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Abstract:   The Vehicle Routing Problem with Pickups and Deliveries (VRPPD) is an 

extension to the classical Vehicle Routing Problem (VRP), where customers may both 

receive and send goods.  We do not make the assumption common in the VRPPD literature, 

that goods may only be picked up after all deliveries have been completed.  We also eschew 

the concept of insertion and propose a method that treats pickups and deliveries in an 

integrated manner.  This method finds a solution to the corresponding VRP problem and 

modifies this solution to make it feasible for the VRPPD.  Such modification is achieved 

mainly by heuristic routines taken from VRP methodology but modified such that their aim 

becomes the reduction of infeasibilities, although a number of problem–specific routines are 

also constructed.  To render our procedures efficient when checking feasibility, we built 

appropriate mathematical relationships to describe changes in the maximum load of routes.  

Furthermore, several enhancements are introduced.  Our methodology is also capable of 

solving multi–depot problems, which has not been done before for this challenging general 

version of the VRPPD.  The methods are tested for single and multiple depot problems with 

encouraging results.   
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1.  INTRODUCTION 

 
 The Vehicle Routing Problem with Pickups and Deliveries (VRPPD) is an extension to the 

vehicle routing problem (VRP) where the vehicles are not only required to deliver goods to 

customers but also to pick some goods up at customer locations.  It is normally assumed that goods 

stored at some customer location cannot directly be transported to another customer.  In other 

words, all goods have to either originate from, or end up, at a depot.  Thus, problems such as the 

dial-a-ride problem are excluded from our consideration, although some authors do refer even to 

these as  pickup-and-delivery problems.  It is also usually assumed that the number of vehicles is 

not fixed in advance.  The objective function of the VRPPD is to minimise the total distance 

travelled by the vehicles, subject to maximum distance and maximum capacity constraints on the 

vehicles.  We also mention that the VRPPD is NP–hard, being a generalisation of the classical 

VRP.  It can be formulated as a mixed ILP (see Appendix for a possible formulation), and solved 

by exact methods for small problems.  Our focus, however, will exclusively be on heuristics.  

Within the above assumptions, three important VRPPD models may be distinguished.  In the 

following, we briefly describe these models, and then present and explain our choice of model.  

 Delivery–first, pickup–second VRPPD.  Most researchers make the assumption that 

customers can be divided into linehauls (customers receiving goods) and backhauls (customers 

sending goods); furthermore vehicles can only pick up goods after they have finished delivering all 

their load.  One reason for this is that it may be difficult to re-arrange delivery and pickup goods on 

the vehicles.  We note that such an assumption makes the implementation issue easier, since 

accepting pickups before finishing all deliveries results in a fluctuating load.  This may cause the 

vehicle to be overloaded during its trip (even if the total delivery and the total pickup loads are not 

above the vehicle capacity), resulting in an infeasible vehicle tour.   

 Mixed pickups and deliveries.  A VRPPD where linehauls and backhauls can occur in any 

sequence on a vehicle route is referred to as a mixed VRPPD.  Delivery-first pickup-second and 

mixed VRPPD problems are jointly referred to as the vehicle routing problem with backhauling 

(VRPB).    

 Simultaneous pickups and deliveries.  In this model, customers may simultaneously receive 

and send goods.  We note that mixed and simultaneous VRPPD problems can be modelled in the 

same framework.  Mixed problems can be thought of as simultaneous ones with either the pickup 
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or the delivery load being nil; while the customers of simultaneous problems can be divided into 

pickup and delivery entities to give a mixed formulation.  (In the simultaneous problem, there may 

be a further restriction on serving the pickup and delivery of a customer at the same time.) 

The aims of this study are to produce an efficient composite heuristic approach for both the 

simultaneous and the mixed VRPPD and to extend the methodology to the multiple depot VRPPD 

problem.  We do not address the delivery-first pickup-second problem.   This is because we believe 

that this assumption is unnecessarily restrictive, and results in poor quality solutions.  

Consider the following example.  A depot d is located at coordinates (0,0) and customers a, 

b and c are located at coordinates (1,0), (1,1) and (0,1) respectively.  (See Figure 1.)  Customer a 

and c need 9 tons and 1 ton, customer b sends 2 tons.  The capacity of the vehicle is 10 tons. The 

optimal mixed VRPPD solution is dabcd, with a length of 4 units.  The optimal delivery-first 

pickup-second solutions are dacbd and dcabd, with a length of 4.828 units.  Thus, this restriction 

resulted in an increase of over 20%.  

 

 

Figure 1.  An example of the drawback of the delivery-first pickup-second assumption. 

 

We agree that serving pickups and deliveries in a mixed order or simultaneously causes difficulties, 

due to the rearrangements of goods on board.  However, it is not an impossible task, especially if 

the vehicle is nearly empty.  Some vehicles also have a better design (e.g. both rear and side 

loading), making rearrangement of goods a more practical option.  From a managerial viewpoint, it 

is useful to find the solutions to both problems, as this can help in evaluating the cost benefit 
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against the inconvenience caused by the need to rearrange.  Such inconvenience could be looked at 

and examined whether it is worthwhile pursuing. 

It is not possible to directly compare our methods with delivery-first pickup-second 

algorithms, as our solutions may violate the delivery-first pickup-second restriction.  If such a 

restriction must be imposed, then a different methodology is likely to be more suitable.  The special 

structure of the routes in this case makes them more suitable to be solved as matching problems, 

since routes consist of two distinct parts (a delivery and a pickup segment).   In any case, our aim is 

not to find small increases in solution quality, but to develop a solution methodology that is capable 

of solving a wider class of problems than previously solved in the literature.   

 In the next section, we present a review of the literature.  The overall structure of the new 

heuristic is given in section 3 and its details are presented in section 4.  Some enhancements of this 

method are introduced in section 5 and an adaptation to the case of multiple depots is presented in 

section 6.   We provide the computational results in section 7.  Finally, we present our conclusions 

and outline some suggestions for future work.   

 

 

2.  LITERATURE REVIEW 

 
 The literature on the VRPPD is very scant compared to that of the classical VRP.  VRPPD 

literature can be classified into three main categories:  

(i)   simultaneous pickups and deliveries,  

(ii)  mixed pickups and deliveries, and  

(iii)  problems where pickups are only allowed to occur after deliveries.   

