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Abstract: Systematic approaches to security investment decisions, from intelligence and 

surveillance to fortification, are crucial for improved homeland security. We present an 

optimization modeling approach for allocating protection resources among a system of facilities 

so that the disruptive effects of possible intentional attacks to the system are minimized. This 

paper is based upon the p-median service protocol for an operating set of p-facilities. The primary 

objective is to identify the subset of q facilities which, when fortified, provides the best protection 

against the worst-case loss of r non-fortified facilities. This problem, known as the r-interdiction 

median problem with fortification (IMF), was first formulated as a mixed integer program by 

Church and Scaparra [6]. In this paper, we reformulate the IMF as a maximal covering problem 

with precedence constraints, which is amenable to a new solution approach. This new approach 

produces good approximations to the best fortification strategies. Furthermore, it provides upper 

and lower bounds that can be used to reduce the size of the original model. The reduced model 

can readily be solved to optimality by CPLEX. Computational results on two geographical data 

sets with different structural characteristics show the effectiveness of the proposed methodology 

for solving IMF instances of considerable size.      

 

Keywords: p-median, interdiction, fortification, maximal covering 
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1. INTRODUCTION  

Recent world events have clearly demonstrated that facilities are vulnerable to terrorism. In 

response to this, a number of governmental agencies in the U.S. have worked to identify the 

elements of infrastructure that are critical to safeguarding life and promoting safety. Some assets 

may not be critical in terms of economics, lifelines, or defense, but may be important as national 

symbols (e.g. the Statue of Liberty in New York Harbor). During times of heightened terrorist 

alerts, some of these assets have been the subject of increased surveillance and policing. 

Protection of other assets has been increased by hardening facility perimeters with vehicle 

barriers, limiting access, moving critical functions to interior areas, developing backup power 

systems, etc. It is important to identify critical infrastructure and to analyze alternatives of 

hardening/fortifying critical elements. In short, systematic approaches for making security 

investment decisions, including intelligence and surveillance, prevention, protection, emergency 

response and recovery among others, are crucial for guaranteeing the maximum effectiveness of 

protective efforts. 

 

Identifying critical elements of a supply system has been the subject of military planners for quite 

some time. The focus of such planning is often directed at identifying the best places to disrupt or 

interdict an enemy’s supply system by offensive actions such as a bombing mission. Interdiction 

modeling can be used to identify the weakest elements of a system or the worst case intentional 

sabotage of a system. Wollmer [21] was one of the first to model interdic tion of supply lines as an 

optimization model.  Since then, numerous papers have appeared, mainly dealing with the 

interdiction of transportation networks. The majority of past  work  is based on network 

optimization theory and generally aims at interdicting arcs in order to minimize  network flow 

capacity (McMasters and Mustin [17], Ghare, Montgomery and Turner [10], Wood [22]) or 

maximize the shortest path between a specified origin and destination (Fulkerson and Harding 

[8], Golden [11], Israeli and Wood [16]). Interdiction of supply and emergency response facilities 

has recently been modeled (Church, Scaparra and Middleton [5]). 

 

Interdiction models are most useful in a setting involving intentional disruption. As such they can 

be used to identify the critical links or assets in a system. Critical links of a system may be the 

best places in which to harden and fortify, so that they are less likely to be destroyed or lost in an 

intentional attack. Once vulnerabilities of a system have been identified, then it is logical to 

identify a protection plan (see for example Salmeron, Wood, and Baldick [19]). Such a plan 
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would involve hardening certain assets so that a system operates as best as possible under cases of 

interdiction. The objective of this paper is to model the optimal allocation of asset fortification 

given the possibility of interdiction.  

 

There are a number of different types of supply system designs. The one that we address in this 

paper draws upon the well-known p-median location model. The p-median problem has been 

applied in a number of public and private settings and was originally defined within the context of 

communication switching center location by Hakimi [13, 14]. The p-median model involves the 

optimal location of p-facilities that provide service or supply to a set of demands. Assuming that 

no capacity restrictions exist, the objective is to minimize the cost or the weighted distance of 

supplying all demand, where each demand is assigned to its closest facility (in terms of cost or 

distance). In this context, we assume that a supply system, where user demands are entirely 

supplied by their closest facilities, already exists and that no decision has to be made concerning  

the location of the facilities. However, the p facilities currently in the system are susceptible to 

deliberate sabotage by external attackers, unless protective measures are taken to prevent their 

interdiction. When an unprotected (i.e. non fortified) facility is interdicted, it is considered 

inoperable. This means that users must be reassigned to more distant facilities, with a 

commensurate reduction of system efficiency. It is possible that damages caused by interdiction 

can be repaired, but we assume here that the time that it would take to reestablish a facility or 

replace the supply is significant enough that the system would operate in an inefficient state for 

some period of time. We consider the case where fortification resources are limited. We assume 

that at most q of the existing p facilities can be fortified and that interdiction involves the loss of r 

of the p-q unfortified facilities. Our objective is to identify the optimal set of q facilities to fortify 

or harden in order to hedge against the most disruptive interdiction of r facilities.   

 

The fortification/interdiction problem just described was first introduced by Church and Scaparra 

[6] and referred to as the r-interdiction median problem with fortification (IMF). In [6] the 

authors demonstrated that protecting the most vulnerable facilities or predictable targets is not 

necessarily the most cost-effective way of confronting threats. Fortification patterns which take 

into account the interdependency among the system components and the effect of multiple, 

simultaneous losses can produce better and more resilie nt protection plans. Mathematical models 

are hence needed which are able to capture these independencies and identify the most efficient 

protection investment plans.  
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A natural way of looking at the fortification/interdiction problem is within the context of a leader-

follower or Stackelberg game, where the entity responsible for coordinating the fortification 

activity is the leader and the interdictor is the follower. Such a game can be expressed 

mathematically as a bilevel programming problem (Dempe [7]):  the upper level problem 

involves decisions to determine which facilities to harden, whereas the lower level problem 

entails the interdictor responses on which unprotected facilities to attack. Even if in practice we 

cannot assume that the attacker is aware of the damage he can inflict on a system and, 

consequently , that he is able to identify the best attacking strategy, the assumption that the 

interdictor attacks in an optimal way is used as a tool to model worst case scenarios and estimate 

the worst case efficiency loss in response to a given fortification strategy.  

 

The bilevel formulation of the fortification/interdiction problem is provided in Scaparra and 

Church [20].  In general, solving bilevel problems is a difficult task even in their simplest ve rsion, 

i.e. when both the lower level problem and the upper level problem only contain continuous 

variables. Such a case has been proved to be strongly NP-hard by Hansen, Jaumard and Savard 

[15]. Additional difficulties arise when the decisions at both levels require integrality constraints, 

as it is in the fortification/interdiction problem treated in this context (the reader is referred to 

Bard [2] and Moore and Bard [18] for a detailed treatment of integer bilevel programs). The 

development of efficient exact techniques to solve discrete bilevel programs is currently a fertile 

area of research and no universal algorithm exists for their solutions.    

 

In order to solve the fortification/interdiction problem to optimality, Church and Scaparra [6] 

showed that, under specific hypothesis on the size of the problem parameters, the IMF problem 

can be formulated as a single -level mixed integer model and solved directly through commercial 

optimization software. However, the applicability of such an integer model is confined to 

problem instances with a few facilities and with modest interdiction and fortification resources. 

