

 Working Paper Series

Optimal Allocation of Protective
Resources in Shortest-Path
Networks

Maria Paola Scaparra
Kent Business School

Paola Cappanera
Università degli Studi di Firenze

Working Paper No.177
December 2008

ISSN 1748-7595 (Online)

Optimal allocation of protective resources in
shortest-path networks

Paola Cappanera∗ Maria Paola Scaparra†

Abstract

We develop a game theoretic approach for allocating protection resources among the

components of a network so as to maximize its robustness to external disruptions. Specif-

ically, we consider shortest-path networks where disruptions may result in traffic flow

delays through the affected components or in the complete loss of some elements. We

develop a multi-level program which identifies the set of components to harden so as to

minimize the length of the shortest path between a supply node and a demand node

after a worst-case disruption of some unprotected components. We propose an implicit

enumeration algorithm to solve the multi-level problem to optimality and streamline the

approach by solving the lower level interdiction problem heuristically at each node of the

enumeration tree. We also propose some variable fixing rules which reduce the dimension

of the lower level problems. A thorough computational investigation demonstrates that

the proposed solution method is able to identify optimal protection strategies for networks

of significant size. We also study the sensitivity of the proposed approach to variations

of the problem parameters, such as the level of offensive and defensive resources, and the

distribution of the arc lengths and delays.

Keywords. Network interdiction, multi-level programming, shortest paths, resource al-

location.

Introduction

Most of today’s societal, economic and industrial functions heavily rely on the correct

and continued operations of life-line networks such as telecommunication, electric power,
∗Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Firenze, Italy,

paola.cappanera@unifi.it
†Kent Business School, University of Kent, Canterbury, UK, M.P.Scaparra@kent.ac.uk

1

transportation, transit, water supply, sewage disposal, and natural gas and petroleum

distribution systems. The growing complexity and interdependency of these networked

systems have significantly increased their vulnerability to a dangerous mix of intentional

and unintentional threats (e.g., terrorist attacks, sabotage, random failures, weather, nat-

ural disasters, and so on). As a consequence, the establishment of effective protection

strategies has become an imperative need to lessen the operational impact of infrastruc-

ture losses and circumscribe the dire and far-reaching consequences of possible system

disruptions.

Our focus in this paper is to develop a rigorous mathematical approach for identifying

the most cost-effective way of allocating scarce protection resources among the components

of a network so as to maximize its robustness to malicious attacks. Although it could be

argued that protection investments against rare, extreme events are difficult to justify on

economic grounds, due to the low probability of their occurrence, the need of implementing

sound protection strategies is justifiable in consideration of the enormous ripple effects

that these events may have, not only in terms of economical losses but also in terms of

human lives. Furthermore, in light of the variety of hazards to which system facilities are

exposed, there are likely to be economies of scope in hazard reduction [26].

In this paper, we consider distance-based networks where travel times, transmission or

shipping costs are the main concern, as in the case of emergency transport networks, com-

puter communication networks and some distribution systems. We develop a multi-level

optimization model which identifies the set of components to harden so as to minimize

the length of the shortest path from a supply node to a demand node after a worst-case

disruption of some unprotected elements. We assume that if a component is disrupted or

attacked, its travel cost is increased, eventually rendering it unusable, unless the compo-

nent is hardened, in which case the attack has no effect.

The study of quantitative approaches for improving infrastructure security and ro-

bustness has attracted the interest of several researchers and practitioners over the years.

Early studies have mainly focused on the identification of the most vulnerable and valu-

able system components as a tool to drive decisions on where to direct funds for hardening

and reinforcing a life-line. The mathematical models developed to this end are known as

interdiction problems and aim at identifying the sets of assets (e.g., nodes, links, or fa-

cilities) that, if disabled or lost, have the greatest impact on a system ability to perform

its intended functions. Several interdiction models have been developed for military and

homeland security applications in the last few decades. The seminal interdiction model

is due to Wollmer [27] who analyzes the problem of removing a specified number of arcs

2

from a network in order to minimize the maximum flow between an origin and a destina-

tion node. Fulkerson and Harding [10] introduce the first shortest path interdiction model

where arc lengths can be partially interdicted, subject to an interdiction budget, so as to

maximize the shortest paths between supply and demand points. Golden [12] investigates

a least-cost partial interdiction strategy to ensure a predetermined increase in the short-

est path length. Other variations of interdiction models on shortest path networks can

be found in [7], [2], [20] and [17]. For a complete survey of early interdiction problems

with different underlying network properties the reader is referred to [5]. More recently,

stochastic variants of network flow interdiction problems have appeared in [15], [14] and

[8], whereas [19] extends the study of interdiction models to multi-commodity networks.

Although interdiction models can provide valuable information about the criticality of

some system components, protection strategies which solely rely on this information, for

example by prioritizing the protection of the most-critical assets, will often result in sub-

optimal defense plans [3]. This kind of plans, in fact, fail to take into account how the set

of critical assets varies in response to the hardening of some components and, therefore,

may miss some crucial interactions and synergies within the system. As an example of this

shortfall, consider the simple network depicted in Figure 1. The two numbers associated

with each arc represent, respectively, the arc length under normal circumstances and the

delay which occurs along the arc in case of disruption. Assume that the efficiency of

the system is measured in terms of distance or travel time from the supply node 1 to

the destination node 7. Figure 1.a shows the source-destination shortest path when all

the arcs are fully operational (i.e., no delays occur). The length of the shortest path is

45. Shortest path interdiction models, such as the one in [17], can be used to identify

the most critical arcs in this network. As an example, the two arcs which, if interdicted,

results in the greatest increase of the shortest path length are arcs (2,5) and (3,6) (see

the arcs with a cross in Figure 1.b). In this case, the post-interdiction shortest path in

the network, 1-2-4-7, has a length of 67, an increases of almost 50%. Now, assume that

resources are available to harden two network components. If the defensive resources are

employed to protect the two critical links (2,5) and (3,6), an intelligent attacker aiming

at inflicting maximum damage to the network, will then attack links (1,2) and (1,4). The

shortest path through the network in this worst case scenario is displayed in Figure 1.c,

where protected arcs are indicated with cross hatched lines. If this protection strategy

is implemented, the length of the post-interdiction shortest path, 1-2-4-3-6-7, is equal to

60. Although this protection plan reduces the impact of the disruption, the shortest path

length still increases by more than 30%. Now consider an alternative protection strategy

3

where arcs (1,2) and (3,6) are hardened instead (Figure 1.d). The worst-case disruption

in response to this protection occurs if arcs (2,4) and (5,7) are subsequently attacked.

Although the shortest path is the same as in the previous case, its length is now 47. This

represents a length increase of less than 5% as compared to the length of the best path

when no delays occur, to denote a much sounder protection strategy. Also, note that this

fortification strategy renders the second interdiction ineffective. In fact, the same worst-

case path length of 47 can be obtained by attacking arc (2,4) only. This interdiction

generates two paths with length 47 (1-2-4-3-6-7 and 1-2-5-7). Since these two paths only

share the protected arc (1,2), which cannot be interdicted, it is not possible to disrupt

both of them with only one interdiction resource still available. The choice of the second

interdiction, (5,7), was arbitrary. Any other unprotected arc could have been chosen.

This result not only demonstrates that hardening the most critical components may be a

sub-optimal choice, but also that securing arcs in an optimal way can significantly reduce

the impact of a worst-case disruption and, eventually, dissipate offensive resources.

