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Abstract 

            The heterogeneous fleet vehicle routing problem is investigated using some adaptations 

of the variable neighborhood search (VNS). The initial solution is obtained by Dijkstra’s 

algorithm based on a cost network constructed by the sweep algorithm and the 2-opt. Our 

VNS algorithm uses several neighborhoods which are adapted for this problem. In 

addition, a number of local search methods together with a diversification procedure are 

used. Two VNS variants, which differ in the order the diversification and Dijkstra’s 

algorithm are used, are implemented. Both variants appear to be competitive and produce 

new best results when tested on the data sets from the literature. We also constructed 

larger data sets for which benchmarking results are provided for future comparison. 
 

Key words: metaheuristic, routing, heterogeneous fleet, variable neighborhood. 

 
1. Introduction 

The heterogeneous fleet vehicle routing problem (HFVRP) is a variant of the vehicle 

routing problem (VRP) where the vehicles do not necessary have the same capacity, 

vehicle fixed cost and unit variable cost. We are also given a set of customers, N, a 

certain number of vehicle types, M, each of which has a vehicle capacity mQ , a fixed cost 

mF  and a unit variable cost mα  (m = 1,…,M). As in the classical VRP, each customer 

must be served by one vehicle only, each vehicle must start and finish its journey at a 

central depot and the capacity of a vehicle and the maximum length of a route must not 

be exceeded. The objective of the HFVRP is to minimize the total cost which includes 

both the vehicle variable and fixed costs. The idea is not only to consider the routing of 

the vehicles, but also the composition of the vehicle fleet. According to Liu and Shen 
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(1999) the HFVRP can be regarded as a short-term or mid-term (or long-term) issue, 

depending on the planning purpose. 

     There are several published papers addressing the HFVRP. Golden et al. (1984) were 

among the first authors to tackle this problem using a constant unit variable cost. They 

developed algorithms based on the Clarke and Wright (1964) saving technique for the 

VRP as well as two implementations of the giant tour based algorithm. Desrochers and 

Verhoog (1991) proposed a savings based algorithm using the idea of matching. Salhi 

and Rand (1993) put forward an interactive route perturbation procedure (RPERT) which 

contains seven refinement phases, each aimed at constructing a newly constructed fleet 

with a lower total cost. Osman and Salhi (1996) proposed two algorithms; the first one 

based on a tabu search and the second is a modification of RPERT. Ochi et al. (1998) 

presented an evolutionary hybrid metaheuristic which combines a parallel genetic 

algorithm with scatter search. Gendreau et al. (1999) implemented a tabu search approach 

using GENIUS, initially developed by Gendreau et al. (1992) for the TSP, and some 

search strategies from Gendreau et al. (1994) as well as the adaptive memory procedure 

originally developed for the VRP by Rochat and Taillard (1995). Taillard (1999) 

presented a heuristic using a column generation method. Renaud and Boctor (2002) 

proposed a sweep-based algorithm to generate a large set of good routes, which are then 

used in a set partitioning algorithm. Wassan and Osman (2002) developed tabu search 

variants including reactive tabu search that uses special data memory structures and 

hashing functions. Yaman (2006) put forward six interesting formulations for the HFVRP 

which are enhanced by valid inequalities and lifting. Tights lower bounds and 

comparable upper bounds are found when tested on the Golden et al. (1984) instances. 

The first four formulations are based on Miller-Tucker-Zemlin constraints whereas the 

last two, which proved to be more successful, use flow variables. Choi and Tcha (2007) 

used an efficient application of column generation technique which is enhanced by 

dynamic programming schemes. New tight lower bounds as well as very competitive 

upper bounds for the Golden et al. (1984) instances are obtained. Lee et al. (2008) put 

forward an algorithm that uses tabu search and set partitioning. Very recently, Brandao 

(2008) developed two tabu search variants incorporating GENI and some neighborhood 

reductions.  This implementation produced excellent results.  
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    Other related HFVRPs exist but these are not widely investigated. Salhi et al. (1992) 

were the first who considered unit variable cost. They presented a mixed integer 

formulation of the problem and modified the saving based methods of Golden et al. 

(1984) accordingly. Salhi and Sari (1997) presented a multi-level heuristic enhanced by 

two powerful neighborhood reductions to address the multi-depot HFVRP. Several 

insertion-based saving heuristics for solving the HFVRP with time windows 

(HFVRPTW) were proposed by Liu and Shen (1999). Dullaert et al. (2002) developed 

three insertion based heuristics to tackle the HFVRPTW. The HFVRP with a fixed fleet 

was solved by Taillard (1999) and Tarantilis et al. (2003, 2004). Li et al. (2007) put 

forward record-to-record travel heuristic originally proposed by Dueck (1993) and also 

designed large data sets for this HFVRP. Tarantilis and Kiranoudis (2007) adapted a 

BoneRoute method that uses adaptive memory to solve two case studies, one from the 

diary and the other in the construction sector. Dondo and Cerda (2007) developed a three 

phase heuristic for the multi-depot HFVRPTW. The idea is to use clustering to reduce the 

size of the problem which is then solved optimally. Table 1 summarizes studies related to 

the HFVRP. 

    The remaining parts of the paper are organized as follows. The proposed VNS 

algorithm is presented in Section 2. The explanation of its main steps is provided in 

Section 3 which also includes variants of our approach. The computational results are 

given in Section 4. The last section summarizes our findings.  

