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Abstract 

This work is devoted to investigating EEG-based biometric recognition systems. One 

potential advantage of using EEG signals for person recognition is the difficulty in 

generating artificial signals with biometric characteristics, thus making the spoofing 

of EEG-based biometric systems a challenging task. However, more works needs to 

be done to overcome certain drawbacks that currently prevent the adoption of EEG 

biometrics in real-life scenarios: 1) usually large number of employed sensors, 2) still 

relatively low recognition rates (compared with some other biometric modalities), 3) 

the template ageing effect.  

The existing shortcomings of EEG biometrics and their possible solutions are 

addressed from three main perspectives in the thesis: pre-processing, feature 

extraction and pattern classification. In pre-processing, task (stimuli) sensitivity and 

noise removal are investigated and discussed in separated chapters. For feature 

extraction, four novel features are proposed; for pattern classification, a new quality 

filtering method, and a novel instance-based learning algorithm are described in 

respective chapters. A self-collected database (Mobile Sensor Database) is employed 

to investigate some important biometric specified effects (e.g. the template ageing 

effect; using low-cost sensor for recognition).  

In the research for pre-processing, a training data accumulation scheme is developed, 

which improves the recognition performance by combining the data of different 

mental tasks for training; a new wavelet-based de-noising method is developed, its 

effectiveness in person identification is found to be considerable. Two novel features 

based on Empirical Mode Decomposition and Hilbert Transform are developed, 

which provided the best biometric performance amongst all the newly proposed 

features and other state-of-the-art features reported in the thesis; the other two newly 

developed wavelet-based features, while having slightly lower recognition accuracies, 

were computationally more efficient. The quality filtering algorithm is designed to 

employ the most informative EEG signal segments: experimental results indicate 

using a small subset of the available data for feature training could receive reasonable 

improvement in identification rate. The proposed instance-based template 
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reconstruction learning algorithm has shown significant effectiveness when tested 

using both the publicly available and self-collected databases. 
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Chapter 1  

Introduction 

This thesis is devoted to an investigation of the use of electroencephalographic (EEG) 

signals for biometric person recognition. The structure of this chapter is formed as 

follows: Section 1.1 provides a background to biometrics person recognition and the 

motivation for the use of EEG signals for biometric applications. The structure of the 

thesis is described in Section 1.2. The limitations of this thesis are listed in Section 

1.3. Section 1.4 lists the publications involved in this thesis, including the published 

works and the papers under review. 

1.1  Background & Motivation 

The traditional ways of access control include using token-based identification 

systems, such as a driver's license or passport, and knowledge-based identification 

systems, such as a password or personal identification number [1]. Biometric person 

recognition, however, relies on human physiological and/or behavioural 

characteristics for establishing identity.  A range of such distinctive, measurable 

characteristics can be used have been successfully used to recognize individuals. 

Biometric modalities/identifiers are considered to be unique to individuals: they may 

be more reliable in verifying identity than token and knowledge-based methods [1].  

Biometric characteristics are often categorized as being of physiological or 

behavioural  nature [2]. Physiological characteristics usually are related to the 

shape/colour of the body. Examples include, but are not limited to fingerprint, palm 

veins, face recognition, DNA, palm print, hand geometry, iris and retina recognition. 

Behavioural characteristics are related to the behavioural patterns of a person, 

including but not limited to typing rhythm, gait, and voice [2].  

With the development of the low-cost EEG sensor devices, using EEG signals for 

biometric recognition has been drawing attentions from researchers. Because of the 
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continuous monitoring characteristic, EEG signal as a biometric modality may be 

difficult to be spoofed.  

The first human EEG signal was recorded by a German physiologist and psychiatrist 

Hans Berger (1873–1941) in 1924 [3]. Since then, EEG has been conventionally 

employed for clinical usages. However, EEG signals may be a controversial 

biometric modality due to their relatively late appearance in the biometrics field. EEG 

signals elicit from the brain, which is a physiological organ with sophisticated inner 

structures, which makes it a physiological-based modality. On the other hand, the 

EEG signal is considered non-stationary [4]; therefore, the impact of template ageing 

effect of EEG as a biometric modality may be considerable. In this thesis, the EEG 

signals are considered as one type of behavioural biometric modality. 

