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Integrability conditions for Compound Random Measures

Alan Riva Palacioa, Fabrizio Leisena,∗

aSchool of Mathematics, Statistics and Actuarial Sciences, University of Kent, UK

Abstract

Compound random measures (CoRM’s) are a flexible and tractable framework for vectors of completely

random measure. In this paper, we provide conditions to guarantee the existence of a CoRM. Furthermore,

we prove some interesting properties of CoRM’s when exponential scores and regularly varying Lévy

intensities are considered.

Keywords: Bayesian non-parametrics, Multivariate Lévy measure, Partial exchangeability, Exchangeable

Partition Probability function

1. Introduction

Recently, a growing literature in Bayesian non-parametrics (BNP) proposed new priors which can take

into account different features of the data, such as partial exchangeability, see De Finetti (1938). In this case,

one would like to consider different densities for different groups instead of a single common density for

all the data. After the seminal paper of MacEachern (1999), the problem of modeling a finite number of

dependent densities has become an active area of research in Bayesian non-parametrics. A common ap-

proach is to construct BNP priors based on functions of Completely Random Measures (CRM’s), see Lijoi and

Prünster (2010). For example, special attention has been given to the normalization of CRM’s starting

with the work of Regazzini, Lijoi and Prünster (2003). Roughly speaking, a CRM is a generalization of

a subordinator, that is a process with independent increments and almost surely increasing paths; for a

full account of CRM’s see Kingman (1993). This property is very helpful to derive the Laplace functional

transform which is the basis to derive some analytical quantities of interest such as posterior and predic-

tive distributions or the Exchangeable Partition Probability Function (EPPF), see James, Lijoi and Prünster

(2009). To build more flexible priors in possibly higher dimensional spaces, vectors of dependent CRM’s
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are constructed for example in Leisen and Lijoi (2011), Leisen, Lijoi and Spano (2013) and Zhu and Leisen

(2015) where respectively they build vectors of Poisson-Dirichlet and Dirichlet processes. These papers

deal with the Lévy-Copula approach introduced in Cont and Tankov (2004) to induce dependence among

the components of the vector. In a similar fashion, Lijoi, Nipoti and Prünster (2014a) introduce a vector of

random probability measures where the dependence arises by virtue of a suitable construction of the Pois-

son random measures underlying the CRM’s; furthermore, in the framework of survival analysis, Lijoi and

Nipoti (2014) introduce a new class of vectors of random hazard rate functions that are expressed as ker-

nel mixtures of dependent CRM’s. Camerlenghi, Lijoi and Prünster (2017) focus on partial exchangeable

models which arise from hierarchical specifications of CRM’s.

Compound random measures (CoRM’s), introduced by Griffin and Leisen (2017), are a flexible and tractable

framework for many dependent random measures including many of the superposition and Lévy copula

approaches. They have recently been applied to modeling graphs for overlapping communities by Todes-

chini, Miscouridou and Caron (2017). Griffin and Leisen (2017) and Griffin and Leisen (2018) described

posterior sampling methods for a particular class of normalized compound random measure mixtures

which exploits a representation of the Laplace transform of the CoRM through a univariate integral of a

moment generating function.

In this paper we aim to provide explicit existence conditions for CoRM’s in order to guarantee the exis-

tence of the marginal Lévy intensities. On the other hand, we prove that the resulting CoRM is well posed

in the sense that it satisfies the usual integrability condition for multivariate Lévy processes. Furthermore,

this paper provides an interesting result for CoRM’s when regularly varying Lévy intensities are consid-

ered. The paper closes highlighting a representation on the multivariate Lévy intensity of a CoRM when

the score distribution is the result of marginal independent and identically distributed exponential scores.

The outline of the paper is as follows. Section 2 will set the scene by introducing the basic definitions

which are required in the CoRM setting. Section 3 is devoted to prove our main results. Section 4 deals

with CoRM’s built with regularly varying Lévy intensities and exponential scores. Section 5 concludes.

2. Preliminaries

Let (Ω,F , P) be a probability space and X a Polish space with corresponding Borel σ-algebra X . We

denote by MX the space of boundedly finite measures on the measurable space (X,X ) and by MX the

associated Borel σ-algebra, see Appendix 2 in Daley and Vere-Jones (2003) for technical details.
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Definition 1. A random measure µ on X is called a completely random measure (CRM) if for any n > 1 and disjoint

sets A1, . . . , An ∈ X the random variables µ(A1), . . . , µ(An) are mutually independent.

