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Abstract 

Many systems contain bottlenecks, critical linkages and key facilities. Such components when lost due to 

a man-made or natural disaster may imperil a system in performing its intended function.  Loss of critical 

components of a system can lead to increased risk to the health and safety of populations, decreased sense 

of well-being, eliminated or degraded levels of services, costs to the economy, and can require significant 

time to recover to normal operations. This paper focuses on the impact on response and supply services 

due to the loss of one or more facilities, based upon a man-made disaster, where such facilities can be 

fortified in order to prevent such events. It is assumed that fortification resources are limited and must be 

used in the most efficient manner. This paper presents a model for allocating fortification resources 

among a set of facilities so that the impact of man-made/terrorist strikes is minimized. In a recent paper, 

Church et al. (2004) introduced the r-interdiction median problem that can be used to identify worst-case 

losses of facilities. This model was developed to identify critical infrastructure. In this paper we extend 

that model to address the option of fortifying such sites against possible interdiction. We present a new 

integer linear programming model that optimally allocates fortification resources in order to minimize the 

impact of interdiction. Computational results are presented in using this model for several hypothetical 

problems. We also prove a general property associated with interdiction and fortification.    
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1. INTRODUCTION 

 

Since September 11, 2001 there has been a heightened concern for terrorism and the losses that a terrorist 

group may cause. The notion of large intentional, man-made disasters has a long history, starting with 

King Sennacherib (689 B.C.) who built a dam on the Euphrates so that he could let loose a resulting flood 

on the city of Babylon (Biswas, 1970).  As a part of homeland security planning, there has been an 

interest in identifying critical infrastructure. Critical infrastructure may be defined as those elements that 

when lost result in significant disruption of the system in its ability to perform its function. These 

elements can include transportation linkages (e.g. bridges, tunnels, rail, etc.), facilities (e.g. port terminals, 

production facilities, warehouses, operations centers, emergency response facilities, hospitals, etc.), 

critical stock piles (e.g. smallpox vaccine, drugs, food, etc.), key personnel (e.g. water system operators) 

and landmarks that may contribute to loss of well-being. In a recent publication, Grubesic, O’Kelly, and 

Murray (2003) studied internet survivability by calculating network connectivity given specific node or 

link failure. This type of analysis can be used to identify critical system components. It is important to 

note that many systems have built in redundancy so that a system continues to operate (e.g. backup pumps 

in a sewage collection system and backup batteries in telephone switching centers, etc.) in the event of a 

component failure. There is a mature literature on system design under component failure. Unfortunately, 

such design does not normally take into account the possibility of intentional strikes, like the strike 

against the world trade center. 

 

The military has had a long term interest in identifying critical elements of supply lines, so that they can 

identify targets that when hit (or interdicted), will result in decreased supplies or delays in getting supplies 

to an area of conflict (see for example, Ghare, et al. 1971; Whiteman, 1999; Wood, 1993). Models have 

been developed to allocate strike resources along supply routes in order to inflict the greatest harm on an 

enemy. The literature on this type of modeling is reviewed in Church, Scaparra, and Middleton (2004). 

For all practical purposes the focus in such models is directed to the interdiction of transportation 

elements. Our focus in this paper is on the possible loss of one or more facilities in a system. Facilities, 

such as hospitals, emergency response facilities, and power plants can serve critical functions in 

protecting people and providing important services. For example, one major railway in the U.S. has 

emergency response equipment placed along their rail system so that all areas of track are within 500 

miles of such a facility and equipment. If one intentionally destroyed one of these facilities, then both the 

equipment would be lost as well as a significantly decreased capability to respond in the region served by 

any lost facility. We can measure the impact of this service loss in several ways (e.g. degraded response 
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capability, recovery time, increased operation costs, increased damages, etc.). Increases in response time 

to an accident, like a hazardous materials spill, could lead to longer system downtime as well as increases 

in damages due to delayed spill containment. Thus, we can calculate the added costs of such events with 

an anticipated facility loss. If one assumes that such accidents are not too common, then the equipment at 

the closest remaining facility would be dispatched to a hazardous materials spill. By assigning each track 

segment to its closest facility, it is possible to calculate the average distance of the system of facilities to 

the system of tracks. Then one can compare the average response distance for the entire system to the 

average response distance when one or more facilities are lost due to an intentional strike. In a recent 

paper, Church et al. (2004) presented a model called the r-interdiction median model. This model 

identifies a subset r out of a total p facilities, which if lost, results in the greatest impact on average 

response distance or total weighted distance. Thus, the r-interdiction median model can be used to 

identify the facilities that are considered to be the most critical in terms of providing efficient service. The 

objective of this paper is to extend the r-interdiction median problem where there exists the possibility of 

fortifying one or more facilities, so that they can be protected from an attack. We assume that fortification 

resources are limited and only a subset of facilities can be protected. The question we pose is what 

facilities should be protected so that the impact of interdiction on the remaining facilities is minimized.  

 

In the next section we begin with describing the r-interdiction median model. This model is based upon 

the assumption that all facilities are vulnerable to a strike. Following that we discuss the notion of 

fortification and present a new model that minimizes the greatest possible system disruption by allocating 

a limited amount of fortification resources. We prove that at least one of the facilities identified by the r-

interdiction median problem must be fortified. However, the optimal fortification set does not necessarily 

include all interdicted facilities of the r-interdiction median model as those sites are ident ified without the 

option of fortification. That is, the option of fortification changes what remains critical. We also present 

some computational experience associated with the fortification problem on several hypothetical datasets. 

