ) ∫t

∞
j(N, t′) dt′ )

2

π
∑
n

1

n
sin(nπx0

N )e-Dn2π2t/N2

(11)

P>(N) ) e-t/τk (12)

+ e-t/τk∫0

tdt1

τk
J(N, t - t1)

+ e-t/τk∫0

tdt1

τk
∫t1

tdt2

τk
J(N, t - t1)J(N, t - t2)

+ ...

+ e-t/τk∫0

tdt1

τk
∫t1

tdt2

τk
......∫tn-1

t dtn

τk
J(N, t - t1)J

(N, t - t2)......J(N, t - tn)

+ ...

P>(N) ) exp{- t
τk

+ 1
τk
∫0

t
J(N, t - t′)dt′} (13)

) exp{-
N

vτk

+
2N2

π3Dτk

∑
n

1

n3
sin(nπx0

N )(1 - e-Dn2π2/Nv)}
(14)

P>(N) = exp{- N
vτk

+ x 4Nx0
2

π2Dvτk
2} (15)

f (N) ) Ω(NNh - â
2
xN)e-(N/Nh - âxN) (16)

τk <
x0

2

D
(17)
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living chains that have escaped from termination by
kink diffusion.

First, we treat a very simple model of kink self-
annihilation. We assume that only chains on which
there is just one defect may be terminated by diffusion
of the defect onto the surface. As soon as there are two
or more defects, we assume that they self-annihilate and
are no longer able to terminate the chain growth. Now
our expression for P>(N) becomes (thinking at first in
terms of the polymerization time t as before)

The first two terms represent the survival probability
of the chain in the presence of no defects, and just one
defect as before. The new second term now just requires
the chain to survive diffusion of the kink in the interval
between the first and second defects appearing. This
term now terminates the series as all higher numbers
of kinks are now counted implicitly in the second term.
Evaluating the terms in the series as before now gives

In this rather formidable expression (which notwith-
standing has some more pleasant asymptotics), only the
last term concerns the high molecular weight tail as the
exponential term is missing. Expanding the sine as
usual in the limit of small x0, the sum then becomes a
standard result expressible in terms of the derivative
of the γ-function. The final asymptotic result for large
N is

This number is just the finite fraction of chains that
escapes the kink diffusion. In this exact, if simple model,
the fraction is of course not unity: the rest is contained
in a rather polydisperse peaked fraction described by
all the other terms in eq 20.

4.2. Multiple Kink Model. A slightly more physical
model of kink interaction takes an idea from our “toy”

model but calculates with it exactly. Each kink is
endowed with a decay lifetime as well as its diffusional
motion. The decay rate is taken to be proportional to
the rate at which new kinks are introduced to the chain.
In this case we replace J(N, t) with a new probability
that no termination has occurred in time t:

The annihilation rate for kinks is taken to be γ/τk, so
the chain is only required to survive the diffusion of the
kink if the kink survives in the first place. The dimen-
sionless number γ describes the efficiency with which
kinks mutually annihilate. In this case the evaluation
of P>(N) is straightforward and yields a similar (but
exponentiated) behavior to the one-kink model above.

The normalized derivative of this distribution gives the
analogy of eq 16 for the weight distribution function in
the multiple kink model. This distribution recovers the
exponential in the case that the kink-annihilation rate
γ f 0 but in other cases picks up a finite fraction of
living chain material, whose fraction of all chains is

with â defined as before. We note that the limiting
asymptotic form of the distribution function taken here
is the appropriate one when Pl is finite, even though it
does not recover (eq 15). For when this is so the physical
limit Pl < 1 sets ú ≡ -1/γ + â/2xγNh < 0. This in turn
sets an upper bound on γ, while strong departure from
a simple exponential distribution sets a lower bound of
order unity. For values of interaction parameter γ
smaller than this, the noninteracting distribution of eq
15 becomes valid. The living fraction can be increased
either by increasing the kink interaction γ, or by
increasing â by reducing the kink diffusion rate D or
birth rate τk. Figure 6 shows the type of behavior
predicted for one value of γ and three values of â. The
molecular weight at which the “living” peak appears is
entirely a matter of choice heresit depends on param-
eters not affecting the low molecular weight peak such
as the ratio of surface sites to monomer in the reaction
vessel. However, the decrease in the position of the high
molecular weight peak will occur as the number of
chains in the living part of the ensemble increases.