Many real distribution, supply and emergency response systems , such as electric utility company 

or fire station networks, may contain a much larger number of vulnerable facilities. Our objective 

here is to develop an alternative formulation for IMF and devise an efficient solution technique 

tailored to the new mathematical structure of the problem for solving instances of more realistic 

size.     

 

The remainder of the paper is organized as follows. In the next section, we introduce some 

notation and present the original formulation of the r-interdiction median problem with 
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fortification (IMF). In Section 3, we reformulate IMF as a special type of maximal covering 

problem, which involves precedence constraints. A heuristic approach for solving the new model 

is provided in Section 4. Section 5 describes an interval search improvement procedure. The 

complete modeling approach, which involves a reduced model and exploits the findings in the 

previous sections, is illustrated in Section 6. Numerical results obtained by solving the reduced 

model with CPLEX are presented in Section 7, followed by conclusions and recommendations for 

future work.        

 

2.  BACKGROUND AND THE INTERDICTION MEDIAN PROBLEM WITH 

FORTIFICATION 

The scientific literature on network interdiction was recently surveyed in Church, Scaparra and 

Middleton [5]. They broaden the focus from the interdiction of arcs or links to the interdiction of 

facilities, such as power plants, hospitals, and emergency response facilities. They also proposed 

two new interdiction models that are based upon two different service protocols. Whereas the 

study of interdiction problems dates back several decades and is documented in a number of 

papers, little attention has been paid to the problem of asset protection for mitigating system 

degradation caused by interdiction.  In a recent paper, Salmeron et al. [19] discussed the issue of 

hardening components of a electrical power system in order to improve the security of electrical 

supply against disruption caused by terrorist attacks. However, they did not formalize an 

approach for identifying the optimal set of components to harden.  They suggested using the 

outcome of an interdiction model as an indication of the critical components to be fortified, but 

left the modeling of protective measures as a topic for future research.  Church and Scaparra [6] 

have recently incorporated the option of fortification or asset hardening in a location model. The 

new model considers a p-median configuration of facilities, where q of p facilities can be fortified 

and where r of the remaining p-q unprotected facilities are subject to interdiction. They 

designated this as the interdic tion median problem with fortification (IMF). They also 

demonstrated that protection practices, which do not account explicitly for fortification efforts, 

rarely deploy security resources to the greatest advantage. The IMF model and its equivalent 

formulation proposed in this paper, aim at capturing this additional degree of complexity in a 

single mixed integer program.   
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Let N, indexed by i, represent the set of demand nodes and denote by a i the demand for service at 

node i. Assume that in the current system there are p operating facilities and that each demand is 

fully supplied by its closest facility. Let F, indexed by j, represent the facility set and let dij be the 

shortest distance between the facility at j and demand node i. In accordance with the median 

paradigm, system efficiency is measured as the sum of the shortest demand-weighted distances 

between each demand point and its closest facility. We assume that interdiction resources are 

limited so that the value of r  is relatively small in value. We further assume that it is possible to 

enumerate all possible ways in which an existing facility pattern of p facilities can be interdicted r 

times.  We define H, indexed by h, as the set of all possible interdiction patterns, and Ih as the set 

of interdic ted facilities in pattern h. We can associate with each interdiction pattern h the value 

WDh, which denotes the optimal p-median objective function value after the interdiction of the 

facilities comprising the interdiction set Ih. The value WDh can be easily computed by simply 

reassigning the demands currently served by the facilities in Ih to their closest facility in F\Ih. 

More specifically, let h
id  be the shortest distance between demand i and its closest non-

interdicted facility given the interdiction pattern h. Then, with no fortification,  

 

                                    
1

n
h

h i i
i

WD a d
=

= ∑                                                                               (1) 

 

Finally, for each demand i and for each interdiction pattern h, we define the set 

{ }h
iijh

h
i ddIjB <∈= | . h

iB  represents the set of closest sites to i  that have been interdicted in 

pattern h. An interdiction pattern h is partially thwarted if any of the facilities in Ih is fortified. 

 

In order to formulate the r-interdiction median problem with fortification (IMF) as proposed in 

Church and Scaparra [6], we consider the following decision variables: 

 

1,  if a facility located at  is fortified
0,  otherwise                                       j

j
z


= 


 

 
 

1, if demand  assigns to fortified facility  in interdiction pattern 

0, otherwise                                                                    

h
ij

i j h
x


= 

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 The IMF model is then: 
 

W min                                                                                                                           (2) 

 

s.t. h
ij

h
ij BjHhNizx ∈∈∈≤  allfor  and , allfor  , allfor    (3) 

 

HhNix
h
iBj

h
ij ∈∈≤∑

∈

 allfor  and , allfor   1  (4) 

 

HhxddaWDW h
ijij

Ni Bj

h
iih

h
i

∈−−≥ ∑∑
∈ ∈

 allfor  )(   (5) 

 

qz
Fj

j =∑
∈

 (6) 

 

 { } Fjz j ∈∈  allfor    0,1  (7) 

 

{ } h
i

h
ij BjHhNix ∈∈∈∈  allfor  and , allfor  , allfor   0,1                         (8) 

 

where: 

 

W  = the weighted distance resulting from the fortification of q  facilities, assuming that the 

worst-case interdiction of r  non-fortified facilities occurs.  

 

The above model involves minimizing the weighted distance of serving all demand assuming that 

each demand is served by its closest non-interdicted site. It is based upon the assumption that 

given a pattern of fortification, the worst case of r-interdiction occurs. That is, unprotected 

facilities will be interdicted in such a manner that the weighted distance will be maximized given 

a fortification plan. The overall objective is to find the fortification plan that minimizes the 

impact of interdiction. To accomplish this, the model keeps track of the impact of each possible 

interdiction pattern. A given interdiction pattern can be thwarted in its effectiveness by fortifying 

one or more sites in that pattern. The impact of each possible interdiction pattern is based upon 
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which facilities are fortified. Constraints (3) precludes the assignment of a demand i to a facility j 

which is interdicted in pattern h, unless j is fortified. Constraints (4) ensure that each demand i is 

assigned to at most one facility, given that interdiction pattern h occurs. Such a facility is either 

the closest non-interdicted site (if h
iB = ∅ or none of the facilities in h

iB  is fortified) or the 

closest fortified site. Assignment to the closest site is guaranteed by the minimization of the 

problem. Note that no assignment variables h
ijx  exist if the closest facility to i  is not interdicted 

in interdiction pattern h. Thus, there are no constraints (3) and (4) corresponding to such a case. 

Constraints (5) define the weighted distance after interdiction for each pattern h in terms of the 

new assignment variables. If none of the facilities in interdiction pattern h is fortified, or if the 

fortification does not affect the customer assignments, then the weighted distance WDh associated 

with interdiction pattern h remains unchanged. Otherwise, the second term in the right-hand side 

of inequalities (5) represents the improvement in weighted distance derived by reassigning 

demands to the fortified facilities. Constraints (5) simply force the variable W to be the worst-case 

weighted distance after interdiction of non-fortified facilities. Hence, the model optimizes the 

weighted distance after the most disruptive interdiction in response to the selected fortifications. 

Constraint (6) simply states that q facilities are fortified. Finally, constraints (7) and (8) force 

integrality of the decis ion variables. 

 

Church and Scaparra [6] discuss ways of reducing the integer program (2)-(8). Such reductions, 

including variable replacements and constraint eliminations, are based upon considerations on the 

size of the sets h
iB , and upon elements of the COBRA formulation of the p-median problem 

given in Church [4] that can be utilized in IMF.  We will show in Section 7 that the solution 

procedure that we introduce in this paper is considerably faster than solving the reduced form of 

the IMF formulation given in Church and Scaparra [6].  

