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MODEL SELECTION IN THE BAYESIAN MIXED LOGIT:

MISREPORTING OR HETEROGENEOUS PREFERENCES?

Abstract

The Bayesian Mixed Logit model is estimated in both �preference space�and �willingness-

to-pay space�incorporating a number of distributions for the random parameters, models

that contain constant and random parameters, and misreporting. We calculate the mar-

ginal likelihood for the Mixed Logit, which is required for Bayesian model comparison and

testing, but which has so far received little consideration within the Mixed Logit literature.

We use this model to estimate willingness-to-pay (WTP) to consume bread which has been

produced with reduced levels of various pesticides so as to protect biodiversity. We �nd

some support for estimation in preference space, and our results indicate strong support

for the Mixed Logit compared to the �xed parameter Logit. Furthermore, although the

Logit model identi�es misreporting of preferences, misreporting disappears once hetero-

geneity is incorporated into the model. As a result we conclude that with this data set we

�nd support for preference heterogeneity as opposed to misreporting.

Key Words: Mixed Logit, Willingness-to-Pay, Model Comparison

JEL: C11, C25, C52, L92, Q51
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1.Introduction

There has been a rapid adoption and implementation of the Mixed Logit (ML) model

in discrete choice analysis (e.g., Revelt and Train, 1998, Train, 1998, McFadden and Train,

2000, Layton and Levine, 2003, 2005, Train, 2003, Scarpa and Alberini, 2005, and Smith,

2005). The attraction of the ML model stems from the �exibility it provides in terms of

approximating any random utility choice problem (Train and Sonnier, 2005). In this paper

we examine several important generalisations of the ML model using Bayesian methods.

The attractiveness of employing Bayesian methods to estimate the ML model has been

noted by Huber and Train (2001) and Hensher and Greene (2003). First, the likelihood

function of the ML may be multi-modal and inference based on analysis at one mode,

and curvature of the likelihood at that mode may be misleading. Second, a Bayesian

approach can incorporate prior knowledge about the experimental design in a way that

cannot be achieved by using Classical methods (Ferrini and Scarpa, 2007). Ruud (1996)

and Train and Weeks (2005) note that sometimes the ML may be near non-identi�ed or

weakly identi�ed in certain regions of the parameter space. The existence of such regions

may stall a Classical optimisation algorithm and impair inference that is solely based on

the curvature of the likelihood at a given point. However, the fact that such regions exist,

need not imply that the data is non-informative about the parameters. A prior that does

not dominate the data, can never the less prove important since it can prohibit, or limit

the propensity of, parameters �wandering�into near non-identi�ed regions. By contrast,

Classical estimation of the ML can prove di¢ cult and infeasible where the likelihood is

not well behaved in this respect. Third, the calculation of the marginal likelihood enables

model comparison and testing in a way that is more general than can be achieved using
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Classical methods. Within the ML literature, much attention has been paid to the relative

performance of non-nested alternatives. Whether models are nested or non-nested has no

implications for the use of the marginal likelihood in Bayesian inference.

In spite of these potential advantages, Bayesian estimation of the ML has not been

extensively exploited. By contrast, Classical estimation of the ML is common (i.e., Hen-

sher and Greene, 2003 and Train, 2003). There are several reasons for this situation.

First, in contrast with classical software, publically available Bayesian software has not

easily allowed the utility coe¢ cients to be conditioned on variables that explain individ-

uals�preferences. This is in spite of the fact that this approach has been developed and

implemented in the work of Rossi et al. (1996) and Allenby and Rossi (1999). Second,

whereas Classical methods have allowed for the mixture of �xed and random coe¢ cients,

this has not been facilitated in Bayesian procedures. Moreover, proper model comparison

within a Bayesian framework requires the computation of the marginal likelihood. Al-

though relatively simple in principle, practical implementation is di¢ cult. The research

presented in this paper addresses these, and other, issues.

Speci�cally, our work integrates four key components. First, unlike most previous

Bayesian applications using the ML, we allow parameters (some or all) to be �xed (i.e.,

have no unobserved heterogeneity). At �rst glance this may seem trivial as, in a sense,

it is just a special case of the ML. However, implementing this procedure requires addi-

tional Metropolis-Hastings (MH) steps so as to estimate the �xed parameters. As is well

recognised in the literature (e.g., Louviere, 2006), the division of utility coe¢ cients by

a numeraire coe¢ cient (usually the payment attribute coe¢ cient) is the primary source

of instability for the WTP estimates derived from choice models estimated in preference

space. When the payment coe¢ cients are random (have unobserved heterogeneity), the
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moments of WTP ratio do not exist. Fixing the parameter o¤ers one potential remedy to

this problem, and further justi�cations are discussed in Train (2003, p.311). Therefore,

the payment coe¢ cient in choice models has often been �xed in applied Classical studies

and it is worth having an equivalent facility when using a Bayesian approach. We would

argue, however, that this restriction is somewhat adhoc. Its imposition has been justi�ed

on the grounds that it stablises WTP estimates, rather than through sound theoretical

arguments. For this reason, we regard it as important to test this restriction, rather than

impose it a priori. In addition, by having general algorithms which allow any or all of the

parameters to be �xed or random, this also allows us to assess the support for the �xed

parameter logit relative to the ML providing the marginal likelihoods for the models are

calculable (see below).

Second, as suggested by the Classical contributions of Cameron and James (1987),

Cameron (1988) and Train and Weeks (2005), we estimate the ML in WTP space as

well as the conventional preference space. In essence, WTP space estimation speci�es

di¤erent distributions for the marginal rates of substitution compared to those estimated

in preference space. As already noted, the instability of the WTP estimates is especially

acute where the parameter of the payment attribute is variable and is not bounded above

zero. Train and Sonnier (2005) explore transformations of normals, partly because this

then presents the opportunity to bound the resulting WTPs. However, transformations

such as the exponential (so that the distribution of the utility coe¢ cient is log-normal)

are problematic in theory, not least because the model will depend on how the attribute

variable is scaled, as well as in practice. For this reason, WTP space estimation is attractive

on a practical level, since it avoids this problematic ex post estimation problem.