 
2. Adaptation of the Variable Neighborhood Search  

 
VNS was initially proposed by Mladenovic and Hansen (1997) for solving combinatorial 

and global optimization problems. The main reasoning of this metaheuristic is based on 

the idea of a systematic change of neighborhoods within a local search method.  
 
The basic VNS algorithm 

The basic VNS algorithm starts by selecting a set of neighborhood structures kN  

),...,1( maxkk = , where kN is the thk neighborhood. Given an initial solution x, a random 

point x′ in )(xN k is generated. Starting from x′ , a local search is then performed to 

produce x ′′ . The use of x′ can be considered as a simple way of maintaining 
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diversification through the search. If x ′′  is better than the incumbent best solution x , 

then xx ′′= , and the search returns to 1N , otherwise the search explores the next 

neighborhood 1+kN . This is repeated until  .maxkk =  Interesting new variants of this  
 

Table 1: Summary of the HFVRP related papers 
Authors Journal (year) HFVRP Type Method Used 

Golden et al. 
 
Desrochers and 
Verhoog 
Salhi et al. 
 
Salhi  and Rand 
 
Osman and Salhi 
 
Salhi and Sari 
 
Ochi et al. 
 
Taillard 
 
Gendreau et al. 
 
Liu and Shen 
 
Dullaert et al. 
 
Renaud and Boctor 
 
Wassan and Osman 
 
Tarantilis et al. 
 
Tarantilis et al. 
 
 
Yaman  
 
Choi and Tcha 
 
Tarantilis and 
Kiranoudis 
Li et al. 
 
Dondo and Cerda 
 
Lee et al. 
 
Brandao 

COR (1984) 
 

COR (1991) 
 

Omega(1992) 
 

EJOR (1993) 
 

Book (1996) 
 

EJOR (1997) 
 

FGCS (1998) 
 

RAIRO (1999) 
 

COR (1999) 
 

JORS (1999) 
 

JORS (2002) 
 

EJOR (2002) 
 

JORS (2002) 
 

JORS (2003) 
 

EJOR (2004) 
 
 

Math. Prog (2006) 
       

COR(2007) 
 

EJOR(2007) 
 

COR (2007) 
 

EJOR(2007) 
 

JORS(2008) 
 

EJOR(2008) 

vehicle fixed cost 
 
vehicle fixed cost 
 
vehicle fixed cost and vehicle 
variable cost 
vehicle fixed cost only 
 
             “              “ 
 
multi-depot, vehicle fixed cost, and 
vehicle variable cost. 
vehicle fixed cost 
 
fixed fleet, vehicle fixed cost, and 
vehicle variable cost 
vehicle fixed cost and vehicle 
variable cost 
time window and vehicle fixed 
cost 
              “              “ 
 
vehicle fixed cost 
 
vehicle fixed cost and vehicle 
variable cost 
fixed fleet, vehicle fixed cost and 
vehicle variable cost 
              “               “ 
 
          
vehicle fixed cost            
 
vehicle fixed cost and vehicle 
variable cost 
fixed fleet for dairy and 
construction company 
fixed fleet, vehicle fixed cost and 
vehicle variable cost 
multi-depot, time window and 
vehicle fixed cost            
vehicle fixed cost and vehicle 
variable cost 
vehicle fixed cost and vehicle 
variable cost 
 

saving-based and 
giant tour 
saving-based 

 
saving-based 
 
perturbation/composite 
 
perturbation/composite 
and tabu search 
multi-level 
 
genetic algorithm and 
scatter search 
tabu search 
 
tabu search 
 
saving-based 
 
insertion-based 

 
sweep-based 
 
reactive tabu search 
 
threshold accepting 
(list based) 
threshold accepting 
(non-monotonic    
 update) 
several formulations + 
valid inequalities 
column generation + 
dynamic programming 
boneroute + two phase 
construction heuristic 
record-to-record  
 
reduction based 
clustering + MILP 
tabu search + set 
partitioning 
tabu search 
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classical VNS are presented in Hansen and Mladenovic (2003a,b). An overview of 

heuristic search including VNS is given in Salhi (2006) and a variety of useful 

applications of  this meta-heuristic can be found in Melian and Mladenovic (2007). 

 
Some enhancements to the basic VNS algorithm 
 
In this study, the basic VNS algorithm is adapted to solve the HFVRP. To our 

knowledge, this is the first VNS implementation to this particular routing problem. The 

basic VNS algorithm is enhanced by the use of additional features which consists of  

adopting a set of local search procedures including the Dijkstra’s algorithm, introducing a 

well structured diversification scheme, and keeping one empty dummy route during the 

search process for added flexibility. The proposed algorithm is described in Figure 1. 

 
     Step (0) Initialization. Define a set of neighborhood structures max,...,1for  , kkNk = and a set  
                   of  local searches ,lR for max,...,1 ll = . Set the maximum number of diversifications,   
                   NbDivMax and the number of diversifications, NbDiv = 0. Generate an initial  
                   solution x  and set .xxbest =   
     Step (1) Add an empty dummy route if there is none. 
     Step (2) Set 1←k  
     Step (3) Repeat the following steps until :maxkk =  

(a) Shaking. Generate a point x′ at random from the thk  neighborhood of   
        ))(( xNxx k∈′ ; 
  (b) Local search: Apply a multi-level approach to find the best neighbour x ′′ . 

