
Zabet, Nicolae Radu and Chu, Dominique (2010) Computational limits to 
binary genes.  Journal of the Royal Society, Interface, 7 . pp. 182-196. ISSN 
1742-5689. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/30663/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1098/rsif.2009.0474

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/30663/
https://doi.org/10.1098/rsif.2009.0474
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


doi: 10.1098/rsif.2009.0474
, 945-954 first published online 9 December 20097 2010 J. R. Soc. Interface

 
Nicolae Radu Zabet and Dominique F. Chu
 
Computational limits to binary genes
 
 

Supplementary data
 l
http://rsif.royalsocietypublishing.org/content/suppl/2009/12/07/rsif.2009.0474.DC1.htm

 "Data Supplement"

References http://rsif.royalsocietypublishing.org/content/7/47/945.full.html#ref-list-1
 This article cites 27 articles, 7 of which can be accessed free

Rapid response http://rsif.royalsocietypublishing.org/letters/submit/royinterface;7/47/945
 Respond to this article

Subject collections

 (117 articles)computational biology    
 (277 articles)biophysics    

 
Articles on similar topics can be found in the following collections

Email alerting service  hereright-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in the box at the top

 http://rsif.royalsocietypublishing.org/subscriptions go to: J. R. Soc. InterfaceTo subscribe to 

This journal is © 2010 The Royal Society

 on May 7, 2010rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/
http://rsif.royalsocietypublishing.org/content/suppl/2009/12/07/rsif.2009.0474.DC1.html
http://rsif.royalsocietypublishing.org/content/7/47/945.full.html#ref-list-1
http://rsif.royalsocietypublishing.org/letters/submit/royinterface;7/47/945
http://rsif.royalsocietypublishing.org/cgi/collection/biophysics
http://rsif.royalsocietypublishing.org/cgi/collection/computational_biology
http://rsif.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royinterface;7/47/945&return_type=article&return_url=http://rsif.royalsocietypublishing.org/content/7/47/945.full.pdf?ijkey=4zwIlxDcaUcqzBZ&keytype=finite
http://rsif.royalsocietypublishing.org/subscriptions


Computational limits to binary genes
Nicolae Radu Zabet* and Dominique F. Chu

School of Computing, University of Kent, Canterbury CT2 7NF, UK

We analyse the trade-off between the speed with which a gene can propagate information, the
noise of its output and its metabolic cost. Our main finding is that for any given level of meta-
bolic cost there is an optimal trade-off between noise and processing speed. Any system with a
non-vanishing leak expression rate is suboptimal, i.e. it will exhibit higher noise and/or slower
speed than leak-free systems with the same metabolic cost. We also show that there is an opti-
mal Hill coefficient h which minimizes noise and metabolic cost at fixed speeds, and an
optimal threshold K which minimizes noise.

Keywords: noise; speed; metabolic cost; trade-off

1. INTRODUCTION

In this article we will probe some of the fundamental
limitations on the computational capabilities of gene
networks. There is a variety of different mechanisms
by which living organisms perform computations, and
they do so at many different levels. Examples include
the nervous system in higher organisms, signal trans-
duction networks (Han et al. 2007) or even individual
proteins (Bray 1995). Understanding what constrains
the efficiency and the speed of these computations is
not only of practical relevance (for example in the con-
text of engineering purpose built novel life forms, i.e.
synthetic biology), but will most of all also provide
new insights into the design principles of living systems.

In the context of this article we will contribute to this
larger field by considering the computational properties
of a single gene. By ‘computation’ we mean that the
gene maintains a functional relationship between the
concentration of one or several types of input molecules
and the concentration of the product of the gene.
Instantaneous changes of the input conditions will nor-
mally be processed with a delay, namely the transient
time required for the output concentration of the gene
to reach the steady state corresponding to the new
input (in reality the actual switching time will be
slower, because inputs do not change instantaneously).
From a computational point of view, this switching
time is relevant because it imposes an upper limit on
the frequency with which gene regulatory networks
can detect and process changes in the environment. In
a very direct sense, this limiting frequency can be seen
as the computational speed of the gene.

Connected to the question of speed is the question of
accuracy. Biochemical systems are usually affected by
noise (Spudich & Koshland 1976; Arkin et al. 1998;
Elowitz et al. 2002; Becskei et al. 2005; Rosenfeld
et al. 2005; Dunlop et al. 2008). For a comprehensive
review of noise in genetic systems see Kaern et al.

(2005), Kaufmann & van Oudenaarden (2007) and
Raj & van Oudenaarden (2008). If we assume that
the concentration of a gene product acts as a signal
further downstream, then noise will make it harder to
detect the signal. There are at least two solutions to
the noise problem: (i) to reduce the noise that affects
the output of the gene, or (ii) to accept higher levels
of noise and to average out random fluctuations by
‘measuring’ the signal over longer times. The first sol-
ution comes at a higher metabolic cost, whereas
the second solution implies that the rate at which sig-
nals can be built up by the gene is reduced. This
points to a trade-off between the processing speed of a
gene, the noise it produces and the metabolic cost of
the processing.