The use of EEG signals for biometrics was first proposed in 1999 by Poulos et al. [5] 

[6]. There have been around one hundred papers published in this area, and much 

progress has been made since then. However, as a relatively new biometric modality, 

there are still a lot of issues yet to be investigated before its deployment in real-life 

scenarios. Some of the important issues include: developing new features with better 

recognition performance using traditional (medical) sensor(s) for data capture; 

improving the performance while using low-cost (less intrusive) sensor systems for 

data collection; investigating and alleviating the template ageing effects, which may 

be quite considerable in EEG-based biometric recognition. Given these existing gaps 

in using EEG for biometric recognition, additional efforts need to be enforced and a 

systematic investigation of the EEG biometrics becomes a necessity.  

1.2  Thesis Structure 

There are ten chapters in this thesis: eight research topics are covered in eight 

chapters excluding the Introduction and the Conclusion chapters. The research topics 

are described as follows: 

1) In the literature review chapter (Chapter 2), usability-related factors are 

investigated based on an extensive survey of existing literature in using EEG 

signals for biometric applications. 
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2) Due to the inadequacies of existing EEG databases for the evaluation of 

biometric systems, a new database is collected. The data collection protocol 

for this database is presented in Chapter 3. 

3) The results of a series of preliminary investigations are reported in Chapter 4, 

aimed at establishing the initial parameters of the EEG-based biometric 

systems that will be used in the rest of this work. 

4) The impact of different types of sensory activities on EEG signals for 

biometric recognition is experimentally investigated in Chapter 5 with the 

purpose of finding the optimal stimulus in triggering the production of 

informative signals. This investigation relies on the use of a publicly available 

database with six types of task-related EEG data. 

5) Chapter 6 covers the feature extraction, where four new features are 

developed and their effectiveness experimentally evaluated.  

6) The quality of the resulting features after feature extraction has been found to 

vary substantially. Chapter 7 a quality filtering algorithm is developed aimed 

at preserving the EEG segments with relatively high quality before the feature 

extraction.  

7) In Chapter 8, a novel instance-based template reconstruction learning 

algorithm is developed for classification. One major motivation for 

developing the new algorithm is to alleviate the template ageing effects of 

EEG biometrics, while using low-cost sensor for data collection.  

The overall thesis structure is illustrated by Fig.1.1. Each chapter is devoted to 

addressing its corresponding research questions; the bold blocks indicate the chapters 

which contain original contributions. 

Introduction
(Chapter 1)

Literature 
Review

(Chapter 2)

Experimental 
Framework
(Chapter 3)

Preliminary 
Investigation
(Chapter 4)

Task Sensitivity 
Analysis

(Chapter 5)

Pre-processing
(Chapter 6)

Feature 
Extraction
(Chapter 7)

Feature 
Filtering

(Chapter 8)

Feature 
Classification
(Chapter 9)

Discussion and 
Conclusion

(Chapter 10)
 

1Fig. 1.1 Thesis structure 
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1.3  Contributions 

There are three major contributions in the thesis: 1) a new database was created 

particular for EEG biometrics recognition; 2) several new features were developed to 

improve the biometric system; 3) novel classification algorithms which led 

considerable boost in recognition performance.  

The new database is designed to address some critical issues in the EEG biometric 

field. The publicly available databases used for biometrics do not have the potential 

for researchers to investigate the template consistency/changing issue, however, the 

EEG signals as biometric templates are found inconsistent over time. It is, therefore, a 

big obstacle in the path of its practical implementation.  

Four new features are presented in the thesis. Two wavelet-based features and two 

features based on improved empirical mode decomposition (EMD). One of the EMD-

based features provided the best biometrics recognition performance [7]; the wavelet-

based features, however, indicated much faster processing speed than the EMD-based 

features during the feature extraction stage. It needs to note that the inefficiency of 

the EMD-based method mainly stem from its recurrent sifting process, the 

optimization of the programming is only a minor negative factor.  

A novel instance-based template reconstruction algorithm is developed and tested 

using multiple EEG databases. The proposed algorithm is particularly advanced in 

dealing with the temple consistency/changing effects over time. The experimental 

results obtained from the self-collected database showed significant improvements. 

