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Abstract 

Vulnerability to sudden service disruptions due to deliberate sabotage and terrorist attacks is one 

of the major threats of today.  Whereas the design of reliable supply networks has received 

considerable attention in the last few decades, few authors have addressed the issue of optimizing 

security investments for existing, but vulnerable, systems. In this paper we consider a simple 

service/supply system with p facilities and a set of costumers, where each customer receives 

service from its closest facility. In this paper, we assume that there is an antagonist who will 

attempt to do the most harm to the service system and that our objective is to efficiently allocate 

security investments so that the effects of a worst-case attack are minimized.  As this represents a 

problem with two different and opposing goals (one of protection and one of inflicting harm), we 

have cast this problem as a bilevel programming model where the top level problem involves the 

decisions about which facilities to secure or harden and the lower level problem entails the 

interdictor response on which unprotected facilities to attack. We solve the bilevel problem 

through an implicit enumeration algorithm, based on a binary tree search. The algorithm involves 

solving iteratively r-interdiction median (RIM) models.  We show how the original RIM 

formulation can be streamlined through a process of variable reduction and consolidation and this 

significantly reduces the computing time needed to solve the bilevel fortification/interdiction 

model. Extensive computational results are reported, including comparisons with earlier results 

obtained by a single-level approach to the problem. 

 

 



 3 

1. Introduction 

Recent world events, including the dramatic terrorist attacks on the World Trade Center and the 

Pentagon, have raised the issue of service/supply system vulnerability into sharp focus and have 

posed a new challenge to devise sound procedures for increasing system security.  The challenge 

is even more compelling, when considering the complexity that characterizes today’s logistics 

networks. The close interrelationship and interdependence among a large number of system 

elements measurably increases the exposure to intentional harm and the level of vulnerability.  It 

also increases the difficulty of assessing the impact of losing some of the system components as 

well as identifying the most effective protective measures. The need of systematic and analytical 

tools for addressing the issues of systems vulnerability, security investment and the design of 

resilient networks has been widely recognized among academics and practitioners (Juttner et al. 

2003). Nevertheless, the study of mathematical models and techniques for improving systems 

security is still largely unexplored. Prior research in this area has mainly focused on the analysis 

of risk sources and has outlined general guidelines for mitigating the disruptive impact of 

offensive strikes on a system with regard to its ability to operate efficiently (see for example 

Sheffi, 2001, and Rice and Caniato, 2003 ). Yet, little attention has been paid to the development 

of quantitative methods and systematic approaches for improving production and distribution 

system security.  

 

It is important to recognize that several recent papers address features of reliability/security.  

Among them, Bundschuh et al. (2003) present several mathematical models for improving 

reliability and robustness in supply chains through the optimal choice of suppliers. In addition 

Snyder and Daskin (2005) have proposed several reliability models to find the optimal location of 

facilities so as to minimize regular operation costs as well as the expected costs incurred when 

some of the facilities are unavailable. Finally, O’Hanley (2005) presents a novel model for the 

design of robust, coverage -type service networks. O’Hanley’s model finds the optimal location of 

a set of facilities in order to maximize a combination of initial demand coverage and the 

minimum coverage level following the loss of one or more facilities. 

 

In all of the above models, the authors demonstrate that the impact of facility loss can be 

mitigated in the initial design of a system. However, redesigning an entire system is not always a 

viable option given the potentially large expenses involved with relocating facilities or changing 

suppliers.  Instead, methods for protecting existing infrastructure may be preferable over the short 
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term. A first step in this direction is to identify the critical components of a system, i.e. those 

elements that, if lost, hamper the system’s ability to continue operations the most.  

 

The first mathematical models aimed at identifying network vulnerabilities were developed for 

military applications. Military planners, in fact, have had a long-term interest in identifying 

critical elements so that they could allocate strike resources to inflict the greatest harm to an 

enemy. A review of these early “interdiction” models, which mainly focus on the impact of the 

loss of a one or more transportation links (or arcs) in transportation networks, is provided in 

Church et al. (2004). Church et al. (2004) also developed two new spatial optimization models, 

called the median facility interdiction model and the covering facility interdiction model, which 

identify the set of supply or  emergency response facilities which, if lost, disrupt service delivery 

the most. In the former model, disruption is measured in terms of the loss of system efficiency 

and in the later model disruption is measured in terms of the loss of demand coverage.  

 

Interdiction models can help reveal potential weaknesses in a system. However, they do not 

explicitly address the issue of optimizing security. For example, if it is possible to secure one or 

more facilities from interdiction, which ones should be fortified or made secure? If the process of 

securing a facility is inexpensive, then it makes sense to secure all facilities. However, if the costs 

of security are expensive and protection resources are limited then the question just posed is an 

important one to address. It is easy to demonstrate that securing those facilities that are identified 

as critical in an optimal interdiction solution will not necessarily provide the greatest protection 

against an intelligent antagonist (Church and Scaparra, 2005; Israeli, 1999). Optimal interdiction 

is a function of what is fortified, so it is important to capture this interdependency within a 

modeling framework. The remainder of this paper addresses the issue of optimizing security or 

fortification to a set of existing facilities in order to thwart as much as possible the effects of   

interdiction. Our work here is based upon the assumption that resources to fortify are limited and 

only a subset of facilities can be made secure. This paper addresses a system based upon the p-

median system framework. We call this problem the r-interdiction median problem with 

fortification (RIMF) as the problem entails optimal fortification to mitigate interdiction losses.   

 

In the next section we define in greater detail the RIMF problem. Following that we present a 

bilevel programming formulation of this problem and then present a solution approach that 

involves a specialized tree search algorithm. To make this process efficient, a special formulation 

of the lower level problem (i.e. the interdictor problem) of the bilevel model has been developed. 
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We present details of this special condensed formulation. Then computational results are given, 

followed by a set of conclusions and recommendations for future research.   

