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Abstract

The inherent and growing complexity characterizing today's infrastructure systems

has considerably increased their vulnerability to external disruptions. Recent world

events have demonstrated how the damage of one or more infrastructure components

can result in disastrous political, social and economical e�ects. This, in turn, has fos-

tered the development of sophisticated quantitative methods that identify cost-e�ective

ways of strengthening supply systems in the face of disruption. Stochastic and robust

optimization can be used for this purpose. An example of a protection model which ex-

plicitly takes into account the uncertainty characterizing the extent of disruptive events

is the Stochastic R-Interdiction Median Problem with Forti�cation (S-RIMF) [26]. The

objective of this model is to optimally protect facilities in a supply system so as to min-

imize the expected operational costs resulting from the loss of an uncertain number of

system components. In this article, we analyze how protection strategies vary when us-

ing di�erent measures of optimization under uncertainty. We propose two regret models

and show how to solve them by extending the bounds based approach developed for
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S-RIMF. Also, we discuss how to build a reliability envelope for the models considered,

which can be used to identify the range of possible impacts associated with di�erent

protection strategies. The new regret models and the original S-RIMF are tested on a

new data set which was built using the Census 2001 data of the United Kingdom. We

analyze and compare the protection plans generated by the models, and provide some

useful insights related to the robustness of the di�erent modeling approaches.

1 The need of countering disruptions in supply systems

Supply systems are distribution infrastructures consisting of a set of manufacturing, storage,

and transportation facilities with the purpose of delivering goods and services. The fact that

approximately 10 percent of the gross domestic product in the United States is dedicated

to supply related activities [39] demonstrates how the e�cient and e�ective functioning of

supply systems is a crucial issue in our society. Because of their importance, the consequences

of possible interruptions to their normal functioning can be catastrophic. Supply systems can

be victim of natural catastrophes (such as earthquakes, hurricanes, and �oods), intentional

disruptions (such as terrorist attacks, sabotage, and labor strikes), and accidental failures

(such as industrial accidents, plant �re, and system component breakdowns).

As demonstrated by many recent events, intentional or accidental disruptions can have an

enormous ripple e�ect on infrastructure systems with resulting deleterious social, political,

�nancial, and economic consequences. As an example, a strike at two part plants of General

Motors in 1998 caused the shutdowns of twenty six assembly plants, which ultimately resulted

in a production loss of over 500,000 vehicles and an 809 million dollars quarterly loss for

the company ([6], [40], [41]). An eight-minute �re at a Philips semiconductor plant in 2001

brought Ericsson to a virtual standstill [24]. In 2002, the west-coast port lockout plagued the

U.S. retailers's supply lines, caused some factories to close and threatened to derail the U.S.

economy [17]. In August 2003, an electrical system failure in Ohio resulted in a subsequent

loss of power in many states of the Northeast United States [19]. The power outage's e�ects
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on international air transport, communication, production operations and �nancial markets

were widespread. The suspension of the license of the Chiron plant in Liverpool, England,

resulted in a reduction of the U.S. supply of the in�uenza vaccine by nearly 50 percent during

the 2004-2005 �u season [32]. Hurricanes Katrina and Rita, which hit the U.S. Gulf Coast in

2005, caused the shutdown of several oil re�neries, profound damage of o�shore platforms and

pipeline facilities as well as the closure of multiple ports. This had devastating repercussions

on U.S. oil and gas production, on the shipping industry and the movement of fresh produce

and agricultural products across the country ([31], [3], [25]). Smaller-scale disruptions occur

much more frequently: Wal-Mart's Emergency Operations Center receives a call virtually

every day from a store or other facility with some sort of crisis [25].

The large number and substantial economic repercussions of recent disruptive events

highlight the importance of devising e�ective supply system protection strategies, able to

mitigate the e�ects of disruption and improve the e�ectiveness of contingency plans. In

fact, security and contingency planning can notably reduce the e�ects of a disruption, as

con�rmed by the following examples. Thanks to its highly e�ective risk management strategy

and prompt action, Nokia weathered the 2001 Philips �re without su�ering any signi�cant

sale loss and ultimately captured a substantial portion of Ericsson's large market share

[24]. Home Depot's policy of planning for various types of disruptions based on territorial

and geographical features allowed it to reopen twnety three of its thirty three stores within

Katrina's impact zone after one day and twenty nine after one week [15]. Wal-Mart's stock

prepositioning became a model for post-hurricane recovery [25].

In all the aforementioned cases, the analysis of critical system components and vulnerabil-

ities and the consequent development of risk management and protection plans resulted in a

winning strategy to ensure the proper working of supply chains even when facing the disrup-

tion of some critical infrastructure components. In recent years academics and practitioners

have both demonstrated a growing interest in this topic, in recognition of the urgent need of

developing tools and methodologies to address issues of system vulnerability, resiliency and
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security ([22], [34], [38]). However, the research in this area only dates back a few years and it

is still at an embryonic stage. Roughly, the investigation can be split into two main streams

of research ([44]). The �rst one concerns the development of design models, i.e. optimization

models for planning supply chain con�gurations which have a high degree of performance

both normally and when an interdiction occurs. The second one focuses on the development

of optimization models for improving the reliability of infrastructure systems which are al-

ready in place and for which a complete recon�guration would be prohibitively costly. The

literature has de�ned these models as forti�cation models. Besides these two main research

streams, a few other models have been proposed to face disruption in di�erent scenarios,

and to respond to the multitude of objectives of decision makers. As an example, Fox et al.

[16] discuss an agent-based supply-chain architecture to evaluate coordination strategies in

the presence of perturbations caused by stochastic events, such as facility breakdowns. Yu

et al. [50] analyze and compare di�erent sourcing strategies to cope with unreliable supply

and disruption risks.