Third, the estimation of the marginal likelihood is performed using Halton sequences
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and the support for di¤erent speci�cations can, therefore, be measured. In particular, we

compare models with alternative distributions for the utility parameters, including the

case where each or all are constant. This enables a test for the dominance of the ML over

its �xed parameter version, a test that has not been previously conducted. In addition, we

assess the support for the (special) case where only the price coe¢ cient is held constant,

since this may greatly decrease the variance of WTP estimates, without being overly

restrictive. The support for models estimated in WTP space is also assessed. To date,

no attempt has been made within the Bayesian literature to test whether this approach

is more compatible with data, relative to the preference space approach. By employing

Halton sequences, the marginal likelihood is simulated and a number of models, both

with and without misreporting, are compared. The numerical accuracy of the marginal

likelihood is measured by employing a stationary bootstrap (described in Li and Maddala,

1997) once the sequence of likelihoods has been generated.

Fourth, we generalise the ML model to allow for the possibility of misreporting as

de�ned and analysed Balcombe et al. (2007). They examined issues of misreporting

in discrete choice models (i.e., Conditional Logit) in a way that is similar to the �mis-

classi�cation�approach outlined in Hausman et al. (1998) and Caudhill and Mixon (2005).

Implicitly, the ML model assumes that all respondents reply in accordance with how they

would behave in a revealed preference study. However, it is possible that in many stated

preference surveys, respondents express preferences that are not in accordance with their

�real�preferences. Potential reasons include be strategic responses, �yeh saying�or cognitive

limitations on behalf of respondents (i.e. either they do not understand, or have not got the

time to understand the choices) and associated e¤ects induced by the way that questions

are framed. The misreporting approach attributes each respondent with a �true�utility
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function, but posits that respondents may (with some probability) answer in a way that is

completely independent of these preferences. Whereas a Gumbel error in a utility function

allows for divergent choices between individuals with similar utility functions, it does not

actually allow for the possibility that agents have very strong preferences, yet ignore these

preferences when responding to a stated preference survey. The description �misreporting�

accurately portrays the underlying idea that the utility function exists and the reporting is

not always in accordance with these utilities. Balcombe et al. (2007) found strong evidence

of misreporting using a �xed parameter model. However, is the �nding of misreporting in

a Logit, simply a consequence of ignoring heterogeneity in preferences? Or, alternatively,

how much preference heterogeneity identi�ed by a ML model is attributable to preferences

and how much might be a function of misreporting?

Taking these various components together, the analysis in this paper extends the

Bayesian ML models employed in the literature to date. , We also note that as in Rossi

et al. (1996), the framework and models we develop in this paper enable the parameters

within an agents�utility function to be dependent on the agents�characteristics. However,

in the empirical example we present, we do not condition the parameters of individuals�

characteristics. Nevertheless, it is worth noting that the framework is general in this

regard.

To demonstrate the utility of the methods developed in this paper we employ a new

data set derived from a Choice Experiment (CE) undertaken to examine and estimate

consumer WTP to consume food (i.e., bread) produced using wheat grown using reduced

levels of pesticides (Chalak et al, 2006). The motivation for this CE stems from the

impact on the landscape and its associated biodiversity from the use of pesticides to

allow intensi�cation of agriculture. For example, bird populations have been a¤ected by

7



pesticide use, especially insecticides and herbicides, because they kill invertebrate prey

and insect host plants and as a result impact the quantity and quality of feed available.

This research and the results we present add to a small number of stated preference studies

undertaken with respect to pesticide use (e.g., Foster and Mourato, 2000, 2002, Hamilton

et al., 2005, Canavari et al, 2005, Florax et al., 2005, and Balcombe et al., 2007).

2. The Model

2.1. Notation and Model Speci�cation

xj;s;n denotes the k�1 vector of attributes presented to the jth individual (j = 1; ::::; J)

in the sth option (s = 1; :::; S) of the nth choice set (n = 1; ::::; N) : Uj;s;n is the utility

that the j th individual derives from xj;s;n and in accordance with notational conventions

in the literature yj;s;n denotes an indicator variable that is 1 if the j th individual indicates

that they would choose the sth option within the nth choice set, and 0 if they would

not. It is stressed that yj;s;n denotes only whether an individual indicates that they would

choose a particular option, not that they necessarily prefer that option. Whereas in the

standard framework choices are dependent only on the relative utility derived from choice

attributes, with potential misreporting there is the chance that utilities and choices will

diverge.

The notation f (x) and f(xj:) are used to denote density and conditional density func-

tions that take an unspeci�ed form, and F (x) and F (xj:) the associated cumulative

distributions. The notation fN (xj�;
) denotes that a random vector x has a normal

distribution with mean � and variance 
; and fIW (xjT0; v0) denotes that x has an inverse

Wishart distribution with the parameters T0; and v0 and fU (a; b) will denote the uniform

distribution over the interval (a,b).
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The utility that the j th individual receives from the sth choice in the nth choice set

is assumed to be linear, except that the parameters may be transformed. Consequently,

the utility function is of the form

Uj;s;n = x0j;s;ng(�j) + es;j;n (1)

where �j is a (k � 1 ) vector describing the preferences of the jth individual and g (:) is

some transformation of the parameters, from and to the space of k vectors.

Without loss of generality, we will assume that the parameters �j are ordered so that

they may contain �xed parameters cj in the �rst block, and random parameters b0j in the

second.