Of particular interest with regard to experimental
comparison is the polydispersity of the middle mode of
the distribution, as parametrized by the ratio of Mw/Mn
calculated for this peak alone. The polydispersity ratio
is plotted as a function of ú in Figure 7 in the ap-
proximation of eq 23. From a near-exponential distribu-
tion coming from very strong kink-annihilation at ú )
0, the ratio grows as the kink annihilation probability
drops. In the approximation, we have used in this
section, values of γ less than unity are not accurate (a
full enumeration of the sums generated by the multiple
kink theory is possible for a more accurate crossover to
the noninteracting case). But significantly, within this

P>(N) ) e-t/τk + e-t/τk∫0

tdt1

τk
J(N, t - t1) (18)

+ ∫0

tdt1
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e-t1/τk∫t1

tdt2

τk
e-(t2-t1)/τkJ(N, t2 - t1) (19)

P>(N) ) e-N/vk + 2e-N/vτk x Nx0

πDvτk
2
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+
2

π
∑
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n

N2

Dn2π2τk + N2
sin(nπx0

N )e-N/vτk

-
2

π

N2

Dτk
∑
n

1

n

N2

Dn2π2τk + N2
sin(nπx0
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+
2

π

N2

π2Dτk

∑
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1

n

N2

Dn2π2τk + N2
×

sin(nπx0

N )e-N/v(1/τk+Dn2π2/N2)

+
2

π
∑
n

1

n

N2

Dn2π2τk + N2
sin(nπx0

N )

lim
Nf∞

P>(N) )
x0

πxDτk

(21)

J(N, t) f Jγ(N, t) ) 1 - e-γt/τk + e-γt/τkJ(N, t) (22)

P>(N) ) exp{1
γ
(e-γN/vτk - 1) +

x0

πxDτkγ
(1 - e-γN/vτk)}

(23)

Pl ) exp{- 1
γ

+ â

2xNh γ} (24)
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physically reasonable range of values for γ, the values
of the polydispersity are within the range found experi-
mentally.8

One remarkable prediction of the model is that both
the polydispersity of the middle mode and the amount
of material in the high, living, mode are set by the one
parameter ú. The most polydisperse middle fractions
should occur in those reactions with the smallest
amount of material in the high molecular weight living
peak. This observation suggests a simple set of experi-
ments that would provide an immediate qualitative test.

5. Conclusions
We have a simple model for the defect-diffusion-

controlled polymerization of single-site growing chains
such as (SiMePh)n. The dominant molecular weight of
the ensemble is set by the rate of polymerization and
the waiting time for nucleation of the defect at the chain
free end. The kink diffusion constant then affects the
functional form of the distribution. Noninteracting
defects, or kinks, may strongly perturb the ensemble
from the Flory distribution but do not account for an
observed high molecular weight “living” ensemble seen
in some cases. However, two simple models of interact-
ing defects do produce a fraction of the growing chains
whose termination is not controlled by defects but by
the eventual exhaustion of monomer. The model sug-
gests quantitative and qualitative experiments.

Appendix A. Details of Noninteracting
Calculations

From the expression

we first take just the first term of the sin, since x0 is
small (,N), then write the second term of the sum as

where I(0) ) 6/π2. The parametrized integral I(R)
satisfies

so an approximation for the sum when R ) Dπ2/Nv is
small is

from which the result of eq 15 follows.

Appendix B. Details of Interacting Calculations
The full expression for P>(N) in this case, using

Jγ(N, t) for J in eq 13 reads:

We use the approximation for the sum

Figure 5. Predictions of the noninteracting kink model for
the distribution function in the cases of fast (narrow) and slow
(bold) kink diffusion (see text).

Figure 6. Predictions for the normalized molecular weight
distribution of the interacting defect model for γ ) 0.4 and â
) 0.4, 0.5, and 0.6 (in decreasing order of high molecular
weight peak). Values of the parameter ú are 2.2, 2.1, and 2.0.

Figure 7. Predicted form of the polydispersity of the middle
peak in the MWD as a function of its reduced control
parameter ú ) (1/γ - â/2xNγ).
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2N2

π3Dτk
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∞ 1
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∼ -1
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π2
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2N2
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∑
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∑
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1
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=

π
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for a . 1, where a2 ) γN2/Dπ2τk ) γ/π2(N/Nc)(N/Nh )
thus is larger than unity by two factors of normalized
degrees of polymerization. The result of eq 23 follows.
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