 

2. The problem of allocating limited fortification resources against interdiction  

We assume that a system exists which is comprised of p-facilities. We denote by F the set of p 

operating facilities in the system and by N the set of n demand nodes. The elements in these sets 

are indexed by j and i, respectively. The demand for service at each node i is ai, and the shortest 

distance (or unit shipping cost) between the facility at j and demand node i is given by d ij. We 

assume that in the initia l configuration, the demand at each node is entirely supplied by the 

closest facility to that node and that, if that facility is lost due to interdiction, the demand is 

reassigned to the next closest facility among the non interdicted ones. We also assume that 

hardening a facility will protect a facility to the extent that an interdictor will only select non-

fortified ones. Finally, we assume that both offensive and protective resources are limited so that 

at most r facilities can be attacked, and at most q facilities can be hardened against interdiction. 

We can then define the overall fortification problem as: 

 

   Identify the set of q facilities to secure or harden, so that after interdiction, the  

              remaining system operates as efficiently as possible.  

  

Fortification or asset hardening is of considerable interest to facility planners, especially when 

they provide important goods and services. Salmeron et al. (2004) developed a model for 

identifying critical components of an electrical power grid and then discussed the problem of 

identifying which components to harden or protect. This concept was formalized by Church and 

Scaparra (2005) in a problem involving an existing supply/service system. It is important to 

recognize that the problem being constructed here involves the facilities planner and the 

antagonist or interdictor, each with opposing goals. The facilities planner wants to optimize 

security so that the system is less vulnerable to interdiction, and the interdictor will attempt to 

inflict the greatest harm. Thus, the value of any fortification plan will be computed on the basis of 

worst-case loss. We can calculate worst-case loss of r-facilities using the r-interdiction median 

(RIM) problem (Church et al. 2004) which can be defined formally as:  

 

Of the p existing locations of supply, find the subset of r facilities, which 

when removed, yields the highest level of weighted distance.  
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The RIM problem can be formulated as an integer-programming problem using 

the following additional notation:  

 

1, if a facility located at   is eliminated, i.e. interdicted
  

0, otherwise                                                                    j
j

s


= 


  

 

1, if demand  assigns to a facility at   after interdiction 
  

0, otherwise                                                                     ij
i j

x


= 


 

 

{ }   |   and  ij ik ijT k F k j d d= ∈ ≠ > , the set of existing sites (not including j) that are as 

far or farther than j is from demand i. 

 

We can now formulate the r- interdiction median (RIM) problem as the following integer- 

programming problem (Church et al. 2004): 

 

   i ij ij
i j F

Max Z a d x
∈

= ∑ ∑  (1) 

 

Subject to: 

 

          1   for each demand  ij
j F

x i
∈

=∑  (2) 

 

           j
j F

s r
∈

=∑  (3) 

 

             for each  and each 
ij

ik j
k T

x s i j F
∈

≤ ∈∑  (4) 

 

             
    0,1   for each  and each 

     0,1   for each 
ij

j

x i j F

s j F

= ∈

= ∈
                                                                 (5) 
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The above model represents optimal interdiction when no security has been allocated. The 

objective involves maximizing the weighted distance or service cost after the removal of r-

facilities. Constraint (2) specifies that each demand must assign to a facility after interdiction. 

Constraint (3) specifies that only r facilities are to be eliminated. Constraint (4) maintains that 

each demand must assign to their closest open facility after interdiction. This constraint basically 

allows an assignment to a further facility, only when that facility has been interdicted. This kind 

of closest assignment constraints was previously employed by Church and Cohon (1976) for 

siting energy facilities and by Hanjoul and Peeters (1987) in plant location models. Alternative 

constructs have been proposed in the literature to force closest assignment (CA). A more in -depth 

discussion of our particular choice will be provided in section 5.3. It is  important to note that the 

RIM model can be used to analyze a given fortification plan by eliminating the js  variables 

associated with any sites selected for fortification or setting the js  variables to zero for facilities 

that have been selected for fortification.  

 

The RIM model represents the interdictor. The interdictor attempts to do the greatest harm, while 

the systems planner attempts to thwart interdiction as best as possible through fortification. It is 

easy to observe that the RIMF problem can be described within a game theoretic framework as a 

leader-follower or Stackelberg game (Stackelberg, 1952). Such a game theoretic framework can 

be structured as a bilevel programming problem. In the next section we provide a bilevel 

formulation for the RIMF problem. 

 

It is important to note that the RIMF was originally proposed as a problem by Church and 

Scaparra (2005). They assumed that interdiction resources were extremely limited, and this 

allowed them to structure a single level optimization model for RIMF. Unfortunately, only 

problems of very modest size could be solved through that formulation. In a subsequent work, 

Scaparra and Church (2005) developed an alternative single -level optimization model for RIMF, 

called MCPC. The new model was based upon a maximum covering type formulation and was 

solved to optimality after a specialized model reduction process. Although this model was 

significantly faster than the former one, it still presented the big limitation of requiring a complete 

enumeration of all possible ways of losing r of the p facilities. In this paper we propose an 

alternate solution methodology based upon a bilevel model that does not face such size 

restrictions. This is a major advancement for this type of security optimization problem.   
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3. Formulating the RIMF as a bilevel programming problem 

To construct the facilities fortification problem, RIMF, as a discrete bilevel programming 

problem we need to model the fortification decisions in addition to the interdiction decisions. 

Consider then the following additional type of decision variable:  

 

                            




=
otherwise 0,

fortified is at  locatedfacility  a if 1, j
z j  

 

We can then eliminate the possibility of interdicting a fortified site in the interdiction model by 

maintaining: 

 

                                            1  j js z≤ −  

 

The bilevel model then comprises decisions of the systems planner, jz , the interdictor, js , and 

resulting system performance based upon demand assignment variables, ijx . We can formulate 

this model as: 

 

 
)(min zH  (6) 

 
  subject to  
 

qz
Fj

j =∑
∈

 (7) 

 
{ } Fjz j ∈∈  allfor    0,1  (8) 

 
  where   
 

  )( =zH ijij

Ni Fj

i xda∑∑
∈ ∈

max  (9) 

 

    subject to    

 

                          ∑
∈

∈=
Fj

ij Nix  allfor     1                                                                                   (10)                                                                                 
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 rs
Fj

j =∑
∈

                                                                                                        (11) 

 
Fj Nisx j

Th
ih

ij

∈∈≤∑
∈

 allfor  and  allfor                                                          (12) 

 
Fjzs jj ∈−≤  allfor   1                                                                                     (13) 

 
{ } Fjs j ∈∈  allfor      0,1                                                                                    (14) 

 
{ } FjNixij ∈∈∈  allfor  and  allfor     0,1                                                           (15) 

 
 

The lower level program (9)-(15) is simply the r-interdiction median problem (RIM) defined 

earlier, but with the additional constraints (13) which prevent the interdiction of  any sites chosen 

to be fortified in the upper level problem. More specifically, in the lower level problem, the 

follower/interdictor decides the values of the interdiction variables with the objective (9) of 

maximizing the total weighted distance between customers and facilities after the attack.  Note 

that in practice integer restrictions for the lower level are needed only for the interdiction 

variables, since, at optimality, the assignment variables will be binary integers simply as a 

consequence of the integrality of the sj variables. 

