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Abstract

The problem of weak instruments is due to a very small concentration parameter.

To boost the concentration parameter, we propose to increase the number of instru-

ments to a large number or even up to a continuum. However, in �nite samples, the

inclusion of an excessive number of moments may be harmful. To address this issue, we

use regularization techniques as in Carrasco (2012) and Carrasco and Tchuente (2014).

We show that normalized regularized 2SLS and LIML are consistent and asymptoti-

cally normally distributed. Moreover, our estimators are asymptotically more e¢ cient

than most competing estimators. Our simulations show that the leading regularized

estimators (LF and T of LIML) work very well (are nearly median unbiased) even in

the case of relatively weak instruments. An application to the e¤ect of institutions on

output growth completes the paper.

Key Words: Many weak instruments, LIML, 2SLS, regularization methods, semi-

parametric e¢ ciency bound.
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1 Introduction

This paper considers the estimation of the regression coe¢ cient in a linear model

using many weak instruments. The literature on weak instruments (see e.g. Staiger

and Stock (1997)) has initially focused on the case where the number of instruments

is �xed and the correlation between the endogenous regressors and the instruments

goes to zero at the
p
n rate. In this setting, the parameter is not identi�ed and

two-stage least squares (2SLS) and limited maximum likelihood (LIML) estimators

are not consistent and converge to nonstandard distributions. Subsequent work (see,

e.g. Chao and Swanson (2005), Hansen, Hausman, and Newey (2008), and Newey

and Windmeijer (2009)) focused on situations where the number of instruments grows

with the sample size and the correlation between the endogenous regressors and the

instruments goes to zero at a rate greater than
p
n: Consequently, the parameter is

identi�ed. However, the best rate you can get for any estimator is slower than the

usual
p
n and the Gaussian asymptotic approximation may be poor. Our paper �ts in

the second strand of literature. The problem of many weak instruments has recently

received considerable attention in both theoretical and applied econometrics. Empirical

examples include Angrist and Krueger (1991) who estimate the return to schooling,

Eichenbaum, Hansen, and Singleton (1988) who consider consumption asset pricing

models.

Building on the early work by Carrasco and Florens (2000), Carrasco (2012) and

Carrasco and Tchuente (2014) proposed respectively regularized versions of 2SLS and

LIML estimators for many strong instruments. The regularization permits to address

the singularity of the covariance matrix resulting from many instruments. These pa-

pers use three regularization methods borrowed from inverse problem literature. The

�rst estimator is based on Tikhonov (ridge) regularization, the second estimator is

based on an iterative method called Landweber-Fridman (LF), the third estimator is

based on the principal components associated with the largest eigenvalues. We extend

these previous works to allow for the presence of a large number of weak instruments or

weak identi�cation. We consider a linear model with homoskedastic error and allow for

weak identi�cation as in Hansen, Hausman, and Newey (2008) and Newey and Wind-
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meijer (2009). This speci�cation helps us to have di¤erent types of weak instruments

sequences, including the many instruments sequence of Bekker (1994) and the many

weak instruments sequence of Chao and Swanson (2005). We impose no condition on

the number of moment conditions since our framework allows for an in�nite count-

able or even a continuum of instruments. The advantage of regularization is that all

available moments can be used without discarding any a priori. We show that regu-

larized 2SLS and LIML are consistent in the presence of many weak instruments. If

properly normalized, the regularized 2SLS and LIML are asymptotically normal and

reach the semiparametric e¢ ciency bounds. Therefore, their asymptotic variance is

smaller than that of Hansen, Hausman, and Newey (2008) and Newey and Windmeijer

(2009). All these methods involve a regularization parameter, which is the counter-

part of the smoothing parameter that appears in the nonparametric literature. A data

driven method was developed in Carrasco (2012) and Carrasco and Tchuente (2014)

to select the best regularization parameter when the instruments are strong. We use

these methods in our simulations for selecting the regularization parameter when the

instruments are weak but we do not prove that these methods are valid in this case. A

related paper is that of Hansen and Kozbur (2014) who propose a regularized jackknife

instrumental variables estimator in a strong instruments setting where the design is

not sparse.

Our Monte Carlo experiment shows that the leading regularized estimators (LF

and T LIML) perform very well (are nearly median unbiased) even in the case of weak

instruments.

The paper is organized as follows. Section 2 introduces the three regularization

methods we consider and the associated estimators. Section 3 derives the asymptotic

properties of the estimators. Section 4 discusses e¢ ciency and related results. Section

5 presents Monte Carlo experiments. Section 6 considers an application to the e¤ect

of social infrastructure on per capita income. Section 7 concludes. The proofs are

collected in Appendix.

3



2 Presentation of the regularized 2SLS and LIML

estimators

This section presents the weak instruments setup and the estimators used in this paper.

Estimators studied here are the regularized 2SLS and LIML estimators introduced in

Carrasco (2012) and Carrasco and Tchuente (2014). They can be used with many or

even a continuum of instruments. This work extends previous works by allowing for

weak instruments as in Hansen, Hausman, and Newey (2008).

Our model is inspired by Hausman, Newey, Woutersen, Chao, and Swanson (2012).

The model is 8<: yi =W 0
i�0 + "i;

Wi = i + ui;

i = 1; 2; ::::; n. The parameter of interest �0 is a �nite dimensional p� 1 vector.

E(uijxi) = E("ijxi) = 0; E("2i jxi) = �2". yi is a scalar and xi is a vector of exogenous

variables. Some rows ofWi may be exogenous, with the corresponding rows of ui being

zero. i = E(Wijxi) is a p � 1 vector of reduced form values with E(i"i) = 0. i is

the optimal instrument which is typically unknown. The estimation is based on a set

of instruments Zi = Z(� ;xi); indexed by � 2 S. The index � may be an integer or may

take its values in an interval. Examples of Zi are the following.

- when xi is a large L � 1 vector, then one can select Zi = xi. In this case, S =

f1; 2; ::::Lg thus we have L instruments.

- assume that xi is a scalar and Z(� ;xi) = (xi)
��1 with � 2 S = N, we obtain an

in�nite countable sequence of instruments.

- assume that xi is a vector and Z(� ;xi) = exp(i� 0xi) where � 2 S = Rdim(xi); we

obtain a continuum of moment.

To simplify the presentation, we will present the estimators in the case where Zi is

a L � 1 vector of instruments where L is some large integer. The theoretical results

of Section 3 are proved for an arbitrary L which may be �nite or in�nite (case with a

countable sequence or a continuum of instruments). In all cases, L does not depend on
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n. The presentation of the estimators in the case with an in�nite number of instruments

is left in Appendix A.

This model allows for i to be a linear or a non linear combination of Zi. The

model also allows for i to approximate the reduced form. For example, we could let

i be a vector of unknown functions of xi and Zi could be power functions of xi or

interactions between elements of xi. Adding extra instruments is a way to boost the

concentration parameter as illustrated in the application in Section 6.

The estimate � is based on the orthogonality condition.

E[(yi �W 0
i�)Zi] = 0

where the vector of instruments Zi has dimension L.

Let W =

0BBBBBBBBB@

W 0
1

W 0
2

:

:

W 0
n

1CCCCCCCCCA
n� p and u =

0BBBBBBBBB@

u01

u02

:

:

u0n

1CCCCCCCCCA
n� p.

