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a b s t r a c t

The use of many moment conditions improves the asymptotic efficiency of the instrumental variables
estimators. However, in finite samples, the inclusion of an excessive number of moments increases
the bias. To solve this problem, we propose regularized versions of the limited information maximum
likelihood (LIML) based on three different regularizations: Tikhonov, Landweber–Fridman, and principal
components. Our estimators are consistent and asymptotically normal under heteroskedastic error.
Moreover, they reach the semiparametric efficiency bound assuming homoskedastic error. We show
that the regularized LIML estimators possess finite moments when the sample size is large enough. The
higher order expansion of the mean square error (MSE) shows the dominance of regularized LIML over
regularized two-staged least squares estimators. We devise a data driven selection of the regularization
parameter based on the approximate MSE. A Monte Carlo study and two empirical applications illustrate
the relevance of our estimators.

© 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The problem of many instruments is a growing part of the
econometric literature. This paper considers the efficient estima-
tion of a finite dimensional parameter in a linear model where the
number of potential instruments is very large or infinite. Many
moment conditions can be obtained from nonlinear transforma-
tions of an exogenous variable or from using interactions between
various exogenous variables. One empirical example of this kind
often cited in econometrics is Angrist and Krueger (1991) who
estimate returns to schooling using many instruments, Dagenais
and Dagenais (1997) also estimate amodel with errors in variables
using instruments obtained from higher-order moments of avail-
able variables. The use of many moment conditions improve the
asymptotic efficiency of the instrumental variables (IV) estimators.
For example, Hansen et al. (2008) have recently found that in an ap-
plication from Angrist and Krueger (1991), using 180 instruments,
rather than 3 shrinks correct confidence intervals substantially to-
ward those of Kleibergen (2002). It has been observed that in finite
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samples, the inclusion of an excessive number of moments may
result in a large bias (Andersen and Sorensen, 1996).

To solve the problem of many instruments efficiently, Carrasco
(2012) proposed an original approach based on regularized two-
stage least-squares (2SLS). However, such a regularized version
is not available for the limited information maximum likelihood
(LIML). Providing such an estimator is desirable, given LIML has
better properties than 2SLS (see e.g. Hahn and Inoue (2002), Hahn
and Hausman (2003), and Hansen et al., 2008). In this paper, we
propose a regularized version of LIML based on three regulariza-
tion techniques borrowed from the statistic literature on linear in-
verse problems (see Kress (1999) and Carrasco et al. (2007)). The
three regularization techniques were also used in Carrasco (2012)
for 2SLS. The first estimator is based on Tikhonov (ridge) regu-
larization. The second estimator is based on an iterative method
called Landweber–Fridman. The third regularization technique,
called spectral cut-off or principal components, is based on the
principal components associated with the largest eigenvalues. In
our paper, the number of instruments is not restricted and may be
smaller or larger than the sample size or even infinite. We also al-
low for a continuum ofmoment restrictions. We restrict our atten-
tion to the case where the parameters are strongly identified and
the estimators converge at the usual

√
n rate. However, a subset of

instruments may be irrelevant.
We show that the regularized LIML estimators are consistent

and asymptotically normal under heteroskedastic error. Moreover,
they reach the semiparametric efficiency bound in presence of
homoskedastic error. We show that the regularized LIML has finite
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first moments provided the sample size is large enough. This result
is in contrast with the fact that standard LIML does not possess any
moments in finite sample.

Following Nagar (1959), we derive the higher-order expansion
of the mean-square error (MSE) of our estimators and show that
the regularized LIML estimators dominate the regularized 2SLS in
terms of the rate of convergence of the MSE. Our three estima-
tors involve a regularization or tuning parameter, which needs to
be selected in practice. The expansion of the MSE provides a tool
for selecting the regularization parameter. Following the same ap-
proach as in Donald and Newey (2001), Okui (2011), and Carrasco
(2012), we propose a data-driven method for selecting the regu-
larization parameter,α, based on a cross-validation approximation
of the MSE. We show that this selection method is optimal in the
sense of Li (1986, 1987), meaning that the choice of α using the
estimated MSE is asymptotically as good as if minimizing the true
unknown MSE.

The simulations show that the regularized LIML is better than
the regularized 2SLS in almost every case. Simulations show that
the LIML estimator based on Tikhonov and Landweber–Fridman
regularizations often have smaller median bias and smaller MSE
than the LIML estimator based on principal components and than
the LIML estimator proposed by Donald and Newey (2001).

There is a growing amount of articles onmany instruments and
LIML. The first papers focused on the case where the number of in-
struments, L, grows with the sample size, n, but remains smaller
than n. In this case, the 2SLS estimator is inconsistent while LIML is
consistent (see Bekker (1994), Chao and Swanson (2005), Hansen
et al. (2008), among others). Hausman et al. (2012) and Chao
et al. (2012) give modified LIML estimators which are robust to
heteroskedasticity in the presence of many weak instruments.
Modifications of GMM have been considered by Canay (2010)
and Kuersteiner (2012) who consider kernel weighted GMM esti-
mators and Okui (2011) who uses shrinkage. Recently, some work
has been done in the case where the number of instruments ex-
ceeds the sample size. Bai and Ng (2010) and Kapetanios and Mar-
cellino (2010) assume that the endogenous regressors depend on a
small number of factors which are exogenous, they use estimated
factors as instruments. Belloni et al. (2012a) assume the approxi-
mate sparsity of the first stage equation and apply an instrument
selection based on Lasso. Recently, Hansen and Kozbur (2014)
propose a ridge regularized jackknife instrumental variable esti-
mator in the presence of heteroskedasticitywhich does not require
sparsity and provide tests with good sizes. The paper which is the
most closely related to ours is that by Donald and Newey (2001)
(DN henceforth) which selects the number of instruments by min-
imizing an approximateMSE.Ourmethod assumesneither a strong
factor structure, nor an exactly sparse first stage equation. How-
ever, it assumes that the instruments are sufficiently correlated
among themselves so that the trace of the instruments covariance
matrix is finite and hence the eigenvalues of the covariance matrix
decrease to zero sufficiently fast.

The paper is organized as follows. Section 2 presents the three
regularized LIML estimators and their asymptotic properties. Sec-
tion 3 derives the higher order expansion of the MSE of the three
estimators. In Section4,wegive a data-driven selection of the regu-
larization parameter. Section 5 presents aMonte Carlo experiment.
Empirical applications are examined in Section 6. Section 7 con-
cludes. The proofs are collected in Appendix.

2. Regularized version of LIML

This section presents the regularized LIML estimators and their
properties. We show that the regularized LIML estimators are con-
sistent and asymptotically normal in presence of heteroskedastic
error and they reach the semiparametric efficiency bound assum-
ing homoskedasticity. Moreover, we establish that, under some
conditions, they have finite moments.
2.1. Presentation of the estimators

The model is
yi = W ′

i δ0 + εi
Wi = f (xi)+ ui

(1)

i = 1, 2, . . . , n. The main focus is the estimation of the p × 1
vector δ0. yi is a scalar and xi is a vector of exogenous variables.Wi
is correlated with εi so that the ordinary least-squares estimator
is not consistent. Some rows of Wi may be exogenous, with the
corresponding rows of ui being zero. A set of instruments, Zi, is
available so that E (Ziεi) = 0. The estimation of δ is based on the
orthogonality condition:

E[(yi − W ′

i δ)Zi] = 0.

Let f (xi) = E (Wi|xi) ≡ fi denote the p×1 reduced form vector.
The notation f (xi) covers various cases. f (xi) may be a linear
combination of a large dimensional (possibly infinite dimensional)
vector xi. Let Zi = xi, then f (xi) = β ′Zi for some L × pβ . Some
of the coefficients βj may be equal to zero, in which case the
corresponding instruments Zj are irrelevant. In that sense, f (xi)
may be sparse as in Belloni et al. (2012b). The instruments have
to be strong as a whole but some of themmay be irrelevant. We do
not consider the case where the instruments are weak (case where
the correlation between Wi and Zi converges to zero at the

√
n

rate) and the parameter δ is not identified as in Staiger and Stock
(1997). We do not allow for many weak instruments (case where
the correlation between Wi and Zi declines to zero at a faster rate
than

√
n and the number of instruments Zi grows with the sample

size) considered by Newey and Windmeijer (2009) among others.
The model allows for xi to be a few variables and Zi to

approximate the reduced form f (xi). For example, Zi could be a
power series or splines (see Donald and Newey, 2001).

As in Carrasco (2012), we use a general notation which allows
us to deal with a finite, countable infinite number of moments,
or a continuum of moments. The estimation is based on a set
of instruments Zi = {Z(τ ; xi) : τ ∈ S} where S is an index set.
Examples of Zi are the following.

- Assume Zi = xi where xi is a L-vector with a fixed L. Then
Z(τ ; xi) denotes the τ th element of xi and S = {1, 2, . . . , L}.

- Z(τ ; xi) = (xi)τ−1 with τ ∈ S = N, thus we have infinite
countable instruments.

- Z(τ ; xi) = exp(iτ ′xi) where τ ∈ S = Rdim(xi), thus we have a
continuum of moments.

It is important to note that throughout the paper, the number
of instruments, L, of Zi is either fixed or infinite and L is always in-
dependent of T. We view L as the number of instruments available
to the econometrician and the econometrician uses all these in-
struments to estimate the parameters. We need to define a space
of reference in which elements such that E (WiZ(τ ; xi)) are sup-
posed to lie. We denote L2(π) the Hilbert space of square inte-
grable functions with respect to π where π is a positive measure
on S. π (τ) attaches a weight to each moments indexed by τ . π
permits to dampen the effect of some instruments. For instance, if
Z(τ ; xi) = exp(iτ ′xi), it makes sense to put more weight on low
frequencies (τ close to 0) and less weight on high frequencies (τ
large). In that case, aπ equal to the standard normal density works
well as shown in Carrasco et al. (2007).

We define the covariance operator K of the instruments as

K : L2(π) → L2(π)

(Kg)(τ1) =


E(Z(τ1; xi)Z(τ2; xi))g(τ2)π(τ2)dτ2

where Z(τ2; xi) denotes the complex conjugate of Z(τ2; xi). K is
assumed to be a nuclear (also called trace-class) operator which
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is satisfied if and only if its trace is finite. This assumption and
the role of π are discussed in detail in Carrasco and Florens
(2014). This is trivially satisfied if the number of instruments is
finite. However, when it is infinite, this condition requires that
the eigenvalues of K decline to zero sufficiently fast which im-
plies some strong colinearity among the instruments. If the instru-
ments


Zij : j = 1, 2, . . . ,∞


are independent from each other,

then K is the infinite dimensional identity matrix which is not nu-
clear. However, Section 2.3 of Carrasco and Florens (2014) shows
that an appropriate choice of π makes such a matrix nuclear. The
weight π gives an extra degree of freedom to the econometrician
to meet some of our assumptions. We will see in Section 2.2 that
the asymptotic distribution of our estimator does not depend on
the choice of π . In the case where the vector of instruments Zi has
a finite dimension L (potentially very large), we can select π as the
uniform density on S = {1, 2, . . . , L}. In that case, K is the opera-
tor which associates to vector v ofRL, the vector Kv = E


ZiZ ′

i


v/L.

The condition ‘‘K nuclear’’ is met if the trace of E

ZiZ ′

i


/L is finite.

This is satisfied if the Zil, l = 1, 2, . . . , L depends on a few com-
mon factors (see for instance Bai and Ng, 2002). It may be satisfied
also if the eigenvalues continuously declinewithout having a factor
structure.

Let λj and φj j = 1, 2, . . . be respectively the eigenvalues
(ordered in decreasing order) and the orthogonal eigenfunctions
of K . The operator K can be estimated by Kn defined as:

Kn : L2(π) → L2(π)

(Kng)(τ1) =


1
n

n
i=1

Z(τ1; xi)Z(τ2; xi)g(τ2)π(τ2)dτ2.

If the number of moment conditions is infinite, inverting K is
an ill-posed problem in the sense that its inverse is not continuous,
moreover its sample counterpart, Kn, is singular. Consequently, the
inverse of Kn needs to be stabilized via regularization. By definition
(see Kress, 1999, page 269), a regularized inverse of an operator K
is Rα : L2(π) → L2(π) such that limα→0 RαKϕ = ϕ, ∀ ϕ ∈ L2(π).