In the following we consider only CRM’s without fixed jumps, namely CRM’s of the form µ = ∑∞
i=1 wiδui

for collections of random variables {wi}∞
i=1 in R+ and {ui}∞

i=1 in X. Such CRM’s can be characterized by

their Laplace transform

E
[
e−µ( f )

]
= e−

∫
R+×X

(1−e−s f (x))ν̃(ds,dx)

where µ( f ) =
∫

X
f (x)µ(dx), f : X → R+ is such that µ( f ) < ∞ and ν̃(ds, dx) is a measure in (R+ ×X,

B(R+)⊗X ) such that

∫
R+×X

min{1, s}ν̃(ds, dx) < ∞ (1)

for any bounded set X ∈ X . A measure ν̃ satisfying the condition displayed in equation (12) is called

the Lévy intensity of µ. We say that ν̃ is homogeneous when ν̃(ds, dx) = ρ(ds)α(dx) with ρ a measure in

(R+,B(R+)) and α a measure in (X,X ). The notion of a completely random measure can be generalized

to higher dimensions in a similar fashion to Definition 1, see for instance Griffin and Leisen (2017). As

a result, we have a representation in terms of a Laplace functional transform. Precisely, for a vector of

completely random measures µµµ = (µ1, . . . , µd) on X we have that

E
[
e−µ1( f1)−···−µd( fd)

]
= e−

∫
(R+)d×X

(
1−e−s1 f1(x)−···−sd fd(x)

)
ν̃d(dsss,dx)

with f j : X → R+, j ∈ {1, . . . , d} such that µj( f j) < ∞, where for g : X → R+ we have µj(g) =∫
X

g(x)µj(dx). The measure ν̃d in
(
(R+)d ×X,B((R+)d ⊗X

)
must be such that

∫
(R+)d×X

min{1, ‖sss‖}ν̃d(dsss, dx) < ∞ (2)

for any bounded set X ∈ X ; we call ν̃d a multivariate Lévy intensity. We set the notation

νj(A, X) =
∫
(R+)d−1

ν̃d(ds1, . . . , dsj−1, A, dsj+1, . . . , dsd, X)

with j ∈ {1, . . . , d} and A ∈ B (R+). We call νj the j-th marginal of the d-variate Lévy intensity ν̃d; it
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follows that for each j ∈ {1, . . . , d}, µj has Lévy intensity νj. In this framework we can define the concept

of Compound Random Measure (CoRM). The following definition differs from the one in Griffin and Leisen

(2017) since it takes into account the inhomogeneous case, where the locations and associated weights in the

CRM are not independent.

Definition 2. A Compound Random Measure (CoRM) is a vector of CRM’s whose Lévy intensity is given by

ν̃d(dsss, dx) =
∫

R+
z−dh

( s1

z
, . . . ,

sd
z

)
dsssν?(dz, dx) (3)

where h, the score distribution, is a d-variate probability density function and, ν?, the directing Lévy measure, is a

Lévy intensity.

By performing a simple change of variable we note that

∫
(R+)d

z−dh
( s1

z
, . . . ,

sd
z

)
dsss = 1.

Therefore, z−dh
( s1

z , . . . , sd
z
)

can be seen as the density of a distribution function H
(

ds1
z , . . . , dsd

z

)
. This

allows to write the multivariate Lévy intensity in equation (3) as

ν̃d(dsss, dx) =
∫

R+
H
(

ds1

z
, . . . ,

dsd
z

)
ν?(dz, dx). (4)

To write the Lévy intensity of a CoRM in terms of distribution functions rather than densities will be

convenient for the results proved in the next section.

3. Integrability conditions

The specification of a CoRM needs the initial choice of a score distribution and a directing Lévy measure.