Let Z denote the n � L matrix having rows corresponding to Z 0i: Denote  j the

eigenvectors of the n � n matrix ZZ0=n associated with eigenvalues �j . Recall that

two-stage least squares (2SLS) and LIML estimators involve a projection matrix

P = Z
�
Z0Z

��1
Z0:

The matrix Z0Z may become nearly singular when L gets large. Moreover, Z0Z is

singular whenever L � n. To cover these cases, we will consider a regularized version

of the inverse of the matrix Z0Z. For an arbitrary n� 1 vector v, we de�ne the n� n

matrix P� as

P�v =
1

n

nX
j=1

q
�
�; �2j

� �
v0 j

�
 j

where q
�
�; �2j

�
is a weight that takes di¤erent forms depending on the regularization

schemes. We consider three types of regularization:

� The Tikhonov (T) regularization: q
�
�; �2j

�
=

�2j

�2j + �
:
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� The Landweber-Fridman (LF) regularization: q(�; �2j ) = [1� (1�c�2j )1=�], where

c is a constant such that 0 < c < 1=
Z 0Z=n2 and Z 0Z=n denotes the largest

eigenvalue of Z 0Z=n:

� The Spectral Cut-o¤ (SC): q(�; �2j ) = I(�2j � �).

Note that all these regularization techniques involve a tuning parameter �. The

case � = 0 corresponds to the case without regularization, q
�
�; �2j

�
= 1: Then, we

obtain

P 0 = P = Z
�
Z0Z

��1
Z0:

Consider regularized k-class estimators de�ned as follows:

�̂� = (W
0(P� � �In)W )�1W 0(P� � �In)y:

where � is either a constant term or a random variable. The case where � = 0 corre-

sponds to regularized 2SLS estimator studied in Carrasco (2012):

�̂ = (W 0P�W )�1W 0P�y

and the case � = �� = min
�

(y �W�)0P�(y �W�)

(y �W�)0(y �W�)
corresponds to the regularized

LIML studied in Carrasco and Tchuente (2014). We denote �̂ the regularized 2SLS

estimator and �̂L the regularized LIML estimators.

We study both 2SLS and LIML because LIML may have some advantages over

2SLS. For example when the number of instruments, L, increases with the sample size,

n, so that L=n ! c (with c constant), the standard 2SLS estimator is not consistent

whereas standard LIML estimator is consistent.

3 Asymptotic properties

Carrasco (2012) and Carrasco and Tchuente (2014) focused on strong instruments.

They found that regularized 2SLS and LIML estimators are asymptotically normal

and attain the semiparametric e¢ ciency bound. Here, we extend Carrasco (2012) and

Carrasco and Tchuente (2014) results to the case of many weak instruments.
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The weakness of the instruments is measured by the concentration parameter. For

p = 1; the concentration parameter is equal to

CP =

Pn
i=1 

2
i

E
�
u2i
� :

When the instruments are weak in the sense of Staiger and Stock (1997), CP converges

to a constant and the parameter � is not identi�ed. This case is not considered here.

We will maintain the assumption that CP diverges. It may diverge at the n rate

(strong instruments) or at a slower rate (many weak IV asymptotics). By adding more

instruments in the �rst stage equation:

W = Z�+ U;

the concentration parameter

CP =
�0Z 0Z�

E
�
u2i
�

does not decrease and actually increases if these instruments contain non trivial in-

formation. Hence, adding more instruments is a way to boost the concentration pa-

rameter. Where do you get these new instruments? If you already have exogenous

instruments, it is possible to interact them as it has been done for the estimation of

the return to schooling (Angrist and Krueger (1991)) or take higher order powers of the

same instruments as in Dagenais and Dagenais (1997). In the case of panel data, the

use of lag variables is usually a source of many instruments. We provide an empirical

application of the use of many weak instruments in Section 6.

Assumption 1:

(i) There exists a p � p matrix Sn = ~Sndiag(�1n; :::; �pn) such that ~Sn is bounded,

the smallest eigenvalue of ~Sn ~S0n is bounded away from zero; for each j, either

�jn =
p
n (strong identi�cation) or �jn=

p
n! 0 (weak identi�cation),

�n = min
1�j�p

�jn !1 and �! 0.

(ii) There exists a function fi = f(xi) such that i = Snfi=
p
n and �nS

�1
n ! S0:

nX
i=1

kfik4 =n2 ! 0,
nX
i=1

fif
0
i=n is bounded and uniformly nonsingular.
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These conditions allow for both many strong and many weak instruments. If

�jn =
p
n this leads to asymptotic theory like in Kunitomo (1980), Morimune (1983),

and Bekker (1994), but here we use regularization parameter instead of having an

increasing sequence of instruments. For �2n growing slower than n; the convergence

rate will be slower that
p
n, leading to an asymptotic approximation as that of Chao

and Swanson (2007), Chao, Swanson, Hausman, Newey, and Woutersen (2012a), Chao,

Swanson, Hausman, Newey, and Woutersen (2012b), and Chao, Swanson, Hausman,

Newey, and Woutersen (2014). This is the case where we have many instruments with-

out strong identi�cation. Assumption 1 also allows for some components of the reduced

form to give only weak identi�cation (corresponding to �jn=
p
n! 0 which allows the

concentration parameter to grow slower than
p
n), and other components (correspond-

ing to �jn =
p
n) to give strong identi�cation for some coe¢ cients of the reduced form.

In particular, this condition allows for �xed constant coe¢ cients in the reduced form.

This speci�cation of weak instruments can also be viewed as a generalization of Chao

and Swanson (2007) but di¤ers from that of Antoine and Lavergne (2012) who de�ne

the identi�cation strength through the conditional moments that �atten as the sample

size increases. To illustrate Assumption 1, let us consider the following example.

Example 1: Assume that p = 2, ~Sn =

0@ 1 0

�21 1

1A, and �jn =
8<:
p
n; j = 1

�n; j = 2

with �n=
p
n ! 0.

Then for f(xi) = (f 01i; f
0
2i)
0 the reduced form is

i =

0B@ f1i

�21f1i +
�np
n
f2i

1CA :

We also have

�nS
�1
n ! S0 =

0@ 0 0

��21 1

1A :

Assumption 2:

(i) The operator K is nuclear.

(ii) The ath row of , denoted a; belongs to the closure of the linear span of fZ(:;x)g

for a = 1; :::; p:
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(iii) E(Z(:; xi)fia) belong to the range of K:

Condition (i) refers to the covariance operator K de�ned in Appendix A. K is

nuclear provided its trace is �nite, see for instance Carrasco and Florens (2014). This

assumption is trivially satis�ed if L is �nite but may or may not be satis�ed when L is

in�nite. This assumption implies in particular that the smallest eigenvalues decrease to

zero su¢ ciently fast. For this to be true, the Zi have to be correlated with each other. If

E
�
ZiZ

0
i

�
= IL as in Assumption 5 of Newey and Windmeijer (2009), all the eigenvalues

of the operator K equal 1 and hence K is not nuclear when L goes to in�nity. To see

whether Condition (i) is realistic, we examine the properties of the sample counterpart

of K, namely Kn = Z 0Z=n; in three applications: the return to schooling using 240

instruments from Angrist and Krueger (1991) (see also Carrasco and Tchuente (2014)),

the elasticity of intertemporal substitution (see Carrasco and Tchuente (2014)), and

the application on the e¤ect of institutions on growth (see Section 6 of this paper). In

the table below, we report the smallest eigenvalue, the largest eigenvalue, the condition

number (which is the ratio of the largest eigenvalue on the smallest eigenvalue) and

the trace of Z 0Z=n in two cases: raw data and standardized instruments. In the

standardized case, the instruments are divided with their standard deviation. This

standardization has no impact on 2SLS and LIML estimators which are scale invariant.