 

2. BACKGROUND 

 

One of the most widely used and studied location models is the p-median problem. The p-median 

problem involves locating p facilities on a network in such a manner that the total weighted distance of 

supplying each demand from their closest facility is minimized (Hakimi 1964 1965).  Total weighted 

distance is calculated as the sum of all demand-facility interactions where each demand is assigned to its 

closest facility. For a given demand, the distance to that demand’s closest facility is multiplied (weighted) 

by some measure of demand (e.g. population, the number of truck trips needed to supply that demand 
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from a facility, the total tonnage needing transport, or the cost per unit distance in supplying a given 

demand). If total weighted distance is minimized, then the configuration is as accessible as possible to the 

points of demand.  The p-median model is based upon the assumption that each demand can be served by 

its closest facility. Thus, it is assumed that the capacity of any facility will exceed the demands placed 

upon it. This location problem has been applied in a wide variety of settings, including post offices, 

school districting, salt storage locations, public clinics, transit garages, etc.  There has also been a 

concerted effort at developing efficient solution techniques for the p-median problem starting with the 

classic works of Teitz and Bart (1968) and ReVelle and Swain (1970).  

 

The p-median problem deals with finding the locations that decrease weighted distance the most. It is 

obvious that a planner would employ such a model in making siting decisions. In contrast to locating 

facilities, the focus could be turned in an opposite direction by asking which facilities of an existing 

configuration would disrupt accessibility the most if lost, intentionally or by accident. That is, we seek to 

identify those facilities, which, if lost, impact the resulting system efficiency the most. Such facilities 

could be defined as the most critical to efficient operation. We can define this in a more formal manner 

as:  

 

Of the p different locations of supply or emergency response, find the subset of r 

facilities, which when removed, yields the highest level of weighted distance.  

 

This problem was originally defined by Church et al. (2004) and called the r-interdiction median problem. 

This problem can be cast as a mixed integer-linear programming problem. To present this model 

formulation, consider the following notation:  

 

i  index representing places of demand 

j          index representing existing facility locations  

1, if a facility located at   is eliminated by interdiction
  

0, otherwise                                                                   j
j

s


= 


 

 

  F =  the set of existing facilities j  

1, if demand  assigns to a facility at   
  

0, otherwise                                          ij
i j

x


= 


 

  ia =  a measure of demand (e.g. number of  supply trips) needed at demand i 
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  ijd =  the shortest distance between the supply/service facility at j  and demand i   

    r =  the number of facilities to be inte rdicted or eliminated 

{ }   |   and  ij ik ijT k F k j d d= ∈ ≠ > , the set of existing sites (not including j) that are  farther than j is 

from demand i. 

 

We can now formulate the r-interdiction median (RIM) problem as (Church et al. 2004): 

 

   i ij ij
i j F

Max Z a d x
∈

= ∑ ∑                                                                                                  (1) 

Subject to: 

          1   for each demand  ij
j F

x i
∈

=∑  (2) 

 

           j
j F

s r
∈

=∑                                                                                                           (3) 

             for each  and each 
ij

ik j
k T

x s i j F
∈

≤ ∈∑                                                                  (4) 

          
    0,1   for each  and each 

     0,1   for each 
ij

j

x i j F

s j F

= ∈

= ∈
                                                                 (5) 

The RIM model objective seeks to maximize the weighted distance associated with the facilities that 

remain after interdiction of r-facilities. This model identifies the worst configuration of p-r facilities 

among the set of p existing facility locations. Constraint (2) requires that each demand assigns to a facility 

that is still available after interdiction. Constraint (3) establishes that exactly r facilities will be 

interdicted.  Constraints (4) ensure that demand i  assigns to the closest remaining facility to i. Since the 

objective involves maximizing the weighted distance of demand assignment, it is necessary to ensure that 

each demand assigns to its closest remaining facility. Constraint (4) prevents demand i from assigning to 

a facility farther than what j is from i, unless the facility at j has been interdicted.  Essentially, demand i is 

forced to assign to its closest remaining facility. Gerrard and Church (1996) have shown that some 

versions of closest assignment constraints that have been defined in the literature have logical problems 

when there exist two or more facilities that are at the exact same distance from a demand. The manner in 

which constraints (4) are structured requires that for assignment to take place beyond such equidistant 

facilities, all would have to be interdicted as well as any closer facilities to that demand. Thus, distance 

ties do not pose a conflict as identified in Gerrard and Church (1996).  The last set of constraints (5) 
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maintains the integer restrictions on the decision variable s. It is important to recognize that if all of the 

site interdiction variables js  are zero-one in value, then at optimality the demand assignment variables, 

ijx , will be zero-one as well. Thus, the above model can be solved using only one integer variable for 

each existing facility. The RIM model is the antithesis of the original p-median model formulation of 

ReVelle and Swain (1970), in that the p-median model locates facilities in order to minimize weighted 

distance and the RIM model eliminates facilities in order to maximize weighted distance (Church et al. 

2004). Church et al. (2004) used this model formulation on a hypothetical problem to identify “critical 

facilities” and demonstrated that significant loss of system efficiency could result from optimal 

interdiction. 