Summary descriptions of the various papers are presented in Table 1.  The reader is also referred to 

the paper of Savelsbergh and Sol (1995), which presents a review of papers on a wider class of 

pickup-and-delivery problems and gives a different classification. 
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AUTHOR (YEAR) TYPE SOLUTION METHOD SIZE 

Deif and Bodin (1984) D1P2 extension to savings method, penalty term to 
push backhauls to ends of routes 

d = 1,  r = # 
100 = c = 300 

Golden, Baker, Alfaro 
and Schaffer (1985) 

mixed VRP for linehaul customers, then backhauls 
inserted using stop-based criterion 

d = 1,  r = 6 
c = 50 

Yano et al. (1987) D1P2 list processing heuristic, set covering 
heuristic using Lagrangian relaxation 

d = 1,  r = 11 
c = 40 

Casco, Golden and 
Wasil (1988) 

mixed VRP for linehaul customers, then backhauls 
inserted using load-based criterion 

d  = 1,  r = 6 
c = 61 

Goetschalckx and 
Jacobs-Blecha (1989) 

D1P2 spacefilling curves for clustering and routing, 
then improvement procedures 

d = 1,  r = 2 
25 = c = 200  

Min (1989) simul- 
taneous 

clustering, solving TSPs, then infeasible arcs 
penalised and TSPs re-solved 

d = 1,  r = 2 
c = 22 

Min, Current and 
Schilling (1992) 

D1P2 separate clustering for pickups and 
deliveries, then assignment, finally TSPs 

d = 3,  r = #  
c = 161 

Halse (1992) simul- 
taneous 

assignment first, routing second, then 
improvement procedures 

d =1,  r = # 
22 = c = 150 

Jacobs-Blecha and 
Goetschalckx (1993) 

D1P2 joint clustering for pickup and delivery 
customers, then solving assignment problem 

d = 1,  r = # 
25 = c = 200 

Mosheiov (1994) mixed solving TSPs, then re-inserting depot d = 1,  r = 1 
17 = c = 200 

Anily and Mosheiov 
(1994) 

mixed create a minimum spanning tree, then 
transform it into a TSP 

d = 1,  r = 1 
10 = c = 100 

Thangiah, Sun and 
Potvin (1994) 

D1P2 insert both pickups and deliveries one by 
one, then use improvement procedures 

d = 1,  r = # 
25 = c = 100 

Anily (1996) D1P2 separate clustering and TSPs, then 
assignment, finally constructing routes 

d = 1,  r = # 
c = # 

Toth and Vigo (1996) D1P2 separate clustering, then matching clusters, 
solving TSPs, improvement procedures 

d = 1,  r = # 
21 = c = 150 

Gendreau, Laporte and 
Hertz (1997) 

D1P2 create a spanning tree, minimal over 
linehauls and backhauls, transform into TSP 

d = 1,  r = 1 
c = # 

Toth and Vigo (1997) D1P2 exact method (Lagrangian branch-and-bound 
procedure) 

d = 1,  r = # 
21 = c = 100 

Toth and Vigo (1999) D1P2 separate clustering, then matching clusters, 
solving TSPs, improvement procedures 

d = 1,  r = 12 
21 = c = 150 

Salhi and Nagy (1999) mixed VRP for linehaul customers, backhauls 
inserted in clusters or one by one 

d = 5,  r = # 
50 = c = 249 

Gendreau, Laporte and 
Vigo (1999) 

simul- 
taneous 

solve TSP, then find pickup and delivery 
order on TSP-tour 

d =1,  r = 1 
6 = c = 261 

Osman and Wassan 
(2002) 

D1P2 initial solution based on saving-insertion or 
saving-assignment, plus reactive tabu search 

d =1,  r = 12  
21 = c = 150 

 
Table 1.  A comparison of the different papers on the VRPPD. 

d denotes the number of depots, r the number of routes (if unknown or varying, “#” is used), and c 
the number of customers.  “D1P2” stands for “delivery-first, pickup-second”. 
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 Simultaneous VRPPD.  Min (1989) was the first to tackle this version, solving a practical 

problem faced by a public library, with one depot, two vehicles and 22 customers.  The customers 

were first clustered into groups and then in each group the travelling salesman problems were 

solved.  The infeasible arcs were penalised (their lengths set to infinity), and the TSPs solved again.  

Halse (1992) studied a number of VRP versions, including the VRPB and the VRPPD.   He solves 

the latter problems using a cluster-first routing-second approach.   In the first stage the assignment 

of customers to vehicles is performed, then a routing procedure based on 3-opt is used.  Solutions 

to problems with up to 100 customers for the VRPPD and 150 customers for the VRPB are 

reported.  The recent paper of Gendreau, Laporte and Vigo (1999) investigates the travelling 

salesman problem with pickups and deliveries (TSPPD).  First, the TSP is solved without regard to 

pickups and deliveries.   Then, the order of pickups and deliveries on the TSP-tour is determined.  

 Mixed VRPPD.  There are also very few papers which deal with (ii).  The approach 

described in Golden, Baker, Alfaro and Schaffer (1985) is based on inserting backhaul (pickup) 

customers into the routes formed by linehaul (delivery) customers.  Their insertion formula uses a 

penalty factor which takes into account the number of delivery customers left on the route after the 

insertion point.  Casco, Golden and Wasil (1988) develop a “load-based insertion procedure” where 

the insertion cost for backhaul customers takes into account the load still to be delivered on the 

delivery route (rather than the number of stops).  This latter approach was found to be superior.  

Mosheiov (1994) investigated the TSPPD.  It has been shown that if the solution is infeasible 

because some arcs are overloaded, feasibility can be achieved by re-inserting the depot into the arc 

with the highest load.  Anily and Mosheiov (1994) present a solution method for the TSPPD, by 

creating a minimum spanning tree.  While its worst-case bound and computational complexity are 

better than that of Mosheiov (1994), its average performance is found to be slightly inferior to it.  

The recent paper of Salhi and Nagy (1999) extends the insertion method of Casco, Golden and 

Wasil (1988) by allowing backhauls to be inserted in clusters, not just one by one.  This approach 

yields some modest improvements and requires negligible additional computational effort.   This 

procedure is also capable of solving simultaneous problems.   

 Delivery-first, pickup-second VRPPD.  There is a much larger body of literature on the 

VRPB covering (iii).  As we do not make this assumption in our study, we refer the reader to Table 

1 for a brief summary of the main papers treating this version.   
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3.  THE BASIC INTEGRATED HEURISTIC 

 
3.1.  Introduction and rationale 

As we have seen in the previous section, many of the solution methods for mixed VRPPD 

problems are based on the concept of insertion.  While these methods work very well for a small 

number of backhauls as soon as the number of backhauls starts to rise their computational 

complexity increases rapidly.  The same problem would arise if an insertion method was applied to 

a simultaneous VRPPD.  (See Nagy (1996), p.134.)  Thus, we have decided to construct a method 

which treats both linehaul and backhaul customers the same way, in an integrated heuristic.  While 

this method was primarily designed with the simultaneous VRPPD in mind, it works equally well 

for the mixed case.  However, our methodology is not designed for the case of the assumption of 

deliveries before pickups, as this assumption is contrary to an integrated treatment of linehauls and 

backhauls.   