However, our estimators are not scale invariant and standardization may improve the

results. Such standardizations are customary whenever regularizations are used, see

for instance De Mol, Giannone, and Reichlin (2008) and Stock and Watson (2012).

We observe that in all applications, the smallest eigenvalue is close to zero so the

instruments are strongly correlated1. The condition number - which is scale invariant

- is an indicator on how ill-posed the matrix Kn is. The higher the condition number,

the more imprecise the inverse of Kn will be. The smallest possible condition number is

1 (which corresponds to the identity matrix). Here, the condition numbers are all very

large which suggests that regularization will be helpful to improve the reliability of the

estimate of K�1. The trace of Kn appears to be �nite throughout the applications.

Condition (ii) guarantees that the optimal instrument f can be approached by a

1A word of caution: when the number of instruments is large enough relative to the sample size, the
sample covariance matrix Z 0Z=n will be near singular or singular which does not mean that the smallest
eigenvalue of K is not bounded away from 0 in the population. Moreover, eigenvalues are not scale invariant.
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Table 1: Properties of Z 0Z=n
Largest
eigenvalue

Smallest
eigenvalue

Condition
number

Trace

Angrist and Krueger 1.35 0.0000107 126168.22 5.05
Angrist and Krueger

standardized
5.93 0.0012 4941.66 244.47

EIS 1550 1:41� 10�13 1:09929� 1016 1550
EIS standardized 11.8 2:35� 10�5 5:06� 105 11.89
Institutions 474� 107 9:47� 10�6 5:00528� 1014 4:78� 109

Institutions standardized 28.9 0.000116 249137.93 43.58

sequence of instruments. It is similar to Assumption 4 in Hansen, Hausman, and Newey

(2008). Condition (iii) is a technical assumption which can also be found in Carrasco

(2012). Assumptions 2(ii) and (iii) are needed only for e¢ ciency.

Proposition 1. (Asymptotic properties of regularized 2SLS with many weak instru-

ments)

Assume fyi;Wi;xig are iid, E("2i jX) = �2", � goes to zero as n goes to in�nity.

Moreover, Assumptions 1 and 2 are satis�ed. Then, the T, LF, and SC estimators of

2SLS satisfy:

1. Consistency: S0n(�̂ � �0)=�n ! 0 in probability as n, n�
1
2 and �n go to in�nity.

2. Asymptotic normality:

S0n(�̂ � �0)
d! N

�
0; �2"

�
E(fif

0
i)
��1�

as n, n� and �n go to in�nity, where E(fif
0
i) is a nonsingular p� p matrix.

Proof In Appendix.

The �rst point of Proposition 1 implies the consistency of the estimator, namely

(�̂ � �0) ! 0 (see the proof of Theorem 1 in Hansen and Kozbur (2014)). Moreover,

Proposition 1 shows that the three estimators have the same asymptotic distribution.

Instead of restricting the number of instruments (which may be very large or in�nite),

we impose restrictions on the regularization parameter which goes to zero. This insures

us that all available and valid instruments are used in an e¢ cient way even if they are

weak. To obtain consistency, the condition on � is n�
1
2 go in�nity, whereas for the

asymptotic normality, we need n� go to in�nity. This means that � is allowed to go
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to zero at a slower rate. However, this rate does not depend on the weakness of the

instruments.

Interestingly, our regularized 2SLS estimators reach the semiparametric e¢ ciency

bound. This result will be further discussed in Section 4.

We are now deriving the asymptotic properties of the regularized LIML with many

weak instruments.

Proposition 2. (Asymptotic properties of regularized LIML with many weak instru-

ments)

Assume fyi;Wi;xig are iid, E("2i jX) = �2", E
�
"4i jX

�
<1; E

�
u4bijX

�
<1; � goes

to zero as n goes to in�nity. Moreover, Assumptions 1 and 2 are satis�ed. Then, the

T, LF, and SC estimators of LIML with weak instruments satisfy:

1. Consistency: S0n(�̂L � �0)=�n ! 0 in probability as n, �n and �
2
n� go to in�nity.

2. Asymptotic normality:

S0n(�̂L � �0)
d! N

�
0; �2"

�
E(fif

0
i)
��1�

as n, �n and �
2
n� go to in�nity where E(fif

0
i) is a nonsingular p� p matrix.

Proof In Appendix.

Again, Proposition 1 implies the consistency of the estimator, namely (�̂� �0)! 0.

Interestingly we obtain the same asymptotic distribution as in the many strong in-

struments case (with a slower rate of convergence). We also �nd the same speed of

convergence as in Hansen, Hausman, and Newey (2008) and Newey and Windmeijer

(2009). For the consistency and asymptotic normality, �2n� needs to go to in�nity,

which means that the regularization parameter should go to zero at a slower rate than

the concentration parameter. The asymptotic variance of regularized LIML corre-

sponds to the lower bound and is smaller than that obtained in Hansen, Hausman,

and Newey (2008). We believe that the reason, why Hansen, Hausman, and Newey

(2008) obtain a larger asymptotic variance than us, is that they use the number of

instruments as regularization parameter. As a result, they can not let L grow fast

enough to reach e¢ ciency. Our estimator involves the extra tuning parameter � which

is selected so that extra terms in the variance vanish asymptotically. Moreover, we
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assume that the set of instruments is su¢ ciently rich to span the optimal instrument

(Assumption 2(ii)).

Example 1:(cont)

S0n(�̂� �0) =

0@ p
n[(�̂1 � �01) + �21(�̂2 � �02)]

�n(�̂2 � �02)

1A is jointly asymptotically normal.

The linear combination (�̂1 � �01) + �21(�̂2 � �02) converges at rate
p
n. This is the

coe¢ cient of fi1 in the reduced form equation for yi. And the estimator of the coe¢ cient

�2 of Wi2 converges at rate
1

�n
.

Now, as in Newey and Windmeijer (2009), we consider a t-ratio for a linear com-

bination c0� of the parameter of interest. The following proposition is a corollary of

Proposition 2.

Proposition 3. Under the assumptions of Proposition 2 and if we assume that there

exist rn, c and c� 6= 0 such that rnS�1n c ! c� and S0n�̂Sn=n ! � in probability with

� = �2"
�
E(fif

0
i)
��1.

Then,
c0(�̂L � �0)p

c0�̂c

d! N (0; 1)

as n and �2n� go to in�nity.

This result allows us to form con�dence intervals and test statistics for a single

linear combination of parameters in the usual way.

4 E¢ ciency and Related Literature

4.1 E¢ ciency

If the optimal instrument i were known, the estimator would be solution of

1

n

nX
i=1

i
�
yi �W 0

i�
�
= 0:
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Hence,

�̂ =

 
nX
i=1

iW
0
i

!�1 nX
i=1

iyi;

�̂ � �0 =

 
nX
i=1

iW
0
i

!�1 nX
i=1

i"i

=

�
Sn

Pn
i=1 fif

0
i

n
S0n + Sn

Pn
i=1 fiuip
n

��1
Sn

Pn
i=1 fi"ip
n

;

Sn

�
�̂ � �0

�
=

�Pn
i=1 fif

0
i

n
+

Pn
i=1 fiuip
n

S0�1n

��1 Pn
i=1 fi"ip
n

d! N
�
0; �2"

�
E
�
fif

0
i

���1�
:

So the lowest asymptotic variance that can be obtained is �2"
�
E
�
fif

0
i

���1
: We will

refer to this as the semiparametric e¢ ciency bound2.