1.4  Limitations 

One limitation of the specially-designed database is the number of subjects included 

for data capture using the low-cost sensor system. The self-collected database 

contains 27 subjects with recordings from multiple sessions made on different days, 

which may still not be large enough to justify the statistical significance of the 

obtained results. Furthermore, due to the quality of the data from the low-cost sensor, 

it can be predicted that with the number of subjects further increasing, the recognition 
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performance of the EEG biometric system tends to reduce. The next chapter is 

devoted to the literature review of the relevant research. 

1.5  Publications 

The following papers have been published based on the work reported in the thesis: 

 Su Yang, and Farzin Deravi, ―On the Effectiveness of EEG Signals as a Source of 

Biometric Information‖, Proc. Third Int’l Conf. Emerging Security Technologies 

(EST), pp.49-52, 2012. 

 Su Yang, and Farzin Deravi, ―Wavelet-Based EEG Pre-processing for Biometric 

Applications‖, Proc. Fourth Int’l Conf. Emerging Security Technologies (EST), 

pp. 43-46, 2013. 

 Su Yang, and Farzin Deravi, ―Quality Filtering of EEG Signals for Enhanced 
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Chapter 2 

Previous Work on EEG Signal Acquisition and Analysis 

Electroencephalography (EEG) is a recording of the electrical activities of the brain 

along the scalp, which is generally considered as a non-invasive data collection 

method. EEG measures the voltage fluctuations resulting from ionic current within 

the neurons of the brain [8], therefore, it may be employed to measure some inner 

characteristics of the brain. One of the earliest investigations on the brain-related 

functions is monitoring the electroencephalographic signals of animals (rabbits‘ and 

monkeys‘ brains, in 1890) [9][10]. The first human EEG was recorded in 1924 [3], 

later the EEG gradually became a useful tool in diagnosing brain disease (epileptic 

seizures [11], for instance). Considering the physiological differences between 

individual‘s brains, EEG signals may be expected to possess the potential to not only 

indicate the brain‘s functions, but also dissimilarities between individuals as 

manifested by the electrical activity of their brains. Such an assumption has led to 

attempts at developing works on EEG-based person recognition systems, where EEG 

signals are used as a biometric modality. 

The EEG signal has been employed as a biometric modality by a number of 

researchers in the laboratory environment (for example in [6]); however, many 

problems still remain and need to be addressed before considering its application in 

real-life scenarios. The main goal of this investigation is to extensively review the 

existing research in using EEG signals for biometric recognition. It also highlights the 

current challenges which potentially hinder the wider deployment of EEG biometrics, 

mainly surrounding the issue of practicality and usability.  

Some useful survey papers reviewed the existing EEG biometric works focused on 

different angles. Study in [12] addresses the EEG biometric reports from the 

theoretical aspects, including brain rhythms and elicitation protocols. Another paper 

[13] focuses on reviewing the state-of-the-art methods and future perspectives of 

using EEG for biometric applications. This work focus on investigating the usability 
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aspects of the EEG-based biometric systems, also propose some suggestions to 

improve the system performance in the real-life environment. 

This chapter is organized into four major sections: a review of the sensors and 

stimulus used to trigger and acquire EEG signals for person recognition is presented 

in Section 2.1. In Section 2.2 a survey of the techniques used in generating features 

for EEG biometrics is provided. Section 2.3 describes the relevant techniques in EEG 

biometrics for classification. Section 2.4 first explores a series of factors that affect 

the usability of an EEG biometric system, followed by introducing a metric which 

combines these factors to provide a better measurement of the usability of the systems. 

Section 2.2 and Section 2.3 represent the main stages in EEG biometrics analysis: 

Section 2.2 includes both signal pre-processing (such as temporal segmentation) and 

feature generation. Section 2.3 covers feature selection and classification stages. In 

Section 2.4, a series of comparisons of the published systems using the new metric 

are presented, which are grouped by different feature extraction techniques. Template 

ageing effects in EEG biometrics is also included in this section, as it affects the 

ultimate effectiveness and usability of EEG biometric systems. Conclusions are 

presented in Section 2.5. 

