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Abstract

Interdiction is the deliberate act of attempting to destroy or damage a set

of components of an infrastructure system to degrade its overall performance.

A variety of mathematical interdiction models have been proposed in the liter-

ature to identify critical assets in supply systems. In this paper, we present an

interdiction model for median systems. In this model, the outcome of an attack

is uncertain, i.e. an attack is successful only with a given probability, and the

probability of success depends upon the amount of resources invested in the at-

tack. The objective is to allocate the interdiction resources among the system

facilities to maximize the expected disruption. We study three modeling alter-

natives for this problem. We present a computational comparison of the three

formulations, an analysis of the solutions obtained, and a study that identi�es

those parameters that in�uence the time performance the most. We also test

the robustness of the models to di�erent probability distributions. Finally, we

present results that demonstrate that the new model is more versatile than
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previously proposed interdiction models which do not consider probabilistic

attack outcomes and/or multiple o�ensive resources.

1 Introduction

Critical infrastructures are vital to the welfare of the society. The USA PATRIOT

Act1 de�ned critical infrastructures as "systems and assets, whether physical or vir-

tual, so vital to the United States that the incapacity or destruction of such systems

and assets would have a debilitating impact on the security, national economic secu-

rity, national public health or safety, or any combination of those matters�. The terms

interdiction and attack are used interchangeably and are referred to as the deliberate

act of attempting to destroy or damage a set of components of an infrastructure sys-

tem to degrade its overall performance. An exhaustive survey of interdiction models

published before 2004 can be found in Church et al. [8]. The majority of these models

assume the existence of an interdictor who wants to degrade a system performance

the most using a limited amount of interdiction resources. Interdiction models can

be used to identify critical assets as well as estimate the worst-case scenario due to

disruption, be it intentional or not.

During the last �ve years, many other network interdiction models have been

proposed in the literature to capture more complex issues. Extensions to determin-

istic network interdiction models, include those by Khachiyan et al. [21], Bayrak and

Bailey [3], Royset and Wood [30], Lim and Smith [23], and Murray et al. [26]. The

stochastic interdiction literature is much more limited than its deterministic counter-

part. Some recent stochastic network interdiction models are those by Janjarassuk

and Linderoth [20], Hemmecke et al. [19], Held et al. [18] and Held and Woodru� [17].

On the front of applications of network interdiction models to real world problems,

some noteworthy studies are found in Salmeron et al. [32], Salmerón et al. [31] and

1
Public Law Pub.L. 107-56, 2001
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Arroyo and Galiana [1].

Interdiction applied to facility location di�ers from network interdiction in that

arcs and their characteristics are not considered, and only facilities/nodes and their

services can be interdicted. To the best of the authors´ knowledge, the �rst in-

terdiction models for facility location date back to 2004 (Church et al. [8]). These

models, referred to as r-Interdiction Median Problem (RIM) and r-Interdiction Cov-

ering Problem (RIC), are built on the underlying p-median problem (Hakimi [16])

and the maximal covering problem (Church and ReVelle [9]), respectively. In both

models, interdiction is deterministic and complete. In RIM, the objective is to max-

imize the demand weighted distance between customers and the nearest working

facilities after the loss of r facilities. The RIC objective maximizes the decrease in

coverage due to the removal of r facilities. A probabilistic version of RIM, in which

the outcome of an attack is uncertain, is discussed in Church and Scaparra [11]. In

this model, called the Probabilistic Interdiction Median Problem (PIM), the attack

is successful with a given probability which is known to the interdictor but cannot be

controlled by him. The model proposed in this paper is a further extension of RIM

and PIM, in which the interdictor can, to a given extent, increase his probability of

success through the use of additional limited resources.

Interdiction models allow analysists and modelers to estimate the impact of

disruptions in supply systems. The logical next step is to develop strategies that

mitigate the consequences of disruptions and increase the system´s overall reliabil-

ity. This can be accomplished by devising a protection plan for an existing system

(fortification) or creating an inherently reliable system from scratch (design), where

both fortification and design models, commonly have an embedded interdiction

model. Fortification is concerned with the optimal investment of e�orts to thwart

the attacker's best strategies. Church and Scaparra [7] showed that the most cost

e�ective allocation of protective resources does not necessarily involve the protection
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of all the facilities in the critical set, the set of sites an interdictor would attack in

the absence of any forti�cation. However, at least one site in the critical set must be

in the optimal forti�cation plan. Thus, the solution to a protection plan is neither

obvious nor easy to identify. Church and Scaparra [7] proposed the �rst forti�cation

model for facilities in a supply/service system, speci�cally for the p-median system

(Hakimi [16]). This model assumes su�cient resources to protect no more than q

facilities, which are declared out of the interdictor's reach and are always operational.

Two di�erent solution approaches to solve this problem can be found in Scaparra and

Church [34] and Scaparra and Church [35]. Piyade et al. [28] present an extension to

this model that contemplates dynamic enlargement of the capacity of the facilities at

some pre-de�ned costs and considers nonuniform forti�cation costs instead of �xing

the number of protected facilities to a speci�c quantity. In a similar line, Scaparra

and Church [36] consider capacity restrictions on the system facilities and introduce

penalty costs that are incurred when the total customer demand is not met after a

disruption. Liberatore et al. [22] propose a forti�cation/interdiction uncapacitated

median problem where the number of attacks is uncertain.

Design models are used to identify the optimal location of a set of facilities by

taking into account not only the day-to-day operating expenses but also the costs as-

sociated with potential disruptions (Snyder and Daskin [37], Qi et al. [29]). O'Hanley

and Church [27] proposed a design model for the maximal coverage problem. This

model locates facilities to maximize both the initial demand coverage and the cov-

erage after the loss of r facilities. Bailey et al. [2] present a design problem with a

second-stage adversarial subproblem modeled as a Markov Decision Process.

