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A PERTURBATION-BASED HEURISTIC FOR THE
CAPACITATED MULTISOURCE WEBER PROBLEM*

17. M. Zainuddin and 2S. Salhi
1 Mathematics Department, Universiti Teknologi Malaysia,
Skudia, Johor, Malaysia.
2 Centre for Heuristic Optimisation, Kent Business School,
University of Kent, Canterbury, UK.

This paper proposes a perturbation-based heuristic for the capacitated multisource We-
ber problem. This procedure is based on an effective use of borderline customers. Several
implementations are considered and the two most appropriate are then computationally
enhanced by using a reduced neighbourhood when solving the transportation problem.
Computational results are presented using data sets from the literature, originally used
for the uncapacitated case, with encouraging results.

Key words : Capacitated; Location-allocation; Continuous space; Heuristics.

1 Introduction

The continuous capacitated location-allocation problem with a fixed number of
open facilities each with a constant capacity, which is also known as the capacitated
multisource Weber problem, may be stated as follows: Given the location of each
fixed point (customer point), the demand at each fixed point, the transportation
cost for the area of interest, the number of facilities to open, and the capacity of
each of these facilities, the aim is to determine the location of each facility, and the
allocation of customers to these open facilities (if more than one facilities are to be
opened).

Given

Parameters:

n : the number of fixed points (or customer points);

w; : demand or weight of customer j (j = 1,...,n);

a; = (aj,a?) : location of customer j where a; € 2, (j = 1,...,n);

M : the number of facilities to be located;

b : fixed capacity of a facility where b € V;

Decision variables:

*This research was conducted when both authors were at the University of Birmingham, UK.
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X; = (X}, X?) : coordinates of facility s where X; € R?;
z;;  quantity assigned from facility ¢ to customer j, i =1,....M,57=1,...,n;

The problem can be formulated as follows:

M n
Minimise Zinjd(Xi,aj) (1)

i=1 j=1
subject to

Y ay<b Vi=1,...,. M (2)

j=1

M

inj:wj ijl,,n (3)

i=1

.’C«LJEO Vz=1,,M,]=1,,n (4)

where

d(X;,a;) represents the Euclidean distance between facility ¢ and customer j;

(1) denotes the objective function which is the total transportation cost, (2)
ensures that capacity constraints of the facilities are not violated, (3) guarantees
that the demand of every customer is satisfied and (4) refers to non-negativity of
the decision variables z;;.

It can be noted that once the set of open facilities has been decided upon ( e.g.,
if we fix the open facilities in the formulation), the resulting problem reduces to the
usual Transportation Problem (TP) which can be solved optimally in polynomial
time. In short, the problem is to find the best facility configuration.

2w

In this study the value of b is set to [2 :11\/[ | where [z] is the smallest integer
n
2w

larger than or equal to x. Note that if b > ] :]1\/[ we introduce a dummy customer

with a 0 transportation cost and a demand equals to the remaining demand (e.g.,
n
2w
b—2 :]1\/[ ). This customer is used only when solving the TP, but not at the location
and the allocation stages.

Most of the work in the literature on the capacitated facility location concen-
trates on the discrete problem and the methods mainly used include dual-ascent
based (Khumawala [11]), cross decomposition method (Van Roy [13]), constructive-
type heuristic(Jacobsen [10], Domschke and Drexl [7]) and Lagrangian Relaxation
heuristics (Beasley [2] and Agar & Salhi [1]).
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Other related work on the continuous location problem include Eben-Chaine et
al. [8] who studied the case of capacitated facility location on a line, and Brimberg
and Mladenovic [4], Brimberg et al [3] and recently by Salhi and Gamal [12] who
investigated the Multisource Weber problem. To our knowledge, it is only Cooper
[6] in the 1970’s who attempted the capacitated continuous case. He presented
exact and approximate methods for solving the transportation-location problem.
The heuristic method described in this work is a modification of the alternating
transportation-location method introduced in [6]. Here, the location method and
the usual TP are alternately applied until there is no epsilon improvement in cost.
We shall describe Cooper’s method [6] as this will be used as the foundation for our
perturbation-based heuristic.

Cooper’s Alternating Transportation-Location Heuristic (ATL)

Firstly, M facilities are randomly chosen from the fixed points. Then, the TP
using these M open facilities is solved to find the allocation for the capacitated

problem. For each of the M independent set of allocations, containing n; fixed
M

points where 7 = 1,..., M and Z n; > n, the new location of the facilities is found
i=1
using the iterative procedure based on the Weiszfeld Equation which is given below.

n; 1 n; 2
y1® _ ; d(Xi(kil)a aj;) and  x2% — g,X::l d(Xi(kil)a aj;) (5)
k1 k1
ji=1 d(Xi( )a a;j;) ji=1 d(Xi( )a a;;)

where the superscript & denotes the iteration number and w;, represents all or a
fraction of the j* customer demand that is assigned to facility i. Obviously w;, < w,
as some customers may have their demand split because of the solution of the TP
and hence some customers can be used more than once in equations (5) with their
appropriate demand adjusted accordingly.

The location problem and the TP are alternately solved until there is no epsilon
improvement in cost.

According to [6], ATL yields a convergent monotone nonincreasing sequence of
values for the objective function. However, there is no guarantee that it will converge
to the global minimum but the result, when not optimal, is found empirically to lie
within ~ 10 percent, and usually within 2 — 3 percent, of the optimal solution when
tested on small instances.