This article makes the following contributions to the literature on supply chain reliability

models. First, we present two novel stochastic models for the planning of protection e�orts

in median supply systems when the number of possible disruptions is uncertain. To the best

of our knowledge, the only protection model that involves an uncertain number of losses

within the location analysis framework is the Stochastic R-Interdiction Median Problem

with Forti�cation (S-RIMF) [26]. The models presented in this work extend the S-RIMF

by considering di�erent objective functions based on regret rather than on expected costs.

Second, we discuss how to build a reliability envelope for these models so as to identify

the range of impacts of di�erent protection strategies and quantify possible e�ciency losses

of suboptimal protection plans. Third, we propose some model reduction techniques to

solve e�ciently both the best-case and worst-case models used to identify the boundaries

of the reliability envelopes. Forth, we introduce a novel data set, based on the information

of the main UK urban areas obtained from the last census of the United Kingdom, and
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use this data set to test our modeling approaches. Finally, we provide some insights on

the protection strategies produced by the di�erent models and compare their robustness to

possible misestimations of the uncertain parameters.

The reminder of the article is organized as follows. The next section presents a selection

of previous contributions to the �eld of forti�cation of supply systems. Section 3 presents

the R-Interdiction Median Problem with Forti�cation. The models based on regret are

introduced in Section 4. Next we explain how to compute the reliability envelope for all the

models under consideration. In Section 6, the new data set is presented as well as the results

of the computational tests. Finally, the article is concluded with a summary of the main

�ndings of the analysis and some conclusive remarks.

2 Con�guration of protection strategies

Although the development of mathematical models for protection planning is a relatively

new research area, a fair number of articles on this topic has appeared in the literature in

the last decade. Most of the forti�cation models developed so far focus on the identi�cation

of economical and e�cient protection plans to reduce the impact of worst-case losses. To

this end, they generally use the information provided by an underlying model, referred to

as an interdiction problem, to identify the most critical system components or disruption

scenarios.

Identi�cation of critical system components. The �rst interdiction model has been

introduced in 1964 by Wollmer [49] to study the e�ect of the removal of some arcs on the

maximum �ow through a network. Starting from this pioneering work, the majority of the

studies in the �eld of interdiction have addressed problems within the context of networks,

considering di�erent reliability measures, such as connectivity [18], distance or cost [4] and

capacity [27]. A multitude of early network interdiction models are surveyed by Church et

al. [12]. A survey of the latest contributions can be found in Losada et al. [28]. To the
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best of our knowledge, the article by Church et al. [12] is also the �rst work to contextualize

interdiction problems in the framework of location analysis. The authors consider systems

based on two service protocols, the P -Median Problem [20] and the Max Covering Problem

[10], and formulate the respective interdiction programs: the r-Interdiction Median Problem

(RIM) and the r-Interdiction Covering Problem (RIC). The aim of the RIM model is to

ascertain the set of the r most critical facilities in an existing system which comprises P

facilities and where the demands of the customers are always served by the closest facility.

After interdiction, the customers which were formerly serviced by an interdicted facility,

are reallocated to the closest operating facility to preserve the feasibility of the system

con�guration according to the constraints of the P -Median Problem. In the RIC model

there is no reassignment of the customers to the closest working facility and the aim of this

program is to �nd the subset of r facilities which, when removed, maximizes the resulting

drop in demand coverage.

Planning for protection. Most of the existing works addressing the problem of opti-

mizing protection strategies use a game theoretic approach, where interdiction models are

embedded within multi-level programs. The outer program models the defender decisions

whereas the inner interdiction program identi�es the worst-case scenarios in response to a

given protection strategy. These multi-level programs are also known as leader-follower or

Stackelber games [45]. As an example, Brown et al. [8] propose several bilevel and trilevel

models to analyze the vulnerabilities of electric power grids, subways, airports and other

critical infrastructures. Another work on critical infrastructures is the article by Qiao et

al. [33], who use a min-max model to optimize the allocation of a security budget to a

water supply network so as to make it more resilient to physical attacks. Zhuang and Bier

[51] take up the issue of balancing protection against both terrorism and natural disasters.

They propose basic equilibrium models for both sequential and simultaneous games between

an attacker and a defender. Azaiez and Bier [1] study the problem of optimally allocating
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defensive resources to maximize the minimum expected cost of a feasible attack. Bier [5]

proposes a game-theoretic model of security investment where the goals of the attacker are

uncertain. The �ndings of her analysis suggest that it is desirable to publicize how the secu-

rity investment are allocated so that the attacker is attracted towards less damaging targets.

Building upon the interdiction models proposed in [12], Church and Scaparra [13] formulate a

defender-attacker model that explicitly includes protection decisions constrained by a defen-

sive budget. The objective is to optimally fortify (protect) Q facilities in such a way that the

cost of the worst-case loss is minimized. They assume that protected facilities are no longer

vulnerable to disruptions. The authors propose two di�erent solution approaches to solve

the resulting r-Interdiction Median Problem with Forti�cation (RIMF): a reformulation of

the problem as a maximal covering model with precedence constraints [36] and a tree search

algorithm [35]. Extensive computational tests shows that there is no clear dominance of one

methodology over the other and that both the approaches can be useful depending upon the

problem at hand and the application setting. Recently, some extensions of the RIMF have

been presented. Scaparra and Church [37] consider the problem where the facilities have a

limited capacity. Cappanera and Scaparra [9] apply a game theoretic approach like RIMF

to shortest path networks. Finally, Liberatore et al. [26] introduce a stochastic component

by considering uncertain numbers of interdictions. This is the base for the current work and

will be discussed in more details in the next section.

3 Edging against an uncertain number of disruptions

Although the RIMF model can help identify sound protection practices, it relies on some

strong assumptions that may result in suboptimal solutions and/or limit its practical applica-

bility. One of these premises is that the protection planner knows with certainty the number

of losses that the system may incur. This is clearly an assumption that over-simpli�es the

reality as malicious attacks, as well as acts of nature, are often characterized by a strong
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uncertainty in terms of number of targets.