We begin by presenting our notation and introducing a number of concepts.  Vehicle routes 

are characterised by a sequence of customers or of arcs.  Routes are denoted by the letters x, y, z 

and customers by a, b, etc.   The supply and the demand of a customer a is denoted by p(a) and 

q(a) respectively.   The maximum capacity of the vehicle is denoted by C while the total pickup 

and the total demand of route x are denoted by P(x) and Q(x) respectively.   Functions are 

distinguished by italic phrases such as load, maxload, minload: their meanings will be explained 

below.   

Let us now define the load function for a vehicle route: this is simply the load the vehicle 

carries along the arcs of a tour.  The load on arc ab is denoted by load(ab).  We note that if the 

“pickups after deliveries” assumption applies then this function is monotonously decreasing until 

some point and then becomes monotonously increasing.  Thus, provided that the load function is 

not above the maximum capacity C for both the first and the last arcs it is never above it and the 

route is feasible.  On the other hand, if our problem falls into the categories of mixed or 

simultaneous pickups and deliveries then it is possible that the load function “peaks” somewhere in 

the middle.  In particular, it is possible that the load function is below the maximum capacity for 

the first and the last arc but not for some arcs in between.  We now define the maximum load of a 

route x, maxload(x), as the largest total load on the vehicle during the route.  We can similarly 

define the maximum load of a section of a route, maxload(a,b), as the maximum of the loads 
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between customers a and b of route x.  A variable for the least load on a vehicle route or route 

section is also introduced and referred to as minload(x) and minload(a,b) respectively.  If 

maxload(x) = C and minload(x) = 0, the route is feasible.  (In our solution algorithm, the second 

condition will always be fulfilled automatically.)  

We note that for a route with n customers all the above functions can be stored in an n by n 

matrix.  The load for each arc can be stored in the leading diagonal of the matrix, the minimum and 

maximum loads for route sections in the upper and lower triangles respectively, finally maxload 

and minload will be in the lower left and upper right corners.  The load function is updated together 

with the route, at no additional computational effort.  To create or update the table requires an O(n) 

effort.  This will need to be done each time a route is changed.   However, as we shall see later, the 

maxload of a planned route change can be calculated in constant time, making our procedure 

computationally inexpensive.   

Mosheiov (1994) proved that any travelling salesman tour can be made feasible, provided 

that neither P(x) nor Q(x) exceeds the vehicle capacity.   In his model there was no restriction on 

maximum tour length.  This theorem is useful since an infeasible vehicle tour for which the above 

conditions hold can be made feasible by performing certain operations on it.  In addition, if either 

the total delivery load or the total pickup load exceeds the vehicle capacity for any route then that 

route cannot be made feasible by modifying the order of customers on it.   Thus, the conditions laid 

down in Mosheiov (1994) are necessary and in most cases (i.e. if the distance constraint is not too 

tight) sufficient to make a route feasible.  In this study, we used this theorem indirectly and we refer 

to a route for which neither the total pickup nor the total delivery load exceeds the vehicle capacity 

and its length is below the maximum distance as a weakly feasible route.  If the length of a tour 

does not exceed the maximum distance and for each of its arcs the load function is below the 

capacity constraint we call the tour strongly feasible.   

In the following we aim to explain how certain transformations of routes change their 

feasibility, where feasibility is measured in terms of the function maxload, thus providing the 

foundation for the modification of the VRP algorithm into a VRPPD method and also for the 

operations to eliminate infeasibilities.  
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3.2.  How route changes influence feasibility 

The improvement procedures used in the literature (such as the ones of Salhi and Rand,  

1993) change the structure of the routes, often by inserting or removing customers, and sometimes 

resulting in a reversal of the direction of parts of a vehicle route.   

While in the VRP route direction is irrelevant, for the VRPPD it is an essential part of the 

route design.  If we have too many customers with large pickups and small deliveries at the 

beginning of the route it may easily become infeasible.  Reversing such a route may make it 

feasible as we would serve the large deliveries first and the large pickups later on.  It is very easy to 

check the feasibility of the reversed route, as the following relationship holds:  

maxload(x')  =  Q(x) + P(x) – minload(x)             (1) 

where x' refers to the reverse of route x.   The above relation can easily be verified algebraically, 

see Nagy (1996), p.143.  We compare maxload(x') with C to check feasibility.   

It is also possible that only a part of the route is reversed, for example when executing a     

2-opt operation (Lin, 1965).  Let the old route be 0…ab…cd…0 and the new one 0…ac…bd…0, 

with 0 denoting the depot.  (Note that the 2-opt procedure applied to customers a, b, c and d results 

in the reversal of the route section between b and c.)  The maximum load of the affected section can 

be related to its former minimum load, as follows: 

maxload(c,b)  =  load(ab) + load(cd) – minload(b,c)               (2) 

(see Nagy (1996), p.144.).  This is sufficient to check the feasibility of the new route.  

Another operation which occurs frequently is the removal of a customer (or less usually of a 

depot) from a vehicle route, and its insertion to somewhere else on the same route, or into a 

different route.  The deletion of a customer a improves route feasibility, since the load on the arcs 

before a will decrease by q(a), and on the arcs after a by p(a).  It is possible that by re-assigning a 

customer from an infeasible route to a strongly feasible one the former becomes strongly feasible 

while the latter maintains its strong feasibility.  Checking the feasibility changes of insertion-based 

procedures can also be done computationally inexpensively, using the function maxload, see Nagy 

(1996), p.146.   
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3.3.  The structure of the basic integrated heuristic 

Since weak feasibility of a VRPPD route is very similar to the feasibility of a VRP route we 

surmise that a weakly feasible solution can be constructed using standard VRP techniques.  This 

can then be turned into a strongly feasible one, using route modification routines.  As we have 

noted in the previous subsection, checking of these changes in feasibility can be carried out with 

little computational effort.   