In Carrasco (2012, Section 2.4), it was shown that the regularized 2SLS estimator

coincides with a 2SLS estimator that uses a speci�c nonparametric estimator, ̂i; of

i :

�̂ =

 
nX
i=1

̂0iWi

!�1 nX
i=1

̂0iyi:

This may explain why for the regularized 2SLS estimator, the conditions on � are not

related to �n whereas, in the case of LIML, the rate of convergence of � depends on

how weak the instruments are.

4.2 Related Literature

In the literature on many weak instruments, the asymptotic behavior of estimators

depends on the relation between the number of moment conditions L and sample size

n. For the CUE, L and n need to satisfy L2=n ! 0 for consistency and L3=n ! 0

for asymptotic normality. Under homoskedasticity, Stock and Yogo (2005) require

L2=n ! 0. Hansen, Hausman, and Newey (2008) allowed L to grow at the same rate

2We do not provide a formal proof that this bound is the semiparametric bound. This proof is beyond the
scope of the present paper. We refer the interested readers to Newey (1990), Newey (1993), and Chamberlain
(1992).
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as n, but restricted L to grow slower than the square of the concentration parameter,

for the consistency of LIML and FULL. Andrews and Stock (2006) require L3=n ! 0

when normality is not imposed.

Just as 2SLS is not consistent if L is too large relative to n, LIML estimator is

not feasible if L > N because the matrix Z 0Z is not invertible. Therefore, some form

of regularization needs to be implemented to obtain consistent estimators when the

number of instruments is really large. The introduction of a regularization parameter,

�; permits to free L from any constraint (conditions are on � and not on L). Con-

sequently, the regularized estimator can reach the semiparametric e¢ ciency bound.

There is another major di¤erence between our work and the many instruments litera-

ture. In the many instruments literature (see e.g. Newey and Windmeijer, 2009), the

smallest and largest eigenvalues of the Z 0Z=n are bounded away from 0 and from above,

respectively. In our case, we suppose that the eigenvalues of the covariance operator

K (which corresponds to the limit of Z 0Z=n or a rescaled version of it) are summable,

which means that the smallest eigenvalues must decrease to zero su¢ ciently fast.

Caner and Yildiz (2012) in a recent work consider a Continuous Updating Estima-

tor (CUE) with many weak moments under nearly singular design. They show that

the nearly singular design a¤ects the form of asymptotic covariance matrix of the es-

timator compared to that of Newey and Windmeijer (2009). Our work is also related

to Hausman, Lewis, Menzel, and Newey (2011) who modify the continuous updating

estimator (CUE) by introducing two tuning parameters which perform a Tykhonov-

type regularization. They show that their estimator has �nite moments when the

regularization parameters are positive. On the other hand, their estimator is shown to

be asymptotically equivalent to the conventional CUE under many weak asymptotics

when the regularization parameters go to zero. There are two main di¤erences with

our approach. First, they introduce two tuning parameters instead of one. Second,

they restrict the number of moments as in Newey and Windmeijer (2009), whereas we

allow for the number of instruments to exceed the sample size.

Belloni, Chen, Chernozhukov, and Hansen (2012) propose to use an alternative

regularization named lasso in the IV context. This regularization imposes a l1 type

penalty on the �rst stage coe¢ cient. Assuming that the �rst stage equation is approxi-
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mately sparse, they show that the postlasso estimator reaches the asymptotic e¢ ciency

bound.

Chao, Swanson, Hausman, Newey, and Woutersen (2012c) explain why Fuller es-

timator has moments and argue that "the Fuller modi�cation amounts to a ridge-

regression-type perturbation of the denominator of the 2SLS". The existence of mo-

ments of regularized LIML estimator is shown in Carrasco and Tchuente (2014). Note

that, in the regularized LIML/2SLS, the regularization is applied to the covariance

matrix, whereas, in Fuller estimator, a penalty term is added to the denominator.

Table 2 gives an overview of the assumptions used in the main papers on many

weak instruments.

Table 2: Comparison of di¤erent IV asymptotics
Number of instruments Extra assumptions

Conventional Fixed L
Phillips (1989) Fixed L, Cov(W;x) = 0
Staiger and Stock (1997) Fixed L, Cov(W;x) = O(n�1=2)
Bekker (1994) L=n! c < 1; �2n = O(n)

Han and Phillips (2006) L!1 and
L

ncn
! c

cn �n constant or zero

Chao and Swanson (2005)
L

�2n
! 0 or

L1=2

�2n
! 0

Hansen et al. (2008) (I)
L

�2n
bounded or (II)

L

�2n
!1

X
ziz

0
i=n nonsingular

Newey and Windmeijer (2009) L!1, L
�2n

bounded,
L3

n
! 0

Carrasco (2012) No condition on L, possibly continuum Compactness of
strong instruments covariance matrix

Belloni et al. (2012) log(L) = o(n1=3); Approximately sparse
strong instruments �rst stage equation

5 Monte Carlo study

We now carry out a Monte Carlo simulation for the simple linear IV model where the

disturbances and instruments have a Gaussian distribution and the instruments are

independent from each other as in Newey and Windmeijer (2009). The design of this

experiment involves the correlation coe¢ cient � between the structural and reduced
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form errors, the concentration parameter (CP ), and the number of instruments L:

The data generating process is given by:

yi =W 0
i�0 + "i;

Wi = x0i� + ui;

"i = �ui +
p
1� �2vi;

ui � N (0; 1); vi � N (0; 1); xi � N (0; IL)

� =

r
CP

Ln
�L

where �L is an L-vector of ones. The sample size is n = 500. The instruments are

Zi = xi and the number of instruments L equals 30 and 50. Note that this setting

is not favorable for us because the eigenvalues of the matrix Z 0Z=n are all equal to

1. If L were in�nite, the matrix Z 0Z=n would become an in�nite dimensional identity

matrix which is not nuclear and hence Assumption 2 would not hold. However, here

L being no larger than 50; K is nuclear.

In the simulations, � = 0:5 and �0 = 0:1. The values of CP equal 8, 35, and 65.

The estimators we proposed in this paper depend on a regularization (smoothing)

parameter � that needs to be selected. In the simulations, we use a data-driven method3

for selecting � based on an expansion of the MSE and proposed in Carrasco (2012) and

Carrasco and Tchuente (2014). These selection criteria were derived assuming strong

instruments and may not be valid in the presence of weak instruments. Providing a

robust to weak instruments selection procedure is beyond the scope of this paper.

We report the median bias (Med.bias), the median of the absolute deviation of the

estimator from the true value (Med.abs), the di¤erence between the 0.1 and 0.9 quan-

tiles (dis) of the distribution of each estimator, and the coverage rate (Cov.) of a nom-

inal 95% con�dence interval for unfeasible instrumental variable estimator (IV) using

the true optimal instrument, regularized two-stage least squares (T2SLS (Tikhonov),

3The optimal � for Tikhonov is searched over the interval [0.01,0.5] with 0.01 increment. The range of
values for the number of iterations for LF is from 1 to 300, and the number of principal components ranges
from 1 to the number of instruments.
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L2SLS (Landweber Fridman), P2SLS (Principal component)), LIML and regularized

LIML (TLIML (Tikhonov), LLIML (Landweber Fridman), PLIML (Principal compo-

nent)) and Donald and Newey�s (2001) 2SLS and LIML (D2SLS and DLIML). For

all the regularized LIML, DLIML, and standard LIML estimators, the starting values

for the minimization needed in the estimation of � (see Section 2) are the 2SLS using

all the instruments. For con�dence intervals, we compute the coverage probabilities

using the following estimate of asymptotic variance as in Donald and Newey (2001)

and Carrasco (2012):

V̂ (�̂) =
(y �W�̂)0(y �W�̂)

n

�
Ŵ 0W�1

��1
Ŵ 0Ŵ

�
W 0Ŵ

��1
where Ŵ = P�W for 2SLS and Ŵ = (P� � �In)W for LIML. Note that the formulaes

for the con�dence intervals is the same as for strong instruments (see Carrasco and

Tchuente (2014)).