 

3. PROTECTING FACILITIES FROM INTERDICTION 

 

Simply accounting for maximum possible losses to a system due to a limited number of interdicted 

elements may be a bit shortsighted. The solution to the RIM model helps illuminate what is critical, 

assuming that nothing is done to prevent such losses. In general there are a number of possible methods in 

which to disrupt worst-case losses of facilities. They include approaches such as: 

1) site fortification, 

2) enhanced security and detection, 

3) general area defense capabilities like a missile battery,  

4) general intelligence gathering and possible event preemption,  

5) stated policy of retaliatory response, and 

6) stock piles of critical components. 

The first two alternatives are local facility-based actions, whereas the last four alternatives are wider 

reaching types of actions. For example, one might place vehicle barriers to prevent an unauthorized 

vehicle from moving within an area that needs to be safeguarded. Another example of fortification 

involves, making a building element capable of withstanding an attack, like the containment buildings at 

nuclear power plants. It may also be possible to protect a site by attempting to detect an event at a 

significant distance from the planned target with enough time to disrupt the event. For example, some 

facilities have a perimeter fence, surveillance cameras, and security patrols. Such measures are designed 

to detect and interrupt a disruptive event before major harm has occurred.  

 

Somewhat wider reaching defensive systems can also be used to protect assets, like an air base or a 

defense battery. Such facilities will probably not deter terrorists who are likely to use methods that are not 
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thwarted by ground-to-air missiles or air-to-ground missiles. Another approach might be to stock pile 

critical components so that if some are lost in a strike (or the capability to produce them is lost in a strike), 

they can be readily replaced without significant lags in time or be supplied for the over time that it takes 

to restore the capability to produce such critical components. Critical stockpiles could include drugs and 

vaccines that might not be manufactured when a facility is lost. 

 

The threat of retaliation may also be a viable plan for increasing safety of facilities and infrastructure, in 

general. As long as the perpetrator can be readily identified and can be targeted, and if retaliation would 

inflict substantial harm, then such a policy could bring a type of blanket defense across a wide-ranging 

infrastructure. At issue is the fact that it is possible to develop two types of defense capabilities for 

important infrastructure: 1) wide ranging defense approaches, like intelligence gathering, retaliatory 

strikes and stockpiles, and 2) local types of defense strategies like fortification, surveillance and 

limited/controlled access. For the remainder of this paper we will concentrate on the possibility of 

protecting one or more facilities from interdiction in terms of local-based defense. This concept of 

hardening or fortifying infrastructure against terrorism was recently discussed by Salmeron, Wood, and 

Baldick (2004) within the context of the electrical power grid. In the next section, we model the option of 

fortifying or hardening facilities against interdiction.   Specifically, we will assume here that we have the 

option of “fortifying” or hardening a facility so that it cannot be easily interdicted or that the probability 

of being successfully interdicted is decreased to the point that an intentional strike would be either 

thwarted entirely or aimed at an easier target. Thus, we assume that fortification can protect a site from 

interdiction. We also assume that facility “fortification” costs money and there is a limit to the amount of 

infrastructure that can be fortified. In fact, we assume that we have resources to fortify or protect q  

facilities from interdiction.  If we have enough resources to fortify q facilities from interdiction, then the 

logical question is which facilities should be protected? We can formalize this as: 

 

Of the p different locations of supply or emergency response, find the subset of q  

facilities, which when fortified, provides the best protection to a subsequent optimal r-

interdiction strike.  

 

The basic premise is that we want to identify which subset of facilities to fortify or protect, such that 

when the remaining unprotected facilities are subjected to an optimal r-interdiction, the resulting total 

weighted distance is minimized. In essence, we seek the best way to thwart interdiction. We will call this 

problem the interdiction median problem with fortification (IMF).  
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Let us assume that we have a system of p facilities serving n demand nodes. The RIM model can be 

applied to this system to identify the optimal interdiction set of r facilities, assuming that no facilities 

have been fortified. Call this optimal interdiction set U . Now consider the following: 

 

Theorem: Optimal fortif ication of q of the p facilities must include at least one site of the interdiction set 

U .  

 

The proof of this theorem is quite simple. If we do not fortify any site that is identified in the unrestricted 

interdiction set U , then it is still possible to interdict every site in the set U  and the worst possible case 

of interdiction for the p sites has not been thwarted. Thus, in order to prevent the worst case of 

interdiction from being possible at least one site in the interdiction set U  must be fortified. Q.E.D.  

 

In some instances, the best fortification plan may involve fortifying the entire interdiction set U . 

However, there are circumstances where the optimal strategy involves the interdiction of only one site of 

the set U . We will give an example of this in a subsequent section. In the next section we will present a 

model that optimally distributes fortification resources, in order to thwart the worst-case interdiction 

pattern on a configuration of facilities.   

 

4. FORMULATING A MODEL THAT OPTIMIZES THE USE OF  

    FORTIFICATION RESOURCES 

 

In this section we develop a formulation for the r-interdiction median problem with fortification (IMF). 

This problem involves two competing elements, interdiction and fortification. The basic idea is to 

determine which subset of sites to fortify, so that the resulting partially fortified pattern is the least 

vulnerable to interdiction.  

 

It is important to note from the outset that depending upon the size of a specific IMF problem, 

enumeration might be a viable solution technique. The number of cases possible for a specific set of 

values p, q and r is: 

 

                                 
! ( )!