The underlying routing method used is that of Salhi and Sari (1997).   This algorithm relies 

on a route construction heuristic to provide an initial solution and then uses a variety of routines to 

improve on the routes.  Thus, we separate the method which creates the initial solution and the set 

of improvement routines also here.  We also notice that improvement routines can be modified to 

improve on the feasibility of the routes.  Finally, once strong feasibility is reached we can still 

improve on the routes as long as we maintain strong feasibility.   

Our integrated heuristic, referred to as IH for short, consists of the following four phases:  

Phase 1.  Find a weakly feasible initial solution               

Phase 2.  Improve on this solution while maintaining weak feasibility     

Phase 3.  Make the solution strongly feasible                   

Phase 4.  Improve on this solution while maintaining strong feasibility      

These phases are explained in the next section.   

 

 

4.  EXPLANATION OF THE MAIN PHASES 

 
4.1.  The route construction heuristic (phase 1) 

This algorithm is based on the concept of multiple giant tours as extended by Salhi, Sari, 

Saidi and Touati (1992).  We shall look at both the original vehicle routing algorithm and how it 

was modified to cater for the case of pickups and deliveries.   

In the VRP version, a giant tour, including the depot, is first created.   This is a tour that 

starts from the depot, passes through all customer sites and returns to the depot.  Second, a directed 
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cost network is constructed.  This is a directed graph with customers as its nodes and edges defined 

as follows.  Let us define the tour Tab as a tour beginning with an arc from the depot to customer a, 

then following the giant tour between customers a and b, then finishing with an arc from customer 

b to the depot.  Then, there is a directed edge in the cost network from a to b if and only if the tour 

Tab is feasible in terms of vehicle capacity and distance restriction.   The length of the edge ab in 

the cost network is the length of Tab.  Third, the shortest path problem is solved using Dijkstra’s 

(1959) algorithm, giving us a partitioning of the giant tour.  This procedure is repeated starting 

from different giant tours and the overall least cost solution is chosen.  In our experiments we 

constructed 5 giant tours; one using the nearest neighbour, the other the least insertion cost rule and 

the remaining three tours are generated randomly.  A detailed description on how to generate these 

giant tours and how to construct the associated cost networks can be found in Salhi et al. (1992).   

It is the above partitioning of the giant tour, in particular the creation of the cost network, 

which needs to be modified for the case of pickups and deliveries, since feasibility must be checked 

in terms of a fluctuating load function.  For the VRP, route feasibility is checked by comparing the 

total demand of the route Q(x) against the maximum capacity C.  For the VRPPD, we have to 

introduce the total supply P(x) into this routine and accept a route as weakly feasible if the 

inequality 

max(Q(x),P(x))  =  C                   (3) 

is satisfied.  We note that this extension to the original algorithm does not increase its 

computational complexity.  Other parts of this method need also be modified accordingly: these 

changes are minor and do not increase the computational complexity either.  The overall 

complexity of this phase is O(n2), where n is the total number of customers (Salhi et al., 1992).  

While the changes are sufficient for achieving weak feasibility they do not guarantee strong 

feasibility.  We will present a version of the method which can produce strongly feasible initial 

solutions in subsection (5.1.).  Finally, we note that, at the end of this phase, the routes are given 

the direction which yields a smaller amount of infeasibility.   

 

4.2.  Explanations of the improvement/feasibility routines 

We have taken the improvement routines for VRP from Salhi and Rand (1993) and 

transformed them for the case of the VRPPD.  A number of new routines were also added where 
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necessary.  Most of them can be used both to improve optimality (reduce total distance) and to 

decrease the amount of infeasibility (defined as maxload–C for each route): the next subsection will 

show the different ways these algorithms are put to use.  Some of these routines are explained in 

more detail than others, depending on their importance.  We refer the reader to Salhi and Rand 

(1993) for more detailed explanation of the VRP versions of some of the routines, including 

graphical illustrations.  The subsection is rounded off by a brief discussion on the computational 

complexity of the routines.   

Routine REVERSE.  This is a new routine, which is based on the observation that reversing 

the direction of a route may improve its feasibility, without increasing its length.  The procedure 

simply chooses the route direction with the smaller maxload.   

Routine 2-OPT.   This method, first described by Lin (1965), is based on interchanging arcs, 

say ab and cd with ac and bd.  The direction of the route will be reversed between customers b and 

c.  We surmise that infeasibilities in VRPPD occur due to the fact that the customers are ‘in the 

wrong order’ on the vehicle route.  Thus, it is reasonable to re-arrange the ordering of the 

customers on the route by reversing the direction of those parts of the vehicle route, where 

infeasibilities occur.  We note that applying this transformation twice returns the route to its 

original state, thus 2-OPT can be thought of as its own dual.  It may be used either to decrease route 

length or to reduce the occurrence of infeasibilities.   This observation is true for most of the 

subsequent routines.   

Routine 3-OPT.  This is a slight modification of the original routine of Lin (1965), which is 

based on the exchange of any three arcs with three other arcs.   The modified method considers 

only three consecutive arcs and hence is much faster.   

Routine SHIFT.  This routine involves two routes, but is otherwise very similar to our 

version of 3-OPT.  It involves the deletion of a customer from a route and its insertion into an arc 

on another route.   

Routine EXCHANGE.  This routine is an extension to SHIFT in that two customers are 

inserted simultaneously into each others’ former routes, but not necessarily into the former 

locations of each other.   
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Routine PERTURB.  This is another modification to SHIFT in that it considers three routes 

at a time.  A customer a is removed from a route x and inserted into a route y, at the same time a 

customer b is removed from route y and inserted into a third route z.  We note that this operation is 

different to applying SHIFT twice as after the first SHIFT operation we may be in an infeasible (i.e.  

not even weakly feasible) situation.  Also, the complexity of this procedure is larger as there are 

more possibilities to consider within the same move.   

Routine REINSERT.  This method originates from a theorem by Mosheiov (1994).  The 

author proved that a weakly feasible travelling salesman tour with pickups and deliveries can 

always be made strongly feasible by re-inserting the depot.   Thus routine REINSERT considers all 

arcs on a tour for possible depot re-insertion, see Figure 2.  Mosheiov (1994) showed just how 

useful this routine can be in eliminating infeasibilities; however we note that it is also possible that 

re-inserting the depot would decrease the route length.   