The main objective of this contribution is to describe
this trade-off mathematically. To do this we will use a
(well established) method based on van Kampen’s
linear noise approximation to calculate the noise in
gene expression (Elf & Ehrenberg 2003; Paulsson
2005; van Kampen 2007) to a high degree of accuracy.
We show that for a fixed metabolic cost the noise of
the output of the computation can only be improved
by reducing the speed of the computation, and vice
versa. A notable result of our contribution is also that
there is a theoretical performance limit for the compu-
tational efficiency of the gene when the leak
expression rate is vanishing. Finally, we will also show
that there are parameters for the gene regulation func-
tion that optimize the computational properties of a
gene.

Gene activation functions are often approximated
by Hill functions (Ackers et al. 1982; Bintu et al. 2005;
Chu et al. 2009). A Hill function is characterized by
two parameters, namely K and h (table 1). The latter
determines how close the activation function is to a
step function, whereas K is the ratio of the binding and
the unbinding rate of the regulators to the operator site.

In what follows, we will limit our attention primarily
to binary genes, i.e. regulated genes which have only
two states of activation. An active gene is characterized
by a high steady-state concentration (or particle
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number) H of its output product; the low state is
characterized by a low concentration/particle number
of L. In this setting, any downstream elements (such
as for example other genes) then need to distinguish
between the high and the low output of the gene. The
problem is that this output is afflicted by noise which
makes it harder to distinguish between the two states.

In biological cells, the metabolic cost of any process
can be measured by the number of adenosine tripho-
sphate molecules it requires (Akashi & Gojobori 2002).
Here, we will not be interested in a quantitatively exact
measure of the energy expense, but rather in how the
cost scales as various parameters are changed. We will
therefore assume that the metabolic cost of a particular
gene is well measured by the maximum expression rate
of the gene in question. Note that the real cost will
depend on the average proportion of time over which
this gene is activated, plus a number of additional fac-
tors, such as the length of the protein to be produced
and so on. These complications, however, are irrelevant
for our current purpose, where we consider a single
gene only.

Implicitly underlying the entire argument put forth
in this article is the assumption that the cell is essen-
tially a perfectly mixed reactor. This assumption is
necessary to keep the mathematics tractable, and is
commonly made. We expect that the conclusions
about the trade-off between noise and speed are broadly
valid in spatially extended systems as well (Newman
et al. 2006). However, this is not addressed here. We
also assume that the binding/unbinding dynamics of
input molecules to the operator site of the gene in ques-
tion is very fast compared with the transcription
process; this assumption justifies the use of Hill-type
gene activation functions.

Finally, we will model gene expression as a one-step
process. This means that we essentially ignore post-
transcriptional sources of noise, especially translation.

Our results are therefore prima facie more about noise
in mRNA signals, rather than noise in proteins. Yet,
there is experimental evidence that mRNA production
is indeed the dominant source of noise in the cell
(Bar-Even et al. 2006; Newman et al. 2006). Moreover,
it seems that typically translation merely scales the
transcriptional noise (Bar-Even et al. 2006), and thus
does not directly alter the computational properties of
gene regulation.

2. RESULTS

2.1. Deterministic time

We first consider the computational speed in a noiseless
system. Our model system is a gene Gy with output y
and regulated by a single input x. The system evolves
according to the dynamical law given by the differential
equation

dy
dt

¼ aþ bf ðxÞ % my: ð2:1Þ

Here a is the leak expression rate, (a þ b) is the maxi-
mal expression rate of the gene, f(x) is the regulation
function, x is the concentration of the regulator and m
is the degradation rate of the product of the gene.
Clearly, this system is completely determined by the
input to Gy, which we assume to be either xH (leading
to the output of y ¼ H ) or xL (leading to y ¼ L); we
also assume H . L. We consider two families of
regulation functions, namely f ; f and f̄:

fðxÞ ¼ xh

Kh þ xh
and !fðxÞ ¼ Kh

Kh þ xh
:

Here, f and f̄ are the Hill and the repressor Hill func-
tion, respectively. Hill functions are customarily used
to represent gene activation. They are sigmoid functions
for h. 1 and approach a step function as h! 1. If the
transcription factors repressing/activating the gene are
monomers, then the Hill coefficient h is bound from
above by the number of binding sites.

At any time the actual metabolic expense attribu-
table to a gene will be given by the time-dependent
production rate of the system, a þ bf(x(t)). Averaged
over all environmental conditions, a gene will spend a
certain fraction of time in the state H; the maximum
production rate is therefore an indicator for the
metabolic cost z associated with the gene:

z8 aþ bfH : ð2:2Þ

Here, we use the shorthand fH8f(xH) to simplify nota-
tion. In the case of a ¼ 0, the metabolic cost becomes
z ¼ bfH.

Note that our notion of cost is an idealization relative
to the real case. We only take into account production
costs, whereas in reality there are a number of other
costs related to the maintenance of protein signals.
For example, if proteins are actively broken down
(rather than just diluted) then this comes at an
additional cost. This additional cost, however, is a con-
stant factor and can be added to the production cost
because ultimately every molecule that is produced

Table 1. Nomenclature.