The rest of the paper is structured as follows: In the next section, the modifi-
cation on Cooper’s ATL is presented. Section 3 describes our perturbation-based
heuristic and section 4 presents a neighbourhood reduction for solving the TP. Sec-
tion 5 provides our computational results and our findings as well as some research



issues are given in the last section.

2 A Modified Cooper’s Heuristic

In this section we present a scheme for generating initial solutions and implemen-
tations that consider the diversity of these solutions when addressing the capacitated
problem. These ideas with a slight modification within Cooper’s algorithm are then
combined to form our first heuristic which we refer to as the modified Cooper’s
heuristic.

2.1 The Generation of An Initial Solution

The first part of the heuristic is to generate an initial facility configuration. In-
stead of just starting with M randomly chosen points as in ATL, the initial facility
configuration is found through solving heuristically the uncapacitated problem. This
is used for two reasons (i) the solution found can be optimal or near optimal if found
feasible, and (i7) this solution can be used as a lower bound especially if the solution
is known to be optimal or very close to optimal as shown in the literature (see Brim-
berg et al. [3]). Our approach is based on Cooper’s multi-start alternate algorithm
(CMSA) [5]. For each starting configuration, the Cooper’s alternate procedure of
locate and allocate is carried out until there is less than epsilon improvement in cost,
(say 0.0001). However, the solution found by this method is a local minimum. To
increase the chance of getting a near optimal solution the method is repeated several
times, say K, using different random starting locations. In other words, CMSA is
the repeated use of Cooper’s alternate method.

The Furthest Distance Rule

The obtention of the initial solution can be carried out either randomly or via
quick greedy heuristics for the p median problem. In our preliminary testing (see [14],
p74-80), based on the 50-customers problem from the literature (see [3]), we used
the multi-start heuristic as performed in Cooper, the furthest distance rule which
we refer to as the FDR, and also a combination of FDR and the drop heuristic. As
a compromise between solution quality and computational effort we have opted for
the FDR as our quick heuristic for generating our initial facility configurations for
the uncapacitated location problem. The reasoning behind the FDR is to generate
reasonably quickly initial facility location points which are situated far apart. This
rule is defined as:

E d(X;, aj+) = max d(X;,a;) (6)
: JjeEJ A
t€Ey 1€E)



where F; is the set of facility locations already chosen as initial points, J is the set
of fixed points not chosen yet, and (j*) is the new selected site using equation (6).

The first point is chosen randomly from the existing fixed points, then the re-
maining M — 1 points that are far apart are generated using equation (6). For
simplicity we restrict our initial location to a fixed point though this could be gen-
erated randomly in the plane. The algorithm that uses this idea is referred to as
the Furthest Distance Method (FDM for short) and its steps are given in Figure 1.

Stage 1: Furthest Distance Rule
Step 1 Choose a customer point at random , say ji. Set By = {j1} and k = 2.

Step 2 From E;, apply the furthest distance rule to select a new location point, ji*, set
E1 :Elu{jk*} andk:k+1

Repeat step 2 until ¥ > M then determine the set of customers served by each of the open
facilities, say A;,Vi € E;.

Stage 2: Cooper’s Scheme
Step 3 Apply Cooper’s alternate algorithm using Fy and all A;,Vi € Ej.

Step 4 Repeat step 1 to step 4 for K times, and record the configuration that yields the
cheapest cost.

Figure 1: The Furthest Distance Method (FDM)

2.2 Solving The Capacitated Location Problem

In this section, we first discuss three implementations based on the solutions
found by the FDM to solve the capacitated problem, and then we present the algo-
rithm which we refer to as the modified Cooper’s algorithm.

Multi-Start Alternate Algorithm (MSA)

One way of solving the capacitated problem is by taking the best configuration
(i.e. configuration with the minimum cost) out of the K runs for the uncapacitated
problem to be the starting configuration for the capacitated problem. In other
words, the capacitated problem is only solved once.



Single-Start Alternate Algorithm (SSA)

It is observed that, the best cost for the capacitated problem does not necessarily
originate from the initial solution that yields the best cost for the uncapacitated
problem. Therefore, another way of solving the problem is by considering all the K
configurations for the uncapacitated problem to be the initial starting location for
the capacitated problem. In this case, the capacitated problem is solved K times.

Intermediate-Start Alternate Algorithm (ISA)

In this method, the capacitated problem is solved by using a sample of config-
urations extracted from the K found initial configurations (say D configurations,
D < K) obtained when solving the uncapacitated problem. The scheme of selecting
these D configurations is described below. Once these D configurations are chosen,
we will then proceed to solve the capacitated problem for each value of these D
scenarios. This scheme could be seen as a compromise between the MSA and the
SSA. For instance, if D = K, this becomes the SSA whereas when D = 1 it is the
MSA. Tt is obviously clear that when the value of D gets larger, the quality of the
solution when solving the capacitated problem gets better or remains unchanged
but such a gain in quality requires relatively more computing time.