This simple example highlights the importance of explicitly including protection deci-

sions into the mathematical models. Different mathematical theories can be employed for

the analysis of optimal defensive strategies. One of the major factors driving the choice

of the appropriate modeling tool is the type of threats to which infrastructure systems

are exposed. In particular, reliability theoretic models are more appropriate for planning

the optimal defence of systems that face probabilistic risk (e.g., act of nature), whereas

game-theoretic models are more suitable when allocating resources to counter strategic

risk (e.g., malicious attacks) [11]. Modeling willful attacks, in fact, pose some unique

challenges, primarily because intelligent attackers can adapt their course of action to the

defender’s strategy. In several recent studies, this interaction between defender and an-

tagonist has been envisaged as a game and represented mathematically as a multi-level

model. As an example, [3] applies attacker-defender models to determine the value of

protecting assets in real-world infrastructure systems, such as power grids and petroleum

pipeline networks. Protective plans for electric power grids are also analyzed in [16], where

the authors propose a two-player zero-sum game to allocate protective resources so as to

minimize the expected damage under different attacking strategies. The allocation of se-

curity resources to a water supply network is investigated in [23]. The objective of this

model is to allocate a security budget to maximize an attacker’s marginal cost of inflicting

damage through the destruction of network components. A similar objective is used in [1],

where the authors assume that the defender attempts to deter attacks by making them

as costly as possible. This type of objective is particularly suitable to model problems

4

where the amount of resources available to the attacker is not known to the defender. A

variation of this model can be found in [13]. In this work, defensive and offensive strate-

gies are analyzed to improve the reliability of series and parallel systems. The reliability

of each system component is assumed to depend on the level of defensive and offensive

investments. An interesting model framework, where defensive investments are allocated

to counter both terrorism and natural disaster, is proposed in [28]. The authors compare

a sequential formulation and a simultaneous formulation of a defender-attacker game, and

discuss policy implications and important insights into the nature of equilibrium defensive

strategies. Finally, [24] propose a defender-attacker model to identify the optimal way of

protecting facilities in service and supply systems so as to minimize the demand weighted

distance among customers and facilities after worst-case disruptions. Single-level refor-

mulations of this problem are provided in [4] and [25], whereas [18] presents a stochastic

version of the model, where the number of possible attacks is uncertain.

The contribution of this paper is to apply a game theoretic framework to identify opti-

mal protection strategies in shortest path networks. More specifically, we build upon the

shortest path interdiction model proposed in [17] and add to it an additional layer which

explicitly models protection decisions. The resulting model is a three-level program, for

which we propose an optimal solution approach. A thorough computational investiga-

tion demonstrates that the proposed solution method is able to find optimal solutions for

networks of significant size. We also discuss the sensitivity of different variants of the

proposed approach to variations of the problem parameters, such as the level of offensive

and defensive investments, and the distribution of the arc costs and delays. Finally, we

introduce an alternative formulation for the shortest path interdiction model given in [17]

which, when embedded within the defender-attacker bilevel construct, is remarkably more

robust.

The paper is organized as follows. Section 1 presents the multi-level model. Section

2 describes the solution methodology. Section 3 introduces an alternative formulation for

the lower level attacker problem. Section 4 presents the computational results. Finally,

Section 5 contains some concluding remarks.

1 A Multi-Level Formulation

Given a directed graph G=(N,A), where N is the set of nodes and A is the set of arcs,

the Shortest Path Interdiction Problem with Fortification (SPIF) aims at identifying the

set of linkages to harden in such a way that the length increase of the shortest path from

5

a supply node s to a demand node t due to a worst-case interdiction of some unprotected

linkages is minimized.

Note that although we make the assumption that the critical components that can

be interdicted and protected are the network linkages, it is easy to prove that problems

where the critical components are the nodes can be reduced to critical arc models by

opportunely augmenting the underlying graph [6]. Hence, we describe the more general

case of arc protection and interdiction.

Let ck be the nominal length of arc k and dk the delay (or penalty or cost increase)

to ship flow through k if the arc is interdicted. Arc lengths and arc delays are supposed

to be non-negative integer. The complete loss of an arc can be captured in the model by

choosing dk sufficiently large [17]. We assume that both offensive and protective resources

are limited so that at most R components can be attacked, and at most Q components

can be hardened against interdiction. We also assume that an attack on a protected

component has no effect so that the attacker should always hit unprotected components

to optimize the use of his resources.

The multi-level formulation of SPIF uses the following sets of decision variables:

zk =

1, if arc k is hardened,

0, otherwise

sk =

1, if arc k is interdicted,

0, otherwise

yk =

1, if flow is shipped through arc k,

0, otherwise

The set of feasible strategies of the defender can be defined in terms of the protection

variables zk as D = {z ∈ {0, 1}|A||
∑

k∈A zk ≤ Q}. Similarly, the set of feasible strategies

of the attacker can be defined in terms of the interdiction variables sk as I = {s ∈

{0, 1}|A||
∑

k∈A sk ≤ R}.

SPIF can then be formulated as the following three-level problem:

(SPIF) min
z∈D

max
s∈I

min
y

∑
k∈A

(ck + dksk)yk (1)

6

s. t.
∑

k∈FS(i)

yk −
∑

k∈BS(i)

yk = bi ∀i ∈ N (2)

sk ≤ 1− zk ∀k ∈ A (3)

yk ≥ 0 ∀k ∈ A (4)

As in standard shortest path problems, bs = 1, bt = −1, and bi = 0 for all the other

nodes i in N . BS(i) and FS(i) denote the backward star and the forward star of node

i respectively. The objective function (1) computes the minimum-cost path after the

worst-case interdiction of R unprotected components. This cost includes the penalties

associated with interdicted arcs. Constraints (2) are standard flow-balance constraints

for shortest path problems. Constraints (3) simply state that protected arcs cannot be

interdicted. Finally, constraints (4) represent the nonnegativity requirements for the flow

variables yk. Note that integer restrictions for these variables are not required since the

bottom level problem is a standard shortest path problem for which an optimal integral

solution always exists.

This tri-level defender-attacker-user model can be reduced to a bilevel model by taking

the dual of the bottom minimization problem. By doing so, the bilevel attacker-user model

is collapsed into a single level attacker problem which inherently incorporates the user’s

optimal choice (see [17] for more details). The attacker problem can hence be solved by

standard, off-the-shelf optimization software.

Let πi be the dual variable associated with the flow-balance constraint for node i. The

reduced defender-attacker bilevel problem is as follows:

min
z∈D

max
s∈I,π

πt (5)

s. t. πj − πi − dksk ≤ ck ∀k = (i, j) ∈ A (6)

sk ≤ 1− zk ∀k ∈ A (7)

Note that in the above formulation we have omitted the dual variable πs that can be

set to zero to offset the presence of at least one redundant constraint in the bottom level

shortest path problem of SPIF.

The number of levels of the above problem can be further reduced if we explicitly

enumerate all possible ways of interdicting R out of the |A| linkages. To this end, let H,

indexed by h, be the set of all possible interdiction patterns, and Ih the set of interdicted

arcs in pattern h. We denote by sh the interdiction vector associated with pattern h, i.e.

7

sh = (sh
1 , . . . , sh

|A|) with sh
k = 1 if k ∈ Ih, sh

k = 0 otherwise. Finally, let πh be the vector of

shortest path dual variables associated with a given interdiction pattern h. We can then

formulate the defender-attacker problem as a single level problem in the z and π variables

only.

min v (8)

s.t. v ≥ πh
t ∀h ∈ H (9)

πh
j − πh

i − dksh
k(1− zk) ≤ ck ∀k = (i, j) ∈ A,∀h ∈ H (10)∑

k∈A

zk ≤ Q (11)

zk ∈ {0, 1} ∀k ∈ A (12)

Note that without loss of generality we can assume that each dual variable πh
i in the

above formulation represents the post-fortification, post-interdiction shortest path length

from the source node s to node i, given that interdiction pattern h occurs. Although this

is not necessarily true for every h, it can be easily enforced by adding an opportunely

weighted secondary objective which minimizes the variables πh
t .