�0j = (c
0
j ; b

0
j) (2)

Both sets can be conditioned on variables describing the characteristics of the jth indi-

vidual. Preferences may therefore be determined by a vector zj ; a (h� 1) column vector

of variables describing the characteristics of the j th individual (h being 1 and z0j being

1, for all j, if there are no characteristics). More speci�cally, de�ning Zj = Ik 
 zj the

components of �0j are de�ned as:

cj = Z 0j �c (3)

bj = Z 0j �b + uj

and uj is a independently and identitically normally distributed vector with variance

covariance matrix 
. The errors fujg are assumed to be uncorrelated across individuals.

The function g(:) may take any of the transformation of the normal distribution dis-

cussed in Train and Sonnier (2005). In considering estimation in WTP space, we also use
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reparameterisations of the form

g(�j) = g1
�
�1j
� �
1; g2

�
�2j
�
; ::::::; gk

�
�kj
��0 (4)

in which case the quantities g2
�
�2j
�
; ::::; gk

�
�kj
�
are marginal rates of substitution with

the numeraire element of attribute vector (the �rst element in the case above). If such a

transformation is used then we say that estimation is taking place in WTP space. Other-

wise, estimation is being performed in �preference space�. The error es;j;n is �extreme value�

(Gumbel) distributed, is independent of x0s;j;n and is also uncorrelated across individuals

or across choices.

The set of all stated choices by respondents is Y = fyj;s;ngj;s;n. The set of characteris-

tics describing all respondents is Z = fzjgj . The set of options given to the j th individual

is Xj = fxj;s;ngs;n and the set of all option sets given to all respondents is X = fXjgj :

The data D is, therefore, the collection D = fY;Z;Xg :

Faced with a set of choices, the j th individual will prefer xsk;n providing that Uj;sk;n >

Uj;sq ;n for all k not equal to q. The model in this paper extends existing speci�cations so

that each respondent has a probability (�) of misreporting, along with a probability (�s)

that misreporting (should it occur) will be in favour of option s (where
P
�s = 1).The

parameters related to misreporting (described in more detail below) will be denoted as

� = (�; �1; :::::�S�1) :Therefore, the collection of all parameters describing the model

will be denoted as � = (�;
;�) : In what follows, the set fbjgj will be denoted as B

and we will refer to B as �latent data�. Finally, for notational convenience the multiple

integral
R
�n
:::
R
�1
db1:::::dbn is expressed as

R
B dB. This integral is a de�nite integral, and,

therefore, it is implicitly assumed that this integral is over a speci�ed set for B:

2.2. Misreporting.
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Under the assumptions above, conditionally on the parameters �j ; the probability of

the j th respondent preferring the sth option is logistic:

Pr
�
yj;s;n = 1j�j ;Xj

�
= _ps;j;n =

ex
0
j;s;ng(�j)PS

s=1 e
x0j;s;ng(�j)

: (5)

The misreporting approach developed in Balcombe et al. (2007) attributes a probability

to a respondent correctly responding to a given choice as �: Extending this approach to

the case where respondents are presented with multiple choice sets, denote the indicator

variable vj;n = 1 if individual j correctly reports their preferred choice within the nth choice

set and zero otherwise. De�ning the probability of correct reporting as Pr (vj;n = 1) = �;

the probability of the j th individual choosing the sth option in the nth choice set is:

Pr
�
yj;s;n = 1

�
= Pr

�
yj;s;n = 1jvj;n = 1

�
� + Pr (yj;s;n = 1jvj;n = 0) (1� �) : (6)

By assigning a probability to the event that the j th individual will mis-report in favour of

the sth option (given that they mis-report), Pr (yj;s;n = 1jvj;n = 0) = �s where
SX
s=1

�s = 1:

The probability that ys;j;n = 1 becomes

pj;s;n = � _pj;s;n + (1� �)�s: (7)

This model could be extended by allowing for mis-reporting probabilities to vary over

choice sets. However, this rapidly leads to over-parameterised models where individuals

are given a high number of choice sets.

2.3. Priors

Bayesian estimation requires priors for the parameters � and 
 and �. These are

speci�ed as: �
�0c; �

0
b

�0
= � � fN (�j�;A0) (8)
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where A0 is a diagonal matrix . If there are �xed and random elements, then the associated

means for these parameters will be denoted as �c and �b respectively, with corresponding

means �c and �b. Likewise, A0 contains the diagonal blocks A0;b and A0;c: The prior for

the covariance matrix of the random parameters is:


 � fIW (
jT0; v0) (9)

The �hyper parameters��;A0; T0; v0 are set a priori. The misreporting parameters are

assumed to have a uniform prior, subject to inequality constraints:

� � fU (0; 1) (10)

(�1; :::; �S�1) � fU (0; 1)
S�1 � I

 
S�1X
s=1

�s � 1
!
:

where I

 
S�1X
s=1

�s � 1
!
is equal 1 if the constraint is obeyed and zero otherwise. The

integrating constant of this distribution is 1= (S � 1)!: Together the set of the priors above

is denoted as P (�) ; and the priors on � only, as P (�) :

2.4. Full data Likelihood, the Likelihood and Marginal Likelihood

The full-data (or complete) likelihood function is the likelihood expressed in terms of

the parameters and latent data (in this caseB). So in the case of the ML with misreporting,

the full-data likelihood function is:

Lf (B;�;D) =
Y
j

 Y
s

Y
n

p
yj;s;n
j;s;n

!
f (Bj
; �b;Z) (11)

where pj;s;n is de�ned in [7]. Integrating out the latent data gives the likelihood:

L (�;D) =

Z
B

Y
j

 Y
s

Y
n

p
yj;s;n
j;s;n

!
dF (Bj
; �b;Z) (12)

In the absence of latent data we could simply write Lf (fg;�;D) = L (�;D) : L (�;D) is

the likelihood of the model. It is this quantity that is maximised in classical estimation, and
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usually calculated by simulation when there are latent variables. The marginal likelihood,

given priors on the parameters P (�) ; is:

M (D) =

Z
�
L (�;D) P (�) d�: (13)

The marginal likelihood can be used to calculate a �Bayes factor�. In e¤ect, a larger

marginal likelihood indicates greater support for a particular model (Koop, 2003).