Table 3 reports simulation results. We use di¤erent strength (measured by the

concentration parameter) of instruments and number of instruments. We investigate

the case of very weak instruments for example, when CP = 8 and L = 50, the �rst

stage F-statistic equals
CP

L
+ 1 = 1:16.

We observe that

(a) The performances of the regularized estimators increase with the strength of

instruments but decrease with the number of instruments. Providing regularization

parameter selection procedure robust to weak instruments would certainly improve

these results.

(b) The bias of regularized LIML is quite a bit smaller than that of regularized

2SLS.

(c) The bias of our regularized estimators are smaller than those of the correspond-

ing Donald and Newey�s estimators. On the other hand, DN estimator has often better

coverage.

(d) LF LIML and T-LIML estimators have very low median bias even in the case

of relatively weak instruments (CP = 8).

(e) The coverage of our estimators deteriorates when the instruments are weak.
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Table 3: Simulations results for regularized 2SLS and LIML with CP = 8, 35 and 65; L = 30
and 50; n = 500; 1000 replications.

T2SLS L2SLS P2SLS D2SLS TLIML LLIML PCLIML DLIML IV
L=30
CP=8 Med.bias 0.4012 0.3875 0.3271 0.3802 0.0889 0.0800 0.3228 0.3628 -0.0096

Med.abs 0.4012 0.3875 0.4947 0.5419 0.4472 0.4568 0.4511 0.4513 0.2624
Disp 0.3884 0.4271 2.5366 2.6333 2.4053 2.2558 1.4859 1.5308 1.0184
Cov 0.2260 0.3270 0.7570 0.7180 0.9180 0.9210 0.8030 0.7880 0.9540

CP=35 Med.bias 0.2195 0.2070 0.2245 0.2476 -0.0172 -0.0097 0.0858 0.0997 -0.0157
Med.abs 0.2195 0.2070 0.2623 0.2914 0.1465 0.1488 0.1652 0.1680 0.1100

Disp 0.2814 0.3115 0.6175 0.8039 0.6028 0.6232 0.6382 0.6008 0.4424
Cov 0.5050 0.5900 0.7100 0.682 0.954 0.9500 0.8590 0.8700 0.9600

CP=65 Med.bias 0.1567 0.1456 0.1548 0.1992 -0.0083 -0.0046 0.0194 0.0184 -0.0072
Med.abs 0.1568 0.1476 0.1826 0.2154 0.0999 0.0919 0.0972 0.1012 0.0813

Disp 0.2503 0.2703 0.4139 0.4582 0.381 0.3849 0.3825 0.3747 0.3034
Cov 0.6270 0.7070 0.7560 0.6960 0.960 0.9630 0.9130 0.913 0.9630

L=50
CP=8 Med.bias 0.4273 0.4189 0.3969 0.4166 0.1178 0.1327 0.3860 0.4089 -0.0042

Med.abs 0.4273 0.4189 0.5418 0.6089 0.5225 0.5163 0.4730 0.5253 0.2548
Disp 0.3112 0.3571 2.4463 3.1653 3.1549 3.4005 1.5870 1.7621 1.0971
Cov 0.0710 0.1480 0.7450 0.7730 0.9190 0.9200 0.7960 0.7930 0.9510

CP=35 Med.bias 0.2906 0.2740 0.2654 0.2875 -0.0188 0.0072 0.1475 0.1998 0.0016
Med.abs 0.2906 0.2740 0.2961 0.3312 0.1766 0.1810 0.2103 0.2499 0.1178

Disp 0.2527 0.2811 0.8402 1.2808 0.7100 0.7584 0.7554 0.8201 0.4587
Cov 0.1860 0.3110 0.6730 0.6640 0.9420 0.9500 0.8420 0.7830 0.9580

CP=65 Med.bias 0.2137 0.1953 0.2020 0.2402 0.0082 0.0078 0.0695 0.0739 0.0041
Med.abs 0.2137 0.1953 0.2214 0.2614 0.1127 0.1128 0.1212 0.1245 0.0812

Disp 0.2075 0.2474 0.4840 0.5215 0.4333 0.4352 0.4261 0.4587 0.3231
Cov 0.3010 0.4710 0.6840 0.6500 0.9610 0.9580 0.8520 0.8660 0.9530
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6 Empirical application: Institutions and Growth

This section revisits Hall and Jones (1999) empirical work. Hall and Jones (1999) argue

that the di¤erence between output per worker across countries is mainly due to the

di¤erences in institution and government policies - the so-called social infrastructure.

They write "Countries with corrupt government o¢ cials, severe impediments to trade,

poor contract enforcement, and government interference in production will be unable

to achieve levels of output per worker anywhere near the norms of western Europe,

northern America, and eastern Asia." To quantify the e¤ect of social infrastructure

on per capita income, they use two-stage least squares (2SLS) with four instruments:

the fraction of population speaking English at birth (EnL), the fraction of population

speaking one of the �ve major European languages at birth (EuL), the distance from

the equator4 (latitude , Lt) and Romer and Frankel (1999) geography-predicted trade

intensity (FR). The linear IV regression model is given by:

y = c+ �S + ";

where y is an n � 1 vector of log income per capita, S is an n � 1 vector which is

the proxy for social infrastructure, � is an L� 1 vector, c and � are scalars. Dmitriev

(2013) points out the fact that the instruments5 X = [EnL;EuL;Lt; FR] are weak.

To address this issue, we increased the number of instruments from 4 to 18. The 18

instruments in our regression are derived from X and are given by6

Z = [X;X:2; X:3; X(:; 1) �X(:; 2); X(:; 1) �X(:; 3); X(:; 1) �X(:; 4); X(:; 2) �X(:; 3); X(:

; 2) �X(:; 4); X(:; 3) �X(:; 4)] where all instruments are divided by their standard de-

viation.

The use of many instruments increased the concentration parameter from �̂2n = 28:6

to �̂2n = 51:48. However, it also increased the condition number of the Z
0Z matrix from

1:08e+ 04 for 4 instruments to 2:48e+ 05 for 18. As the regularized 2SLS and LIML

4The distance from the equator is measured as the absolute value of latitude in degrees divided by 90 to
place it on a 0 to 1 scale.

5This corresponds to the speci�cation (iv) of Dmitriev (2013).
6X:k = [Xk

ij ] , X(:; k) is the k
th column of X and X(:; k) � X(:; l) is a vector of interactions between

columns k and l.
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correct the bias due to the use of many instruments, they should provide better point

estimates.

We use a sample of 79 countries for which no data were imputed7. The results are

reported in Table 4 below. Robust to heteroskedasticity standard errors are given in

parentheses. They are computed using the formula of Carrasco and Tchuente (2014):

V̂ (�̂) =
�
Ŵ 0W

��1
Ŵ 0b
Ŵ �

W 0Ŵ
��1

where Ŵ = P�W for 2SLS, Ŵ = (P� � �In)W for LIML, and b
 is the diagonal

matrix with ith diagonal element equal to "̂2i =
�
yi �W 0

i �̂
�2
.