                      (c) Move or not. If the local optimum x ′′  is better than the incumbent x ,  
                            set xx ′′←  and go to (2);  otherwise set 1+← kk . 
      Step (4) Construct the cost network using the incumbent x and apply Dijkstra’s algorithm  
                    to get x~ . If the new solution x~ is better than x, set xx ~← and go to (2). 
      Step (5) If the solution x is better than bestx , set xxbest ← ; 
                    If NbDivMaxNbDiv >  then stop, else set 1+← NbDivNbDiv , apply the  

     diversification procedure and go to (1).  
 

Figure 1: VNS-based HFVRP algorithm 
 

An overview of the proposed algorithm 
 
An initial solution x is first generated and it is used as the initial global best, bestx . We 

have a set of neighborhood structures kN , ),...,1( maxkk =  and a set of refinement 

procedures which will be described later. The search begins by generating a random 
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feasible solution x′  from N1(x), which is taken as the temporary solution. x′ is then 

improved by the set of local searches (refinement procedures) which are implemented 

within a multi-level framework (Salhi and Sari, 1997). The multi-level approach is 

similar to the variable neighborhood descent (VND) of Hansen and Mladenovic 

(2003a,b) except that the search is not necessarily linked to neighborhoods only but also 

to refinement procedures. If the solution obtained by the multi-level approach, x ′′ , is 

better than the incumbent best solution x, then xx ′′= and the search reverts back to N1. 

But if x ′′ is found to be worse or the same as x, we generate x′ from the next 

neighborhood say Nk(x) and apply the multi-level approach again. The process is repeated 

until the search reaches .maxkN  If the solution obtained from Step 3 is worse than the 

incumbent bestx , a cost network, as described in Section 3, is constructed based on x and 

then Dijkstra’s algorithm is utilized on this cost network to generate x~ . If x~ is better than 

x the search reverts back to N1 with xx ~= , otherwise a diversification procedure is 

introduced to produce a new initial solution, x, and the process is repeated starting from 

Step 2. The search terminates after a maximum number of diversifications (NbDivMax) is 

reached.  

 
3. Explanation of the Main Steps  
 
The procedures used within the steps of the algorithm are described below but a detailed 

flow chart is provided in Appendix A. 
 
Initial solution (Step 0) 
 
The initial solution is obtained in three steps; (a) construct a giant tour using the sweep 

algorithm of Gillett and Miller (1974), (b) improve this tour using the 2-opt of Lin 

(1965), and (c) construct the cost network and then apply Dijkstra’s algorithm (1959) to 

find the corresponding optimal fleet size. Dijkstra’s algorithm systematically provides an 

initial solution that contains routes with their appropriate types of vehicles. This 

partitioning procedure based on solving the shortest path problem was presented by 

Beasley (1983) for solving the VRP and by Golden et al. (1984) for the HFVRP. Since 

then, this partitioning approach has been used by several authors, including Ulusoy 

(1985) for the fleet size and mix problem for the capacitated arc routing problem, Ryan et 
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al. (1993) and Renaud et al. (1996) for the VRP and Salhi and Sari (1997) for the multi-

depot HFVRP. However, it is worth noting that this partitioning procedure can not be 

used in its original form when the number of vehicles of each type is required. To avoid 

using the largest distance between two successive customers in a given route, the starting 

points, in the construction of the cost network, are used as those that generate the highest 

largest distances between two successive customers (i.e. gaps) in the giant tour. The 

number of gaps (NG) generated is defined as follows: 

NG= }))
2

,min(:)1,((),,8{max( 2

+
>+

gggiiMin i
NR                                             (1)  

 
where, NR is the number of routes found by Dijkstra’s algorithm, (i,i+1)  the ordered 

sequence of customers, ig  the ith gap (i.e. the distance between customer i and i+1), g  

the average gap, and +g  the largest gap. The reasoning of using (1) is based on the idea 

of linking the value of NG to the number of routes and also to the number of gaps that 

relate to the average as well as the largest gap. For each of the NG selected gaps, say 

(i1,i1+1), two cost networks are then generated starting from i1 anticlockwise and from 

i1+1 clockwise. Dijkstra’s algorithm is then applied to each of these NG×2 cost 

networks. Note that since the network on which the shortest path to be found is acyclic, 

one could obviously use the standard dynamic programming algorithm instead. In this 

paper we implement the former as it is available to us. 

 
Construction of a cost network through an illustrative example 
 
In order to apply Dijkstra’s algorithm, we first construct a cost network considering 

customer data, capacity constraint, distance constraint, and vehicle unit variable and fixed 

costs. For illustration, consider 11 customers making up the following giant tour 

σ  = ( 1, 2, 3, …, 11) with customer demand q = (2, 1, 2, 3, 4, 1, 2, 1, 2, 2, 3). There are 

two types of vehicles; one with a maximum capacity of 6 units (type 1) and the other with 

9 units (type 2). Also let ijd be the distance between node i and node j. 
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Figure 2: Network construction for Dijkstra’s algorithm 

 

We start to construct this cost network by calculating the cost from the depot, denoted by 

0, to customer 1 and from this customer  to the depot (return journey) as the cost of the 

arc 0-1. This is expressed as )2( 011101 dFC α+= . If the total demand of both customers 1 

and 2 does not violate the capacity constraint of the smallest vehicle, we calculate the 

cost of the arc 0-2 as )( 2012011102 dddFC +++= α . We continue with this cost 

construction until the vehicle of type 1 is full, and then we start using the next large 

vehicle (i.e., vehicle of type 2). Figure 2 shows that we can only have customers 1, 2, and 