In this paper, we extend the small collection of interdiction models for facility sup-

ply systems by introducing the Multiple Resource Probabilistic Interdiction Median

Problem (MRPIM). The model assumes that a supply system, where the demand of

each customer is entirely served by their closest facility, is vulnerable to malicious
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attacks. Attacks, if successful, render the interdicted facilities completely inoperable

and force the reassignment of the customers to further facilities, thus increasing the

overall operating costs of the system. In contrast with previous research, an attack

is successful with a given probability and this probability depends on the amount of

resources employed in the attack. In other words, we assume that the interdictor, by

distributing a limited amount of o�ensive resources among the facilities, can control

his probability of success and, consequently, the overall expected damage caused to

the system.

We study three modeling alternatives for MRPIM. Our initial formulation is a

non-linear formulation which includes a new form of closest assignment (CA) con-

straints. These constraints were devised to correctly compute the expected distances

between customers and facilities in the presence of probabilistic assignment vari-

ables, (See Gerrard and Church [14] for an in-depth discussion of other closest as-

signment constraints in location problems). We show how this formulation, called

MIP-MRPIM, can be linearized so that it can be solved directly by commercial MIP

optimizers. Unfortunately, due to the structure of the CA constraints, solving this

formulation requires a considerable amount of computing time even for small prob-

lem instances. We therefore propose an alternative bilevel model, BI-MRPIM, in

which the probabilistic assignments of customers to their closest non-interdicted fa-

cilities are enforced in the lower level problem. We show how this model can be

reduced to a single level model which is amenable to solution by MIP solvers. The

bi-level formulation signi�cantly increases the scope and applicability of MRPIM to

larger problem instances. Finally, we provide a third formulation (NET-MRPIM)

in which the probabilities of assigning customers to their closest facilities, in accor-

dance with the interdictions made, are de�ned as �ow variables on an appropriately

de�ned network. This network formulation is very e�ective and optimally solves all

the instances attempted in negligible computing time.
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The major contributions of this paper fall into two areas: �rst, it enhances the

interdiction modeling literature by introducing a more realistic model in which the

success of an attack is not certain and di�erent amounts of o�ensive resources can

be used to disrupt the facilities. Second, from a modeling prospective, it intro-

duces the de�nition of new closest assignment constraints which can be employed

in combination with continuous assignment variables; the use of bilevel programs to

model complex constraint structures and a non-obvious network representation of a

probabilistic interdiction problem.

The paper is organized as follows: In Section 2 we describe the problem and

present the �rst attempt at modeling MRPIM (MIP-MRPIM). In Section 3 and Sec-

tion 4, the BI-MRPIM and NET-MRPIM formulations are presented, respectively.

We test the performance of the three formulations and analyze the solutions obtained

in Section 5. Finally, we discuss some conclusions in Section 6.

2 Initial Model

2.1 Problem description, input data, assumptions

Our model assumes the existence of a p-median system composed of a set of customers

N (|N | = n), indexed by i, and a set of facilities F (|F | = p), indexed by j, where

hi is the level of demand of customer i, and dij is the shortest distance between each

customer-facility pair (i, j). As in most p-median problems, each customer is served

by its closest open facility (CA rule) since every facility is assumed to have unlimited

capacity.

Our objective is to maximally disrupt this system by interdiction where an attack

on a facility may be successful or not with a given probability. This probability can be

manipulated (increased or decreased) according to the amount of resources invested

in the attack. For simplicity, we use a set of discrete values that re�ect the possible
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amounts of o�ensive resource invested on each facility and denominate them levels

of attack. Let K = {0, ..., kmax}, indexed by k, be the set of all the levels of attack

permitted and sorted in increasing order of attack intensity, and let cjk equal the cost

to attack site j at level k. We denote by pjk the working probability of a facility j

after an attack of level k , where pjk > pjk+1 and cjk < cjk+1, ∀j, k. For convenience,

we will de�ne the lowest level k as no attack so that pj0 = 1 and cj0 = 0.

The objective of the attacker is to maximize the overall expected traveling dis-

tance for serving all customers by disrupting some facilities with a limited o�ensive

budget, r. To ensure service to all demand points even when all the facilities may be

disrupted, we use a dummy facility d that cannot be interdicted. Its working probabil-

ity is always one and there is a penalty did = gi for assigning a customer i to it. From

now onward, we denote by F̄ the set of facilities which includes the dummy facility as

well. Finally, to model the CA rule, we de�ne the set Tij = {l ∈ F |dil ≤ dij, j 6= l},

for every customer-facility pair (i, j). Tij represents the set of facilities closer to i

than j.

Some of the assumptions made in modeling MRPIM are that the attacks on the

facilities are independent, and that the attacker has perfect information, e.g., attacks

success probabilities, about all the input parameters involved in the problem.

2.2 A MIP formulation (MIP-MRPIM)

In this section, we present a single-level formulation of MRPIM, which uses the

following two sets of binary variables:

yjk =


1 if facility j is interdicted at level k

0 otherwise
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θij =


1 if customer i can receive service from facility j

0 otherwise

In addition, for each costumer i and each facility j, we de�ne a continuous decision

variable zij, which represents the probability that customer i receives service from

facility j.