As in Carrasco (2012), we consider three different types of
regularization schemes: Tikhonov (T), Landweber–Fridman (LF)
and Spectral cut-off (SC). They are defined as follows:1

1. Tikhonov(T)
This regularization inverse is defined as (Kα)−1

= (K 2
+αI)−1K

or equivalently

(Kα)−1r =

∞
j=1

λj

λ2j + α


r, φj


φj

where α > 0 and I is the identity operator.
2. Landweber–Fridman (LF)

This method of regularization is iterative. Let 0 < c <
1/∥K∥

2 where ∥K∥ is the largest eigenvalue of K (which can
be estimated by the largest eigenvalue of Kn). ϕ̂ = (Kα)−1r is
computed using the following procedure:
ϕ̂l = (1 − cK 2)ϕ̂l−1 + cKr, l = 1, 2, . . . ,

1
α

− 1;
ϕ̂0 = cKr,

where 1
α

− 1 is some positive integer. Equivalently, we have

(Kα)−1r =

∞
j=1

[1 − (1 − cλ2j )
1
α ]

λj


r, φj


φj.

1

., .

represents the scalar product in L2(π) and in Rn (depending on the

context).
3. Spectral cut-off (SC)
It consists in selecting the eigenfunctions associated with the
eigenvalues greater than some threshold.

(Kα)−1r =


λ2j ≥α

1
λj


r, φj


φj,

for α > 0. As the φj are related to the principal components of
Z , this method is also called principal components (PC).

The regularized inverses of K can be rewritten using a common
notation as:

(Kα)−1r =

∞
j=1

q(α, λ2j )

λj


r, φj


φj

where for T q(α, λ2j ) =
λ2j

λ2j +α
, for LF q(α, λ2j ) = [1− (1− cλ2j )

1/α
],

and for SC q(α, λ2j ) = I(λ2j ≥ α).
In order to compute the inverse of Kn, we have to choose the

regularization parameter α. Let (Kαn )
−1 be the regularized inverse

of Kn and Pα a n × n matrix defined as in Carrasco (2012) by
Pα = T (Kαn )

−1T ∗ where T : L2(π) → Rn with

Tg =

⟨Z1, g⟩′ , ⟨Z2, g⟩′ , . . . , ⟨Zn, g⟩′

′
and T ∗

: Rn
→ L2(π)with

T ∗v =
1
n

n
j=1

Zivi

such that Kn = T ∗T and TT ∗ is an n × n matrix with typical

element

Zi,Zj


n . Let φ̂j, λ̂1 ≥ λ̂2 ≥ · · · > 0, j = 1, 2, . . . be the
orthonormalized eigenfunctions and eigenvalues of Kn and ψj the
eigenfunctions of TT ∗. We then have T φ̂j =


λjψj and T ∗ψj =

λjφ̂j. Remark that for v ∈ Rn, Pαv =


∞

j=1 q(α, λ
2
j )

v, ψj


ψj.

LetW =

W ′

1, W
′

2, . . . ,W
′
n

′ n×p and y =

y′

1, y
′

2, . . . , y
′
n

′ n×
p. Let us define k-class estimators as

δ̂ = (W ′ (Pα − νIn)W )−1W ′ (Pα − νIn) y

where ν = 0 corresponds to the regularized 2SLS estimator
studied in Carrasco (2012) and

ν = να = min
δ

(y − Wδ)′Pα(y − Wδ)
(y − Wδ)′(y − Wδ)

(2)

corresponds to the regularized LIML estimator we will study here.

2.2. Asymptotic properties of the regularized LIML

First, we establish the asymptotic properties of the regularized
LIML estimators when the errors are heteroskedastic. Next, wewill
consider the special case where the errors are homoskedastic and
the reduced form f can be approached by a sequence of instru-
ments. We will focus on the case where the regularization pa-
rameter, α, goes to zero. If α were bounded away from zero, our
estimators would remain consistent and asymptotically normal
but would be less efficient.

One of the drawbacks of LIML in the many-instruments setting
is that it fails to even be consistent in presence of heteroskedastic-
ity.Wewill show that the regularized LIML estimators remain con-
sistent and asymptotically normal. Here, we assume that


εi, u′

i


are iid but conditionally heteroskedastic.We define the covariance
operator K̃ of the moments {εiZi} as

K̃ : L2(π) → L2(π)

(Kg)(τ1) =


E(ε2i Z(τ1; xi)Z(τ2; xi))g(τ2)π(τ2)dτ2
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where Z(τ2; xi) denotes the complex conjugate of Z(τ2; xi). K nu-
clear, together with the assumption E(ε2i |xi) = σ 2

i < C , implies
that the operator K is nuclear. This, in turn, implies that a func-
tional central limit theorem holds (see vander Vaart and Wellner,
1996, p. 50), namely

n
i=1 Z(.; xi)εi/

√
n converges in L2 (π) to a

mean zero Gaussian process with covariance operator K̃ . Let g de-
note E (Z(.; xi)Wi) and F = K−1/2.

Proposition 1 (Case with Heteroskedasticity). Assume

yi,W ′

i , x
′

i


are iid, E(εi|xi) = E(ui|xi) = 0. Var


εi, u′

i|xi


depends on i.
E(ε2i |xi) = σ 2

i , where σ 2
i is bounded, the operator K is nuclear, the

p × p matrix

Fg, Fg ′


is nonsingular. The regularization parameter α

goes to zero. Then, the T, LF, and SC LIML estimators satisfy:
1. Consistency: Assume that each element of g belongs to range of

K 1/2. Then δ̂ → δ0 in probability as n and nα1/2 go to infinity.
2. Asymptotic normality: If moreover, each element of g belongs to

the range of K , then
√
n(δ̂ − δ0)

d
→ N


0,

Fg, Fg ′

−1 Fg, FKF∗

Fg
 
Fg, Fg ′

−1


as n and α
√
n go to infinity.

The condition

Fg, Fg ′


nonsingular is an identification assump-

tion. It would be interesting to compare this resultwith the asymp-
totic distribution of the regularized 2SLS estimator of Carrasco
(2012). Using Theorem 2 of Carrasco and Florens (2000), it can be
shown that they have the same asymptotic distribution. Hence,
both types of estimators are robust to heteroskedasticity.

A consistent estimator of the asymptotic variance is given by
W ′PαW

−1

W ′PαΩ̂PαW

 
W ′PαW

−1

where Ω̂ is n × n diagonal matrix with ε̂2i on the diagonal with
ε̂i = yi − W ′

i δ̃ and δ̃ a consistent estimator of δ. An alternative
consistent estimator is given by
Ŵ ′W

−1 
Ŵ ′Ω̂Ŵ

 
W ′Ŵ

−1

where Ŵ = (Pα − νIn)W .
Next, we turn to the homoskedastic case and establish that the

regularized LIML estimators asymptotically reach the semipara-
metric efficiency bound. Let fa(x) be the ath element of f (x).

Proposition 2 (Case with Homoskedasticity). Assume

yi,W ′

i , x
′

i


are iid, E(ε2i |xi) = σ 2

ε , E(fif
′

i ) exists and is nonsingular, K is nuclear, α
goes to zero. E


ε4i |xi


< C and E


∥ui∥

4
|xi

< C, for some constant

C. Moreover, fa(x) belongs to the closure of the linear span of {Z(.; x)}
for a = 1, . . . , p. Then, the T, LF, and SC estimators of LIML satisfy:
1. Consistency: δ̂ → δ0 in probability as n and nα1/2 go to infinity.
2. Asymptotic normality: If moreover, each element of g belongs to

the range of K , then
√
n(δ̂ − δ0)

d
→ N


0, σ 2

ε [E(fif
′

i )]
−1


as n and nα go to infinity.
Proof. See Appendix.

For the asymptotic normality, we need nα go to infinity as
in Carrasco (2012) for 2SLS. It means that α is allowed to go to zero
faster than for the heteroskedastic case. Indeed, in Proposition 1,
the condition was α

√
n. This improved rate for α has a cost which

is the condition that the fourth moments of εi and ui are bounded.
We did not need this condition in Proposition 1 because a slightly
different proof was used.

The assumption ‘‘fa(x) belongs to the closure of the linear span
of {Z(.; x)} for a = 1, . . . , p’’ is necessary for the efficiency
but not for the asymptotic normality. We notice that all regular-
ized LIML have the same asymptotic properties and achieve the
asymptotic semiparametric efficiency bound, as for the regularized
2SLS of Carrasco (2012). Therefore to distinguish among these dif-
ferent estimators, a higher-order expansion of the MSE is neces-
sary.
2.3. Existence of moments

The LIML estimator was introduced to correct the bias problem
of the 2SLS in the presence of many instruments. It is thus recog-
nized in the literature that LIMLhas better small-sample properties
than2SLS. However, this estimator has no finitemoments. Guggen-
berger (2008) shows by simulations that LIML and GEL have large
standard deviations. Fuller (1977) proposes a modified estimator
that has finite moments provided the sample size is large enough.
Moreover, Anderson (2010) shows that the lack of finite moments
of LIML under conventional normalization is a feature of the nor-
malization, not of the LIML estimator itself. He provides a normal-
ization (natural normalization) under which the LIML has finite
moments. In a recent paper, Hausman et al. (2011) propose a reg-
ularized version of CUE with two regularization parameters and
prove the existence of moments assuming these regularization pa-
rameters are fixed. However, to obtain efficiency these regulariza-
tion parameters need to go to zero. In the following proposition,we
give some conditions under which the regularized LIML estimators
possess finite moments provided the sample size is large enough.
Let X = (x1, x2, . . . , xn).

Proposition 3 (Moments of the Regularized LIML). Assume

yi,W ′

i ,

x′

i


are iid, εi ∼ iidN (0, σ 2

ε ) and assume that the vector ui is
independent of X, independently normally distributed with mean
zero and variance Σu. Assume that the eigenvalues of K are strictly
decreasing. Let α be a positive decreasing function of nwith nα → ∞

as n → ∞. Moreover, assume that the regularized LIML estimators
based on T, LF, and SC are consistent.

Then, the rth moments (r = 1, 2, . . .) of the regularized LIML
estimators are bounded for all n greater than some n(r).

Proof. See Appendix.

Proposition 3 assumes that the eigenvalues of K are strictly
decreasing which rules out the case where all the eigenvalues
are equal.2 In Proposition 2, we assumed that K was nuclear. If
the number of instruments is infinite, K nuclear implies that the
eigenvalues of K decline to zero fast. However, if the number of
instruments is finite, K is a finite dimensional matrix and it is
automatically nuclear. To make Proposition 3 hold for both cases
with finite and infinite number of moments, we have added the
requirement that the eigenvalues strictly decline. The case where
the eigenvalues are equal is not covered by our proposition. In this
case, the moments of the regularized LIML may not be bounded.
This is easy to see for spectral cut-off regularization. Assume that K
is the identity matrix and hence the λj are all equal to 1. For n large
enough, the estimated λ̂j will also be close to 1. For α small, the

qj = I

λ̂j > α


will be all equal to 1, hence the Pα is the projection

matrix on all the instruments and the regularized LIML is nothing
but the usual LIML estimator which is known to have nomoments.
Of course, in practice, with a relatively small sample, the λ̂j may be
far from being equal to each other but we may still retain a large
number of principal components yielding large moments. This is
well illustrated by the simulations of Model 1 in Section 5.

3. Mean square error for regularized LIML

Now, we analyze the second-order expansion of the MSE of
regularized LIML estimators. First, we impose some regularity
conditions. Let ∥A∥ be the Euclidean norm of a matrix A. f is the
n × p matrix, f = (f (x1), f (x2), . . . , f (xn))′. Let H̄ be the p × p
matrix H̄ = f ′f /n and X = (x1, . . . , xn).