 

3. A MAXIMUM COVERING TYPE FORMULATION 

The mathematical formulation of IMF given in section 2 is based upon the assumption that the 

number of interdictions, r, is relatively small and that, consequently, it is possible to identify in 

advance all the p choose r interdiction patterns. In this context, we make the same assumption. 

We also assume for the remainder of this paper that q + r < p.  Additionally, we assume that the 

interdiction patterns are sorted in non-increasing order of the median objectives after interdiction, 
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WDh, so that pattern 1 is the most disruptive interdiction pattern and pattern |H| is the least 

disruptive interdiction pattern.  We now make the following observation. 

 

Observation 1. The worst-case interdiction will occur for an interdiction pattern attacking solely 

unprotected sites. If an interdiction pattern Ih is partially thwarted by the fortification of one or 

more facilities in that pattern, an interdiction pattern Ik exists that consists of the unprotected sites 

of Ih and other unprotected sites such that the weighted distance of Ik exceeds that of Ih. This will 

always be true given that q + r < p. Thus, fortification of one or more sites of an interdiction 

pattern means that that interdiction pattern will not represent the worst case.  

 

If the interdiction patterns can be enumerated and sorted, then the worst-case interdiction of r 

facilities can be easily identified in response to any given set of q fortifications, as stated below. 

 

Proposition 1. Let S be a set of q candidate facilities for fortification and assume that the 

interdiction patterns have been reindexed so that WD1 ≥ … ≥ WDh ≥ … ≥ WD|H|. Then, the worst-

case loss of r facilities after the fortification of S coincides with the set *hI , where h* = min{h∈ 

H | Ih  ∩ S = ∅}.  

 

Proof. The proof is straightforward. Namely, every pattern preceding h* in the ordering is 

thwarted by the fortification of S since by definition h* is the index of the first interdiction pattern 

in the ordering which has no facility in the fortification set. Every pattern following pattern h* in 

the ordering is less disruptive than h*. Hence *hI  is the worst-case loss in response to S.  �  

 

Observation 2. The IMF problem can then be restated as the problem of finding the set of 

fortifications S such that the index h* of the worst interdiction pattern in response to S is as large 

as possible. This implies that the corresponding median objective after the worst-case 

interdiction, WDh*, is as small as possible.  

 

Proposition 1, together with the two observations imply that the IMF model can be formulated in 

a different manner.  The effectiveness of a fortification pattern is based upon whether one or more 

sites in the most disruptive interdiction patterns have been fortified. The basic premise of this new 

model is to cover  the greatest number of most disruptive interdiction patterns with q 

fortifications. An interdiction pattern h is covered by the fortification of a facility j if j belongs to 
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Ih. To define the problem formally, we use the same notation given in Section 2. Additionally, we 

introduce the following decision variables: 

 





=
otherwise 0,

(covered)  thwartedis pattern on interdicti if 1, h
yh  

 

Under the assumption that the interdiction patterns are ordered, IMF can be formulated as the 

following maximal covering problem (MCP): 

 

max h

Hh

h yw∑
∈

  (9) 

 

s.t. Hhyz h

Ij

j

h

∈≥∑
∈

 allfor    (10) 

 

qz

Fj

j =∑
∈

 (11) 

 

 { } Fjz j ∈∈  allfor    0,1  (12) 

 

Hhyh ∈≤≤  allfor    10  (13) 

 

where the objective weights wh are recursively defined as follows: 

  

              ,   if 

 ,   if 1,...,1
k

h

k h

g h H
w w h Hε

>

==  + = −

∑    

 
In the above definition, g and e are small, positive real numbers. This specific choice of the 

objective weights ensures that, in an optimal solution, the coverage of a pattern h is preferred to 

the coverage of all patterns following h in the ordering, i.e., each pattern will have higher 

coverage priority than the sum of all the patterns that are less disruptive. Consequently, a solution 

to problem (9)-(13) identifies the set of q fortifications that covers the greatest number of most 
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disruptive interdiction patterns. Note that the integrality restriction on the yh variables can be 

relaxed as in the standard formulation of the maximal covering problem. The next proposition 

establishes the equivalence between IMF and MCP.   

 

Proposition 2. Let (z*, y*) be an optimal solution to MCP and h* = min {h∈ H | 0* =hy }. Also, 

let W* be the objective function value corresponding to the optimal solution to IMF. Then, WDh* 

= W*.     

Proof. The proof follows directly from Proposition 1.  

 

Unfortunately, even when the number of interdiction patterns is relatively modest, the use of 

weights to force an ordered coverage of the interdiction patterns becomes impractical. This is due 

to the exponential growth in the magnitude of the weights, and is true also for very small values 

of the base weight g and of the weight increment e. As an example, consider a small problem 

instance with 10 operating facilities and resources to interdict 4 facilities, and assume that both g 

and e are fixed to 0.001. The number of possible interdiction patterns is only 210, but the weight 

associated with the most disruptive interdiction pattern is w1 = 8.2×1059. It is clear that the use of 

weights represents a major limitation to the applicability of the maximal covering model for 

solving IMF instances of relevant size. However, as an alternative to the use of weights, priorities 

in covering the interdiction patterns can be enforced through the use of the following precedence 

constraints:  

 

1...1 allfor   1 −=≥ + Hhyy hh , (14) 

  

where the variables yh are redefined as: 

 





=
otherwise 0,

(covered)  thwartedare   to1 from patternson interdicti  theall if 1, h
yh  

 

We will refer to the maximal covering model with precedence constraints (14) as MCPC. In 

MCPC, the objective coefficients can all be set to 1. The resulting model has p integer variables, 

|H| continuous variables and 2×|H| constraints. Clearly, as the number of patterns increases (as a 

consequence of increased values of the parameters p and r), solving this model using general-

purpose optimization software may become computationally prohibitive. In the next section, we 
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describe a greedy algorithm, which finds approximate solutions to the mixed integer program (9)-

(14). We then show how the approximate solutions can be improved by searching for the optimal 

value h* in a subinterval of [1, |H|], and show how the information obtained at the end of this 

process can then be employed to reduce the size of the MCPC.  

 

4. AN APPROXIMATE SOLUTION ALGORITHM  

We first developed a simple heuristic technique for solving the MCPC that could be used to 

calculate a valid bound on fortification. This approach consists of a greedy strategy that starts 

with an empty set of fortifications and iteratively adds facilities to it according to a greedy rule. 

At each iteration, the newly selected facility is the one which, when fortified, thwarts the greatest 

number of uncovered, most disruptive interdiction patterns. The steps of the greedy process are 

defined below. Note that the interdiction patterns are still assumed to be in non-increasing order 

of WDh. 

 Greedy Procedure  

1. Set k  = 1 and S = ∅.  

2. For each facility j in interdiction pattern k , compute the number n j of consecutive patterns 

after pattern k which are either already covered by some facility in S or that would be 

covered by the fortification of j . Let j* be the facility for which this number is the largest, 

i.e., n j*  =  max {n j | j ∈ Ik}. 

3. Set S = S ∪ {j*} and k = k +  nj*  + 1.  

4. If |S| < q, repeat steps 2-3. Otherwise, set L = k – 1 and stop.  

 

At termination, L represents the index of the last pattern in the ordering that is thwarted by 

hardening the facilities in the fortification set S. Thus, L is a lower bound estimate of the optimal 

number of worst-case interdiction patterns that can be prevented with q fortifications. By 

proposition 1, IL +  1 is the worst-case interdiction set in response to S, and WDL+1 is an upper 

bound to the optimal objective W*.  