2.5. The Form of Conditional Posterior Distributions

Since bj are normally distributed around �b and 
 , the conditional posteriors for

�b and 
 (given B) are the same as for the case of the normal linear regression with

independent Normal and Wishart priors. The two partitioned sets of parameters have

independent priors, and are assumed to be independent. Therefore, for the parameters

with unknown sources of variation the conditional posterior is:

f (�bjB;
; Z) = fN (�̂b;�) (14)

where

�̂b = �

0@A�10;b�b +X
j

Zj

�1bj

1A (15)

� =

0@A�10;b +
�1 
X
j

ZjZ
0
j

1A�1

The covariance of matrix 
 has the conditional posterior distribution

f (
jB; �b;Z) = fIW

0@
jT0 +X
j

�
bj � Z 0j�b

� �
bj � Z 0j�b

�0
; v0 + J

1A : (16)

The posterior distribution for each bj cannot be given an analytical expression, but they

observe the proportionality:

f (bj j�;�;D) /
 Y

n

Y
s

p
yj;s;n
j;s;n

!
fN
�
bj jZ 0j�b;


�
(17)
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with

f (Bj�;�;D) =
Y
j

f (bj j�;�;D) (18)

and the posterior for �c obeys:

f (�cjB;�;D) /
Y
j

 Y
n

Y
s

p
yj;s;n
j;s;n

!
fN
�
cj jZ 0j�c; A0;c

�
: (19)

With regard to the misreporting parameters �; the priors are �at, therefore:

f (�jB; �c;D) /
Y
j

Y
s

Y
n

p
yj;s;n
j;s;n P (�) (20)

3. Model Estimation

Using the posteriors in Section 2.5, fairly straightforward algorithms can be employed

to map the posteriors of �b, and 
; conditionally on values of �c and �. In summary,

equations [14] through [16] can be used for the �Gibbs steps�and [17] provides the basis for

a M-H step for the latent data. However, should some of the parameters be �xed or contain

misreporting probabilities, then additional M-H steps are required to map the posterior

distributions of �c and �, based on the proportionalities in [19] and [20] respectively.

Alternatively, should all parameters be �xed, then a M-H algorithm using only [19] and

[20] can be employed to estimate the model.

When estimating the models without mis-reporting or �xed parameters, our initial

estimation procedures and proposal densities were of a similar form to that described

in Train and Sonnier (2005). The performance of these unmodi�ed algorithms were in-

vestigated using both Monte-Carlo and real data (not the subject of this paper). The

estimation of models without random parameters converged quite quickly. However, with

random parameters, the alogrithms were slower. Our procedures and those made avail-

able by Kenneth Train had approximately the same rates of convergence. Furthermore,
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ensuring convergence with real data was often more problematic, with estimation some-

times doubling, relative to when Monte-Carlo data was used. The rates of convergence

also depended on the types of tranformations g
�
�j
�
that were used. Models that included

misreporting were slower to compute (perhaps an increase of up to 50%), because of the

extra steps required to compute the model, as well as the increased dependence that was

evident in the values generated by the sampler.

In an e¤ort to improve the speed of convergence of our MCMC algorithms, we em-

ployed a number methods discussed in the Bayesian literature (e.g., Gilks and Roberts,

1996). In particular, we found that the performance of the independence sampler was gen-

erally superior to the random walk algorithm. At equivalent acceptance rates, the typical

dependence of the sampler was reduced. But, as noted by Roberts (1996), independence

samplers are unlikely to be an optimal �stand alone� algorithm. So we used a mixture

of the proposal densities, such that at each iteration, a proportion of bj were randomly

assigned a random walk proposal density, and others were assigned the independence pro-

posal density. Also for our larger models we employed a method called "heating the

chain" periodically, which is then followed by �burn in�phases, before returning to record-

ing the output from the sampler (Chen et al, 2000). In problem cases, this strategy gave

at least a four fold increase in the e¢ ciency of the algorithms. Details of all estimation

and procedures are available from the authors on request.

Convergence of the sampler is monitored in several ways. First, visual plots of the

sampled values are produced as the sampler runs for the sequences of �;
 and �. Second,

the degree of dependence of the sampled values is examined by estimating the autocorre-

lation coe¢ cients of the sequential values of the sampler. The �skip�(only every �skipth�

iteration is recorded) was then set so as to allow a lesser degree of dependence should
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autocorrelation be too high (i.e. if coe¢ cients have a �rst order correlation of more than

0.975 it is unlikely that an accurate value for the coe¢ cients will be obtained when tak-

ing the mean or median, even with a sample of 10,000). Third, a modi�ed t-test for the

hypothesis of �no-di¤erence�between the �rst and second half of the sampled values (with

a subset eliminated from the middle) was conducted on the sequence of � parameters.

This used an estimate of the long-run covariance matrix (the spectral density matrix of

the sequence at frequency 0) provided by the spectral kernel methods outlined in An-

drews (1991). Our procedures enable the user to continue the run of the MCMC after a

preliminary examination of the results should the sampler not have passed the tests for

convergence.

3.1. Choice of Priors

In previous work Train (2003) and Train and Sonnier (2005) use non-informative (im-

proper) priors for the mean and variance of �; and informative priors for the inverse

Wishart distribution on 
;setting these equal to v0 = k and T0 = k:Ik. Our Monte-Carlo

work indicated that setting T0 = k:Ik in�ated estimates of the covariance matrices 
 gen-

erated by the sampler and in�ated values of � also. This tendency depended on the values

of 
 used to generate the data, the number of attributes, the sample size and the num-

ber of choice sets given to each respondent. However, when all parameters are random,

setting T0 = 0:1v0Ik and v0 =
kb(kb+1)

2 , with kb(kb+1)
2 being the number of free elements

in the covariance matrix, improved model performance, in that it did not over in�ate the

estimates of the covariance matrices 
 and were dominated by the data in cases where the

elements of 
 were larger.