 

 

Figure 2.  An illustration of the routine REINSERT 

 
Routines NECK and UNNECK.  This is a new set of routines devised specially for the 

VRPPD.  In fact, they are only applicable for the simultaneous pickup and delivery problem and 

only if customers are allowed to be visited twice.   It is possible that we have some customers near 

the depot which have large demand or supply levels.  While REVERSE tries to ensure that 

customers with large supplies are put to the end, and those with large demands at the beginning of 
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the vehicle route, we may still have some customers of the above type causing infeasibilities, 

especially if both their demand and supply is high.  However, we may serve these customers twice: 

first for delivery and then for pickup.   Thus, NECK splits a customer a into two entities: a pickup 

customer ap and a delivery customer ad.  The delivery entity is left where it currently is and the 

pickup is considered for insertion into all the arcs of the route following the delivery, or vice versa, 

see Figure 3.  We observe that maxload(adap) is reduced by either p(a) or q(a).  We also note that 

unlike the previous routines NECK is not its own dual, thus we also introduce a routine called 

UNNECK, which is the dual of NECK and tries to join separate entities a and a together if it is 

feasible.   Thus, NECK is a feasibility routine while UNNECK is an improvement routine.   

 

 
 

Figure 3.  An illustration of the routines NECK and UNNECK 

 
Routines IDLE and CREATE.  Routine IDLE is simply a service routine designed to remove 

any routes which contain no customers and represent no physical movement of vehicles.  It is 

included in the cluster of improvement routines given in Salhi and Rand (1993).  We constructed a 

dual to IDLE called CREATE which creates an empty route.  This, in itself, affects neither 

optimality nor feasibility but can be useful as some later routine may move a customer into this 

‘dummy’ route and thus make another route feasible.   

Routines COMBINE and SPLIT.  Routine COMBINE tries to combine two routes if it is 

feasible to do so.  We note that there are many ways of joining the two routes, especially if route 

direction is important (it was not in the original VRP version but it is for the VRPPD).  We observe 

that the maxload of a combined route is simply the sum of the maxload values of the two original 
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routes.  We created a dual to COMBINE called SPLIT which can improve on feasibility.  It takes a 

route and finds the best arc (say ab) where it may be split, see Figure 4.   

 

 
 

Figure 4.  An illustration of the routines COMBINE and SPLIT 

 
Computational complexity.  The computational complexity of the above routines is as 

follows.  REVERSE: O(n), 2-OPT: O(n2), 3-OPT(modified): O(n2), SHIFT: O(n2), EXCHANGE: 

O(n4), PERTURB: O(n3), REINSERT: O(n), NECK/UNNECK: O(n2), IDLE/CREATE: O(n), 

COMBINE/SPLIT: O(n), where n is the total number of customers.  (See Nagy (1996), p.157. and 

Salhi and Rand (1993).) 

 

4.3.  The composite improvement/feasibility phases (phases 2, 3 and 4) 

The route improvement/feasibility routines presented in the previous subsection can be used 

in three different contexts.   They can either be used to improve optimality while maintaining weak 

or strong feasibility or to improve feasibility.  The structures of the three phases are described 

below.  The subsection is rounded off by a brief discussion on computational complexity.   

Description of phase 2.  This is used to improve on solution quality, while maintaining 

weak feasibility.  The modules are called in the following sequence:  
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1. 2-OPT, 3-OPT, REINSERT, REVERSE 

2. COMBINE, 2-OPT, 3-OPT, REINSERT, REVERSE  

3. EXCHANGE, IDLE, REVERSE, 2-OPT, 3-OPT, REINSERT, REVERSE  

4. SHIFT, IDLE, REVERSE, 2-OPT, 3-OPT, REINSERT, REVERSE 

5. PERTURB, IDLE, REVERSE, 2-OPT, 3-OPT, REINSERT, REVERSE 

6. EXCHANGE, IDLE, REVERSE, 2-OPT, 3-OPT, REINSERT, REVERSE 

7. COMBINE, IDLE, REVERSE, 2-OPT, 3-OPT, REINSERT, REVERSE 

The ordering of the modules reflects their computational effort.  Fast modules (2-OPT, 3-OPT, 

REINSERT and IDLE) are called more often, alternating with the slower ones.  These slower 

modules are called first in an increasing, then in a decreasing order of complexity.  We would like 

to note that this ordering is somewhat arbitrary and any suitable schedule can be worthwhile 

exploring.   While REVERSE is not an improvement routine, it does not affect route length and 

reduces the amount of infeasibility already at this stage.   

Description of phase 3.  The aim of this phase is to reduce the amount of infeasibility.  The 

input to this procedure is a weakly feasible solution while its output is a strongly feasible one.  The 

sequence of modules is given below.  

1. 2-OPT, 3-OPT, REINSERT, REVERSE, NECK, REVERSE,  

2. EXCHANGE, REVERSE, 2-OPT, 3-OPT, REINSERT, REVERSE, SHIFT, REVERSE  

3. 2-OPT, 3-OPT, REINSERT, REVERSE, PERTURB, REVERSE  

4. 2-OPT, 3-OPT, REINSERT, REVERSE, NECK, REVERSE  

5. SPLIT, REVERSE, CREATE, REVERSE 

As SPLIT and CREATE both generate additional routes we use them at the end of the composite 

heuristic to eliminate any remaining infeasibilities.   If they need to execute a move as the previous 

stages failed to make the solution strongly feasible, then the procedure is repeated once more to 

allow for re-arrangement of routes.  We note that if the problem is mixed, or customers can only be 

visited once, then module NECK is not applicable.  In these cases, NECK and REVERSE are 

deleted from the end of steps 1 and 4 above.  

Description of phase 4.  Phase 3 may necessitate an increase in routing cost and that is why 

we employ another improvement phase.  Phase 4 aims to improve on solution quality, while 
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maintaining strong feasibility.   Its structure is almost identical to that of phase 2, except that a call 

to UNNECK and REVERSE is added to the beginning of steps 2 and 7, if the module NECK was 

used in phase 3.  However, it is slower than phase 2, as checking strong feasibility is more            

time-consuming than checking only weak feasibility. 

Computational complexity.  The above routines need to update the values of maxload and 

minload.  The updating process has complexity O(n2), see Nagy (1996), p.157.  Thus, the overall 

complexity of phases 2, 3 and 4 - and hence of the whole algorithm - is O(n4).   

 

 

5.  ENHANCEMENTS TO THE INTEGRATED HEURISTIC 

 
In this section we present two modifications to the basic integrated heuristic.  The first one 

attempts to improve the feasibility of the solution provided by the route construction heuristic 

(phase 1 of IH).  The second one uses feasibility and improvement routines in turn, reducing the 

amount of infeasibility in each iteration.  

 

5.1.  A version using a penalty factor 

The route construction heuristic presented in subsection (4.1.) produces a weakly feasible 

initial solution.  It is possible to modify this method to produce a strongly feasible initial solution.  