The single-level formulation of MRPIM is:

MaxZ =
∑
i∈N

∑
j∈F̄

hidijzij (1)

Subject to

∑
j∈F̄

zij = 1 ∀i ∈ N (2)

∑
k∈K

yjk = 1 ∀j ∈ F (3)

∑
j∈F

∑
k∈K

cjkyjk ≤ r (4)

zij ≤

1−
∑
l∈Tij

zil

(∑
k∈K

pjkyjk

)
∀i ∈ N, j ∈ F (5)

∑
l∈Tij

((
1−

∑
w∈Til

ziw

)∑
k∈K

plkylk − zil

)
≤M(1− θij) ∀i ∈ N, j ∈ F̄ (6)

0 ≤ zij ≤ θij ∀i ∈ N, j ∈ F̄ (7)
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yjk = 0, 1 ∀j ∈ F, k ∈ K (8)

θij = 0, 1, ∀i ∈ N, j ∈ F̄ (9)

The objective function maximizes the expected weighted distance. Equation (2)

ensures that each customer is served with probability one, either by a unique facility

or through a combination of many, including the dummy facility. The fact that there

is a single level of attack to be executed over a particular facility is accounted for

by (3). Note that within the attack levels considered it is k = 0, representing that

if selected, no attack is accomplished and therefore pj0 = 1. Constraint (4) prevents

the overall cost of the attacks from exceeding the available budget. Constraints (5)

set upper bounds on the probabilities zij. Namely, they state that the probability

of assigning i to j is at most equal to the probability that i is not assigned to any

facility closer than j (1 −
∑

l∈Tij
zil) multiplied by the probability that facility j is

working (
∑

k∈K pjkyjk). Note that the value of zij is strictly less than this upper

bound only if by setting it exactly equal to the upper bound, the total probability of

assigning i exceeds one. Constraints (6) and (7) force closest assignments. Without

these two set of constraints, the program would allocate customers to the farthest

facilities, regardless of the operational status of the closer ones. The idea behind the

CA constraints is the following: for any given customer i and facility j, we check

whether all the variables associated with facilities closer to i than j (zil, l ∈ Tij) take

on the maximum value given by equation (5). If they do, then θij can take value 1 to

indicate that customer i can be assigned to facility j with some positive probability

(zij ≥ 0). Otherwise, if there is a closer facility with some unused probability of

service, θij is forced to zero and, because of constraint (7), zij is forced to zero as

well. Note that a possible value for the big M used in these constraints is simply
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one. Finally, equations (8) and (9) state the domain of the binary decision variables.

Note that the variables zij and θij are de�ned also for the dummy facility, whereas

the interdiction variables yjk are only de�ned for the actual facilities.

A drawback of this model is the presence of the quadratic terms in the constraints

(5) and (6). These can be linearized with the following transformation. For each i,

j, l ∈ Tij and k, we de�ne a variable vijlk ≥ 0. Then the product zilyjk is replaced

by vijlk, and the correct behavior of the newly de�ned variables is imposed by the

inclusion of two additional constraints:

vijlk ≤M1yjk ∀i, j, l ∈ Tij, k (10)

vijlk ≤ zil +M1(1− yjk) ∀i, j, l ∈ Tij, k (11)

In fact, when yjk is zero, then constraints (10) force vijlk to be zero as well. If

yjk equals one, then vijlk takes at most the value of zil (11). As we are dealing with

a maximization problem, vijlk takes the maximum value possible, i.e., zil. M1 is an

upper bound for the variables vijlk and a possible value for it is 1.

Note that constraints (5) could have been written in a more intuitive way as:

zij ≤
∏
l∈Tij

(
1−

∑
k

plkylk

)(∑
k

pjkyjk

)
∀i, j (12)

Here the right hand side of the inequality represents the probability that all the

facilities closer to i than j are not working and that facility j is working. However

these constraints have a higher degree of non-linearity and cannot be easily linearized

through a variable replacement.
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Table 1: RIM vs. MIP-MRPIM: Size comparison
Ω RIM MIP-MRPIM

Cont. Vars np+ p n (p+ 1) + np (p− 1) |K|/2
Bin. Vars p p|K|+ n (p+ 1)
Constraints np+ n+ 1 3np+ n|K|p (p− 1) + p+ n+ 1

Table 2: RIM vs MIP-MRPIM: Size growth rate
∂Ω/∂p (∂Ω/∂n)

Ω RIM MIP-MRPIM RIM MIP-MRPIM

Cont. Vars n+ 1 n+ np|K| − (n|K|/2) p (p+ 1) + p (p− 1) |K|/2
Bin. Vars 1 |K|+ n 0 p+ 1
Constraints n 3n+ 2n|K|p− n|K|+ 1 p+ 1 3p+ |K|p (p− 1) + 1

2.3 RIM vs MIP-MRPIM

We now brie�y analyze the increased di�culty of the model MRPIM as compared to

the deterministic model RIM (Church et al. [8]). Table 1 displays the size of the two

models for three categories (rows under the Ω heading), namely the total number

of continuous variables, binary variables and constraints. Table 2 shows the partial

derivatives of each element with respect to n and p for the two models. These values

express the rate at which each quantity of interest varies for a unit increase in the

number of customers and facilities, respectively. Besides having much more complex

CA constraints, it is evident that the size of MIP-MRPIM is considerably greater

than the size of RIM for each of the three categories. Moreover, the size of MIP-RIM

increases signi�cantly faster as n and p increase.

Preliminary attempts at solving this formulation revealed that for many real

sized problems was not possible to prove the solution optimality within a few hours

of computing time. We believe that the slow convergence was mainly to be imputed

to the constraints (6) and (7). To overcome this di�culty, we propose a bi-level

formulation where the objective of the lower level problem enforces the CA rule.
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3 A Bi-level formulation (BI-MRPIM)

Multi-level formulations are hierarchical problems in which the objective function

and the set of feasible decisions made at one level are in part determined by deci-

sions made at other levels (Bracken and McGill [4]). Multi-level problems are very

common in the literature of interdiction and fortification where the programs have as

many levels as the number of agents with di�erent objectives, e.g., systems planners

and defenders, attackers, system users and operators (Brown et al. [5], Cormican

et al. [12], Scaparra and Church [34], Cappanera and Scaparra [6]). Although con-

ceptually straightforward, bi-level problems are burdensome to solve, especially if

binary variables are present in the lower level problem (See Moore and Bard [24]

or Dempe [13] for an in-depth discussion of bi-level mixed-integer models). Even

bi-level problems with only continuous variables can become intractable as the prob-

lems grow in size (Lim and Smith [23]). Here, we propose a bi-level formulation for

MRPIM with binary interdiction variables that, after simple manipulations, can be

e�ciently solved by all-purpose optimization software.

