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Abstract 

An iterative scheme which is based on a dynamic fixation of the variables is developed to 

solve the 0-1 multidimensional knapsack problem. Such a scheme has the advantage of 

generating memory information, which is used on the one hand to choose the variables to fix 

either permanently or temporarily and on the other hand to construct feasible solutions of the 

problem. Adaptations of this mechanism are proposed to explore different parts of the search 

space and to enhance the behaviour of the algorithm. Encouraging results are presented when 

tested on the correlated instances of the 0-1 multidimensional knapsack problem. 
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1. Introduction 

The 0-1 multidimensional knapsack problem (MKP) is a generalization of the well-

known knapsack problem with the presence of more than one constraint. The MKP can be 

formulated as follows: 
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where cj, ∀j ∈ N, aij ∀i ∈ M  and ∀j ∈ N and bi ∀i ∈ M are positive integers. Without loss of 

generality, we can assume that the following constraint, as defined by (1), is satisfied; If this 

is not the case, one or more variables could be fixed to 0 or 1. 
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For simplicity we also use the following vector notation for the MKP: 

(MKP)     max {cTx : Ax ≤ b, x ∈ {0;1}n }. 

Many applications of this NP-hard problem are resource allocation-based, see for instance the 

first references of Lorie and Savage (1955) and Weingartner (1966). Recently, Meier et al. 

(2001) used the MKP as a subproblem in a new capital budgeting model. There are other 

applications such as cutting stock (Gilmore and Gomory (1966)), loading problems (Shih 

(1979)), and the daily management of a satellite (Vasquez and Hao (2001a)).  

Efficient algorithms have been proposed for solving the MKP. Several of those are 

metaheuristic-based algorithms like tabu search (see for instance Glover and Kochenberger 

(1996), and Hanafi and Fréville (1998)), and genetic algorithm (Chu and Beasley (1998)). 

The review article by Fréville and Hanafi (2005) and the book by Kellerer et al. (2004) are 

informative and provide interesting and useful references. Very recently Wilbaut et al. (2008) 

produced a survey paper in this area with an emphasis to effective heuristics and their 

applications. 

Several preprocessing techniques are often used to develop efficient integer 

programming-based approaches. It is well-known that if we are able to reduce the size of the 



problem to a reasonable level, even NP-Hard problems can then be solved optimally with 

reasonable computational effort. Such a reduction process can be achieved by setting 

variables, identifying infeasibility and constraint redundancy, and tightening the linear 

programming (LP) relaxation. The latter includes modifying coefficients and generating 

strong valid inequalities. Some of these tools are described in Nemhauser and Wolsey (1988) 

and also in Savelsberg (1994). For instance, for the MKP techniques, the idea to reduce the 

number of variables was exploited by Babayev and Mardanov (1994) and also Zhu and 

Broughan (1997). Though the above techniques help to reduce the size of the problem in 

several cases, there is however no guarantee of their efficiency when tested on a given 

instance. For example, Wilbaut et al. (2006) applied a classical technique to fix variables in a 

global intensification algorithm, including a dynamic programming method for the MKP, and 

showed empirically that it is difficult to fix any variable for those instances with large values 

of m. 

In this paper we propose an algorithm which is based on a heuristic fixation of the 

variables for solving the MKP. This is achieved by using an iterative scheme to generate 

useful information from LP-relaxation. This knowledge is then used to fix iteratively a subset 

of the decision variables and hence to generate feasible solutions. This method has the 

advantage of generating both lower and upper bounds of the problem. To explore the diversity 

of the solutions efficiently, we put forward three variants of the algorithm. 

The remainder of this paper is organised as follows. In section 2 we present the 

iterative scheme which we use in our algorithm to generate memory information. We describe 

in section 3 the different strategies we implemented to fix the variables and to generate 

bounds of the problem. Section 4 is devoted to the computational results. We summarize our 

conclusions and point out some research avenues in the last section. 

2. An iterative scheme 

Several exact methods designed to find the optimal solution  of the problem were 

successfully applied to small sized instances. Such a success is unfortunately not repeated for 

problems with moderate and large size due to memory and computational time requirements. 



It is well known that heuristics that use relaxation-based techniques are among the efficient 

ways to provide both upper and lower bounds for large and difficult combinatorial 

optimization problems. Glover (2005) proposed a general iterative method for pure and mixed 

integer programming. This method, which is referred to as the Adaptive Memory Projection 

(AMP), consists of four steps: 

(i) from an initial solution apply a heuristic to define a subset of the free variables; (ii) use an 

exact method to solve the sub problem associated with these remaining variables; (iii) re-

launch the heuristic used in (i) from the solution obtained in (ii) with the introduction of 

restrictions generated from the memory; and finally (iv) introduce diversification processes to 

visit unexplored regions of the search space. 