Proper priors are used for � because the marginal likelihood values cannot be com-
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puted without them. Fully non-informative priors can be obtained by setting the diagonal

elements of A0 to very large values. However, the priors employed here are set more in-

formatively, with A0 = 10Ik and � = 0. In a standard linear regression framework these

priors would, in most cases, be considered highly informative. However, in the context of

the Logit we would argue that they are only weakly informative. Given a choice set (X),

we can explore what priors on � and 
 imply about priors on pj;s;n. In terms of a prior

for the probability of choosing a particular option, these priors are very similar. However,

this prior information can sometimes have a substantive impact in restricting the absolute

values of �; and in doing so also substantially improve the performance of the sampler.

This is particularly useful in speci�cations that attempt to truncate the distributions of

bj (such as the truncated normal in Train and Sonnier, 2005) since, the whole of the dis-

tribution can become massed at a point of truncation, and � can become non-identi�ed.

In such circumstances, an informative prior can prevent this parameter wandering into

non-identi�ed regions inde�nitely.

3.2. Calculating the Marginal Likelihood

One of the main aims of this paper is to evaluate alternative speci�cations. This

requires the calculation of the marginal likelihood in [13]. The ratio of the marginal

likelihoods gives the posterior odds for the two models(measuring the relative support for

these models) given that the prior odds are even.

While theoretically straightforward, marginal likelihood calculations can be practically

problematic in cases where the parameter space has many dimensions. Raftery (1996)

provides a good discussion of methods available to calculate the marginal likelihood. For

example, the method of Gelfand and Dey (1994) (GD), estimates the marginal likelihood
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using

lnM̂ (D;M) = � ln
"
G�1

GX
i=1

 (�i)

P (�i) L (�i;D;M)

#
(21)

or alternatively, if there are latent data,

lnM̂ (D;M) = � ln
"
G�1

GX
i=1

 (�i;Bi)

P (Bij�i)P (�i) Lf (Bi;�i;D;M)

#
(22)

where �i and Bs;i are draws from their posterior distributions. The �tuning functions�

 (�i) or  (�i;Bi) are densities with tails that are su¢ ciently thin so that the fractions

within the expressions [21] or [22] are bounded from above. Alternatively, the tuning

functions can be set equal to the priors, in which case the expressions [21] and [22] collapse

to harmonic means. While this approach simpli�es matters, harmonic means are known to

be unstable and generally give poor estimates of the marginal likelihood (Raftery, 1996).

The second estimate [22] is the easier to calculate, for a given choice of  (�i;Bi).

It does not require recording draws of B, which would be memory intensive; providing

 (�i;Bi) and P (Bij�i) are recorded when running the sampler. However, Raftery (1996)

suggests that the GD method tends to give poor estimates in high dimensional problems.

As B contains up to J � k elements, our approach is to use [21] in preference to [22] in

order mitigate the negative impacts of this dimensionality.

In performing the calculation of [21], as in Classical estimation, L (�;D;M) can be

simulated by making successive draws ofBt (t=1,......T) from f (Bj�;
;Z) and calculating

the likelihood as outlined in Chapter 10, of Train (2003). In our work we used a truncated

normal tuning function (see Koop 2003 pp.104-106, for details). Computational di¢ culties

arise using this method, since L (�i;D;M) requires computation by simulation for each

value. Halton sequences, as described in Train (2003), greatly improve the e¢ ciency of

the simulated likelihood and these can be employed in simulating the likelihood at each of
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the posterior points facilitating the calculation of the marginal. Therefore, the results in

this paper employ Halton sequences for this purpose. Monte-Carlo simulation suggested

that using 500 replications in conjunction with Halton sequences yielded accurate values.

In conducting the work in the paper, the GD likelihood calculations in [21] appeared to

be able to work well in discriminating between di¤erent speci�cations generated using

Monte-Carlo methods.

Finally, it is evident from equation [21] that estimation of the marginal likelihood is

an average of the quantity f (�i)=
 (�i)

P (�i)L(�i;D;M) : As such, even in large samples, the

numerical error in the estimate of the marginal likelihood needs to be considered when

conducting model comparisons. An estimate of the numerical error can be obtained, but,

the dependence in f (�i) induced by the dependence of the sequence �i needs to be

accounted for in producing an estimate of this standard error. In this paper we employ

a stationary bootstrap described in Li and Maddala (1997). A stationary bootstrap is a

random length block bootstrap (e.g. Efron and Tibshirani, 1993) that accounts for the

potential dependence in the sequence of likelihoods.

4. Empirical Section

4.1. Data.

The empirical work in this paper employs a new data set derived from a CE used to

estimate the WTP for pesticide reductions in wheat used to produce bread. The use of

bread as the product of interest is in keeping with Foster and Mourato (2000, 2002). For

the application presented here, no explanatory variables are used for the parameters in

the Utility function. In e¤ect, therefore, zj = 1 for all individuals.

Brie�y, all CE respondents were presented with three choice cards, each consisting of
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three agricultural production practices:

� Policy A: current farming practices and national levels of pesticide applications;

� Policy B: a green policy employing less pesticides than under the status quo; and,

� Policy C: a nationwide ban on pesticide use.

The payment level was selected to be typical of consumer prices in the UK. The price

of the �standard�loaf was identi�ed following an overview of price ranges as advertised in

store and on the websites of the main UK grocers (around 50 pence for status quo loaf

of bread). The alternatives and choice sets were constructed using a fractional factorial

design that yielded 24 choice sets that were grouped in blocks of three choice cards. The

survey instrument was piloted before being distributed by post to 3,000 households. The

sample was strati�ed according to age, income and county of residence. The total number

of analysable questionnaires was 420 and comparing the sample to national average �gures

indicates that our sample is reasonably representative of the UK population.