!( )! !( )!

p p q p p q
q r q p q r p q r

−    −× = ×    − − −   
           (6) 
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or the number of combinations of fortifying q facilities out of p times the number of combinations of 

interdicting r of the remaining p-q unprotected facilities. Even what might seem to be a small problem 

could have a significant number of cases to enumerate before identifying an optimal solution. For 

example, consider a problem involving 20 facilities where 7 facilities are fortified and 4 facilities are 

interdicted. This problem has over 55 million cases. Enumerating this number of possible fortification 

patterns and cases of interdiction can take considerable computation time. Consequently, it makes sense 

to pursue the development of a formal optimization model. It is important to note that the reason why the 

number of cases can be large is that it represents the product of two different values, each representing a 

number of combinations.  

 

Let us assume that the number of interdicted facilities will always be relatively small in number, 

especially in relation to the total number of facilities. If this is the case we can then assume that the 

number of interdicted patterns will be relatively small, say in the thousands. For example, if we have a 20 

facility pattern and the level of interdiction is 4r = , then there are:  

 

                                      
20

4,845
4

 
= 

 
 interdiction patterns                                             (7) 

              

This means that we have to be concerned with 4,845 possible responses to a possible fortification plan. 

We can test a given fortification plan in terms of its efficacy, based upon which interdiction patterns have 

been thwarted. As long as the number of such patterns is not too large, we can generate these possible 

patterns in advance and use them to calculate the value of fortification. 

 

For example consider the 4-node network given in Figure 1. For this problem, we will start off with all 

four nodes housing a facility. To make this simple, assume that each demand nodes has a demand weight 

of 1.   This means that each demand node has a facility and that the weighted distance associated with the 

4-facility pattern is zero.  
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      Figure 1: A simple four-node network, starting with each node housing a facility.  

 

For this example, we will assume that we have the resources to fortify 2 facilities and that the interdiction 

will remove the 2 facilities not fortified. That is, either a facility is fortified or it will be interdicted. There 

are 6 possible ways in which the above network can be interdicted, when there is no fortification. We can 

calculate the impact of each pattern of interdiction. The worst will be the optimal RIM solution for 2r = . 

The set of possibilities are given in Table 1.  

 

             Table 1: Enumerating all possible interdiction patterns  

Interdiction 

pattern 

Remaining 

facilities 

Resulting 

weighted distance 

1, 2 3, 4 4 

1, 3 2, 4 10 

1, 4 2, 3 4 

2, 3 1, 4 4 

2, 4 1, 3 9 

3, 4 1, 2 4 

 

 

The worst-case interdiction pattern involves eliminating facilities at nodes 1 and 3, leaving facilities at 

nodes 2 and 4 and a total weighted distance of 10. The theorem given in section 4 implies that at least one 

of these two interdicted facilities must be part of the optimal fortification plan. But what is the optimal 

fortification plan? To identify the optimal fortification plan, we can enumerate the possibilities for this 

simple problem as well. Results of enumerating fortification patterns of 2 facilities followed by 

interdiction of the remaining 2 facilities are given in Table 2.  
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         Table 2: Enumerating patterns of fortification 

Fortification 

Pattern 

Interdicted 

Facilities 

Remaining 

facilities 

Resulting 

weighted 

distance 

1, 2 3, 4 1, 2 4 

1, 3 2, 4 1, 3 9 

1, 4 2, 3 1, 4 4 

2, 3 1, 4 2, 3 4 

2, 4 1, 3 2, 4 10 

3, 4 1, 2 3, 4 4 

 

 

From Table 2, we observe that there are several patterns of fortification that yield the lowest 

weighted distance after interdiction. For example, if we fortify sites 1 and 2 leaving facilities at 

nodes 3 and 4 to be interdicted, then the resulting weighted distance is 4. Note that one of these sites is in 

the optimal RIM solution of Table 1. If our pattern of fortification is sites 1 and 3, leaving facilities at 2 

and 4 to be interdicted, then the resulting weighted distance is 9. Thus, fortifying all sites in the optimal 

interdiction set U consisting of sites 1 and 3 (see Table 1) yields a solution that is worse than fortifying 

only one site in the optimal interdiction set (e.g. fortify sites 1 & 2). Note for this simple problem, that 

there are 4 fortification patterns that yield the same lowest possible weighted distance (i.e. 4) after 

interdiction of the remaining facilities. Each one of these optimal fortification solutions uses at least one 

site from the optimal interdiction set without fortification. This property was proven in the theorem given 

in section 4.   

 

Suppose that we identify in advance all possible interdiction patterns, like what we did in the previous 

example. We can do this given our earlier assumption that the number of interdictions is relatively small 

in number. Consider the following notation: 

 

h index used to represent specific interdiction patterns 

 

H set of all possible interdiction patterns  
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h
id  shortest distance between demand i and its closest non-interdicted facility after the interdiction of 

pattern h 

 

{ }|  h h
i ij iB j F d d= ∈ < , the set of closest sites to i  that have been interdicted in pattern h. 