Some of the ideas of this general method do also exist in other efficient algorithms 

that are based on the exploration of small neighborhoods around the incumbent solution. For 

instance in Fischetti and Lodi (2003), a constraint, called local branching constraint, is added 

at every iteration to define a k-OPT neighborhood of the incumbent solution. The motivation 

is to explore better solutions quickly during the search. In the relaxation induced 

neighbourhood search of Danna et al. (2005), variables which happen to have the same values 

in both the incumbent solution and in the solution of the current linear programming 

relaxation are made fixed, and the corresponding remaining sub problem is then optimally 

solved. For the MKP, Volgenant and Zwiers (2007) recently used partial enumeration. This 

approach can be viewed as a particular case of the AMP in which steps (i) and (ii) are only 

applied. Even if this method generates lower bounds of the MKP quickly (i.e. a few 

seconds/minutes by instance in general), it is clearly outperformed by other methods. 

The method described in this paper is based on the scheme proposed by Wilbaut and 

Hanafi (2008) for solving the 0-1 mixed integer programming problem. For completeness this 

is shown in Figure 1. 



 

Figure 1: A general iterative scheme. 

This interesting method though it guarantees an optimal solution, it was observed that 

its convergence can be really difficult to achieve in practice especially for larger sized 

instances. In other words, the results obtained for the MKP showed that even if this scheme 

was the basis in developing efficient algorithms for generating good bounds, the 

computational effort associated with these techniques can be significantly high. This can be 

due to either the large number of reduced problems to solve or the high level of difficulty in 

solving some of the reduced problems. 

In this paper we propose a new algorithm that attempts to overcome the above 

drawbacks by using an iterative phase to generate useful information in fixing some variables 

of the problem heuristically. This iterative process led to a robust method as described in 

Figure 2. 

 

Figure 2: The iterative phase. 

The addition of a new constraint in the current problem in step 2 appears to be useful 

in generating a better solution of the LP-relaxation. The following two propositions explain 

the construction of the constraint and show how it only cuts off the current solution of the LP-

Step 1: Solve the LP-relaxation of the current problem (P) and keep an optimal solution x of this 

relaxation. Update the upper bound v  of (P). 

Step 2: Generate a constraint from x  which eliminates this solution without eliminating any other 

solution of the initial problem and add this constraint to (P). 

Step 3: If a chosen number of iterations is reached then return⎯v, otherwise go to Step 1. 

Step 1: Solve one or more relaxation(s) of the current problem (P) and record the corresponding 

optimal solution(s). 

Step 2: Generate and solve one or more reduced problem(s) induced from the previous solution(s) 

to obtain one or more feasible solution(s) of (P). 

Step 3: Update the best lower bound v* of (P) if necessary and the best upper bound v of (P). 

Step 4: If a stopping criterion is satisfied then return v* and v , else add one or more constraint(s) 

generated from the solution(s) of the relaxation(s) to (P) and return to Step 1. 



relaxation. For convenience, we only recall these propositions as their proofs can be found in 

Wilbaut (2006). 

Proposition 1: Let y be a solution of the MKP. Let I1(y) = {j ∈ N : yj = 1} and                     

I0(y) = {j ∈ N : yj = 0}. Inequality (2) cuts off solution y without cutting off any other solution 

in {0,1}n. 
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Let us introduce the following notion of a reduced problem. A reduced problem, noted 

P(y,I(y)), is obtained from a solution y in [0,1]n of an instance P of MKP and the set             

I(y) = I0(y) ∪ I1(y) = {j ∈ N, yj ∈ {0,1}}, by fixing all the variables in I(y) to their value in y. 

Proposition 2: Let P be an instance of MKP,⎯x an optimal solution of the LP-relaxation LP(P) 

and y an optimal solution of the reduced problem P( x ,I( x )), then an optimal solution of P is 

either the feasible solution y or an optimal solution of P in which the following constraint is 

added: 

      fT.x  ≤  |I1( x )| - 1                (3-a) 

where the vector f of dimension n is defined for j =1,…,n as 
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 In the next section we present some methods to exploit the iterative-phase to generate 

feasible solutions and to reduce the problem by fixing variables heuristically. 

3.    Memory-based strategies for fixing variables 

 One of the major questions in variable-fixing methods is related to the choice of the 

variables to fix at a given step of the algorithm as this affects the behaviour of the algorithm. 

Based on the previous iterative-phase we propose three versions of our algorithm. In the first 

subsection we only fix variables temporarily to calculate lower bounds of the MKP, whereas 

in the other two we examine the permanent fixation of the variables as well. 



3.1    Algorithm 1: temporal variables fixation 

 Here, we first apply the iterative-phase to generate memory information. During this 

phase, we record the number of times every variable has been fixed to 1, 0 or was found free 

in the LP-solutions. At the end of this iterative-phase, we propose a scheme to fix the 

variables that have the most important frequency values associated with value 1 and 0. In 

other words, we aim to use the memory information to generate a feasible solution of the 

problem. This is achieved by solving exactly the resulting reduced problem. The algorithm 

consists in re-launching this process until a stopping condition is satisfied. For example in this 

work we use a maximum number of passes. 

The algorithm is described in Figure 3. We use a long term memory to generate a 

reduced problem by defining two variables LT0 and LT1, which are two n-dimensional 

vectors, to record the number of times a given variable is found at 0 and 1 in the LP-solutions. 

In the following we also use the shortcut notation LT to refer to the long term memory. 

 

 

 

 

 

 

Figure 3: Iterative algorithm with temporary fixation. 