H high output of the gene
L low output of the gene
xH input to the gene such that the output of the

gene is H
xL input to the gene such that the output of the

gene is L
f(x) gene activation function
fH, fL f(xH), f(xL)
m decay rate of gene product
t average life time (1/m)
a basal synthesis rate
b regulation synthesis rate
Db b ( fH 2 fL)/m
f, f̄ the Hill activation/repression function
K the regulation threshold
h the Hill coefficient
Tgene the time for gene output to reach u % of H 2 L.
u see Tgene

s2 the (absolute) variance
N noise, i.e. variance normalized by signal

strength (sy
2/(H 2 L)2)

Nin, Nex the intrinsic/extrinsic noise
z the metabolic cost of species y
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will have to be broken down again. For some proteins
the decrease in particle concentrations is mostly due
to dilution, rather than active breakdown. When this
is the case, then particle ‘decay’ is linked to growth
and hence to metabolic cost. Yet, this link is not a
necessary one. It is thus not relevant for the under-
standing of fundamental limitations constraining the
noise, speed and metabolic cost of signals. Also, in
addition to the cost of gene expression itself, the
living cell has significant overhead metabolic costs
associated with maintaining the necessary machinery
of gene expression. These costs are equally not taken
into account here because, again, they are not relevant
to the fundamental limitation that is the main interest
of this contribution. Instead, as far as costs are con-
cerned the relevant measure is the marginal cost of
protein production, rather than the total metabolic
cost associated with protein levels. The production
rate reflects this well and is thus a relevant indicator
of cost when probing the fundamental limitations
associated with the computational properties of genes.

Assuming the ideal case of an instantaneous change
of the input signal from xL to xH so as to induce Gy at
t ¼ 0, the concentration of the output y will then
evolve from its original steady state y0 ¼ L at t ¼ 0
according to

yðtÞ ¼ y& % e%mtðy& % y0Þ: ð2:3Þ

Here y* ¼ H is the steady-state solution for equation
(2.1):

y& ¼ aþ bf ðxH Þ
m

:

We define the deterministic switching time, Tgene of the
gene as the time required to reach the steady state to
within a fraction u of H 2 L (see figure 1). We can
obtain from equation (2.3) the time required to reach
a value of y0 þ (y* 2 y0)u given that we start from y0,
by setting the left-hand-side equal to y0 þ (y*2 y0)u
and solve for t:

y0 þ ðy& % y0Þu ¼ y& % e%mtðy& % y0Þ:

Calling this solution Tgene we obtain the switching time
of a gene:

Tgene ¼
1
m
ln

1
1% u

! "
: ð2:4Þ

The only parameter which influences this switching time
is the degradation rate of the product. Higher degra-
dation rates generate faster responses. This suggests
an immediate way for the deterministic gene to reduce
its switching time, namely to increase the degradation
rate m as much as possible. Note that doing this also
decreases the signal strength, H2 L ¼ b fH/m.

In a ‘deterministic world’ very small signals can be
discerned without any problems and do not limit the
computational usefulness of the gene. We can therefore
conclude from equation (2.4) that the time required to
build up a signal can be decreased (and hence the
computing speed increased) arbitrarily, as long as
the gene output is noise-free and varies continuously.

In deterministic systems, there is no need to increase
the production rate (and hence the cost z) to offset
any increase in m. It will become clear below, however,
that in real systems that are discrete and afflicted
by noise the signal strength sets a fundamental
computational performance limit for the genes.

2.2. Stochastic case

The products of real genes come in discrete units and
their copy number is subject to random fluctuations.
The quantized nature of molecules means that there is
a logical minimum signal strength of H 2 L ¼ 1 mol-
ecule. More importantly, for low signal strengths
(even when they are well above the logical minimum)
the presence of stochastic fluctuations may make it dif-
ficult to distinguish between the input and the output
states. It is thus no longer possible to arbitrarily
increase the computational speed of a gene by increas-
ing the degradation rate. In order to maintain a signal
that is large compared to stochastic fluctuations
around the steady-state concentrations, the production
rate must be increased when the degradation rate is
increased. Unfortunately, this comes at the cost of an
increased metabolic rate.
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Figure 1. Switching time. We set the cell volume to V ¼
8 ' 10216 l. The following set of parameters have been
used: K ¼ 0.5 mM and m ¼ 1 min21. The two steady states
are L ¼ 0.2 mM and H ¼ 0.8 mM. We consider both a
switch (a) from low state to high state (L! H) and (b)
from high state to low state (H! L). We chose u ¼ 0.9.
Stochastic fluctuations do not influence significantly the
time required to reach a fraction u of the steady state con-
centration (solid line, deterministic; dashed line, stochastic).
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We will develop a quantitative understanding of the
trade-off between speed, noise and the metabolic cost of
a ‘computation’. Following Paulsson (2004, 2005) who
in turn used van Kampen’s linear noise approximation
(Elf & Ehrenberg 2003; van Kampen 2007), we can
derive the variance s2 at steady state of a stochastic
version of the system described by equation (2.1) by
applying the fluctuation dissipation theorem (FDT;
see §4). In first-order approximation this predicts
noise to be a Gaussian distribution with mean kyl and
variance s2. In reality, the distribution will be a correc-
tion to the Gaussian. Yet, as long as the mean is
sufficiently high, simulations and theoretical consider-
ations (van Kampen 2007, ch. 10) show that the
Gaussian approximation is very good; see figure 2.
The linear noise approximation is only valid when the
mean of the stochastic system corresponds to the sol-
ution of the deterministic system, which is the case
here. The transition from the deterministic system to
the stochastic system also requires that we consider
particle numbers, rather than concentrations. For
simplicity, we will not reflect this distinction in our
notation; however, it is implicitly understood that sto-
chastic systems/simulations always refer to particle
numbers, rather than concentrations.