 

q  number of facilities to be fortified 

 

1,  if a facility located at  is fortified
0,  otherwise                                       j

j
z


= 


 

 

For each interdiction pattern, we can calculate the weighted distance that would result without any 

fortification being made. Without fortification, the weighted distance for a given interdiction pattern can 

be calculated by assigning each demand to its closest non-interdicted facility. This is: 

 

                                    
1

n
h

h i i
i

WD a d
=

= ∑                                                                              (8) 

 

For the moment, let us assume that we must protect against interdiction pattern h. Without fortification of 

any facilities of pattern h, the weighted distance would remain unchanged. Thus, to affect the value of 

hWD , we must fortify at least one or more sites in the interdiction pattern h . Each demand assigns to its 

closest non-interdicted site at a distance of h
id . In fact all facility locations j F∈  where h

ij id d<  must 

be interdicted, or the value of h
id  would be smaller. If we fortify any one of the sites h

ij B∈ , then 

weighted distance can be improved by: 

 

               ( )h
i i ija d d−                                                                         (9) 

 

depending upon which site h
ij B∈ , we fortify. If two sites in h

iB  are fortified, then the improvement in 

weighted distance should be calculated based upon the closest fortified facility in the set  h
iB . In order to 

track such possibilities, consider the following decision variable: 
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1, if demand  assigns to fortified facility  in interdiction pattern 

0, otherwise                                                                    

h
ij

i j h
x


= 


 

 

This type of decision variable will be used for demand i  and interdiction pattern h only for those h
ij B∈ .  

Improvement in weighted distance under interdiction pattern h can be made only for those demands i  

where the closest facility(ies) is(are) interdicted (i.e. h
ij B∈  ). A specific interdiction pattern can be 

partially or completely thwarted depending upon which facilities are fortified. When a facility j  is 

fortified, then the fortification of j  will disrupt its interdiction and allow demand to assign to it, if it 

results in an improvement in weighted distance (for any interdiction pattern h  including site j ). With 

this basis, we can now formulate a novel form of the IMF model as follows: 

 

W min                                                                                                                     (10) 

 

Subject to:  

 

             for all ,  for all  and for all h h
ij j ix z i N h H j B≤ ∈ ∈ ∈  (11) 

 

1           for all ,  and for all  and where 2
h
i

h h
ij i

j B

x i N h H B
∈

≤ ∈ ∈ ≥∑  (12) 

 

 ( )           for all 
h
i

h h h
i i i i ij ij

i N i N j B

W a d a d d x h H
∈ ∈ ∈

≥ − − ∈∑ ∑ ∑  (13) 

 

qz
Fj

j =∑
∈

 (14) 

 

0,1              for all jz j F= ∈  (15) 

 

0,1              for all ,  for all  and for all h h
ij ix i N h H j B= ∈ ∈ ∈                         (16) 

 

where: 
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W  = the weighted distance resulting from the fortification of q  facilities (assuming that the most 

disruptive interdiction of r non-fortified sites will occur).  

 

This model optimizes the fortification of q facilities, given that any interdiction pattern can happen 

involving r facilities. The objective is to allocate fortification resources in such a manner that the impact 

of interdiction is reduced the most. Basically, weighted distance is minimized by fortifying sites, 

assuming that the worst case of interdiction of r non-fortified sites will take place. Constraints of type 

(11) ensure that demand i  cannot assign to a facility h
ij B∈  under interdiction pattern h, unless that site j 

has been fortified. Constraints of type (12) ensure that a demand assigns to at most one facility assuming 

that interdiction pattern h occurs. This assignment is made either to the closest non-interdicted site or to 

the closest fortified site. Constraints of type (13) calculate the weighted distance of interdiction pattern h, 

given fortification. If for a given pattern h, some sites in that pattern have been fortified, then that 

interdiction pattern has been partially thwarted, and the weighted distance is computed associated with 

this fortification. If none of the sites in the interdiction pattern h have been fortified, then the weighted 

distance remains unchanged and is calculated as the following sum: 

                                                      
1

n
h

i i
i

a d
=

∑                                                                      (17) 

in the constraint associated with interdiction pattern h. The final structural constraint ensures that exactly 

q sites will be fortified. Basically the above model keeps track of all possible interdiction patterns, and 

fortifies those sites so that the lowest weighted distance is achieved after any possible interdiction.  

 

The above model can be reduced for several cases involving the size of the membership of set h
iB  given 

an interdiction pattern h and a demand i . If the closest facility to demand i  is not interdicted in pattern h, 

then the set h
iB  will be empty and there will be no need for any variables h

ijx  and no associated 

constraints (11) and (12). If for a given i  and h, the set h
iB  contains only one member, then a different 

type of reduction is possible. For this case let j  be the lone member of h
iB . There is no need for the 

variable  
h
i jx , as the only option for improving weighted distance for this i  (given interdiction pattern h) 

is to fortify site j . If site  j  is fortified, then the weighted distance for demand i  can be improved. This 

can be represented by the variable demand jz . Thus, for the second case where h
iB  has only one member 

j , we can eliminate both constraints (11) and (12) and use the variable jz  in place of  
h
i jx  in constraint 
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(13). This second case results in the elimination of one constraint and one variable. Finally, consider the 

case where the membership of the set h
iB is greater than or equal to 2. For this last case, it is necessary to 

maintain constraints (11) and (12), but it might be possible to eliminate specific h
ijx  variables. This last 

concept is based upon the properties of the COBRA formulation of the p-median problem presented by 

Church (2003). In the p-median problem, Church proved that certain variables can be combined under 

specific circumstances. For example, if site 10 is the 6th closest facility for demands 2 and 5, and the set of 

closer sites is the same for both demands, then it can be proved that if 2 assigns to site 10 as its closest 

facility then demand 5 will assign to site 10 as its closest facility. For such cases in the p-median problem, 

only one assignment variable is needed rather than two individual assignment variables. For possible 

interdiction patterns that include site 10, improvement in weighted distance by fortifying site 10 will 

accrue to both demands 2 and 5. In fact, given the same closeness for facility 10 in regard to demands 2 

and 5, the theorem given in Church (2003) applies and this means that 2 10 5 10
h hx x=  for those patterns h 

that involve interdiction of facility at 10.  Consequently, variables 2 10 5 10 and  h hx x  can be combined for 

those specific cases of h that involve the interdiction of site 10. Combining such variables will result in a 

reduction of the number of needed variables as well the reduction of constraints (11) (and possibly some 

of (12) as well). The model applications used in the next section invoke all such reductions when they 

apply.  