When the iterative-phase is terminated, we construct the reduced problem by 

applying the following rules to fix the variables: 

if LT1
j ≥ α . n_iter then xj = 1                           (4-a) 

if LT0
j ≤ β . n_iter then xj = 0               (4-b) 

where α and β are two parameters in [0,1], and n_iter is the total number of iterations 

achieved in the iterative phase. 

 At the beginning of the algorithm we use α = 1 and β = 0. Then, the values of the 

parameters α and β are updated. This adjustment is necessary as the probability that a variable 

Step 0: Initialize the long term memory (LT) and the best lower bound at 0. 

Step 1: Apply the iterative-phase during a given number of iterations, and update the long term 

memory. 

Step 2: Generate and solve a reduced problem according to the long term memory. Update the best 

lower bound if necessary. 

Step 3: If a stopping condition is satisfied then return the final upper bound and the best lower 

bound, otherwise go to Step 1. 



has all the time the same value in the LP-solutions may decrease when n_iter increases. We 

implement a simple adaptive mechanism that automatically updates the value of α and β 

according to the size of the problem and the number of times the iterative-phase has been 

performed. Note that when we cannot fix a sufficient number of variables according to (4-a) 

and (4-b), a simple mechanism that decreases the values of the parameters α and β until a 

preset lower limit is introduced. 

 When repeating the algorithm in the iterative-phase, it is possible that the LP-

relaxation may become difficult to solve due to the number of constraints added to the 

problem. To overcome this drawback, we propose a second version in which we fix variables 

definitively in the problem to reduce its size and also to simplify its LP resolution. 

3.2    Algorithm 2: permanent and temporal variables fixation 

a.    Description of the method 

 In this version of the algorithm we use two types of fixation. The first one consists in 

fixing temporarily variables to construct a reduced problem as in the first approach. However 

we also apply a permanent fixation on variables in the original problem to reduce its size 

iteratively and hence to overcome the difficulty in solving the LP-relaxations. The 

corresponding algorithm is described in Figure 4.  

In Figure 4, we denote by P the initial problem. Variable v* refers to our best lower 

bound, and the set F contains the index of the variables currently fixed in the problem 

(initially F = ∅). Problem Q is the problem with the free variables (initially Q = P). During 

the iterative-phase we add the constraint, generated according to Proposition 2, to problem Qk 

that refers to the problem at iteration k. Formally speaking, at iteration k, we define                            

Qk+1 = (Qk | {f.x ≤ | I1(xk)| - 1}).  Parameter iter refers to the number of iterations in the 

iterative-phase. We define the short term memory ST by two n-dimensional vectors which 

records the number of times a given variable is found at 0 or 1 at the LP stage during one 

iterative-phase only. Solution y in Figure 4 is obtained by solving a reduced problem which is 

constructed from the long term memory, according to the rules described by (4-a) and (4-b). If 

the stopping condition is not satisfied, the algorithm is applied to the problem    P – F, that 



consists of the initial problem in which all the variables in F have been fixed. In this version, 

at the end of every application of the iterative-phase, we apply the rules described in (4-a) and 

(4-b) with ST instead of LT and with α = 1 and β = 0, to fix permanently a part of the free 

variables in the problem. The stopping condition checks whether the remaining problem is 

sufficiently small to be solved exactly. 

 

Figure 4: A schematic description of the iterative algorithm with permanent and temporary fixation. 

We illustrate the progress of this algorithm in Figure 5 where parameter s represents 

the number of free variables in the reduced problems. We set the value of s to 30 as we have 

found, in our earlier preliminary experiments, that this value represents instances for the MKP 

with a large enough size to be solved exactly and reasonably quickly for the MKP. When 

generating the reduced problems, the n - |F| - s remaining variables are fixed according to LT 

as described above. If it is not possible to add a variable due to feasibility, it is simply fixed at 

value 0. Note in this figure that when applying the iterative-phase for the second time, 

variables in F are considered neither in the LP-relaxations nor in the reduced problems. We 

use the size of the final problem to solve exactly as s’ ≥ s, a parameter to stop the algorithm. 

k = k + 1 

F = ∅; v* = 0; LT0
j = LT1

j = 0 ∀j ∈ N 

Reduce the problem from ST and update F 
Generate and solve a reduced problem from P and LT => y 

k = 1; Qk = P – F; ST0
j = ST1

j 0 ∀j ∈ N-F 

Update LTj ∀j ∈ N and STj ∀j ∈ N-F 
Qk+1 = (Qk | {f.x ≤ | J1(xk)| - 1}) 

xk optimal solution of LP(Qk) 

v*= max(v*,cy) 

 
Stop  

No 

Yes 

If  
k ≤ iter

Is the stopping 
criterion satisfied? 

Yes No 



In other words, when n - |F| ≤ s’, we solve exactly the problem with the remaining variables 

and then we stop.  

 One of the main differences between this algorithm and the one presented in section 

3.1 is that we can not guarantee that the last upper bound generated in the iterative-phase is a 

true upper bound of the initial problem because of the permanent fixation of the variables in 

the problem. Nevertheless, we can record the upper bound associated with the last iteration 

when applying the iterative-phase for the first time. In addition, we can also generate an upper 

bound from our final lower bound by solving the following linear program: 

max {cTx : Ax ≤ b, cTx > v*, x ∈ {0;1}n }. 