The variance, which is a measure of the absolute fluc-
tuations in particle numbers, will be much higher in the
H state than in the L state. The distinguishability
between the two possible output states is therefore
poorest in the case of H; we will henceforth only use
this pessimistic estimate. In the context of this contri-
bution, we are interested in how noise affects our
ability to distinguish between the two known output
states, H and L. To get a meaningful measure of this,
we will subtly change the definition of noise with
respect to convention. Normally, noise is defined as
the variance normalized by the square of the mean
value of the varying quantity. Since we are interested
in how noise affects our ability to distinguish between

two known values, we will adjust this and use as the rel-
evant measure of noise the variance normalized by the
square of the signal strength, N8sH

2 /(H2 L)2, rather
than by the square of the mean (which is often used
as a definition of noise):

N ¼ H
ðH % LÞ2|fflfflfflfflffl{zfflfflfflfflffl}

intrinsic

þ bf 0H
H % L

ty

$ %2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
regulation factor

tx
tx þ ty|fflfflffl{zfflfflffl}
time factor

s2
x

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
extrinsic

: ð2:5Þ

Here sx
2 is the variance of the input signal, H and L the

steady-state particle number of the output species for
inputs xH and xL, respectively, and we denote by tx ¼
1/mx and ty ¼ 1/my, the average life time of the two
species; finally, f 0 denotes the derivative of f with
respect to its argument. The first term on the right-
hand-side of the normalized variance of N in equation
(2.5) represents the intrinsic noise (Nin), while the
second term represents the extrinsic noise (Nex). The
extrinsic noise has two components, the first of which
is the time factor, which can be thought of as the
time over which the gene averages its input. The
other term is the regulation factor (see Paulsson 2005;
Pedraza & van Oudenaarden 2005; Shibata & Fujimoto
2005; Shibata & Ueda 2008).

We checked the accuracy of the linear noise approxi-
mation by performing extensive simulations using
Gillespie’s algorithms (see the electronic supplementary
material and figure 2 for details). A comparison with
analytic results shows excellent agreement between
the noise obtained from simulation and calculated
values of the noise.

2.3. Noise, time and cost

We will first make the idealizing assumption that there
is no leak expression, i.e. a ¼ 0, and we will further
assume that L ¼ 0. The (mean) high state H can be cal-
culated from the deterministic equation to H ¼ b fH/m.
Following equation (2.5) the noise can be written as

N ¼ 1
H

þ f 0H
fH

$ %2 tx
tx þ ty

s2
x : ð2:6Þ

We first consider the case of scaling the production
rate by a factor of g, i.e.

b %! b0 ¼ gb:

The average particle number at the high state H scales
by the same factor g, i.e. Hb0 ¼ gHb. Here the subscript
b indicates that the relevant mean particle number is
generated by a system with production rate b.

According to equation (2.6), scaling b leaves the
extrinsic noise, Nex, unaffected. However, the intrinsic
noise, Nin, scales with g21:

z ( g and N in (
1
g
: ð2:7Þ

As expected, increasing the production rate of a gene
product increases the cost, but reduces the noise
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Figure 2. Comparison between analytical solution and simu-
lation data. We considered a cell volume of V ¼ 8 ' 10216 l.
The following set of parameters have been used: h ¼ 3,
K ¼ 0.5 mM, L ¼ 0.2 mM, H ¼ 0.8 mM and m ¼ 1 min21. At
steady state, the two species have the following concentrations:
x ¼ 0.2 mM and y ¼ 0.8 mM. The probability distribution of
species x and y can be approximated by normal distributions.
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correspondingly. This suggests a noise–metabolic cost
trade-off.

We next scale the degradation rate, which we take to
be a free parameter:

m %! m0 ¼ gm:

Figure 3 illustrates this equation for various costs (see
also the electronic supplementary material). From the
steady-state equation it is clear that m and y scale in
opposite directions. Scaling the degradation rate leads
to an overall change of the noise of Gy even at constant
cost z as follows:

N ( g

H
þ GL¼0

gtx
gtx þ ty

&&&&
z¼const

: ð2:8Þ

Here G summarizes terms in equation (2.5) that remain
constant under the scaling

G8
bf 0H

H % L
ty

$ %2
s2
x :

(Note that ty appears in G but scales into opposite
direction to H 2 L and hence G as a whole is constant
under the scaling.) Equation (2.8) establishes a degra-
dation rate–noise trade-off. Formally equivalent, but
of more intuitive appeal is to consider scaling the
inverse of the degradation rate, namely

ty %! t0y ¼ gty:

Remembering the inverse relationship between ty and
m, the scaling can be obtained from

N ( 1
gH

þ GL¼0
tx

tx ¼ gty

&&&&
z¼const

: ð2:9Þ

The inverse degradation rate is—up to a factor—equal
to the deterministic switching time (see equation
(2.4)) which in turn is an indicator of the computational
speed of the gene. Hence, this establishes the noise–
speed trade-off at constant cost. We will show below
that equation (2.9) describes a theoretical compu-
tational performance limit of the gene at fixed cost, in
the sense that the noise and speed characteristics
cannot be simultaneously improved, without also
increasing the metabolic cost.