The detailed structure of this chapter is illustrated by Fig. 2.1. The signal acquisition 

section is divided into three subsections: resting, sensory and cognitive. Feature 

extraction/generation section is further divided into five subsections based on the 

techniques reported in the literature: Subsection 2.2.1 is devoted to features based on 

the Fourier Transform; feature extraction based on Autoregressive (AR) Models is 

included in Subsection 2.2.2; Subsection 2.2.3 is related to Wavelet Transform 

methods; the Hilbert-Huang Transform (HHT) and its related methods for feature 

extraction are described in Subsection 2.2.4; in Subsection 2.2.5 other methods are 

compared. The feature classification section is divided into four subsections: k-

Nearest Neighbour methods are covered in Subsection 2.3.1; Subsection 2.3.2 is 

devoted to the classification using some linear classifiers. EEG signal classification 

using Neural Network methods are included in Subsection 2.3.3; Kernel methods and 

their application in EEG biometrics are described in Subsection 2.3.4. A new metric 
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which contains four usability-oriented factors along with the recognition accuracy is 

then proposed to evaluate the overall usability of an EEG biometric system. 

Feature 
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(2.2)
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2Fig. 2.1 Structure of this chapter 

2.1  Signal Acquisition 

Two types of sensor system have been used for biometric purposes: a) medical-grade 

sensor systems and b) low-cost sensor systems. The medical-grade systems 
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conventionally contain large number of electrodes for data capture; the sensors 

usually need to be moistened by electrolytes, such as saline solution. Using such 

sensor system can obtain signals with much better quality, but the deployment of the 

wet sensors could become a shortcoming in EEG biometric applications. The 

distribution of the electrodes over the scalp conventionally follow the 10-20 system 

[14] or 10-10 system [15]. The 10-20 system and 10-10 system are internationally 

recognized methods to describe and apply the location of electrodes over the scalp in 

the context of an EEG test or experiment. The "10" and "20" refer to the fact that the 

actual distances between adjacent electrodes are either 10% or 20% of the total front-

back or right-left distance of the skull [16]. The 10-10 system follows the same 

notion as 10-20 system, but with higher density of the electrode distribution over the 

scalp. On the other hand, low-cost sensor systems contain a very small amount of 

electrodes (even single electrode), using the dry sensor(s) to reduce the cost and 

improve the usability of the system.  Fig. 2.2 highlights the data capture 

characteristics of these two data capture systems. 

(a) (b)
 

3Fig. 2.2 (a) A 64 electrodes positioning map based on 10-10 system [15]; (b) A single Fp1 electrode 

low-cost headset [17]. 

As a relatively new biometric modality, many sensor systems used in the research for 

EEG person recognition are directly those used in the medical field. Therefore, the 

number of electrodes usually is large and the sensors are scattered all over the scalp 

[14]. Sensor systems that have been used in biometrics research include, for example, 
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the BCI2000 system [18][19]. On the other hand, to be considered as a successful 

biometric modality, good recognition performance is a necessity but may not be 

enough: a sensor system with less demanding characteristics are equally important in 

the application. Researchers have, therefore, been testing the performance of low-cost 

sensor headsets for biometric recognition. Popular headsets such as Emotiv [20] and 

Neurosky products [17] have been tested in biometric scenarios. Emotiv EPOC is the 

first low-cost sensor system that using electrolyte [20]; the chips of Neurosky 

products have been used in many inexpensive EEG collection devices. Table 2.1 

shows some commercial low-cost EEG sensor systems, which are or potentially could 

be used for biometric person recognition. 

1Table 2.1 List of market available low-cost EEG headsets 

Device Electrode(s) 
Sensor 

type 
Released 

NeuroSky MindSet [21] 1 dry 2007 

Neural Impulse Actuator [22] 3 dry 2008 

Emotiv EPOC [20] 14 wet 2009 

Mindflex (Uses NeuroSky chips) 1 dry 2009 

MindWave [21] 1 dry 2011 

XWave headset (NeuroSky chips) 1 dry 2011 

Melon Headband [23] 4 dry 2014 

HiBrain [24] 1 dry 2014 

iFocusBand [25] 1 dry 2014 

Muse [26] 4 dry 2014 

OpenBCI [27] 8 or 16 dry/wet 2014 

Aurora Dream Headband [28] 1 dry 2015 

Emotiv Insight [20] 5 dry 2015 

The choice of EEG sensor(s) and their placement have a significant impact on the 

performance and usability of EEG biometric recognition systems. It worth 

mentioning the sensitive frequency ranges of EEG signal. The typical EEG bands are 

traditionally divided into several bands, namely: delta (< 4 Hz), theta (4 Hz – 7 Hz), 

alpha (8 Hz – 15 Hz), beta (16 Hz – 31 Hz) and gamma (> 32 Hz) [29]. Usually, only 

the frequency below 50 Hz is taken into consideration in EEG biometric recognition. 