The attributes used in the study were percentage reductions insecticides, herbicides

and fungicides. This is di¤erent to existing studies which only consider pesticide in gnereal.

The reason for taking this approach was so that reductions for each of the types of pesticide

could be considered so as to capture di¤erent a¤ects on the environment. This allows to

estimate the WTP for a reduction in a speci�c type of pesticide, something which has not

been done before in the literature.

There were also three policies identi�ed on each choice card. A and C are constant

in each of their attribute levels (zero percentage reductions in all three attributes for

A and 100% reduction in all three attributes for C). Policy B, however, varied across

the choice sets. For this reason there are two other potential �attributes� that can be
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added to the model, which treats �Greenness�and �Banning�as a di¤erent attributes, with

intrinsic qualities that are not embodied in the values of the attribute levels associated

with policy B. An alternative (i.e., attribute) speci�c constant cannot be included for

Policy A as it would be perfectly collinear with the other attributes in the system. This

approach is commonly employed in the environmental as well as marketing orientated

choice modelling literatures before (e.g., Bjorner, et al, 2004). Since within each choice

set, there were three policies, not only can potential misreporting be identi�ed, but the

direction of misreporting, should it exist, can be identi�ed in favour of policies, A, B, C.

A complete description of the survey instrument and data is presented in Chalak et al

(2006).

4.2. Results

Our procedures allow us to estimate models with �ve alternative distributions for

the parameters in preference and/or WTP space: normal; log-normal; truncated normal

(with values below zero massed at zero); and the SB distributions (see Train and Sonnier,

2005, for more details). As discussed this paper extends these options to include �xed

speci�cations on some or all of the coe¢ cients. This enables us to test for the dominance

of the ML over the �xed parameter Logit model. In addition, we estimate the models in

WTP space as well including misreporting and all models estimated are compared using

marginal likelihoods. We did not explore using truncated distributions or SB distributions

as we do not, a priori, wish to restrict the WTP for the attributes in the choice sets to

be positive, whereas distributions such as the log-normal and truncated normal involve

positivity constraints. The SB distribution can usefully impose bounds on the parameters,

but this requires a reasonable idea as to where the bounds of this distribution lie, and we
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have no secure prior knowledge in this regard. Consequently, alternative distributions are

explored for the payment coe¢ cient only.

Our model results are reported in Table 1. Using the methods discussed in section

3, all models converged tolerably. Each model is denoted as B and there are 12 di¤erent

versions presented. Models B1 and B1* are the �xed parameter Logit, and the remaining

models are various ML speci�cations. Marginal likelihood values were calculated at all

points in the sample, using 500 Halton sequences at each point, and these are used to

derive the relative rank of the models estimated.

{Approximate Position of Table 1}

As we can see from Table 1 all the ML speci�cations outperform the �xed parameter

Logit on the basis of the marginal likelihood estimates. Moreover, the speci�cation of

a �xed coe¢ cient on the intercept is also not supported. The marginal likelihood for

models B1 and B1* in Table 1 are much smaller than for any other speci�cation, and the

next worst performing model (of those that include all the attributes) are models B5 and

B5*. The �xed parameter speci�cation B1* identi�es signi�cant misreporting on behalf

of respondents, with 39% (� = 0:61) of respondents being estimated to misreport. The

posterior distribution for this parameter is presented Figure 1.

{Approximate Position of Figure 1}

As can be seen from Figure 1, the distribution is unimodal, with its mode being away

from its boundaries. The estimated direction of misreporting (mean of posterior, not

presented in tables) is 22%, 38% and 40% in favour of options 1, 2 and 3 respectively.

Thus, this model suggests that a large proportion of the population has a tendency to
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misreport in favour of the Green (B) policy or the Total Ban (C) policy which are always

associated with options 2 and 3.

However, support for misreporting is signi�cantly reduced for all the ML speci�cations.

There is support when we consider models B2 and B2*, where the marginal likelihood for

the misreporting model B2* is larger than its standard version B2. But, the proportion

of respondents misreporting is extremely small proportion at 1.27%. The direction of

misreporting for B2* (mean of posterior, not presented in tables) is 25% 27% and 48% in

favour options 1, 2 and 3, respectively, again suggesting that those people who misreport,

do so in favour of a total ban. However, the standard error on the marginal likelihoods

are large, and we cannot be con�dent that B2* is truely preferred using this model.

Likewise, for model B5 and B5*, the marginal likelihood could not be estimated accurately

enough to discriminate between the standard and misreporting counterpart, though the

point estimate of the marginal likelihood supports the speci�cation misreporting. Further

MCMC trials might allow us to discriminate between the models B2 and B2*, and B5

and B5*. However, since these models are dominated by B3, B3*, B4 and B4*, we do not

conduct any further analysis on these models.

Focusing on B3, B3*, B4 and B4*, our superior performing models, we �nd that the

data do not support a model where all parameters have normal distributions. These

models all have log-normal distributions for the price coe¢ cient. The models B3 and B3*

are estimated in preference space, and the models B4 and B4* are estimated in WTP

space. As can be observed from Table 1, the models estimated in WTP space have higher

marginal likelihoods than their counterpart speci�cations estimated in preference space.

Both sets of models with log-normal coe¢ cients fail to support misreporting on the basis

of their marginal likelihood estimates.
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We also considered dropping the attribute speci�c constants for policies B and C. In

this case, models B6 and B6*are not supported on the basis of the marginal likelihoods.

Interestingly, B6* estimates that around 32% of respondents misreport their preferences.