2.3.1. Noise in the case of non-vanishing leak
expression. So far we have assumed that a ¼ 0. We
will now relax this assumption and assume a non-
vanishing a. A consequence of this is that L. 0. For
any fixed value of a there exists a (non-optimal) set
of noise–speed trade-offs at fixed cost. This can be
obtained by modifying equation (2.9):

N t0y (
H

gðH % LÞ2
þ GL.0

tx
tx þ gty

&&&&&
z¼const

: ð2:10Þ

The main difference between equations (2.9) and (2.10)
is the first term. In the case of L ¼ 0—that is in
equation (2.9)—this term reduces to 1/gH. For a
given cost z, the set of possible noise–speed trade-offs
with a . 0 is ‘worse’ than the optimal noise–speed
trade-off set in the sense that for a fixed noise, the
speed is always lower, and vice versa; this is illustrated
for some parameters in figure 4.

In general the suboptimality of a . 0 can be
directly seen from the expression for the noise
(equation (2.5)) as follows: the extrinsic noise is unaf-
fected by a, so we only need to consider the intrinsic
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ing set of parameters have been used: x ¼ 0.2 mM, a ¼ 0,
K ¼ 0.5 mM, h ¼ 3. The degradation rate was varied in
interval m[ [0.36,1] (min21) and the synthesis rate in inter-
val b[ [0.34,0.85] (mMmin21). These are results obtained
from the analytic solution (equation (2.9)); we found close
agreement with results from stochastic simulations (see the
electronic supplementary material). The time was computed
for u ¼ 0.9. We considered a cell volume of V ¼ 8 ' 10216 l.
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Figure 4. Comparison of various a at fixed metabolic cost. We
plot the speed and noise (per molecule based on the concen-
trations given below and the typical volume of E. coli)
trade-off for different leak rates under fixed metabolic cost.
The metabolic cost of the three curves is constant, z ¼
0.8 mMmin21. We consider three cases: ay ¼ 0 mMmin21

(solid line), ay ¼ 0.05 mM min21 (dashed line) and ay ¼
0.10 mM min21 (dashed dotted line). The following set of par-
ameters have been used: x ¼ 0.2 mM, K ¼ 0.5 mM, h ¼ 3. The
degradation rate was varied in interval m [ [1,0.36] (min21).
We considered a cell volume of V ¼ 8 ' 10216 l.
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noise given by

N in ¼
aþ bfH
ðDbÞ2

: ð2:11Þ

Here Db is a shorthand for b( fH 2 fL)/m. From
equation (2.11) it is clear that the Nin and hence the
noise increases with a. At the same time, increasing a
also increases the cost; this follows from the definition
of the metabolic cost in equation (2.2). Altogether,
this shows that any binary gene with non-vanishing a
is sub-optimal with respect to its noise and cost
characteristics.

We now consider how the noise scales with b when
a. 0. If b is scaled by g and a ¼ 0, then the corre-
sponding change of the total cost will be exactly offset
by an inverse scaling in the noise. When there is a
leak expression, that is a. 0, then this is no longer
the case. Instead, if b0 ¼ gb, then

zb0 ¼ dzb;

where d is given by

d8
aþ gbfH
aþ b fH

:

From this we can obtain the scaling property of the
intrinsic noise (see appendix B)

N b0 ¼ db2f 2H
%aþ d aþ bfHð Þð Þ2

N b:

For a ¼ 0 this scaling factor reduces to 1/d, which in
turn reduces to 1/g, thus recovering the above scaling
from equation (2.7). This scaling relation implies (see
appendix B for details) that systems with a . 0 have
a more favourable scaling behaviour than leak-free sys-
tems, in the sense that for a given increase of the cost,
leak systems show a more pronounced decrease of
noise than leak-free systems. A corollary of this is that
for increasing expression rates the systems with and
without leak become more similar.

2.3.2. Noise and the Hill parameter K. In the case of the
repressed gene (i.e. f ; f̄), it may be the case that L . 0
due to incomplete repression (even when a ¼ 0). It is
clear from the shape of the repression function f̄ that
complete repression can only be achieved in the limiting
cases of either an infinite number of repressor molecules
or an infinite Hill coefficient h. Neither is realizable. If
we assume the input signal (i.e. xH and xL) to be fixed
then the leak rate will depend on the Hill parameter
K. Physically, this parameter is in essence the fraction
of the association and dissociation rate constants of
the regulatory protein to/from the specific binding
site in the operator. Clearly, the lower K the fewer mol-
ecules are required to achieve a certain level of
repression. The value of K which maximizes signal
strength H 2 L is given by K& ¼ ffiffiffiffiffiffiffiffiffiffi

xHxL
p

. This K & is
not identical to the value of K that optimizes noise,
which is given by the solution to

d
dK

N ¼ 0: ð2:12Þ

The corresponding formula is too complicated to be
useful, but can be calculated numerically; it will typi-
cally be similar, but not equal, to the value that
optimizes signal strength. Moreover, a numerical analy-
sis suggests that around the optimal value of K the
noise depends only very weakly on K, particularly
when the signal strength of the input, jxL 2 xHj is
large (see figure 5).

2.3.3. Dependence of noise on h. To understand the
dependence of noise on h it is necessary to consider
f ; f and f̄ separately. Since we always consider the
noise at y ¼ H, the scaling relation of the repressor
needs to be evaluated at very low particle numbers
of x, whereas the noise of the activator needs to be
evaluated at high x. In the cases of f ; f̄ and f the
noise changes with h like

N !f ) aþ bð Þ
b2 1%Kh

xhL

! "%2

þCh2
xh%1
H

Kh

! "2

;

N f ) aþ b

b2 1% xhL
Kh

! "%2

þCh2
Kh

xhþ1
H

 !2

:

9
>>>>>=

>>>>>;

ð2:13Þ

In the repression case we assumed xH*K*xL,
and in the case of activation we assumed xH+K+xL.
The details of the approximation can be found in
appendix C.