         

The optimal objective function value, H , of the lower level problem defines the leader’s objective 

(6), who tries to minimize this worst-case weighted distance by allocating fortification resources. 

The constraints in the upper level problem simply state that only q facilities can be fortified (7) 

and that the fortification variables must be integer (8).  Finally, constraints (13) link the upper and 

lower level problem. In the remainder of the paper, we will refer to the lower level problem 

which include constraints (13) as conditional RIM (CRIM), due to the conditional nature of what 

has been fortified.   

 

It is interesting to note that bilevel programming has been used quite recently as a construct for 

location problems involving competition (see Eiselt and Laporte, 1996, and Bhadury et al., 2003). 

The fortification problem represents another instance of where this construct is useful. Details on 

bilevel programming can be found in Bard (1998) and Dempe (2002). All general cases of bilevel 

programming models fall into the class of NP-hard (Hansen et al., 1992). Although several 
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applications of bilevel programming can be found in the literature when all variables are 

continuous, few applications have been published involving discrete variables.  The difficulties 

encountered with the presence of integer restrictions in a bilevel format are explained in Moore 

and Bard (1990) and Vicente et al (1996). Overall, the difficulty in solving such a problem 

depends on: 1) the class of discrete bilevel programs, and 2) parameter position in the lower level 

problem. The RIMF problem can be classified as especially complex as integer restrictions appear 

at both levels of the problem. Research on solving discrete bilevel programming problems is very 

limited (see Moore and Bard (1990) and Karlof and Wang (1996) for examples) and thus the 

process proposed here for RIMF becomes one of the few techniques developed for such 

problems.  

4. Solving RIMF as a bilevel problem  

To solve the bilevel formulation (6)-(15) of the r-interdiction median problem with fortification 

we propose an implicit enumeration algorithm. The entire approach is built on a simple 

observation made by Church and Scaparra (2005) and restated below using a leader-follower 

framework.  

 

Observation 1. Let I be the set of r interdictions in the optimal solution to the lower-level RIM 

problem (9)-(15) without fortification. Then the optimal set of q fortifications selected by the 

leader must include at least one of the r facilities in I. 

 

This observation can be easily explained by noticing that if none of the facilities in the optimal 

interdiction set is protected, then it is still possible to interdict all of them and the worst possible 

case of interdiction is not prevented. Although at least one of the r-sites must be a member of I, 

such a property does not necessarily hold for more than one site of I.   

 

The basic premise of the proposed method is to exploit observation 1 recursively in order to 

reduce the number of solutions which need to be evaluated in an enumeration tree.  The method 

can be outlined in simple terms. We start at the root node of the enumeration tree by solving the 

follower interdiction problem without fortification. We denote by I the resulting set of optimal 

interdictions. This set represents the candidate sites for fortif ication associated with the root node. 

According to observation 1, the leader must then harden at least one of these facilities. Hence, we 

randomly chose a site j from this set, and branch on the fortification variable, zj, by fixing it to 1 
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and to 0. Each branch leads to a new node in the enumeration tree, which is processed according 

to one of the two following cases: 

1. The node is obtained by fixing a variable zj to 1. In this case, we proceed as follows:  

a. We solve a CRIM problem in which we bar the interd iction of all the variables zj set to 

1 along the path from the root to the current node in order to obtain a new optimal 

solution to the follower problem and the associated optimal interdiction set, I;  

b. If the path from the root to the current node contains exactly q fortification variables 

which have been fixed to 1 (meaning that all the fortification resources have been 

used), the node under consideration is a leaf node and can be excluded from further 

consideration. Otherwise (i.e. additional fortification resources are still available), we 

update the set of candidate fortifications according to the new solution to CRIM and 

branch again on one of the variables associated with a facility in the candidate set. 

2.   The node is obtained by fixing a variable zj to 0. This means that none of the facilities in the 

candidate fortification set of the parent node has been fortified yet. We then need to enforce 

the fortification of at least one of the remaining facilities (except j). Two cases are possible:  

a. After the removal of j, the candidate set of fortifications is empty. In this case, the 

incumbent node is fathomed.  

b. Otherwise, we select another facility from the candidate set and generate other two 

child nodes by branching on the variable associated with the selected facility.  

 

The process is iterated until all the nodes are either leaves or fathomed nodes. The leaf with the 

lowest objective function identifies the optimal solution: by backtracking from that node to the 

root it is possible to retrieve the optimal fortification set. 

 

An example of how the algorithm works in practice is provided in Fig.1, which shows the binary 

tree generated to solve a simple problem with 6 operating facilities (numbered from 1 to 6), 2 

interdictions and 2 fortifications. The picture shows the set of candidate fortifications associated 

with each node in the tree and the branching variables selected at each node. The optimal solution 

to the 2-interdiction median problem without fortification at the root node involves interdicting 

facility 1 and 2. Facility 1 is randomly chosen from the optimal interdiction set and the 

corresponding variable z1 is branched on. When the left child is processed (z1 = 1), a new CRIM 

is solved with the additional restriction that facility 1 can not be interdicted. The new optimal 

interdiction set includes facilities 3 and 6. Since the leader has sufficient resource to harden an 

additional facility, the process is repeated by branching on z3, and so on. Processing a left child 
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(e.g. the node obtained by fix ing z1 = 0) only requires updating the candidate fortification set by 

removing the facility associated with the variable just fixed to zero. Then two new branches are 

created by fixing one of the remaining variables (unless the candidate set is empty, in which case 

the node is fathomed). In the picture, the hatched nodes represent fathomed nodes whereas shaded 

nodes represent the points where a CRIM problem is solved. Among them, dark-shaded nodes 

indicate leaf nodes. 