Liberatore et al. [26] extend the RIMF model to include a stochastic component and

consider the problem of hardening systems against a range of possible numbers of attacks,

varying between 1 and a maximum number R. Every outcome occurs with some probability

and the objective is to minimize the expected costs after a worst-case loss of a random num-

ber of facilities. The problem, named the Stochastic R-Interdiction Median Problem with

Forti�cation (S-RIMF), is a bilevel problem in nature where the leader optimally allocates

defensive resources in order to counter the action of the follower, who in turn chooses which

facilities to disrupt, for each number of attacks, to increase the expected cost of the system

as much as possible. For an extensive treatment of bi-level programs the reader is referred

to [2] and [14]. Discrete bilevel programs are intrinsically di�cult to solve, as explained in

[29] and [47]. A way of solving bilevel programs with integer restrictions is via reformulation

[30]. S-RIMF can be reformulated as a single-level maximum covering problem by explicitly

enumerating all the possible ways of disrupting r of the P facilities operating within the

system, with r = 1, . . . , R ([26]). The problem formulation uses the following notation. Let

Hr, indexed by h, be the set of interdiction patterns where exactly r facilities are interdicted,

and Ih be the set of facilities interdicted in pattern h. The cost ch associated with an in-

terdiction pattern h represents the cost of the system when the facilities in Ih are disabled.

This cost can be easily computed by assigning each customer i ∈ N , where N is the set of

customers, to the closest working facility j ∈ F/Ih, where F is the set of initial facilities.

The total operational cost of the system is given by the demand weighted sum of distances

between customers and facilities. The demand of customer i is denoted in the following by

ai, whereas dij is the distance between customer i and facility j.

A pattern h is de�ned as covered if any of the facilities in Ih is forti�ed. Therefore, in

order to reduce the impact of worst-case losses on the network, it is necessary to protect the

facilities in such a way that the most disruptive patterns (i.e., the patterns with the higher

costs) are covered.
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The single-level S-RIMF model uses the following decision variables:

zj =

 1, if facility j is forti�ed,

0, otherwise.

yh =

 1, if the interdiction pattern h is covered,

0, otherwise.

Wr : cost of the worst-case interdiction pattern when exactly r facilities are interdicted.

The Max Covering formulation of the S-RIMF is as follows:

min Z? =
R∑

r=1

prWr (1)

∑
j∈F

zj ≤ Q (2)

∑
j∈Ih

zj ≥ yh ∀h ∈ Hr, ∀r = 1, . . . , R (3)

Wr ≥ ch (1− yh) ∀h ∈ Hr, ∀r = 1, . . . , R (4)

zj ∈ {0, 1} ∀j ∈ F (5)

0 ≤ yh ≤ 1 ∀h ∈ Hr, ∀r = 1, . . . , R (6)

The objective (1) is to minimize the expected worst-case operational cost, given by the
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probability weighted sum of the worst-case costs Wr. The cardinality constraint (2) bounds

the number of forti�ed facilities to be at most Q. The covering constraints (3) impose that

a pattern h is covered when at least one of the facilities in its interdiction set Ih is forti�ed.

The worst-case loss value Wr for each number of attacks r is determined by constraint (4)

as the largest cost among all the uncovered patterns. Constraints (5) and (6) impose the

conditions of integrality and non-negativity of the relevant variables.

As the number of constraints and variables in the formulation (1)-(6) depends on the

number of interdiction patterns, solving this model with general purpose optimization solvers

may be computationally impractical for problem instances of realistic size. Liberatore et al.

[26] propose some e�cient optimal and heuristic approaches to solve the S-RIMF which rely

on the computation of e�ective upper and lower bounds to reduce the dimensionality of the

problem. We show how a similar approach based on bounding procedures can be developed

to solve stochastic RIMF models with di�erent objectives.

4 Regret models

The uncertainty issue tackled in the stochastic RIMF undoubtedly represents an important

addition to the protection modeling literature. An in-depth analysis of the stochastic nature

of RIMF, in fact, showed that the impact of taking into account the uncertainty in the

number of losses in the optimization process may be substantial [26].

Nevertheless, an expected cost model such as S-RIMF may produce ine�cient protection

strategies under various scenarios. The use of an expected cost objective, in fact, tends

to favor scenarios with a high number of interdictions, as a high number of losses always

corresponds to a non-inferior damage to the system than a low number. If, for example,

equal probabilities are used for each scenario, the optimal protection strategy identi�ed

by the model may be e�cient against high numbers of facility losses, but may be highly

sub-optimal if the e�ective number of losses is small. Obviously, if low probabilities are
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associated with higher numbers of losses, this e�ect is partially alleviated. However, when

planning defense against extreme events such as terrorist actions, a concerted attack on

several facilities may be as likely as an attack on a single target. Additionally, a reliable

estimation of the probability that a given number of losses will take place may not be feasible

due to the lack of historical data regarding the disruption of critical system components

caused by rare events.

Another criterion other than cost, commonly used in stochastic and robust optimization,

is regret [43]. Regret can be described as opportunity loss [42], that is the di�erence (either

absolute or relative) between the quality of a given strategy, and the quality of the strategy

that would have been applied if the future had been known. Considering the regret rather

than the cost of a scenario may help overcoming the aforementioned limits of the S-RIMF.

In those settings where the probabilities can be estimated from historical data, an expected

regret model can be adopted to remove the bias introduced by the costs. If a good estimation

of the probability function is not available, a minimax regret model can be used to obtain

solutions which perform fairly well no matter which scenario is realized.

We de�ne the relative regret associated with a given number of interdictions r as the

percentage di�erence between the cost of the worst-case interdiction pattern in the optimal

stochastic strategy, Wr, and the cost of the optimal solution to the deterministic problem

where exactly r losses are considered, W r. Hence, the relative regret for a given r is:

Wr −W r

W r

.

Note that Wr ≥ W r and that, without loss of generality, we can assume W r > 0 for all r.