The bi-level formulation of MRPIM is as follows:

max H(y) (13)

s.t.
∑
k∈K

yjk = 1 ∀j ∈ F (14)

∑
j∈F

∑
k∈K

cjkyjk ≤ r (15)

yjk ∈ {0, 1} ∀j ∈ F, ∀k ∈ K (16)
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where

H(y) = min
∑
i∈N

∑
j∈F̄

hidijzij (17)

∑
j∈F̄

zij = 1 ∀i ∈ N (18)

zij ≤

1−
∑
l∈Tij

zil

(∑
k∈K

pjkyjk

)
∀i ∈ N, j ∈ F (19)

zid ≤ 1 ∀i ∈ N (20)

zij ≥ 0 ∀i ∈ N,∀j ∈ F̄ (21)

Bi-level problems make use of the idea of two-player or leader-follower games

(Stackelberg [38]). Here, the upper level program, (13)-(16) plays the role of the

interdictor who leads the game by choosing which facilities to attack and at which

level (�xes yjk) in order to maximize the system disruption, which is evaluated in the

user problem. The lower level problem (17)-(21) de�nes the strategy of the follower or

system user. The objective minimizes the expected demand-weighted total distance

expressed in terms of the user variables only (zij), but the feasible region is de�ned

by the upper level interdiction variables. Note that the constraints involved in both

the upper and lower level programs are the same constraints that were in the single-

level formulation. For this reason, we omit any further explanation. Note that the

closest assignment constraints of MIP-MRPIM are not necessary as the objective

of the lower level problem will ensure this property in conjunction with constraints

(19).

To solve this problem it is necessary to transform it into a single level formulation

(see for example Wood [40]). For this purpose, we take the dual of the lower level

linear sub-problem in the zij variables.

Let αi, βij and γi be the dual variables associated with constraints (18), (19) and
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(20), respectively. The dual of the lower level sub-problem (17)-(21) is:

max
∑
i∈N

(αi − γi)−
∑
i∈N

∑
j∈F

βij
∑
k

pjkyjk (22)

αi − βij −
∑
l∈Tij

βil
∑
k

plkylk ≤ hidij ∀i ∈ N,∀j ∈ F (23)

αi − γi ≤ hidid ∀i ∈ N (24)

βij ≥ 0 ∀i ∈ N,∀j ∈ F (25)

αi unrestricted ∀i ∈ N (26)

γi ≥ 0 ∀i ∈ N (27)

Note that there are quadratic terms in both the objective function and constraints

(23). These quadratic terms are linearized as follows. Let vijk ≥ 0 be the product of

βijyjk; then, we insert into the model the linearization constraints displayed below:

vijk ≤Myjk, ∀i, ∀j,∀k (28)

vijk ≥ βij −M(1− yjk), ∀i, ∀j,∀k (29)

The use of constraints (28) and (29) ensures that if yjk = 0, then vijk = 0 for each

i; whereas if yjk = 1 then vijk = βij for each i. M is a valid upper limit of vijk. A

possible value for M is maxij (hidij).

The resulting single-level MIP linear problem is:
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max
∑
i∈N

(αi − γi)−
∑
i∈N

∑
j∈F̄

∑
k

pjkvijk (30)

s.t.
∑
k∈K

yjk = 1 ∀j ∈ F (31)

∑
j∈F

∑
k∈K

cjkyjk ≤ r (32)

αi − βij −
∑
l∈Tij

∑
k∈K

plkvilk ≤ hidij ∀i ∈ N, ∀j ∈ F (33)

vijk ≤Myjk, ∀i ∈ N, ∀j ∈ F, ∀k ∈ K (34)

vijk ≥ βij −M(1− yjk), ∀i ∈ N, ∀j ∈ F, ∀k ∈ K (35)

αi − γi ≤ hidid ∀i ∈ N (36)

yjk ∈ {0, 1} ∀j ∈ F, ∀k ∈ K (37)

βij ≥ 0 ∀i ∈ N,∀j ∈ F (38)

αi unrestricted ∀i ∈ N (39)

γi ≥ 0 ∀i ∈ N (40)

vijk ≥ 0 ∀i ∈ N, ∀j ∈ F, ∀k ∈ K (41)

Although this formulation is more e�cient than the previous one, it still ex-

periences some convergence di�culty, especially for large values of the interdictor

budget. We therefore provide a third formulation for MRPIM which proved to be

more scalable across larger parameter ranges.

4 A Network-like formulation (NET-MRPIM)

The second reformulation of MRPIM is based on a network representation of the

problem similar to the one used in Morton et al. [25] and Scaparra [33]. We assume

that each customer i performs a walk through a path including P + 1 nodes. Each
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node along the path corresponds to a facility (including the dummy facility) and

the nodes are sorted in increasing order of distance from i. Let ij represent the j
th

closest node to customer i. Node ij is connected to the next node ij+1 through kmax

arcs, but at most one of these arcs is enabled. Namely, an arc from ij to ij+1 at

level k is enabled only if the facility corresponding to node ij is interdicted with k

resources, where k ranges between 1 and kmax. Customer i visits each node along

the path until he reaches either a node ij with none of its outgoing arcs enabled (i.e.,

a node corresponding to a non-interdicted facility), or the terminal node in his path

(i.e., the node corresponding to the dummy facility).

In this formulation, the interdictor decides which arcs to enable (i.e., which facil-

ities to interdict and at which level), so that the overall demand-weighted distance

is maximized. Note that in this formulation, the decision variables yjk determine

whether an arc leaving node j at level k is enabled or not.

In order to capture the probability that each customer reaches a given node in

this model, we de�ne the following additional variables.

δij : probability that customer i stops at facility j. This quantity is positive only

if facility j is not interdicted.

wijk: if facility j is interdicted at level k, this is the probability that customer i

reaches facility j. This is equivalent to the probability that all the facilities closer to

i than j are not working. If facility j is not attacked with k resources, this quantity

is zero.

xi: probability that customer i reaches the dummy facility.