3 together in the vehicle of type 1. Customers 1, 2, 3, and 4 can then be served by the 

vehicle of type 2. It is represented by the arc 0-4 which has a cost 

)( 04342312012204 dddddFC +++++= α . If the vehicle of type 2 is full we start again by 

using the vehicle of type 1 and calculate the distance from the depot to customer 2 and 

from customer 2 to the depot (arc 1-2). Customer 3 (arc 1-3) will be added to the vehicle 

of type 1 if the maximum capacity of this vehicle is not violated, otherwise the vehicle of 

type 2 is used. The process is continued until there is no more arcs connecting the last 

customer in the giant tour. In general, the cost of arc ij is defined as in Equation (2).                   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++= ∑

−

+=
++

1

1
0,1,1,0

j

ik
jkkissij dddFC α                                                                              (2) 
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where s denotes the smallest vehicle type that accommodates .
j

k
k i

q
=
∑  After creating this 

cost network, whose origin is depot ‘0’ and the destination is the last node in the giant 

tour, we apply Dijkstra’s algorithm to produce the least cost path from the origin to the 

destination.  

 
Adding flexibility via an empty dummy route 
 
In this step, a procedure is used to create an empty route after the initialization phase and 

also when the diversification procedure is applied. Note that in the search we only need 

one empty route in our system at any time. In the case a second empty route materializes 

during the search, we systematically remove it. The empty route provides the search with 

extra flexibility as this may reduce the total cost if found worthwhile by allowing the load 

served from a large vehicle to be split into two smaller vehicles.  

 
Neighborhood Structures (Step 3a) 
 
Six neighborhoods, which are briefly described in this subsection, are used in this study 

(i.e. kmax = 6). These include the 1-1 interchange (swap), two types of the 2-0 shift, the 2-

1 interchange, and two types of the perturbation. The order of the neighborhoods, which 

is chosen after some experiments, is as follows; the 1-1 interchange is used as N1, the 2-0 

shift of type 1 as N2, the 2-1 interchange as N3, the perturbation of type 1 as N4, the 

perturbation of type 2 as N5, and finally the 2-0 shift of type 2 as N6.  

 
The 1-1 interchange (the swap procedure) 
 
This neighborhood is aimed at generating a feasible solution by swapping a pair of 

customers from two routes. This procedure starts by taking a random customer from a 

randomly chosen route and tries to swap it systematically with other customers by taking 

into consideration all other routes. This procedure is repeated until a feasible move is 

found. 

 
The 2-0 shift   
 
In the 2-0 shift, two consecutive random customers from a randomly chosen route are 

selected. These two customers are considered together for possible insertion in other 



 11

routes in a systematic manner. This procedure is repeated until a feasible move is found. 

We name this procedure the 2-0 shift of type 1. Another 2-0 shift, which we refer to as 

the 2-0 shift of type 2, is similar to the above shift except that the two customers are 

allowed to be inserted into two different routes. 

 
The 2-1 interchange  
 
This type of insertion attempts to shift two consecutive random customers from a 

randomly chosen route to another route selected systematically while getting one 

customer from the receiver route until a feasible move is obtained.  

 
A new perturbation mechanism 
 
This scheme was initially developed by Salhi and Rand (1987) for the VRP by 

considering three routes simultaneously. Here, it starts by taking a random customer from 

a randomly chosen route and tries to relocate that customer into another route without 

considering capacity and time constraints in the receiver route. A customer from the 

receiver route is then shifted to the third route if both capacity and time constraints for the 

second and the third route are not violated. We refer to this as the perturbation of type 1. 

An extension of such a perturbation is the one that shifts two consecutive customers from 

a route. In this procedure, instead of removing one customer at the beginning we remove 

two customers. We name this procedure as the perturbation of type 2. 

 
Local Search (Step 3b) 
 
Six refinement procedures are adopted to make up our local search. The order of the 

refinement procedures, which is chosen after some experiments, is as follows: the 1-

insertion inter-route as the first refinement procedure R1, the 2-opt inter-route as R2, the 2-

opt intra-route as R3, the swap intra-route as R4, 1- insertion intra-route as R5, and finally 

the 2-insertion intra-route as R6.  

    The process starts by generating a random feasible solution x′  from N1, which is used 

as the temporary solution. The multi-level approach then starts by finding the best 

solution x ′′ using R1. If x ′′ is better than x′ , then xx ′′=′ and the search returns to R1, 

otherwise the next refinement procedure is applied. This process is repeated until R6 can 

not produce a better solution. This implementation of the multi-level approach is similar 
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to a mini VND as described in Hansen and Mladenovic (2003a,b), where the lR represents 

the lth neighborhood. 

 

The 1-insertion procedures (inter-route and intra-route) 
 
Two types of the 1-insertion procedures are used. The first is the 1-insertion intra-route 

and the second is the 1-insertion inter-route. In the 1-insertion intra-route we remove a 

customer from its position in a route and try to insert it elsewhere within that route in 

order to have a better solution. Meanwhile, in the 1-insertion inter-route, each customer 

from a route is shifted from its position and tried to be inserted elsewhere into another 

route. If this shifting does not violate any constraints and improves the solution, the 

selected customer is then permanently removed. 

   
The 2-insertion (intra-route) 
 
The 2-insertion intra-route allows us to remove two consecutive customers and insert 

them elsewhere within a route to produce a cheaper route.  

 
The 2-opt (inter-route and intra-route) 
 
The 2-opt intra-route, usually refer to as the 2-opt (Lin, 1965), is an old but a simple and 

an effective improvement procedure that works by removing two non adjacent arcs and 

adding two new arcs while maintaining the tour structure. A given exchange is accepted 

if the resulting total cost is lower than the previous total cost. The exchange process is 

continued until no further improvement can be found. The 2-opt inter-route is similar to 

the 2-opt intra-route except that it considers two routes where each of the two arcs belong 

to a different route and reverse directions of the corresponding affected path of each 

route. 