Table 4: Institutions and growth
2SLS (4) 2SLS (18) T2SLS L2SLS P2SLS

4.6612 (0.7027) 4.0124 (0.5041) 4.2916 (0.338) 4.27 (0.431) 4.03 (0.327)
�=0.01 Number of iterations 1000 Number of eigenvalues 15

LIML (4) LIML (18) TLIML LLIML PLIML
5.2683 (0.7602) 5.7090 (0.899) 5.3062 (0.631) 4.73 (0.687) 5.57 (0.846)

�=0.01 Number of iterations 1000 Number of eigenvalues 15
�̂2n=28.6 �̂2n=51.48

NB: We report 2SLS and LIML for 4 and 18 instruments. For LIML with 18 instruments, we report the many

instrument robust standard error of Hansen, Hausman, and Newey (2008) in parentheses. The regularized

estimators are computed for 18 instruments. For the regularized estimators, the heteroskedasticity robust

standard errors are given in parentheses.

Our �ndings suggest that "social infrastructure" has a signi�cant causal e¤ect on

long-run economic performance throughout the world. The use of many instruments

�rst increase the bias as illustrated by the fact that the distance between 2SLS and

LIML is larger when 18 instruments are used. When the regularization is introduced,

this gap shrinks. For instance, for LF regularization, LIML and 2SLS are very close,

this may be due to bias correction. But, for PC, the gap remains wide. The reason

may be due to the lack of factor structure in the instruments.

7The data were downloaded from Charles Jones�webpage: http://www.stanford.edu/~chadj/HallJones400.asc
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7 Conclusion

This paper illustrates the usefulness of regularization techniques for estimation in the

many weak instruments framework. We derived the properties of the regularized 2SLS

and LIML estimators in the presence of many or a continuum of moments that may be

weak. We show that if well normalized the regularized 2SLS and LIML are consistent

and reach the semiparametric e¢ ciency bound. Our simulations show that the leading

regularized estimators (LF and T of LIML) perform well.

In this work, we restricted our investigation to 2SLS and LIML with weak instru-

ments. It would be interesting, for future research, to study the behavior of regularized

version of other k-class estimators, such as FULL (Fuller (1977)) and bias adjusted

2SLS or other estimators as generalized method of moments or generalized empirical

likelihood, in presence of many weak instruments. This will help us to have results that

can be compared with those of Newey and Windmeijer (2009) and Hansen, Hausman,

and Newey (2008). Another topic of interest is the use of our regularization tools to

provide version of robust tests for weak instruments as Anderson-Rubin tests, that can

be used with a large number or a continuum of moment conditions.
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A General notation

Here we consider the general case where the estimation is based on a sequence of

instruments Zi = Z(� ;xi); � 2 S. Let � be a positive measure on S. We denote L2(�)

the Hilbert space of square integrable functions with respect to �.

We de�ne the covariance operator K of the instruments as

K : L2(�)! L2(�)

(Kg)(�1) =

Z
E(Z(�1;xi)Z(�2;xi))g(�2)�(�2)d�2

where Z(�2;xi) denotes the complex conjugate of Z(�2;xi).

K is assumed to be a nuclear operator. Let �j and �j ; j = 1; 2; ::: be respectively,

the eigenvalues (ranked in decreasing order) and orthonormal eigenfunctions of K. K

can be estimated by Kn de�ned as:

Kn : L
2(�) ! L2(�)

(Kng)(�1) =

Z
1

n

nX
i=1

Z(�1;xi)Z(�2;xi)g(�2)�(�2)d�2:

If the number of moment conditions is in�nite then the inverse of Kn needs to be

regularized because it is not continuous. By de�nition (see Kress, 1999, page 269), a

regularized inverse of an operator K is

R� : L
2(�) ! L2(�)

such that lim
�!0

R�K' = ', 8' 2 L2(�):

Three di¤erent types of regularization schemes are considered: Tikhonov (T),

Landwerber Fridman (LF), Spectral cut-o¤ (SC) or Principal Components (PC). They

are de�ned as follows:
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1. Tikhonov(T)

This regularization scheme is related to the ridge regression.

(K�)�1 = (K2 + �I)�1K

(K�)�1r =
1X
j=1

�j

�2j + �



r; �j

�
�j

where � > 0 is the regularization parameter. A �xed � would result in a loss of

e¢ ciency. For the estimator to be asymptotically e¢ cient, � has to go to zero

at a certain rate which will be determined later on. This regularization is closely

related to ridge regularization. Ridge regularization was �rst used in regression

in a context where there were too many regressors. The aim was then to stabilize

the inverse of X 0X by replacing X 0X by X 0X + �I. However, this was done at

the expense of a bias relative to OLS estimator. In the IV regression, the 2SLS

estimator has already a bias and the use of many instruments usually increases its

bias. The selection of an appropriate ridge parameter for the �rst step regression

helps to reduce this bias. This explains why, in the IV case, ridge regularization

is useful.

2. Landweber Fridman (LF)

This method of regularization is iterative. Let 0 < c < 1=kKk2 where kKk is the

largest eigenvalue of K (which can be estimated by the largest eigenvalue of Kn).

'̂ = (K�)�1r is computed using the following algorithm:

8<: '̂l = (1� cK2)'̂l�1 + cKr; l=1,2,...,
1

�
� 1;

'̂0 = cKr;

where
1

�
� 1 is some positive integer. We also have

(K�)�1r =
1X
j=1

[1� (1� c�2j )
1
� ]

�j



r; �j

�
�j :
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3. Spectral cut-o¤ (SC)

This method consists in selecting the eigenfunctions associated with the eigen-

values greater than some threshold. The aim is to select those who have greater

contribution.

(K�)�1r =
X
�2j��

1

�j



r; �j

�
�j

for � > 0:

This method is similar to principal components (PC) which consists in using the

�rst eigenfunctions:

(K�)�1r =

1=�X
j=1

1

�j



r; �j

�
�j

where
1

�
is some positive integer. It is equivalent to projecting on the �rst

principal components of W . Interestingly, this approach is used in factor models

where Wi is assumed to depend on a �nite number of factors (see Bai and Ng

(2002), Stock and Watson (2002)) As the estimators based on PC and SC are

identical, we will use PC and SC interchangeably.

These regularized inverses can be rewritten in common notation as:

(K�)�1r =
1X
j=1

q(�; �2j )

�j



r; �j

�
�j

where for T: q(�; �2j ) =
�2j

�2j + �
;

for LF: q(�; �2j ) = [1� (1� c�2j )1=�],

for SC: q(�; �2j ) = I(�2j � �), for PC q(�; �2j ) = I(j � 1=�).

In order to compute the inverse of Kn we have to choose the regularization para-

meter �. Let (K�
n )
�1 be the regularized inverse of Kn and P� a n� n matrix de�ned

as in Carrasco (2012) by P� = T (K�
n )
�1T � where

T : L2(�) ! Rn
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Tg =

0BBBBBBBBB@



Z1; g

�

Z2; g

�
:

:

Zn; g

�

1CCCCCCCCCA

and

T � : Rn ! L2(�)

T �v =
1

n

nX
i=1

Zivi

such that Kn = T �T and TT � is an n � n matrix with typical element



Zi; Zj

�
n

.

Let �̂j , �̂1 � �̂2 � ::: > 0, j = 1; 2; ::: be the orthonormalized eigenfunctions and

eigenvalues of Kn: �̂j are consistent estimators of �j the eigenvalues of TT �. We then

have T �̂j =
p
�j j and T

� j =
p
�j�̂j .