MRPIM can then be formulated as follows:
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Max
∑
i

hi

(
p∑
j=1

diij

(
δiij +

∑
k

pjkwiijk

)
+ gixi

)

s.t.

wijk ≤ yjk ∀i ∈ N, j = 1, ..., p, k = 1, ..., kmax (42)

∑
k

yjk ≤ 1, ∀j = 1, ..., p (43)

∑
j

∑
k

cjkyjk = r (44)

∑
k

wii1k + δii1 = 1, ∀i ∈ N (45)

∑
k

(1− pij−1k)wiij−1k =
∑
k

wiijk + δiij , ∀i ∈ N, j = 2, ..., p (46)

xi =
∑
k

(1− pipk)wiipk, ∀i ∈ N (47)

yjk ∈ {0, 1}, ∀i ∈ N, k = 1, ..., kmax (48)

wijk ≥ 0, ∀i ∈ N, j = 1, ..., p, k = 1, ..., kmax (49)

xi ≥ 0, ∀i ∈ N (50)

δij ≥ 0, ∀i ∈ N, j = 1, ..., p (51)
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The objective function maximizes the sum of expected distances traveled by all

the customers. Constraints (42) state that if a facility j is not attacked with k

resources (yjk = 0), the probability that any customer i uses arc k to travel from

j to his next closest facility must be zero; else, the probability wijk is at most one.

The interdictor can only use one level of resources to interdict each facility (43) and

cannot exceed an overall budget of r resources (44). Constraints (45)-(47) can be

seen as �ow balance constraints. For each customer i, constraints (45) force one

unit of �ow out of the initial node in i's path. This unit can either �ow to the next

closest facility if one of the outgoing arcs from node i1 is enabled (
∑

k wii1k = 1)

or stop at the �rst node (δi1 = 1), meaning that customer i's demand can be fully

served by his �rst closest facility. Constraints (45) enforce �ow conservation at all

intermediate nodes along the path. More speci�cally, they state that the probability

that a customer i either stops at his jth closest facility (δiij > 0) or proceeds to the

next closest facility using one of the k arcs (
∑
wiijk > 0) is equal to the probability

that i arrives at ij, which in turn is the probability that i arrives at his jth−1 closest

facility through some enabled arc k multiplied by the probability that facility ij is not

working, (1− pij−1k). Note that the maximization nature of the problem inherently

enforces the decisions of leaving or stopping at a given node j to be exclusive, i.e.,

if
∑

k wiijk > 0 then δiij = 0, else if δiij > 0, then
∑
wiijk = 0. Finally, constraints

(47) enforce the probability that each customer reaches the terminal node to be equal

to the probability that the customer leaves the former node, ip, multiplied by the

probability of �nding that node inoperative. Constraints (48) through (51) de�ne

the domain of the decision variables. Figure 1 displays a visual representation of the

NET-MRPIM formulation for a given customer i.
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Figure 1: Visual representation of the NET-MRPIM formulation

4.1 Remarks and Extensions

� The three formulations for MRPIM are a generalization of RIM and PIM. That

is, by setting K = {0, 1}, RIM and PIM can be obtained by choosing pj1 = 0

and pj1 = a respectively, where 0 < a < 1.

� In any of the presented three formulations, cardinality constraints or budget

constraints on the interdiction resources can be used interchangeably. Using

cardinality constraints is equivalent to assuming that each attack level corre-

sponds to the number of resource units used on a facility, each unit of resource

has a unit cost and r is the total number of resources available.

� The MRPIM model can be extended to tackle the case where the facilities can

be interdicted with di�erent types of o�ensive resources (Wood [40]). Several

variations of this extension may be considered. These include: 1) models where

the resources are independent and only one type of resource can be used on a

given facility; 2) models where di�erent types of resources can be employed to

interdict the same facility, and the probability of a successful attack depends

upon both the type and the amount of resources employed; 3) models where

at least one unit of each type of resource must be employed to have a positive

probability of success.
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5 Results and analysis

5.1 Test settings and Input parameters

The tests were conducted on an Intel Core 2 CPU 6700 @ 2.66 GHz, with 2 GB of

RAM. The formulations were implemented in C++ and compiled using Microsoft

Visual C++.NET 2003. Then, the optimizer was called from our source code. We

used CPLEX 9.1. Two data sets were used for the tests: the Swain data set with 55

nodes (Swain [39]), and the London Ontario data set with 150 nodes (Goodchild and

Noronha [15]). In our experiments, we chose kmax = 3 in order to have three levels

of attack: a high level, a medium level and a low level. Also, we used three di�erent

probability functions to model the impact of the amount of o�ensive resources on

the working probability of a facility. Speci�cally, we assumed that for each facility

j, the probability pjk is equal to: 1) pjk = ((kmax − k)/kmax)
φ (concave function);

2) pjk = 1 − k/(kmax + 0.5) (linear function); 3) pjk = φk (convex function). We

assumed that pj0 = 1 for each function, and set φ = 0.6. A discretized representation

of the three probability functions and the corresponding pjk values for each value of

k are displayed in Figure 2.

Figure 2: Convex, Linear and Concave Probability Functions
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Figure 3: Reduction of the working probability from level k − 1 to level k

Figure 3 displays the drop of the working probability after an attack at each

level k for the three di�erent and non-dominated functions. The convex distribution

achieves a faster reduction of the working probability for low level attacks. The

concave function produces smaller reductions for low values of k, but for the largest

value k = 3 it reduces the working probability to zero (Figure 2).

In our initial testing, we use cardinality constraints where r ranges between 1 and

4, as in Church and Scaparra [10]. The number of facilities in the system, p, is equal

to 5, 10 and 15 for the Swain data set, and to 10, 20, 30, and 50 for the London data

set. Finally, in our algorithmic implementation, we set a time limit of 3 hours for

the branch and bound procedure and an optimality tolerance of 0.1%.