 
The swap (intra-route) 
 
The swap intra-route is aimed at reducing the total cost of a route by swapping positions 

of a pair of customers within the route.  
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Use of Dijkstra’s Algorithm as an Extra Refinement (Step 4) 
 
Dijkstra’s algorithm, besides being used to generate an initial solution, is also applied as a 

post optimizer. Here, the cost network is constructed from the incumbent best solution. 

The aim is to see whether the optimal solution for the shortest path based on the 

corresponding cost network is different to the current one or not. In this procedure, the 

two end points of the first route of the incumbent best solution are used as the starting 

points and then all the other routes are combined to form the giant tour. The steps of this 

procedure, when the first point of the first route is used to construct a network, are 

presented in Figure 3. 

 

      Step 1. Use the first node of the first route as the starting point. 

Step 2. Connect the nearest end points of other routes with the last node of the first   

             route. Select the route which has the nearest end point as the next route. If the  

             nearest end point is the last point in that route, reverse the route order. 

Step 3. Apply Step 2 to the remaining routes by starting from the selected route in Step 2. 

 
 

Figure 3: Construction of the cost network  
 

     When we start from the other end point (i.e., the last node) of the first route, the order 

of that route is reversed but step 2 and step 3 of Figure 3 are similar. This construction 

obviously ensures that the current solution is feasible and hence Dijkstra’s algorithm 

might discover a better one. Note that this construction can obviously be started from the 

end points of any route, not necessarily the first one.      

 
The Diversification Procedure (Step 5) 
 
This procedure is used when there is no further improvement after all the local searches 

are performed. The idea is to explore other regions of the search space that may not have 

been visited otherwise. The incumbent best solution is used as an input for the 

diversification procedure to obtain the new initial solution. The idea is to construct a cost 

network by starting from a node which is not the first point of any route, when following 

clockwise direction, and also not the end point of any route, when following 

anticlockwise direction. This will ensure that a route from this incumbent best solution is 
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split, a new cost network that does not include the current solution is constructed, and 

hence a new solution generated. The steps of the diversification procedure are presented 

in Figure 4. In this study, the number of diversifications (ND) is set 

as )2 ,100( NMinND = , where N represents the number of customers in a given instance. 

 

      Step 1.  Connect all points; the last point of the previous route is connected to the first point  
                    of the next route. 

Step 2.  Calculate all distances between two consecutive points. 
Step 3.  Select the largest distance between two consecutive points which are not two end  
              points of different routes,  say ),( 21 ee  as the starting point. 

      Step 4.  Construct the cost network starting from 2e clockwise and apply the Dijkstra’s  
                    Algorithm.               
      Step 5.  As in Step 4, but start from 1e counter clockwise. 
                               

Figure 4: The diversification procedure 

 
Variants arising from our VNS 
 
In this subsection we explore the effect of using Dijkstra’s algorithm as an additional 

local search within our multi-level heuristic and the diversification procedure as our 

seventh neighborhood. Five variants of our original VNS algorithm which we refer to as 

VNS1 are considered. The first variant uses neither Dijkstra’s algorithm nor the 

diversification procedure. In other words, steps 4 and 5 of Figure 1 are omitted. The 

second and third variants both use Dijkstra’s algorithm as a local search (part of Step 3b) 

but in the second variant the diversification procedure is not utilized (no step 5). The 

fourth and the fifth variants both use the diversification as the seventh neighborhood (i.e. 

N7 using 7max =k ) but Dijkstra algorithm is only used as a local search (part of Step 3b) in 

the latter version. For consistency, the total CPU time of VNS1 is used as a guide for the 

stopping criterion for all these variants. Based on our preliminary testing, it was observed 

that the best results are found by adopting the last variant though the other four produced 

reasonably good results as well. We refer to this chosen fifth variant as VNS2 in our 

subsequent experiments. In brief, VNS2 is similar to VNS1 except that in Figure 1, Steps 

4 and 5 are removed, Dijkstra’s algorithm is used as the last local search of the multi-

level heuristic in Step 3b and the diversification procedure is introduced as N7 in Step 3a. 
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4. Computational Experience 
 
The algorithm is programmed in C++ which also includes a simple neighborhood 

reduction. The idea is to restrict the search to neighboring customers only (Salhi and Sari, 

1997). This results in reducing the CPU time by approximately 13% without affecting the 

solution quality. Three cases of HFVRP are used as a platform to evaluate the 

performance of the proposed heuristics. These include the HFVRP with vehicle fixed 

costs only, the HFVRP with unit variable costs only and finally the HFVRP with both 

vehicle fixed costs and unit variable costs.  For all the three cases, we carried out two sets 

of experiments based on ‘small’ and ‘large’ data sets which we refer to as ‘Class I’ and 

‘Class II’ respectively. In Class I, the data sets from the literature (Golden et al., 1984; 

Taillard, 1999; Choi and Tcha, 2007) are used. Here, the largest instance has 100 

customers. The lower bounds we record in this study are found by Choi and Tcha (2007) 

except when noted otherwise (i.e. tighter bounds by Yaman, 2006). In Class II, the large 

data set of Li et al. (2007) is modified using suitable vehicle capacity and unit vehicle 

costs. These instances range in size from 200 to 360 customers. Given that randomly 

generated solutions are used within our VNS heuristics (Step 3a in Figure 1), our search 

process is restarted a few times, 10 times for Class I and 5 times only for Class II due to 

their larger sizes. In the subsequent tables the best solutions are recorded in bold and the 

new best solutions are underlined. For each instance, say k, we compute the relative 

percentage deviation as ( ) ,100)(cos ×− kkk bestbestt  where costk and bestk denote, for 

the kth instance, the cost found by our heuristic and the best known solution respectively.  