2 Recall that the eigenvalues are ranked in decreasing order by assumption.



M. Carrasco, G. Tchuente / Journal of Econometrics 186 (2015) 427–442 431
Assumption 1. (i) H = E(fif ′

i ) exists and is nonsingular,
(ii) there is a β ≥ 1/2 such that

∞
j=1


E(Z(., xi)fa(xi)), φj

2
λ
2β+1
j

< ∞

where fa is the ath element of f for a = 1, 2, . . . , p.

Assumption 2. {Wi, yi, xi} iid, E(ε2i |X) = σ 2
ε > 0 and E(∥ui∥

5
|X),

E(|εi|5|X) are bounded.

Assumption 3. (i) E[(εi, u′

i)
′(εi, u′

i)] is bounded, (ii) K is a nuclear
operator with nonzero eigenvalues, (iii) f (xi) is bounded.

These assumptions are similar to those of Carrasco (2012). As-
sumption 1(ii) is used to derive the rate of convergence of theMSE.
More precisely, it guarantees that ∥f −Pα f ∥ = Op(α

β) for LF and SC
and ∥f − Pα f ∥ = Op(α

min(2,β)) for T. The value of β measures how
well the instruments approximate the reduced form, f . The larger
β , the better the approximation is. The notion of asymptotic MSE
employed here is similar to the Nagar-type asymptotic expansion
(Nagar, 1959), this Nagar-type approximation is popular in IV es-
timation literature. We have several reasons to investigate the Na-
gar approximate MSE. First, this approach makes comparison with
DN (2001) and Carrasco (2012) easier since they also use the Na-
gar expansion. Second, a finite sample parametric approach may
not be so convincing as it would rely on a distributional assump-
tion. Finally, the Nagar approximation provides the tools to derive
a simpleway for selecting the regularization parameter in practice.

Proposition 4. Let σuε = E(uiεi|xi), Σu = E(uiu′

i|xi) and Σv =

E(viv′

i |xi) with vi = ui − εi
σuε
σ 2
ε
. If Assumptions 1–3 hold, Σv ≠ 0,

E(ε2i vi) = 0 and nα → ∞ for LF, SC, T regularized LIML, we have

n(δ̂ − δ0)(δ̂ − δ0)
′
= Q̂ (α)+ r̂(α),

E(Q̂ (α)|X) = σ 2
ε H̄

−1
+ S(α)+ T (α),

[r̂(α)+ T (α)]/tr(S(α)) = op(1),

S(α) = σ 2
ε H̄

−1

Σv

[tr((Pα)2)]
n

+
f ′ (1 − Pα)2 f

n


H̄−1.

For LF, SC, S(α) = Op(1/αn + αβ) and for T, S(α) = Op(1/αn +

αmin(β,2)).

The MSE dominant term, S(α), is composed of two variance
terms, onewhich increaseswhenα goes to zero and the other term
which decreases when α goes to zero corresponding to a better
approximation of the reduced form by the instruments. Remark
that for β ≤ 2, LF, SC, and T give the same rate of convergence
of the MSE. However, for β > 2, T is not as good as the other
two regularization schemes. This is the same result found for the
regularized 2SLS of Carrasco (2012). For instance, if f were a finite
linear combination of the instruments, β would be infinite, and the
performance of T is expected to be worse than that of SC or LF.

The MSE formulae can be used to compare our estimators
with those in Carrasco (2012). As in DN, the comparison between
regularized 2SLS and LIML depends on the size of σuε . For σuε = 0
where there is no endogeneity, 2SLS has smallerMSE than LIML for
all regularization schemes, but in this case OLS dominates 2SLS. In
order to do this comparison, we need to be precise about the size
of the leading term of our MSE approximation:

SLIML(α) = σ 2
ε H̄

−1

Σv

[tr((Pα)2)]
n

+
f ′ (I − Pα)2 f

n


H̄−1 (3)

for LIML and

S2SLS(α) = H̄−1

σuεσ

′

uε
[tr(Pα)]2

n
+ σ 2

ε

f ′ (I − Pα)2 f
n


H̄−1
for 2SLS (see Carrasco, 2012). We know that

SLIML(α) ∼
1
nα

+ αβ ,

S2SLS(α) ∼
1

nα2
+ αβ

for LF, PC and if β < 2 in the Tikhonov regularization. For β ≥ 2
the leading term of the Tikhonov regularization is

SLIML(α) ∼
1
nα

+ α2,

S2SLS(α) ∼
1

nα2
+ α2.

The approximate MSE of regularized LIML is of smaller order
in α than that of the regularized 2SLS because the bias terms
for LIML does not depend on α. This is similar to a result found
in DN, namely that the bias of LIML does not depend on the
number of instruments. For comparison purpose, weminimize the
equivalents with respect to α and compare different estimators at
theminimized point.We find that T, LF and SC LIML are better than
T, LF and SC 2SLS in the sense of having smaller minimized value
of the MSE, for large n. Indeed, the rate of convergence to zero of

S(α) is n−
β
β+1 for LIML and n−

β
β+2 for 2SLS. The Monte Carlo study

presented in Section 5 reveals that almost everywhere regularized
LIML performs better than regularized 2SLS.

4. Data driven selection of the regularization parameter

4.1. Estimation of the approximate MSE

In this section, we show how to select the regularization
parameter α. The aim is to find the α that minimizes the
conditional approximateMSE of γ ′δ̂ for some arbitrary p×1 vector
γ . This conditional MSE is:

MSE = E[γ ′(δ̂ − δ0)(δ̂ − δ0)
′γ |X]

∼ γ ′S(α)γ
≡ Sγ (α).

Sγ (α) involves the function f which is unknown. We will need to
replace Sγ by an estimate. Stacking the observations, the reduced
form equation can be rewritten as

W = f + u.

This expression involves n × p matrices. We can reduce the
dimension by post-multiplying by H̄−1γ :

WH̄−1γ = f H̄−1γ + uH̄−1γ ⇔ Wγ = fγ + uγ (4)

where uγ i = u′

iH̄
−1γ is a scalar. Then, we are back to a univariate

equation. Let vγ = vH̄−1γ and denote

σ 2
vγ

= γ ′H̄−1ΣvH̄−1γ .

Using (3), Sγ (α) can be rewritten as

σ 2
ε


σ 2
vγ

[tr((Pα)2)]
n

+
f ′
γ (I − Pα)2 fγ

n


.

We see that Sγ depends on fγ which is unknown. The term
involving fγ is the same as the one that appears when computing
the prediction error of fγ in (4).

The prediction error 1
nE

(fγ − f̂ αγ )

′(fγ − f̂ αγ )

equals

R(α) = σ 2
uγ

tr((Pα)2)
n

+
f ′
γ (I − Pα)2 fγ

n
.
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As in Carrasco (2012), the results of Li (1986, 1987) can be applied.
Let δ̃ be a preliminary estimator (obtained for instance from a finite
number of instruments) and ε̃ = y − W δ̃. Let H̃ be an estimator
of f ′f /n, possiblyW ′P α̃W/nwhere α̃ is obtained from a first stage
cross-validation criterion based onone single endogenous variable,
for instance the first one (so that we get a univariate regression
W (1)

= f (1) + u(1) where (1) refers to the first column).
Let ũ = (I − P α̃)W , ûγ = ũH̃−1γ ,

σ̂ 2
ε = ε̃′ε̃/n, σ̂ 2

uγ = û′

γ ûγ /n, σ̂uvε = û′

γ ε̃/n.

We consider the following goodness-of-fit criteria:

Mallows Cp (Mallows, 1973)

R̂m(α) =
û′
γ ûγ
n

+ 2σ̂ 2
uγ

tr(Pα)
n

.

Generalized cross-validation (Craven and Wahba, 1979)

R̂cv(α) =
1
n

û′
γ ûγ

1 −
tr(Pα)

n

2 .
Leave-one-out cross-validation (Stone, 1974)

R̂lcv(α) =
1
n

n
i=1

(W̃γi − f̂ αγ−i
)2,

where W̃γ = WH̃−1γ , W̃γi is the ith element of W̃γ and f̂ αγ−i
=

Pα
−iW̃γ−i . The n × (n − 1)matrix Pα

−i is such that Pα
−i = T (Kαn−i)T

∗

−i
are obtained by suppressing the ith observation from the sample.
W̃γ−i is the (n − 1) × 1 vector constructed by suppressing the ith
observation of W̃γ .

Noting that σ 2
vγ

−σ 2
uγ = −σ 2

uγ ε/σ
2
ε where σuγ ε = E


uγ iεi


. The

approximate MSE of γ ′δ̂ is given by:

Ŝγ (α) = σ̂ 2
ε


R̂(α)−

σ̂ 2
uγ ε

σ̂ 2
ε

tr((Pα)2)
n



where R̂(α) denotes either R̂m(α), R̂cv(α), or R̂lcv(α).
Since σ̂ 2

ε does not depend on α, the regularization parameter is
selected as

α̂ = arg min
α∈Mn


R̂(α)−

σ̂ 2
uγ ε

σ̂ 2
ε

tr((Pα)2)
n


(5)

whereMn is the index set of α.Mn is a compact subset of [0, 1] for
T, Mn is such that 1/α ∈ {1, 2, . . . , n} for SC, and Mn is such that
1/α is a positive integer no larger than some finite multiple of n.

Remark 1. This selection is cumbersome because it depends on a
first step estimator of α, α̃. Moreover, the quality of the selection of
the regularization parameter α̂ may be affected by the estimation
of H̄ . A solution to avoid the estimation of H̄ is to select γ such that
H̄−1γ equals a deterministic vector chosen by the econometrician,
for instance the unit vector e or any other vector denotedµ. Given
the choice of µ is arbitrary and for each µ corresponds a γ , we
believe the resulting criterion is a valid way for selecting α. In this
case, Wγ = Wµ, fγ = fµ, uγ = uµ and σ̂ 2

uγ ε can be estimated
by u′

γ ε̃/n. As a result, the criterion (5) can be computed without
relying on any first step estimate of α (except when Mallows Cp is
used).
4.2. Optimality

In this section, we will restrict ourselves to the case described
in Remark 1 where γ is such that H̄−1γ = µ and µ is an arbitrary
vector chosen by the econometrician.

We wish to establish the optimality of the regularization
parameter selection criteria in the following sense

Sγ (α̂)
inf
α∈Mn

Sγ (α)
P

→ 1 (6)

as n and nα → ∞where α̂ is the regularization parameter defined
in (5). The result (6) does not imply that α̂ converges to a true α
in some sense. Instead, it establishes that using α̂ in the criterion
Sγ (α) delivers the same rate of convergence as if minimizing
Sγ (α) directly. For each estimator, the selection criteria provide a
means to obtain higher order asymptotically optimal choices for
the regularized parameter. It also means that the choice of α using
the estimated MSE is asymptotically as good as if the true reduced
form were known.

Assumption 4. (i) E[((uie)8)] is bounded. (i’) ui iid N (0,Σu),
(ii) σ̂ 2

uγ
P

→ σ 2
uγ , σ̂

2
uγ ε

P
→ σ 2

uγ ε , σ̂
2
ε

P
→ σ 2

ε ,
(iii) limn→∞ supα∈Mn λ(P

α
−i) < ∞ where λ(Pα

−i) is largest
eigenvalue of Pα

−i,

(iv)


α(nR̃(α))
−2 P

→ 0 as n → ∞ with R̃ is defined as R with
Pα replaced by Pα

−i,

(v) R̃(α)/R(α)
P

→ 1 if either R̃(α)
P

→ 0 or R(α)
P

→ 0.

Proposition 5. Optimality of SC and LF
Under Assumptions 1–3 and Assumption 4 (i–ii), the Mallows Cp

and Generalized cross-validation criteria are asymptotically optimal
in the sense of (6) for SC and LF. Under Assumptions 1–3 and As-
sumption 4 (i–v), the leave-one out cross validation is asymptotically
optimal in the sense of (6) for SC and LF.

Optimality of T
Under Assumptions 1–3 and Assumption 4 (i’) and (ii), the

Mallows Cp is asymptotically optimal in the sense of (6) for Tikhonov
regularization.

Proof. See Appendix.