 

The IMF model formulation is a classic integer-linear programming model and can be solved by the use 

of general-purpose integer-linear programming optimization software. In the next section, we present 

computational results using this model applied to several geographical data sets.  

 

5. SOLVING THE INTERDICTION MEDIAN WITH FORTIFICATION MODEL 

 

We utilized two different geographical data sets to test the IMF: the 55 node problem of Swain (1971) and 

the 150 node London, Ontario data set (Goodchild and Noronha, 1983). Both data sets have been used 

extensively in the literature to test location model constructs. The IMF model was set up using 

Optimization Programming Language (OPL) within OPL studio and solved by Cplex. The results 

presented here are based upon setting a priority on feasibility and a priority branching strategy involving 

the set of variables representing the best interdiction pattern. Results were generated using OPL studio 3.5 

and Cplex 7.0 on a Intel Pentium 4 (1.8Ghtz with 512 MB of ram). 
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Table 3 presents results of the IMF model applied to the two different data sets for a variety of parameter 

values (i.e. number of existing facilities, p; number of facilities to be fortified, q; and the number of 

unfortified facilities to be interdicted, r). For a given problem of  p-facilities, we assumed that the original 

configuration was the optimal p-facility configuration. For this pattern of p facilities, we solved the IMF 

model in order to determine the set of q facilities to fortify so that the impact of a worst-case interdiction 

of r facilities was minimized. For each problem solved, Table 3 gives the original weighted distance of 

the optimal p-median configuration, as well as the weighted distance after fortification and worst-case 

interdiction (i.e. F/I). The table also gives for each problem the computational time needed to solve the 

problem using the IMF model, the number of variables, and the number of constraints. For example, one 

of the problems solved for the London, Ontario data set involved 10 facilities, 2 fortifications and 2 

interdictions. For this problem, the weighted distance of the starting p-median configuration was 

189,440.37. Optimal fortification based upon worst-case interdiction results in a weighted distance of 

246,353.28. The model was solved in 0.13 seconds and involved 73 variables and 140 constraints. The 

result means that weighted distance after worst-case interdiction can be no lower than 246,353.28 after 

fortification. In fact, without optimal fortification weighted distance after interdiction is likely to be 

considerably larger than 246,353.28. Reviewing the problem data and model results in Table 3, reveals 

that most problems were solved in less than a few seconds, although a few problems took more than 10 

minutes of solution time. Overall, the larger the value of r (the amount of interdiction), the larger the 

composite model and the longer it takes to solve using integer linear programming and branch and bound.   

 

Table 4 presents results that are focused on a configuration of 15 facilities on the London, Ontario data 

set. Given the optimal 15 facility median solution, we solved the IMF model for a variety of values of r 

and q. We used values of r ranging from 1 to 4 and q ranging from 1 to 15-r. For each value of 

interdiction we also solved the original RIM model. The RIM solution is listed with a level of 0 

fortifications. The optimal objective values for IMF (and RIM) and the solution times are given in Table 

4. The results of table 4 are presented graphically in Figure 2. Figure 2 depicts the tradeoff in weighted 

distance based upon the amount of fortification, given a certain level of interdiction. For example, if the 

level of interdiction is r=4, the tradeoff curve is plotted as a set of connected circles. The curve starts at a 

high of  254,601.02 when no fortification is used. Changing the level of fortification from 0 to 1 facility 

reduces the weighted distance after interdiction to 246,584.54. The reduction in weighted distance is 

attributable to the fortification of 1 site. Increasing fortification to 2 facilities from 1 reduces weighted 

distance after interdiction to 223,037.02. The marginal gain in improvement in weighted distance for the 

second fortification is greater than the marginal gain in weighted distance improvement due to the 

fortification of only one site. This means that for this case the combination of 2 fortified sites provides 
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considerably more protection than single fortification of either site alone. That is, the combined value of 

fortification can be greater than the sum of the individual fortification contributions. As fortification 

increases, weighted distance after interdiction continues to drop over the entire range of fortification 

values. One should note that in general, as the level of fortification increases, the marginal reductions in 

weighted distance tend to decrease. From the 4 curves, one can also observe that the greatest return to an 

investment in fortification occurs for the first few units of fortification. 

 

Figures 3, 4, and 5 depict a configuration of 5 facilities on the Swain data set. Figure 3 depicts the optimal 

5 median solution, which has an associated weighted distance of 2,950.41. Optimal interdiction of 2 

facilities of this pattern is depicted in Figure 4. This pattern was generated by the RIM model and is 

depicted in Church et al. (2004). The weighted distance after the loss of the most critical 2 facilities 

(given no fortification), results in a weighted distance of 6,124.53. Figure 5 presents an optimal solution 

to the IMF model where 2 facilities are fortified. This solution after interdiction is 4,072.74. Fortification 

included one of the original interdicted sites of figure 4. These three figures depict the spatial 

complexities of weakness to interdiction. First, the weighted distance of an unprotected system increased 

by 100% after interdiction. Fortifying only 2 of the 5 sites provided a substantial improvement in system 

performance after interdiction. For this case, the weighted distance increases by only 35% due to 

interdiction, when optimally fortifying 2 facilities.  