It is clear that the use of this single level model is limited to problems of very modest

size, due to the rapid growth of the number of variables and constraints for even small

graphs and small values of R. Nevertheless, this formulation has been introduced to prove

some theoretical results in Section 2.

Finding the optimal solution to problems of realistic and practical size requires devising

sophisticated approaches tailored to the bilevel structure of the defender-attacker problem

(5)-(7). Unfortunately, bilevel optimization problems are not amenable to solution by

standard mixed integer programming methodologies, and no universal algorithm exists

for their solution. Furthermore, problem (5)-(7) can be classified as a particularly hard

bilevel problem in that the upper level variables parametrize the constraints of the lower

level problem, and integer restrictions appear at both levels (see [22] or [9] for an in-depth

discussion of discrete bilevel problems).

In the following section, we describe an implicit enumeration algorithm to solve prob-

lem (5)-(7). We also propose a heuristic to solve the lower level interdiction problem and

show how the information acquired when solving the problem heuristically can be used to

streamline the overall implicit enumeration approach. Finally we propose some variable

fixing mechanisms to further reduce the complexity of the problems solved at each node

8

of the enumeration tree.

2 Solution Methodology

2.1 An Implicit Enumeration Algorithm

We solve SPIF using an enumeration scheme which exploits the solutions to the lower level

interdiction problems to reduce the number of defender strategies to be evaluated [24].

The algorithm is built upon the simple observation that an optimal fortification set must

include at least one of the components which are interdicted in an optimal solution to the

interdiction problem without fortification [4]. This observation can be used recursively at

each node of the enumeration tree to narrow the set of defender’s variables to branch on.

The general structure of the implicit enumeration algorithm is outlined below, followed

by a formal proof of the correctness of the branching strategy.

In the pseudocode, we denote by z and s the vectors of fortification and interdiction

variables respectively. Let r be the root node of the search tree and S the set of search-tree

nodes to be visited. Each node n has the two following sets associated with it:

Cn the set of candidate arcs to be hardened

Fn the set of fortifications already made.

Finally, we denote by SPI(Fn) the conditional shortest path interdiction problem with

the additional restriction that the arcs in Fn cannot be interdicted. We recall that each

SPI(Fn) is a standard mixed integer programming problem than can be solved by general

purpose MIP solvers.

Procedure ImplicitEnumeration

Init Phase.

Set Fr = ∅. Solve SPI(Fr) for ŝ, π̂ and objective value π̂t;

Set z = 0, s = ŝ, and π = π̂; Cr = {j : ŝj = 1}; S = {r};

Iterative Phase.

while S 6= ∅ do

begin

Select n ∈ S;

Select k ∈ Cn;

Generate node n0 with Fn0 = Fn and Cn0 = Cn \ {k}. If Cn0 6= ∅ then S = S ∪ {n0};

Generate node n1 with Fn1 = Fn ∪ {k}. Solve SPI(Fn1) for ŝ, π̂ and objective value π̂t;

9

If |Fn1 | = Q or ŝ = 0 then \\ leaf node

if π̂t < πt then \\ update best solution

s = ŝ; π = π̂; for each j ∈ A, if j ∈ Fn1 then zj = 1 else zj = 0;

endif;

Else Cn1 = {j|ŝj = 1}, S = S ∪ {n1};

end

Return (z, s, π).

The algorithm is implemented as a binary tree. The generation of a node n0 represents

the fact that the value of the selected variable for branching, zk, is fixed to zero. In this

case, either the set of candidate fortifications is empty and the node is fathomed, or

the new node n0 is added to the set of tree nodes to be visited. The generation of a

node n1 corresponds to fixing zk to 1, in which case we solve a conditional shortest path

interdiction problem with the new set of fortifications and generate a new set of variables

to branch on. A leaf node is reached when exactly Q fortification variables are fixed to 1

or when, after the protection of the components in Fn1 , any attack on R of the remaining

linkages does not worsen the shortest path. In the latter case, we can force the MIP solver

to return an empty set of interdiction (i.e., ŝ = 0) by adding a secondary objective to SPI

as explained at the end of this section.

In practice, the implicit enumeration algorithm is implemented as a depth-first search

which uses recursion and backtracking. At each node n, the variable zk to branch on

is selected at random. Note that, if the conditional lower level interdiction problems

have multiple optimal solutions, the order in which the branching variables are selected

may lead to the generation and exploration of different sets of tree nodes. Consequently,

the choice of the branching variables may have an impact on the size of the search tree

and, hence, on the computing time of the overall approach. The identification of more

sophisticated selection strategies for the branching variables, which take into account the

existence of multiple optimal solutions to SPI, is still an open problem which may deserve

future investigation.

The proposed solution methodology can be easily modified to handle the problem in

which each link requires a different amount of offensive resources to be interdicted and

there is a limit on the total resources available for interdiction. To this end, it is suffi-

cient to replace the attacker cardinality constraints in the lower level interdiction problem

with more general resource constraints. Similarly, the methodology can be used to solve

problems with a budget constraint on the fortification resources instead of the cardinality

10

constraint defining the set of feasible protection strategies. In this case, a node n of the

enumeration tree becomes a leaf node and is fathomed if the protection cost of any facility

in Cn exceeds the residual budget available at that node.

We now state the correctness of the branching rule used in the tree search approach.

This is equivalent to showing that the inequality ŝz ≥ 1 is supervalid to the defender

problem. An inequality is supervalid if it does not cut off any optimal solutions unless the

incumbent solution is already optimal [17]. We have thus to prove that ŝz? ≥ 1, where

(z?, s?, π?) denote an optimal solution to the defender-attacker problem and ŝ is a feasible

solution to the interdiction problem.

Theorem 2.1. For any interdiction strategy ŝ generated in the search tree, the inequality

ŝz ≥ 1 is supervalid for the defender-attacker problem.

Proof. Suppose that (ŝ, π̂) is the solution to SPI(Fn) at a generic node n of the search tree

and π̂t is its objective value. Let ẑ be the defender strategy associated with node n (i.e.,

for each j ∈ A, ẑj = 1 if j ∈ Fn, ẑj = 0 otherwise). Hence, the triplet (ẑ, ŝ, π̂) represents

a feasible solution to the defender-attacker problem (5)-(7). Let v? be the objective value

of an optimal solution (z?, s?, π?). Suppose also that the incumbent solution (z, s, π) is

not optimal, i.e. πt > v?. Finally, let ŝ = sh for some h ∈ H and πh be the shortest path

in response to z? and sh. Observe that ŝz? = 0 or ŝz? ≥ 1, since s and z are 0-1 vectors.

By contradiction, we assume that ŝz? = 0. So, we have:

v? ≥ πh
t (this is true for any h ∈ H. See constraints (9) in problem (8)-(12))

= πh
i + dksh

k(1− z?
k) + ck (k = (i, t) is the arc entering t in the shortest path πh)

= πh
i + dksh

k + ck (by hypothesis ŝ = sh and ŝz? = 0; hence, sh
j z?

j = 0 ∀j ∈ A)

≥ πh
i + dksh

k + ck − dksh
k ẑk (because dk > 0 and ŝk, ẑk ≥ 0)

= πh
i + dkŝk(1− ẑk) + ck (by replacing ŝk = sh

k)

≥ π̂t (because π̂t is the shortest path in response to ẑ and ŝ)

≥ πt (because (ẑ, ŝ, π̂) need not be the incumbent solution)

> v? (by assumption).