Figure 6 illustrates how the noise depends on h. For a
specific example the graph suggests that improvements
in the noise for increased h diminish fast as h increases.
In general, this diminishing effect of h can be seen
directly from equation (2.13). In the second term on
the right-hand-side in both equations the factors next
to h2 are very small in both cases and decrease with h
faster than h2; C summarizes terms in the noise
equation that do not change with h. Hence, altogether
the extrinsic noise tends to zero as h increases.

0.005

0.010

0.015

0.020

0 1 2 3 4 5
K (mM)

Figure 5. The total noise Nin þ Nex as a function of K in
the repressor case. We used the following set of parameters:
h ¼ 3, xH ¼ 0.2 mM, tx ¼ 1 min, ty ¼ 1 min, sx

2 ¼ 96. We
compute the noise per molecule based on the concentrations
given above and a volume of V ¼ 8 ' 10216 l (solid line,
xL ¼ 3 mM; long-dashed line, xL ¼ 4 mM; short-dashed line,
xL ¼ 5 mM; dotted line, xL ¼ 6 mM).
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This begs the question of the metabolic cost of increas-
ing h. An analysis of this needs to consider, for a givenK,
how many molecules of activator are necessary to guar-
antee occupation of the binding site within a fixed
time. An analysis shows that the cost strictly increases
with h (see appendix A). The increase in the metabolic
cost combined with the diminishing efficiency in noise
reduction suggests that there is an optimal Hill coefficient
beyond which a further increase is not cost-effective. We
conclude that there exists an optimum value of h.

3. DISCUSSION

While in an ideal, deterministic system, binary genes
could be driven at an arbitrary speed with minimal
cost, noise and discrete output states impose strict
limits on the computational efficiency of real genes.
We found that there is a three-way trade-off between
the output noise of a gene, its switching time and the
metabolic cost necessary to maintain it.

For a given metabolic cost, there is a noise–
computational time trade-off. The set of possible
noise–speed trade-offs, as defined by equations (2.9)
and (2.10), represents the possible noise–time pairs a
gene can take at a given cost. The trade-off set is opti-
mal if a ¼ 0, i.e. for a given metabolic cost, there are no
solutions that have both better noise characteristics and
higher computational speed. Figure 3 illustrates ideal
trade-off sets, for a ¼ 0 for various costs (indicated by
the shades of grey of the points). Figure 4, on the
other hand, illustrates that the trade-off set for a . 0
has worse noise–time characteristics than the leak-free
system. The suboptimality of genes with a . 0 is also
directly demonstrated by equation (2.11), which
shows that increasing a leads to an increase in both
the cost and the intrinsic noise; the extrinsic noise is
unaffected by a.

A non-vanishing a is suboptimal; however, it can be
improved upon cheaper than optimal sets, by increasing

the production rate b. Hence, for a fixed leak rate, the
optimal noise–speed trade-off can be approached by
increasing the total energy expenditure (see equation
(B 1) in appendix B).

In repressed genes, there will be a base-level of gene
expression even at the maximum concentration of the
repressor, which is due to the nature of the Hill repres-
sion function. The amount of the residual gene
expression depends on the input signal (xL) and is not
necessarily under the control of the cell. In any case,
if we assume the strength of the input signal to be
fixed, then there is an optimal value of K that mini-
mizes output noise (see equation (2.12)). Similarly,
according to equations (2.13) there is an optimal
value of the Hill coefficient, that minimizes noise and
metabolic expense. In a system of binary genes, there
are therefore optimal values for the parameters a, K
and h, whereas there is a trade-off for b and m.

In this contribution we have considered only binary
genes, with a single species of input. Real genes are typi-
cally controlled by more than only one species of
regulatory molecules, often both activators and repres-
sors. The expression level of the gene will depend on
the combination of the inputs. Our analysis would
then still be valid for each regulator species, given
that the concentration of all other species is constant.

An immediate extension of the ideas presented here
is to consider networks of genes. We would expect
that such networks have a number of additional con-
straints as far as their computational properties are
concerned. Both from a computational, but also a syn-
thetic biology point of view, understanding the
computational properties of such networks is of funda-
mental interest. In this context Shannon’s information
theory could provide an interesting alternative perspec-
tive, in that it could provide a theoretical framework to
investigate signal transmission in cells. A gene could
then be considered a communication channel and one
could measure the channel’s capacity, i.e. the maximum
information in bits per second that a communications
channel can handle.

4. MATERIAL AND METHODS

4.1. Simulations

In all figures we used the repressed gene f ; f̄ for illus-
tration. In figures 3 and 4 the noise was computed
analytically, where we assumed fL ¼ 0, L ¼ a/my
(mM) and the parameters, h ¼ 3, x ¼ 0.2 mM, and
K ¼ 0.5 mM.