Although this sounds straightforward, it is necessary to check that theses choices lead to a well defined

CoRM. Otherwise, the risk is to perform a Bayesian statistical analysis based on an ill-posed prior. In this

section we look at two important aspects of Definition 2:

1. we provide conditions on the score distribution and the directing Lévy measure for the existence of

the marginal Lévy intensities of a CoRM, see Theorem 1 and Corollary 1,

2. we provide conditions on the score distribution and the directing Lévy measure for the existence of

the multivariate Lévy intensity of a CoRM, see Theorem 2.
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Summing up, Theorem 1 and Corollary 1 are focusing on the marginal existence of a CoRM. On the other

hand, Theorem 2 focuses on the global existence of a CoRM. The proofs of the theorems can be found in

the supplementary material.

Theorem 1. Let H be a d-variate score distribution and ν? a directing Lévy measure defining a measure ν̃d as in (4)

with corresponding marginals νj for j ∈ {1, . . . , d}. Let X be a bounded set in X , then the measure νj satisfies the

integrability condition (12) if and only if

∫
(0,1)×X

P

[
Sj ≥

1
z

]
ν?(dz, dx) < ∞ (5)

and

∫
[1,∞)×X

P

[
Sj ≤

1
z

]
zν?(dz, dx) < ∞. (6)

Furthermore if the marginal score Hj satisfies that

1− Hj

(
1
z

)
≤ z ∀ z ∈ (0, ε) for some ε > 0 (7)

and

lim
z→∞

zHj

(
1
z

)
< ∞ (8)

then conditions (15), (16) are satisfied with an arbitrary choice of the directing Lévy measure ν?.

As set in Definition 2, we usually work with CoRM’s given by a score with a probability density; in

such case the following corollary to Theorem 1 follows.

Corollary 1. If Sj has probability density function hj then conditions (17), (18) reduce to

lim
z→0

hj

(
1
z

)
z2 < 1 (9)

and

lim
ε→0

hj (ε) < ∞. (10)
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The previous results concerned conditions for the marginals of a CoRM to be well defined, now we focus

on such a result for the CoRM. For a score density function h and directing Lévy measure ν? to properly

define a CoRM we need to check the condition (2) which takes the form

∫
R+×X

∫
(R+)d

min{1, ‖sss‖}h
( s1

z
, . . . ,

sd
z

) dsss
zd ν?(dz, dx) < ∞ (11)

for bounded set X ∈ X . As stated at the beginning of this section, in the next theorem we provide condi-

tions on the score distribution and the directing Lévy measure for the existence of the multivariate Lévy

intensity of a CoRM. This is equivalent to provide conditions such that the latter inequality holds true.

Theorem 2. Consider a CoRM which satisfies conditions (15) and (16) for each marginal νj, j ∈ {1, . . . , d}, then

the integrability condition (11) is satisfied.

We conclude this section by providing two examples of the use of the previous results when consider-

ing Gamma and Beta distributed scored distributions.

Example 1: Gamma scores

We consider the marginal gamma score case. Let h be the d-variate probability density of the score distribu-

tion; for j ∈ {1, . . . , d}we denote the j-th marginal density hj and let it correspond to a Gamma distribution

with shape and rate parameters αj, β j, i.e.

hj(s) =
β

αj
j sαj−1e−β js

Γ(αj)
1{s∈(0,∞)}.

We check the constraints (17), (18) by making use of Corollary 1 as we have probability densities. To check

(24) we see that

lim
s→0

hj

(
1
s

)
s2 = lim

s→0

β
αj
j e−

βj
s

Γ(αj)s
αj+1 = 0

and constraint (25) is satisfied for arbitrary Lévy directing measure ν? whenever αj ≥ 1, as in the examples

presented in Griffin and Leisen (2017). However for αj < 1 the associated CoRM will be well posed

depending on the choice of ν?. If for example we take the directing Lévy measure to be the σ-stable, i.e.

ν?(dz, dx) =
σ

z1+σ
dzdx

6



then constraint (15) in Theorem 1 can be reduced to

∫ 1

0

∫ ∞

1
z

hj(s)
σ

z1+σ
dsdz =

∫ ∞

1

∫ 1

1
s

hj(s)
σ

zσ+1 dzds =
∫ ∞

1
hj(s)(sσ − 1)ds < ∞,

which is always satisfied since hj is a Gamma density. On the other hand, condition (16) in Theorem 1

becomes

∫ ∞

1

∫ 1
z

0
hj(s)

σz
z1+σ

dsdz =
∫ 1

0

∫ 1
s

1
hj(s)

σ

zσ
dzds =

∫ 1

0
hj(s)σ(sσ−1 − 1)ds < ∞

which is not satisfied when αj + σ < 1.