But this is a contradiction. Thus, if the incumbent solution is not optimal, the inequality

ŝz? ≥ 1 must be true for every optimal solution (z?, s?, π?).

11

Note that our branching rule generates an enumeration tree where the number of nodes

only depends on the parameters Q and R, but not on the total number of components that

can be protected and interdicted (i.e., |A|). More specifically, the size of the enumeration

tree and, hence, the number of lower level problems to be solved, is bounded above by the

quantity (RQ+1−1)/(R−1) (see [24] for a formal proof). In practice, the actual number of

attacker problems to be solved can be further reduced by observing that a given SPI(Fn)

may have alternative optimal solutions which use different amount of offensive resources.

By selecting one of the optimal solutions which uses the smallest number of interdictions,

we can reduce the size of the set of candidate components to be hardened, Cn, and, hence,

the number of nodes to be processed. To this end, we have modified the objective function

of the attacker problem by adding a secondary objective as follows:

max πt −
1

R + 1

∑
k∈A

sk (13)

Note that the use of the weight 1 \ (R + 1) guarantees that the value of the new term

added to the objective is always less than one. Since we deal with non-negative integer

path lengths, this weight ensures that the maximization of the shortest path length πt

remains the primary objective. Preliminary results have shown that this simple expedient

can significantly reduce the number of mixed integer problems solved in the implicit

enumeration procedure.

In addition to the reduction of the search tree size, it is clear that the computing

effort of the proposed approach may greatly benefit from a reduction of the computing

time needed to solve each instance of the attacker problem. We now describe how to solve

the interdiction problem more efficiently so as to improve the scalability of the proposed

solution methodology.

2.2 Heuristic Solutions to the Interdiction Problem

Although the validity of our branching strategy relies upon finding optimal solutions to

the interdiction problems, we use an heuristic approach to generate valid lower bounds

and supervalid inequalities for the attacker problems. The approach consists of a greedy

strategy which starts with an empty set of interdictions and iteratively adds components

to it according to a greedy rule. At each iteration, the newly selected component for

interdiction is the linkage on the current shortest path whose delay results in the maximum

length increase of the s-t shortest path in the graph.

12

A scheme of the greedy process is provided below. In the pseudocode, P denotes the

set of shortest paths processed during the heuristic execution; Pm is the shortest path

after the selection of m-1 interdictions , with 1 ≤ m ≤ R, and Lm is its length. Finally,

Pk is the shortest path computed in the graph G = (N,A) when arc k is removed; Lk is

the length of path Pk.

Init Phase.

Let P be the shortest path in G = (N,A) and L its length;

Set P 1 = P ; L1 = L; P = {P}; sj = 0 for each j ∈ A.

Iterative Phase.

for m = 1, ..., R do

begin

for each arc k in Pm s.t. sk = 0 do

begin

Pk = ComputeShortestPath(N ,A\ { k });

vk = min {Lm + dk, Lk };

end

k̂ = argmaxk∈P m{vk};

ck̂ = ck̂ + dk̂; sk̂ = 1;

if vk̂ = Lk̂ then \\ the shortest path in response to s has changed

Pm+1 = Pk̂; Lm+1 = Lk̂; P = P ∪{Pm+1};

else Pm+1 = Pm; Lm+1 = vk̂;

end

Return s, P , PR+1, LR+1.

It has to be noted that in the heuristic step where the new arc k̂ is selected, there may

be several arcs whose interdiction results in the same maximum value of vk. In this event,

we break ties by selecting the arc which, when interdicted, generates an s-t shortest path

different from the current one. Further ties are resolved by selecting the arc with the

highest delay. The selection step also needs be modified when the heuristic is used at a

generic node n of the search tree other than the root node. In this case, in fact, we must

not process the arcs in Pm which have already been fortified, i.e., the arcs in the set Fn.

At termination, PR+1 is the shortest path in response to the interdiction plan s. Its

length, LR+1, represents a lower bound to the optimal solution of the attacker problem.

We supply the mixed integer programming solver with this bound so as to cut off some of

13

the branch and bound nodes at an early stage. Note that when R = 1, the solution found

by the greedy heuristic is optimal and, therefore, there is no need to call the MIP solver.

To further reduce the number of branches needed to solve the MIP formulation of

the attacker problem, we use the set of shortest paths P in the following supervalid

inequalities which are added to the SPI(Fn) models:

∑
k∈P m

sk ≥ 1, ∀m = 1...|P | (14)

Constraints (14) simply force the interdiction of at least one of the arcs in each path

generated by the heuristic.

2.3 Variable Fixing Rules

In this section, we present two different rules which can be used to eliminate some inter-

diction variables from the attacker problems, thus accelerating the solution time of the

implicit enumeration procedure.

Bellman Fixing Rule

Let πb
i denote the length of the shortest path from the source node s to a generic node

i in the original graph G = (N,A) without interdictions. Let πw
i denote the length of

the shortest path from the source node s to node i in the graph G where all the arcs are

interdicted.

Proposition 2.1. If πw
j − πb

i ≤ cij, then the interdiction variable sk associated with the

arc k = (i, j) can be set to zero.

This proposition is based on the simple observation that if in the graph where all

the arcs are interdicted, node j can be reached through a path which is shorter than

the shortest path through node i in the graph without interdictions, then interdicting

arc (i, j) is never beneficial for the attacker. Therefore, in the initialization phase of the

implicit enumeration algorithm, we check the above Bellman-like condition for each arc

k in the graph and exclude the interdiction variables associated with the arcs satisfying

this condition from further consideration.

14

KSP Fixing Rule

Assume that πr
t is the objective value of the optimal solution to the SPI problem obtained

at the root node of the enumeration tree. We denote by Pr the set of s-t paths in

G = (N,A) whose nominal length is less than or equal to πr
t . Let fk denote the frequency

of appearance of arc k in the s-t paths in Pr.

Proposition 2.2. If for some arc k, we have that fk = 0, then the interdiction variable

sk can be set to zero.

The rationale behind this proposition is as follows. When none of the network com-

ponents is hardened, an optimal attack on R linkages can thwart all the s-t paths with

length up to πr
t . When some fortifications are made in subsequent steps of the algorithm,

an optimal attack will be less disruptive and will only be able to thwart a subset of these

paths. As such, offensive resources should be targeted so as to maximize the number of

shortest paths in Pr that can be disrupted. Clearly, resources utilized to interdict arcs

which do not appear in any of these paths will be dispersed. Consequently, after solving

the interdiction problem at the root node, we can restrict the focus of the solution ap-

proach only to those arcs which belong to at least one of the paths in Pr and eliminate

all the other interdiction variables. In our implementation of the modified implicit enu-

meration procedure, the paths in Pr were computed by using the shortest path ranking

algorithm proposed in [21]. This algorithm proved to be very efficient for generating and

ranking millions of shortest paths between pairs of nodes in networks of significant size.

In our computational experiments, the computing time for generating the paths in Pr

was negligible as compared to the computing time of the overall procedure.

3 An alternative formulation of the attacker problem

The rationale behind proposition 2.2 also suggests an alternative way of formulating the

attacker problem at each node n of the enumeration tree other than the root node.