 

The greedy heuristic can be implemented to run in O(r|H|) time, provided that the interdiction 

patterns have been previously sorted. In fact, the main step of the algorithm (step 2) is executed 

only q times. Each repetition of step 2 involves the identification of an additional facility j* to be 

inserted in S and requires checking the coverage of at most n j* + 1 patterns for each of the r 
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interdicted facilities of the pattern under exam. However, when considering the computational 

work involved for a completed greedy solution, each interdiction pattern is checked for coverage 

at most r times. This checking operation can be performed in constant time by using appropriate 

data structures.  Hence, the overall time required by the greedy algorithm is O(r|H|). The sorting 

of the patterns can be implemented in O(|H|log|H|). In the next section we show how the greedy 

result can be improved.    

 

5. IMPROVING THE BOUNDS BY INTERVAL SEARCH 

The procedure for enhancing the greedy solution and for reducing the size of MCPC consists of 

an interval search performed over a subset of the interdiction patterns. The interval search aims 

at: 1) improving the current lower estimate, L, on the optimal number of most disruptive 

interdiction patterns that can be thwarted with q fortifications, denoted by k*, and 2) providing an 

upper estimate, U, on this number. The search starts by considering the interval [L, |H|]. We know 

that the optimal number of thwarted patterns k* falls within this interval. At each subsequent step, 

a new trial point k is selected in the interval, and is evaluated by determining the minimum 

number of fortifications required to thwart all of the first k  ordered patterns (by solving a set 

covering model in step 2 of the search procedure given below). This information is then used to 

obtain a new, smaller bracketing interval. The selection of each trial point uses linear 

interpolation for estimating the optimal k* from known lower and upper values. In the following, 

we denote by [L,U] the current bracketing interval, and by qL and qU the number of fortifications 

needed to disrupt the first L and U interdiction patterns, respectively.  

 

Linear Interpolation Search Procedure 

1. Initialization. Set  qL = q,   U = |H|,  qU = p – r + 1, and k =  L. 

2. Evaluation. Solve the following set covering problem SC(k) : 

 

min  ∑
∈Fj

jz  

 

s.t. khz
hIj

j ...1 allfor   1 ∈≥∑
∈

 SC(k ) 

   
{ } Fjz j ∈∈  allfor    0,1  
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Let )(ˆ kq  be the optimal solution to SC(k ). 

3. Interval Reduction. If qkq >)(ˆ , then set U = k, qU  = )(ˆ kq . Otherwise, L = k, qL = )(ˆ kq . 

4. Point Selection. Compute:  

 

( ) ,          if   

( 1 ) ,      if  and 1

  0 5( ),                  if  and 1

L L
U L

L L U
U L

L U

U L
q q L q q

q q

U Lx q q L q q q q
q q

L . U - L q q q q  . 

− − + ≠ −

 −= + − + = > +

−



+ = = +


 (15) 

 

Set  xk =  , where  x  denotes the largest integer less than or equal to x. 

5. Termination. Repeat steps 2-4 until some stopping criterion is met.  

Step 1 initializes the interval bounds with the corresponding values qL and qU, and the initial trial 

number of most disruptive patterns that can be covered with q fortifications, k . Note that the 

initial values of qL and qU are upper bounds on the minimum number of fortifications needed to 

disrupt the first L and U patterns, respectively. More specifically, qL is the solution returned by 

the greedy heuristic, while qU   is assigned an initial value of p – r + 1, since fortifying that number 

of facilities ensures that all the |H| interdiction patterns are disrupted.  In step 2, a set-covering 

problem is solved to determine the minimum number of facilities that must be fortified to thwart 

the first k  most disruptive patterns. If the disruption of the worst k  interdiction patterns requires 

more than the available q fortifications, then k becomes the new upper estimate U. Conversely, if 

it is possible to cover all of the worst k  patterns with q fortifications, k  becomes the new lower 

estimate L. At step 3, the new trial number k  is appropriately chosen in the reduced interval [L, 

U]. The choice of k is based upon the assumption that the number of covered patterns grows 

linearly as a function of the number of fortifications . That is, the new value k is interpolated so 

that the point (k, q) lies on the line segment connecting the points (L, qL) and (U, qU). The first 

equation in (15) represents a standard linear interpolation formula. This formula needs to be 

modified in two cases, which both occur when qL = q. When this is case, the first interpolation 

formula given in (15) would return the point L as the next estimate for k*. If qU is greater than q + 

1, the problem can be overcome by estimating the new value at the point q + 1 instead of q, as 

stated by the second equation in (15). On the other hand, if qU = q + 1, the interpolation at q + 1 
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would return U as the next estimate. In this case, we use bisection instead of interpolation to 

compute the next k , according to the last part of equation (15).  

Figure 1 provides an example of these two special cases for a simple problem with p = 15, r = 4, 

and q = 5. The piecewise non-continuous step shaped function in the figure represents the 

minimum number of fortifications needed to cover any given number of the most disruptive 

interdiction patterns. The function is depicted to illustrate the search process, even though it is a 

solution on this function that is the object of our search.  The point on the function marked with 

the asterisk corresponds to the optimal number of patterns that can be thwarted with the 5 

available fortifications, i.e. 311. Identifying this number or a small bracketing interval around it is 

the primary objective of the interval search. The initial bracketing interval is set to [L, U] = [192, 

1365], where 192 is the number of patterns covered with 5 fortifications by the greedy solution, 

and 1,365 is the total number of patterns. The piecewise linear function is approximated by the 

line joining the points (192, 5) and (1365, 12), where 12 is an upper bound on the number of 

fortifications needed to disrupt the 1,365 interdiction patterns. The two points are depicted with 

black solid triangles in the figure. Since q192 = 5 = q, the new trial value k  is chosen so that the 

point (k , q + 1) lies on this line. The resulting value is k  = 358. The corresponding point (358, 6) 

is represented as a non-solid triangle in the figure. Note that had we chosen to interpolate the new 

value using q, we would have obtained the previous lower estimate 192. At the next iteration, 

problem SC(358) is solved to compute the actual number of fortifications needed to disrupt the 

first 358 patterns. Since the optimal number is, in fact, 6, which is greater than 5, the upper bound 

is set to 358 and the interval is reduced to [192, 358]. At this point, no further interpolation is 

possible since the evaluations at q and q + 1 would only return the interval extremes. Hence, we 

resort to bisection, with the new trial value fixed to 274, i.e. the midpoint between 192 and 358. 

The procedure is repeated  in this same manner until a given termination criterion is met.  
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Fig. 1. Interval search with linear interpolation. 

 

Note that in this example, the search interval was already reduced by more than 70% after the 

first iteration. We found that this type of rapid reduction can be attributed to the use of the 

interpolation process.  In preliminary experiments, we employed a straightforward binary search 

to narrow the search interval. As a binary search does not take advantage of the fact that function 

is monotonically increasing, it is not surprising that a binary search performed poorly in 

comparison to the less myopic linear interpolation routine.   