Example 2: Beta scores

In the setting as above, if the marginal scores are Beta distributed, i.e.

hj(s) =
sαj−1(1− s)β j−1

B(αj, β j)
1{s∈(0,1)}

then constraint (17) becomes

lim
s→0

hj

(
1
s

)
s2 = lim

s→0

(s− 1)β j−1

sαj+β j B(αj, β j)
= 0,

so it is always satisfied; and condition (18) is satisfied whenever αj ≥ 1. We consider again a σ-stable Lévy

intensity for ν? when αj < 1. Proceeding as in the previous example, constraint (15) becomes

∫ ∞

1

∫ 1

1
s

hj(s)
σ

zσ+1 dzds = 0 < ∞

so it always holds; and constraint (16) becomes

∫ 1

0
hj(s)σ(sσ−1 − 1)ds < ∞,

which does not hold if αj + σ < 1.

4. Other interesting properties

The aim of this section is to investigate two interesting properties of CoRM’s. First, we focus on CoRM’s

which arise from regurlarly varying directing Lévy measures. This result is motivated by the recent papers

of Caron and Fox (2017) and Todeschini, Miscouridou and Caron (2017) which made use of regularly
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varying Lévy measures to construct sparse random graphs. Second, we provide an explicit expression of

the multivariate Lévy intensity of a CoRM with independent exponential scores. This result is interesting

when compared with Theorem 3.2 in Zhu and Leisen (2015) and Corollary 2 in Griffin and Leisen (2017)

which provide, respectively, the Lévy copula representation and the Laplace exponent of CoRM’s with in-

dependent exponential scores. The proofs of the theorems can be found in the supplementary material.

Both results deal with a d-variate CoRM given by an homogeneous directing Lévy intensity ν?(dz, dx) =

ρ?(dz)α(dx). Therefore, the corresponding marginals can be written as νj(ds, dx) = ρj(ds)α(dx) with ρj a

measure in (R+,B(R+)).

4.1. Regularly varying directing Lévy measure

In this section we focus on CoRM’s given by a directing Lévy measure that is regularly varying. We

recall that a real valued function L is slowly varying if limt→∞ L(at)/L(t) = 1 ∀a > 0.

Definition 3. An homogeneous Lévy measure ρ?(dz)α(dx) in R+ ×X is said to be regularly varying if the tail

integral U?(y) =
∫ ∞

y ρ?(ds) is a regularly varying function, i.e. it satisfies

U?(y) = L
(

1
y

)
1

yσ

for some σ ∈ [0, 1) which we call the index and L a slowly varying function.

The following Theorem highlights an interesting link between the directing Lévy measure and the

marginal Lévy intensities in terms of the regularly varying property.

Theorem 3. Consider a CoRM with an homogeneous directing Lévy measure ρ?(ds)α(dx) such that the conditions

of Theorem 2 are satisfied. If ρ? is regularly varying with tail integral U then the marginals ρj, j = 1, . . . , d, are

regularly varying.

Example 3: σ-stable directing Lévy measure

Consider a σ-stable directing Lévy measure

ν?(ds, dx) =
σ

Γ(1− σ)sσ+1 dsdx.

The related tail integral is

U?(y) =
1

Γ(1− σ)yσ
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which is a regularly varying function with index σ and slowly varying function L(y) = 1
Γ(1−σ)

. We see

that the regularly varying tail integrals related to the CoRM construction arise as a factor of U, namely

Uj(y) = E
[
Sσ

j

]
U?(y) and from Theorem 3 the associated marginal tail integrals are regularly varying.

4.2. Independent Exponential scores

Consider a d-variate CoRM given by an homogeneous directing Lévy measure ν?(dz, dx) = ρ?(dz)α(dx)

and a score distribution corresponding to d independent standard exponential distributions, i.e.

h(s1, . . . , sd) =
d

∏
i=1

e−si .

We observe that each associated marginal takes the form νj(ds, dx) = f (s)dsα(dx), where f (s) =
∫ ∞

0 z−1e−
s
z ρ?(dz).

The following Theorem provides a characterization for this class of CoRM’s.