 

6. CONCLUSIONS 

 

Facilities and other types of infrastructure are at risk to intentional disruption caused by possible military 

or terrorist activities. An intentional strike to take out a facility is called interdiction. A number of models 

have been developed for military purposes that involve interdiction of transport supply (e.g. McMuster 

and Mustin, 1970; Ghare et al. 1971; Wood 1993). Interdiction modeling has also been extended to 

supply and response facilities (Church, et al. 2004). Such models can be used to identify the weakest parts 

of a service or supply system. The weakest part of a system can be designated as “critical.” In this paper, 

we address the possibility of fortifying a limited set of facilities against interdiction. We assume that 

“fortified” facilities are protected against intentional strikes or encourage interdiction to focus on 

something without such protection. When there are resources to fortify a subset of existing facilities, then 

the obvious question is: which facilities should be fortified? This is the main question addressed in this 

paper.  
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In earlier work, Church et al. (2004) presented a model called the r-interdiction median problem. The r-

interdiction median problem involves identifying a subset of existing facilities which, when removed, 

results in the greatest increase in weighted distance. This model is the antitheses of the p-median model. 

Whereas the p-median problem involves finding the p locations for facilities that create the most efficient 

system, the r-interdiction median involves finding the r out of p existing facilities that when removed, 

results in the least efficient system. This paper introduces the option of fortification, where a subset of q 

facilities can be protected from interdiction. The fortification problem involves identifying which set of q 

facilities should be fortified so that optimal interdiction of this system is thwarted the most. We have 

presented an integer-linear programming model that can be used to identify an optimal fortification 

strategy. We have tested this model on two different geographical data sets, using general-purpose 

software. Optimal solutions were generated for all of the problem instances solved.  

 

We have also presented a theorem and proof concerning one of the properties of the r-interdiction median 

problem with fortification (IMF). Specifically, we have shown that a solution to the fortification problem 

includes at least one site that is a member of the optimal solution to the r-interdiction median model. We 

conjecture that this property can be generalized to other fortification problems as well. Although optimal 

solutions to the IMF model utilize at least one site found in an optimal r-interdiction median solution, 

results tend to show that fortification resources are also dispersed beyond the sites that are part of the 

optimal r-interdiction median solution.   

 

The concepts of interdiction and fortification are new concepts in location science and have been 

motivated by recent world events. Protecting valuable resources should be an important aspect in public 

safety.  Through the development of models such as RIM and IMF, we can begin to focus on possible 

impacts of intentional strikes as well as how best to protect existing infrastructure from such possibilities. 

Even though traditional designs can include failure analysis and may involve the use of redundant 

elements (e.g. backup pumps in a sewage lift station), such methods are not based upon the complete and 

catastrophic loss of a facility, but on the failure rates of components within a facility. Repair of 

components often takes hours or days, but the loss of a facility may not be replaceable until months or 

even years. The RIM and IMF models focus on such catastrophic events.  

 

Research is needed to expand these two models in two principal areas. The first need involves the 

development of efficient algorithms and heuristics. Although we have developed a new model and 

demonstrated the use of general-purpose integer programming software in solving this new model applied 

to moderately sized problems, the capability to handle large problems needs to be developed. The second 
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major need is associated with extending model elements, such as allowing for partial 

protection/fortification where there is a probability that a facility will survive an intentional strike. We 

hope that this paper encourages the development of this new area of location science and leads to the 

protection of important services and lifelines. 
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Table 3: Results from the application of the IMF model to two different data sets  

Pr. p q r Obj Values Time  Vars  Constrs  
Set       PMP F/I (sec.)     
Swain 5 2 2 2,950.41 4,072.74 0.03 26 42 
Swain 7 2 2 2,427.41 3,462.92 0.03 42 74 
Swain 7 2 3 2,427.41 3,820.16 0.11 184 312 
Swain 7 3 2 2,427.41 3,252.89 0.05 42 74 
Swain 7 3 3 2,427.41 3,639.41 0.13 184 312 
Swain 9 2 2 2,067.97 2,877.58 0.05 48 95 
Swain 9 2 3 2,067.97 3,207.41 0.22 291 520 
Swain 9 3 2 2,067.97 2,811.04 0.08 48 95 
Swain 9 3 3 2,067.97 3,096.71 0.23 291 520 
Swain 9 3 4 2,067.97 3,448.54 1.23 923 1,568 
Swain 9 4 3 2,067.97 2,894.39 0.23 291 520 
Swain 9 4 4 2,067.97 3,148.65 1.22 923 1,568 
London 10 2 2 189,440.37 246,353.28 0.13 73 140 
London 10 2 3 189,440.37 278,117.28 0.50 507 918 
London 10 2 4 189,440.37 315,642.64 2.49 1816 3275 
London 10 3 2 189,440.37 238,765.24 0.13 73 140 
London 10 3 3 189,440.37 271,858.78 0.70 507 918 
London 10 3 4 189,440.37 302,606.11 3.69 1,816 3,275 
London 10 4 2 189,440.37 237,389.35 0.13 73 140 
London 10 4 3 189,440.37 266,155.05 0.73 507 918 
London 10 4 4 189,440.37 286,432.60 5.09 1,816 3,275 
London 10 5 2 189,440.37 235,407.72 0.16 73 140 
London 10 5 3 189,440.37 255,685.27 0.75 507 918 
London 10 5 4 189,440.37 275,642.12 5.14 1,816 3,275 
London 15 2 2 146,601.37 182,539.41 0.23 108 245 
London 15 2 3 146,601.37 202,165.68 1.75 1,216 2,302 
London 15 2 4 146,601.37 223,037.02 12.33 7,336 12,858 
London 15 3 2 146,601.37 178,885.48 0.23 108 245 
London 15 3 3 146,601.37 194,776.53 2.22 1,216 2,302 
London 15 3 4 146,601.37 218,329.62 23.70 7,336 12,858 
London 15 4 2 146,601.37 177,390.35 0.23 108 245 
London 15 4 3 146,601.37 192,454.70 2.19 1,216 2,302 
London 15 4 4 146,601.37 212,163.47 32.55 7,336 12,858 
London 15 5 2 146,601.37 175,068.51 0.27 108 245 
London 15 5 3 146,601.37 191,346.09 2.73 1,216 2,302 
London 15 5 4 146,601.37 207,597.07 59.28 7,336 12,858 
London 15 6 2 146,601.37 172,258.51 0.23 108 245 