   

Note that this tree search procedure allows the identification of all optimal solutions to the bilevel 

problem, if more than one exists. In practice, the algorithm can be implemented by using 

recursion and backtracking. The order in which branching variables are chosen is irrelevant, since 

all possible fortifications of the candidate sets will eventually be considered during construction 

of the tree. 

 

The most computationally expensive operation in the procedure is solving the mixed-integer 

CRIM problems to optimality. In our implementation, the CRIM problems were solved through 

the general-purpose MIP solver Cplex 9.0.  The nice feature of the approach is that the follower 

problems are not solved from scratch at each iteration. Rather, the conditional RIM problem at 

each node is generated from the problem solved at the parent node by simply fixing to zero the 

interdiction variable associated with the last fortification made. The optimal solution to the CRIM 

problem at the parent node can then be used as a starting solution for the new problem to save 

computing time.  An upper bound to the number of follower problems which are solved by the 

enumeration procedure is provided in the following proposition.   

 

Proposition 1. The tree search implicit enumeration algorithm solves at most 
1

11

−
−+

r
rq

 

conditional RIM problems, where r is the number of interdiction and q is the number of 

fortifications. 

 

Proof. Consider a non-binary implementation of the search strategy in which at each node we 

create as many branches as the number of interdic tions, r. Each branch represents the fortification 

of one of the interdicted facilities in the optimal set and leads to a node where a CRIM problem is 

solved to take into account the new fortification made. An example of the tree thus obtained for 

the same problem illustrated in Fig. 1 is depicted in Fig. 2. It is easy to see that the full 

enumeration tree built in this fashion has as many levels as the number of fortifications, q. The 
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resulting tree is then a d-heap with d = r and depth q. The number of nodes in such a tree, and 

consequently the number of CRIMs solved, is (rq+1  – 1)/(r – 1) (see for example Ahuja et al., 

1993). However, in a non-binary implementation of the search tree, the same fortification patterns 

may be repeated along different branches of the tree and, consequently, the same conditional RIM 

may be solved multiple times. A binary implementation overcomes this problem by avoiding 

repetitions of the same fortification patterns. Hence the number (rq+1 – 1)/(r – 1) is only an upper 

bound on the number of CRIMs which are actually solved during a binary search.  � 

 

The above proposition demonstrates that the size of the enumeration tree and, consequently of the 

number of CRIM problems solved during the search, is independent on p. Obviously, the 

parameter p affects the size of the CRIM problems and the computing time for solving them. 

Even though the number of CRIM problems solved is limited by proposition 1, this number can 

be relatively large, an therefore every effort should be taken to reduce the time to solve each 

CRIM. In the next section, we explain several processes by which we can accelerate the solution 

of the conditional RIM. 

5. Solving  RIM and CRIM efficiently  

The computational effort of the proposed implicit enumeration procedure (IE) is largely 

determined by the efficiency with which the lower level interdiction problem can be solved. It is 

easy to see that any reduction in computing time for solving CRIMs to optimality may have an 

amplified effect on the total speed of the algorithm. In this section, we explore the possibility of 

streamlining the RIM model introduced by Church et al. (2004) and given in section 2. The 

extension to the conditional RIM is straightforward, since constraints (13) are not affected by the 

newly introduced modifications. We then show how the new formulation improves the efficiency 

and scalability of our overall approach. Specifically, we investigate possible model reductions, 

variable consolidation and alternative formulations of the closest assignment constraints. We also 

briefly comment on the computational enhancement derived from the introduction of each of 

these modifications. These modifications are explained within the context of RIM, but apply 

equally to CRIM as well.   

 

5.1. Model Reduction  

 

The formulation for the CRIM model as presented in the lower level program (9)-(15) and RIM in 

(1)-(5) can be streamlined by eliminating certain variables. For a given problem involving p 
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existing facilities and the interdiction of r facilities, one can observe that the worst case for a 

given demand will occur if the r-closest facilities to that demand have been interdicted. This 

means that the worst case for a given demand i  will occur when that demand assigns to its r +1st 

closest facility. This observation can be used to reduce the size of RIM by defining the following 

additional sets. 

 

  iG =  the set of r + 1st closest facilities to demand i  before interdiction. 

{ }   |   and  ij i ik ijU k G k j d d= ∈ ≠ > , the set of existing sites (not including j ) that are as far 

or farther than j is from demand i , but not further than the r + 1st closest site from i . 

  iF =  the set of r closest sites to demand i  before interdiction 

 

RIM can then be reformulated as: 

 

ijij
Ni Gj

i xda
i

∑ ∑
∈ ∈

max                                                                                                 (16) 

Subject to: 

 rs
Fj

j =∑
∈

 (17) 

Nix
iGj

ij ∈=∑
∈

 allfor   1                                                                                                     (18) 

             ij
Uh

ih Fj Nisx
ij

∈∈≤∑
∈

 allfor  and  allfor                                                         (19) 

{ } Fjs j ∈∈  allfor      0,1  (20) 
 

{ } iij GjNix ∈∈∈  allfor  and  allfor     0,1  (21) 
 
 

This revised formulation contains fewer constraints and variables: the number of assignment 

variables (xij) is reduced from np to n(r + 1); the number of constraints of type (19) is reduced 

from np to nr. This straightforward reduction proved to be very effective in practice and 

significantly reduced the computational time in all the preliminary tests we attempted. Hence, 

when we refer to RIM throughout the remainder of the paper, we refer specifically to this 

condensed formulation.   
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5.2. Variable Consolidation 

Church (2003) recently proposed a new model formulation for the p-median location problem, 

called COBRA. The COBRA model is associated with identifying and consolidating redundant 

assignment variables, under special proximity conditions. More specifically, Church (2003) 

demonstrated that two demands may assign to a given facility site, if such a site has the same 

order of closeness for both demands and if the set of closer sites than the site in question for both 

demands is equivalent. These “equivalent assignment conditions” are formalized in the following 

theorem, whose proof is provided in Church (2003). 