The best upper bound of the two is then chosen. 

 

Figure 5: Construction of the reduced problems and fixation rules. 

b.    Preliminary analysis 

Parameter iter in Figure 4 can clearly influence the behaviour of the algorithm. 

Indeed if it is too small then it is probable that more variables can be fixed definitively from 

the information stored in ST. On the contrary, if it is too large it would be difficult to fix 

variables 

initial problem 

Apply the iterative-phase: update LT and compute ST

Reorder the free variables according to LT and 
fix these variables according to LT 

Fix definitively free variables according to  
ST, α and β 

s |F| 

1 2 3 4 n…

Apply the iterative-phase: update LT and compute ST 

|F| s                   |F|

...

|F|    s' If (n - |F| ≤ s’) then solve the final problem 



variables. We evaluated the effect of this parameter on the fixation process on a set of 

correlated instances of MKP available in the OR-Library (Beasley, 1990). These instances 

have between 100 and 500 variables and 5 and 30 constraints. Three kinds of correlation have 

been used according to a parameter denoted by α = 0.25, 0.5 and 0.75. Ten instances have 

been generated for every combination of n, m and α. The set is composed of 270 instances. In 

this preliminary testing we conducted our experiments on a subset of 27 instances only (i.e. 

one for every distinct triplet (n,m,α)). 

To evaluate the effect of the parameter iter, we applied the algorithm described in 

Figure 4 with several values. We used as the stopping condition the fact that it is impossible 

to fix any variable after the application of the iterative-phase, or that the remaining problem 

was sufficiently small to be solved exactly (i.e., when n-|F| ≤ s’). We give in Table 1 the value 

of the parameter s’ we use. Obviously from Table 1, a value of 50 will be large enough to be 

used in all sizes. Note that when the size of the problem increases the value of s’ is then set at 

50. In addition when a reduced problem is difficult to solve exactly, it is possible to solve it 

heuristically for instance by imposing a time limit. 

 M 
n 5 10 30 

100 35 40 45 
250 35 45 50 
500 40 45 50 

Table 1: Values of s’. 

We report in Table 2 the average results observed for iter = 50, 75, 100, 100-m. We 

propose the value 100-m as this takes into account the size of the initial problem (the larger 

the number of constraints is the more difficult the problem may become). We give in Table 2 

the average percentage of variables definitively fixed in the problem when the iterative-phase 

is terminated for the first time (column “%F1”), and the average percentage of variables 

definitively fixed in the problem when algorithm 2 terminates (column “%F”). We also 

mention the average gap with the best solution (“Avg(Gap)”) and the average CPU times (in 

seconds). We compare our lower bounds with those obtained by Chu and Beasley (1998) or 

mentioned in Vasquez and Vimont (2005) for the largest instances. 



iter %F1 %F Avg(Gap) Avg(CPU) 
50 76.23 78.41 0.06 26 
75 72.24 75.67 0.07 22 

100 65.58 71.19 0.09 19 
100-m 70.99 74.76 0.06 18 

Table 2: Effect of parameter iter on the fixation method. 

Table 2 shows that the value of the parameter iter has two main effects: the first one 

is on the fixation process, and the second one is on the execution time. It can be observed that 

it is more difficult to fix variables when iter increases. However, the average CPU time is 

relatively decreased, even though more LP-relaxations are solved. That can be explained by 

the fact that the total number of times the iterative-phase is launched decreases as iter 

increases. It can be noted that the average percentage of variables definitively fixed after the 

first execution of the iterative-phase is really important for every value of the parameter iter 

in Table 2 (see column “%F1”). It was also observed that it is more difficult to fix variables 

during the remaining passes. Given that the setting 100-m is found to provide reasonably good 

solutions while consuming less CPU for these instances, this setting will be used in our 

subsequent testing. However note that in a more general case we can choose the value   iter = 

50 when the number of constraints m increases. 

From the above observations, and from the fact that the number of variables we fix at 

every step can clearly change the behaviour of the algorithm, we propose to introduce a 

flexible scheme by allowing the fixation of a subset of the potential candidates only. 

3.3    Algorithm 3: flexibility in the permanent variables fixation 

We propose a way of limiting the number of variables to fix after the iterative-phase. 

By integrating this scheme within algorithm 2, we define a kind of “multi-start” version of the 

algorithm. Our motivation is to avoid fixing too many variables at a given step which has the 

tendency to restrict the search. Besides, we also introduce diversity into the search by 

exploring other parts of the search space which were not going to be visited otherwise. This 

mechanism can also be viewed as a way of limiting the risk associated with the fixation of 

many variables at their wrong values. 