5.2 Analysis of Performance

5.2.1 E�ciency comparison of the three formulations

Table 3 displays the results for the Swain data set and the convex probability function

obtained with the three proposed models. Each problem in this data set was solved

to optimality by all the three formulations. The optimal objective function value

for each instance is displayed in the right most column. On average, MIP-MRPIM,
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BI-MRPIM and NET-MRPIM spent 2569.53, 15.49 and 0.4 seconds, respectively, to

�nd the optimal solutions. The network formulation is signi�cantly faster than the

other two formulations.

These results were corroborated when solving larger instances. Table 4 displays

the results for the London data set and the convex probability function. The perfor-

mance of MIP-MRPIM and BI-MRPIM is clearly inferior on this set of instances, in

terms of both time and solution quality. MIP-MRPIM found the optimal solution for

only 17 out of the 40 instances and for 8 instances (denoted with an asterisk) could

not �nd a feasible solution within the 3 hours of computing time allowed. The aver-

age percentage distance from the optimal solution, displayed in the column GAP(%),

was 2.22, and the average time was 6714.3 seconds. The bilevel formulation produced

better results, by solving all but 2 instances to optimality, with an average gap of

only 0.06%. The computing times though were signi�cant (almost 2500 seconds on

average). The NET-MRPIM is the fastest formulation and always reached the op-

timum with an average solution time of 5.6 seconds. The most di�cult instance

(p = 30, k = 3, r = 4) was solved in only 38.86 seconds. Similar improvements from

one formulation to another were obtained with the other probability functions.

5.2.2 Insights on NET-MRPIM performance

Given the e�ciency of the NET-MRPIM formulation, we put it to the test on the

London data set for larger values of the budget r, ranging from 1 up to 12. All the

instances tested were solved to optimality with an average computing time of 75.25

seconds and a worst-case time of 3802.95 seconds, obtained for the instance with the

concave probability function, p = 50, k = 3, and r = 10.

In the Tables 5, 6 and 7 we study the sensitivity of the computing e�ort to the

parameters r, p and k, and to the probability distributions. In each table, we report

the average time across di�erent values of the other parameters while maintaining
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Table 3: Performance Comparison of MIP/BI/NET for Swain

TIME(s) OBJ.VALUE
p k r MIP BI NET
5 1 1 3284.88 0.67 0.02 3437.78
5 1 2 1887.89 0.5 0.05 3894.97
5 1 3 1791.15 0.42 0.05 4344.62
5 1 4 1611.19 0.36 0.03 4712.21
5 2 2 2063.83 0.67 0.09 3894.97
5 2 3 1645.31 1.11 0.2 4344.62
5 2 4 2017.37 1.25 0.27 4799.65
5 3 3 2107.86 1.2 0.34 4344.62
5 3 4 2208.87 1.48 0.55 4799.65
10 1 1 4.33 2.06 0.03 2065.05
10 1 2 24.73 2.92 0.03 2202.33
10 1 3 41.11 3.45 0.01 2339.54
10 1 4 20.2 3.03 0.03 2468.99
10 2 2 4960.63 3.59 0.19 2202.33
10 2 3 3603.45 6.78 0.36 2339.54
10 2 4 3052.9 11.47 0.8 2468.99
10 3 3 10800.74 7.69 0.8 2339.54
10 3 4 10800.76 15.78 1.63 2468.99
15 1 1 6.14 8.31 0.03 1473.88
15 1 2 44.55 16.05 0.03 1580.2
15 1 3 64.08 26.41 0.05 1675.16
15 1 4 64.02 30.85 0.03 1772.21
15 2 2 273.57 9.47 0.22 1580.2
15 2 3 1532.93 31.91 0.48 1675.16
15 2 4 708.76 65.69 0.75 1777.78
15 3 3 4493.3 34.86 1.38 1675.16
15 3 4 10262.8 130.26 2.48 1777.78

Average 2569.53 15.49 0.40
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Table 4: Comparison Performance MIP/BI/NET-MRPIM for London
TIME(s) OBJ.VALUE GAP(%)

p k r MIP BI NET MIP BI
10 1 1 19.31 19.23 0.09 201739.29 0.00 0.00
10 1 2 70.25 24.33 0.14 214437 0.00 0.00
10 1 3 91.49 27.34 0.14 228097.15 0.00 0.00
10 1 4 287.84 27.22 0.13 241318.44 0.00 0.00
10 2 2 9235.72 22.42 1.08 214437 0.00 0.00
10 2 3 5436.53 42.45 2.28 228097.15 0.00 0.00
10 2 4 6300.4 71.74 2.83 241318.44 0.00 0.00
10 3 3 10701.64 47.81 4.61 228097.15 0.00 0.00
10 3 4 10815.35 94.66 8.38 241318.44 0.00 0.00
20 1 1 156.16 15.49 0.09 130190.89 0.00 0.00
20 1 2 1293.6 498.47 0.11 137365.91 0.00 0.00
20 1 3 1548.6 1272.4 0.17 141875.34 0.00 0.00
20 1 4 2180.13 354.73 0.22 146333.56 0.00 0.00
20 2 2 8721.38 160.87 0.22 137365.12 0.00 0.00
20 2 3 10804.99 405.22 5.14 142062.98 0.00 0.00
20 2 4 10804.76 2444.78 5.49 146572.34 3.54 0.00
20 3 3 10805.36 949.34 11.17 142063.01 5.26 0.00
20 3 4 10806.37 3628.37 19.86 146572.56 5.24 0.00
30 1 1 710.74 55.61 0.16 93169.71 0.00 0.00
30 1 2 10808.65 158.43 0.14 97236.04 1.26 0.00
30 1 3 10807.17 647.99 0.17 100388.3 11.86 0.00
30 1 4 10807.62 2208.51 0.17 103490.37 14.51 0.00
30 2 2 10812.12 324.9 0.63 97235.49 3.82 0.00
30 2 3 10812.14 7129.07 3.13 100387.75 5.01 0.00
30 2 4 10812.14 6691.73 8.25 103522.06 5.89 0.00
30 3 3 10816.91 1354.55 17.63 100387.75 2.70 0.00
30 3 4 10815.73 8082.4 38.86 103522.18 2.97 0.00
50 1 1 716.35 62.85 0.25 53452.66 0.00 0.00
50 1 2 * 354.11 0.25 55636.11 * 0.00
50 1 3 * 5449.38 0.25 57569.56 * 0.00
50 1 4 * 10807.98 0.25 59423.29 * 0.00
50 2 2 * 721.98 1.38 55634.92 * 0.00
50 2 3 * 5632.72 5.78 57568.37 * 0.00
50 2 4 * 10813.38 8.13 59422.09 * 1.02
50 3 3 * 8007.06 19.16 57568.37 * 0.00
50 3 4 * 10801.96 34.78 59422.09 * 1.18