In this paper, the diversity or the dissimilarity of the sample candidates is mea-
sured based on the cost. The K configurations are arranged in ascending order of
the cost. The least cost configuration (i.e. the top of the list) is always selected since
it has the minimum cost. To choose the other (D — 1) candidates, the gaps between
two successive costs are calculated and used as a measure to differentiate between
dissimilar configurations. In this approach we only consider the configurations with
gaps larger than a prescribed gap € which is defined as the average value of the gaps,

K-1
>_G(H)

i.e. € = =—— where G(t) represents the gap between the cost of the (¢ + 1)

and the t'* configuration. Thus, in this scheme, the value of D is not necessarily

constant.

The Modified Cooper’s Algorithm

The capacitated problem is solved using a procedure modified from Cooper’s
ATL. This method which we refer to as the alternating transportation-location-
allocation-location method (ATLAL) is similar to the ATL except that instead of
alternating between the TP and the location problem, we add another step (see step
4 in Figure 2) where after we get the new location of the facilities, we allocate the
customers to their nearest facility, solve the location problem again and then the
TP for the new allocation for the capacitated problem. The main steps of ATLAL
are given in Figure 2, for a given d,d = 1,..., D where D =1, Kor 1 < D < K.
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Let Sy be the d* configuration and cost(S,) its corresponding cost. If d > 1, we
select the configuration yielding the overall least cost, cost(S}) = ; _I{linD{COSt(Sd)}.

We would like to note that the introduction of this additional étep (step 4)
no longer results in a convergent sequence as the monotonic property can be lost
from one cycle (step 2 to step 5) to another. However, this shake up is embedded
purposely to provide flexibility in exploring more than one local minimum by being
able to escape from regions of the previously found local minima.

Step 1 Find S; the initial starting configuration for the capacitated problem.

Step 2 Apply TP to the facilities found in Sy to find the new allocation for the capacitated
problem.

Step 3 Find their new locations by using equations (5).

Step 4 Allocate the customers to their nearest facility and find the new location using equa-
tions (5).

Step 5 Apply TP to find the new allocation and its corresponding cost.

Step 6 Repeat steps 3, 4 and 5 until there is less than epsilon improvement in cost to obtain
cost(Sy)-

Figure 2: Alternating Transportation-Location-Allocation-Location (ATLAL) for a
givend,d=1,...,D

3 A Perturbation-Based Scheme

A post optimisation procedure that attempts to improve the currently found
solution by ATLAL for each S3,d = 1,..., D is proposed. In this approach, the
locations of the facilities found with the ATLAL heuristic are perturbed by taking
into account the clustering of the borderline customers. These customers are de-
fined as those which lie in between their nearest facility and their second nearest
facility. In other words, the distance between the customers and their nearest and
second nearest facilities is more or less the same. The formation of these clusters is
defined in the next subsection. The point candidates (customers) of these clusters
are temporarily forced to be assigned to their nearest facilities while we solve the
TP. This task is performed by temporarily removing these customers from the sys-
tem when we are solving the TP and then re-introducing them back when we solve
the location problem. This restriction is imposed in order to make the locations of
their ‘best’ facilities nearer to these customers. When using these new locations, it
is likely that some of these customers will be allocated to their nearest facility as
in the uncapacitated case. This scheme is repeated starting with the recent best
configuration for the capacitated problem until there is no epsilon reduction in cost
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or when there is no borderline customers that can be served by their second best
facility. The remainder of this section covers the different mechanisms used within
this perturbation-based procedure.

3.1 The Creation of the Clusters

The construction of the clusters is performed as follows:
(1) Borderline customers

We identify the set of borderline customers, B, irrespective of the capacity of
the facilities as

B={ie{l,..,n} st. p = 7) > Dmaz }
i

where

d(Fy,,1) is the distance of customer 7 to its nearest facility, F7 ,,

d(Fy;,1) is the distance of customer ¢ to its second nearest facility, F;;, and

Pmaz 1S the cut off point.
The choice of the value pq, is important. If the value is too small (near 0), too
many points will be in the set B and if it is too large (near 1), the number of points
in B will be too small. In this work, the value of p,,4, is found dynamically as shown
below where the initial value of p,,q4, is set to 0.8.
(17) Assignment of customers
The set of customers that were re-assigned not to their nearest facility, due to the
TP, is defined by B; as

By ={i€eB and i isnotcompletely allocated to Fi;} ={jn},— _u

where H denotes the number of elements in B; (i.e., |By|).

Note that B; may include borderline customers, that are not necessarily served by
the second, third, ..., best facility. Note also if the weight of a customer is not unity,
this customer may be served by more than one facility. In this case, even if a fraction
of the weight of some facility is served by its ‘best’ facility, it is still considered as
a candidate in B;. The value of |B;| plays also an important role in defining the
centre of the clusters. More explanation on this issue will be given in subsection
(iii) below.

a) Case B; = {} (i.e., all the borderline customers are completely served by their
‘best’ facility).

— If praz > Pmin (the minimum cut off, say 0.6), do the following steps:
Do while ppaz > pPmin and By = {},
set Pmaz = Pmaz — 0.1 and reconstruct B
Enddo



— If praz = Pmin (i-e., all the borderline customers are still served by their
‘best’ facility), do the following;

if (the perturbation scheme is applied for the first time) then

take the configuration found for the capacitated problem using
ATLAL without the perturbation scheme.

else

take the best configuration found from the previous application
of the perturbation scheme as the best solution.

endif

b) Case |B;| > 0 (i.e., not all borderline customers are completely served by their
best facility),

Set Pmaz = Pmaz — 0.1, reconstruct By, and let L = | By].
if (L > H ) take the new value of p,,,,; and the new set B;.

else (i.e., L = H ) take the previous value of p,,, and the previous set
B since there is no change in the number of candidates of By even with ppqs
decreased.

endif

The last value of p,,,,; found is then used as our cut off point for generating

borderline customers. Note that L > H.