For v 2 Rn, P�v =
1X
j=1

q(�; �2j )


v;  j

�
 j : It follows that for any vectors v and w of

Rn :

v0P�w = v0T (K�
n )
�1T �w

=

*
(K�

n )
�1=2

nX
i=1

Zi (:) vi; (K
�
n )
�1=2 1

n

nX
i=1

Zi (:)wi

+
: (1)

B Proofs

Proof of Proposition 1:

We �rst prove the consistency of our estimator.

Let gn =
1

n

nX
i=1

ZiWi = Sn

"
1

n

nX
i=1

Zifi

#
=
p
n +

1

n

nX
i=1

Ziui = Sngn1=
p
n + gn2 (remem-

ber that gn is a function indexed by � and Zi is also a function of � , such a rep-

resentation can handle both countable and continuum of instruments). Note that

gn2 =
1

n

nX
i=1

Ziui = op(1);
p
ngn2 = Op (1) and Sn=

p
n is bounded by Assumption 1(i).
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�̂ � �0 = (W 0P�W )�1W 0P�"

We have S0n(�̂ � �0)=�n = [S�1n W 0P�WS�1
0

n ]�1[S�1n W 0P�"=�n] and by construction
8

of P� :

W 0P�W = n
D
(K�

n )
�1=2gn; (K

�
n )
�1=2g0n

E
= Sn

D
(K�

n )
�1=2gn1; (K

�
n )
�1=2g0n1

E
S0n

+Sn

D
(K�

n )
�1=2gn1; (K

�
n )
�1=2g0n2

Ep
n

+
D
(K�

n )
�1=2gn2; (K

�
n )
�1=2g0n1

E
S0n
p
n

+
D
(K�

n )
�1=2gn2; (K

�
n )
�1=2g0n2

E
n:

S�1n W 0P�WS�1
0

n =
D
(K�

n )
�1=2gn1; (K

�
n )
�1=2g0n1

E
+
D
(K�

n )
�1=2gn1; (K

�
n )
�1=2png0n2

E
S�1

0
n

+S�1n

D
(K�

n )
�1=2pngn2; (K�

n )
�1=2g0n1

E
+S�1n

D
(K�

n )
�1=2pngn2; (K�

n )
�1=2png0n2

E
S�1

0
n :

Hence,

S�1n [W 0P�W ]S�1
0

n =


(K�

n )
� 1
2 gn1; (K

�
n )
� 1
2 g0n1

�
+ op(1):

At this stage, we can apply the same proof as that of Proposition 1 of Carrasco (2012)

which shows that 

(K�

n )
� 1
2 gn1; (K

�
n )
� 1
2 g0n1

�
!


g1; g

0
1

�
K

in probability as n and n�
1
2 go to in�nity, with



g1; g

0
1

�
K
a p � p matrix with (a; b)

element


K� 1

2E(Z(:; xi)fia);K
� 1
2E(Z(:; xi)fib)

�
which is assumed to be nonsingular.

8Let g and h be two p vectors of functions of L2(�). By a slight abuse of notation,


g; h0

�
; denotes the

matrix with elements


ga; hb

�
a; b = 1; :::; p
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S�1n W 0P�"

�n
=

nS�1n
�n

*
(K�

n )
�1=2gn; (K

�
n )
�1=2 1

n

nX
i=1

Zi"i

+

=
1

�n

*
(K�

n )
�1=2gn1; (K

�
n )
�1=2 1p

n

nX
i=1

Zi"i

+

+
�nS

�1
n

�2n

*
(K�

n )
�1=2pngn2; (K�

n )
�1=2 1p

n

nX
i=1

Zi"i

+
= op (1)

because �nS
�1
n ! S0 by Assumption 1(ii) and

1p
n

nX
i=1

Zi"i = Op (1). This proves the

consistency of the regularized 2SLS.

For the asymptotic normality we write

S0n(�̂ � �0) = [S�1n W 0P�WS0�1n ]�1[S�1n W 0P�"]

We then have

S�1n W 0P�" = nS�1n


(K�

n )
�1gn;

1

n

nX
i=1

Zi"i
�

=

*
(K�

n )
�1=2gn1; (K

�
n )
�1=2 1p

n

nX
i=1

Zi"i

+

+S�1n

*
(K�

n )
�1=2pngn2; (K�

n )
�1=2 1p

n

nX
i=1

Zi"i

+

=

*
(K�

n )
�1=2gn1; (K

�
n )
�1=2 1p

n

nX
i=1

Zi"i

+
+op (1) :

Moreover, *
(K�

n )
�1=2gn1; (K

�
n )
�1=2 1p

n

nX
i=1

Zi"i

+
(2)

=


(K�

n )
�1gn1 �K�1g1;

1p
n

nX
i=1

Zi"i
�

(3)

+


K�1g1;

1p
n

nX
i=1

Zi"i)
�
:
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The �rst term is negligible since

(K�

n )
�1gn1�K�1g1;

1p
n

nX
i=1

Zi"i)
�
� k(K�

n )
�1gn1�K�1g1kk

1p
n

nX
i=1

Zi"ik = op(1)Op(1):

By the functional central limit theorem, we obtain the following result

K�1g1;

1p
n

nX
i=1

Zi"i
�
! N (0; �2"



g1; g

0
1

�
K
) as n and n� go to in�nity.

We then apply the continuous mapping theorem and Slutzky�s theorem to show that

S0n(�̂ � �0)
d! N (0; �2"



g1; g

0
1

��1
K
):

By assumption, g1a = E(Z(:; xi)fia) belong to the range of K. Let L2(Z) be the

closure of the space spanned by fZ(x; �); � 2 Ig and g1 is an element of this space. If

fi 2 L2(Z) we can compute the inner product in the RKHS and show that



g1a; g1b

�
K
= E(fiafib):

This can be seen by applying Theorem 6.4 of Carrasco, Florens, and Renault (2007).

It follows that

S0n(�̂ � �0)
d! N

�
0; �2"

�
E
�
fif

0
i

���1�
This completes the proof of Proposition 1.

Proof of Proposition 2:

To prove this proposition, we need three lemmas. The �rst lemma corresponds to

lemma A0 of Hansen, Hausman, and Newey (2008).

Lemma 1: Under assumption 1 if kS0n(�̂L��0)=�nk2=(1+k�̂Lk2)
P! 0 then kS0n(�̂L�

�0)=�nk
P! 0.

Proof: The proof of this lemma is the same as that of lemma A0 in Hansen,

Hausman, and Newey (2008).

Lemma 2: Suppose that the assumptions of Proposition 2 hold. Then,

V ar("0P�ua) � C(
X
j

q2j );

"0P�ua � E("0P�uajX) = O((
X
j

q2j )
1
2 );

"0P�"

�2n
= Op

�
1

��2n

�
= op (1) :
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Proof:

For notational simplicity, we suppress the conditioning onX. Let E("2i ) = �2", E("iuai) =

�"ua and E(u
0
aiuai) = �2ua ,

V ar("0P�ua) = E("0P�uau
0
aP

�")� E("0P�ua)E(u0aP�"):

Using the spectral decomposition of P�, we have

E("0P�uau
0
aP

�") =
1

n2

X
j;l

qjqlE
n
("0 l)(u

0
a l)

0("0 j)(u
0
a j)

o
=

1

n2

X
j;l

qjqlE
nX

i

"iu
0
ai 

2
li

X
b

"buab 
2
jb

+
X
c

"cu
0
ac lc jc

X
d

"duad jd ld

+
X
c

"2c lc jc
X
d

u0aduad jd ld

o
= (

X
j

qj)
2�0"ua�"ua + (�

0
"ua�"ua + �

2
"�
2
ua)
X
j

q2j

by the fact that (uai; "i) are independent across i and the eigenvectors are orthonormal.