Average 6714.27 2483.65 5.60 2.22 0.06
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Table 5: Mean computing time for some �xed values of the parameter r
r 1 2 3 4 5 6 7 8 9 10 11 12

Time 6.87 4.9 9.02 19.02 27.09 35.11 76.63 73.52 103.89 204.79 169.26 162.91

Table 6: Mean computing time for some �xed values of the parameter p
p 10 20 30 40 50

Time 8.5 25.38 50.4 110.54 177.27

one of the parameters �xed.

Note that the largest variation in time is observed for the parameter k, when its

value increases from 2 to 3 (Table 7 (left)). As expected, increasing values of the

parameters r and p result in more di�cult problems to solve. Finally, the instances

using a concave probability distribution seem to be more time-consuming than the

ones with linear and convex distributions.

5.3 Choosing the probability distribution

In this section, we analyze how the probability functions a�ect the number of re-

sources which are employed to hit each facility in the optimal solutions. We then

analyze the robustness of the solutions found to possible misestimations of the prob-

ability functions.

5.3.1 Analysis of the solutions obtained

Figures 4, 5 and 6 display the allocation of resources, averaged across di�erent bud-

get amounts (r), for di�erent values of the parameters k and p. The charts show

Table 7: Mean computing time for �xed values of the parameter k (left) and proba-
bility function (right)

k Time

1 2.51
2 6.73
3 214.01

probabiliy func. Time

Concave 154.7
Linear 22.99
Convex 45.56
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Figure 4: Distribution of resources for London and the concave function

that the probability functions have a big impact on the distribution of the o�ensive

resources among the facilities. In fact, for the concave, linear and convex distri-

butions, respectively, the attacker spends on average 82.6%, 79.6% and 3.3% of its

resources in attacks of level 3. This con�rms a quite intuitive result. Namely, when

we use the concave function, which reduces to zero the working probability of a fa-

cility attacked at level 3, the attacker tends to concentrate his o�ensive resources

on a few key facilities to increase his chances of completely disabling them. On the

other side, when we use the convex probability function, where the marginal work-

ing probability decreases with increasing attack's levels, the attacks are more spread

out across the facilities and the majority of the facilities are attacked with only one

unit of o�ensive resources. The behavior of the linear function is similar to that of

the concave function, although less pronounced, especially in systems with a small

number of facilities (e.g., p = 10).

Tables 8 and 9 display the usage rate of each attack level k given a particular
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Figure 5: Distribution of resources for London and the linear function

Figure 6: Distribution of resources for London and the convex function
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Table 8: Expected usage of level k for London data set
k = 1 k = 2 k = 3

Concave 0.044 0.115 0.993
Linear 0.058 0.168 0.922
Convex 0.608 0.413 0.037

Table 9: Expected usage of level k for Swain data set
k = 1 k = 2 k = 3

Concave 0.061 0.201 0.981
Linear 0.190 0.450 0.819
Convex 0.480 0.523 0.028

probability distribution for the London and Swain data sets, respectively. The tables

display the average values obtained across a set of solutions with di�erent combina-

tions of the parameters p and r. We calculate the usage rate of k for a given solution

as the total number of facilities hit at level k divided by the maximum number of

facilities that could have been attacked at k (maxk), e.g., for r = 5, max1 = 5,

max2 = 2, max3 = 1. Again, it can be noticed that the choice of the level of attack

is highly dependent on the probability distribution: for the concave distribution, the

usage rate of attacks at level 3 is 0.993, whereas for the convex distribution is only

0.037 (Table 8). Similar results hold for the Swain data set, shown in Table 9.

5.3.2 Robustness

Given the strong correlation between the probability functions used in the model

and the distribution of the o�ensive resources among the facilities, we now analyze

the robustness of the MRPIM optimal solutions to an uncertain type of probability

distribution. Tables 11 and 10 display the average regret and maximum regret (in

bold) of supposing a particular type of probability distribution that is not the one

actually occurring. At the bottom of the tables (underscored numbers), we observe

that on average the largest regret for the London data set amounts to 7.4% if a convex

probability function is assumed. For the Swain data set, the largest average regret
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Table 10: Robustess. Percentage di�erence in weighted distance for Swain (ex-
pected/maximum)

Swain
Supposed

Actual
Concave Linear Convex

Concave * 0.039/0.244 0.183/0.337
Linear 0.016/0.119 * 0.046/0.129
Convex 0.107/0.407 0.057/0.244 *

Expected 0.061 0.048 0.115

Table 11: Robustess. Percentage di�erence in weighted distance for London (ex-
pected/maximum)

London
Supposed

Actual
Concave Linear Convex

Concave * 0.005/0.043 0.112/0.304
Linear 0.002/0.026 * 0.036/0.118
Convex 0.041/0.095 0.036/0.082 *

Expected 0.022 0.020 0.074

is 11.5% and is also obtained when we assume a convex probability function. The

safest choice is to assume a linear distribution of the working probabilities. For this

distribution, the average regrets are 2.0% for London and 4.8% for Swain, while the

maximum regrets are 8.2% and 24.4% respectively. The concave or convex functions

can produce an error of up to 40% and 33.7% on the Swain data set. Finally, we

observe that the instances solved for the larger data set (London) are generally less

sensitive to misestimations of the probability distribution.