An illustrative example 

We report the progress of the algorithm for an instance with n = 100 and m = 5 when 

we apply algorithm 2 with parameter iter = 95 (i.e.: 100-m). At the end of the first application 

of the iterative-phase, it is possible to fix 62 variables by applying the rules described in 

section 3.2. After the second application of the iterative-phase, 5 more variables were fixed, 

and finally 4 more variables were fixed after the third application of the iterative-phase. The 

algorithm then terminates by solving exactly the final reduced problem composed by the 29 

remaining variables (here s’ = s = 30). The principle of the third algorithm is to limit the 

number of variables fixed after the first execution of the iterative-phase, and hence guide the 

algorithm to explore other directions of the search. For example for this particular instance 

when we allow only the fixation of 45 (respectively 50) variables among the 62 potential 

variables, the algorithm stops with 75 (respectively 63) variables fixed. This example shows 

that this kind of strategy can affect the progress and the results of the method.  In the next 

subsection we explain how we choose to fix at a given step this subset of variables. 

a.    Selection of the subset of variables to fix 

The choice of the variables we fix among the set of candidates at a given step of the 

algorithm is based on a bias selection using a pseudo-random algorithm. It introduces the 

efficiency of the variables according to the classical definition for knapsack problems as 

follows. The efficiency of variable xj for j ∈ {1,…,C} is defined by ej =

∑
=

m

i
iji

j

a

c

1
μ

, where μ is a 

vector of dimension m, and C is the total number of candidates. 

In our method, each component μi corresponds to the shadow price of the ith constraint in the 

LP-relaxation of the initial problem. From the sequence {ej}j={1,…,C} we compute the following 

sequences associated with the subset of candidates to fix at value 1 (their number is denoted 

by C1) and the subset of candidates to fix at value 0 (their number is denoted by C0). 
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- {ϕj}j={1,…,C1} (resp. {ϕ’j}j={1,…,C0}) defined by 

ϕ1 = δ1 (resp. ϕ’1 = δ’1) 

ϕj = ϕj-1 + δj, j = 2, …, C1 (resp. ϕ’j = ϕ’j-1 + δ ’j, j = 2, …, C0)  

The following process is repeated until the required number of fixed variables is 

reached. 

- Choose randomly two numbers d and r in [0;1] 

- If d < 
10

1

CC
C
+

 then determine the corresponding candidate to fix at 1 by ϕ -1(r); otherwise 

the corresponding candidate to fix at 0 is given by ϕ’ -1(r). 

An illustrative example 

The following example is used to show how this works. Suppose that we have 10 candidates 

to fix at value 1 at a given step with the following values of δj and ϕj. 

item 1 2 3 4 5 6 7 8 9 10 
δj 0.02 0.05 0.2 0.07 0.16 0.19 0.08 0.13 0.04 0.06 
ϕj 0.02 0.07 0.27 0.34 0.5 0.69 0.77 0.9 0.94 1 

 

From this table, suppose that r = 0.33. In this condition we choose item 3. 

When using this method, two executions of the algorithm may obviously lead to 

different solutions. Thus we start the algorithm again by changing the variables fixed (i.e. by 

choosing other candidates). To do this, we apply a backtrack phase to find a step for which we 

fixed less variables than the number of candidates. In practice, according to the results 

presented in table 2, this selection mechanism happens to be applied generally after the first 

pass of the iterative-phase. This could be because other steps of the algorithm do not generate 

an important number of candidates to fix. Note that algorithm 2 is a particular case of this 

version in which all the candidates are fixed. 

b. The size of the selected subset 

In this subsection, we define the size of the subset of the variables to fix, by a 

parameter Fixed1. This corresponds to the percentage of variables we allow to fix among the 

set of candidates after the first iterative-phase. We report in Table 3 the results obtained when 

we execute this algorithm with 4 different values of parameter Fixed1 over the 27 instances 



described in section 3.2.b. The algorithm terminates if the size of the initial problem is less 

than s’ or if we do not improve the best solution during the current execution. We record the 

average gap with the best solution (“Avg(Gap)”), the number of times a best solution is 

obtained (“#Best”) and the average CPU time (in seconds). 

Fixed1 (%) Avg(Gap) #Best CPU 
70 0.16 6 38 
80 0.11 8 28 
90 0.05 10 35 
100 0.06 9 18 

Table 3: Impact of the value of Fixed1. 

There is obviously no optimal value of parameter Fixed1 that guarantees the best 

results, but in these experiments the value of 90% appears to produce the best results on 

average, though requiring about twice CPU times than those used for the value of 100%. The 

latter corresponds to the execution of algorithm 2. 

As it is not practical to set such a parameter of the algorithm to a particular value for 

every instance of the MKP, we have introduced an adaptive and robust method to avoid the 

issue of fine tuning. We define this version as a “multi-start” version that dynamically adjusts 

the value of the parameter Fixed1 according to the state of the search. The final version of the 

algorithm, which is described in the next subsection, attempts to take into account these ideas. 

c.    An adaptive fixation of the subset size 

The algorithm described in this section is based on algorithm 2 as given in section 

3.2. The term “multi-start” is used because the algorithm manages the value of parameter 

Fixed1 during the search. From Figure 4, we incorporate an adaptive scheme to select the 

variables to fix (section 3.3.a), which makes up our final algorithm as described in Figure 6. 

In step 4 the algorithm determines a promising range to explore. This range is 

obtained by decreasing the value of parameter Fixed1 while the best lower bound is improved. 