E("0P�ua) =
1

n

X
l

qlEf(
X
k

u0ak lk)(
X
i

"i li)g

=
1

n

X
l

qln�
0
"ua

= �0"ua(
X
j

qj):

Thus

V ar("0P�ua) = (�
0
"ua�"ua + �

2
"�
2
ua)
X
j

q2j � C(
X
j

q2j ):

The second conclusion follows by Markov inequality.

E
�
"0P�"

�
= tr

�
P�E

�
""0
��

= �2"(
X
j

qj) = Op (1=�) :
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Using the result for "0P�ua with " in place of ua, we obtain

V ar("0P�") � C(
X
j

q2j ):

It follows that
�
"0P�"� E

�
"0P�"

��
=�2n = Op

0B@
0@X

j

q2j

1A1=2 =�2n
1CA = op

0@X
j

qj=�
2
n

1A :

Hence, the third equality holds.

Lemma 3: Suppose that the assumptions of Proposition 2 hold. Let Â =
f 0P�f

n

and B̂ =
�W 0 �W

n
with �W = [y;W ] , there exist two constants C and C 0 such that

Â � CIp and kB̂k � C 0:

Proof: By the de�nition of P�, we have (see Equation (1)):

Â =
f 0P�f

n
=


(K�

n )
� 1
2 fn; (K

�
n )
� 1
2 f 0n
�

with

fn =
1

n

X
i

Zifi:

By Lemma 5(i) of Carrasco (2012) and the law of large numbers,

f 0P�f

n
=
f 0f

n
+ op (1) = E(f 0ifi) + op(1)

as � goes to zero. Because E(f 0ifi) is positive de�nite, there exists a constant C such

that

Â � CIp

with probability one.

We have �W = [y;W ] = WD0 + "e where D0 = [�0; I], �0 is the true value of the
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parameter and e is the �rst unit vector.

B̂ =
�W 0 �W

n

= D0
0Sn

f 0f

n
S0nD0=n+D

0
0Sn

f 0u

n
D0=

p
n+D0

0Sn
f 0"

n
e=
p
n

+ D0
0

u0f

n
S0nD0=

p
n+D0

0

u0u

n
D0 +D

0
0

u0"

n
e

+ e0
"0f

n
S0nD0=

p
n+ e0

"0u

n
D0 + e

0 "
0"

n
e:

Using the law of large numbers, we can conclude that kB̂k � C 0, where C 0 is a constant,

with probability one.

Proof of consistency

Let us consider

Q̂(�) =
(y �W�)0P�(y �W�)=�2n
(y �W�)0(y �W�)=n

:

�̂L = argminQ(�):

For � = �0, Q̂(�0) =
"0P�"=�2n
"0"=n

: With probability one "0"=n > C and by lemma 2

"0P�"=�2n = op(1):

Hence Q̂(�0) = op(1).

Since 0 � Q̂(�̂L) � Q̂(�0) it is easy to see that Q̂(�̂L) = op(1).

Let us show that

��2n (y �W�)0P�(y �W�) � CkS0n(� � �0)=�nk2:

Let D (�) = ��2n (y � W�)0P�(y � W�) = ��2n (1;��0) �W 0P� �W (1;��0)0: Moreover,

D (�) = ��2n (1;��0)D0
0Sn

f 0P�f

n
S0nD0(1;��0)0+op(1) = ��2n (1;��0)D0

0SnE
�
ff 0
�
S0nD0(1;��0)0+

op(1). It follows from lemma 3 that

D (�) � CkS0n(� � �0)=�nk2:
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We also have that (y �W�)0(y �W�)=n = (1;��0)B̂(1;��0)0. Hence,

kS0n(�̂L � �0)=�nk2

(1 + k�̂Lk2)
� CQ̂(�̂L):

Then by Lemma 1 we have S0n(�̂L � �0)=�n ! 0 in probability as n and �2n� go to

in�nity. This proves the consistency of LIML with many weak instruments.

Now let us prove the asymptotic normality.

Proof of asymptotic normality

Denote A(�) = (y �W�)0P�(y �W�)=2 , B(�) = (y �W�)0(y �W�) and

�(�) =
A(�)

B(�)
:

We know that the LIML is �̂L = argmin�(�):

We calculate the gradient and Hessian ��(�) = B(�)�1[A�(�)� �(�)B�(�)];

���(�) = B(�)�1[A��(�)� �(�)B��(�)]�B(�)�1[B�(�)�0�(�)� ��(�)B0�(�)]:

Then by the mean-value theorem applied to the �rst-order condition ��(�̂) = 0; we

have:

S0n(�̂L � �0) = �[S�1n ���(~�)S
�10
n ]�1[S0n��(�0)]

where ~� is the mean-value. By the consistency of �̂L, ~� ! �0.

It then follows that

B�(~�)=n = �2
X
i

Wi~"i=n;

= �2
X
i

(i + ui)~"i=n

= �2Sn=
p
n(
X
i

fi~"i=n)� 2(
X
i

ui~"i=n)

= �2�u" + op(1)

under the assumption that Sn=
p
n is bounded, with ~"i = (yi�W 0

i
~�) and �u" = E(ui"i).

B(~�)=n
P! �2"; B�(

~�)=n
P! �2�u"
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�(�) =
(y �W�)0P�(y �W�)=2n

(y �W�)0(y �W�)=n

For � = �0, �(�0) =
"0P�"=2n

"0"=n
:With probability one, "0"=n > C; and by Lemma 2 and

�2n � n;

"0P�"=n = op(1):

We have �(�0) = op(1). Therefore, �(~�)
P! 0: By the �rst order condition, we also

have

��(~�)
P! 0:

B��(~�) = 2W
0W=n

P! 2E(WiW
0
i ); A��(

~�)=n =W 0P�W=n:

We can then conclude that ���(~�) = nB�1(~�)[A��(~�)=n] + op(1): Hence

n~�2"���(
~�) = W 0P�W

= Sn


(K�

n )
� 1
2 gn1; (K

�
n )
� 1
2 g0n1

�
S0n + op(1)

= SnHS
0
n + op(1)

with H = E(f(xi)f(xi)
0) and ~�2" = (y �We�)0(y �We�)=n:

Hence

n~�2"S
�1
n ���(~�)S

�10
n = H + op(1):

Let �̂ =
W 0"

"0"
, � =

�u"
�2"

and v = u� "�0. It is useful to remark that v0P�" = Op(1=
p
�)

using Lemma 2 with v in place of u and E (uivi) = 0. Moreover, �̂�� = Op(1=
p
n) by

the central limit theorem and the delta method. Hence, (�̂� �)"0P�" = Op(1=�
p
n).

Furthermore, f 0 (I � P�) "=
p
n = Op(�

2
�) = op(1) by Lemma 5(ii) Carrasco (2012)

with �� = tr(f 0 (I � P�)2 f=n) = Op

�
�min(�;2)

�
= op (1) : We have

�n~�2S�1n ��(�0) = S�1n (W 0P�"� "0P�"W
0"

"0"
)

= f 0"=
p
n� f 0 (I � P�) "=

p
n+ S�1n v0P�"� S�1n (�̂� �)"0P�"

= f 0"=
p
n+ op(1) + S

�1
n Op(1=

p
�) + S�1n Op(1=�

p
n)

= f 0"=
p
n+ op(1)

d! N (0; �2"H)

as n, ��2n go to in�nity under the assumption �nS
�1
n ! S0.
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The conclusion follows from Slutzky�s theorem.
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