 

Theorem. If facility j is the k closest site for both demand s and demand t, and if the set of k–1 

closest sites for s and for t is the same, then at optimality xsj = xtj.   

 

The above property makes it possible to consolidate some of the variables, thus allowing a 

reduction in the size of the overall problem. This variable consolidation process was found to 

reduce the size of p-median models considerably. Furthermore, the extent of the reduction was 

more remarkable in those problems where the demand nodes appreciably outnumbered the 

facility sites. This is precisely the case of the RIM problem, given that the interdictions are 

restricted to the p sites where facilities already exist and that p is in general much smaller than the 

number of nodes, n. The properties of the COBRA model apply directly to the RIM model, which 

can then be reduced as explained below. 

 

Assume that all the variables which are equivalent according to the COBRA construct have been 

identified by inspection of the order of sites closeness for any pair of demands. Based upon this 

equivalency, the original assignment variables can be replaced by a smaller set of variables, A. 

The mapping between the old variables and the new variables can be formalized and included in 

the mathematical formulation through the introduction of a new set of parameter, α ijv, defined for 

each i in N, j in Gi and v in A as follows:    

 





=
otherwise 0,

  variableassignment new by the replaced is   variable theif 1, vij
ijv

xx
α  

 

RIM can then be reformulated in terms of the new variables: 
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∑ ∑ ∑
∈ ∈ ∈Ni Gj Av

vijiijv
i

xdaαmax                                                                                                 (22) 

Subject to: 

 rs
Fj

j =∑
∈

 (23) 

Nix
iGj Av

vijv ∈=∑ ∑
∈ ∈

 allfor   1α                                                        (24)                                             

             ij
Uh Av

vihv Fj Nisx
ij

∈∈≤∑ ∑
∈ ∈

 allfor  and  allfor   α                                                       (25) 

{ } Fjs j ∈∈  allfor      0,1  (26) 
 

{ } Avxv ∈∈  allfor     0,1  (27) 
 

The computational benefits of the new condensed formulation have been tested on two different 

data sets: the 150 node London, Ontario data set (Goodchild and Noronha, 1983) and the 316 

node Alberta data set (2003). We solved both problems with the mixed integer programming 

optimizer CPLEX 9.0, using different values of the parameters p and r. More specifically, we let 

p vary between 20 and 50 and r between 1 and 15. Also, we assume that the p facilities are 

initially located at the optimal p-median sites. For any problem instance solved with the 

parameters ranging in the stated intervals, the number of variables was reduced significantly. The 

reduction extent for the London data set varied between a minimum of 19% to a maximum of 

65% of the total number of variables, with the largest reductions obtained for small values of r. 

Tests on the Alberta data set showed the same kind of behavior, but this time the impact of the 

consolidation process was even more pronounced: the number of variables was reduced by up to 

80% for small values of r and never by less than 50% for values of r in the upper range. 

Additional computational details related to the COBRA implementation will be provided in the 

next section, to study their effect in combination with the use of different closest assignment 

constraints.    

 

 

 

5.3. Closest Assignment Constraints 
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It was mentioned in section 2 that there are several ways of enforcing closest assignment (CA). A 

comprehensive discussion of the structural properties of closest assignment constraints in location 

problems is provided in Gerrard and Church (1996). Their study demonstrates that the choice of 

CA constraints is problem specific and no dominance can be established among them for all 

problems. In this section, we discuss a different kind of CA constraints for RIM, similar to the 

ones first introduced by Rojeski and ReVelle (1970) in the context of the budget constrained 

median problem. The Rojeski and ReVelle constraints are among the most widely cited closest 

assignment constraints and, as the Church and Cohon constraints (4), (12), (19) and (25) used in 

our RIM formulations, have the nice property of inherently yielding integral assignment 

variables. Other CA constructs (see Church and Gerrard, 1996, for a review) allow fractional 

assignments and, consequently, increase the complexity of solving the IP formulation through 

solvers based on branch and bound. For this reason, we restrict our analysis to the Rojeski and 

ReVelle, and Church and Cohon constraints only.  Throughout the discussion, we will refer to 

these two types of CA constraints as RR and CC constraints, respectively.  

 

The CA constraints for the RIM problem can be expresses in a RR type form as follows:  

 

, allfor  and  allfor   )1()1( i
Uh

hjij Fj Ni-s--sx
ij

∈∈≥ ∑
∈

 (28) 

where the set Tij has the usual meaning of representing the set of all the facilities which are closer 

to demand i than facility j, but not further than the r + 1 closest site to i. Constraints (28) simply 

establish that if a facility at j is not interdicted (sj = 0) but all the facilities which are closer to i 

are interdicted ( 0 )1( =∑
∈ ijUh

h-s ), then demand i must assign to j . However, if any of the closer 

facilities is operational, the right hand side of (28) is always less or equal to zero and, hence, 

relation (28) has no effect on the assignment.  Constraints (4) and (28) can be used 

interchangeably in the RIM formulation (1)-(5) to enforce closest assignment. When the COBRA 

version of RIM is considered, the CC constraints (25) can be replaced by the following modified 

version of the RR constraints (28), which take into account the variable substitutions: 

 

. allfor  and  allfor   )1()1( i
Th

hj
Av

vijv Fj Ni-s--sx
ij

∈∈≥ ∑∑
∈∈

α  (29) 

 

5.4. Computational comparison among different RIM implementations 
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In this section, we provide additional computational evidence of the benefits derived from the 

application of COBRA variable reduction to the RIM formulation. It is shown that this efficiency 

gain is independent of the specific type of closest assignment constraints used. We also compare 

the relative efficiency of the two forms of CA constraints (RR and CC). All results reported in 

this and the next were run on a PC with a Pentium 4, 2.8Ghtz processor and 1GB of RAM. Each 

RIM was solved with the branch and bound based solver CPLEX 9.0, supplied with specific 

directives to improve performance. The results are summarized in Fig. 3 and Fig. 4, which 

illustrate the impact of the different formulation options on the computing time needed to solve 

the London problem and the Alberta problem, respectively. The options considered include RR 

and CC constraints with and without COBRA reduction. The resulting four combinations are 

denoted as RR, CC, RR_C and CC_C, where the C after the underscore indicates the 

incorporation of COBRA in the formulation. In each figure we compare the computing times in 

seconds for solving problem instances with four different values of p (namely, p = 25, 30, 40 and 

50) and values of r ranging between 1 and 8.  