An essential aspect to EEG data acquisition for biometric person recognition is the 

state of the brain and the nature of its activity. The identity information bearing 
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signals that are produced by the brain may crucially depend on the type of brain 

activity in which the user is engaged. Often there may need to be a predefined 

stimulus to evoke the desired brain activity for producing consistent results. The 

choice of stimulus that would result in optimal production of identity-bearing signals 

for biometric person recognition purposes is still a subject of research. In the 

following sections, some relevant published approaches are surveyed covering three 

types of brain stimulation: resting state, sensory (audio/visual) stimuli and cognitive 

tasks - (verbal instructions). 

2.1.1 Resting State 

For the data acquisition process during the resting state, usually the subject is asked 

to sit on a chair in a quiet environment, either with eyes open or closed. The resting 

state scheme is the least demanding in terms of the need for additional equipment to 

generate an external stimulus: the users passively providing EEG signals without 

extra instruction during the data collection. 

Su et al. [30] used only the Fp1 position (frontal region) electrode  for data collection 

from 40 healthy subjects while resting on a sofa with their eyes closed. Each subject 

provided 60 minutes of recordings (12 separated sessions) in total and half of this 

data was randomly selected for training and the rest was used for testing. A correct 

recognition rate (CRR) of 97.5% was reported. 

Rocca et al. [31] reported person identification performance using two resting state 

subsets of a relatively large (108 subjects) publicly available EEG database: one with 

eyes open and the other with eyes closed. Of the one minute‘s EEG recording for 

each subset per subject, data of ten seconds were used for testing and the rest for 

training. Performance of 100% CRR was achieved by the fusion of conventional 

power spectral features and a functional connectivity feature that they proposed. 

Fraschini et al. [32] employed the same dataset for a verification scenario, an Equal 

Error Rate (EER) of 4.4% was obtained using the ―eigenvector centrality‖ features 

extracted from gamma band (30 Hz-50 Hz). 
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A potential obstacle of using the resting state EEG data for biometrics recognition 

may be the ambiguity of the instruction for users, which may be interpreted by the 

subject in different ways and resulting in incommensurable data. 

2.1.2 Sensory Stimuli 

An event-related potential (ERP) is one kind of  brain response that directly triggered 

by ―a specific sensory, cognitive, or motor event‖ [33]. The P300 wave is one such 

ERP component obtained during the process of decision making, such as the reaction 

to the oddball paradigm [34]. ―Research indicated that when P300 signal was 

recorded by EEG, it surfaces as a positive deflection in voltage with latency (delay 

between stimulus and response) of roughly 250 to 500 ms‖ [35].  P300 is one type of 

visual evoke potential (VEP), which belongs to the ERP category. In order to obtain 

visual evoked data, subjects often are instructed to watch a series of fast 

flashing/moving pictures: the EEG data (a matter of milliseconds) after each picture 

flash is recorded for analysis. One advantage of using the VEP data for biometric 

recognition is that the expected waveforms could be accurately measured during the 

feature extraction. For instance, the P300 waveform can be detected at 250 

milliseconds to 500 milliseconds after the visual stimulus. Researchers have been 

using this particular waveform for person recognition. 

Palaniappan et al. [36] employed the P300 Visual Evoke Potential (VEP) for feature 

extraction while people were viewing a set of standardized pictures originally 

proposed in [37]. The experiment comprised of 10 subjects using an EEG cap with 61 

electrodes. The maximum identification rate achieved was 95% using the data 

recorded in a single session (part of the session used for training and the rest for 

testing). Similar but improved approaches have been tested using databases with 

larger population leading to the maximum performance of 98.12% with a database of 

102 subjects [38][39][40][41][42]. 