However, in practice this often yields a poor solution quality which even the improvement 

procedures may not correct sufficiently.  Because of this, a penalty factor is introduced into the 

method to reduce the amount of infeasibility in the initial solution.   

In the route construction heuristic, a tour is feasible in the cost network, if (2) holds.  To 

achieve strong rather then mere weak feasibility maxload(x) must be less than or equal to C.  (With 

a slight variation to account for the possible reversal of the route.)  As we may not wish to achieve 

strong feasibility, we introduce a penalty factor ? and use the criterion below.   

? · maxload(x) + (1-?) · max(P(x),Q(x))  =  C   (0=?=l)          (4) 

The larger the value of ? becomes, the more the initial solution is pushed towards strong feasibility.   
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We present below the pseudo-code of the new composite heuristic, which is called PEN for 

short:  

1.   Find a weakly feasible initial solution, where routes are accepted if (3) is satisfied.        

2.   Improve on this solution while maintaining weak feasibility          

3.   Make the solution strongly feasible                        

4.   Improve on this solution while maintaining strong feasibility          

 

5.2.  An alternating version 

This version relies on the idea of alternating between the improvement routines and the 

feasibility routines, and thus between feasible and infeasible solutions.  (Note that feasibility and 

infeasibility from here on refer to the maximum load constraint; the maximum distance constraint is 

never to be violated.)  The idea of crossing infeasible regions has the flexibility of exploring good 

feasible regions which might not be visited otherwise, see Kelly, Golden and Assad (1993) for 

more details on this issue.   

For this alternating version, new adaptations of all the improvement routines of subsection 

(4.2.) were developed.  They allow violations in strong feasibility but control them using a 

parameter d.  This is called the total allowed feasibility violation and is defined as                              

∑i max(maxload(i)–C;0).  This flexible process involves changing every one of the improvement 

procedures so that when they check feasibility they allow some violations, as long as they are 

below a percentage change calculated from d and the route length.   

We present below the pseudo-code of the alternating method, referred to as procedure ALT:  

1.   Establish an initial weakly feasible solution      

2.   Improve on this solution while maintaining weak feasibility     

3.   Calculate the total feasibility violation dold        

4.   Make the solution strongly feasible       

5.   Improve on this solution by allowing a maximum feasibility violation of (dold/2)  

6.   Let dold  = dnew  and calculate the new total feasibility violation dnew     

7.   If the solution is the same as in the previous iteration then stop; otherwise repeat steps 4 to 7  

It can easily be verified that this method will always terminate in finite time.   
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A version similar to the above, which uses strategic oscillation, was also developed.  It uses 

an oscillation schedule as proposed by Kelly, Golden and Assad (1993).  It extends the approach of 

ALT by merging the improvement and feasibility routines into composite routines which attempt to 

minimise a weighted combination of route length and amount of infeasibility.  We do not provide a 

description of this version, as the results obtained were not found to be sufficiently different from 

those of ALT.  We refer the reader to Nagy (1996), pp.161–163. for details.   

 

 

6.  ADAPTATION TO THE MULTI-DEPOT PROBLEM 

 
In this section we present appropriate modifications to our proposed heuristics to address 

the problem of multiple depots.  To our knowledge, the only paper which attempts to treat the 

simultaneous and the mixed pickup-and-delivery problems for the case of multiple depots is that of 

Salhi and Nagy (1999).  The multi-depot extension is based on the idea of borderline customers as 

used by Salhi and Sari (1997) for the multi-depot vehicle fleet mix problem.  Roughly speaking, 

borderline customers are those customers situated approximately half-way between two depots.  

More precisely, customer a is considered a borderline customer if dap/daq = ?, where ? is a 

parameter between 0.5 and 1.0 (set to 0.9 in our heuristics) and p and q are the nearest and the 

second-nearest depots to customer a.   

The initial solution for the multi-depot VRPPD is found using the following four steps:  

1.   Divide the customer set into borderline and non-borderline customers      

2.   Assign the non-borderline customers to their nearest depot           

3.   For each depot, find a weakly feasible solution to the resulting single-depot VRPPD     

4.   Insert the borderline customers into the vehicle routes one at a time     

As this procedure for the VRPPD is very similar to the original VRP version, the details are not 

given here but the reader is referred to Salhi and Sari (1997) for a description.  We note that step 3 

is equivalent to the route construction heuristic described in subsection (4.1.).  Furthermore, when 

checking feasibility for insertion in step 4, both the total demand and the total supply must be 

compared against the maximum capacity (this was not required in the original VRP version).   
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The improvement/feasibility routines of subsection (4.2.) are easily extended for the case of 

multiple depots.  Those routines which involve one route only are unchanged, although we note 

that CREATE constructs one new (empty) route for every depot and REINSERT considers all the 

depots for insertion into the vehicle route not just the one to which the route previously belonged.  

More care is needed in the routines involving two or three routes (SHIFT, EXCHANGE, 

PERTURB, COMBINE/SPLIT).  For example, the new version of COMBINE tries to merge routes 

which may not belong to the same depot.  This necessitates determining which depot the combined 

route should belong to.   

Finally, we note that the modifications described in section 5 can also be extended with ease 

for the case of multiple depots.   

 

 

7.  COMPUTATIONAL COMPARISON 

 
The heuristics described in this study were written in VAX Fortran and executed on a VAX 

4000-500 computer.  They were evaluated using empirical testing, but we would also like to refer 

the reader to the discussion on their computational complexities in subsection (4.3.).   

 

7.1.  Data generation  

We used the problems given by Christofides, Mingozzi and Toth (1979) to generate our    

single-depot data (50 to 199 customers) and the ones given by Gillett and Johnson (1976) for        

multi-depot data (2 to 5 depots, 50 to 249 customers).  There are 14 problems in the first case and 

11 in the second.   

For the case of mixed pickups and deliveries we have generated three VRPPD problems for 

each VRP instance, declaring every second, fourth or tenth customer on the list a backhaul and 

assigning to it a supply figure equal to the original demand figure, in other words for backhaul 

customers let p(a) = t(a), and for others let q(a) = t(a), where t(a) is the original demand figure 

given in the above papers.   For each of the three sets, the average results are computed.  This is 

done for the single- and multi-depot problems.   
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For the case of simultaneous pickup-and-delivery, the same coordinate sets and demand 

matrices were used again.  For each customer a we calculated a ratio ra as min((xa/ya),(ya/xa)), 

where xa and ya are the coordinates of customer a.  Then, the new demand level of customer a is 

q(a) = ra·t(a) and its supply level is p(a) = (1–ra)·t(a).  This way the original demand is split up 

between delivery and pickup loads.  Another set of supply and demand levels was created by 

exchanging the demand and supply figures of every other customer.  Thus, we get two more 

VRPPD problems for each VRP instance.  Average results for this two sets are computed and 

referred to as “A” and “B”.   