 

From the analysis of the graphs, it is easy to see that the use of COBRA is always beneficial. The 

impact is especially remarkable in combination with the RR constraints: whereas the RR version 

is decidedly dominated by the CC version, when the COBRA reduction is implemented the two 

formulations show somewhat similar behaviors. RR_C is the best option in a few cases (e.g. 

London data set with p = 40 and Alberta data set with p = 25 and large values of r). Even though 

a clear dominance cannot be established between RR_C and CC_C, the CC_C version seems to 

outperform RR_C for the largest values of p and r (i.e. p = 50 and r between 6 and 8). This 

tendency is confirmed in the results reported in the next section, where we compare the efficiency 

of the two forms of CA constraints within the tree search procedure in solving RIMF. There are 

only a few cases, usually occurring when the CC constraints are used and for small values of r, in 

which the COBRA consolidation does not produce significant time reductions. This behavior can 

be attributed to the time needed for identifying the replacement variables. In small problems, in 

fact, the time savings derived from solving a reduced problem does not offset the amount of time 

needed to perform the variable substitutions. This minor limitation of COBRA consolidation, 

however, is completely overcome when RIM is used within the tree search procedure. In this 

case, in fact, the COBRA time saving is propagated throughout the tree exploration, whereas the 

variable replacement is performed only once, when RIM is solved for the first time at the root 

node. Overall, the introduction of COBRA generated enormous time savings in the implicit 
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enumeration algorithm. Therefore, in the next section we will only present the results for the 

implementation which include this option.     

6. Computational Results for solving RIMF using implicit enumeration 

The proposed tree search approach was coded in C++ and associated RIM and CRIM problems 

were solved with the branch and bound based solver CPLEX 9.0. The computational experience 

was aimed at: 1) validating the findings outlined in the previous section through further 

investigation of the impact of the CA constraints on the overall performance of the tree search 

procedure; 2) comparing the performance of the tree search procedure with the MCPC approach 

described in Scaparra and Church (2005) with the specific purpose of identifying relative 

strengths and weaknesses of the two approaches; 3) analyzing the impact of increasing the 

fortification resources on the level of protection achieved. Finally, we will briefly discuss our 

initial assumption of fixing the number of possible facility losses to r and show how the results 

obtained with this restriction may provide useful information to cope with a random number of 

possible losses.   

 

6.1. Impact of the closest assignment constraints on the overall approach.  

Empirical tests conducted to study the impact of the CA constraints on the IE algorithm 

performance demonstrated that the two constructs are equally efficient for solving problems with 

modest offensive resources (i.e., when r = 1, 2, 3, 4). The difference in computing time between 

the two formulations was practically negligible for these values of r and varied values of p and q, 

with the RR version running slightly faster in a few cases. However, as r increases, the tree search 

version which uses the CC constraints becomes steadily better, and the computing time difference 

between the two approaches boosts rapidly with each increment of the r value. An example of 

this behavior is depicted in Fig. 5, for the London data set with 25 initial facilities and two 

different values of fortification resources (namely, q = 3 and q = 5). The graph shows the 

computing times obtained with the two constructs for different values of r. From the graph, it is 

evident that, although the RR version is a competitive approach for small r, the CC formulation is 

to be preferred when a large number of possible losses is considered.  The same tendency was 

observed in the results obtained for several different combinations of the parameters p, q and r, 

which are not reported for the sake of brevity. In light of these results, we restricted the 

subsequent analysis to the RIM formulation that uses the CC constraints.  
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6.2. Tree Search vs. MCPC approach  

In this section we compare the computational performances of the implicit enumeration approach 

(IE) and the maximum covering with precedence constraints approach (MCPC) proposed in 

Scaparra and Church (2005). The experiments were conducted on the larger set of problem 

instances used in Scaparra and Church (2005), with the only difference that we allow up to 8 

interdictions instead of 7. The experiments include tests on the London and Alberta data sets with 

25 and 30 existing facilities, and up to 7 fortifications. The results are displayed in Table 1 where, 

for each of the two data sets, we show the optimal objective function value, and the computing 

times of the two approaches, under different combinations of the parameters p, q and r. The 

analysis of the results for the London data set (columns 3 to 5) shows that MCPC is generally 

much faster than IE when the interdiction resources are small. However, the MCPC approach is 

significantly more sensitive to variations of the parameter r. It is important to remember that the 

MCPC approach requires enumerating all possible interdiction patterns. Therefore, its 

performance and applicability are firmly tight to the total number of interdiction patterns. The 

MCPC performance is usually quite good when this number (p choose r) does not exceed a few 

million, but it starts deteriorating when this amount is exceeded. As an example, the MCPC 

computing time is still competitive when p = 30 and r = 7, resulting in a total number of 

2,035,800 interdiction patterns, but it rises dramatically when r is increased to 8 (see Table 1, 

fifth column). With 5 fortification resources, MCPC required almost 17 hours to solve the 

London problem, whereas IE solved it in around 10 minutes. With 7 fortifications available, 

MCPC could not solve the problem. The limitation of the MCPC approach in solving problems 

with a large number of interdiction patterns is even more accentuated on the Alberta data set. As 

already noted in Scaparra and Church (2005), this difficulty is due to the heterogeneous 

distribution of the demands in this set, which makes the set covering problems solved at 

intermediate steps of the MCPC algorithm much more difficult. On the other hand, a simple 

greedy algorithm is usually able to find good approximate solutions to the Alberta problems, 

making their study less interesting from a theoretical point of view (see Scaparra and Church, 

2005, for an in-depth discussion of this point). 