(13i) Formation of the clusters

After B; has been identified, we proceed with the formation of the clusters. The

maximum number of clusters is taken to be kg, which is set to M in our study. We

first find the centres of the clusters then assign the customers to these clusters.

a) The obtention of the centres of the clusters

— Find X, the centre of the cluster C; such that X; € By. The first
centre is chosen as the customer of B; with the smallest value of p;.

—  Apply the Furthest Distance Rule as given by Equation (6) based on
By to get the other kg — 1 centres, X € By, k=2,..., k.

The idea of using the Furthest Distance Rule in finding the centres is that
we want the centres to be as far away from each other as possible. This
is because, if the centres are too close to each other, they may attract
one another in the process of clustering the points.

—  Construct a forbidden region.

Note that, when applying the Furthest Distance Rule we may get a point
which is close to one of the points we have already selected previously.
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To avoid this, we impose a forbidden region around the current cen-
tre/s. The concept of making previously visited solutions forbidden for
future exploration is one of the key factors in tabu search meta-heuristic
methodology. In this work, for simplicity, we define such a region by a
circle centred at the current centre with a radius to be defined below.
In other words, only the points that are outside the already constructed
circle(s) are potential points for cluster centers. Therefore, the number
of clusters may be less than or equal to kg, say k;. A similar idea was
also used by Gamal and Salhi [9] when solving the multi-source Weber
problem. The radius of the forbidden region is defined as follows. Ini-
tially, the customers situated within a certain radius around the centre
are found. As there might be some other points that lie close to these
already chosen customers but happen to be just marginally outside the
cluster, the neighbouring customers of these chosen points need also to
be included in the cluster. In the following, for simplicity of notation, we
consider the first cluster as an example since the same formulae applies
to all the & clusters. Let d(X1, FX1) be the Euclidean distance between
the first centre X; and the facility that serves it (FX;) and set the radius
of the forbidden region (7) to r = €4, + € Where €4, is the initial radius

d(X1,FX;)
2

set to . In other words, customers situated within this radius of

the centre will be assigned to this cluster.

€ is the radius of the neighbourhood of the initial cluster candidates which

d(X1,FX1)
)

very close to those already assigned based on €,,,; to be included.

we set to . This flexibility is introduced to allow those customers

b) The generation of the clusters

Let By be the set of all customers served by other facilities than their best
one and note that Bj is not necessarily a subset of B;. Figure 3 shows how r,
€maz and € are defined for a given cluster £, and also illustrates the elements
in B, By, By and the cluster Cx. For each centre, those customers in B, which
fall within the radius €,q, are checked. If the cluster is empty (this means
that there are no other candidate besides the centre), then the next centre is
checked and so on. If some customers are obtained, the cluster’s candidates
are assigned as follows. Firstly, those customers which fall within the radius
€ are assigned to the cluster, initially € = €,,;,,, see Figure 4 for details. If the
cluster is empty, the value of € is increased by a fixed amount (say 5 = 0.1) up
t0 €maz until customer(s) are assigned to this cluster. Then, the neighbouring
customers which lie outside the e radius but within ¢,,;,, radius of the currently
chosen customers are also chosen. To obtain the cluster’s candidates for a
certain cluster, say cluster &, the scheme given in Figure 4 can be followed.

Note that if some customers are served by their ‘best’ facilities, even though they
are located close to one another, as in a cluster, they will not be considered to form
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*b
F2 x P x Fl

x Facilities

* Moved customers

e Borderline customer
served by its best facility

[ Border area

B ={a,b,c,d}, B; = {b,c,d}, B, = {b,c,d,e},Cy = {c,d, e}

Figure 3: Formation of a given Cluster k,k = 1,...,k; with radius r and centre ¢

a cluster.

3.2 Temporary Removal of Clusters

In this subsection, we restrict the clusters to remain assigned to their nearest
facility while we solve the allocation problem. Note that as the total demand of
those customers in a given cluster is relatively smaller compared to the capacity of
the facility as given by the value of b, the assignment of a given cluster to its nearest
facility is therefore feasible. In the case where the facilities happen to have different
capacities, the proposed relaxation scheme needs to be modified to cater for such a
situation. In this scheme we temporarily omit the customers of the clusters when
we are solving the TP. By doing this, we are forcing the customers to remain served
by their nearest facilities until the location of the facilities become unchanged from
one iteration to the next. However, if by assigning a cluster point to its nearest
facility violates the supply constraint of that facility, the point will be omitted from
the cluster. This is repeated for all the clusters obtained. The main steps are
summarised in Figure 5.

We present two variants for handling these clusters when solving the TP with
full capacity. The issue here is to avoid the snowball effect where the location and
allocation of one facility will affect the location of other facilities and the allocation
of their customers. The first variant is based on temporarily removing all clusters
one at time whereas the second concentrates on temporarily removing only those

11



Stage 1: Initial cluster candidates
Step 1 Check the set of customers positioned around the centre X},
N(Xy) = {lp,lp € By such that d(l, Xi) < €maz}-
If N(Xj) = {}, then set the candidate of Cy = X} and stop.
Else set €pin = <52, =0 and L = {0}.
Step 2 Let € = €in(1 + B). If € < €as, for each I € N(Xy) do
if d(lp, Xg) < € then L = LU {i3}.
Step 3 If L # {}, set the cluster Cy = L, else set 8 = 4+ 0.10 and go to step 2.