   22 

  Table 3 Continued:  
 

Pr. p q r Obj Values Time  Vars  Constrs  
Set       PMP F/I (sec.)     
London 15 6 3 146,601.37 190,210.89 3.61 1,216 2,302 
London 15 6 4 146,601.37 204,985.42 87.97 7,336 12,858 
London 15 7 2 146,601.37 171,676.68 0.28 108 245 
London 15 7 3 146,601.37 187,599.23 5.30 1,216 2,302 
London 15 7 4 146,601.37 198,808.38 105.75 7,336 12,858 
London 20 6 2 122,360.47 143,120.20 0.42 129 354 
London 20 6 3 122,360.47 153,263.89 8.08 1,984 4,121 
London 20 6 4 122,360.47 164,855.27 246.06 16,973 30,840 
London 20 7 2 122,360.47 141,722.36 0.41 129 354 
London 20 7 3 122,360.47 151,219.26 9.94 1,984 4,121 
London 20 7 4 122,360.47 163,083.32 380.94 16,973 30,840 
London 20 8 2 122,360.47 140,661.26 0.42 129 354 
London 20 8 3 122,360.47 150,890.24 10.09 1,984 4,121 
London 20 8 4 122,360.47 161,448.25 611.08 16,973 30,840 
London 20 9 2 122,360.47 139,808.49 0.44 129 354 
London 20 9 3 122,360.47 150,396.96 14.95 1,984 4,121 
London 20 9 4 122,360.47 160,219.78 898.52 16,973 30,840 
London 20 10 2 122,360.47 139,075.35 0.47 129 354 
London 20 10 3 122,360.47 149,219.04 15.86 1,984 4,121 
London 20 10 4 122,360.47 156,646.17 714.61 16,973 30,840 
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Table 4: Results of fortifying an optimal 15 facility median configuration on the London, Ontario 

data set (results generated by RIM and IMF models). 

  Obj Values   Time (sec.)  

q r = 1 r = 2 r = 3 r = 4   r = 1 r = 2 r = 3 r = 4 

0 165,624.30 204,319.87 226,305.37 254,601.02   0.03 0.02 0.05 0.16 

1 164,781.84 183,010.48 205,003.46 246,584.54   0.09 0.22 1.44 6.08 

2 163,987.55 182,539.41 202,165.68 223,037.02   0.11 0.23 2.03 13.84 

3 161,499.30 178,885.48 194,776.53 218,329.62   0.11 0.23 1.97 25.28 

4 161,007.95 177,390.35 192,454.70 212,163.47   0.11 0.25 2.30 35.47 

5 160,709.16 175,068.51 191,346.09 207,597.07   0.13 0.25 2.86 62.88 

6 159,145.96 172,258.51 190,210.89 204,985.42   0.14 0.25 3.69 93.52 

7 159,132.09 171,676.68 187,599.23 198,808.38   0.13 0.33 4.72 98.80 

8 156,756.26 171,512.69 183,910.45 196,521.46   0.14 0.28 4.42 114.75 

9 156,507.61 169,663.94 181,831.58 192,429.85   0.14 0.31 4.61 96.05 

10 156,163.10 169,286.98 179,273.52 188,198.80   0.14 0.36 4.23 81.47 

11 155,526.64 166,662.51 175,587.79 183,523.02   0.13 0.28 3.25 79.55 

12 155,005.01 164,566.74 172,111.42 --   0.14 0.27 2.31 -- 

13 154,536.59 163,403.46 -- --   0.16 0.23 -- -- 

14 154,044.22 -- -- --   0.16 -- -- -- 
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Figure 2: Tradeoff curves that depict the marginal values to adding fortification resources given a 

level of interdiction  
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Figure 3: Optimal five facility median configuration serving a set of 55 demand points. 
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Figure 4: Five facility configuration with worst case interdiction of 2 sites (results of the RIM 

model). 
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Figure 5: Five facility configuration with optimal fortification of 2 sites subject to worst 

case interdiction of 2 sites (results of the IMF model). 