5.4 MRPIM Justi�cation

In this subsection, we analyze the bene�ts of allowing the usage of multiple resources

to attack a facility in a median interdiction problem. To this end, we compare the

solutions obtained with MRPIM with the ones obtained with RIM and PIM.
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5.4.1 MRPIM versus RIM

One of the basic assumptions of RIM is that an attack on a facility is always success-

ful and entails a cost of one unit. To compare MRPIM and RIM, we changed the

probability distributions so that an attack at the highest level guarantees the destruc-

tion of the facility, i.e., for k = kmax = 3, pj3 = 0 for each probability function. For

each facility j, the modi�ed probability functions, shown in Figure 7, are as follows:

1) pjk = (kmax − k/kmax)0.6 (concave function), pjk = 1 − (k/3) (linear function);

pjk = (kmax − k) /
(
kmax (k + 1)0.7) (convex function), ∀k = 0, 1, 2, 3. Then, an at-

tack of level three in MRPIM generates the same disruption as an attack in RIM.

However, the expenditure of resources is not the same (cMRIM
j3 = 3 6= cRIMj = 1).

Thus, to compare RIM with MRPIM, we assume that the budget available in each

MRPIM instance is |K| times the budget used in the corresponding RIM problem.

Figure 7: Probability distributions to compare RIM with MRPIM

Figures 8 and 9 display, for the London and Swain data sets respectively, the

average objective function values for the three probability distributions and di�erent

values of p (chart on the right) and r (chart on the left). As expected, the convex

distribution produces the best solutions for any value of r and p, since with this

distribution the drop of working probability is the greatest for any k. For the London

data set, MRPIM with the linear and concave distributions �nds exactly the same
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Figure 8: Objective Value of RIM vs MRPIM with di�erent Probability Distributions
for London

Figure 9: Objective Value of RIM vs MRPIM with di�erent Probability Distributions
for Swain
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Figure 10: Probability distribution used to compare MRPIM with PIM

solutions as RIM (Figure 8), i.e., the resources are not spread out. For the Swain

data set, MRPIM with all three probability distributions produces better results

than RIM (Figure 9). This indicates that MRPIM always �nds solutions that are

equal or better than those found by RIM. In other words, the increased �exibility

captured by MRPIM allows the generation of more disruptive attacking strategies.

5.4.2 MRPIM versus PIM

In the PIM model, the facilities can only be attacked with one level of resources, and

each attack has a given probability of success. MRPIM is a more versatile model than

PIM in that it allows the use of di�erent levels of resources to hit each facility and

the probability of success is commensurate with the amount of resources employed

in the attack.

To compare MRPIM and PIM, we use three non-dominated probability distribu-

tions where the values of the probability functions for k = 1 are equal to the proba-

bility used in the PIM model, which we assume to be 0.7. Speci�cally, the probability

of each facility j working is given by: 1) pjk = ((kmax − k) / (kmax − 1))1/3 ∗0.7 (con-

cave function); 2) pjk = 0.3∗ (3− k)+0.1 (linear function); 3) pjk = 0.7/k1.3 (convex

function), where k = 1, 2, 3. The three functions are shown in Figure 10.

32



Figure 11: Objective Value of PIM vs MRPIM with di�erent Probability Distribu-
tions for London

Figure 12: Objective Value of PIM vs MRPIM with di�erent Probability Distribu-
tions for Swain
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Figures 11 and 12 show, for the London and Swain data sets respectively, the

average objective function values obtained with the three probability distributions

for di�erent values of the parameters p (graphs on the right) and r (graphs on the

left). The MRPIM model always outperforms PIM with any probability function in

both the London and Swain data sets. This is due to the greater �exibility of MRPIM

which allows to concentrate more resources on one facility to increase its failure

probability. As expected, the advantage of using MRPIM is more evident when the

concave probability function is used, as in this case the interdiction resources are

more concentrated on a few facilities.

6 Conclusions

Formulating the multi resource interdiction median problem in a computationally

tractable way is a challenge. We have proposed three di�erent ways of representing

this problem mathematically.

We started with a non-linear formulation of the problem and showed how to lin-

earize the resulting model so that it could be solved by commercial MIP solvers. This

model, called MIP-MRPIM, however, only allowed us to solve problem instances of

modest size. We then tried to improve this formulation by representing some prob-

lematic constraints (the ones enforcing closest assignments between customers and

facilities) as a separate optimization problem, thus obtaining a bilevel formulation

(BI-MRPIM). Although more e�cient than the previous one, this model still re-

quired a considerable amount of computing time to solve some problem instances

to optimality. Finally, we proposed a less intuitive formulation, based on a network

representation of the problem, which proved to be extremely e�ective in solving

problems of realistic size.

Overall, we obtained an e�ciency improvement of about 76% when going from
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MIP-MRPIM to BI-MRPIM and an additional 99% improvement when going from

BI-MRPIM to NET-MRPIM. This last formulation allowed us to solve di�cult prob-

lems, characterized by larger interdiction budgets. All problem instances were solved

to optimality in a few seconds, with the largest instances requiring slightly more than

a minute of computing time.

We provided a sensitivity analysis of the solution times to changes in the problem

parameters, and discussed the robustness of the proposed models to possible mises-

timations of the probability functions which were used to represent the probability

of a facility working probabilities as a function of the amount of resources employed

in the attacks.

Finally, we demonstrated that MRPIM is a sensible extension of some previous

interdiction models proposed in the literature, such as RIM and PIM, as it allows

the identi�cation of more cost e�ective interdiction strategies.

In the future, we plan to embed this new interdiction model within protection

and design models so as to identify sound protection strategies and reliable system

con�gurations in the face of malicious attacks.
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