     

Given the IE robustness in scaling to bigger problems, we extended the empirical investigation by 

solving problem instances with larger numbers of facilities in the initial configuration. Table 2 

displays results for the London data set with 40, 50 and 60 operating facilities. More specifically, 

Table 2 shows the objective function values and the CPU times obtained when r ranged between 

2 and 5 and the fortification budget was chosen to be equal to constant proportions of the total 
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number of facilities (namely, q = 10%, 15%, and 20% of p). All these instances were solved to 

optimality in a reasonable amount of computational time (ranging from fractions of seconds for 

the smallest parameter values to less than 4 hours for the largest parameter combination). The 

proposed approach was able to solve problems with even larger values of the parameter r, which 

we do not report for the sake of brevity. Just as an indication of the computational effort derived 

from using bigger values of r, solving the London problem with 50 initial facilities and 7 

interdictions required between less than a minute for small values of q to around 6 hours when the 

number of fortifications was increased to around 15% of the total number of facilities (i.e. q = 8). 

The size of these problem instances could not have been handled by the MCPC approach. 

 

6.2. Impact of protective resources 

We now discuss the effect of adding additional protective resources on the total efficiency. To 

this end, Fig. 4 shows the percentage marginal improvements in efficiency (or distance or cost) 

derived from any individual fortification. The graph summarizes the results for the London data 

set with 40, 50 and 60 facilities in the initial configuration. We let r vary between 1 and 5, and 

consider the marginal contributions of up to 10 fortifications. This information sheds light on 

possible  tradeoffs between the cost of protecting additional facilities and the efficiency gain in 

case of worst-case system disruptions. Usually, most of the protection benefit is achieved with the 

first two or three fortifications (they typically contribute more than 50% of the overall 

improvement), whereas subsequent security investments produce progressively lower efficiency 

gains. In general, the fortification of the second facility still yields significant improvements. This 

is the case, for instance, of the problem instances with 50 operating facilities. In the specific case 

of r = 3, for example, the protection of only one facility, albeit the optimal one, only increases the 

efficiency level by less then 0.5% as compared to the worst case loss when no protective 

measures are taken (the worst-case total weighted distance is reduced from approximately 70,249 

units to 69,923 units). However, by only hardening one extra facility, the total weighted distance 

can be improved by an additional 4%, dropping to nearly 67,343 units. In any case, there is 

always a benefit in increasing protection expenditure by hardening additional facilities. Even the 

last fortification (q = 10) sometimes results in a 2% efficiency enhancement. This could represent 

a significant gain considering the order of magnitude of the service costs sustained in many 

distribution systems. As expected, the impact on system efficiency of each individual fortification 

generally tends to increase with the extent of a possible attack (i.e. as r increases) and to diminish 

as we consider larger systems (i.e. for larger values of p). 
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6.3. Fixed vs. probabilistic losses 

Our model assumption of fixing the offensive resources to exactly r interdictions might seem 

quite questionable given that the extent of terrorist and man-made attacks is always characterized 

by a large degree of uncertainty. Nevertheless, our approach provides a powerful tool for 

identifying best possible fortification strategies in response to attacks of variable size. From the 

analysis of the results obtained with different values of r, in fact, we can infer which system 

components need to be protected under different scenarios. As an example, consider the solutions 

to the bilevel problem for the London data set with 30 facilities and protection resources to 

harden 6 of them. Table 3 shows the optimal fortification sets when the bilevel program is solved 

for different values of r, ranging between 1 and 6.  It is easy to see that the optimal fortification 

patterns are very similar to each other, with some key facilities occurring in all of them. The 

frequency with which each facility occurs in the 6 fortification patterns is depicted in Fig. 5. 

There are three facilities (83, 92 and 149) which appear in every optimal fortification set and 

which, consequently, must be fortified independently of the extent of an anticipated attack.  

Furthermore, the optimal set of facilities to harden is exactly the same if we consider the worst 

case loss of 2 or 3 facilitie s (rows r = 2 and r = 3 in Table 3). The optimal protection against the 

worst case interdiction of 4 or 5 facilities also requires the fortification of the same set of facilities 

(rows r = 4 and r = 5), and this set differs from the previous one only by one facility (it includes 

facility 103 instead of 141). This analysis can then be used to find core sets of key facilities to 

harden for each range of possible losses, and eventually, to identify good tradeoff solutions in 

view of a random number of losses.  

 

Obviously, the problem becomes more complicated when we consider larger systems (see for 

instance Table 4 and Fig. 6, which provide the same information as Table 3 and Fig. 4 for a 

system with 60 operating facilities). As the number of facilities increases, there is a greater 

variability in terms of the fortifications which are needed to thwart attacks of different sizes. 

Overall, 13 different facilities appear at least in one of the 6 fortification patterns and only one 

(facility 13) appears in all of them. Although even for this case we can draw valuable information 

about which facilities should be protected, new mathematical models need to be developed which 

explicitly take into account expected numbers of losses in large systems. Developing this kind of 

models will be the subject of future research. 



 23 

7. Summary and conclusions 

Vulnerability to sudden service disruptions due to deliberate sabotage and terrorist attacks is an 

issue of growing importance. There are two principal ways in which to design for higher levels of 

system reliability in the event of an attack. The first is to design and build a system from scratch 

that is as resilient as possible, in anticipation of certain attack scenarios. The second approach is 

to harden an existing system, by optimizing the allocation of security resources. This paper 

addresses the second approach and involves a service/delivery system based upon a p-median 

framework. In this paper we assume that the facility system already exists and that limited 

resources are available to protect some of the facilities from harm by an antagonist. We assume 

that the antagonist/interdictor is intelligent and will inflict the greatest harm, given a level of 

attack resources. The model that addresses this problem is called the r-interdiction median 

problem with fortification (RIMF)(Church and Scaparra, 2005). This paper has presented a new 

approach for solving the RIMF problem, utilizing a bilevel programming model formulation 

solved by an implicit enumeration process. This efficiency of this process rests in part on being 

able to solve the “interdictor” problem efficiently. This paper addresses how the “interdictor” 

problem, called CRIM, can be solved efficiently by a specially condensed problem formulation. 

Details of this model, var iations of two forms of closest assignments constraints, and the tree 

search process are presented and numerous computational examples are used to show the efficacy 

of different possible model formats in the tree search algorithm. Overall, this tree search process 

has been used to solve relatively large facility system problems, problems that could not be 

solved optimally by other techniques. Example results indicate that this model can be used to 

develop a cogent protection strategy for an existing system.   