Then the algorithm explores this range in step 5 with the last two values of Fixed1 using a 

bisection method which is defined below. Note that in this version the stopping condition for 

every application of algorithm 2 when Fixed1 is different to 100, corresponds to the fact that 



the best “global” solution has not been improved, or the size of the remaining problem is less 

than s’. Step 5 in Figure 6 ensures the termination of the algorithm. 

 

Figure 6: The adaptive fixation algorithm. 

Finally note that a list of several reduced problems induced from solutions of the LP-

relaxations of the problem is also kept. This list is used to check whether a reduced problem 

happens to be already generated during the search. 

Bisection scheme 

 The bisection method used in step 5 in Figure 6 can be summarized as follows. The 

idea of this commonly used numerical method is to squeeze the range [I0; I1] until its length is 

fairly small. Initially I1 = Fixed1, Fixed1= 0.8Fixed1 (see step 4 of Figure 6). 

(i) Set Fixed1 = (I0+I1)/2. 

(ii) If the best solution was not improved, set I1 = Fixed1 else set I0 = Fixed1. 

(iii) Repeat (i) and (ii) until I1 – I0 ≤ε. 

In our experimentations, we use ε  = 3. 

Effect of the pseudo-randomness of the selection 

 In this last version of the algorithm, we use a random-based algorithm (see section 

3.3.a). We give in Table 4 an illustration of the impact of this algorithm when choosing the 

variables to fix on the instance 5.250_10. We have executed the algorithm 5 times for several 

values of Fixed1 (between 70 and 90), and also 5 times for algorithm 3 (adaptive setting of 

Step 0: Initialize the long term memory LT and the best lower bound v*=0, and set Fixed1 = 100. 

Step 1: Initialize the short term memory ST for every free variable of the current problem. 

Step 2: Apply the iterative-phase during iter iterations, and update ST. 

Step 3: Determine some variables to fix in the problem according to ST. Generate and solve a reduced 

problem constructed from LT. Update v* if necessary. If there is no variable to fix then apply a backtrack 

phase to fix other possible candidates in a previous step. If the backtrack phase succeeds then go to Step 2, 

otherwise go to Step 4. 

Step 4: If v* has been improved in the current pass then set I1 = Fixed1, Fixed1= 0.8Fixed1 and I0 = Fixed1, 

and go to step 1; Otherwise go to Step 5. 

Step 5: Use a bisection method to explore the range [I0; I1] by applying steps 2 and 3 with different values 

of Fixed1. 



Fixed1). We present in Table 4 the average results observed in terms of the value of the best 

solution visited (“Avg(cx)”), the number of times that an optimal solution is obtained 

(“#Best”) and the average CPU time. 

Fixed1 Avg(cx) #Best Avg(CPU) 
70 109074.2 0 5.4 
80 109026.6 0 4.6 
90 109087.8 1 7.2 

Algorithm 3 109109 5 59.2 
Table 4: Illustration of the pseudo-random algorithm to fix the variables. 

The results presented in Table 4 show the fact that the pseudo-random algorithm 

clearly involves changes during the process since the average value of the best solution 

visited changes for every value of Fixed1. However, we can note that algorithm 3 obtains an 

optimal solution for every execution. That means that, based on these experiments, the 

behaviour of this algorithm seems to be independent of the random factors used in practice 

and it is rather stable. As this was the case for all the instances used during the preliminary 

experiments, we decided to apply algorithm 3 only once for each instance instead. 

4.   Computational results 

The algorithms presented in this paper are coded in C++. The results have been 

obtained on a Pentium IV 3.4GHz. CPLEX9.0 of Ilog is used to solve exactly the reduced 

problems and the linear programming relaxations during the iterative-phase. 

 We present in Table 5 the final results obtained over the 270 instances of the OR-

Library presented in section 3.2.b. We report for algorithm 1 to 3 the average gap between our 

lower bounds and the LP-value (rows “Avg(LP)”). We also give the average gap with our 

final upper bound (rows “Avg(UB)”), and the average CPU times in seconds (rows “CPU”). 

Note that each value in Table 5 is an average over 30 instances. The last column reports the 

overall average results for our three variants. 



 n 100 250 500 100 250 500 100 250 500 Overall 
  m   5     10     30   Avg 

Algo1 Avg(LP) 0.59 0.14 0.05 0.95 0.28 0.12 1.70 0.65 0.33 0.54 
 Avg(UB) 0.13 0.07 0.03 0.40 0.22 0.10 1.01 0.58 0.32 0.32 
  CPU 3 15 46 12 76 115 85 145 162 73 

Algo2 Avg(LP) 0.58 0.14 0.05 0.95 0.29 0.11 1.68 0.65 0.33 0.53 
 Avg(UB) 0.29 0.10 0.04 0.65 0.24 0.10 1.35 0.61 0.32 0.41 
  CPU 3 18 60 17 104 162 107 185 209 96 

Algo3 Avg(LP) 0.58 0.14 0.05 0.95 0.28 0.11 1.68 0.65 0.32 0.53 
 Avg(UB) 0.29 0.08 0.04 0.65 0.23 0.10 1.31 0.59 0.31 0.4 
 CPU 11 30 117 37 216 273 363 774 884 301 

Table 5: Average results over the 270 instances of the OR-Library. 