In the proof of the optimality,we distinguish two cases: the case
where the index set of the regularization parameter is discrete and
the case where it is continuous. Using as regularization parameter
1/α instead of α, SC and LF regularizations have a discrete index
set, whereas T has a continuous index set. We use Li (1987) to es-
tablish the optimality of Mallows Cp, generalized cross-validation
and leave-one-out cross-validation for SC and LF. We use Li (1986)
to establish the optimality of Mallows Cp for T. The proofs for gen-
eralized cross-validation and leave-one-out cross-validation for T
regularization could be obtained using the same tools but are be-
yond the scope of this paper.

Note that our optimality results hold for a vector of endogenous
regressors Wi whereas DN deals only with the case where Wi is
scalar.

5. Simulation study

In this section, we present a Monte Carlo study. Our aim is to il-
lustrate the quality of our estimators and compare them to regular-
ized 2SLS estimators of Carrasco (2012), DN estimators, and LIML
estimator with all the instruments and using the many instrument
standard error proposed by Hansen et al. (2008) (denoted HHN in
the sequel). In all simulations, we set π = 1 and we consider large
samples of size n = 500 and use 1000 replications.
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Consider
yi = W ′

i δ + εi
Wi = f (xi)+ ui

for i = 1, 2, . . . , n, δ = 0.1 and (εi, ui) ∼ N (0,Σ)with

Σ =


1 0.5
0.5 1


.

For the purpose of comparison, we are going to consider two
models.

Model 1 (Linear model).
In this model, f is linear as in DN. f (xi) = x′

iπ with xi ∼

iidN (0, IL), L = 15, 30, 50. As shown in Hahn and Hausman
(2003), the specification implies a theoretical first stage R-squared
that is of the form R2

f = π ′π/(1 + π ′π).
The xi are used as instruments so that Zi = xi. We can notice

that the instruments are independent from each other, this exam-
ple corresponds to the worse case scenario for our regularized es-
timators. Indeed, here all the eigenvalues of K are equal to 1, so
there is no information contained in the spectral decomposition of
K . Moreover, if L were infinite, K would not be nuclear, hence our
method would not apply.

We set πl =


R2f

1−R2f
, l = 1, 2, . . . , L with R2

f = 0.1. As all the

instruments have the same weight, there is no reason to prefer an
instrument over another instrument.

Model 2 (Factor model).

Wi = fi1 + fi2 + fi3 + ui

where fi = (fi1, fi2, fi3)′ ∼ iidN (0, I3), xi is a L × 1 vector of
instruments constructed from fi through

xi = Mfi + νi

where νi ∼ N (0, σ 2
ν I3) with σν = 0.3, and M is a L × 3 matrix

which elements are independently drawn in a U[−1, 1].
We report summary statistics for each of the following

estimators: Carrasco’s (2012) regularized two-stage least squares,
T2SLS (Tikhonov), L2SLS (Landweber–Fridman), P2SLS (Principal
component), Donald and Newey’s (2001) 2SLS (D2SLS), the
unfeasible instrumental variable regression (IV), regularized LIML,
TLIML (Tikhonov), LLIML (Landweber–Fridman), PLIML (Principal
component or spectral cut-off), Donald and Newey’s (2001) LIML
(DLIML), and finally the usual LIML with all instruments and HHN
standard errors. When L exceeds n, LIML is computed using a
Moore Penrose generalized inverse for the inverse of Z ′Z . For each
regularized and DN estimator, the optimal tuning parameter is
selected using generalized cross-validation. For all the regularized
LIML, DLIML, and standard LIML estimators, the starting values for
theminimization needed in the estimation of ν (see Eq. (2)) are the
2SLS using all the instruments when L ≤ 50 or the corresponding
regularized 2SLS for L > 50.We report themedian bias (Med.bias),
the median of the absolute deviations of the estimator from the
true value (Med.abs), the difference between the 0.1 and 0.9
quantiles (dis) of the distribution of each estimator, the mean
square error (MSE) and the coverage rate (Cov.) of a nominal
95% confidence interval. To construct the confidence intervals
to compute the coverage probabilities, we used the following
estimate of asymptotic variance:

V̂ (δ̂) =
(y − W δ̂)′(y − W δ̂)

n
(Ŵ ′W )−1Ŵ ′Ŵ (W ′Ŵ )−1

where Ŵ = PαW for 2SLS and Ŵ = (Pα − νIn)W for LIML.
Tables 2 and 4 contain summary statistics for the value of the

regularization parameter which minimizes the approximate MSE.
This regularization parameter is the number of instruments in DN,
α for T, the number of iterations for LF, and the number of principal
components for PC.3 We report the mean, standard error (std),
mode, first, second and third quartile of the distribution of the
regularization parameter.

Results on Model 1 are summarized in Tables 1 and 2. In Model
1, the regularized LIML strongly dominates the regularized 2SLS.
The LF and T LIML dominate the DN LIMLwith respect to all the cri-
teria. We can then conclude that in presence of many instruments
and in absence of a reliable information on the relative importance
of the instruments, the regularized LIML approach should be pre-
ferred to DN approach. We can also notice that when the number
of instruments increases from L = 15 to L = 50, the MSE of reg-
ularized LIML becomes smaller than those of regularized 2SLS. We
observe that theMSEof regularized LIML, DLIML and standard LIML
tend to be very large for L = 400 and 520. However, the median
bias and dispersions of these remain relatively small suggesting
that the large values of the MSE are due to a few outliers. The large
MSE of the regularized estimators can be explained by the fact that
all eigenvalues of K (in the population) are equal to each other and
consequently the assumptions of Proposition 3 are not satisfied.
For PC, the cross-validation tends to select either very fewor a large
number of principal components (see Table 2). In that latter case,
the PC LIML is close to the standard LIML estimatorwhich is known
for not having any moments. It is important to note that the MSE
is sensitive to the starting values used for computing ν. For some
starting values, explosive behaviors will appear more frequently
yielding larger MSE. However, the other statistics reported in the
table are not very sensitive to the starting values. We see that HHN
standard errors for LIML give an excellent coverage for moderately
large values of L (L ≤ 50) but this coverage deteriorates as L grows
much larger.

Now, we turn to Model 2 which is a factor model. From Table 3,
we see that there is no clear dominance among the regularized
LIML as they all perform very well. Standard LIML is also very
good. From Table 4, we can observe that PC selects three principal
components in average corresponding to the three factors.

We conclude this section by summarizing the Monte Carlo
results. LIML based estimators have smaller bias than 2SLS based
methods. Selection methods as DN are recommended when
the rank ordering of the strength of the instruments is clear,
otherwise regularized methods are preferable. Among the three
regularizations, LLIML and TLIML have smaller bias and better
coverage than PLIML in absence of factor structure. Overall, TLIML
performs the best across the different values of L. It seems to be the
most reliable method.

6. Empirical applications

6.1. Returns to schooling

A motivating empirical example is provided by the influential
paper of Angrist and Krueger (1991). This study has become a
benchmark for testing methodologies concerning IV estimation
in the presence of many (possibly weak) instrumental variables.
The sample drawn from the 1980 US Census consists of 329, 509
men born between 1930 and 1939. Angrist and Krueger (1991)
estimate an equation where the dependent variable is the log of
the weekly wage, and the explanatory variable of interest is the
number of years of schooling. It is obvious that OLS estimate might
be biased because of the endogeneity of education. Angrist and

3 The optimal α for Tikhonov is searched over the interval [0.01, 0.5] with 0.01
increment. The range of values for the number of iterations for LF is from 1 to
300 and, for the number of principal components, it is from 1 to the number of
instruments.
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Table 1
Simulation results of Model 1 with R2

f = 0.1, n = 500.

T2SL L2LS P2LS D2LS IV TLIML LLIML PLIML DLIML LIML

L = 15 Med.bias 0.099 0.096 0.112 0.128 −0.006 −0.001 −0.001 0.015 0.011 −0.002
Med.abs 0.109 0.115 0.141 0.146 0.087 0.103 0.102 0.103 0.101 0.104
Disp 0.290 0.297 0.372 0.346 0.347 0.390 0.386 0.378 0.380 0.385
MSE 0.023 0.023 0.059 0.042 0.019 0.024 0.025 0.023 0.023 0.024
Cov 0.840 0.843 0.837 0.805 0.946 0.953 0.953 0.928 0.929 0.950

L = 30 Med.bias 0.172 0.165 0.174 0.219 0.006 0.010 0.011 0.040 0.050 0.010
Med.abs 0.173 0.165 0.202 0.237 0.091 0.107 0.110 0.110 0.115 0.108
Disp 0.264 0.277 0.453 0.457 0.355 0.412 0.421 0.409 0.409 0.413
MSE 0.039 0.038 3.682 907.31 0.020 0.030 0.032 0.031 0.032 0.029
Cov 0.594 0.643 0.725 0.673 0.952 0.955 0.950 0.892 0.899 0.951

L = 50 Med.bias 0.237 0.226 0.214 0.257 −0.004 −0.004 0.000 0.079 0.105 0.001
Med.abs 0.237 0.226 0.252 0.285 0.089 0.124 0.126 0.136 0.152 0.123
Disp 0.235 0.259 0.581 0.590 0.353 0.470 0.489 0.477 0.515 0.492
MSE 0.061 0.058 1.794 4.946 0.020 0.039 0.045 0.050 0.427 0.040
Cov 0.300 0.406 0.688 0.639 0.951 0.960 0.955 0.866 0.849 0.957

L = 400 Med.bias 0.411 0.380 0.314 0.373 0.006 0.029 0.018 0.270 0.367 0.212
Med.abs 0.411 0.380 0.449 0.594 0.092 0.249 0.264 0.347 0.450 0.428
Disp 0.128 0.177 2.291 3.116 0.342 1.116 1.237 1.072 1.386 2.177
MSE 0.171 0.150 763.56 224.83 0.021 1.4e+22 2e+24 3.460 20.247 3.2e+23
Cov 0.000 0.001 0.752 0.795 0.961 0.927 0.948 0.823 0.817 0.898

L = 520 Med.bias 0.426 0.415 0.360 0.449 −0.007 0.093 0.084 0.346 0.441 0.464
Med.abs 0.426 0.415 0.468 0.608 0.098 0.294 0.281 0.395 0.512 0.888
Disp 0.114 0.128 2.192 2.951 0.365 1.307 1.216 1.181 1.459 6.106
MSE 0.184 0.175 42.561 639.34 0.021 2.6e+29 6.8e+28 2.8e+29 Inf Inf
Cov 0.000 0.000 0.702 0.740 0.961 0.912 0.914 0.822 0.790 0.059

NB: We report Median Bias (Med.Bias), Median Absolute deviation (Med.abs), the difference between the 0.1 and 0.9 quantiles (Disp) of the distribution of each
estimator, the mean square error (MSE) and the coverage rate (Cov) of a nominal 95% confidence interval. We report results for regularized 2SLS: T2SLS (Tikhonov), L2SLS
(Landweber–Fridman), P2SLS (Principal component), the unfeasible instrumental variable regression (IV), regularized LIML: TLIML (Tikhonov), LLIML (Landweber–Fridman),
PLIML (Principal component), Donald and Newey’s (2001) LIML (DLIML), and finally the LIML with HHN standard errors.
Table 2
Properties of the distribution of the regularization parameters Model 1.