The average deviation is then computed over all instances in the data set.   

 
Class I  
Case of fixed cost only  
Table 2 shows that our two VNS variants yield competitive results. VNS1 produces seven 

solutions which are equal to the best known solutions. VNS2 is even more competitive as 

it produces nine solutions which are equal to the best known. In terms of average 

percentage deviation, VNS2 is better than the recent heuristics of  Choi and Tcha (2007) 

and Lee et al. (2008) but slightly outperformed by the very recent tabu search heuristic of  

Brandao (2008). 



 16

 

Table 2: Solution quality from the different methods  

 

3 20 951.61 961.03 961.03 961.03 963.61 961.03 961.03 961.03 961.03 961.03 961.03 961.03
4 20 6369.15 6445.10 6437.33 6437.33 6437.33 6437.33 6437.33 6437.33 6437.33 6437.33 6437.33 6437.33
5 20 988.01 1009.15 1008.59 1007.05 1007.96 1007.05 1007.05 1007.05 1007.05 1007.05 1007.05 1007.05
6 20 6466.94* 6516.56 6516.47 6516.47 6537.74 6516.47 6516.47 6516.47 6516.47 6516.47 6516.47 6516.47
13 50 2392.77 2471.07 2413.78 2408.41 2406.43 2422.10 2408.41 2406.36 2408.41 2406.36 2406.36 2406.36
14 50 8943.94* 9125.65 9119.03 9119.28 9122.01 9119.86 9119.03 9119.03 9160.42 9119.03 9119.03 9119.03
15 50 2544.84 2606.72 2586.37 2586.37 2618.03 2586.37 2586.37 2586.37 2586.37 2586.37 2586.37 2586.37
16 50 2685.92 2745.01 2741.50 2741.50 2761.96 2730.08 2741.50 2720.43 2724.33 2728.14 2741.50 2720.43
17 75 1709.85 1762.05 1747.24 1749.50 1757.21 1755.1 1747.24 1744.83 1745.45 1734.53 1745.33 1741.95
18 75 2342.84 2412.56 2373.63 2381.43 2413.39 2385.52 2373.63 2371.49 2373.63 2369.65 2369.65 2369.65
19 100 8574.33* 8685.71 8661.81 8675.16 8687.31 8659.74 8661.81 8664.29 8699.98 8661.81 8665.12 8665.05
20 100 3995.16 4166.73 4047.55 4086.76 4094.54 4061.64 4047.55 4039.49 4043.47 4042.59 4066.94 4044.68

5 5 1 6 6 9 5 9 8 9
0.178 0.298 0.692 0.285 0.178 0.060 0.170 0.032 0.178 0.051

VNS2

Average Deviation (%)
1

0.969

2369.65
8659.74
4039.49

# Best  Solutions

9119.03
2586.37
2720.43
1734.53

6437.33
1007.05
6516.47
2406.36

Brandao 
(2008)

VNS1

961.03

Osman & 
Salhi (1996)

Renaud & 
Boctor (2002)

Wassan & 
Osman 
(2002)

Yaman 
(2006)

Taillard 
(1999)

 Gendreau et 
al. (1999)

Lee et al. 
(2008)

Choi &Tcha 
(2007)No Size

Lower 
Bounds

Best Solution

 
*    Derived from Yaman (2006) 
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In Table 3 we report  the total CPU time over ten runs for VNS1 and the corresponding 

number of runs for VNS2 (usually 5 to 7 runs). Our algorithm is executed on a Pentium 

M 1.7 GHz PC with 1GB RAM.  The total CPU time of Osman and Salhi (1996) was 

obtained from a Vax 4500 machine (5.5 Mflop/s). The results of Taillard (1999) are the 

best solutions from five runs and the time reported refers to the average  CPU time on a 

Sun Sparc 10 work station with 50MHz (10 Mflop/s). The CPU time of Gendreau et al. 

(1999) is the time for the best of ten runs on a Sun Sparc 10 (50 MHz). Renaud and 

Boctor (2002) use Pentium II 233 MHz computer and record the average CPU time over 

several runs. The CPU time of Wassan and Osman (2002) is the total time from five runs 

on a Sun Sparc 1000 with 50 MHz (10 Mflop/s). Yaman (2006) uses Sun Ultra 12 × 400 

MHz, and Choi and Tcha (2007) found their results from five runs on a Pentium IV 2.6 

GHz with 526 MB RAM. Lee et al. (2008) use a Pentium IV 1.8 PC whereas Brandao 

(2008) uses a Pentium M 1.4 GHz with 256 MB RAM. Note that Brandao’s CPU refers 

to one variant only. The fastest heuristic is by Osman and Salhi (1996), but this method 

produced much lower solution quality due to its simple though well structured tabu 

search. Based on these results, though it is difficult to compare the CPU time under 

different machines, it is clear that our heuristic methods require a reasonable amount of 

CPU time. 

 
Table 3: CPU time comparison in seconds 

No Size Osman 
&  

Salhi  

Taillard 
* 

Gendreau 
et al. + 

Renaud  
   & 
Boctor    
      *  

Wassan 
& 

Osman  

Yaman  Choi  
&  

Tcha 
+ 

Lee et 
al.  