 

With respect to the stopping criterion, we considered the simultaneous use of three different rules 

for terminating the interval search. They are based upon the following conditions:   

 

i) MaxIter iterations have been performed 

ii)  U  - L < β. 

iii)  (WDL+1 - WDU)/WDU ≤ γ (i.e. the relative optimality gap falls below a given 

threshold) 

According to rule (i), the search is stopped after a predefined number of iterations, MaxIter. This 

stopping rule limits a priori how many set-covering problems will be solved, and hence provides 

control on the computational effort spent during the interval search phase. According to rule (ii), 

steps (2)-(4) are repeated until the interval width is reduced to a desired value β. Since the MCPC 

reductions described in the next section depend on the final values of L and U, rule (ii) provides 
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control on the size of the reduced mixed-integer model. Finally, rule (iii) terminates the search if 

the relative optimality gap falls below a given value, γ, and hence it guarantees a given level of 

solution accuracy. Basically, rule (ii) is more suitable if the line search is used for reducing the 

size of the maximal covering model, where the principal objective is to identify an optimal 

solution to a MCPC. In contrast, rule (iii) is more suitable if the interval search is used as a stand-

alone improvement method, where the principal objective is to find a good approximate solution 

to the MCPC. With both rules, it is difficult to anticipate how many set-covering models need to 

be solved. As a consequence, it is difficult to fine-tune the parameters β and γ in such a way that 

there is a clear benefit in continuing the interval search process rather than terminating the search 

and proceeding to the solution of the resulting reduced version of MCPC. Consequently, Rule (i) 

is the safest way of monitoring the computing time spent in the search phase. The computational 

experience reported in Section 7 is based upon the combined use of rules (i) through  (iii), where 

MaxIter = 7, γ = 2.5%, β =50. Basically, the search phase is terminated as soon as one of the 

three conditions is met, but only after it has been repeated a minimum of 5 times.  Preliminary 

results aimed at fine-tuning the stopping rules demonstrated that this particular choice represents 

a good trade-off between the computational effort required by the search and the extent of the 

reduction of the final model. 

The set covering problem defined at step 2 of the procedure is itself a difficult problem to solve 

(Garey and Johnson [9]). However, the size of each SC(k) is usually small, having p variables and 

k constraints, as compared to the size of the maximal covering problem (9)-(14). Furthermore, the 

set covering problems are not solved from scratch at each iteration. Rather, each problem SC(k ) is 

generated from the problem solved at the previous iteration by either adding or deleting 

constraints, depending on whether k  is increased or decreased. The optimal solution to the 

previous problem can then be used as a starting solution for the new problem to save computing 

time. As noted in Caprara, Fischetti and Toth [3], general-purpose linear programming solvers 

based on branch and bound are very competitive approaches for solving the set covering problem 

to optimality, and usually outperform the best exact algorithms presented in the literature. In our 

empirical investigations, we used the branch and bound based solver CPLEX to solve the set 

covering models.   
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6.   REDUCED MAXIMAL COVERING MODEL WITH PRECEDENCE CONSTRAINTS 

The bounds U and L returned by the linear interpolation search procedure  can be used to reduce 

the number of variables and constraints in the original model (9)-(14). More specifically, the first 

L continuous variables can be fixed to 1, as the optimal solution must cover at least the first L 

ordered interdiction patterns. The interval search process has also identified that it is not possible 

to thwart the last |H|-U ordered interdiction patterns. Thus, the variables indexed from U + 1 to 

|H| associated with the last |H|-U ordered interdiction patterns  can be eliminated together with the 

coverage constraints (10) and the precedence constraints (14) associated with these variables. The 

resulting reduced model RMCPC is: 
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The resulting model has p + U – L variables and 2U – L – 1 constraints. Typically, the problems 

were reduced to 1-15% of their original size, after solving between 5 and 7 set covering problems. 

The extent of the reduction is further discussed in the next section. 
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Note that the proposed solution approach can be easily extended to the more general problem 

where each facility has a different protection cost and the constraint fixing the number of possible 

fortifications is replaced by a budget constraint. In such a case, the greedy procedure would need 

to be modified so that each newly selected facility at step 2 is the one which covers the greatest 

number of uncovered patterns per unit cost. The interval search procedure requires two 

modifications: 1) the minimum-cardinality set-covering problems solved in the evaluation step 

are replaced by minimum-cost set-covering problems; 2) the linear interpolation is performed by 

using fortification costs and a budget instead of number of fortifications and q in formula (15). 

Finally, constraint (20) in the reduced formulation is simply replaced by a budget constraint. 

 

7. COMPUTATIONAL STUDY 

In this section we report on the computational results obtained by applying the modeling 

approach described in the previous sections to two different geographical data sets: the 150 node 

London, Ontario data set (Goodchild and Noronha [12]) and the 316 node Alberta data set [1]. 

Each problem was solved for different combinations of the parameters p, q, and r. The code was 

programmed in C++ and the tests were run on a PC with a Pentium 4, 1.8Ghtz processor with 512 

MB of RAM. The set covering problems in the search phase and the reduced MCPC were solved 

using CPLEX 7.0 with user-specified parameter settings fine-tuned to improve performance. For 

instance, we forced CPLEX to use the primal optimizer at the initial root node and the dual 

simplex method after branching. Also, we set the tree search strategy of CPLEX to emphasize 

feasibility rather than optimality. Several experiments with different parameter settings proved 

that this combination yielded overall the best results.  

 

The first set of experiments was conducted on the London data set to test the computational 

performance of the new MCPC model as compared to the original formulation IMF (Church and 

Scaparra [6]). The problem was solved for p = 20 operating facilities, for q ranging between 6 

and 10, and r ranging between 2 and 4. Thus, we ran the experiments on the 15 largest problem 

instances solved by Church and Scaparra [6]. In the initial configuration, the 20 existing facilities 

were located by solving the unrestricted p-median problem, so that the base solution was the 

optimal median solution. Table 1 presents the results for the original IMF model, the results for 

the new MCPC, and for the reduced version of the MCPC (RMCPC). Each model was solved by 

using CPLEX. The RMCPC model was constructed after performing both the greedy heuristic 

and interval search procedures.  The first three columns in Table 1 list the parameters values for 
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each problem (p, q, and r). The fourth column gives the total number of possible interdiction 

patterns (i.e. |H|), followed by the optimal objective value of the interdiction median problem 

with fortification.  Finally, the last three columns report the computational times required for 

solving the three models. Note that the times reported for the MCPC include the times to generate 

and sort all possible interdictions, in addition to the CPLEX execution time. The time in solving 

the RMCPC includes the time to generate and sort all possible interdiction patterns, the 

computation time for the greedy heuristic and the interval search, and the time for solving the 

reduced model with CPLEX. When we compare the computational performance of the three 

model options, we observe that the solution of MCPC does not yield significant gains with 

respect to IMF, although some improvements can be noticed for larger values of r and q. On the 

other hand, the reduced model yields significant computational savings for every problem solved. 

On average, solving RMCPC was about 190 times faster than solving MCPC and 240 times faster 

than solving IMF. Even more important than the average gain in solution efficiency is that the 

most significant time gains were obtained for the largest value of the parameter r (r = 4), which 

was identified in Church and Scaparra [6] as the main limitation of the applicability of IMF.  

 

Given the effectiveness of the proposed methodology in solving this first set of problems, we 

extended our empirical investigation for the RMCPC modeling approach to problem instances 

with larger parameter values. In particular, we considered problem instances with 25 and 30 

facilities in the existing configuration, and allowed up to 7 interdictions and 7 fortifications. 