The direction of misreporting (mean of posterior, not presented in tables) is estimated to

be predominantly in the direction of the Green policy B, (around 98%) with around 1%

of people misreporting in favour of each other option. This is consistent with the �ndings

in Table 2 that suggest that the Green Policy seems to be the attribute with the highest

WTP. Summarising the model selection results:

i) ML models are preferred over the �xed parameter Logit model;

ii) Models that restricted the heterogeneity in the price were inconsistent with the

data;

iii) Misreporting potentially appears to be partly a function of inappropriate restric-

tions (i.e., mis-speci�cation) on heterogeneity as misreporting was supported by the �all

normal�model;

iv) The models with log-normal coe¢ cients on the price attribute were preferred to

other speci�cations, and of these the model estimate in WTP space was preferred.

Next we examine the WTP estimates. Table 2 presents the WTP estimates for the

two top models (B3 and B4), as selected using the marginal likelihoods.

{Approximate Position of Table 2}

As already noted, these are the two models with log-normal distributions for the price

coe¢ cients, and normal distributions for all other parameters. The price coe¢ cient in

the second column of Table 2 is not a WTP estimate. It is the coe¢ cient of the price in

the utility function. This parameter only plays the role of a �scale�parameter. Examining
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the median values of the WTP distributions for model B4, the value 23.5 pence in the

second column of the row headed by �Insecticide Reduction�, means that consumers are

prepared to pay, on average, an additional 23.5 pence on a 50 pence loaf of bread (an

approximate 50% increase) for a 100% reduction in insecticides (and half this amount for

a 50% reduction etc.). Herbicide and fungicides are estimated to have positive but smaller

median WTPs at 9 and 15 pence respectively. Interestingly, policies B and C are estimated

to have even higher WTP values than direct reductions in pesticides. The attribute with

the highest WTP is that of the �Green Policy�. Consumers are estimated to be prepared

to pay an additional 56.7 pence on a basic 50 pence loaf of bread if it was produced as

part of a wider policy that involved partial reductions in pesticide usage. On the other

hand, consumers are less enthusiastic on the idea of having a total ban on pesticide usage,

being estimated to be WTP only half that of the �Green Policy�(at around 27 pence).

The stronger support for a Green Policy over a Ban as revealed by the relative WTP

estimates is interesting. We might speculate that this occurs because there is maybe a

reluctance to support a ban on pesticides because this will impact consumer choice. This

argument has been advanced previously in the literature by Hamilton et al (2003) and

Canavari et al (2005).

Notably, for model B4 estimated in WTP space, the mean and median values are almost

identical. Unsurprising, in that each of the WTP parameters are assumed to be normally

distributed. However, turning to model B3 and the preference space results in the last

two columns of Table 2, it is evident that the median values (in the last column) are very

similar to the median and mean results produced by the WTP space model. However, the

mean results are very di¤erent even though the distribution for the price coe¢ cient was

constrained to be log-normal. The mean WTPs are higher across the board. This re�ects
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the relatively large leverage of small values of the denominator (the price coe¢ cient) in

the WTP calculation that is the ratio of two coe¢ cients. In our view, the WTP values

derived from the WTP space estimation are quite high, and the mean WTP estimates

produced by the preference space model are very high. Moreover, the ordering of the

attributes according to their WTP values changes whether the mean or median is used in

the preference space model. This is most likely due to the di¤erent correlations for each

of the attribute coe¢ cients with the price coe¢ cient.

How do these WTP estimates compare to those previously reported in the literature?

The most obvious comparison is with those for the UK. With Foster and Mourato (2000),

for example, they estimated that UK consumers are WTP £ 1.15 (or 191 percent extra)

for a �green� loaf of bread in order to reduce to zero cases of ill health per year and the

number of declining farmland bird species jointly. Balcombe et al. (2007) looked at food

choice for a whole basket of goods found that older females who classi�ed themselves as

either food safety aware or environmentally sensitive were WTP 150 percent more for the

non-pesticide food. In contrast young males who described themselves as price sensitive

yielded a WTP of almost zero. Overall, the sample average was 90 percent. So our

WTP estimates are plausible in as much as they fall within the bounds of those previously

reported.

Finally, in Table 3 we examine the correlation coe¢ cients for the top performing model

B4.

{Approximate Position of Table 3}

From Table 3 we can see that the price coe¢ cient is negatively correlated to the

other WTP coe¢ cients. As already noted, the price coe¢ cient plays the role of a �scale�
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parameter. However, its value may con�ate a number of e¤ects including the individuals

income level and marginal utility of income. This parameter does have meaning, at least

from a statistical perspective. If two individuals have the same WTP for all attributes,

then the person with the higher scale parameter is predicted to make a choice with more

certainty than an individual with a smaller scale coe¢ cient (since the relative variance of

the Gumbel error is smaller). Train and Weeks (2005) discuss the interpretation of the

scale parameter in detail. The negative correlations between the scale coe¢ cients and the

other coe¢ cients suggest that those with a lower WTP for the model attributes are no

less predictable than those with higher WTPs. The correlations between the WTP values

are mainly positive with the exception of herbicide and insecticide. This is consistent with

a priori expectations that an individual who is prepared to pay a larger than average

amount for a reduction in one type of pesticide would also be WTP a larger than average

amount for a reduction in another, or support a green or total ban policy. However, in

general these are small. The �ban�coe¢ cient is the most positively correlated coe¢ cient

with the coe¢ cients of the herbicide, fungicide and green policy attributes. Therefore,

those supporting a total ban were generally individuals that were also prepared to pay

higher amounts for reductions in the fungicidal and herbicidal reductions.

5. Summary and discussion

This paper has generalised existing approaches to the estimation of the ML and em-

ployed an original data set designed to obtain WTP estimates for reduced pesticides in

bread production. Several questions were addressed. First, whether there was evidence

that respondents misreported their preferences. Second, whether the ML logit was sup-

ported by over the �xed parameter Conditional Logit. Third, whether models parame-
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terised in WTP space model were preferred to those in preference space and, �nally, we

also tested a range of model speci�cations using the transformations outlined in Train and

Sonnier (2005). In order to address these questions, the marginal likelihood was simulated

by employing Halton sequences. Simulation of the marginal likelihood proved practical,

generally doubling the required computation time, with tolerable standard errors that

enabled us to usefully distinguish between models.