In [41], Davies Bouldin Index (DBI) has been used to filter out the less informative 

electrodes: 35 out of 61 electrodes were selected, tested using a database of 40 

subjects. The gamma band VEP data was extracted using an Elman neural network 
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for the system training: a maximum recognition rate of 98.56±1.87% was reported. It 

was mentioned in this work that, though the performance would have been further 

improved by utilizing all the electrodes‘ data, the increased complexity of deploying 

more electrodes is not justified for about 1% improvement in accuracy that will result. 

One possible drawback of using visual stimuli for biometric applications is the need 

for external devices to trigger the VEP signals. This may make the resulting biometric 

system more complex compared with alternatives based on using the resting state or 

directed cognitive activity. 

2.1.3 Cognitive Activities 

Considering the limitations of the resting state and sensory stimulus approaches for 

EEG biometric applications, researchers have explored other approaches which may 

result in brain signals that are more repeatable, and potentially more individually 

distinctive. The cognitive stimulus involves asking subject(s) to perform various 

cognitive tasks during the data collection: could be actual movement tasks or imagery 

tasks. The use of cognitive stimuli was first reported in 2005 when EEG data 

recorded during the performance of a variety of mental tasks (including: 

mathematical calculation, geometric figure rotation, mental letter composition and 

visual counting) were first used in an identification scenario to distinguish 4 subjects 

[43]. 

Marcel et al. [44] used the data captured while imagining hand movements for a 

biometric authentication scenario. Power Spectral Density (PSD) features of EEG 

signals from different subjects were compared using Gaussian Mixture Models 

(GMM) and, a half total error rate of 7.1% was reported for 9 subjects using 8 

electrodes (using data recording of 16 minutes for training and 4 minutes for testing). 

Gui et al. [45] recorded EEG signals from 30 subjects performing a series of reading 

tasks. Two types of features were extracted by measuring the Euclidean Distance and 

Dynamic Time Warping between the EEG signal series of each individual. 55 

seconds of recording per subject were obtained. About 10 seconds‘ data were 

randomly picked for training and another 20 seconds were used for the test. An 
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identification rate of 81%, using an electrode in the Oz position, with the Euclidean 

Distance derived features was employed. 

One major issue in employing EEG as a biometric modality has been the complexity 

of setting up the data acquisition system, especially when high-end medical devices 

are used for data acquisition. Therefore, the use of low-cost sensors has become an 

interesting subject for research despite their expected low signal quality. Chuang et al. 

[46] reported a system which employed only a single Fp1 electrode (NeuroSky 

MindSet [17]); two 40-50 minute data acquisition sessions on separate days were 

conducted. Different activities were performed, including: Breathing, Eye and Audio 

Tone, Object Counting et cetera (7 tasks). The half total error rate (     
       

 
) 

of 1.1% for a database of 15 subjects was 99%. However, an identification rate of 

only 22% was achieved using the same database. 

Similar to the EEG signals captured during the resting state, the mental/cognitive 

task-stimuli also suffer from the ambiguity problem. However, usually the challenge 

of employing such tasks does not stemmed from the task instruction or user‘s 

interpretation, but from the data analysis. It is often difficult (if not impossible) to 

extract the task-related content from the overall data for analysis and leave behind the 

part of the brain activity that is not related to the task and does not carry identity 

information: commonly all of the data acquired during a recording session is analysed 

regardless the nature of the task. 

2.2  Feature Extraction 

The choice of features is crucial to the performance of an EEG biometric system. The 

nature of EEG signals affects the developing of the biometric features: some features 

reported in the literatures are based on Fourier Transform, which are designed to 

capture the energy/spectra of the signals; as time series, some features are designed to 

capture the time-dependent information of the EEG signals; some wavelet-based 

features are developed to capture both the time and the frequency characteristics of 

EEG signals. 
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An extensive review of the published research using different feature extraction 

techniques for EEG biometrics is provided in this section. Each subsection begins 

with a brief description of the technique‘s rationale, followed by the related literature 

reports. 