Let Pm be the m-th shortest path in Pr and Lm its length. An alternative formulation

for SPI(Fn), denoted in the following as KSPI(Fn), is as follows:

max L (15)

s.t. L ≤ Lm +
∑

k∈Pm

dksk ∀m ∈Pr (16)

15

∑
k∈A

sk ≤ R (17)

sk ≤ 1− zk ∀k ∈ Fn (18)

sk ∈ {0, 1} ∀k ∈ A (19)

At optimality, the variable L in the objective function (15) represents the length of the

shortest path after the most disruptive interdiction. This is enforced by constraints (16).

This formulation has |A| integer variables and |Pr|+|Fn|+1 constraints. Even in this

case, some of the interdiction variables can be eliminated by using propositions 2.1 and

2.2. The original formulation of the interdiction problem has |A| integer variables, |N |

continuous variables and |A|+|Fn|+1 constraints. Given that the number of paths in the

set Pr is largely problem specific, it is not possible to establish a priori the dominance

of one formulation over the other in terms of dimension and difficulty of solution. An

advantageous feature of the alternative formulation is that the number of constraints (16)

can be reduced every time we solve a new problem at a child node of the enumeration

tree. Assume for example that L∗ is the optimal solution to problem (15)-(19) at node

n. When we solve the interdiction problem at n’s child node, we can safely remove from

the formulation all the constraints associated with those paths whose length is strictly

greater than L∗. In fact, if the length of these paths could not be worsened with the set

of interdictions available at node n, they cannot be worsened when the set of candidate

interdictions is restricted at the child node by hardening an additional component. As

we go down in the tree, we can use this problem reduction iteratively to obtain problems

which are increasingly smaller. The use of this alternative formulation becomes therefore

more attractive when solving problems with larger values of Q, since the parameter Q

determines the depth of the enumeration tree.

An in-depth discussion of the tradeoffs between using formulation (15)-(19) versus the

original SPI formulation within the enumeration procedure is given in Section 4.

Note that the formulation (15)-(19) can be generalized to solve generic instances of SPI

by computing an upper bound of the number of shortest paths that can be interdicted

with R resources and including a constraint (16) in the formulation for each of these

shortest paths.

16

Grid Nodes Arcs
7-7 51 188
10-10 102 416
12-12 146 618
15-15 227 996

Table 1: Grid dimensions

4 Experimental results

4.1 Test problems and implementation issues

In our computational testing, we use directed square grid graphs with a number of rows

(and columns) in {7, 10, 12, 15}. The grids are generated by following the rules described

in [17] so as to obtain networks with the same topology as the ones used to test the

shortest path interdiction model without fortification. Given a positive integer c which

represents the maximum arc cost, arc costs are uniformly chosen in [0, c]; then for a

given c, we consider three different delay distributions: (i) delays uniformly chosen in

[0, c/2]; (ii) delays uniformly chosen in [0, c]; and delays uniformly chosen in [0, 2c]. In

our experimental analysis we use two values for c, c = 10 and c = 100, thus summing

up to 6 cost-delay combinations for each grid type. For a fixed grid dimension and

cost-delay combination, we generate 3 instances with different random arc attributes.

Cardinality constraints on offensive and defensive resources are considered where the

maximum number Q of fortifications belongs to {3, 5, 7} and the maximum number R of

interdictions is in {1, 2, 3, 4, 5}. Each instance is solved for each combination of Q and R

in the aforementioned sets, except the largest grids (15 x 15) for which the case Q = 7

and R = 5 is too computationally expensive and is therefore excluded. The total number

of instances is thus equal to 1062. The characteristics of the networks in terms of nodes

and arcs are given in Table 1.

We code the algorithms in C++ and run them on a PC with an Intel Core 2, 2.66 Ghz

processor and 2GB of RAM. The commercial solver CPLEX, version 11 is used to solve

the MIP problems at each node of the enumeration tree.

Two implementations of the implicit enumeration scheme are considered depending on

the formulation used for the lower level interdiction problem at each node of the enumer-

ation tree, namely SPI(Fn) or KSPI(Fn) described respectively in Sections 1 and 3. For

each of the two formulations, three variants are investigated: (i) the basic formulations

are directly solved with Cplex without any attempt at reducing the search space. These

two versions are referred to as SPINot and KSPINot respectively; (ii) the implicit enu-

17

meration scheme is equipped with the Bellman and KSP variable fixing rules described in

Section 2.3. Additionally the greedy heuristic is used at the root node. These two versions

are referred to as SPIFix and KSPIFix; (iii) in addition to the variable fixing rules, the

greedy heuristic and the inequalities (14) are used at each node of the enumeration tree.

These two versions are referred to as SPIAll and KSPIAll.

4.2 Performance Comparison

In Figure 2, a performance comparison is made among the six variants of the implicit

enumeration scheme described above. More specifically, for each variant we report the

percentage of instances solved in a given time interval, where the time classes, represented

on the x-axis of the bar chart, are as follows: less than one second, between one second

and one minute, between one minute and 10 minutes, between 10 minutes and one hour,

between one hour and three hours and finally, over three hours. These aggregated results

highlight two important facts: 1) the use of the variable fixing rules and of the heuristic

allows us to solve more instances in shorter times; 2) the use of the KSPI formulation in

the lower level interdiction problem makes the enumeration approach more efficient. A

direct comparison between SPIAll and KSPIAll, for example, shows that the percentage

of instances solved in less than one minute with KSPIAll is as high as 85.4, whereas for the

counterpart SPIAll the percentage is equal to 79.3. Additionally, the number of instances

solved in over one hour is negligible when any of the KSPI-based variant is used.

To analyze in more depth the performance trend of the different approaches, we present

some detailed results in Table 2. For a given grid dimension and a given cost-delay

distribution, the average computational time, expressed in CPU seconds, is given for

each of the six variants of the algorithm. The problem name, shown in the first column,

contains four fields which represent respectively the number of rows and columns in the

grid graph, the maximum cost c and the maximum delay d. Each row of the table is

thus averaged over 45 instances (3 instances times 15 Q-R combinations) when the grid

dimension is in {7, 10, 12} and over 42 instances for the 15-row grids (3 instances times 14

Q-R combinations). The results are grouped according to the value of c: in the first block

of rows results are shown for costs ranging in [0, 10], while the second group of rows relates

to instances characterized by a higher variability of the cost coefficients which range in

[0,100]. In each row the most efficient approach is displayed via a bold entry. In the last

row of the table average computational times over all the instances are given.

As to be expected, the overall results show that the instances become more difficult

to solve as the dimension of the grid increases. Also, for a fixed grid dimension, the

18

difficulty grows as the delay range augments, so that solving instances with delays in the

range [0, 2c] consistently requires more time than solving instances where the delays vary

in [0, c/2]. In addition, the aggregated results reported in the last row confirm that the

KSPI approaches dominate the SPI implementations and that the tools used to reduce

the computational burden of the basic approach are quite effective. In general, their effect

is more pronounced in the SPI-based variants than in the KSPI ones.

A closer look at the two blocks of instances in Table 2 shows that the approaches may

perform quite differently depending on the cost range used (and, consequently, the delay

range). For instances with smaller costs (first block), the approaches based on the SPI

formulation greatly benefit from the introduction of the fixing rules and the heuristic,

so that the variant SPIAll is remarkably more efficient than the variant SPIFix, which,

in turn, is faster than the variant SPINot. The three KSPI-based variants exhibit much

smaller computational times with respect to their SPI counterparts across the full range

of instances in this block and the impact of the reduction techniques is less noticeble.