Altogether, we have 70 single-depot problems, 42 of them mixed and 28 of them 

simultaneous.  Each set has 14 instances.  There are 55 multi-depot problems, 33 of them mixed 

and 22 of them simultaneous.  Each set has 11 instances.   

 

7.2.  Benchmark methods 

To compare our methods against those described in the literature, we chose three 

procedures, namely the insertion-based algorithm (denoted by INS) of Casco, Golden and Wasil 

(1988), the cluster insertion method (denoted by CI) of Salhi and Nagy (1999), and the          

penalty-based algorithm (denoted by MIN) of Min (1989).  These are the methods most 

appropriate, see Table 1.  We note that INS and MIN have originally been designed for          

single-depot problems.  For the  multi-depot case we adapted these two procedures as follows.  For 

MIN, we find a weakly feasible solution using procedure MD (see Section 6).  Then, the arcs are 

penalised the same way as in the single-depot case.  For INS, we follow procedure MD for linehaul 

customers only.  Note that in step 3 of MD the VRPPD is thus reduced to the VRP.   Backhauls are 

inserted the same way as in the single-depot case.   

 

7.3. Analysis of results 

The two comparison criteria we use are the quality of the solutions and computing speed.  

In Tables 2 and 3, we summarise the results in terms of average routing cost and computational time 

respectively.   These are grouped by the percentage of backhauls for the categories of single-depot 
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and multi-depot data.  Overall average values for these two categories are also given.  We refer the 

reader to Nagy (1996), pp.209-218, for detailed results.   

In the penalty-based procedure, penalty values of 0.25, 0.5, 0.75 and 1.0 were tested and 

very similar results were obtained.  Thus we present only the case of 0.75 in Table 2.   

 
 INS CI MIN IH PEN ALT 

10% 
mixed                     25% 

single-depot                                         50% 

simultaneous            AB  X 

single-depot average 

percentage of best solutions 

average number of vehicles 

1015 
1040 
1061 

1101 
1105 

1064 

9 

11.8 

1011 
1035 
1047 

1097 
1093 

1056 

12 

11.7 

995 
1019 
1016 

1064 
1056 

1030 

41 

11.1 

995 
998 
995 

996 
994 

995 

71 

10.7 

997 
998 
994 

997 
992 

995 

77 

10.7 

995 
998 
991 

991 
989 

992 

97 

10.6 

10% 
mixed                     25% 

multi-depot                                          50% 

simultaneous            AB  X 

multi-depot average 

percentage of best solutions 

average number of vehicles 

2008 
2052 
2136 

2237 
2173 

2121 

16 

18.5 

2008 
2050 
2099 

2230 
2160 

2109 

26 

18.3 

1999 
2078 
2007 

2034 
2149 

2053 

51 

17.5 

1996 
2010 
2004 

2009 
2004 

2004 

75 

16.8 

1996 
2007 
1999 

1997 
1997 

1999 

89 

16.8 

1996 
2007 
1993 

1993 
1993 

1996 

100 

16.8 
 

Table 2.  Average solution quality (total routing cost) 

The values 10, 25 and 50% refer to the percentage of backhauls used.   
A and B are the two sets of simultaneous pickup-and-delivery problems.   

bold refers to the best average solutions. 

 

We note that in some cases Min’s algorithm breaks down due to penalising too many arcs.  

In several other cases, its speed is very slow as it has to re-solve VRPs a number of times.  In our 

experiments MIN failed to find feasible solutions for 7% of the test instances.  Thus, the average 

values for MIN are calculated as follows.  For each set S of instances (corresponding to a row in 

Table 2), we denote the subset of instances for which MIN found a feasible solution by E.  Let 
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M(E) be the average solution found by MIN over E and let A(E) and A(S) be the average solutions 

found by all the other methods over E and S, respectively.   Let M(S) = M(E)*A(S)/A(E).  In Table 

2, we present M(S) as the average result found by MIN.   

 

 INS CI MIN IH PEN ALT 

10% 
mixed                     25% 

single-depot                                         50% 

simultaneous            AB  X 

single-depot average 

single-depot worst-case 

2.5 
2.8 
3.1 

3.9 
3.9 

3.2 

12.3 

2.8 
3.1 
3.6 

4.9 
4.8 

3.8 

17.2 

7.3 
8.9 

19.0 

14.9 
13.2 

12.6 

79.8 

2.6 
2.6 
2.6 

2.5 
2.5 

2.5 

9.1 

2.7 
2.6 
2.6 

2.5 
2.5 

2.5 

9.1 

3.1 
3.6 
3.9 

3.9 
3.3 

3.5 

18.1 

10% 
mixed                     25% 

multi-depot                                          50% 

simultaneous            AB  X 

multi-depot average 

multi-depot worst case 

9.0 
7.6 

10.7 

18.5 
11.9 

11.5 

78.3 

10.9 
8.7 

13.4 

39.4 
14.9 

17.5 

43.6 

11.5 
17.4 
55.5 

40.8 
72.0 

39.4 

351 

7.0 
7.2 
7.6 

6.6 
6.6 

7.0 

26.1 

7.1 
7.1 
7.7 

6.6 
6.9 

7.1 

29.0 

8.1 
8.6 

14.8 

13.9 
10.9 

11.3 

89.9 
 

Table 3.  Average solution speed 

Rows and columns are as in Table 2.  Entries are total computing times in seconds 
(averaged over the appropriate data sets).   

“Worst-case” represents the largest computing time taken out of all the instances.   

 

Within our versions, the alternating version ALT gives the best results.   We note that the 

small differences in the average costs produced by the different versions are not statistically 

significant.  However, ALT almost always finds the best solutions (for 97% of the single-depot and 

100% of the multi-depot instances), while IH and PEN fail to do so for about a quarter of the 

instances.   

The results clearly show the superiority of the proposed heuristics over the insertion-based 

methods of Casco, Golden and Wasil (1988) and Salhi and Nagy (1999).  For single-depot 
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problems, the improvement in average solution quality of ALT over methods INS and CI is 7% and 

6%, respectively.   For multi-depot problems these figures are 6% and 5%.  Our basic integrated 

heuristic and its different versions also surpass the quality of Min’s (1989) results.  The 

improvement in average solution quality of ALT over MIN is 4% and 3% for single and multiple 

depot problems, respectively.   