In this section, we present the problems of minimizing the expected and the maximum

regret, and show how some e�cient lower and upper bounds, similar to the ones developed

to solve S-RIMF, can be used to reduce the size of the formulations and, therefore, expedite

the solutions of the regret models by general purpose optimization solvers.
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Minimizing the expected regret

The problem of minimizing the expected regret can be formulated mathematically as follows:

min ∆? =
R∑

r=1

pr
Wr −W r

W r

(7)

(2)-(6)

Note that the above model is equivalent to an expected cost model with a modi�ed

probability distribution. The objective function, in fact, can be rewritten as:

∆? =

(
R∑

r=1

pr

W r

Wr

)
− 1.

By ignoring the constant term -1, the problem of minimizing the expected regret is

equivalent to the problem of minimizing the expected cost with probabilities pp
r = pr

W r
.

Not all the possible interdiction patterns must be considered in the sets Hr. More specif-

ically, all the interdiction patterns h whose cost ch is strictly less than W r can be ignored.

In fact, a pattern h such that ch < W r ≤ Wr will never generate the worst case cost Wr

in constraints (4). Therefore, all the variables yh associated with these patterns can be

safely removed from the formulation together with the constraints (3) and (4) associated

with them.

The solutions W r to the deterministic RIMF problems can be used to compute valid

upper bounds to the regret model and identify additional model reductions. Let us denote

by zr the optimal forti�cation set obtained by solving the deterministic RIMF with exactly

r interdictions. Each zr, with r = 1, ..., R, is obviously a feasible solution to the problem of

minimizing the expected regret. To compute the regret associated with these solutions, we

need to solve R independent RIM problems [12] with an additional constraint that forbids

the interdiction of the protected facilities zr. Let hm (zr) be the optimal interdiction pattern

found by solving the RIM problem when exactly m facilities are interdicted and facilities zr

are forti�ed, and let chm(zr) be the associated cost. The expected regret of the solution zr is:
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∆̃r =
R∑

m=1

pm

chm(zr) −Wm

Wm

. (8)

An upper bound ∆̃ to the optimal regret ∆? can then be obtained by selecting the best

(lowest) ∆̃r, r = 1, . . . , R. Namely,

∆̃ = min
r=1,...,R

∆̃r. (9)

The main steps of the procedure used to compute the upper bound are illustrated in the

following example.

Example. Let us consider an instance of the data set UKMainIsland (see Section 6 for

further details on this data set) with 20 facilities, 2 forti�cations, and 3 maximum possible

interdictions, i.e. parameters P = 20, Q = 2 and R = 3. The probabilities associated with

each interdiction number were chosen as p1 = 0.5, p2 = 0.3, and p3 = 0.16. F = {1, . . . , 20}

is the set of open facilities in the initial con�guration.

1. The �rst step of the procedure is to solve R deterministic RIMF problems to optimality.

Table 1 shows the results. For each possible number of interdictions r reported in the

�rst column, the second and third columns display the optimal forti�cation set zr, and

the optimal objective function value W r, respectively. For example, the best facilities

to protect when exactly 3 interdictions are assumed are facilities 1 and 11 (solution z3).

The worst-case loss of 3 facilities after protection results in a total weighted distance

or cost of about 946,700.

2. For each forti�cation set zr identi�ed in step 1, we can compute an upper bound ∆̃r

to the expected regret. In order to do so, we have to solve R RIM problems, one

for each value of m = 1, . . . , R, where we forbid the interdiction of the facilities in

zr. Table 2 displays the results for this second step. The �rst column shows the

number of interdictions in the RIM problems, m. Subsequently, each pair of columns
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presents the interdiction set Ihm(zr) and the associated cost chm(zr) corresponding to

each forti�cation set zr. For example, when the protection strategy z3 is considered

(last two columns), the worst-case loss of a single facility (facility 2) results in a cost of

about 615,585. This represents a 2.3 percent cost increase as compared to the solution

obtained when using the optimal protection strategy for a single loss, z1 (601,800).

Note that although z2 and z3 di�er by one facility, the solutions to the RIM problems

are identical, suggesting that the two forti�cation plans are in fact equivalent. The

upper bounds ∆̃r corresponding to each forti�cation set zr can be computed using

formula (8). They are: ∆̃1 = 0.0424, and ∆̃2 = ∆̃3 = 0.0115.

3. Using formula (9), we select the best (lowest) upper bound ∆̃r calculated in step 2.

The �nal upper bound to the optimal expected regret is ∆̃ = 1.15%.

�

To further speed up the solution of the expected regret model, we can use the upper

bound ∆̃ to compute an upper bound to the optimal cost of the worst-case interdiction

patterns for each value of r, as stated in the following proposition.

Proposition 4.1 Let W ?
r be the cost of the worst-case interdiction pattern with r interdic-

tions in the optimal solution to the expected regret model. An upper bound W̃r to W
?
r can be

computed as follows.

W̃r = W r

(
1 +

∆̃

pr

)
. (10)

Proof. In order to prove the correctness of (10), let us consider the following sequence of

inequalities:

∆̃ ≥ ∆? =
R∑

m=1

pm
W ?

m −Wm

Wm

≥
R∑

m=1,
m 6=r

pm
Wm −Wm

Wm

+ pr
W ?

r −W r

W r

= pr
W ?

r −W r

W r

.
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By rearranging the �rst and last terms in the sequence, we obtain:

W ?
r ≤

W r

pr

∆̃ +W r = W r

(
1 +

∆̃

pr

)
.

Therefore:

W̃r = W r

(
1 +

∆̃

pr

)
is a valid upper bound to W ?

r .

�

The upper bounds W̃r can be used to �x some of the variables in the expected regret

model to their optimal values. In fact, all the patterns h whose cost ch exceeds the associated

upper bound W̃r must be covered (i.e., thwarted by the protection strategy) in an optimal

solution. Consequently, we can set the variable yh associated with those patterns to 1 and

remove the relevant constraints (4) from the formulation.