On the second block of instances, characterized by wider cost ranges, the SPI and the

KSPI implementations display somewhat opposite behaviours. The SPI variants, in fact,

generally solve these instances more rapidly than the ones with smaller costs and delays.

As an example, consider the SPIAll performance on the 10x10 and the 12x12 grids. The

computing times to solve the instances in the first block can be as high as double the

times to solve instances of equal size in the second block (see for example the instance

10-10-10-20 vs the instance 10-10-100-200, or the instance 12-12-10-20 vs the instance 12-

12-100-200). The impact of the cost-delay range on the performance of the SPI variants

seems to be negligible for the 15x15 grids. On the other side, the performance of the

KSPI implementations clearly deteriorates when wider cost ranges are considered. This

is particulary evident for the bigger instances in the test bed (e.g., 15-15-100-200).

Overall, the preeminence of the KSPI-based variants seems quite overwhelming, if we

exclude the 15-15-100-200 instances. Possible causes which may render these instances

more difficult to solve by the KSPI implementations will be further investigated in the

next paragraphs.

In Table 3, we provide some information related to the fixing rules and the KSP paths

generated by the approaches. The level of aggregation of the results in Table 3 is the same

as in Table 2. For each grid dimension and each cost-delay combination, the table provides

the following information: the average number, KSPPath, of s-t shortest paths whose

cost does not exceed the upper bound to the three-level defender-attacker-user problem

objective computed at the root node via the SPI formulation with no fortifications; the

19

average percentages of non-interdictable arcs computed by the Bellman-like conditions

(%Bfix) and by the k-shortest path tools (%Kfix); and, in the last column, the average

percentage of arcs fixed by both the rules described above. First of all, we observe that

the KSP fixing rule is very effective in reducing the search space both for easy and critical

instances and is more powerful than the Bellman fixing rule. Nevertheless, the Bellman

fixing rule is always able to identify some additional variables to fix which could not be

identified by using the KSP fixing rule alone, as shown by comparing the fourth and the

last column of the table.

By looking at the KSPPath column in Table 3, we can observe that the average

number of KSP paths for the instances in the class 15-15-100-200 is significantly higher

than the KSPPath number for the other classes. This explains the greater difficulty of

the KSPI formulation at solving these problems. Recall, in fact, that whereas the number

of constraints in the SPI formulation of the interdiction problem strictly depends on the

number of arcs, in the KSPI formulation the number of constraints is determined by the

number of KSP shortest paths identified at the root node. This observation suggests

the use of an hybrid approach where the interdiction problem formulation to be used in

subsequent nodes of the enumeration tree (SPI or KSPI) is selected on the fly at the

root node after the number KSPPath is computed: if this number is significantly higher

than the number of arcs (as is the case for some of the 15-15-100-200 problems) the SPI

formulation should be selected; conversely, if the number of KSP paths is in the same

order of magnitude as the number of arcs, the KSPI formulation should be opted for.

It is important to note that the number of KSP paths is largely problem specific and

may vary considerably even for networks of the same size and with the same cost and

delay distributions. This is true, for example, for the class 15-15-100-200, where the

high KSPpath number and, consequently, the high average computing times of the KSPI

algorithms are mainly due to one of the three instances. In support of this observation,

we provide in Table 4 the disaggregated results for two instances of type 15-15-100-200:

in the first column the name of the instance is given where the last field refers to the

instance index ranging in {0, 1, 2}; this is followed by the number Q of fortifications and

the number R of interdictions; the next four columns give the information relative to the

fixing rules in the same format as in Table 3; finally, the computational time expressed in

CPU seconds is reported for the two most efficient implementations of each formulation

type, i.e. SPIAll and KSPIAll. These disaggregated results reveal that KSPIAll performs

better than SPIAll on the instance 15-15-100-200-0: note that in this case the number

of KSPPaths is never over 3500 and there are some Q-R difficult combinations (see for

20

example the 5-4, 5-5, and 7-4 cases) that can be solved by KSPIAll in about one fourth

of the time required by SPIAll. A completely different behavior can be observed on the

instance 15-15-100-200-1: there are three cases (see the 3-4, 5-4 and 7-4 cases) where

the time required by KSPIAll is remarkably greater than the one required by SPIAll;

additionally there are two cases for which KSPIAll needs a huge time (see 3-5 and 5-5

cases for which the times are respectively about 4 and over 15 hours). In all these five

cases the poor performance of KSPIAll is due to the high number of KSPPath which can

reach the value 36805. These results seem thus to corroborate the fact that an hybrid

approach may be successfully used to overcome the weaknesses of the SPI-based and the

KSPI-based approaches.

Finally, note that the number of KSP paths depends on the amount of interdiction

resources: in fact, the largest the value of R, the greater the number of shortest paths that

can be interdicted with the R resources. This may render the use of the KSPI formulation

more critical for solving problems with large values of the parameter R. Nonetheless, the

range of values considered in our computational tests (R between 1 and 5) seems to be

the most interesting from a practical point of view. The simultaneous loss of a much

larger number of components, in fact, seems quite unrealistic or, at least, quite unlikely

to occur. On the other side, the parameter Q may vary in a much broader range, given the

high variability of the amount of defensive resources that may be allocated for protection

purposes.

4.3 Impact of offensive and protective resources

In Figures 3 and 4 a scalability comparison with respect to the parameters Q and R is

made between SPIAll and KSPIAll on medium size grids, namely the 10x10 grids, for the

most critical cost-delay combinations in the test bed, i.e. respectively for costs ranging in

[0, 10] and delays in [0, 20] and costs ranging in [0, 100] and delays in [0, 200]. Specifically,

we report in a logarithmic scale the average time computed over the three instances of the

same type for each of the 15 Q-R combinations analyzed in our computational study and

shown on the x-axis. The two cost-delay distributions exhibit a quite similar behavior in

terms of increase in the computational time as Q and R grow.

More specifically, Figures 3 and 4 highlight that the impact of the number R of offensive

resources is more decisive than the number Q of protective resources in that: 1) for a fixed

value of Q (see each of the 3 blocks of 5 consecutive pairs of bars), the computational time

of both the approaches increases by one order of magnitude for a unitary increase of R;

2) for a fixed value of R the time required by instances characterized by the biggest value

21

of Q in the test bed, namely Q = 7 is about one order of magnitude larger than the time

required by instances with the smallest value of Q in the set considered, namely Q = 3;

3) when the number of interdictions is small (see R=1 and R=2) the computational times

are negligible (never over 1 second) for both the approaches independently on the number

of fortifications. These results indicate that, especially when the expected number of

possible losses is low, the proposed method can be used to identify the optimal network

components to be hardened for relatively large networks and large protection budgets.

5 Conclusions

We develop a multi-level optimization model, called the Shortest Path Interdiction Prob-

lem with Fortification (SPIF), to identify optimal protection strategies in shortest path

networks. With a simple example, we show that the explicit inclusion of protection deci-

sions into an optimization model can produce much sounder protection plans than simply

using a shortest path interdiction model (such as the one proposed in [17]) to identify the

critical components to be hardened: the impact of a worst-case disruption can be signif-

icantly reduced and some offensive resources can even be rendered ineffective. Clearly,

the benefit of including protection decisions into the model comes at a cost: the result-

ing model is a three-level program and its solution requires the devise of sophisticated

approaches tailored to this multi-level structure.