Globally, we solved 24 instances for the two different spatial data sets. The detailed results for the 

London data set are presented in Table 2, while Table 3 provides the results for the Alberta data 

set. Tables 2 and 3 have the same structure, with the first 4 columns having the same meaning as 

in Table 1. The next four columns indicate respectively: the number of most disruptive patterns 

covered by the greedy heuristic; the lower bound (L) and upper bound (U) to the optimal 

coverage produced by the improvement procedure; and the number of most disruptive patterns 

covered in the optimal solution to the RMCPC. The next column gives the optimal objective 

values. The following four columns provide some statistical information about the performance 

of the greedy procedure and the interval search procedure. Namely, they report the percentage of 

the optimal number of patterns that were covered at the end of each of the two phases (columns 

%Cov). They also give the percentage error of the greedy heuristic objective values compared to 

the optimal values (column %Err), and the percent relative optimality gap obtained at the end of 

the search phase (column %GAP). Finally, the last 5 columns provide the running times spent in 
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each phase of this new solution approach. The last column presents the total computation time 

required for all steps of the process.   

 

 The results presented in Table 2 present a clear picture concerning the performance of the 

individual phases of the algorithm. First, we notice that 4 of the 24 problems were already solved 

to optimality by the greedy heuristic. On average, the greedy error was 2.98% for all test 

problems. The worst performance was obtained for the last problem, where the greedy covered 

only around 3% of the patterns covered in the optimal solution, resulting in a 10.26% error.  Note 

that, in general, the percentage error for the objective function is quite small, even when the 

percentage of covered patterns is relatively low. For example, the greedy heuristic covered less 

than 40% of the optimal number of patterns for the problem with p = 30, q = 3, and r = 4. 

Nevertheless, the error in terms of the WD values associated with these interdiction patterns was 

less than 2%. This is mainly due to the fact that even if the greedy heuristic fails in covering a 

large number of interdiction patterns, it does cover the most disruptive ones. Since the marginal 

gain in the median objective due to the coverage of additional patterns is likely to diminish as the 

number of covered patterns increases, the failure in covering the “tail” patterns has a limited 

impact on the overall objective. Also, note that the greedy percentage error is achieved with very 

little computational effort, less than a second for every problem. By comparison, much more 

computational time is needed for sorting the interdiction patterns (as was expected due to the 

complexity of the sorting process).   

 

After execution of the search procedure, the coverage of ordered interdiction patterns associated 

with the resulting lower bound L averaged 91% of what can be optimally covered. Even though 

no optimal solutions were detected during this search phase, the optimality gap measured at the 

end of the procedure was always be low 2% (0.67% on average) and this was always achieved 

within the preset MaxIter=7 limit.  The time spent in the search phase was, on average, around 

one third of the total time, while the remaining two thirds of the time were spent on solving the 

reduced model to optimality. The sorting and greedy times were negligible with respect to the 

total computing time. 

 

The computation experience generated on the Alberta data set provides somewhat different 

insights. This data set contains 316 demand points whereas the London data set contained 150 

nodes. This fact alone adds to the complexity of the overall problem. The results for the Alberta 

data set are summarized in Table 3. Notice that 3 of the 24 instances could not be solved to 
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optimality; the objective function values for these problems are preceded by a question mark in 

the table. However, for all other cases but one, the optimal solution was found by the greedy 

heuristic. This behavior can be explained by understanding that some of the facilities in the 

existing p-median configurations are noticeably more important than others in providing efficient 

service. In other words, the distribution of the demands is very heterogeneous, with a few key 

facilities supplying significantly more demand than others. Clearly, these key facilities must be 

fortified to guarantee a high post-interdiction service level, which makes them generally easy to 

detect using a greedy scheme. Given that the ordered set of interdiction patterns would first 

involve all interdiction patterns containing these key sites, the number of most disruptive 

interdiction patterns that can be thwarted is generally very high, when these same key sites are 

fortified. Consider for instance the last problem in Table 3. At the end of the greedy phase, almost 

three fourths of the total number of interdiction patterns (almost 1,500,000 patterns) could be 

covered with the 7 available fortifications, whereas in the London data set the same number of 

fortifications could thwart only 6,749 patterns at the end of the greedy phase and only 219,411 

patterns at optimality. Clearly, as the number of preventable worst-case patterns increases, so 

does the complexity of the minimum-cardinality set covering problems solved during the 

improvement phase, since the number of constraints of each SC problem depends upon the upper 

and lower bounds of the optimal number of patterns which can be thwarted. As a consequence of 

number of constraints, the improvement phase could not be executed for the three problems with 

p = 30 and r = 7, i.e. for the problems with more that two million interdiction patterns.  

 

Table 4 and Table 5 report some information related to the extent of the model reduction obtained 

at the end of the improvement phase for the London data set and the Alberta data set respectively. 

For each parameter combination, Table s 4 and 5 provides: the number of variables and 

constraints of the initial maximal covering problem with precedence constraints (columns 4 and 

5); the number of variables and constraints of the reduced RMCPC model  (columns 6 and 7); the 

percentage reduction in model size (columns 8 and 9); and the size of the largest set SC problem 

solved (column 10). For the London data set, the number of variables was reduced on average by 

99.25% and the number of constraints by 95.85%. The computing time to obtain these significant 

reductions was quite small considering the size of the problems being solved. In the worst case, it 

took slightly more than half an hour to reduce the problems with more than two million variables 

and four million constraints to a manageable size. The majority of the instances could not have 

been solved by CPLEX given their initial size. For the Alberta data set, the variable reduction 

amounted to 99.63% of the original size and the constraint reduction averaged 78.96%.  
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8. CONCLUSIONS AND FUTURE RESEARCH 

This paper has presented a new modeling approach for determining optimal 

protection/fortification plans involving a supply system based upon the p-median protocol. The 

overall objective of this approach is to minimize the loss of system service efficiency caused by 

worst-case interdiction strikes. This problem was recently introduced by Church and Scaparra [6]. 

They developed a model of this problem called the interdiction p-median problem with 

fortification (IMF) and presented results associated with solving that model using general purpose 

integer-linear programming software. In this paper we have shown that the original IMF model 

can be reformulated as a maximal covering model with precedence constraints (MCPC) based 

upon an order set of all possible interdiction patterns. A methodology for solving this model has 

also been presented that involves a process that can be used to reduce the resulting MCPC model 

called RMCPC. We have shown that the maximal covering with precedence constraints 

formulation for the IMF problem can be efficiently solved by CPLEX after implementing a 

specialized model reduction approach. The proposed modeling approach represents a significant 

enhancement over direct solutions of the original IMF formulation presented in Church and 

Scaparra [6] as this new approach significantly reduces the time needed to solve problems as 

compared to using the original IMF formulation. Additionally the new modeling approach makes 

it possible to solve larger problem instances than what was possible using the IMF model. We 

also demonstrated that when demand is concentrated and very heterogeneous, a greedy approach 

to the MCPC tends to perform well, in terms of final objective value. Overall, fortification 

strategies could be determined to thwart optimally up to two million possible interdiction 

responses.        