Minimizing the maximum regret

We now introduce a maximum regret model that can be used to plan against multiple

numbers of attacks even when the probability distribution that models the behavior of the

attacker in terms of number of interdictions is not known. As a consequence, the solutions

produced will not focus on countering only scenarios with associated high probabilities but

will have a more homogeneous behavior over all the possible futures. This is one the most

common approaches used in robust optimization [43]. The formulation of the problem of

minimizing the maximum regret is:

min ∆ (11)
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∆ ≥ ch −W r

W r

(1− yh) ∀h ∈ Hr, ∀r = 1, . . . , R (12)

(2)-(6)

This formulation is slightly more compact than the previous one in terms of number of

variables. Constraints (12), which replace constraints (4), assign the value to the maximum

regret: for every scenario, ∆ must be greater or equal than the regret of the worst uncovered

pattern.

Also for this program, the solutions to R deterministic RIMF problems can be used to

compute lower and upper bounds to the maximum regret, to �x some of the variables to

their optimal values and remove some of the constraints. Namely, as in the expected regret

model, all the patterns h whose cost ch is strictly less thanW r can be disregarded. An upper

bound ∆̃ to the maximum regret can be easily obtained from the optimal forti�cations of the

RIMFs by following the same procedure described in Section 4 where formula (8) is replaced

by:

∆̃r = max
m=1,...,R

chm(zr) −W r

W r

. (13)

Finally, the upper bound ∆̃ can be used to �x to 1 the variables yh associated with the pat-

terns h whose cost ch is higher than W r

(
∆̃ + 1

)
and remove the corresponding constraints

(12).

5 The reliability envelope

The models described so far �nd the optimal protection plan for a p-median system, according

to di�erent objective functions (expected cost, expected regret or maximum regret). When

considering suboptimal ways of protecting one or more facilities, the basic question is what

happens to the resulting performance of the system after the loss of some critical facilities.
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We can measure this loss of e�ciency by calculating the distance from the optimal solution

value. For a �xed maximum number of losses R, we can represent the increase in weighted

distance (or loss of system e�ciency) as shown in Figure 1. The values on the x-axis represent

the level of protection or number of forti�cations Q. The values on the y-axis display the

resulting system e�ciency. For this example, the number of facilities P is equal to 20, and

the maximum number of losses R is set to 3, therefore is not possible to protect more than

17 facilities. The system e�ciency is 100 percent when all the facilities are operating. If

one ore more facilities are lost, the e�ciency is consequently decreased. Figure 1 shows

two trends: the upper trend displays the best-case e�ciency, i.e., the system e�ciency

when implementing an optimal protection plan for di�erent values of Q, whereas the lower

trend depicts the worst-case e�ciency, i.e., the e�ciency obtained when the least e�ective

protection plan is implemented. It can be easily seen that the two trends de�ne a range

of losses, from the best-case to the worst-case, that encompasses all the possible ways of

protecting Q facilities. This region is referred to as the reliability envelope. Prior examples

of depicting the reliability envelope in other application settings can be found in Urban and

Keit [46], Kim and O'Kelly [23], and Church and Scaparra [11].

Knowing the structure of the envelope can be an asset to defense planning decisions.

The upper curve represents a situation of complete control: the decision-maker has full

knowledge of the mechanics of the system in terms of parameters and, in the relevant models,

of the probability function. Thus, the optimal forti�cation strategy can be devised. On the

other hand, the lower curve shows the e�ects of a highly ine�cient protection plan. This

second trend can represent a situation where either the data representing the model, or

the probability function, or both are misestimated. The thickness of the envelope provides

valuable information regarding the impact range of di�erent protection strategies using the

same amount of resources and the extent to which protection and mitigation e�orts may be

dissipated if sub-optimal plans are implemented. As an example, if resources are available

to harden half of the facilities, the reliability envelope in Figure 1 highlights the fact that an
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e�cient protection plan can cap the worst-case e�ciency loss at 10 percent of the original

e�ciency. On the other side of the spectrum, if the protective resources are invested on

the wrong assets, the e�ciency loss can be as high as 50 percent in the worst-case. This

is equivalent to the worst-case e�ciency loss obtained without protection, to indicate a

completely wasteful use of the resources. The system planner can exploit the information

provided by the reliability envelope to compare alternative interventions and evaluate the

potential bene�ts of corrective plans, such as changes in the number of protected sites, or

investments in the analysis of the system to acquire a better de�nition of the data and the

parameters.

The computation of the worst-case curve requires solving a maximization version of the

minimization problems used to �nd the optimal protection plans. The solutions to the

maximization problems have also been employed to compare the solution gaps across di�erent

models, as further discussed in Section 6.

Maximizing the expected cost

The maximization problem can be formulated as a single-level, mixed-integer program. The

formulation uses the de�nition of the set Tij = {k ∈ F |k 6= j ∧ dik > dij }, i.e., the set of

existing site (not including j) that are farther than j from demand i. Also, it employs the

following additional decision variables:

sr
j =

 1, if facility j is interdicted in scenario r,

0, otherwise.

xr
ij =

 1, if demand i is served by facility j after interdiction in scenario r,

0, otherwise.