 

This modeling work focuses on securing as best as possible an existing system. Practically 

speaking, this is the type of problem faced by system managers, who need to focus on keeping a 

system in operation and who can devote some resources to increasing security. Even though 

interdiction can significantly degrade service, results indicate that optimal protection strategies, 

even for a few key facilities, can increase the resilience when attacked.   Future research should 

be directed towards expanding the model framework to include capacitated facilities, supply 

chains, and expected losses in addition to worst-case losses. 
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Fig. 1. Binary Tree Search. Example with p = 6, q = 2 and r = 2. 

 

Fig. 2. Tree Search. Example with p = 6, q = 2 and r = 2. 
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Fig.3. Impact of COBRA reduction and CA constraints on computing time for the London data set. 
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Fig. 4. Impact of COBRA reduction and CA constraints on computing time for the Alberta data set. 
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Fig. 5. Time comparison between CC and RR constraints for the London data set with p=25. 
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p q r Obj. Val. MCPC Time IE Time Obj. Val. MCPC Time IE Time
25 3 4 153,638.54 0.08 1.86 57,178,804 0.28 0.59
25 3 5 164,458.35 0.30 4.99 62,785,799 1.89 1.69
25 3 6 174,942.60 1.89 9.91 67,647,091 14.03 3.50
25 3 7 188,282.97 9.67 26.89 73,255,693 161.68 6.49
25 3 8 205,611.14 163.95 41.53 79,218,189 -- 11.05
25 5 4 143,058.40 0.14 7.13 43,265,666 0.59 2.11
25 5 5 151,559.19 1.16 22.61 46,077,394 7.19 8.41
25 5 6 162,485.24 12.97 55.71 49,452,379 97.88 22.94
25 5 7 171,987.27 85.56 170.76 52,315,922 409.87 47.11
25 5 8 181,881.35 321.72 246.03 55,254,840 -- 196.17
25 7 4 137,307.81 0.89 19.11 31,746,528 2.89 6.38
25 7 5 147,589.13 7.14 80.89 34,993,344 37.59 34.80
25 7 6 156,685.61 57.56 209.96 37,921,475 334.39 109.90
25 7 7 164,595.84 353.88 616.69 40,381,720 1,819.89 260.14
25 7 8 172,623.60 1,428.89 980.67 42,886,753 -- 896.69
30 3 4 121,378.81 0.16 2.69 46,518,667 0.61 0.59
30 3 5 132,032.99 1.13 9.36 52,028,642 4.47 2.11
30 3 6 140,618.50 8.63 24.34 56,889,934 26.81 4.59
30 3 7 152,969.85 56.84 43.97 60,993,485 516.12 8.37
30 3 8 164,159.70 821.67 72.31 65,509,587 -- 19.19
30 5 4 118,060.47 0.25 16.31 36,974,712 1.05 2.34
30 5 5 128,667.35 1.70 70.70 40,150,939 12.31 9.71
30 5 6 137,061.54 16.36 195.29 42,611,184 410.13 27.52
30 5 7 146,299.89 199.84 436.55 45,728,325 -- 70.06
30 5 8 155,709.62 60,614.35 693.39 48,904,552 -- 182.76
30 7 4 114,789.52 0.70 61.00 27,604,698 3.98 7.81
30 7 5 121,953.59 16.44 357.04 30,064,943 144.86 40.52
30 7 6 130,678.87 121.89 994.23 32,569,976 1,862.97 132.12
30 7 7 136,730.79 1,529.27 2,382.11 34,767,116 -- 425.46
30 7 8 144,073.46 -- 4,255.58 36,853,397 -- 1,333.44

London Alberta

 
 
Table 1. Computational results for the London and the Alberta data sets solved with different 
combinations of the parameters p, q and r. 
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p q* r = 2 r = 3 r = 4 r = 5 r = 2 r = 3 r = 4 r = 5
10% 75,676.41 81,766.35 88,495.16 94,687.71 0.20 2.67 15.30 58.71
15% 75,418.05 81,424.85 87,170.59 93,286.72 0.52 11.10 110.76 476.28
20% 74,847.58 80,370.63 86,182.77 91,664.38 1.30 53.23 797.86 3,467.25

10% 60,168.50 65,160.41 69,918.29 74,694.85 0.25 4.42 22.86 117.28
15% 59,225.56 63,552.59 68,302.73 73,055.22 1.14 26.51 197.98 1,665.66
20% 58,553.08 62,261.17 67,026.53 71,140.40 2.11 77.23 664.77 7,441.07

10% 46,563.64 50,809.54 54,621.16 58,615.76 0.70 9.53 45.11 204.12
15% 45,889.14 49,697.61 53,509.22 56,932.06 1.44 65.67 351.38 2,229.49
20% 45,310.07 48,814.47 52,011.79 55,469.28 2.55 254.38 1,568.08 13,088.10

* q is given as a percentage of the total number of facilities, rounded to the nearest integer

Running Time (sec.)

40

50

60

Objective Value

  

Table 2. Computational results for the London data set solved for larger values of p. 
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Fig. 6. Marginal percentage improvement in efficiency due to any additional fortification. 
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r
1 83 91 92 100 141 149
2 41 83 91 92 141 149
3 41 83 91 92 141 149
4 41 83 91 92 103 149
5 41 83 91 92 103 149
6 20 83 92 116 141 149

Optimal Fortification Set (q  = 6)

             

r
1 8 13 19 26 99 144
2 13 19 26 89 92 99
3 13 19 47 73 99 141
4 13 26 36 92 103 144
5 13 26 36 92 103 144
6 13 26 36 47 56 144

Optimal Fortification Set (q = 6)
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Table 4. Optimal set of 6 fortifications 
for the London data set with 60 facilities 
and various numbers of interdictions. 

 

Table 3. Optimal set of 6 fortifications 
for the London data set with 30 facilities 
and various numbers of interdictions. 

 

Fig. 6. Frequency with which each 
facility appears in a fortification set in 
Table 4. 

 

Fig. 5. Frequency with which each 
facility appears in a fortification set in 
Table 3. 
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