Table 5 shows that with regard to the CPU time, algorithm 3 appears to be 3 to 4 

times slower than the others. This is mainly due to the use of several values of the parameter 

Fixed1. The contribution of algorithm 3 may, at the first glance, be considered relatively small 

in terms of solution quality given its relatively larger CPU time. However, this improvement 

is found to be remarkably interesting when analysing the results more precisely as will be 

shown in the next subsection. 

Existence of upper bounds 

Note that algorithm 1 obtains better results from the upper bound point of view. This 

is due to the fact that we can recover the last upper bound generated by this algorithm as a 

final upper bound. For all the algorithms we are able to improve the gap between the upper 

bound and the lower bound from 0.5 to 0.3 approximately for algorithm 1 and about 0.4 for 

both algorithms 2 and 3. This added information about the duality gap is useful in practice in 

general and in heuristic search in particular. 

Comparison vs other methods 

We compare our lower bounds with those obtained with other efficient algorithms in 

Table 6. To avoid overloading the presentation, we only report the results obtained with 

algorithm 3. In Table 6 we give the average values over 10 instances (for each (n,m,α) values) 

mentioned by Chu and Beasley (1998) who used a genetic algorithm (column “C&B”) and 

those obtained by Osorio et al. (2002) who exploit nested cut inequalities and surrogate 

constraints (column “O&G&H”). Note that Hanafi and Glover (2007) have shown recently 

how this method can be improved to yield better results. We also report the values for the 



largest instances (n = 500) mentioned in Vasquez and Vimont (2005) (column V&V) and in 

Wilbaut and Hanafi (2008) (column W&H). Lower bounds reported in these papers surpass 

many other lower bounds referenced in the literature. However the CPU times for these 

approaches are found to be rather high. For each line we put in bold font the best average 

value(s). For each method we also give the average CPU time and the processor used. Finally 

column “Nopt” reports the number of optimal solutions found by algorithm 3 for the instances 

optimally solved by Cplex with a solution time of 1 hour. 

         Algo3 
n m α C&B O&G&H V&V W&H Avg Nopt 

100 5 0.25 24197.2 24197 n/k n/k 24197.2 10 
100 5 0.5 43252.9 43253 n/k n/k 43252.9 10 
100 5 0.75 60471.0 60471 n/k n/k 60471.0 10 
100 10 0.25 22601.9 22602 n/k n/k 22601.9 10 
100 10 0.5 42659.1 42661 n/k n/k 42655.5 9 
100 10 0.75 59555.6 59556 n/k n/k 59555.6 10 
100 30 0.25 21654.2 21656 n/k n/k 21660.4 10 
100 30 0.5 41431.3 41437 n/k n/k 41438.3 8 
100 30 0.75 59199.1 59202 n/k n/k 59201.8 10 
250 5 0.25 60409.7 60413 n/k n/k 60409.9 8 
250 5 0.5 109284.6 109293 n/k n/k 109288.9 7 
250 5 0.75 151555.9 151560 n/k n/k 151560.3 10 
250 10 0.25 58993.9 59019 n/k n/k 59015.2 n/o 
250 10 0.5 108706.4 108607 n/k n/k 108724.4 n/o 
250 10 0.75 151330.4 151363 n/k n/k 151334.4 n/o 
250 30 0.25 56875.9 56959 n/k n/k 56894.4 n/o 
250 30 0.5 106673.7 106686 n/k n/k 106684.0 n/o 
250 30 0.75 150443.5 150467 n/k n/k 150470.7 n/o 
500 5 0.25 120615.5 120610 120629.2 120630.3 120623.3 5 
500 5 0.5 219503.1 219504 219512.7 219512.7 219508.5 5 
500 5 0.75 302354.9 302361 302363.4 302363.4 302360.7 6 
500 10 0.25 118565.5 118584 118628.6 118626.2 118610.5 n/o 
500 10 0.5 217274.6 217297 217327.1 217329.9 217313.0 n/o 
500 10 0.75 302556.0 302562 302602.7 302604.6 302586.6 n/o 
500 30 0.25 115473.5 115520 115623.7 115607 115540.4 n/o 
500 30 0.5 216156.9 216180 216274.7 216258.6 216201.5 n/o 
500 30 0.75 302353.4 302373 302446.5 302433 302389.5 n/o 

  Avg Time 20min 3h 16h 1h15 5min  
  Processor SGI R4000 100MHz P3 450MHz P4 2GHz P4 3.4GHz P4 3.4GHz  
 n/k: not known       
 n/o: not obtained       

Table 6: Comparison with other efficient algorithms. 

Table 6 confirms that our approach is competitive for solving this set of 270 instances 

of the MKP. The compromise between the solution quality and the required CPU time seems 

to be interesting. To complete the analysis, we give in Table 7 a synthesis of the results over 



the 90 largest instances when n = 500. We report the average deviations from the LP 

relaxation upper bound (i.e.  (LP value – solution value) / LP value).  We compare the results 

of our three algorithms with those of the previous methods, and also with the results obtained 

very recently by Fleszar and Hindi (2008) (row “F&H”).  They proposed fast heuristics for 

solving the MKP. Some of these heuristics are based on ideas previously used in Volgenant 

and Zwiers (2007) or Vasquez and Vimont (2005). Table 7 also reports the average CPU time 

and the processor used. 