We propose an implicit enumeration algorithm for solving SPIF, which exploits the

solution to the lower level interdiction problem to reduce the number of protection strate-

gies to be evaluated. Given that the computation effort of the proposed method is largely

determined by the number of lower level interdiction problems to be solved in the enu-

meration tree and by the efficiency with which they can be solved, we introduce several

expedients to reduce the search tree size and speed up the computation. These include

some variable fixing mechanisms, and the use of a heuristic and some supervalid inequal-

ities at each node of the search tree. We also propose an alternative formulation for the

shortest path interdiction problem which generally outperforms the formulation proposed

in [17] when used within the implicit enumeration algorithm.

An extensive computational campaign demonstrates that the proposed methodology

is quite effective at solving protection problems on networks with up to more than 200

nodes and almost a thousand arcs. We also show how the distribution of the arc lengths

and delays can affect the efficiency of different implementation variants and suggest the

use of a hybrid approach to enhance the performance of our solution method. Finally,

22

we study the sensitivity of the approach to variations of the number of fortifications and

interdictions and we show that the effect of the number of offensive resources is more

crucial than the number of protective resources.

The need of developing quantitative methods for improving the ability of logistics

systems to withstand intentional or accidental disruptions has been widely recognized in

the scientific community, among practitioners, supply chain managers and government

agencies. Although in recent years a few researchers have begun studying mathematical

models able to address protection issues in infrastructure systems, the level of sophistica-

tion of these models needs to be further improved in order to cope with the complexities

of today logistics systems. Currently, we are exploring different variations of the SPIF

model, which may increase its applicability to solve real-world problems. As an example,

we are investigating a stochastic variant of SPIF where the number of possible losses is

uncertain and unknown to the defender. In another model variation, we assume that the

protection of a network component only reduces its probability of disruption, and that

the extent to which the disruption probability is reduced depends on the level of invest-

ment in protective measures. Finally, we plan to develop a multi-period version of SPIF

where protection resources become available in different periods and the objective is to

maximize the system robustness at the end of the planning horizon while guaranteeing

some minimum level of robustness in each time period.

Acknowledgment

This research was supported by EPSRC Grant EP/E048552/1. This support is gratefully

acknowledged.

References

[1] M.N. Azaiez and V. M. Bier. Optimal resource allocation for security in reliability

systems. European Journal of Operational Research, 181:773–786, 2007.

[2] M.O. Ball, B. L. Golden, and R. V. Vohra. Finding the most vital arcs in a network.

Operations Research Letters, 8:73–76, 1989.

[3] G. Brown, M. Carlyle, J. Salmeron, and K. Wood. Defending critical infrastructure.

Interfaces, 36(6):530–544, 2006.

[4] R. L. Church and M. P. Scaparra. Protecting critical assets: The r-interdiction

median problem with fortification. Geographycal Analysis, 39:129–146, 2006.

23

[5] R. L. Church, M. P. Scaparra, and R. S. Middleton. Identifying critical infrastructure:

the median and covering facility interdiction problems. Annals of the Association of

the American Geographers, 94(3), 2004.

[6] H. W. Corley and H. Chang. Finding the most vital nodes in a flow network. Man-

agement Science, 21(3):362–364, 1974.

[7] H.W. Corley and D. Y. Sha. Most vital links and nodes in weighted networks.

Operations Research Letters, 1(4):157–160, 1982.

[8] K. J. Cormican, D. P. Morton, and R. K. Wood. Stochastic network interdiction.

Operations Research, 46(2):184–197, 1998.

[9] S. Dempe. Foundations of Bilevel Programming. Kluwer Academic Publishers, The

Netherlands, 2002.

[10] D. R. Fulkerson and G. C. Harding. Maximizing the minimum source-sink path

subject to a budget constraint. Mathematical Programming, 13:116–118, 1977.

[11] B. Golany, E. H. Kaplan, A. Marmur, and U. G. Rothblum. Nature plays with dice -

terrorists do not: Allocating resources to counter strategic versus probabilistic risks.

European Journal of Operational Research, 0000:00–00, 2008.

[12] B. Golden. A problem of network interdiction. Naval Research Logistics Quarterly,

25:711–713, 1978.

[13] K. Hausken. Strategic defense and attack for series and parallel reliability systems.

European Journal of Operational Research, 186:856–881, 2008.

[14] H. Held, R. Hemmecke, and D. L. Woodruff. A decomposition algorithm applied to

planning the interdiction of stochastic networks. Naval Research Logistics, 52:321–

328, 2005.

[15] R. Hemmecke, R. Schultz, and D.L. Woodruff. Network interdiction and stochastic

integer programming, chapter Interdicting stochastic networks with binary interdic-

tion effort, pages 69–84. Kluwer, Boston, 2003.

[16] A. J. Holmgren, E. Jenelius, and J. Westin. Evaluating strategies for defending

electric power networks against antagonistic attacks. IEEE Transactions on Power

Systems, 22(1):76–84, 2007.

[17] E. Israeli and R. K. Wood. Shortest-path network interdiction. Networks, 40(2):97–

111, 2002.

[18] F. Liberatore, M.P. Scaparra, and M. Daskin. Analysis of facility protection strate-

gies against an uncertain number of attacks: The stochastic R-interdiction median

problem with fortification. Kbs working paper 176, University of Kent, 2008.

24

[19] C. Lim and J. C. Smith. Algorithms for discrete and continuous multicommodity

flow network interdiction problems. IIE Transactions, 39(1):15–26, 2007.

[20] K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the shortest path

problem. Operations Research Letters, 8:223–227, 1989.

[21] E.Q.V. Martins and J.L.E. Santos. A new shortest path ranking algorithm. Investi-

gação Operational, 20(1):47–62, 2000.

[22] J.T. Moore and J.F. Bard. The mixed integer linear bilevel programming problem.

Operations Research, 38:911–921, 1990.

[23] J. Qiao, D. Jeong, M. Lawley, J. P. Richard, D. M. Abraham, and Y. Yih. Allocating

security resources to a water supply network. IIE Transactions, 39:95–109, 2007.

[24] M. P. Scaparra and R. L. Church. A bilevel mixed integer program for critical

infrastructure protection planning. Computers & Operations Research, 35:1905–1923,

2008.

[25] M. P. Scaparra and R. L. Church. An exact solution approach for the interdic-

tion median problem with fortification. European Journal of Operational Research,

189:76–92, 2008.

[26] E. Sternberg and G. Lee. Meeting the challenge of facility protection for homeland se-

curity. Journal of Homeland Security and Emergency Management, 3(1):1–19, 2006.

[27] R. Wollmer. Removing arcs from a network. Operations Research, 12(6):934–940,

1964.

[28] J. Zhuang and V. M. Bier. Balancing terrorism and natural disasters - defensive

strategy with endogenous attacker effort. Operations Research, 55(5):976–991, 2007.