2.2.1 Power Spectral Density (Fourier Methods) 

One of the frequently employed features in EEG biometrics is the Power Spectral 

Density (PSD). Conventionally, the PSD feature is computed from the Fourier 

Transform (FT) of the time-domain signal, which indicates the spectral density 

distribution of the signal in the frequency domain (though it is possible to compute 

the PSD from the time domain series directly). However, FT is only well-defined 

when the signal is stationary [47], and many bio-signals such as EEG signals are non-

stationary series. Therefore, usually the truncated Fourier Transform  ̂ ( ) over a 

finite interval [0, T] is computed instead. Within that interval the signal is assumed to 

be stationary and the PSD   ( )  of the signal  ( )may be computed as follows [47], 

where  ̂ ( ): is the Fourier Transform of  ( ) [47]: 

  ( )     
   

 ,| ̂ ( )| -  (2.1) 

As one of the most popular features in EEG biometrics, PSD was first employed in an 

identification scenario in 1999. Poulos et al. [6] proposed to utilize the spectral 

information of EEG signals to distinguish persons‘ identities. Four subjects, each 

with 45 three-minute recordings were involved in the experiments. Another group of 

75 subjects treated as a single class, each with only one recording per subject, was 

also used for classification against the other four subjects. The voltage between O2 

and Oz positions was measured and used in their investigation. The power spectral 

values of three overlapping frequency bands were used as features: 7-10Hz, 8-11Hz 

and 9-12Hz. The features were fed into a Learning Vector Quantization (LVQ) 

network for classification. A series of binary classifications were conducted: data 

from one class of the four subjects was compared with the 75 subjects-group (as the 

other class) in the dataset. The correct recognition rate obtained ranging from 80% to 
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100% across the four subjects. Their experimental results clearly indicated there were 

certain individual differences amongst subjects.  

Palaniappan et al. also proposed to use power spectra as the feature for EEG-based 

identification [48]. They employed the power spectra which centred around 40 Hz 

(Gamma band) while 10 users were subjected to a series of flashing picture sets 

containing various objects. The users were asked to view a picture of a single object 

for each data recording; each subject provided 40 VEP signals (recordings), in a 5.1s 

time interval. A medical-grade system with 61 electrodes was used for data 

acquisition. The features were passed on to a fuzzy ARTMAP (FA) classifier and an 

identification rate of 95% was reported. An interesting aspect of this work was the 

relatively short training time of about 3 minutes. 

PSD features have been used for identification within a larger population of 102 users 

in [42]. A series of different power spectral features with increased bandwidth (25 to 

56 Hz, still within gamma band) were developed using the Multiple Signal 

Classification (MUSIC) algorithm. Visual stimuli were employed to trigger 

informative events for biometric recognition. A Manhattan distance-based k-NN 

classifier was used, reporting a maximum CRR of 98.12%. However, the sensor 

system contained all the 61 electrodes in order to reach this performance level.  

Using EEG-based power spectral features in a verification scenario was explored by 

Marcel et al. in [49]. The power spectral density within the 8-30Hz band from eight 

centro-parietal channels (C3, Cz, C4, Cp1, Cp2, P3, Pz, and P4) was estimated. The 

data was collected from 9 subjects, in 12 sessions over 3 days (4 sessions per day). 

Each session per day lasted 4 minutes with 5 to 10 minutes of break; three tasks were 

assigned to each subject (imagination of repetitive self-paced left hand movements; 

imagination of repetitive self-paced right hand movements; generation of words 

beginning with the same random letter), thus three records per session. A Gaussian 

Mixture Model (GMM) was employed for modelling the features. Maximum A 

Posteriori (MAP) classification was used to predict the user identity. A minimum 

Half Total Error Rate (HTER) of 7.1% was reported.  
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Safont et al. investigated the performance of EEG signals in an authentication 

scenario for a larger database [50]. Data from two forehead electrodes (Fp1 and Fp2) 

were used; subjects were sitting in a dark room in a resting state during the data 

capture. A series of different features including PSD were used for feature extraction. 

A population of 70 subjects was used for the verification evaluation, 20 of them acted 

as intruders and the rest were considered genuine. Genuine subjects had data 

recording durations ranging from 3 to 5 minutes and each intruder provided 2 minutes‘ 

data. A relatively good performance of 2.4% EER was reported. However, the data 

contained only one session per subject and the effect of template ageing could not 

have been measured. 