Algorithm Avg Dev (%) Avg Time Processor 
C&B 0.178 34.67min SGI R4000 100MHz 
F&H 0.173 1 min PM 2GHz 

O&G&H 0.169 3h P3 450MHz 
W&H 0.144 1h15 P4 3.4GHz 
V&V 0.141 16h P4 2GHz 
Algo1 0.166 1.8min 

P4 3.4GHz Algo2 0.163 2.4min 
Algo3 0.159 7.min 

Table 7: Comparison with other efficient algorithms for n = 500. 

Table 7 shows that our three algorithms surpass those of Chu and Beasley (1998), 

Osorio et al. (2002), and Fleszar and Hindi (2008) for the largest instances.  As mentioned 

previously, the results obtained by Vasquez and Vimont (2005) and Wilbaut and Hanafi 

(2008) are superior for these particular instances. 

Some experiments with larger instances 

We evaluate the “adaptation” of our algorithm for larger instances. We apply our heuristics on 

a set of 18 instances proposed by Glover and Kochenberger (1996) with n ∈ [100; 2500] and 

m ∈ [15; 100]. Table 8 reports the results obtained by our 3 algorithms. We also give the 

lower bounds reported by Vasquez and Hao (2001b). 

 Table 8 shows that the computational effort associated with our algorithms does not 

increase excessively when the number of variables and/or constraints increases. That is 

possible with a preliminary adjustment of some of the parameters of the algorithms namely 

iter = 50 in the iterative phase,  s’ = 50 as a stopping condition, and use of a heuristic way to 

solve the reduced problems. The results also show that the number of constraints in the 

instance seems to be decisive from the CPU time point of view. The difference between our 



lower bounds and those reported in column “V&H” is not really important and this justifies 

the robustness of our approach.  

      Algo1 Algo2 Algo3 
Pb n m V&H Soluiton CPU Solution CPU Solution CPU 

GK018 100 25 4528 4526 95 4528 80 4528 121 
GK019 100 25 3869 3867 102 3869 59 3869 87 
GK020 100 25 5180 5180 52 5180 87 5180 135 
GK021 100 25 3200 3200 66 3200 115 3200 170 
GK022 100 25 2523 2523 96 2523 92 2523 147 
GK023 200 15 9235 9234 27 9234 54 9234 60 
GK024 500 25 9070 9068 127 9067 78 9068 106 

MK_gk01 100 15 3766 3766 4 3766 4 3766 11 
MK_gk02 100 25 3958 3956 32 3957 38 3958 78 
MK_gk03 150 25 5656 5651 89 5655 119 5655 235 
MK_gk04 150 50 5767 5765 155 5764 257 5765 207 
MK_gk05 200 25 7560 7558 140 7559 155 7560 1227 
MK_gk06 200 50 7677 7673 199 7670 204 7674 1040 
MK_gk07 500 25 19220 19216 244 19216 265 19214 398 
MK_gk08 500 50 18806 18799 338 18798 467 18798 1045 
MK_gk09 1500 25 58087 58085 350 58086 360 58086 592 
MK_gk10 1500 50 57295 57285 556 57284 633 57289 1254 
MK_gk11 2500 100 95237 95208 755 95218 3645 95223 5863 

Table 8: Results for larger instances. 

 It is not easy to evaluate the exactness of the fixation during the process. Some 

complementary experiments showed that wrong fixation can happen principally at stages 1 or 

2 of the algorithm especially when the number of fixed variables is large. Despite such a 

possible drawback, the results presented in this section show that algorithm 3 is generally able 

to obtain high quality solutions. In particular, Table 6 shows that our algorithm visits 128 

optimal solutions among the 150 available. That means that the mechanisms we set up to try 

to correct the wrong variables fixation are relatively efficient. 

5.   Conclusion 

In this paper we proposed new iterative heuristics with variable fixation to solve the 

0-1 multidimensional knapsack problem. The motivation is to reduce the problem until it 

becomes sufficiently small to be solved with an exact method in a reasonable CPU time. Our 

algorithms are based on an iterative scheme that uses information from a series of LP-

relaxations. This information is used to fix heuristically a subset of variables during the 

search, some of which are permanently fixed whereas others are just temporarily fixed. 

Flexibility is also introduced through backtracking to avoid early convergence. We propose a 



version of the algorithm in which the fixation process is more adaptive to obtain a more 

robust method. The results obtained over the well-known 270 correlated instances of the 0-1 

multidimensional knapsack problems available on the Internet are found to be competitive 

with existing approaches. One interesting feature of our approaches, besides being adaptive, 

they provide a reasonable compromise between the solution quality and the CPU times. In 

addition, our methods appear to rival other heuristics in this field by generating top quality 

solutions. 

We believe that the dynamic fixation scheme with the use of information induced 

from the search is challenging but a worthwhile research avenue that deserves to be explored 

for other combinatorial optimization problems. The authors are currently investigating a class 

of location problem namely the p-median, see Salhi and Drezner (2007) for references. 
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