Stage 2: Neighbourhood of the initial cluster candidates

Step 4 For each [, € L, choose the neighbouring points, J; of the point [/}, as
Jyp = {j,j € By — (B2 N Ck) S.t. d(lh,j) < é} and Cp, = CL U {Jh}.

Figure 4: The Selection of the k' Cluster Candidates, k = 1,..., k

clusters that are likely to have an effect on the total cost.

Remowal of all clusters

The location and their allocation problems with full capacity are solved alternately
for all the clusters until less than epsilon improvement in cost is found. Obviously,
this will require relatively a longer computing time since there are k; full TPs to be
solved at each iteration.

Remowal of some clusters
An empirical study is conducted to see the impact of the change after solving the
TP without those customers belonging to the clusters (step 3 of Figure 5), (6L)g
where £ = 1,...,k; to the final solution found by the full TP when using the
final configuration. This change in cost (6L); is then sorted in descending order.
It is worth noting that in some instances, the final solution is found to be better
even though the respective change in cost (0L) is lower. Therefore, the difference
between the highest change in cost (0L); and the change in cost (0L), that yields the
best solution is calculated for 2 to 25 open facilities for the 50-fixed points problem
and the 287-fixed points problem. These data sets which are usually used for the
multisource Weber problem are taken from the literature (see Brimberg et al. [3]).
From this limited preliminary experiment, we observed that it is not necessary to
solve the full TPs for all the clusters but only to concentrate on those clusters having
a change in cost [(0L)x| < 4|(dL)1|. Here, at each iteration, the number of full TPs
solved is ko where ko < kq. This simple but powerful reduction scheme will then be
used in our future testing.

In this approach, we explore another configuration besides the k, configurations

12



Step 1 Remove the members of one cluster at a time from their current allocation
and assign them to their nearest facilities. In the case of split facilities (i.e. part
of the demand of a given customer is served by some facility and the remaining
by others), all the weight from all the next best facilities that serve the customers
will be removed and added to their nearest facility. If part of the weight is served
by the second best facility, the respective weight will be transfered to the nearest
facility. If by assigning a cluster’s candidate to its nearest facility violates the
supply constraint, the candidate will be omitted from the cluster.

Step 2 For each facility and its assigned customers determine its new location using
Weiszfeld Equation (5).

Step 3 Solve the TP by omitting these customers. In other words, the capacity of
the cluster’s candidates nearest facilities is reduced by the amount of their weights
when solving the TP.

Step 4 If there is no change in the location of all those affected facilities, stop else
re-introduce those removed customers to their respective facilities and go to step
2 except if M calls were already performed then stop.

Figure 5: Temporary removal of a cluster

already obtained. We restrict to just one more only to provide more flexibility while
limiting the additional computational burden as this exercise is performed for each
value of d (d = 1,...,D) and at each iteration. It may be useful to investigate
the effect of exploring more than one additional configuration in future. The idea
is inspired from Genetic Algorithms where a new solution is constructed based on
combining two existing configurations. Here, only the clusters with positive (6L)g
are considered for combination. The rational behind this is that if we combine
two or more clusters having positive (0L); values, we may generate a new solution
with a higher positive value. The new configuration will take the location of the
affected facilities of all the clusters involved. For instance, in Figure 6 where we have
two clusters and four facilities to be opened, after temporary removing the cluster
candidates, the location of facilities 2 and 3 are changed in cluster 1 and the location
of facilities 1 and 4 are changed in cluster 2. Therefore, the new configuration will
take the location of facilities 2 and 3 from cluster 1 and the location of facilities 1
and 4 from cluster 2. However, if there are shared affected facilities, the location of
the facilities 7,4 = 1, ..., M with more total demand will be taken. For example, in
Figure 7, the location of facility 3 is changed in both clusters 1 and 2. But, since the
demand to facility 3 at the location in cluster 1 is more, or in other words, facility 3
has more customers if it is situated as in cluster 1, therefore, the new configuration
will take the location of facility 3 from cluster 1. At each iteration, the number of

13



full TPs to be solved in this method is then k3 = ko + 1.

Configuration of Configuration of .
Cluster 1 Cluster 2 New Configuration
1 1 1
2’ 2 l 2
3 3 3
4 4 4

Figure 6: No Shared Affected Facilities

Configuration of Configuration of '
Cluster 1 Cluster 2 New Configuration
1 1 1>
2’ 2 l 2
3 > % 3 LX) 3 N
If b(3’)2b(3”
4 (3)2b(37) A A

Figure 7: Shared Affected Facilities

The selected configuration is the one that yields the least cost after solving the
full TPs in both cluster methods.

As the solution obtained might be a local minimum, the perturbation scheme
is then applied with the recently chosen configuration as the starting locations.
However, before doing this, the change between the current cost of the capacitated
problem after applying the perturbation scheme, cap*(Sy), and the cost of the capac-
itated problem without the perturbation scheme, cap(Sy), is evaluated. Let (6G)q4
denote this change.

e If (0G), is positive, we start the perturbation scheme again with the recently
obtained configuration.