 

In view of recent world events there is a heightened awareness and concern for protecting 

infrastructure, supply systems and the public from terrorist attack. Protecting infrastructure is an 

enormous challenge, since resources are limited and potential risks are high. The model presented 

in this paper is intended to provide an example of how fortification resources can be optimized to 

provide effective protection of vital industry assets. Obviously, the scale and complexity of real 

distribution, supply and emergency response systems presents a significant challenge in planning 

against possible acts of terrorism. Since it is impossible to protect all assets, it is important to 

devise approaches for identifying critical elements, optimize the protection of key system 

features, plan for emergency response, and schedule and plan repair efforts. The models 

addressed here represent one of the simpler system protocols. Model extensions should be 

developed that incorporate probabilistic elements, different service/supply protocols, and capacity 
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restrictions on facility supplies. Also, the modeling effort should be accompanied by the 

development of new specialized solution approaches able to handle large-scale problems. We 

hope that the framework presented in this paper can serve as a useful preliminary step in that 

direction and can inspire future work in modeling and solving increasingly complex interdiction 

and fortification problems.  
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Table. 1.  Comparison between the IMF, MCPP and RMCPC models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p q r |H| Opt. 
Val. IMF MCPP RMCPC

20 6 2 190 143,120.20 0.42 0.36 0.02
20 6 3 1140 153,263.89 8.08 9.47 0.08
20 6 4 4845 164,855.27 246.06 396.50 0.53
20 7 2 190 141,722.36 0.41 0.39 0.01
20 7 3 1140 151,219.26 9.94 9.11 0.14
20 7 4 4845 163,083.32 380.94 408.06 1.16
20 8 2 190 140,661.26 0.42 0.39 0.02
20 8 3 1140 150,890.24 10.09 12.53 0.20
20 8 4 4845 161,448.25 611.08 405.70 1.48
20 9 2 190 139,808.49 0.44 0.33 0.02
20 9 3 1140 150,396.96 14.95 19.25 0.31
20 9 4 4845 160,219.78 898.52 496.72 2.55
20 10 2 190 139,075.35 0.47 0.31 0.02
20 10 3 1140 149,219.04 15.86 10.45 0.38
20 10 4 4845 156,646.17 714.61 514.11 5.09

Avg. 194.15 152.25 0.80

Time (sec.)
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Table. 2. Results from the application of the RMCPC formulation to the London data set. 

 

 

Obj
p q r |H| Greedy L U OPT Val % Cov % Err % Cov % GAP Sort Greedy Search Cplex Total
25 3 4 12,650 64 64 146 64 153,638.54 100.00 0.00 100.00 1.68 0.09 0.00 0.06 0.01 0.16
25 3 5 53,130 49 233 417 243 164,458.35 20.16 3.29 95.88 1.17 0.94 0.00 0.41 0.03 1.39
25 3 6 177,100 70 720 1,371 915 174,942.60 7.65 5.57 78.69 1.74 1.75 0.03 3.89 0.45 6.92
25 3 7 480,700 285 1,223 2,161 1,798 188,282.97 15.85 3.92 68.02 1.37 9.33 0.09 29.75 0.53 44.72
25 5 4 12,650 113 983 1,157 991 143,058.40 11.40 6.20 99.19 0.50 0.09 0.00 0.14 0.08 0.31
25 5 5 53,130 1,928 4,562 4,939 4,810 151,559.19 40.08 3.04 94.84 0.27 0.94 0.02 2.06 1.16 4.18
25 5 6 177,100 12,133 12,133 13,507 12,133 162,485.24 100.00 0.00 100.00 0.38 1.75 0.03 36.42 5.34 43.54
25 5 7 480,700 35,812 35,812 39,784 35,812 171,987.27 100.00 0.00 100.00 0.41 9.33 0.13 265.53 131.44 406.43
25 7 4 12,650 2,049 3,042 3,207 3,164 137,307.81 64.76 1.74 96.14 0.24 0.09 0.00 1.98 0.44 2.51
25 7 5 53,130 2,766 9,061 9,847 9,358 147,589.13 29.56 4.58 96.83 0.35 0.94 0.00 16.19 4.36 21.49
25 7 6 177,100 30,133 30,133 31,546 30,633 156,685.61 98.37 0.07 98.37 0.21 1.75 0.09 186.94 43.11 231.89
25 7 7 480,700 78,208 99,170 103,363 99,823 164,595.84 78.35 1.16 99.35 0.21 9.33 0.28 806.06 274.50 1,090.17
30 3 4 27,405 183 466 608 478 121,378.81 38.28 1.99 97.49 0.54 0.22 0.00 0.06 0.03 0.31
30 3 5 142,506 787 787 1,172 787 132,032.99 100.00 0.00 100.00 0.80 2.80 0.01 1.74 0.08 4.63
30 3 6 593,775 967 1,809 2,651 2,556 140,618.50 37.83 2.52 70.77 0.91 7.11 0.11 16.19 0.27 23.68
30 3 7 2,035,800 285 3,369 6,453 3,933 152,969.85 7.25 5.57 85.66 1.73 47.48 0.91 131.53 1.42 181.34
30 5 4 27,405 950 1,525 1,668 1,580 118,060.47 60.13 1.44 96.52 0.30 0.22 0.00 0.16 0.08 0.46
30 5 5 142,506 1,118 2,189 2,724 2,562 128,667.35 43.64 1.90 85.44 0.55 2.80 0.01 2.25 0.84 5.90
30 5 6 593,775 2,560 7,252 9,598 8,217 137,061.54 31.15 2.59 88.26 0.61 7.11 0.11 29.61 9.63 46.46
30 5 7 2,035,800 3,933 14,683 20,058 19,627 146,299.89 20.04 4.56 74.81 0.84 47.48 0.88 2,129.28 83.66 2,261.30
30 7 4 27,405 1,702 3,538 3,844 3,824 114,789.52 44.51 2.60 92.52 0.25 0.22 0.00 1.20 0.38 1.80
30 7 5 142,506 6,599 16,791 18,490 18,160 121,953.59 36.34 3.06 92.46 0.36 2.80 0.03 32.22 27.53 62.58
30 7 6 593,775 6,386 45,545 50,440 48,873 130,678.87 13.07 5.45 93.19 0.32 7.11 0.11 261.05 132.64 400.91
30 7 7 2,035,800 6,749 206,482 235,016 219,411 136,730.79 3.08 10.26 94.11 0.44 47.48 0.89 2,011.47 11,837.59 13,897.43

45.90 2.98 91.61 0.67 8.72 0.16 248.59 523.15 780.85Avg.

Coverage Time (sec.)Greedy Search
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Table. 3. Results from the application of the RMCPP formulation to the Alberta data set. 

 

 