T2SL L2LS P2LS D2LS TLIML LLIML PLIML DLIML

L = 15 Mean 0.437 18.118 8.909 10.021 0.233 32.909 13.053 14.223
sd 0.115 12.273 3.916 3.995 0.085 9.925 2.463 1.460
q1 0.410 11.000 6.000 7.000 0.170 26.000 12.000 14.000
q2 0.500 15.000 9.000 11.000 0.210 31.000 14.000 15.000
q3 0.500 21.000 12.000 14.000 0.270 37.000 15.000 15.000

L = 30 Mean 0.486 11.963 10.431 11.310 0.421 26.584 22.636 25.283
sd 0.060 11.019 7.660 8.634 0.091 9.299 7.160 6.303
q1 0.500 6.000 4.000 4.000 0.360 20.000 18.000 24.000
q2 0.500 9.000 9.000 9.000 0.460 25.000 25.000 28.000
q3 0.500 14.000 15.000 17.000 0.500 31.000 29.000 30.000

L = 50 Mean 0.493 10.127 11.911 13.508 0.492 20.146 26.210 29.362
sd 0.044 13.632 11.605 13.943 0.031 7.537 14.197 16.864
q1 0.500 4.000 4.000 3.000 0.500 15.000 15.000 13.000
q2 0.500 7.000 8.000 8.000 0.500 19.000 26.000 33.000
q3 0.500 11.000 16.000 19.000 0.500 24.000 38.000 46.000

L = 400 Mean 0.500 8.581 9.412 6.580 0.500 5.091 15.633 13.063
sd 0.000 10.174 20.114 15.373 0.000 3.071 26.556 25.520
q1 0.500 1.000 1.000 1.000 0.500 3.000 1.000 1.000
q2 0.500 4.000 2.000 1.000 0.500 5.000 4.000 3.000
q3 0.500 13.000 7.000 4.000 0.500 7.000 14.000 10.000

L = 520 Mean 0.326 156.376 38.712 23.297 0.326 156.270 37.160 30.903
sd 0.197 106.647 107.346 92.740 0.197 106.594 107.341 99.198
q1 0.110 63.000 1.000 1.000 0.110 62.500 1.000 1.000
q2 0.430 127.500 2.000 1.000 0.430 127.500 3.500 3.000
q3 0.500 300.000 10.000 5.000 0.500 300.000 18.000 10.000
Krueger (1991) propose to use the quarters of birth as instruments.
Because of the compulsory age of schooling, the quarter of birth
is correlated with the number of years of education, while being
exogenous. The relative performance of LIML on 2SLS, in presence
of many instruments, has been well documented in the literature
(DN, Anderson et al., 2010, and Hansen et al., 2008). We are going
to compute the regularized version of LIML and compare it to the
regularized 2SLS in order to show the empirical relevance of our
method.
We use the model of Angrist and Krueger (1991):

logw = α + δeducation + β ′

1Y + β ′

2S + ε

where logw = log of weekly wage, education = year of education,
Y = year of birth dummy (9), S = state of birth dummy (50). The
vector of instruments Z = (1, Y , S,Q ,Q ∗ Y ,Q ∗ S) includes 240
variables.

Table 5 reports schooling coefficients generated by different
estimators applied to the Angrist and Krueger data along with
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Table 3
Simulations results of Model 2, n = 500.

T2SL L2LS P2LS D2LS IV TLIML LLIML PLIML DLIML LIML

L = 15 Med.bias 0.000 0.000 0.000 0.004 0.001 −0.000 −0.000 0.000 0.000 −0.000
Med.abs 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.018
Disp 0.068 0.067 0.068 0.066 0.067 0.068 0.068 0.067 0.068 0.068
MSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Cov 0.947 0.947 0.947 0.942 0.952 0.948 0.949 0.948 0.949 0.949

L = 30 Med.bias 0.002 0.002 0.002 0.005 0.001 0.001 0.001 0.001 0.002 0.001
Med.abs 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
Disp 0.067 0.067 0.067 0.068 0.067 0.068 0.068 0.068 0.069 0.069
MSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Cov 0.956 0.955 0.955 0.949 0.958 0.956 0.955 0.955 0.956 0.954

L = 50 Med.bias 0.000 −0.000 0.000 0.004 0.001 −0.001 −0.001 −0.001 0.001 −0.000
Med.abs 0.017 0.017 0.017 0.018 0.017 0.017 0.017 0.017 0.017 0.018
Disp 0.066 0.066 0.066 0.066 0.065 0.065 0.065 0.065 0.065 0.066
MSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Cov 0.947 0.947 0.948 0.949 0.950 0.948 0.949 0.950 0.951 0.945

NB: We report Median Bias (Med.Bias), Median Absolute deviation (Med.abs), the difference between the 0.1 and 0.9 quantiles (Disp) of the distribution of each
estimator, the mean square error (MSE) and the coverage rate (Cov) of a nominal 95% confidence interval. We report results for regularized 2SLS: T2SLS (Tikhonov), L2SLS
(Landweber–Fridman), P2SLS (Principal component), the unfeasible instrumental variable regression (IV), regularized LIML: TLIML (Tikhonov), LLIML (Landweber–Fridman),
PLIML (Principal component), Donald and Newey’s (2001) LIML (DLIML) and finally the LIML with HHN standard errors.
Table 4
Properties of the distribution of the regularization parameters Model 2.

T2SL L2LS P2LS D2LS TLIML LLIML PLIML DLIML

L = 15 Mean 0.303 270.954 3.012 9.440 0.142 287.230 3.012 13.135
sd 0.079 31.983 0.109 1.531 0.103 24.322 0.109 1.708
q1 0.270 248.000 3.000 9.000 0.030 284.500 3.000 12.000
q2 0.320 280.500 3.000 9.000 0.160 300.000 3.000 14.000
q3 0.360 300.000 3.000 10.000 0.230 300.000 3.000 14.000

L = 30 Mean 0.495 175.479 3.009 11.107 0.294 225.436 3.009 22.370
sd 0.037 35.078 0.130 2.261 0.217 62.243 0.130 5.839
q1 0.500 152.000 3.000 10.000 0.040 172.500 3.000 17.000
q2 0.500 173.000 3.000 11.000 0.425 209.000 3.000 21.000
q3 0.500 195.000 3.000 11.000 0.500 300.000 3.000 28.000

L = 50 Mean 0.499 104.679 2.956 9.331 0.321 175.049 2.956 21.934
sd 0.011 24.185 0.276 2.790 0.214 93.755 0.276 9.062
q1 0.500 89.000 3.000 7.000 0.060 99.000 3.000 14.000
q2 0.500 102.000 3.000 10.000 0.500 125.000 3.000 20.000
q3 0.500 117.000 3.000 11.000 0.500 300.000 3.000 28.000
Table 5
Estimates of the returns to education.

OLS 2SLS T2SLS L2SLS P2SLS
0.0683 (0.0003) 0.0816 (0.0106) 0.1237 (0.0482) 0.1295 (0.0309) 0.1000 (0.0411)

α = 0.00001 Nb of iterations 700 Nb of eigenfunctions 81
LIML TLIML LLIML PLIML
0.0918 (0.021) 0.1237 (0.0480) 0.1350 (0.0312) 0.107 (0.0184)

α = 0.00001 Nb of iterations 700 Nb of eigenfunctions 239

NB: Standard errors are in parentheses. For LIML, HHN standard errors are given in parentheses. The concentration
parameter is equal to 208.61.
their standard errors4 in parentheses. Table 5 shows that all
regularized 2SLS and LIML estimators based on the same type
of regularization give close results. The coefficients we obtain
by regularized LIML are slightly larger than those obtained by
regularized 2SLS suggesting that these methods provide an extra
bias correction, as observed in our Monte Carlo simulations. Note
that the bias reduction obtained by regularized LIML compared
to standard LIML comes at the cost of a larger standard error
(in the case of Landweber–Fridman regularization). Among the
regularizations, PC gives estimators which are quite a bit smaller
than T and LF. However, we are suspicious of PC because there is
no factor structure here.

4 Our standard errors are not robust to heteroskedasticity.
6.2. Elasticity of intertemporal substitution

In macroeconomics and finance, the elasticity of intertempo-
ral substitution (EIS) in consumption is a parameter of central
importance. It has important implications for the relative mag-
nitudes of income and substitution effects in the intertemporal
consumption decision of an investor facing time varying expected
returns. Campbell and Viceira (1999) show thatwhen the EIS is less
(greater) than 1, the investor’s optimal consumption–wealth ratio
is increasing (decreasing) in expected returns.

Yogo (2004) analyzes the problem of EIS using the linearized
Euler equation. He explains how weak instruments have been the
source for an empirical puzzle namely that, using conventional
IV methods, the estimated EIS is significantly less than 1 but its
reciprocal is not different from 1. In this subsection, we follow
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Table 6
Concentration parameter µ2

n for the
reduced form equation.

L = 4 L = 18

1/ψ 9.66 33.54
ψ 11.05 68.77

one of the specifications in Yogo (2004) using quarterly data
from 1947.3 to 1998.4 for the United States and compare all the
estimators considered in the present paper. The estimated models
are given by the following equation:

∆ct+1 = τ + ψrf ,t+1 + ξt+1

and the ‘‘reverse regression’’:

rf ,t+1 = µ+
1
ψ
∆ct+1 + ηt+1

whereψ is the EIS,∆ct+1 is the consumption growth at time t +1,
rf ,t+1 is the real return on a risk free asset, τ and µ are constants,
and ξt+1 and ηt+1 are the innovations to consumption growth and
asset return, respectively.

Yogo (2004) uses four instruments: the twice lagged, nominal
interest rate (r), inflation (i), consumption growth (c) and log
dividend–price ratio (p). This set of instruments is denoted by
Z = [r, i, c, p]. Yogo (2004) argues that the source for the empirical
puzzle mentioned earlier is weak instruments. To strengthen the
instruments, we increase the number of instruments from 4 to 18
by including interactions and power functions. The 18 instruments
used in our regression are derived from Z and are given by5
II = [Z, Z .2, Z .3, Z(:, 1) ∗ Z(:, 2), Z(:, 1) ∗ Z(:, 3), Z(:, 1) ∗ Z(:
, 4), Z(:, 2) ∗ Z(:, 3), Z(:, 2) ∗ Z(:, 4), Z(:, 3) ∗ Z(:, 4)]. As a result,
the concentration parameters increase in the following way: (See
Table 6).

According to Hansen et al. (2008), p. 403, the concentration
parameter is a better indication of the potential weak instrument
problem than the F-statistic. They argue on p. 404 that ‘‘the
use of LIML or FULL with the CSE and the asymptotically
normal approximation should be adequate in situations where
the concentration parameter is around 32 or greater’’. Since the
increase of the number of instruments improves efficiency and
regularized 2SLS and LIML correct for the bias due to the many
instruments problem, we expect to obtain reliable point estimates.
Estimation results are reported in Table 7. Interestingly, the
point estimates obtained by T and LF regularized estimators are
very close to each other and are close to those used for macro
calibrations (EIS equal to 0.71 in our estimations and 0.67 in Castro
et al. (2009)). Moreover, the results of the two equations are
consistent with each other since we obtain the same value for ψ
in both equations.6 However, we cannot reject the null hypothesis
H0 : ψ = 1. PC seems to take toomany factors, and did not perform
well, this is possibly due to the absence of factor structure.

7. Conclusion

In this paper,we propose a newestimatorwhich is a regularized
version of LIML estimator.We allow for a finite and infinite number
of moment conditions. We show theoretically that regularized
LIML improves upon regularized 2SLS in terms of smaller leading
terms of the MSE. All the regularization methods involve a tuning
parameter which needs to be selected. We propose a data-driven

5 Z .k = [Zk
ij ], Z(:, k) is the kth column of Z and Z(:, k) ∗ Z(:, l) is a vector of

interactions between columns k and l.
6 Note that LIML is invariant to reparametrization whereas 2SLS is not.
method for selecting this parameter and show that this selection
procedure is optimal. Moreover, we prove that the regularized
LIML estimators have finite moments. Our simulations show that
the leading regularized estimators (LF and T of LIML) are nearly
median unbiased and dominate regularized 2SLS and standard
LIML in terms of MSE.

In this paper, we restrict our attention to many strong in-
struments. In a companion paper, Carrasco and Tchuente (forth-
coming) investigate the properties of regularized 2SLS and LIML
estimators in the case of many weak instruments as in Chao and
Swanson (2005) and Hansen et al. (2008).
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Appendix. Proofs

Proof of Proposition 1. To prove this proposition, we first need
the following lemmas.

Lemma 1 (Lemma A.4 of DN). If Â P
→ A and B̂

P
→ B. A is positive semi

definite and B is positive definite, τ0 = argminτ1=1
τ ′Aτ
τ ′Bτ exists and is

unique (with τ = (τ1, τ
′

2)
′ and τ1 ∈ R) then

τ̂ = argmin
τ1=1

τ ′Âτ

τ ′B̂τ
→ τ0.

Lemma 2. Under the assumptions of Proposition 1, we have

ε′Pαε = Op(1/α).