The process of creating the clusters, forcing them to stay at their nearest
facilities and solving the location and allocation problem is repeated until
there is less than e reduction in cost. It can be observed that after a few
iterations, though the number of clusters and the candidates of the clusters
remain the same, we still continue with this process until no more improvement
in cost. We adopt this strategy since the location may have changed without
affecting any change in the allocation.
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e If (6G), is negative, we record cap(Sy) as our solution and stop.

4 Effect of Neighbourhood Reduction

It can be shown that a large amount of the total cpu time is consumed in solving
the large number of TPs. Note that though the TP is solved in polynomial time, the
use of such a procedure so many times renders the whole exercise computationally
unattractive. There are a few ways on how to overcome this drawback. In this study,
at each iteration, when solving the TP, we concentrate on a smaller portion of the
original problem by considering a subset of facilities only. A smaller neighbourhood
is then defined and the TP is solved for the facilities involved and their respective
customers only. The main steps of the procedure are given in Figure 8 and an
illustration is provided in Figure 9. In other words, for each cluster, we determine
those facilities close to it and the assigned customers and then solve the TP based
on this smaller subset of facilities. According to Figure 8, we apply the TP based on
|H*| facilities (|H*| < M) and A(H*) the new set of allocated customers instead of
n where |[A(H*)| < n. Note that the selection of neighbourhood is carried out using
a distance-related criterion but other procedures such as the use of the Voronoi
diagram are also possible. Though the latter scheme may obviously select more
precisely those affected facilities, since the process of alternating between location-
allocation requires several iterations, our approximation scheme in detecting the
affected facilities is reasonably appropriate. This reduction scheme is embedded into
our method when we are solving the TP for M times while temporary removing
the cluster’s candidates. The effect of such a reduction is demonstrated in our
computational results in the next section.

Step 1 Identify the clusters’ candidates nearest facility, F ¢, and their current allo-
cated facility for the capacitated problem, F'Cj.

Step 2 Compute the distance from the centre of the cluster to its current allocated
facility, R = d(Xy, F'Cy,).

Step 3 Find other facilities, Fj which lie within the circle with radius ® = %R.

Step 4 Identify respective customers currently allocated to the set of facilities in-
volved H* = {Fl,CkaFCkaFk}a say A(H*)

Figure 8: Definition of a Smaller Neighbourhood (|H*| < M, |A(H*)| < n)
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customers.
{7 Not involved facilities with their
. ; customers.
EO— LI *  Tnvolved facilities.
Not involved facilities.
Customers.

o+

Figure 9: Illustration of Smaller Neighbourhood

5 Computational Results

The proposed heuristics are written in Fortran90 and run on Sun Enterprise
Workstation 450 running Solaris 2.6. We used the four test problems given in the
literature for the uncapacitated case, see [3]. These are the 50-fixed points, the 287-
fixed points, 654-fixed points and the 1060-fixed points test problems. The weight of
all customers is set to unity except for the 287-fixed point problem. The algorithms
are applied to the test problems to solve for 2 to 25 open facilities for the 50-fixed
points problem and 5 to 50 with an increment of 5 for the other three problems.
To evaluate the performance of our heuristics, we present the computational results
obtained when solving the problem using the ATL and the ATLAL.

As these instances do not include the capacity of the facilities, we generate the

n
S,
capacity of the facility as b = [%1 The value of b is for some facilities either
larger or smaller than the total demand of the allocated customers to the facilities
for the case of the uncapacitated problem. Note that in some cases, the total supply

of the facilities will exceed the total customers demand as we are using the smallest
n

wj
=1

integer which is greater than . In this case, a dummy customer with a unit

M
transportation cost of 0 and a demand equals to the remaining demand is added.

This dummy customer is used only when solving the TP, but not at the location
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and allocation stages.

The values of the parameters K and € are found empirically using limited exper-
iments. These include K = 50 as required in Figure 1, and € = 0.0001 as referred
in several places throughout the text.

We compute the % deviation based on the cost found for the multisource Weber
problem. As these solutions were already reported in the literature to be optimal
or very close to optimal (see [3]), we can therefore use such solution costs as lower
bounds in our experiments. These are the optimal solutions for the 50 and 287-fixed
points problems and the best known solutions for the 654 and 1060-fixed points
problems given in [3]. The deviation is then computed based on these lower bounds
as follows:

Fyest — Fip

dev(%) = Fi x 100
LB

where Fj. ; is our overall best solution cost and F7p refers to the lower bound or
‘best’ cost for the uncapacitated case. We also record the overall average deviation
(OAD) for the instances for each of the four test problems.

We conducted two experiments. In the first one, our aim is to select, based on
the smallest data set, the most appropriate cluster type method which will then
be used in our second experiment. This variant is then used with the reduction
neighbourhood when dealing with the larger data sets.

Ezxperiment 1: The choice of the variant for the large capacitated problems.

The decision is based on the solution quality (measured by the average deviation)
and the average computing time for the SSA, MSA and ISA using the all-clusters
method (A: Single All Cluster, B: Multi All Cluster and C: Intermediate All Cluster
respectively) without the neighbourhood reduction for the 50-fixed point problem.
These three algorithms are applied to solve for 2 to 25 open facilities. The average
deviation obtained through SSA was 10.20% using 23.67 seconds of computing time,
13.11% through MSA with 0.81seconds and 10.21% through ISA with 9.10 seconds.
The detailed results of all the test problems can be found in [14].