The error bars in figure 4, and in the electronic sup-
plementary material were obtained by stochastic
simulations. We used the Dizzy (Ramsey et al. 2005)
implementation of the Gillespie algorithm (Gillespie
1977; Gibson & Bruck 2000). For all simulations we
used the following set of chemical reactions:

0=O
ax

mx

x and 0= O
aþbf ðxÞ

m
y: ð4:1Þ

For figure 2 the simulations were run for 106 min.
The error bars from figure 4 represent the range of a
sample of 10 simulations each run for 105 min. In the
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Figure 6. The noise (per molecule based on the concentrations
given below and the typical volume of E. coli) as a function
of h. We used the following set of parameters: K ¼ 0.5 mM,
xH ¼ 0.2 mM, tx ¼ 1 min, ty ¼ 1 min, sx

2 ¼ 96, xL ¼ 4 mM,
a ¼ 0.05 mM min21, b ¼ 0.8 mMmin21. We also use a cell
volume of 8 ' 10216 l (solid line, intrinsic noise; long dashed
line, extrinsic noise; short dashed line, total noise).
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figure caption we measured the abundance of species x
and y in concentrations instead of particle numbers.
Using a cell volume of V ¼ 8 ' 10216 l, which is the
average volume of E. coli (Santillan & Mackey 2004),
we converted from concentrations into number of mol-
ecules using x ¼ x̃VNA, where x̃ is the concentration of
x and NA is the Avogadro number (NA ¼
6.02214179 ' 1023 mol21).

4.2. Fluctuation dissipation theorem

We indicate here briefly how to derive the expression
for the variance of the output of a gene using the
FDT. At steady state we have (Paulsson 2004, 2005)

ACþCAT þB ¼ 0; ð4:2Þ

where A is the drift matrix, B the diffusion matrix
and C the covariance matrix. The matrix A is the
following:

Aij ¼ @ðkJ%
i l% kJþ

i lÞ=@knjl: ð4:3Þ

Here Ji
2 is the elimination flux of species i, and Ji

þ the
production flux of species i. For chemical reaction
system (4.1), A becomes

A ¼ %1=tx 0
bf 0ðkxlÞ %1=ty

$ %
:

In the case when each chemical reaction adds or
removes only one molecule, B becomes diagonal, with
Bii ¼ kJiþl þ kJi2l. For system 1, B yields

B ¼ 2kxl=tx 0
0 2kyl=ty

$ %
:

Having determined A and B, one can solve equation
(4.2) and completely determine the covariance matrix
C. The variance of species y, sy

2, yields

s2
y ¼ kylþ ½bf 0ðkxlÞty-2

tx
tx þ ty

s2
x : ð4:4Þ

Using stochastic simulations we show that for most par-
ameters this equation estimates the noise very
accurately for the systems we consider (see the elec-
tronic supplementary material). We also found
that when the Hill parameter K is close to xH or xL
then the accuracy of the method suffers. This is
expected, since in this case, the mean behaviour of the
stochastic system may deviate from the behaviour of
the deterministic system.

APPENDIX A. DEPENDENCE OF COST
ON HILL COEFFICIENT

The gene activation function f(x) is commonly modelled
as a Hill function. As long as the transcription factor
(TF) regulating the gene is a monomer, the Hill coeffi-
cient is bounded from above by the number of
regulatory binding sites. Hence, if the operator site
has two binding sites, then h . 2. The case of h ¼ 2
will only be reached in the limiting case of infinite coop-
erativity between the two sites. In essence, this means
that the average binding time of a single TF is zero

unless both sites are occupied. Hence, infinite coopera-
tivity requires that all binding sites are occupied
simultaneously. For large, but finite cooperativity,
this condition can be relaxed and even if not all binding
sites are occupied individual TFs will remain bound for
a finite (albeit short) period of time.

Here, we assume that regulatory proteins are bound for
a small amount of time T only, unless all binding sites are
occupied; furthermore, the number of binding sites is h.
Hence, in order to activate/repress the regulated gene it
is necessary that, within the time period T of the first
protein binding, the remaining (h2 1) sites will be occu-
pied as well. The basic idea is as follows: the more binding
sites there are, the more unlikely it is that all binding sites
are occupied within T. To put it differently, in order to
keep the waiting time for occupation of all h sites con-
stant, a higher number of regulatory sites needs to be
compensated by a higher concentration of regulatory pro-
teins, which comes at a metabolic cost. Since the binding
and un-binding dynamics of TFs to/from the operator site
happens at a faster time scale than gene expression, the
particular time to achieve full occupation does not
matter as long as it is above a certain threshold that guar-
antees the separation of time scales between gene
expression and the operator dynamics.

To make the argument more formal, assume now, that
at some time t ¼ 0 a first TF binds to one of the binding
sites and that this first TF remains bound, on average, for
a time period of T. Any subsequent TF also remains
bound for a time T unless full occupation is reached;
in this case then all TFs remain bound for a time
period +T. We denote the average number of binding
events per unit time for TFs to any of the free binding
sites as r. Strictly speaking, this r will decrease as more
and more binding sites are occupied, but we will ignore
this complication for now (that is we assume that the
copy number of the TF is very large compared to h).

Note that r is an indicator for metabolic cost in the
following sense: it reflects the rate with which individual
molecules collide with the binding site and for a fixed
geometry of the cell it depends solely on the
TF concentration. Hence the cell can increase r by
increasing the number of regulatory proteins, which
comes at a cost. However, note that r is not identical
to the cost z above, but instead related to the cost of
maintaining a sufficiently high concentration of TFs in
the cell, so as to achieve that the probability per time
unit that all binding sites are occupied is at least equal
to a certain threshold value h that guarantees the
above-mentioned separation of time scales, i.e. Pall / h.