Proof of Lemma 2. Let Ω be the n × n diagonal matrix with ith
diagonal element σ 2

i and λmax (Ω) be the largest eigenvalue of Ω
(which is equal to the largest σ 2

i )

E

ε′Pαε|X


= tr


PαE


εε′

|X


= tr (PαΩ)
≤ λmax (Ω) tr (Pα)

≤ C


j

qj.

Hence by Markov’s inequality, ε′Pαε = Op


j qj


= Op (1/α).
This completes the proof of Lemma 2.

Pα is a symmetric idempotentmatrix for SC but not idempotent
for T and LF.

We want to show that δ̂ → δ as n and nα
1
2 go to infinity.

We know that

δ̂ = argmin
δ

(y − Wδ)′Pα(y − Wδ)
(y − Wδ)′(y − Wδ)

= argmin
δ

(1,−δ′)A(1,−δ′)′

(1,−δ′)B(1,−δ′)′

where Â = W̄ ′PαW̄/n, B̂ =
W̄ ′W̄

n and W̄ = [y,W ] = WD0 + εe,
where D0 = [δ0, I], δ0 is the true value of the parameter and e is
the first unit vector.

In fact

Â = W̄ ′PαW̄/n

=
D′

0W
′PαWD0

n
+

D′

0W
′Pαεe
n

+
e′ε′PαWD0

n
+

e′ε′Pαεe
n

.
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Table 7
Estimates of the EIS.

2SLS (4 instr) 2SLS (18 instr) T2SLS L2SLS P2SLS
ψ 0.0597 0.1884 0.71041 0.71063 0.1696

(0.0876) (0.0748) (0.423) (0.423) (0.084)
α = 0.01 Nb of iterations 1000 Nb of PC 11

1/ψ 0.6833 0.8241 1.406 1.407 0.7890
(0.4825) (0.263) (0.839) (0.839) (0.357)

α = 0.01 Nb of iterations 1000 Nb of PC 17
LIML (4 instr) LIML (18 instr) TLIML LLIML PLIML

ψ 0.0293 0.2225 0.71041 0.71063 0.1509
(0.0994) (0.156) (0.424) (0.423) (0.111)

α = 0.01 Nb of iterations 1000 Nb of PC 8
1/ψ 34.1128 4.4952 1.407 1.4072 3.8478

(112.7122) (4.421) (0.839) (0.839) (3.138)
α = 0.01 Nb of iterations 1000 Nb of PC 17

NB: For LIML with 18 instruments, HHN standard errors are given in parentheses. For the regularized
estimators, we provide the heteroskedasticity robust standard errors in parentheses.
Let us define gn =
1
n

n
i=1 Z(.; xi)Wi, g = EZ(.; xi)Wi and


g, g ′


K is

a p×pmatrixwith (a, b) element equal to

K−

1
2 E(Z(., xi)Wia), K−

1
2

E(Z(., xi)Wib)

where Wia is the ath element of theWi vector.

D′

0W
′PαWD0

n
= D′

0


(Kαn )

−
1
2 gn, (Kαn )

−
1
2 g ′

n


D0

= D′

0


Fg, Fg ′


D0 + op(1)

P
→ D′

0


Fg, Fg ′


D0

as n and nα
1
2 go to infinity and α → 0, see the proof of Proposition

1 of Carrasco (2012).
We also have by Lemma 3 of Carrasco (2012):

D′

0W
′Pαεe
n

= D′

0


(Kαn )

−
1
2 gn, (Kαn )

−
1
2
1
n

n
i=1

Z(.; xi)εi


e = op(1),

e′ε′PαWD0

n
= e′


(Kαn )

−
1
2
1
n

n
i=1

Z(.; xi)εi, (Kαn )
−

1
2 g ′

n


D0 = op(1),

e′ε′Pαεe
n

= e′


(Kαn )

−
1
2
1
n

n
i=1

Z(.; xi)εi, (Kαn )
−

1
2
1
n

n
i=1

Z(.; xi)ε′

i


e

= op(1).

Wecan then conclude that Â
P

→ A = D′

0


Fg, Fg ′


D0 asn andnα

1
2

go to infinity and α → 0 and

B̂
P

→ B = E(W̄iW̄ ′

i )

by the law of large numbers with W̄i = [yi W ′

i ]
′.

The LIML estimator is given by

δ̂ = argmin
δ

(1,−δ′)A(1,−δ′)′

(1,−δ′)B(1,−δ′)′
,

so that it suffices to verify the hypotheses of Lemma 1.
For τ = (1,−δ′)

τ ′Aτ = τ ′D′

0


Fg, Fg ′


D0τ

= (δ0 − δ)

Fg, Fg ′


(δ0 − δ)′.

Because

Fg, Fg ′


is positive definite, we have τ ′Aτ ≥ 0, with

equality if and only if δ = δ0. Also, for any τ = (τ1, τ
′

2)
′

≠ 0
partitioned conformably with (1, δ′), we have

τ ′Bτ = E[(τ1yi + W ′

i τ2)
2
]

= E[(τ1εi + (fi + ui)
′(τ1δ0 + τ2))

2
]

= E[(τ1εi + u′

i(τ1δ0 + τ2))
2
] + (τ1δ0 + τ2)

′H(τ1δ0 + τ2).
Then by H = E

fif ′

i


nonsingular τ ′Bτ > 0 for any τ with τ1δ0 +

τ2 ≠ 0. If τ1δ0 + τ2 = 0 then τ1 ≠ 0 and hence τ ′Bτ = τ 21 σ
2 > 0.

Therefore B is positive definite. It follows that δ = δ0 is the unique
minimum of τ

′Aτ
τ ′Bτ .

Now by Lemma 1, we can conclude that δ̂
P

→ δ0 as n and nα
1
2 go

to infinity.

Proof of asymptotic normality. Let A(δ) = (y − Wδ)′Pα(y −

Wδ)/n, B(δ) = (y − Wδ)′(y − Wδ)/n andΛ(δ) =
A(δ)
B(δ) . We know

that the LIML is δ̂ = argminΛ(δ).
The gradient and Hessian are given by

Λδ(δ) = B(δ)−1
[Aδ(δ)−Λ(δ)Bδ(δ)],

Λδδ(δ) = B(δ)−1
[Aδδ(δ)−Λ(δ)Bδδ(δ)]

− B(δ)−1
[Bδ(δ)Λ′

δ(δ)−Λδ(δ)B′

δ(δ)].

Then by a standard mean-value expansion of the first-order
conditionsΛδ(δ̂) = 0, we have
√
n(δ̂ − δ0) = −Λ−1

δδ (δ̃)
√
nΛδ(δ0)

where δ̃ is the mean-value. Because δ̂ is consistent, δ̃
P

→ δ0.
It then follows that B(δ̃)

P
→ σ 2

ε , Bδ(δ̃)
P

→ −2σuε,Λ(δ̃)
p

→ 0,

Λδ(δ̃)
P

→ 0 where σuε = E(uiεi) and Bδδ(δ̃) = 2W ′W/n
P

→ 2E(Wi

W ′

i ), Aδδ(δ̃) = 2W ′PαW/n
P

→ 2

Fg, Fg ′


.

So that σ̃ 2Λδδ(δ̃)/2
P

→

Fg, Fg ′


with σ̃ 2

= ε′ε/n.
By Lemma 2, we have ε′Pαε/

√
n = Op(1/(α

√
n)) = op(1).

−
√
nσ̃ 2Λδ(δ0)/2 =

W ′Pαε
√
n

−
ε′Pαε
√
n

W ′ε

ε′ε

=
W ′Pαε

√
n

+ op(1)
d

→ N

0,

Fg,


FKF∗


Fg ′

.

To obtain the asymptotic normality, note that

W ′Pαε
√
n

=


Kαn
−1 gn,

n
i=1

Zi (., xi) εi
√
n



=


K−1g,

n
i=1

Zi (., xi) εi
√
n



+


Kαn
−1 gn − K−1g,

n
i=1

Zi (., xi) εi
√
n


. (7)
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Moreover, {Zi (., xi) εi} is iid with E ∥Zi (., xi) εi∥2 < ∞ (because
E

ε2i |xi


is bounded and K is nuclear). It follows from vander Vaart

and Wellner (1996), p. 50 that
n

i=1 Z(.; xi)εi/
√
n converges in

L2 (π) to a mean zero Gaussian process with covariance operator
K̃ . Hence,


K−1g,

n
i=1

Zi (., xi) εi
√
n


d

→N

0,

K−1g,KK−1g


.

As g belongs to the range of K , Lemma 3 of Carrasco (2012) implies
that

Kαn −1 gn − K−1g
 P

→ 0 and hence the second term of the
r.h.s. of (7) is op (1). This concludes the proof of Proposition 1.

Proof of Proposition 2.

Lemma 3. Let v = u− εφ′. Under the assumptions of Proposition 2,
we have

v′Pαε = Op


1

√
α


.

Proof of Lemma 3. Using the spectral decomposition of Pα , we
have v′Pαε =

1
n


j qj

v′ψj

 
ε′ψj


(v′Pαε)2 =

1
n2


j,l

qjql(v′ψj)(ε
′ψj)(v

′ψl)(ε
′ψl)

=
1
n2


j,l

qjql


i

viψji


b

vbψlb



×


c

εcψjc


d

εdψld


.

Using the fact that E (εi) = E (vi) = E (εivi) = 0 and that the
eigenvectors are orthonormal, i.e.


i ψliψji/n = 1 if l = j and 0

otherwise, we have

E

(v′Pαε)2


=

1
n2


j,l

qjql


i

E

v2i ε

2
i


ψ2

jiψ
2
li

+


j

q2j E

v2i

E

ε2i



i
ψ2

ji

n


2

. (8)

Asψ2
li is summable, it is bounded, hence


i E

v2i ε

2
i


ψ2

jiψ
2
li /n < C

and the first term on the r.h.s. of (8) is negligible with respect to
the second. By Markov’s inequality,

v′Pαε = Op


j

q2j

1/2
 = Op


1/

√
α

.

This completes the proof of Lemma 3.

The proof of the consistency is the same as that of Proposition 1.
Now


Fg, Fg ′


= H = E


fif ′

i


because by assumption ga =

E(Z(., xi)fia) belongs to the range of K . Let L2(Z) be the closure of
the space spanned by {Z(x, τ ), τ ∈ I} and g1 be an element of
this space. If fi ∈ L2(Z) we can compute the inner product and
show that


ga, gb


K = E(fiafib) by applying Theorem 6.4 of Carrasco

et al. (2007). For the asymptotic normality, the beginning of the
proof is the same. Let φ̂ =

W ′ε
ε′ε

, φ =
σuε
σ 2
ε

and v = u − εφ′. We

have v′Pαε/
√
n = Op(1/

√
nα) = op(1) by Lemma 3. Moreover,

φ̂−φ = Op(1/
√
n) by the Central limit theorem and delta method

so that (φ̂ − φ)ε′Pαε/
√
n = Op(1/nα) = op(1) by Lemma 2.
Furthermore, f ′ (I − Pα) ε/
√
n = Op(∆

2
α) = op(1) by Lemma

5(ii) of Carrasco (2012) with∆α = tr(f ′ (I − Pα)2 f /n).

−
√
nσ 2

εΛδ(δ0)/2 =


W ′Pαε − ε′Pαε

W ′ε

ε′ε


/
√
n

= (f ′ε − f ′ (I − Pα) ε + v′Pαε

− (φ̂ − φ)ε′Pαε)/
√
n

= f ′ε/
√
n + op(1)

d
→ N (0, σ 2

ε H).

The conclusion follows from Slutsky’s theorem. Note that because
v′Pαε/

√
n = Op(1/

√
nα), we get a faster rate for α in the

homoskedastic case than in the heteroskedastic case. The proof in
the heteroskedastic case relies on ε′Pαε/

√
n = Op(1/α

√
n).

Proof of Proposition 3. We want to prove that the regularized
LIML estimators have finitemoments. These estimators are defined
as follows:7

δ̂ = (W ′ (Pα − να In)W )−1W ′ (Pα − να In) y

where να = minδ
(y−Wδ)′Pα(y−Wδ)
(y−Wδ)′(y−Wδ) and Pα = T (Kαn )

−1T ∗.
The following lemma will be useful in the remaining of the

proof.