According to our limited experiments, ISA gives much lower average deviation
than MSA but a fraction higher than SSA. In terms of computing time, ISA takes
much shorter time than SSA but slightly longer than MSA. Taking into consideration
both the solution quality and the computational time, we conclude that ISA is the
most appropriate method and therefore for convenience we proceed with the use of
the neighbourhood reduction procedure on this method only.

Ezxperiment 2: The choice of the cluster type method

The results for each test problem are summarised in Table 1. Columns 1, 2 and 3
give the number of customers, the number of facilities and the lower bound (LB) re-
spectively. The rest four double columns represent the % deviation from the LB and
the computing time in seconds needed for the ATL (existing method in [6]), ATLAL
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(the modified Cooper’s ATL heuristic), and our two new variants respectively that
are Intermediate All Cluster + Reduction and Enhanced Intermediate(ISA using
the some-clusters method) + Reduction. The computing time given here excludes
the time for generating the initial starting locations for the uncapacitated problem
as this is almost negligible. It could also be noted that as ATL is relatively much
faster than the others, it may be useful to test this simple method starting from sev-
eral initial solutions as this may improve the current solution found by the present
implementation of ATL.

From our experiments, it can be seen that the neighbourhood reduction does
give a significant improvement in the computing time especially for Enhanced Inter-
mediate + Reduction. For instance, for the 50-fixed point problem, the computing
time is reduced by up to 58%. But for this procedure, the cost is slightly inferior
compared to the procedure where the full TP is solved for every cluster in Intermedi-
ate All Cluster + Reduction. However, for the 50-fixed point problem, this method
reduces the average deviation by up to 48% from the average of deviation given
by ATL, 52% for the 287-fixed point problem, 10% for the 654-fixed point problem
and 29% for the 1060-fixed point problem. It is observed that the one additional
configuration in Enhanced Intermediate does not give much contribution to the final
solution.

The summary of the performance of all the methods given in Table 1 when
represented by the solution quality and the computing time is shown in Figure 10.

140 45000

40000 —

120

35000 =

100

in %)

30000 —

mATL E 25000 —— [BATL
mATLAL i mATAL
[ ntemedite Al Cluste + Reduct [ ntemedite Al Cluste + Reduct
I Enhnced ntrmedte + Reducton ? 00 b |mEnhanced nermedite + Reduction
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on Quality (Average Deviation