With regard to misreporting. Previous �ndings using the �xed parameter Conditional

Logit (i.e., Balcombe et al, 2007) were con�rmed. There appeared to be a substantive

proportion of respondents misreporting when using the �xed parameter Conditional Logit.

Around 25% of respondents were estimated to be misreporting 35% of the time. However,

when allowing for heterogeneity within the ML framework, it was found that this apparent

misreporting largely disappeared. This �nding was generally supported regardless of the

transformations employed for the distributions of the parameters. However, any attempts

to restrict heterogeneity (such as restricting the intercept to be constant) increased the

support for the misreporting result.

It is worth noting that the way in which we deal with misreporting in this paper

can be complemented by the introduction of additional questions as part of the survey

instrument. For example, it has become common place in Contingent Valuation studies

(e.g., Alberini et al, 2003 and Vossler and Poe, 2005) to ask respondents to indicate their

level of response uncertainty. The degree of uncertainty expressed by respondents is then

used to calibrate (i.e., reduce) the initial WTP estimates. There is no reason why we

cannot do the same thing as part of a CE. Indeed, it would be interesting to see if the

degree of misreporting estimated econometrically is similar to the magnitude as measured

by an additional certainty follow up question.
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Another key �nding of this study, is that the ML was emphatically supported over

the standard Logit using Bayesian methods. There was also no support for ��xing�the

payment coe¢ cient. This is an important �nding as current practice in the ML literature

is to assume a �xed price coe¢ cient. Based on the �ndings presented in this paper we

consider it essential that this assumption is always tested in empirical studies.

Our data also supported a model estimated in WTP space over those estimated in

preference space. The point estimates of WTP using this model were quite robust. Also,

the median estimates of the WTP generated by a similar model, estimated in preference

space, were almost the same. The mean and median WTP estimates were practically

the same when using WTP space estimation. However, the mean estimates of a model

estimated in preference space were very di¤erent to both the median estimates produced

by the preference space model, or to the mean and medians estimates from the WTP

space model. This was in spite of the fact that the payment coe¢ cient was speci�ed to

be log-normal in both models. Our conclusion is, therefore, if estimation is performed

using the ML in preference space, WTP estimates should be median rather than mean

estimates.

Finally, as a practical observation, we suggest that practitioners using the Bayesian

ML pay considerable attention to the sequence of values that are generated by the sampler.

Visual observation and formal tests for convergence are both valuable in this respect. In

this data set we found that a very large number of iterations were often needed before the

distributions of the parameters were accurately mapped.
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Table 1: Main Model Results

pr in hb fg gr bn wp mr rk MargL se

B1 0 0 0 0 0 0 . . 12 -1253.88 0.003

B1* 0 0 0 0 0 0 . .612 11 -1251.88 0.231

B2 1 1 1 1 1 1 . . 6 -919.90 0.601

B2* 1 1 1 1 1 1 . .987 5 -917.72 0.516

B3 2 1 1 1 1 1 3 -914.36 0.629

B3* 2 1 1 1 1 1 .987 4 -914.79 0.714

B4 2 1 1 1 1 1 y 1 -905.90 0.191

B4* 2 1 1 1 1 1 y .984 2 -911.75 0.731

B5 0 1 1 1 1 1 . 8 -936.91 0.463

B5* 0 1 1 1 1 1 . .984 7 -935.32 0.942

B6 2 1 1 1 . . y . 10 -1189.42 0.071

B6* 2 1 1 1 . . y .682 9 -1058.4 0.156

Notes: pr= price, in=insecticide reduction, hb=herbicide reduction,

fg=fungicide reduction, gr=green policy (B), bn=ban policy (C)

WP=WTP Space

MR=Misreporting, Rk=ranking (1 best, 12 worst)

MargL=Marginal Likelihood,

se=Bootstrap Standard Error on the Estimated Marginal Likelihood.

For columns 2 to 7 numbers represent the following distributions

0=�xed, 1=normal, 2=log-normal
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Table 2: WTP Estimates (£ ) - Models B3 and B4

WTP Space (B4) Prefrence Space (B3)

Mean

(Stdv)

Median

(Lower-Q)

[Upper-Q]

Mean

(Stdv)

Median

(Lower-Q)

[Upper-Q]

Price Coe¢ cient
11.638

(5.124)

10.651

(7.982)

[14.207]

1 1

Insecticide

Reduction

0.235

(0.352)

0.237

(-0.001)

[0.472]

0.608

(1.447)

0.225

(0.078)

[0.579]

Herbicide

Reduction

0.091

(0.451)

0.091

(-0.211)

[0.398]

0.446

(1.400 )

0.0767

(-0.004)

[0.360]

Fungicide

Reduction

0.152

( 0.416)

0.151

(-0.131)

[0.433]

0.734

(2.333)

0.132

(-0.003)

[0.573]

Green

Policy

0.567

(0.413)

0.563

(0.288)

[0.847]

1.290

(1.999)

0.693

(0.329)

[1.445]

Complete

Ban

0.276

(0.665)

0.276

(-0.172)

[0.721]

1.325

(3.572)

0.373

(0.095)

[1.152]

Notes: Lower Q=lower quartile; Upper Q=Upper quartile
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Table 3: Correlations in Transformed Coe¢ cients

in hb fg gr bn

pr -0.166 -0.056 -0.156 -0.300 -0.243

in . -0.117 0.085 0.151 0.063

hb . . 0.175 0.056 0.242

fg . . . 0.167 0.416

gr . . . . 0.372

Notes: pr= price

in=insecticide reduction

hb=herbicide reduction,

fg=fungicide reduction

gr=green policy (B)

bn=ban policy (C)

.
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Figure 1: Proportion Correctly Reporting Bread Data
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