25

ProbName SPIAll SPIFix SPINot KSPIAll KSPIFix KSPINot
7-7-10-5 0.44 0.59 0.84 0.26 0.25 0.28
7-7-10-10 3.05 6.32 8.15 1.51 2.22 2.28
7-7-10-20 5.90 11.19 15.22 3.46 4.27 4.44
10-10-10-5 32.20 48.21 63.30 6.90 7.01 7.74
10-10-10-10 79.36 138.23 216.10 67.87 87.91 86.73
10-10-10-20 392.65 903.19 1428.30 79.43 97.45 103.39
12-12-10-5 108.78 241.38 249.02 37.64 38.94 40.24
12-12-10-10 545.66 622.76 880.17 130.54 131.73 135.11
12-12-10-20 1008.21 1934.36 2865.31 216.93 220.39 221.68
15-15-10-5 69.09 98.36 124.05 29.40 32.48 33.63
15-15-10-10 635.08 967.96 1454.23 72.51 76.91 78.65
15-15-10-20 927.57 1722.24 1998.11 225.43 253.45 262.42
7-7-100-50 2.50 3.03 4.17 1.46 1.47 1.52
7-7-100-100 1.50 1.76 2.35 1.13 1.28 1.29
7-7-100-200 3.55 7.89 12.18 2.59 3.78 3.83
10-10-100-50 11.38 18.61 21.06 9.88 10.82 11.23
10-10-100-100 85.23 171.44 239.44 28.62 36.09 36.77
10-10-100-200 218.75 474.43 649.05 46.37 65.39 65.10
12-12-100-50 86.57 118.18 134.46 92.64 97.52 97.74
12-12-100-100 243.70 412.26 555.98 78.73 85.39 87.04
12-12-100-200 579.62 931.21 1311.34 309.77 315.31 352.42
15-15-100-50 69.09 83.82 111.98 247.36 261.88 263.61
15-15-100-100 865.63 1843.06 2760.39 132.72 145.89 147.95
15-15-100-200 916.69 1665.33 2473.77 2367.97 2831.52 2799.78
Average 287.18 517.74 732.46 174.63 200.39 201.87

Table 2: Time comparison results

26

ProbName Arcs KSPPath %Bfix %Kfix %BKFix
7-7-10-5 188 87.53 26.95 72.73 21.81
7-7-10-10 188 64.47 14.01 68.72 11.21
7-7-10-20 188 94.09 7.67 67.63 4.57
10-10-10-5 416 118.47 15.95 77.92 14.25
10-10-10-10 416 390.33 9.54 72.82 7.34
10-10-10-20 416 249.13 7.37 74.44 5.66
12-12-10-5 618 675.13 11.97 80.87 10.63
12-12-10-10 618 450.73 7.71 79.36 6.31
12-12-10-20 618 438.27 4.05 76.44 3.03
15-15-10-5 996 791.43 10.07 82.96 8.96
15-15-10-10 996 223.29 7.56 85.29 6.75
15-15-10-20 996 1551.88 3.25 73.86 2.14
7-7-100-50 188 37.40 33.05 78.13 30.71
7-7-100-100 188 99.33 10.46 71.56 8.19
7-7-100-200 188 110.07 7.27 71.63 4.54
10-10-100-50 416 204.13 18.99 80.22 16.68
10-10-100-100 416 196.33 8.65 78.27 7.24
10-10-100-200 416 220.13 4.97 76.35 3.48
12-12-100-50 618 686.13 13.27 80.19 12.28
12-12-100-100 618 224.87 7.82 81.26 6.60
12-12-100-200 618 632.20 3.45 79.59 2.41
15-15-100-50 996 791.43 10.07 82.96 8.96
15-15-100-100 996 534.00 6.09 83.48 5.28
15-15-100-200 996 3266.31 3.85 79.37 2.84

Table 3: Impact of the variable fixing rules

27

ProbName Q R KSPPath %Bfix %Kfix %BKFix SPIAll KSPIAll
15-15-100-200-0 3 1 9 3.92 95.68 3.71 0.06 0.06
15-15-100-200-0 3 2 310 3.92 87.45 3.21 1.09 0.91
15-15-100-200-0 3 3 344 3.92 85.64 3.11 34.05 6.02
15-15-100-200-0 3 4 2146 3.92 73.69 2.71 280.81 83.92
15-15-100-200-0 3 5 3453 3.92 70.08 2.71 626.64 381.52
15-15-100-200-0 5 1 9 3.92 95.68 3.71 0.06 0.05
15-15-100-200-0 5 2 310 3.92 87.45 3.21 3.14 2.00
15-15-100-200-0 5 3 344 3.92 85.64 3.11 136.46 16.27
15-15-100-200-0 5 4 2146 3.92 73.69 2.71 1880.25 413.02
15-15-100-200-0 5 5 3453 3.92 70.08 2.71 6542.29 2274.67
15-15-100-200-0 7 1 9 3.92 95.68 3.71 0.08 0.05
15-15-100-200-0 7 2 310 3.92 87.45 3.21 7.86 3.52
15-15-100-200-0 7 3 344 3.92 85.64 3.11 318.44 37.77
15-15-100-200-0 7 4 2146 3.92 73.69 2.71 6965.67 1546.05
15-15-100-200-1 3 1 37 4.02 93.78 3.61 0.13 0.09
15-15-100-200-1 3 2 354 4.02 81.83 3.01 1.66 1.59
15-15-100-200-1 3 3 2008 4.02 69.48 2.71 9.63 44.44
15-15-100-200-1 3 4 7473 4.02 61.95 2.21 90.99 1169.52
15-15-100-200-1 3 5 36805 4.02 50.50 2.01 487.15 17645.22
15-15-100-200-1 5 1 37 4.02 93.78 3.61 0.14 0.09
15-15-100-200-1 5 2 354 4.02 81.83 3.01 3.50 2.61
15-15-100-200-1 5 3 2008 4.02 69.48 2.71 34.36 115.67
15-15-100-200-1 5 4 7473 4.02 61.95 2.21 473.93 3706.92
15-15-100-200-1 5 5 36805 4.02 50.50 2.01 2124.87 56625.07
15-15-100-200-1 7 1 37 4.02 93.78 3.61 0.19 0.09
15-15-100-200-1 7 2 354 4.02 81.83 3.01 6.39 3.11
15-15-100-200-1 7 3 2008 4.02 69.48 2.71 93.63 208.76
15-15-100-200-1 7 4 7473 4.02 61.95 2.21 1408.74 9000.23

Table 4: Performance comparison on two difficult instances

28

[50, 100] [25, 25]

[15, 15]

[45, 45]

1

2 5

4 7

6 3

[30, 60]

[2, 2] [2, 2]

[2, 2]

[25, 50]

[1, 1]

[50, 100] [25, 25]

[15, 15]

[45, 45]

1

2 5

4 7

6 3

[30, 60]

[2, 2] [2, 2]

[2, 2]

[25, 50]

[1, 1]

(a) (b)

[30, 60]

[25, 50]

[50, 100] [25, 25]

[15, 15]

[45, 45]

1

2 5

4 7

6 3

[2, 2] [2, 2]

[2, 2] [1, 1]

2
[30, 60]

[25, 50]

[50, 100] [25, 25]

[15, 15]

[45, 45]

1

5

4 7

6 3

[2, 2] [2, 2]

[2, 2] [1, 1]

(d) (c)

Figure 1: Interdiction and protection of a shortest path network

29

0

10

20

30

40

50

60

< 1 sec < 1 min < 10 min < 1 hr < 3 hr > 3 hr

Time Range

S
o

lv
e
d

 I
s
ta

n
c
e
s
 (

%
) SPIAll

SPIRoot

SPINot

KSPIAll

KSPIRoot

KSPINot

Figure 2: Frequency analysis

Cost in [0,10] Delay [0,20]

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

3-1 3-2 3-3 3-4 3-5 5-1 5-2 5-3 5-4 5-5 7-1 7-2 7-3 7-4 7-5

Q-R

T
im

e SPIAll

KSPIAll

Figure 3: Q-R scalability on 10x10 grids

30

Cost in [0,100] Delay in [0,200]

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

3-1 3-2 3-3 3-4 3-5 5-1 5-2 5-3 5-4 5-5 7-1 7-2 7-3 7-4 7-5

Q-R

T
im

e SPIAll

KSPIAll

Figure 4: Q-R scalability on 10x10 grids

31

http://www.kent.ac.uk/kbs/research-information/index.htm