Theorem 4. Consider a CoRM as described above; the corresponding d-variate Lévy intensity ν̃d(dsss, dx) = ρ̃d(sss)dsssα(dx)

is such that

ρ̃d(sss) = (−1)d−1 ∂d−1

∂sd−1 f (s)

∣∣∣∣∣
s=s1+...+sd

.

5. Conclusions

In this paper, we proved some integrability condition for Compound Random Measures. The new

findings can be useful to Statisticians which aim to use vectors of dependent completely random mea-

sures which arise from CoRM’s with directing Lévy measure and score distribution that have not been

considered so far. Furthermore, in the homogeneous case, we proved that the marginal Lévy intensities are

regularly varying whenever a regularly varying directing Lévy measure is considered. Finally, we provide

a representation of the homogeneous CoRM’s when the score distribution is the result of independent and

identically distributed exponential distributions.
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6. Supplemetary Material: Proofs

First, we recall the integrability condition for a Lévy measure:

∫
R+×X

min{1, s}ν̃(ds, dx) < ∞ (12)
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see Section 2 of the main document.

Let H and ν? be, respectively, a score distribution and a directing Lévy measure which define a CoRM.

We denote with Hj, j ∈ {1, . . . , d}, the j-th marginal of a d-dimensional score distribution H. A simple

change of variable leads to the j-th marginal of a CoRM, namely

νj (A, X) =
∫

R+×X

∫
A/z

Hj(ds)ν?(dz, dx) =
∫

R+

∫
A×X

ν?
(

dz
s

, dx
)

Hj(ds). (13)

We can see the formula above as a mean. Let Sj be a random variable with distribution Hj, then

νj(A, X) = E

[
ν?

(
A
Sj

, X

)]
(14)

for A ∈ B (R+). We use the last identity to give conditions for the marginal intensity νj to be a proper Lévy

intensity, i.e. a measure that satisfies the condition displayed in equation (12). As stated at the beginning

of this section, the next theorem (and its corollary) provides conditions on the score distribution and the

directing Lévy measure for the existence of the marginal Lévy intensities of a CoRM.

Proof of Theorem 1

We recall the conditions stated in the first part of the theorem:

∫
(0,1)×X

P

[
Sj ≥

1
z

]
ν?(dz, dx) < ∞ (15)

and

∫
[1,∞)×X

P

[
Sj ≤

1
z

]
zν?(dz, dx) < ∞, (16)

and the conditions stated in the second part of the Theorem:

1− Hj

(
1
z

)
≤ z ∀ z ∈ (0, ε) for some ε > 0 (17)

and

lim
z→∞

zHj

(
1
z

)
< ∞. (18)
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Proof. We recall that ν? satisfies (12) since it is a Lévy intensity. Using (14), condition (12) for νj becomes

E

[∫
R+×X

min{1, z}ν?
(

dz
Sj

, X

)]

= E

∫(
0, 1

Sj

)
×X

zν?(dz, dx)

+ E

∫[
1
Sj

,∞
)
×X

ν?(dz, dx)

 < ∞. (19)

Therefore, νj satisfies (12) if and only if

E

∫(
0, 1

Sj

)
×X

zν?(dz, dx)

 < ∞ (20)

and

E

∫[
1
Sj

,∞
)
×X

ν?(dz, dx)

 < ∞. (21)

The former can be decomposed using the Fubini-Tonelli theorem in

E

∫(
0, 1

Sj

)
×X

zν?(dz, dx)

 =
∫

R+×X
P

[
Sj ≤

1
z

]
zν?(dz, dx)

=
∫
(0,1)×X

P

[
Sj ≤

1
z

]
zν?(dz, dx) +

∫
[1,∞)×X

P

[
Sj ≤

1
z

]
zν?(dz, dx).

Condition (16) ensures that the second term of the above equation is finite. It is easy to see that the first

term is finite as well. Indeed,

∫
(0,1)×X

P

[
Sj ≤

1
z

]
zν?(dz, dx) ≤

∫
(0,1)×X

zν?(dz, dx) < ∞.

On the other hand, the second term in (19) can be decomposed in

E

∫[
1
Sj

,∞
)
×X

ν?(dz, dx)

 =
∫

R+×X
P

[
1
z
≤ Sj

]
ν?(dz, dx)

=
∫
(0,1)×X

P

[
Sj ≥

1
z

]
ν?(dz, dx) +

∫
[1,∞)×X

P

[
Sj ≥

1
z

]
ν?(dz, dx).