We can estimate the probability that within a time
period T all h binding sites are occupied. This is the
probability that within T there are (h2 1) or more
binding events. Binding events are Poisson distributed
and thus the probability of all sites being occupied
within T is given by

Pall ¼
X1

l¼ðh%1Þ

rle%r

l!
¼ ðh % 1Þ

ðh % 1Þ!

ðr

0
th%2e%t dt: ðA1Þ

Here we chose units such that T ¼ 1 to simplify the
notation. This integral cannot be solved for arbitrary h.
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It is instructive to consider specific solutions. For
example, for h ¼ 3 one obtains

Pall ¼ 1þ%1% r
er

:

A closer inspection of Pall reveals that it defines a family of
sigmoid functions parametrized by h; see figure 7.

The precise value of Pall is immaterial for gene
expression as long as this process happens at a time
scale that is fast compared with the typical time of
gene expression. We therefore assume that Pall is kept
at some (unspecified) threshold value h that guarantees
efficient regulation of the operon in question.

In order to understand how Hill coefficients increase
the cost, we need to find h as a function of r for fixed h.
Unfortunately, it is not possible to derive this from
equation (A 1) analytically. From figure 7, it is however
possible to understand the dependence graphically. To
do this, we choose an h, for example h ¼ 0.5. Looking at
the graph it is clear that for increasing h the fixed value
of h is reached for increasingly high values of r and
hence cost. A numerical solution of equation (A 1) indi-
cates that this dependence is approximately linear for
moderate values of h (data and calculation not shown).

This establishes the dependence of the metabolic
cost on h.

APPENDIX B. SCALING OF b IN THE
CASE OF NON-ZERO a

Consider the scaling of b! b0 ¼ gb. This leads then to
a corresponding increase of the total cost to z ¼ aþ
gbfH. With b scaling by g the total cost scales by a
factor of d, defined by

aþ gbfH ¼ dðaþ bfH Þ:

Solving for g, we obtain

g ¼ ðd% 1Þaþ dbfH
bfH

:

Considering that the intrinsic noise is given by

N 0
in ¼ aþ gbfH

ðgDbÞ2

one can see that the intrinsic noise scales as

N 0
in ¼

db2f 2H
½%aþ dðaþ bfH Þ-2

N in; ðB1Þ

whereas the total cost scales as zb0 ¼ dzb. If we assume
that d. 1, i.e. we increase the cost, then the scaling
term is smaller than 1/d:

1
h
8

db2f 2H
½%aþ dðaþ bfH Þ-2

. db2f 2H
½dbfH -2

¼ 1
d
:

This implies that h / d, or that the actual decrease in
noise is more than the inverse of the increase in
metabolic cost.

APPENDIXC. DEPENDENCEOF
NOISEONH

C.1. Repression

We consider the case of f ; f̄. In this case, the intrinsic
noise is given by

N in ¼ H
ðH % LÞ2

¼
aþ b Kh

xhHþKh

b2

' Kh

xhH þKh
% Kh

xhL þKh

! "%2

) aþ b
Kh

Kh þ xhH

$ %
b 1%Kh

xhL

! "$ %%2

) aþ bð Þ b 1%Kh

xhL

! "$ %%2

: ðC1Þ

Here approximated using xH*K, and xL+K. Simi-
larly, if C summarizes factors in the extrinsic noise
that are not affected by h, then the extrinsic noise
scales as

N ex ¼ C
Khhxh%1

H

ðKh þ xhH Þ
2

 !2

' Kh

xhH þKh
% Kh

xhL þKh

! "%2

) Ch2
xh%1
H

Kh

! "
1% Kh

xhL þKh

! "%2

) Ch2
xh%1
H

Kh

! "2

: ðC2Þ

Both the intrinsic and the extrinsic noise are decreas-
ing functions of h; however, it is clear from the
equations that for higher values of h the slopes of both
equation (C 1) and equation (C 2) approach 0 relatively
rapidly. Hence, with increasing h, the dependence of
the noise on h becomes increasingly weak. Altogether,
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Figure 7. The probability of all binding sites occupied versus
the cost. We consider this function for various h (solid line,
h ¼ 3; long-dashed line, h ¼ 5; short-dashed line, h ¼ 7;
dotted line, h ¼ 9; dashed-dotted line, h ¼ 11).
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we therefore obtain for the noise to change as a function
of h like (see figure 6)

N !f ) aþ bð Þ
b2 1%Kh

xhL

! "%2

þCh2
xh%1
H

Kh

! "2

: ðC3Þ

C.2. Activation

Using analogous approaches, but now assuming that
xH+K, and xL*K and f; f, we obtain for the
intrinsic noise the expression

N in ) aþ bð Þ b 1% xhL
Kh

! "$ %%2

:

The extrinsic noise can be written as

N ex ¼ C
hxh%1

H

Kh þ xhH
1% xhH

Kh þ xhH

! "%1
" #2

' xhH
Kh þ xhH

% xhL
Kh þ xhL

$ %%2

¼ Ch2
Kh

xhþ1
H

 !2

:

Hence, in the activation case, the noise depends on h as
follows:

N f ) aþ b

b2 1% xhL
Kh

! "%2

þCh2
Kh

xhþ1
H

 !2

: ðC4Þ
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