Brandao 
** 

VNS1 
 

VNS2 

3 20 5 - 164 4 88 - 0 59 21 19 21 
4 20 6 - 253 6 80 - 1 79 22 18 18 
5 20 5 - 164 5 52 - 1 41 20 12 13 
6 20 4 - 309 9 88 - 0 89 25 21 22 
13 50 62 470 724 50 2084 397 10 258 145 216 252 
14 50 71 570 1033 160 1660 176 51 544 220 255 274 
15 50 46 334 901 45 2349 143 10 908 110 305 303 
16 50 35 349 815 28 689 142 11 859 111 221 253 
17 75 85 2072 1022 652 1874 1345 207 1488 322 662 745 
18 75 116 2744 691 1037 2261 1923 70 2058 267 813 897 
19 100 289 12528 1687 1110 8570 1721 1179 2503 438 1501 1613 
20 100 306 2117 1421 307 2692 2904 264 2261 601 1626 1595  

+   CPU time for the best run only. 

*   Average CPU time.  

** CPU time of  version 2 algorithm. 
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Case of unit variable costs only   
The data set used here was created by Taillard (1999) by varying the unit variable costs 

of the 8 Golden et al. (1984) instances. The best solutions and the associated CPU are 

given in Table 4 and Table 5 respectively. 

 
              Table 4: Computational results for HFVRP with variable costs only 

 
N
o 

Size Lower 
Bound 

Best  
Sol. 

Taillard  
 

Gendreau  
et al.  

Wassan 
& 

Osman  

Choi & 
Tcha  

Lee et 
al. 

Brandao VNS1 VNS2 

13 50 1469.41 1491.86 1494.58 1491.86 1499.69 1491.86 1491.86 1491.86 1491.86 1491.86 
14 50 582.25 603.21 603.21 603.21 608.57 603.21 603.21 603.21 603.21 603.21 
15 50 978.04 999.82 1007.35 999.82 999.82 999.82 999.82 999.82 999.82 999.82 
16 50 1106.12 1131.00 1144.39 1136.63 1131.00 1131.00 1131.90 1131.00 1131.00 1131.00 
17 75 1021.86 1031.00 1044.93 1031.00 1047.74 1038.60 1038.60 1038.60 1038.60 1038.60 

18 75 1779.41 1800.80 1831.24 1801.40 1814.11 1801.40 1800.80 1800.80 1800.80 1800.80 
19 100 1080.68 1100.56 1110.96 1105.44 1100.56 1105.44 1105.44 1105.44 1105.44 1105.44 

20 100 1501.67 1530.16 1550.36 1541.18 1530.16 1530.43 1531.61 1530.43 1533.96 1533.24 

# Best Solutions 1 4 4 4 4 5 5 5 

Average Deviation (%) 0.928 0.212 0.472 0.154 0.169 0.150 0.179 0.173 

 
 
  Table 5: CPU time comparison in seconds for HFVRP with variable costs only 

 
No Size Taillard 

*  
Gendreau 

et al. + 
Wassan & 

Osman  
Choi & 
Tcha +  

Lee et al. Brandao 
** 

VNS1 VNS2 

13 50 473 626 276 3 142 101 293 310 

14 50 575 669 695 37 144 135 157 161 

15 50 335 736 893 6 162 137 202 218 

16 50 350 852 668 6 144 95 216 239 

17 75 2245 1453 2222 103 865 312 460 509 

18 75 2876 1487 2847 81 545 269 537 606 

19 100 5833 1681 6009 299 331 839 972 1058 

20 100 3402 1706 3174 112 314 469 999 1147          
 +   CPU time for the best run only. 

 *   Average CPU time. 

**  CPU time of  version 2 algorithm. 

 

VNS1 and VNS2 both produce five solutions which equal the best known. The average 

deviation of both variants is also found to be competitive. 

 
Case of both vehicle fixed cost and unit variable costs   
Choi and Tcha (2007) generated the data set by taking fixed costs from Golden et al. 

(1984) and unit variable costs from Taillard (1999). The variable costs of instances #3 to 
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#6 are generated to be dependent on the vehicle size. The comparison of the results is 

provided in Table 6. Though our methods generate fewer best results, we found better 

solutions for instance #17 from both VNS1 and VNS2 (but the one from VNS1 is the new 

best). The detailed result of this instance is provided in Appendix B. In addition, the 

average percentage deviation of our methods is also found to be relatively smaller when 

compared to the one reported by Choi and Tcha (2007). 

 
        Table 6: Computational results for HFVRP with fixed and variable costs 

  

Solution Time+ Solution Time Solution Time
3 20 1138.58 1144.22 1144.22 0 1144.22 19 1144.22 21
4 20 6369.15 6437.33 6437.33 1 6437.33 17 6437.33 18
5 20 1307.74 1322.26 1322.26 0 1322.26 24 1322.26 27
6 20 6451.62 6516.47 6516.47 1 6516.47 21 6516.47 22

13 50 2959.60 2964.65 2964.65 2 2964.65 328 2964.65 361
14 50 8748.57 9126.90 9126.90 68 9126.90 250 9126.90 268
15 50 2597.22 2634.96 2634.96 5 2634.96 275 2634.96 312
16 50 3114.00 3168.92 3168.92 11 3168.95 313 3169.10 345
17 75 1979.87 2004.48 2023.61 100 2004.48 641 2008.14 631
18 75 3128.75 3147.99 3147.99 28 3153.67 835 3157.20 962
19 100 8431.87 8664.29 8664.29 1026 8666.57 1411 8665.88 1505
20 100 4082.25 4154.49 4154.49 82 4164.85 1460 4154.87 1592

11 7 7
0.08 0.038 0.042Average Deviation (%)

Choi & Tcha VNS1 VNS2

# Best  Solutions

SizeNo. Lower Bound Best Solution

 
+ CPU time for the best run only. 