Condition (15) ensures that the first term of the above equation is finite. It is easy to see that the second

12



term is finite as well. Indeed,

∫
[1,∞)×X

P

[
Sj ≥

1
z

]
ν?(dz, dx) ≤

∫
[1,∞)×X

ν?(dz, dx) < ∞.

Therefore, the first part of the theorem follows from (19), (20) and (21).

For the remaining part of the Theorem we use that (12) is attained when considering the directing Lévy

measure ν?. Indeed, if

lim
z→∞

zP

[
Sj ≤

1
z

]
< ∞ (22)

then as ν? is a Lévy intensity

∫
[1,∞)×X

P

[
Sj ≤

1
z

]
zν?(dz, dx) < ∞. (23)

so (20) holds. And if there exists ε > 0 such that 1− Hj

(
1
z

)
≤ z ∀ z ∈ (0, ε) then

∫
(0,1)×X

P

[
1
z
≤ Sj

]
ν?(dz, dx) <

∫
(0,1)×X

zν?(dz, dx) < ∞,

so (21) also holds. From the first part of the theorem the CoRM marginal νj satisfies the integrability

conditions for arbitrary ν?.

Proof of Corollary 1

We recall the conditions stated in Corollary 1:

lim
z→0

hj

(
1
z

)
z2 < 1 (24)

and

lim
ε→0

hj (ε) < ∞. (25)

Proof. We define f (z) = z− (1−Hj

(
1
z

)
) and observe that f (0+) = 0 so the existence of f ′(0+) > 0 implies

(17). As Sj has a probability density we get that f ′(0+) exists and (17) is equivalent to f ′(0+) > 0 which we

13



write as

lim
z→0

hj

(
1
z

)
z2 < 1.

Using the fundamental theorem of calculus we see that (18) reduces to

lim
z→∞

zP

[
Sj ≤

1
z

]
= lim

ε→0
hj (ε) < ∞

which is satisfied when hj is continuous at zero.

6.1. Proof of Theorem 2

Proof. Denote Pj = {sss ∈ (R+)d : max{s1, . . . , sd} = sj} for j ∈ {1, . . . , d}; then, by using (13) and the fact

that each νj is a Lévy intensity we get that for any bounded set X in X

∫
R+×X

∫
(R+)d

min{1, ‖sss‖}h
( s1

z
, . . . ,

sd
z

) dsss
zd ν?(dz, dx)

=
d

∑
j=1

∫
R+×X

∫
Pj

min{1, ‖sss‖}h
( s1

z
, . . . ,

sd
z

) dsss
zd ν?(dz, dx)

≤
d

∑
j=1

∫
R+×X

∫
Pj

min{1,
√

dsj}h
( s1

z
, . . . ,

sd
z

) dsss
zd ν?(dz, dx)

≤
d

∑
j=1

∫
R+×X

∫
(R+)d

min{1,
√

dsj}h
( s1

z
, . . . ,

sd
z

) dsss
zd ν?(dz, dx)

=
d

∑
j=1

∫
R+×X

∫
R+

min{1,
√

ds}hj

( s
z

) ds
z

ν?(dz, dx)

=
d

∑
j=1

∫
R+×X

min{1,
√

ds}νj(ds, dx)

≤
d

∑
j=1

∫
R+×X

min{
√

d,
√

ds}νj(ds, dx)

=
√

d
d

∑
j=1

∫
R+×X

min{1, s}νj(ds, dx) < ∞.

Proof of Theorem 3

We recall that for the case at hand

14



U?(y) = L
(

1
y

)
1

yσ
(26)

is a tail integral.

Proof. We note that equation (14) implies that

ρj(A) = E

[
ρ?

(
A
Sj

)]

It follows that the marginals of the CoRM are given by

Uj(y) = ρj ((y, ∞))

= E

[
U?

(
y
Sj

)]

= E

[
L
(Sj

y

)(Sj

y

)σ
]

= E

[
L
(Sj

y

)
Sσ

j

]
1

yσ
.