15000
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Figure 10: A summary of solution quality and computational time for all the meth-
ods
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Previous Modified ATL New techniques
n M LB ATL ATLAL Intermediate All Cluster Enhanced Intermediate
+ Reduction + Reduction
Dev. Time Dev. Time Dev. Time Dev. Time
(%) (secs) (%) (secs) (%) (secs) (%) (secs)
50 2 135.52 0.84 0.01 0.99 0.38 0.83 0.56 0.83 0.54
3 105.21 1.06 0.01 1.05 0.43 1.02 0.70 1.02 0.65
4 84.15 14.65 0.02 3.23 0.40 2.76 0.67 2.76 0.66
5 72.24 12.37 0.02 6.70 0.47 5.94 1.14 5.94 0.93
6 60.97 0.83 0.02 0.85 0.53 0.85 0.76 0.85 0.75
7 54.50 4.75 0.03 5.21 0.84 3.35 2.17 3.35 2.12
8 49.94 5.33 0.04 2.76 0.72 2.76 1.06 2.76 1.04
9 45.69 9.85 0.04 4.38 1.01 4.05 3.05 4.05 2.81
10 41.69 18.58 0.02 17.50 1.03 15.72 4.21 15.72 3.76
11 38.02 11.62 0.04 7.39 1.29 6.57 3.42 6.57 3.35
12 35.06 16.10 0.05 1.98 1.20 1.98 1.40 1.98 1.38
13 32.31 27.87 0.03 10.07 1.36 8.83 2.81 8.83 2.64
14 29.66 9.69 0.07 7.20 1.44 6.62 2.86 6.62 2.79
15 27.63 14.81 0.05 6.77 1.71 6.49 3.68 6.49 3.08
16 25.74 15.88 0.06 6.83 1.65 5.93 4.41 5.93 4.35
17 23.99 17.80 0.03 9.34 1.66 7.92 6.47 7.92 6.24
18 22.29 22.14 0.04 7.47 1.61 6.89 6.85 6.89 6.35
19 20.64 17.98 0.06 7.36 1.63 7.32 5.97 7.32 5.92
20 19.36 13.97 0.05 17.59 1.94 17.43 9.56 17.43 9.88
21 18.08 39.58 0.07 16.63 2.33 16.41 9.53 16.41 9.08
22 16.82 34.70 0.08 13.90 2.08 13.60 6.21 13.60 6.18
23 15.61 29.76 0.09 16.44 2.63 16.12 6.35 16.12 6.28
24 14.44 20.82 0.10 15.35 2.18 15.35 5.92 15.35 5.88
25 13.30 110.13 0.06 72.08 1.68 70.96 6.25 70.96 6.00
OAV 19.63 0.04 10.80 1.34 10.24 4.00 10.24 | 3.86]
287 5 9715.63 11.61 0.60 7.95 8.09 7.90 56.67 7.90 56.15
10 6705.04 32.19 1.07 28.28 15.78 25.77 539.11 25.77 467.42
15 5224.70 45.88 1.34 40.81 26.77 33.82 1837.17 33.82 1583.15
20 4148.84 48.62 3.57 53.20 30.70 38.99 2532.21 38.63 2451.81
25 3348.71 63.17 3.68 68.02 37.71 44.37 3442.54 44.97 2589.46
30 2716.91 65.63 5.51 92.72 59.84 54.23 6365.81 54.27 5369.35
35 2238.18 107.55 7.41 112.02 74.73 69.27 8310.36 69.56 4815.19
40 1900.84 149.34 6.51 148.19 89.40 84.96 10948.99 88.25 4155.36
45 1630.31 293.58 8.98 167.56 125.38 94.82 12169.82 99.80 2987.60
50 1402.58 383.08 8.73 267.65 183.21 115.94 19814.90 119.22 3593.01
OAV 120.06 | 4.74 98.64 65.16 57.01 6601.76 58.22 2806.85
654 5 209068.80 54.00 1.73 58.20 9.79 54.00 62.72 54.00 63.45
10 115339.03 42.81 2.63 48.70 20.62 42.81 136.94 42.81 110.84
15 80177.04 67.69 4.90 75.55 52.63 67.69 852.92 67.69 576.32
20 63389.02 71.97 5.60 74.70 60.20 69.37 1086.59 69.37 788.59
25 52209.51 66.45 15.42 53.99 117.95 47.52 3842.79 47.52 2382.54
30 44705.19 83.41 15.14 91.79 66.81 86.77 852.18 86.78 275.71
35 39257.27 95.64 15.67 82.28 193.61 78.13 5772.53 78.75 1604.92
40 35704.41 49.78 18.61 45.90 189.50 44.25 4740.56 44.25 1547.38
45 32306.97 80.47 27.99 61.79 226.92 59.23 5112.34 59.23 846.86
50 29338.01 43.47 36.11 43.07 349.55 41.96 20333.38 42.09 3568.67
OAV 65.57 14.38 63.60 128.76 59.17 4279.29 59.25 1176.53
1060 5 1851879.88 1.06 5.60 1.20 54.44 1.06 370.85 1.06 266.73
10 1249564.75 3.14 11.24 3.76 110.14 3.11 1167.35 3.11 562.17
15 980132.13 1.73 47.67 2.02 287.13 1.63 4063.94 1.63 1123.70
20 828802.00 3.56 29.45 3.90 254.62 3.42 5116.90 3.42 2514.43
25 722061.19 6.08 47.75 4.72 780.42 3.87 30551.64 4.18 12072.97
30 638263.00 5.68 58.44 4.57 868.19 3.92 45191.83 3.96 6789.35
35 577526.63 8.13 63.36 3.83 548.16 3.35 21713.60 3.37 5279.45
40 529866.19 7.14 123.59 6.75 1139.13 6.02 47253.61 6.03 21112.48
45 489650.00 10.95 87.97 9.24 1582.52 7.83 120072.31 7.89 34370.33
50 453164.00 9.65 111.25 7.39 1678.53 5.87 130753.06 5.87 75512.33
OAV 5.71 58.63 4.74 730.33 4.01 40625.51 4.05 15960.40

bold: Good solution quality
: CPU best amongst the two new techniques

Table 1: The ATL, ATLAL, Intermediate All Cluster + Reduction and Enhanced
Intermediate + Reduction results for solving the continuous capacitated problem
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6 Conclusion and possible research issues

A perturbation-based heuristic is proposed to solve the capacitated continuous
location-allocation problem which appears to have been scarsely investigated in the
past. The heuristic uses the furthest distance rule method to generate the initial
starting locations for the uncapacitated problem though other rules were also tested.
The uncapacitated problem is then solved using different starting locations for K
times but only a sample of configurations are chosen as the starting locations for
the capacitated problem. The sample is selected using a diversity scheme based on
cost. Initially, the capacitated problem is solved by the alternating transportation-
location-allocation-location (ATLAL) heuristic and later, a perturbation scheme
based on borderline customers is put forward to improve the obtained solution.
A neighbourhood reduction technique is embedded into the perturbation scheme
when solving the TPs with a considerable reduction in computational effort without
a detriment in solution quality. Encouraging results are obtained when compared
to the ATL and its enhanced version the ATLAL. These comparisons are based on
the lower bounds which are taken as those optimal or near optimal solutions pub-
lished for the uncapacitated case. Our obtained solutions could be used in future as
benchmarks for those researchers interested in tackling this challenging continuous
capacitated location problem.

The present work can be enhanced by considering a modification within the TP
to further reduce the computing time. For instance, instead of starting the TP
from the very beginning, we can use the current location and allocation as the basic
feasible solution and continue the search to find the new optimal TP solution. A
possible approach would be to develop also a suitable meta-heuristic to generate even
better solutions. From a practical research viewpoint, it would also be interesting
to tackle the capacitated continuous location problem with an unknown number
of facilities by incorporating the facility fixed cost into the model. The fixed cost
can be considered either constant (fixed charge) or throughput-dependent and/or
zone-related. The authors are currently investigating some of the above issues.
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