The formulation of the maximization version of the S-RIMF is:
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max Ẑ? =
R∑

r=1

pr

∑
i

∑
j∈F

aidijx
r
ij (14)

∑
j∈F

zj ≥ Q (15)

∑
j∈F

sr
k ≤ r, ∀r = 1, . . . , R (16)

R∑
r=1

sr
j ≤ R (1− zj) , ∀j ∈ F (17)

∑
j∈F

xr
ij ≤ 1, ∀i ∈ N, ∀r = 1, . . . , R (18)

∑
h∈Tij

xr
ih ≤ sr

j , ∀i ∈ N, ∀j ∈ F, ∀r = 1, . . . , R (19)

zj ∈ {0, 1} ∀j ∈ F (20)

sr
j ∈ {0, 1} ∀j ∈ F, ∀r = 1, . . . , R (21)

xr
ij ∈ {0, 1} ∀i ∈ N, ∀j ∈ F, ∀r = 1, . . . , R (22)

The model objective is to maximize the expected cost of the system (14). Constraints

(15) and (16) limit the number of possible forti�cations and interdictions, respectively. Con-

straints (17) bind the forti�cation variables zj to the interdiction ones sr
j , in such a way that

a forti�ed facility cannot be interdicted. The covering constraints (18) impose that each

customer cannot be assigned to more than one facility in every scenario. Constraints (19)
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are the closest assignment constraints, which impose that each customer is served by the

closest operating facility. Finally, (20), (21) and (22) are the integrality constraints.

Maximizing the expected regret

The problem of maximizing the expected regret can be obtained from the previous model

by simply replacing the objective function. Namely,

max ∆̂? =
R∑

r=1

pr

(∑
i

∑
j∈F aidijx

r
ij

)
−W r

W r

(23)

(15)-(22)

As previously seen, W r represents the cost of the optimal forti�cation solution when exactly

r interdictions are considered.

Maximizing the maximum regret

There is no need to explicitly formulate the problem of maximizing the maximum regret

across all the possible outcomes of r. In fact, in order to do so, it is su�cient to choose to

protect the facilities that do not appear in the interdiction set with the highest associated

regret. As, without loss of generality, we assumed Q + R ≤ P , this is always possible. Let

ZRIM
r be the optimal solution value for the RIM problem when the number of interdiction

is exactly r, and Ir its corresponding interdiction set. We can solve R independent RIM

problems, one for each possible value of r, and calculate the maximum regret as

∆̂ = max
r

ZRIM
r −W r

W r

. (24)

The chosen forti�cation set is any subset of cardinality Q of the set F\Ir′ , where r′ is the

scenario corresponding to the highest regret interdiction:
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r′ = arg max
r

ZRIM
r −W r

W r

.

Solving the maximization problems

It is clear that the maximization problems used to de�ne the lower bounds of the reliability

envelopes are much easier to solve than their minimization counterparts. The expected cost

and expected regret models, in fact, do not require an explicit enumeration of all the possible

interdiction patterns and, therefore, their size is signi�cantly smaller than the one of the min-

imization versions. The max regret problem is even easier and, as previously explained, does

not even require an explicit formulation. In addition, under a speci�c condition, the optimal

solution to the maximization problems can be identi�ed by simply solving R interdiction

problems (RIM). The su�cient condition is based upon the following consideration.

Following the metaphor of the bi-level formulation, in the maximization program the

interdictor decides not only which facilities to destroy, but also how to allocate the forti�ca-

tion resources in such a way that the impact of the protection is minimized. Therefore, for

each possible number of attacks r, he will try to strike as hard as possible the system, and

protect the facilities which are una�ected in every scenario r, if possible. For a su�ciently

large number of facilities P , this is always possible.

In our algorithm, therefore, we �rst solve R independent RIM problems to �nd the best

interdiction plan I?
r for each number of attacks r. We then consider the set of facilities which

are interdicted in at least one interdiction plan:

I? =
R⋃

r=1

I?
r .

If the number of facilities P is greater or equal to the sum of the possible forti�cations

Q and the cardinality of the interdiction set I? (P ≥ Q + |I?|), then it is possible for the

interdictor to optimally destroy facilities while protecting facilities that do not a�ect the
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interdictions. Thus, the optimal interdiction sets in the maximization problems are exactly

I?
r , and the cost of the system when r interdictions occurs is ZRIM

r (i.e., the optimal solution

value of the corresponding RIM).

This condition is usually veri�ed when considering su�ciently large systems, i.e. systems

with a large number of facilities. For small systems, the time to solve the maximization

problems by general-purpose optimization software is generally noncritical.

6 Comparison of protection criteria

Through a computational analysis of the solutions of the models, we provide in this section

some insights on the protection strategies produced by the three di�erent programs. In the

�rst subsection we present a new data set speci�cally created for this article. Next we explain

in details the computational tests which were performed.

A new data set

We produced a novel data set for facility location problems based on the 2001 Census of the

United Kingdom and Scotland 1. The data set has been named UKMainIsland.

Customers and demands. A very popular data set in facility location analysis is the

USCities data set, containing the largest cities in the United States according to the 2000

census 2. This data set includes 263 cities. In a similar way, we created a data set that takes

into account the 250 largest urban areas in Britain (England, Wales and Scotland) in terms of

number of citizens. As for the USCities data set, the demands in UKMainIsland correspond

to the number of inhabitants of each urban area, expressed in thousands of citizens.

1UK Census 2001. http://www.statistics.gov.uk/census2001/census2001.asp (last accessed date 8 May
2009)

2United States Census 2000. http://www.census.gov/main/www/cen2000.html (last accessed date 8 May
2009)
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Calculating the distances. In the USCities data set the distances correspond to the

great-circle distances in miles between the cities. Similarly, in our new data set the distances

between the demand points were generated by using the Vincenty formula [48]. The Vincenty

formula was chosen among others because of its accuracy. Let φs, λs; φf , λf be the geograph-

ical latitude and longitude of two points (a base s and a destination f), respectively, and

∆φ,∆λ their di�erences. Also let ∆σ̂ represent the (spherical) angular di�erence/distance,

or central angle. The Vincenty formula for the calculation of the central angle is:

∆σ̂ = arctan


√

(cosφf sin ∆λ)2 + (cosφs sinφf − sinφs cosφf cos ∆λ)2

sinφs sinφf + cosφs cosφf cos ∆λ

 .

If ρ is the great-circle radius of the sphere, then the great-circle distance is ρ∆σ̂. For our

data set ρ has been set to 3, 956.562, which corresponds to the average between the equatorial

radius a = 3, 963.205 and the polar radius b = 3, 949.919 in miles, according to the geodesic

measures by Fischer [7].