Hence, it is enough to check if the function l(z) = E
[

L(Sjz)Sσ
j

]
is slowly varying for L a slowly varying

function. Let a > 0, we need to check

lim
t→∞

l(at)
l(t)

= lim
t→∞

E
[

L(atSj)Sσ
j

]
E
[

L(tSj)Sσ
j

] = 1.

For a fixed ε > 0 we can choose t0 such that ∀u > t0

|L(au)/L(u)− 1| < ε

2
,

15



since L is slowly varying. Then for t > t0

∣∣∣∣∣∣
E
[

L(atSj)Sσ
j

]
E
[

L(tSj)Sσ
j

] − 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
E
[
Sσ

j
(

L(atSj)− L(tSj)
)]

E
[

L(tSj)Sσ
j

]
∣∣∣∣∣∣

≤
E

[
1{

Sj>
t0
t

}Sσ
j

∣∣L(atSj)− L(tSj)
∣∣]

E
[

L(tSj)Sσ
j

] +

E

[
1{

Sj≤
t0
t

}Sσ
j

∣∣L(atSj)− L(tSj)
∣∣]

E
[

L(tSj)Sσ
j

]

<

E

[
1{

Sj>
t0
t

}Sσ
j

ε
2 L(tSj)

]
E
[

L(tSj)Sσ
j

] +

E

[
1{

Sj≤
t0
t

}Sσ
j

∣∣L(atSj)− L(tSj)
∣∣]

E
[

L(tSj)Sσ
j

]

<
ε

2
+

E

[
1{

Sj≤
t0
t

}Sσ
j

∣∣L(atSj)− L(tSj)
∣∣]

E
[

L(tSj)Sσ
j

]

=
ε

2
+

E

[
1{

Sj≤
t0
t

}Sσ
j tσ
∣∣L(atSj)− L(tSj)

∣∣]
Uj(

1
t )

=
ε

2
+

∫
(0, t0

t ]
sσtσ |L(ats)− L(ts)|Hj(ds)

Uj(
1
t )

=
ε

2
+

∫
(0,t0]

uσ |L(au)− L(u)|Hj

(
du
t

)
Uj(

1
t )

(27)

We observe that limx→0 Uj(x) = ∞. since Uj is a tail integral. From (26) it follows that limx→0 xσ (L(ax)− L(x)) =

0. Hence, the function g(x) = xσ (L(ax)− L(x)) is bounded in [0, t0] by a constant K1,t0 . Finally we observe

that for t > t0 ∫
(0,t0]

Hj

(
du
t

)
<
∫
(0,1]

Hj (du) ≤ 1.

We set t1 > t0 such that for u > t1
2K1,t0

ε
< Uj(1/u).

Choosing t > t1 we get

∫
(0,t0]

uσ |L(au)− L(u)|Hj

(
du
t

)
Uj(

1
t )

<
K1,t0

Uj(
1
t )

<
ε

2

It follows from (27) that ∣∣∣∣∣∣
E
[

L(atSj)Sσ
j

]
E
[

L(tSj)Sσ
j

] − 1

∣∣∣∣∣∣ < ε.
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Consequently, l defined above is slowly varying, implying that the marginal tail integral Uj is regularly

varying.

6.2. Proof of Theorem 4

Proof. It is straightforward to see that

ρ̃d(sss) =
∫ ∞

0
z−dh

( s1

z
, · · · ,

sd
z

)
ρ?(dz) =

∫ ∞

0
z−de−

s1+...+sd
z ρ?(dz).

From Example 1 in the main document, we know that, for arbitrary ρ? and d ∈ N \ {0}, the previous

integral is finite. Therefore for s 6= 0

∫ ∞

0

∣∣∣∣ ∂j

∂sj z−1e−
s
z

∣∣∣∣ ρ?(dz) = ρ̃j+1(s, 0, . . . , 0) < ∞

and this concludes the proof since using the Dominated Convergence Theorem we can take the derivative

under the integral sign as follows

(−1)d−1 ∂d−1

∂sd−1 f (s)

∣∣∣∣∣
s=s1+...+sd

= (−1)d−1
∫ ∞

0

∂d−1

∂sd−1

(
z−1e−

s
z

)
ρ?(dz)

∣∣∣∣∣
s=s1+...+sd

=
∫ ∞

0
z−de−

s1+...+sd
z ρ?(dz).
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