Lemma 4. Under the assumptions of Proposition 3, we have

να = Op


1
nα


.

Proof of Lemma 4.

να =
(y − W δ̂)′Pα(y − W δ̂)

(y − W δ̂)′(y − W δ̂)
.

Using y−W δ̂ = ε−W

δ̂ − δ0


and the consistency of δ̂, we have

(y − W δ̂)′(y − W δ̂)
n

=
ε′ε

n
+ op (1) = Op (1) .

Moreover, by Lemma 2, ε′Pαε = Op (1/α). It follows that

(y − W δ̂)′Pα(y − W δ̂) = ε′Pαε +


δ̂ − δ0

′

W ′PαW

δ̂ − δ0


+ 2


δ̂ − δ0

′

W ′Pαε

= ε′Pαε + Op


1
n


= Op (1/α)

where the second equality follows from the proof of Proposition 1
in Carrasco (2012). The result of Lemma 4 follows.

Let us define Ĥ = W ′ (Pα − να In)W and N̂ = W ′ (Pα − να In) y
thus

δ̂ = Ĥ−1N̂.

If we denoteW v
= (W1v,W2v, . . . ,Wnv)

′, Ĥ is a p× pmatrix with
a typical element

Ĥvl =


j

(qj − να)

W v, ψ̂j

 
W l, ψ̂j



7 Let g and h be two p vectors of functions of L2(π). By a slight abuse of notation,
g, h′


denotes the matrix with elements


ga, hb


, a, b = 1, . . . , p.
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and N̂ is a p × 1 vector with a typical element

Nl =


j

(qj − να)

y, ψ̂j

 
W l, ψ̂j


.

By the Cauchy–Schwarz inequality and because |να| ≤ 1, |qj| ≤ 1,
we can prove that |Ĥvl| ≤ 2∥W l

∥∥W v
∥ and |Nl| ≤ 2∥y∥∥W l

∥.
Under our assumptions, all the moments (conditional on X) of

W and y are finite, we can conclude that all elements of Ĥ and N̂
have finite moments.

The ith element of δ̂ is given by:

δ̂i =

p
j=1

|Ĥ|
−1cof (Ĥij)Nj

where cof (Ĥij) is the signed cofactor of Ĥij, Nj is the jth element of
N̂ and |.| denotes the determinant.

|δ̂i|
r
≤ |Ĥ|

−r

 p
j=1

cof (Ĥij)Nj


r

.

Let α1 > α2 be two regularization parameters. It turns out that
Pα1 − Pα2 is semi definite negative and hence 0 ≤ να1 ≤ να2 . This
will be used in the proof.8

We want to prove that |Ĥ| ≥ |S| where S is a positive definite
p × p matrix to be specified later on. The first step consists in
showing that Pα − ν α

2
In is positive definite. Let us consider x ∈ Rn.

We have

x′


Pα − ν α

2
In

x =


j

(qj − ν α
2
)

x, ψj

′ x, ψj


=


j

(qj − ν α
2
) ∥


x, ψj


∥
2

=


j,qj>ν α

2

(qj − ν α
2
) ∥


x, ψj


∥
2 (1)

+


j,qj≤ν α

2

(qj − ν α
2
) ∥


x, ψj


∥
2 . (2)

For a givenα, qj is a decreasing function of j becauseλj is decreasing
in j. Hence, there exists j∗α such that qj ≥ ν α

2
for j ≤ j∗α and

qj⟨ν α2 for j⟩j∗α and

x′


Pα − ν α

2
In

x =


j≤j∗α

(qj − ν α
2
) ∥


x, ψj


∥
2 (1)

+


j>j∗α

(qj − ν α
2
) ∥


x, ψj


∥
2 . (2)

The term (1) is positive and the term (2) is negative. As n increases,
α decreases and qj increases for any given j. On the other hand,
when n increases and nα → ∞, ν α

2
decreases by Lemma 3. It

follows that j∗α increases when n goes to infinity.
Consequently, the term (2) goes to zero as n goes to infinity.

Indeed, when j∗α goes to infinity, we have

j>j∗α,

(qj − ν α
2
) ∥


x, ψj


∥
2

 ≤


j>j∗α

∥

x, ψj


∥
2

= op(1).

8 Note that if the number of instruments is smaller than n we can compare ν
obtained with Pα replaced by P , the projection matrix on the instruments, and να .
It turns out that Pα − P is definite negative for fixed α and hence 0 ≤ να ≤ ν as
in Fuller (1977).
We can conclude that for n sufficiently large, j∗α is sufficiently
large for (2) to be smaller in absolute value than (1) and hence
x′


Pα − ν α

2
In

x > 0.

Denote S = (ν α
2

− να)W ′W we have

Ĥ = W ′ (Pα − να In)W

= W ′


Pα − ν α

2
In

W + (ν α

2
− να)W ′W

= W ′


Pα − ν α

2
In

W + S.

Hence,

|Ĥ| = |W ′


Pα − ν α

2
In

W + S|

= |S|
Ip + S−1/2W ′


Pα − ν α

2
In

WS−1/2


≥ |S|.

For n large but finite, ν α
2

− να > 0 and |S| > 0. As in Fuller
(1977) using James (1954), we can show that the expectation of the
inverse 2rth power of the determinant of S exists and is bounded
for n greater than some number n(r), since S is expressible as a
product of multivariate normal r.v. Thus, we can apply Lemma B
of Fuller (1977) and conclude that the regularized LIML has finite
rth moments for n sufficiently large but finite. At the limit when n
is infinite, the moments exist by the asymptotic normality of the
estimators established in Proposition 2.

Proof of Proposition 4. To prove this proposition, we need some
preliminary result. To simplify, we omit the hats on λj and φj and
we denote Pα and q(α, λj) by P and qj in the sequel.

Lemma 5. Let Λ̃ = ε′Pε/(nσ 2
ε ) and Λ̂ = Λ(δ̂) with Λ(δ) =

(y−Wδ)′P(y−Wδ)
(y−Wδ)′(y−Wδ) . If the assumptions of Proposition 4 are satisfied, then

Λ̂ = Λ̃− (σ̂ 2
ε /σ

2
ε − 1)Λ̃− ε′f (f ′f )−1f ′ε/2nσ 2

ε + R̂Λ
= Λ̃+ op(1/nα),

√
nR̂Λ = op(ρα,n),

where ρα,n = trace(S(α)).

Proof of Lemma 5. It can be shown similarly to the calculations in
Proposition 1 that Λ(δ) is three times continuously differentiable
with derivatives that are bounded in probability uniformly in
a neighborhood of δ0. For any δ̃ between δ0 and δ̂, Λδδ(δ̃) =

Λδδ(δ0)+ Op(1/
√
n). It implies that

δ̂ = δ0 + [Λδδ(δ0)]
−1Λδ(δ0)+ Op(1/n).

Then expandingΛ(δ̂) around δ0 gives

Λ̂ = Λ(δ0)− (δ̂ − δ0)
′Λδδ(δ0)(δ̂ − δ0)/2 + Op(1/n3/2)

= Λ(δ0)−Λδ(δ0)
′
[Λδδ(δ0)]

−1Λδ(δ0)/2 + Op(1/n3/2).

As in proof of Proposition 1 and in Lemma A.7 of DN

−
√
nσ̂ 2

εΛδ(δ0)/2 = h + Op(∆
1/2
α +

√
1/nα) with h = f ′ε/n.

Moreover,

σ̂ 2
εΛδδ(δ0)/2 = H̄ + Op(∆

1/2
α +


1/nα).

By combining these two equalities, we obtain

Λδ(δ0)
′
[Λδδ(δ0)]

−1Λδ(δ0)

= h′H̄−1h/(nσ 2
ε )+ Op(∆

1/2
α /n +


1/(n3α)).
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Note also that

Λ(δ0) = (σ 2
ε /σ̂

2
ε )Λ̃ = Λ̃− (σ̂ 2

ε /σ
2
ε − 1)Λ̃

+ Λ̃(σ̂ 2
ε − σ 2

ε )
2/(σ̂ 2

ε σ
2
ε )

= Λ̃− (σ̂ 2
ε /σ

2
ε − 1)Λ̃+ Op(


1/n3α).

ραn = tr(S(α))

= tr

σ 2
ε H̄

−1

Σv

tr(P2)

n
+

f ′(I − P)2f
n


H̄−1


= tr


σ 2
ε H̄

−1

Σv

tr(P2)

n


H̄−1


+ tr


σ 2
ε H̄

−1

f ′(I − P)2f

n


H̄−1


= Op(1/nα)+∆α.

We then have that
√
n

1/(n3α) = o(ραn) and

√
n∆1/2

α /n =

o(ραn). Using this and combining equations give

Λ̂ = Λ̃− (σ̂ 2
ε /σ

2
ε − 1)Λ̃− ε′f (f ′f )−1f ′ε/2nσ 2

ε + R̂Λ

and
√
nR̂Λ = op(ρα,n).

By using Λ̃ = Op(1/nα), it is easy to prove that Λ̂ = Λ̃+op(1/nα).

Lemma 6. If the assumptions of Proposition 4 are satisfied, then

(i) u′Pu − Λ̃Σu = op(1/nα),
(ii) E(hΛ̃ε′v/

√
n|X) = (tr(P)/n)


i fiE(ε

2
i v

′

i |xi)/n+ O(1/(n2α)),
(iii) E(hh′H̄−1h/

√
n|X) = O(1/n).

Proof of Lemma 6. For the proof of (i), note that E(Λ̃|X) =

tr(PE(ε′ε))/nσ 2
ε = tr(P)/n. Similarly, we have E(u′Pu|X) =

tr(P)Σu and by Lemma 5(iv) of Carrasco (2012) using ε in place
of uwe have

E[(Λ̃− tr(P)/n)2|X]

= [σ 4
ε tr(P)

2
+ o(tr(P)2)]/(n2σ 4

ε )− (tr(P)/n)2

= o((tr(P)/n)2).

Thus, (Λ̃ − tr(P)/n)Σu = op(tr(P)/n) = op(1/nα) by Markov’s
inequality. u′Pu −

tr(P)
n Σu = op(1/nα) such that u′Pu − Λ̃Σu =

op(1/(nα)).
To show (ii) we can notice that

E(hΛ̃ε′v/
√
n|X) = E(hε′Pεε′v/(nσ 2

ε

√
n)|X)

=


i,j,k,l

E((fiεiεjPjkεkεlv′2
l σ

2
ε )|X)

=


i

fiPiiE(ε4i v
′

i |xi)/n
2σ 2
ε

+ 2

i≠j

fiPijE(ε2j v
′

j |xj)/n
2

+


i≠j

fiPjjE(ε2i vi|xi)/n
2

= O(1/n)+ (tr(P)/n)


i

fiE(ε2i v
′

i |xi)/n.

This is true because E(ε4i v
′

i |xi) and E(ε2i v
′

i |xi) are bounded
by Assumption 2 hence f ′Pµ/n is bounded forµi = E(ε4i v

′

i |xi) and
µi = E(ε2i v

′

i |xi).
For (iii)

E(hh′H̄−1h/
√
n|X) =


i,j,k

E(fiεiεjf ′

j H̄
−1fkεk|X)/n2
=


i

E(ε3i |xi)fif
′

i H̄
−1fi/n2

= O(1/n).

Now we turn to the proof of Proposition 4.

Proof of Proposition 4. Our proof strategy will be very close to
those of Carrasco (2012) and DN. To obtain the LIML, we solve the
following first order condition

W ′P(y − W δ̂)− Λ̂W ′(y − W δ̂) = 0

with Λ̂ = Λ(δ̂).

Let us consider
√
n(δ̂ − δ) = Ĥ−1ĥ with Ĥ = W ′PW/n −

Λ̂W ′W/n and

ĥ = W ′Pε/
√
n − Λ̂W ′ε/

√
n.