The resulting data set UKMainIsland is illustrated in Figure 2. The black dots represent

the location of the demand points. Most of the cities are located in the south of the island.

A second group is located in Scotland, with a higher concentration along the axis connecting

Glasgow to Edinburgh. A smaller cluster is located in the area of Newcastle-Upon-Tyne,

in North East England. Therefore this data set present three main groups with di�erent

characteristics: wide and well distributed in the south, small and compact in the center, and

sparse in the north.

Computational tests

The algorithms resulting from the models have been implemented in C++ and compiled

with gcc version 3.4.2 for win32. We used the generic MIP solver CPLEX 11.1 [21] to

solve the mixed integer programs. The tests have been run on a computer equipped with a

Genuine Intel(R) CPU T2500 @ 2.00GHz and 1 GB of RAM. All the tests had a time and
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a memory limit of one hour and 1 GB, respectively. The algorithms have been tested on

the data set UKMainIsland on a wide array of combinations of the parameters P , Q and R.

Speci�cally, P takes on values of 10, 20 and 30. The P facilities in the initial con�guration

correspond to the ones in an optimal solution to the P -Median Problem. Q is calculated

as a percentage of P rounded up to the closest integer when fractional. We consider the

following percentage values: 10 percent, 15 percent, 20 percent, 25 percent, and 30 percent.

To avoid unnecessary repetition, for P = 10, only the cases where Q is equal to 10 percent,

20 percent, and 30 percent are considered. Finally, R ranges between 2 and 5. For the

S-RIMF and the expected regret model, we employ two di�erent probability distributions.

The �rst distribution, referred in the following as probability up, is monotonically increasing

in the values of r. Namely,

pr = 2
r

R (R + 1)
, (25)

The second distribution, called probability down, is monotonically decreasing.

pr = 2
R− r + 1

R (R + 1)
. (26)

With the �rst choice, higher probabilities are associated with higher values of r, to indicate

that more emphasis is placed on countering scenarios with a large number of losses. The sec-

ond function (26) is monotonically decreasing and consequently assigns higher probabilities

to lower values of r.

In summary, we tested the �ve following models over 52 instances:

• S-RIMF with probability up (SRIMF-U),

• S-RIMF with probability down (SRIMF-D),

• Expected regret model with probability up (MOD1-U),

• Expected regret model with probability down (MOD1-D),
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• Minimax regret model (MOD2).

Analysis of the gaps

In order to evaluate the quality and the robustness of the solutions produced by the dif-

ferent models, we consider the optimal forti�cation set obtained from the solution of each

formulation and calculate the cost of that protection strategy for all the remaining objective

functions. Therefore, for each model and each instance we obtain an upper bound to all the

other models, that can be used to compare the quality of the solutions by mean of gaps.

As the objective value of the regret models can take value zero and, hence, introduce some

inde�niteness in the gap computation, we evaluate the gaps by considering the improvement

from the worst solution, i.e., the solution where the interdictor allocates the forti�cation

resources in the worst possible way (Section 5).

Calculating the gaps. For a given data instance and model, let Ẑ be the objective

function value of the worst solution obtained by solving the maximization version of the

model. Also, let Z? be the value of the optimal solution and Z̃ the value of a sub-optimal

solution obtained with a di�erent model. We denote by G? the percentage gap between the

optimal solution Z? and the worst solution Ẑ:

G? = 100 · Ẑ − Z
?

Ẑ
,

Similarly, let G̃ be the percentage gap between a suboptimal solution Z̃ and the worst

solution Ẑ:

G̃ = 100 · Ẑ − Z̃
Ẑ

.

Then, the gap between the optimal solution and the sub-optimal solution can be de�ned as:
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G = 100 · G
? − G̃
G?

= 100 · Z̃ − Z
?

Ẑ − Z?
.

By using this formula, it is possible to compare objective functions that admit a solution

value equal to 0, as without loss of generality we can assume Ẑ > Z?.

Comparing the robustness of the models. Figure 3 shows two pairs of tables and

graphs. The tables report the average (a) and the maximum (b) gaps for all the combinations

of upper bounds/optimal solutions. The columns of the histograms represent, for each model,

the sum of the average (a) and maximum gaps (b) obtained when using the solution of that

model to calculate an upper bound for the other models. On average all the models seems

to produce similar solutions, in fact the maximum average gap obtained is only 1.49 percent

(when using the solution from MOD1-D as an upper bound to SRIMF-U). When looking at

the maximum gaps the situation is somewhat di�erent. In �ve cases, in fact, the maximum

gap is higher than 15 percent. This suggests that, depending on the information available,

choosing the right strategy may have a strong impact on the protection level provided.

The histograms can help identifying the models which generate the most robust protection

sets. Both the graphs present a similar trend. For the instances considered, the regret model

MOD1-U gives the best solutions in terms of robustness, with an average gap of about 1

percent, a maximum gap always below 9 percent and an overall maximum gap across all

the models below 20 percent. As the second best model is SRIMF-U, we can state that the

best performances have been obtained when using the increasing probability function. On

the other hand, MOD1-D seems to provide the worst solutions in terms of robustness, as

both the sums of the average and maximum gaps are greater than those of the other models.

These results con�rm a quite intuitive behavior, whereby focusing the protection against a

high number of attacks generally gives good results even in the cases where a low number

of attacks has more chances to occur, but the reverse may be fallacious and lead to highly

inferior solutions. MOD2 presents an interesting behavior, as its average and maximum gaps
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are very similar across all the other models. Moreover it is the third model in terms of total

maximum gap, and on average is not dominated by MOD1-U. This information con�rms our

initial conjecture that, in the absence of an accurate estimation of the probability of loss, a

maximum regret model can be used to identify good quality protection plans.

A �nal remark is that the robustness of the solutions obtained with an expected cost

model are not remarkably di�erent from the ones obtained with an expected regret model.