The integrated methods require approximately one and two vehicles fewer than the 

insertion-based procedures for the single- and multi-depot cases respectively, however this 

difference can be as high as five vehicles for some larger instances.   

Finally, we note that ALT is slower than other versions of the integrated heuristic, but its 

running times are still comparable to the other methods and are usually below that of the procedure 

MIN.   

 

 

8.  CONCLUSIONS AND SUGGESTIONS 

 
In this paper we presented a number of heuristics for the vehicle routing problem with 

pickups and deliveries (VRPPD).  The proposed heuristics are capable of solving simultaneous 

pickup and delivery problems (only Halse (1992) has done this for more than two routes).  In 

addition our methods can also solve problems with multiple depots (only Min, Current and 

Schilling (1992) has explored this issue).   

In this study, we introduced the concepts of weak and strong feasibility which were found to 

be helpful in tackling the VRPPD.   In our proposed heuristic we allowed infeasibilities to occur 

while we guided the search towards strong feasibility (feasibility elimination is also used by Toth 

and Vigo, 1996).  A number of enhancements of this integrated heuristic were also developed.  One 

added advantage of these heuristics is that their computational complexity is comparable to, and 

only slightly larger than, the complexity of the original VRP algorithm of Salhi and Rand (1993).   

In summary, the proposed heuristics were able to provide good quality solutions to VRPPD 

problems with one to five depots and 50 to 249 customers usually within a few seconds.  Our 
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integrated heuristics generally give better results than the benchmark procedures of Min (1989), 

Casco, Golden and Wasil (1988) and Salhi and Nagy (1999).   

For future research the following issues may be worthwhile considering.   

It may be possible to merge the ideas of Min (1989) and of Mosheiov (1994).   One 

approach could be to cluster the customers using the procedure given in Min (1989) and then solve 

a number of TSPPDs using the method suggested in Mosheiov (1994).   This composite procedure 

can be complemented by multi-depot improvement routines.  Another approach would be to adopt 

some of the metaheuristics such as tabu search or genetic algorithms for the VRPPD.  This issue is 

currently being investigated.   

In some circumstances the number of vehicles may be fixed in advance.  To cater for this 

case, a number of modifications would need to be done.  In the partitioning of the giant tour   

(phase 1), constrained shortest path problems need to be solved, which cannot be done using 

Dijkstra’s (1959) method.  There are two modules used in phases 2 to 4, which increase the number 

of routes, namely SPLIT and CREATE.   One way forward is to remove them from the algorithm, 

another is to introduce a penalty function in combination with the module COMBINE.   

Most of the literature, such as Goetschalckx and Jacobs-Blecha (1989), Jacobs-Blecha and 

Goetschalckx (1993), Thangiah, Sun and Potvin (1996) and Toth and Vigo (1996, 1999), rely on 

the assumption that pickups can only occur after all the deliveries on the route have been made.  

We note that this assumption stems from the problem of load re-arrangement: if re-arrangement of 

goods is always possible then our assumption is valid, if it is never possible, then the assumption 

made in the above papers is valid.   An interesting generalisation of both cases is when re-arranging 

is only possible if k% of the vehicle is free, which is more likely to correspond to situations 

occurring in practice.  The two alternative assumptions correspond to the special cases of k = 0 and 

k = 100.  The generalised VRPPD may be tackled by using artificially lowered capacity constraints 

or by addressing the combined packing-and-routing problem, which to our knowledge has not yet 

received any attention.   The authors consider this research avenue to be most promising.   
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APPENDIX.  AN ILP FORMULATION FOR THE VRPPD 

 
 
A.1.  Notation 
 
L     the set of depots, L = {1, 2, ... , t} 
H     the set of customers, H = {1, 2, ... , n} 
K     the set of vehicles, K = {1, 2, ... , m} 
dij     the distance between customers i and j 
qi     the demand of customer i 
pi     the supply of customer i 
D     the maximum distance which the vehicles may cover in a tour 
C     the maximum capacity of the vehicles 

1,  if arc ij is part of route k xijk   =  { 
0,  otherwise 

tijk   the load on arc ij of vehicle route k 
 
 
 
A.2.  Formulation 
 
Minimise       ∑k∈K ∑i∈H∪L ∑j∈H∪L dij ⋅ xijk     
 
subject to 
 
∑i∈H∪L ∑j∈H∪L dij ⋅ xijk  ≤  D                               (k∈K)     (A.1.) 

tijk   =   C                                                   (i,j∈Η∪L, k∈K)    (A.2.) 

∑k∈K ∑i∈H∪L xijk    =  1                                                 (j∈H)     (A.3.) 

∑k∈K ∑i∈H∪L xijk    ≥  1       (j∈L)     (A.4.) 

∑k∈K ∑i∈S ∑j∈(H∪L)\S  xijk   ≥   1     (2≤S)  (A.5.) 

∑i∈H∪L xijk     =     ∑i∈H∪L xjik                                        (j∈H∪L, k∈K)    (A.6.) 

∑i∈H∪L ∑j∈H∪L xijk    ≤  1                                             (k∈K)     (A.7.) 

tijk   ≤   xijk ⋅ ∑h(qh+ph)                                    (i,j∈H∪L, k∈K)    (A.8.) 

∑k∈K ∑i∈H∪L tijk  –  qj    =    ∑k∈K ∑i∈H∪L tjik  –  rj                (j∈H)     (A.9.) 

xijk  =  0, 1                                                 (i,j∈H∪L, k∈K)   (A.10.) 

tijk   ≥  0                                                   (i,j∈H∪L, k∈K)  (A.11.) 
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A.3.  Discussion   
 

In the above formulation, the objective function consists of the sum of variable routing 
costs for all vehicles.  Constraints (A.1.) and (A.2.) are the maximum distance and maximum 
capacity constraints respectively.  Constraints (A.3.) and (A.4.) stipulate that every customer 
belongs to one and only one route, but depots may belong to more than one route.  Constraints 
(A.5.) ensure that every customer is on a route connected to the set of depots.  Constraints (A.6.) 
stipulate that every customer is entered and left by the same vehicle.  Constraints (A.7.) guarantee 
that a vehicle can depart only once from a customer.  Constraints (A.8.) stipulate that flow is only 
present between customers and depots which are connected.  Constraints (A.9.) are flow 
conservation equations.  Finally, constraints (A.10.) and (A.11.) represent integrality and non-
negativity conditions.   

Other formulations can be found in Min (1989) and Nagy (1996), pp.51-57. 
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