Obj
p q r |H| Greedy L U OPT Val % Cov % Err % Cov % GAP Sort Greedy Search Cplex Total
25 3 4 12,650 2,128 2,128 2,162 2,128 57,178,804 100.00 0.00 100.00 2.42 0.17 0.00 0.39 0.08 0.64
25 3 5 53,130 11,118 11,118 11,263 11,118 62,785,799 100.00 0.00 100.00 1.69 1.67 0.01 3.91 0.52 1.39
25 3 6 177,100 45,152 45,152 45,394 45,152 67,647,091 100.00 0.00 100.00 1.40 3.41 0.05 41.25 3.48 6.92
25 3 7 480,700 144,331 144,331 145,644 144,331 73,255,693 100.00 0.00 100.00 1.83 15.91 0.25 482.92 15.38 44.72
25 5 4 12,650 3,668 3,668 3,734 3,668 43,265,666 100.00 0.00 100.00 0.71 0.17 0.01 0.95 0.30 1.43
25 5 5 53,130 19,905 19,905 20,164 19,905 46,077,394 100.00 0.00 100.00 0.63 1.67 0.01 22.16 3.91 27.75
25 5 6 177,100 78,382 78,382 79,204 78,382 49,452,379 100.00 0.00 100.00 0.41 3.41 0.09 222.89 31.09 257.48
25 5 7 480,700 246,411 246,411 248,502 246,411 52,315,922 100.00 0.00 100.00 0.29 15.91 0.36 1,188.22 421.23 1,625.72
25 7 4 12,650 8,538 8,538 8,572 8,538 31,746,528 100.00 0.00 100.00 0.39 0.17 0.00 5.88 2.03 8.08
25 7 5 53,130 38,969 38,969 39,095 38,969 34,993,344 100.00 0.00 100.00 0.24 1.67 0.03 89.77 16.70 108.17
25 7 6 177,100 138,437 138,437 138,808 138,437 37,921,475 100.00 0.00 100.00 0.21 3.41 0.14 634.30 306.86 944.71
25 7 7 480,700 397,386 397,386 398,253 397,386 40,381,720 100.00 0.00 100.00 0.15 15.91 0.58 5,643.98 2,080.50 7,740.97
30 3 4 27,405 3,752 3,875 3,936 3,906 46,518,667 96.06 7.43 99.21 2.08 0.38 0.00 0.73 0.47 1.58
30 3 5 142,506 24,977 24,977 25,296 24,977 52,028,642 100.00 0.00 100.00 2.50 4.70 0.05 5.69 1.28 11.72
30 3 6 593,775 123,055 123,055 124,392 123,055 56,889,934 100.00 0.00 100.00 1.59 9.53 0.23 41.91 10.50 62.17
30 3 7 2,035,800 491,537 -- -- -- ?60,993,485 -- -- -- -- 39.44 1.66 -- -- --
30 5 4 27,405 6,174 6,174 6,294 6,174 36,974,712 100.00 0.00 100.00 0.58 0.38 0.02 1.55 0.55 2.50
30 5 5 142,506 39,122 39,122 39,737 39,122 40,150,939 100.00 0.00 100.00 0.71 4.70 0.06 28.72 8.83 42.31
30 5 6 593,775 201,350 201,350 203,802 201,350 42,611,184 100.00 0.00 100.00 0.63 9.53 0.31 908.19 452.75 1,370.78
30 5 7 2,035,800 784,973 -- -- -- ?45,728,325 -- -- -- -- 39.44 2.69 -- -- --
30 7 4 27,405 14,186 14,186 14,268 14,186 27,604,698 100.00 0.00 100.00 0.56 0.38 0.00 11.78 1.38 13.54
30 7 5 142,506 85,428 85,428 85,803 85,428 30,064,943 100.00 0.00 100.00 0.45 4.70 0.11 267.66 134.70 407.17
30 7 6 593,775 390,126 390,126 391,540 390,126 32,569,976 100.00 0.00 100.00 0.24 9.53 0.55 7,073.27 1,092.89 8,176.24
30 7 7 2,035,800 1,433,807 -- -- -- ?34,767,116 -- -- -- -- 39.44 4.44 -- -- --

99.81 0.35 99.96 0.94 9.40 0.49 794.10 218.35 993.14

Greedy Search

Avg.

Coverage Time (sec.)
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Largest
p q r Vars Constrs Vars Constrs Vars Constrs SC solved
25 3 4 12,675 25,300 107 227 99.16 99.10 25 × 725
25 3 5 53,155 106,260 209 600 99.61 99.44 25 × 2,996
25 3 6 177,125 354,200 676 2,021 99.62 99.43 25 × 10,482
25 3 7 480,725 961,400 963 3,098 99.80 99.68 25 × 30,309
25 5 4 12,675 25,300 199 1,330 98.43 94.74 25 × 1,504
25 5 5 53,155 106,260 402 5,315 99.24 95.00 25 × 4,938
25 5 6 177,125 354,200 1,399 14,880 99.21 95.80 25 × 23,129
25 5 7 480,725 961,400 3,997 43,755 99.17 95.45 25 × 67,588
25 7 4 12,675 25,300 190 3,371 98.50 86.68 25 × 3,372
25 7 5 53,155 106,260 811 10,632 98.47 89.99 25 × 12,207
25 7 6 177,125 354,200 1,438 32,958 99.19 90.70 25 × 41,437
25 7 7 480,725 961,400 4,218 107,555 99.12 88.81 25 × 111,748
30 3 4 27,435 54,810 172 749 99.37 98.63 30 × 1,316
30 3 5 142,536 285,012 415 1,556 99.71 99.45 30 × 6,947
30 3 6 593,805 1,187,550 872 3,492 99.85 99.71 30 × 27,911
30 3 7 2,035,830 4,071,600 3,114 9,536 99.85 99.77 30 × 92,807
30 5 4 27,435 54,810 173 1,810 99.37 96.70 30 × 2,099
30 5 5 142,536 285,012 565 3,258 99.60 98.86 30 × 7,543
30 5 6 593,805 1,187,550 2,376 11,943 99.60 98.99 30 × 30,712
30 5 7 2,035,830 4,071,600 5,405 25,432 99.73 99.38 30 × 197,443
30 7 4 27,435 54,810 336 4,149 98.78 92.43 30 × 4,148
30 7 5 142,536 285,012 1,729 20,188 98.79 92.92 30 × 20,188
30 7 6 593,805 1,187,550 4,925 55,334 99.17 95.34 30 × 65,123
30 7 7 2,035,830 4,071,600 28,564 263,549 98.60 93.53 30 × 311,105

99.25 95.85

% Reduction

Avg.

Before Reduction After Reduction

 
Table. 4. Extent of the model reduction for RMCPC model applied to the London data set. 
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Largest
p q r Vars Constrs Vars Constrs Vars Constrs SC solved
25 3 4 12,675 25,300 59 2,195 99.53 91.32 25 × 2,680
25 3 5 53,155 106,260 170 11,407 99.68 89.27 25 × 13,451
25 3 6 177,125 354,200 267 45,635 99.85 87.12 25 × 52,912
25 3 7 480,725 961,400 1,338 146,956 99.72 84.71 25 × 165,353
25 5 4 12,675 25,300 91 3,799 99.28 84.98 25 × 4,195
25 5 5 53,155 106,260 284 20,422 99.47 80.78 25 × 21,980
25 5 6 177,125 354,200 847 80,025 99.52 77.41 25 × 84,962
25 5 7 480,725 961,400 2,116 250,592 99.56 73.93 25 × 263,144
25 7 4 12,675 25,300 59 8,605 99.53 65.99 25 × 8,811
25 7 5 53,155 106,260 151 39,220 99.72 63.09 25 × 39,979
25 7 6 177,125 354,200 396 139,178 99.78 60.71 25 × 141,410
25 7 7 480,725 961,400 892 399,119 99.81 58.49 25 × 404,327
30 3 4 27,435 54,810 91 3,996 99.67 92.71 30 × 4,736
30 3 5 142,536 285,012 349 25,614 99.76 91.01 30 × 30,085
30 3 6 593,805 1,187,550 1,367 125,728 99.77 89.41 30 × 144,450
30 3 7 -- -- -- -- -- -- --
30 5 4 27,435 54,810 150 6,413 99.45 88.30 30 × 7,138
30 5 5 142,536 285,012 645 40,351 99.55 85.84 30 × 44,044
30 5 6 593,805 1,187,550 2,482 206,253 99.58 82.63 30 × 220,970
30 5 7 -- -- -- -- -- -- --
30 7 4 27,435 54,810 112 14,349 99.59 73.82 30 × 14,845
30 7 5 142,536 285,012 405 86,177 99.72 69.76 30 × 88,431
30 7 6 593,805 1,187,550 1,444 392,953 99.76 66.91 30 × 401,438
30 7 7 -- -- -- -- -- -- --

99.63 78.96Avg.

Before Reduction After Reduction % Reduction

 
Table. 5. Extent of the model reduction for RMCPC model applied to the Alberta data set. 
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