In fact, the maximum and the average gaps between MOD1 and SRIMF when using the

same probability distribution are fairly small. The robustness of the solutions seems to be

more sensitive to possible misestimations of the probability of disruptions.

Examples of some forti�cation sets

In this section, we analyze and provide some insights about speci�c solutions to the models,

so as to show how the geographical distribution of the protection resources varies for the

di�erent models. Figure 4 shows three di�erent optimal forti�cation sets, corresponding

respectively to the solutions of (a) SRIMF-D and MOD1-D, (b) SRIMF-U and MOD1-U,

and (c) MOD2 for the instance with P = 10, Q = 2 and R = 5. The demands are represented

with small black dots, the open facilities with big black dots and the forti�cations with black

point-up triangles. We chose this instance and these models because the comparison of

the objective function values produced very high gaps: 17.536 percent for the solutions to

SRIMF-D and MOD1-D evaluated for the objective function of MOD2, and 16.749 percent

for the solution to SRIMF-D and MOD1-D evaluated for the objective function of SRIMF-U.

The picture shows that the majority of the facilities is located in the most densely populated

area in the south center of the island. There is then a facility in the South West which serves

the south of Wales (Cardi� Urban Area), one which serves the area around Newcastle-Upon-

Tyne (Tyneside) and two facilities in Scotland (North Lanarkshire and Aberdeenshire).

It can be noted that there is one facility, located in Greater London, which is forti�ed in

all the solutions. The second protected facility, instead, varies for the three models. Namely,
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the two models that use the monotonically decreasing probability function, SRIMF-D and

MOD1-D (see Figure 4.a), harden the facility in North Lanarkshire (Scotland), in order to

counter possible disruptions in the cluster of Scotland, formed by only 2 facilities. When

using this probability function, in fact, the simultaneous loss of 4 or 5 facilities is very

unlikely, and therefore there is no reason to protect facilities that are located in the southern

area where many other facilities are available. As capacities are not taken into consideration,

there will always be a backup facility working in the region. On the other hand, the solution

to SRIMF-U and MOD1-U (Figure 4.b) protects the facility located in the West Yorkshire

urban area. This model, in fact, assumes that large numbers of simultaneous losses are

more likely and, therefore, tends to mitigate the impact of possible losses in the southern

area characterized by a higher concentration of facilities and demands. Interestingly, MOD2

(Figure 4.c) protects the facility located in Tyneside, that is exactly half way between the

northern and southern group of facilities. This is due to the nature of the max regret

objective function that equally minimizes the regret among all the possible number of losses.

To summarize, the following conclusions can be drawn:

1. There are some facilities particularly �crucial� (as Greater London in the example)

which are chosen by all the models.

2. The choice of which of the remaining facilities to protect can signi�cantly change

depending on the model and, in particular, on the probability function.

3. The max regret model produces solutions which are a good trade-o� between the

expected models with increasing and decreasing probability functions.

7 Conclusions

We have presented and compared models that identify the minimum-expected-cost, the

minimum-expected-regret, and the minmax-regret solutions to a stochastic protection prob-

lem in the framework of location analysis. The �rst model, referred to as S-RIMF, was
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initially formulated and solved in [26]. We have extend the solution procedure used for the

S-RIMF to two newly proposed regret problems. The three models have been tested on a

novel data set, and the resulting forti�cation plans have been compared. The �rst analysis

concerned the robustness of the solutions. Our empirical investigation seems to indicate

that: 1) the minimum-expected-regret model produces the most robust solutions; 2) the

use of an increasing probability distribution yields sound forti�cation strategies even when

biases in the likelihood of disruptions are present; 3) in the absence of information about the

probability of loss, the minmax-regret model produces good compromise solutions that have

similar performances across all the di�erent objectives used in the tests. In the second anal-

ysis, we have visually compared the forti�cation plans of a speci�c instance. The analysis

showed that there exist some key facilities which are protected in all the models. The choice

of the remaining facilities highly depends on the probability function used: the models using

an increasing probability distribution tend to allocate protection resources in big, densely

populated clusters, while the models with decreasing probabilities spread out the resources

among smaller clusters. The minmax-regret model provided a solution which is a trade-o�

between the two probability functions. Another important contribution of this work is the

description of the reliability envelope for the problems considered. The representation of the

reliability envelope requires the computation of the worst-case protection plans, which are

obtained by solving a maximization variant of the models. The reliability envelope can throw

some light on the impact of di�erent protection strategies on the overall system e�ciency

and highlight the range of worst-case scenario losses associated with sub-optimal defensive

plans. We hope that this work will inspire other researchers to conduct similar reliability

and protection analysis for other infrastructure systems, such as capacitated or multi-echelon

systems.
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Tables

Table 1: Upper bound procedure example, step 1. Solution to RIMF problems.
r zr W r

1 1 2 601800.56
2 1 8 733601.95
3 1 11 946700.60

Table 2: Upper bound procedure example, step 2. Solutions to RIM problems.
m hm (z1) chm(z1) hm (z2) chm(z2) hm (z3) chm(z3)

1 5 601800.56 2 615585.71 2 615585.71
2 8 11 809010.44 2 7 733601.95 2 7 733601.95
3 8 11 17 992909.66 3 4 6 946700.60 3 4 6 946700.60
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Figures

Figure 1: E�ciency of the system as a function of the number of forti�cations Q (P = 20,
R = 3).

Figure 2: Data set UKMainIsland
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Figure 3: Average and max gap estimations.

(a) Average gap estimation table and sum histogram.

(b) Max gap estimation table and sum histogram.
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Figure 4: Optimal forti�cation sets for the instance with parameters P = 10, Q = 2 and
R = 5.

(a) Forti�cation set for SRIMF-D and
MOD1-D.

(b) Forti�cation set for SRIMF-U and
MOD1-U.

(c) Forti�cation set for MOD2.
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