 
 
Class II 
  
Two cases, based on the new large HFFVRP test problems of Li et al. (2007), are 

explored. In the first experiment we used the vehicle specifications as given by Li et al. 

(2007) whereas in the second experiment we generated new vehicle specifications.  For 

simplicity we implement VNS2 only as this proved, in Class I data sets, to be slightly 

better than VNS1.  
 
Case 1 (Fixed fleet HFVRP vs HFVRP) 
 
This comparison is used as a guide only. As one may expect, our results would be better 

than the ones reported in Li et al. (2007). This is due to a prior fixation of their vehicle 

fleet composition. This restriction is made even more severe given that here the fixed cost 
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of a larger vehicle is not set to be necessarily larger than the one for a smaller vehicle. As 

shown in Table 7, the solution of our free fleet HFVRP has obviously the tendency to 

utilize the larger vehicles and hence yields a smaller total cost. 

 
                   Table 7: Computational results for the fixed HFVRP vs HFVRP 

No. Size Li et al. VNS2 
Time (secs)  Cost Time (secs)  Cost 

1 200 688 13222.65 1542 12313.60 
2 240 995 36714.40 1992 10674.25 
3 280 1438 19661.80 3698 15513.22 
4 320 2256 23116.10 5720 16874.80 
5 360 3277 24510.41 7745 22463.25 

 
 
Case 2 (Benchmarks for larger instances) 
 
To be more consistent when solving the HFVRP, though we still use the data set in terms 

of customers and depots as given in Li et al. (2007), we generate new vehicle 

specifications which are based on the concept that a larger vehicle will incur both a larger 

fixed cost and a larger unit running cost. This assumption may not obviously be valid if 

the age of the vehicle is taken into consideration. In this experiment, we create five 

different types of vehicles whose details are given in Table 8. We summarize in Table 9 

the results for each of the three cases as presented in Class I.  

 
Table 8: Specifications of the five new larger problems 

 
 A B C D E 

Vehicle Size 100 200 300 500 800 
Unit running cost 1 1.2 1.5 2.0 2.3 

Fixed cost 100 180 270 480 700 
 
 

Table 9: Computational results of the large HFVRP instances 
 

No. Size 
HFVRP with fixed 

cost only 
HFVRP with variable 

cost only 
HFVRP with fixed and 

variable cost 
Time(secs) Cost Time(secs) Cost Time(secs) Cost 

1 200 1632 10079.85 2074 12034.83 2060 15984.42 
2 240 2345 9253.52 2960 9984.64 3260 14821.36 
3 280 3887 12941.42 4771 15681.77 4631 21428.13 
4 320 6778 13718.38 8850 15884.69 8807 22325.24 
5 360 7191 15820.29 9652 20153.96 9453 26990.80 
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6. Conclusions 

 
We have put forward an adaptation of the basic VNS algorithm to tackle the HFVRP. 

This is enhanced by the use of additional features which include adopting a set of local 

search procedures including Dijkstra’s algorithm, introducing a diversification scheme, 

and keeping a dummy empty route during the search process. Two variants are proposed 

differing in the way the diversification procedure and Dijkstra’s algorithm are embedded 

into the overall framework of the algorithm. These two variants are tested on three 

scenarios, i.e. the case of vehicle fixed cost only, variable unit running cost only and both 

variable and fixed costs. It was found that our two proposed VNS heuristics yield 

competitive results when compared to the best known results found in the literature. In 

addition, our heuristics also found a few new best solutions. We have also modified 

existing large data instances to better suit this type of HFVRP by constructing suitable 

vehicle sizes, vehicle unit variable costs and vehicle fixed costs. Benchmark results for 

these large instances are provided which hopefully may entice other researchers to tackle 

this particular vehicle routing problem. Finally, this study shows that a suitable 

implementation of VNS can be applied successfully to solve the HFVRP and other 

related distribution problems. 
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Appendix A: Flow chart of the VNS-based HFVRP algorithm 
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Appendix B: New best solutions for Instance #17(Choi and Tcha, 2007) 
 

Route 
number 

Demand Vehicle type Fixed cost Variable cost Distance Route 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

 
49 
120 
199 
118 
116 
120 
118 
120 
120 
119 
115 
50 

 
A 
B 
C 
B 
B 
B 
B 
B 
B 
B 
B 
A 

 
50 

120 
200 
120 
120 
120 
120 
120 
120 
120 
120 
50 

 
1 

1.2 
1.5 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1 

 
20.77 
69.22 
101.89 
86.91 
109.61 
77.00 
94.63 
75.08 
73.55 
108.86 
51.32 
15.46 

 
34-67 
52-27-54-19-35-8-46 
7-53-14-59-11-66-65-38 
58-10-31-9-39-72 
32-50-25-55-18-24-49 
51-16-23-56-63-33-6 
68-22-64-42-41-43-1-73 
30-74-61-28-62-2 
48-47-38-37-5-29-45 
13-57-15-20-70-60-71-69-21 
17-3-44-40-12-26 
75-4 

 
Solution cost: 2004.48 
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