As in Carrasco (2012), we are going to apply Lemma A.1 of DN.9

ĥ = h +
5

j=1 T
h
j + Zh with h = f ′ε/

√
n,

T h
1 = −f ′(I − P)ε/

√
n = Op(∆

1/2
α ),

T h
2 = v′Pε/

√
n = Op(

√
1/nα), T h

3 = −Λ̃h′
= O(1/nα), T h

4 =

−Λ̃v′ε/
√
n = Op(1/nα),

T h
5 = h′H̄−1hσuε/2

√
nσ 2

ε = Op(1/
√
n),

Zh
= −R̂ΛW ′ε/

√
n − (Λ̂ − Λ̃ − R̂Λ)

√
n(W ′ε/n − σ ′

uε) where R̂Λ
is defined in Lemma 4.

By using the central limit theorem on
√
n(W ′ε/n − σ ′

uε) and
Lemma 4, Zh

= O(ρnα). The results on the order of T h
j hold by

Lemma 5 of Carrasco (2012).
We also have

Ĥ = H̄ +

3
j=1

TH
j + ZH ,

TH
1 = −f ′(I − P)f /n = Op(∆α),

TH
2 = (u′f + f ′u)/n = Op(1/

√
n),

TH
3 = −Λ̃H̄ = Op(1/nα),

ZH
= u′Pu/n − Λ̃Σu − Λ̂W ′W/n + Λ̃(H̄ +Σu)

− u′(I − P)f /n − f ′(I − P)u/n.

By Lemma 5, u′Pu/n − Λ̃Σv = op(1/nα). Lemma 5(ii)
of Carrasco (2012) implies u′(I − P)f /n = O(∆1/2

α /
√
n) = op(ρnα).

By the central limit theorem, W ′W/n = H̄ + Σu + Op(1/
√
n).

Moreover,

Λ̂W ′W/n − Λ̃(H̄ +Σu)

= (Λ̂− Λ̃)W ′W/n + Λ̃(W ′W/n − H̄ −Σu)

= op(1/nα)+ Op(1/nα)Op(1/
√
n) = op(ρnα)

thus, ZH
= o(ρnα).

We apply Lemma A.1 of DNwith T h
=
5

j=1 T
h
j , T

H
=
3

j=1 T
H
j ,

ZA
=


5

j=3

T h
j


5

j=3

T h
j

′

+


5

j=3

T h
j


(T h

1 + T h
2 )

′

+ (T h
1 + T h

1 )


5

j=3

T h
j

′

,

9 The expression of T h
5 , Z

h and ZH below corrects some sign errors in DN.
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and

Â(α) = hh′
+

5
j=1

hT h′

j +

5
j=1

T h
j h

′
+ (T h

1 + T h
2 )(T

h
1 + T h

2 )
′

− hh′H̄−1
3

j=1

TH ′

j −

3
j=1

TH
j H̄−1hh′.

Note that hT h′

3 − hh′H̄−1TH ′

3 = 0. Also we have E(hh′H̄−1(TH
1 +

TH
2 )|X) = −σ 2

ε ef (α) + O(1/n), E(T h
1 h

′) = E(hT h′

1 ) = −σ 2
ε ef (α),

E(T h
1 T

h′

1 ) = σ 2
ε e2f (α)where ef (α) =

f ′(I−P)f
n and e2f (α) =

f ′(I−P)2f
n .

By Lemma 3(ii) E(hT h′

4 |X) =
tr(P)
n


i fiE(ε

2
i v

′

i |xi)/n + O


1
n2α


.

By Lemma 5(iv) of Carrasco (2012), with v in place of u and
noting that σvε = 0, we have

E(T h
2 T

h′

2 |X) = σ 2
εΣv

tr(P2)

n
,

E(hT h′

2 |X) =


i

PiifiE(ε2i v
′

i |xi)/n.

By Lemma 5(iii), E(hT h′

5 ) = Op(1/n).
For ξ̂ =


i PiifiE(ε

2
i v

′

i |xi)/n −
tr(P)
n


i fiE(ε

2
i v

′

i |xi)/n −
i Pii(1 − Pii)fiE(ε2i v

′

i |xi)/n, Â(α) satisfies

E(Â(α)|X) = σ 2
ε H̄ + σ 2

εΣv
tr(P2)

n
+ σ 2

ε e2f + ξ̂ + ξ̂ ′
+ O(1/n).

We can also show that ∥T h
1 ∥∥T h

j ∥ = op(ρnα), ∥T h
2 ∥∥TH

j ∥ = op(ρnα)
for each j and ∥T h

k ∥∥TH
j ∥ = op(ρnα) for each j and k > 2.

Furthermore ∥TH
j ∥

2
= op(ρnα) for each j. It follows that ZA

=

op(ρnα). Therefore, all conditions of Lemma A.1 of DN are satisfied
and the result follows by observing that E(ε2i v

′

i |xi) = 0. This ends
the proof of Proposition 4.

To prove Proposition 5, we need to establish the following
result.

Lemma 7 (Lemma A.9 of DN). If supα∈Mn(|Ŝγ (α) − Sγ (α)|/Sγ (α))
P

→ 0, then Sγ (α̂)/ infα∈Mn Sγ (α)
P

→ 1 as n and nα → ∞.

Proof of Lemma 7. We have that infα∈Mn Sγ (α) = Sγ (α∗) for
some α∗ inMn by the finiteness of the index set for 1/α for SC and
LF and by the compactness of the index set for T. Then, the proof of
Lemma 7 follows from that of Lemma A.9 of DN.

Proof of Proposition 5. We proceed by verifying the assumption
of Lemma 7.

Let R(α) =
f ′γ (I−P)2fγ

n + σ 2
uγ

tr(P2)
n be the risk approximated by

R̂m(α), R̂cv(α), or R̂lcv(α), and Sγ (α) = σ 2
ε


f ′γ (I−P)2fγ

n + σ 2
vγ

tr(P2)
n


.

For notational convenience, we henceforth drop the γ subscript on
S and R. ForMallows Cp, generalized cross-validation and leave one
out cross-validation criteria, we have to prove that

sup
α∈Mn


|R̂(α)− R(α)|/R(α)


→ 0 (9)

in probability as n and nα → ∞.

To establish this result, we need to verify the assumptions of
Li’s (1986, 1987) theorems.We treat separately the regularizations
with a discrete index set and that with a continuous index set.

Discrete index set:
SC and LF have a discrete index set in terms of 1/α.
We recall the assumptions of Li (1987) (A.1) to (A.3’) form = 2.
(A.1) limn→∞ supα∈Mn λ(P) < ∞ where λ(P) is the largest
eigenvalue of P;

(A.2) E((uie)8) < ∞;

(A.3’) infα∈Mn nR(α) → ∞.
(A.1) is satisfied because for every α ∈ Mn, all eigenvalues {qj}

of P are less than or equal to 1.
(A.2) holds by our Assumption 4(i).
For (A.3’), note that nR(α) = f ′

γ (I − P)2 fγ + σ 2
uγ tr(P

2) =

Op

nαβ +

1
α


.

Minimizing w.r. to α gives

α =


1
nβ

 1
1+β

.

Hence, infα∈Mn nR(α) ≈ nαβ → ∞, therefore the condition (A.3’)
is satisfied for SC and LF (and T also).

Note that Theorem 2.1 of Li (1987) uses assumption (A.3)
instead of (A.3’). However, Corollary 2.1 of Li (1987) justifies using
(A.3’) when P is idempotent which is the case for SC. For LF, P is not
idempotent, however the proof provided by Li (1987) still applies.
Given tr(P2) = Op

 1
α


for LF, we can argue that for n large enough,

there exists a constant C such that

tr(P2) ≥
C
n
,

hence Eq. (2.6) of Li (1987) holds and assumption (A.3) can be
replacedby (A.3’). The justification for replacingσ 2

uγ ε ,σ
2
uγ andσ

2
ε by

their estimates in the criteria is the same as in the proof of Corollary
2.2 in Li (1987).

For the generalized cross-validation, we need to verify the
assumptions of Li’s (1987) Theorem 3.2 that are recalled below.

(A.4) infα∈Mn n
−1
fγ − PWγ

 → 0;
(A5) For any sequence {αn ∈ Mn} such that

1
n
tr(P2) → 0,

we have

n−1tr(P)

2
/(n−1tr(P2)) → 0;

(A.6) supα∈Mn n
−1tr(P) ≤ γ1 for some 0 < γ1 < 1;

(A.7) supα∈Mn


n−1tr(P)

2
/(n−1tr(P2)) ≤ γ2, for some 0 <

γ2 < 1.
Assumption (A.4) holds for SC and LF from R(α) = En−1fγ − PWγ

 → 0 as n and nα go to infinity.
Note that tr (P) = O


α−1


and tr


P2


= O

α−1


. So

that n−1tr(P2) → 0 if and only if nα → ∞. Moreover
1
n (tr(P))

2/tr(P2) = O(1/nα) → 0 as nα → ∞. This proves As-
sumption (A.5) for SC and LF.

Now we turn our attention to Assumptions (A.6) and (A.7). By
Lemma 4 of Carrasco (2012), we know that tr(P) ≤ C1/α and
tr(P2) ≤ C2/α. To establish Assumptions (A.6) and (A.7), we re-
strict the set Mn to the set Mn =


α : α > C/nwith C >

max(C1, C2
1/C2)


. This is not very restrictive since α has to satisfy

nα → ∞. It follows that

sup
α∈Mn

tr(P)/n = sup
α>C/n

tr(P)/n ≤
C1

C
< 1,

sup
α∈Mn

1
n
(tr(P))2/tr(P2) = sup

α>C/n

1
n
(tr(P))2/tr(P2) ≤

C2
1

CC2
< 1.

Thus, Assumptions (A.6) and (A.7) hold.
In the case of leave-one-out cross-validation criterion, we need

to verify the assumptions of Theorem 5.1 of Li (1987). Assump-
tions (A.1) to (A.4) still hold as before. Assumptions (A.8), (A.9), and
(A.10) hold by Assumption 4(iii) to (v) of this paper, respectively.
This ends the proof of (9) for SC and LF.
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Continuous index set
The T regularization is a case where the index set is continu-

ous. We apply Li’s (1986) results on the optimality of Mallows Cp
in the ridge regression.We need to check Assumption (A.1) of The-
orem1 in Li (1986). (A.1) infα∈Mn nR(α) → ∞holds using the same
proof as for SC and LF. It follows that (9) holds for T under Assump-
tion 4(i’).

We have proved that (9) holds for the various regularizations.
We proceed to check the condition of Lemma 7. First note that,
given σ 2

ε ≠ 0, R(α) ≤ CSγ (α)/σ 2
ε . To see this, replace R(α) and

Sγ (α) by their expressions in function of
f ′γ (I−P)2fγ

n and use the fact
that σ 2

uγ > σ 2
vγ

and take C = σ 2
uγ /σ

2
vγ
. Now we have

|Ŝγ (α)− Sγ (α)|

= σ 2
ε



R̂(α)−

σ̂ 2
uγ ε

σ̂ 2
ε

tr(P2)

n


−


σ 2
vγ

tr(P2)

n
+

f ′
γ (I − P)2 fγ

n


= σ 2

ε

R̂(α)−
f ′
γ (I − P)2 fγ

n
−


σ 2
vγ

+

σ̂ 2
uγ ε

σ̂ 2
ε


tr(P2)

n


= σ 2

ε

R̂(α)− R(α)+ σ 2
uγ

tr(P2)

n
−


σ 2
vγ

+

σ̂ 2
uγ ε

σ̂ 2
ε


tr(P2)

n


≤ σ 2

ε

R̂(α)− R(α)
+ σ 2

ε



σ̂ 2
uγ ε

σ̂ 2
ε

−

σ 2
uγ ε

σ 2
ε


tr(P2)

n

 .
Using Sγ (α) ≥ σ 2

ε σ
2
vγ

tr(P2)
n and R(α) ≤ CSγ (α)/σ 2

ε , we have

|Ŝγ (α)− Sγ (α)|
Sγ (α)

≤ C
|R̂(α)− R(α)|

R(α)
+

 σ̂ 2
uγ ε

σ̂ 2
ε

−
σ 2
uγ ε

σ 2
ε


σ 2
vγ

.

It follows from (9) and Assumption 4(ii) that supα∈Mn |Ŝγ (α) −

Sγ (α)|/Sγ (α) → 0. The optimality of the selection criteria follows
from Lemma 7. This ends the proof of Proposition 5.
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