PSD-based features have also been used for a single sensor system. According to the 

work reported by Miyamoto et al.[51], the data obtained from the Fp1 position was 

used for analysis while subjects were in a resting state with eyes closed. Variance of 

the power spectrum (alpha band) was computed and used in a verification scenario. 

The collected dataset contains 23 subjects; each subject was recorded for 3 minutes in 

the same day (single session). The reported equal error rate was 21%. The higher 

error rates compared to some other multi-electrode acquisition systems may be 

attributed to the substantially reduced biometric information available when only a 

single electrode is used. 

To alleviate this degradation in verification performance, the concavity and convexity 

of the alpha band spectral distribution were explored in [52]. An improved EER of 11% 

was achieved using the same database (23 subjects resting status). The novelty of this 

work lies in not only measuring the short-term energy value of the signal (PSD), but 

also the overall spectral distribution (shape) of the signal over a period of time as well. 

The identification performance of a single EEG electrode was investigated using a 

database comprising of 40 subjects in [30]. Data from the Fp1 electrode was collected 

while subjects were in a resting state with eyes closed. The PSD coefficients within 

selected frequency ranges were used as features (5 Hz to 32Hz). Five separated 

recordings of about 12 minutes in total for each user were obtained and 50% of all the 
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data per individual was used for training a k-NN classifier. An identification accuracy 

of 97.5% was reported. 

Using low-cost sensors systems for EEG biometrics in conjunction with PSD features 

has also been explored [46]. The NeuroSky MindSet [17] single sensor system has 

been used for data collection: different mental tasks were performed by each subject 

and repeated five times per session. Two sessions of data on separate days (40-50 

minutes with multiple tasks per session) were captured; PSD coefficients of alpha 

band (8-12 Hz) and the beta band (12-30 Hz) were extracted; the cosine similarity 

was used for classification in the verification scenario. The reported HTER was 1.1% 

by applying a ―customized threshold‖ [46] for 15 subjects. 

The EEG Motor Movement/Imagery Dataset (containing data of four mental tasks 

and two resting state tasks)  has been used for evaluating  EEG-based biometric 

systems [31]. Rocca et al. used only its baseline data (resting state of one minute, 

single session) for identification. A CRR of 100% was reported for a population of 

109 subjects by fusing the conventional PSD and a spectral coherence connectivity 

feature they proposed. However, this data were obtained from a single recording, 

therefore, using part of this single recording for training and the rest for testing may 

lead to positively-biased results as it ignores any template ageing/changing effects 

that may be present, due to the unstable nature of the EEG signals 

2.2.2 Autoregressive Model (AR) 

AR models have been another very popular feature since the early development of 

EEG biometrics [5]. An AR model is a time domain representation of a random 

process. The classic AR model for a random process    is defined as follows [53]: 

     ∑  

 

   

        (2.2) 

where         are the coefficients of the model,   is a constant and    is the white 

noise. Expression (2.2) can be equivalently re-written using the following form by 

employing the lag operator B: 
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     ∑  

 

   

        (2.3) 

as such, the signal    can be represented by a series of AR coefficients    and white 

noise   . The AR coefficients may reveal certain intrinsic characteristics of EEG 

signals, and therefore, suitable candidates as biometric features.  

One of the early work using AR coefficients for EEG biometrics is reported by 

Paranjape et al. [54]. In their experiment, data from 40 subjects was obtained from 

one electrode (at the P4 position). The data recorded for each subject contained 8 

epochs (8.533 seconds per epoch) while subjects were in a resting state. A correct 

classification rate of 80% was achieved using a Linear Discriminate Analysis (LDA) 

classifier. As an early EEG biometrics paper, the highlight of the experiment was the 

use of only one electrode for identification; however, the manual contamination 

removal that was used for data preparation maybe considered as a restriction on its 

applicability. 

Using AR coefficients as features in a verification scenario was also investigated by 

Riera et al. [55]. They reported a True Acceptance Rate (TAR) of 96.6% in a 

database containing 87 subjects; 36 of which acted as impostors. Data capture was 

conducted while subjects were in a resting state. The recording length for each 

subject was between 2 to 4 minutes; the genuine subjects were recorded at 4 sessions 

in different days whereas the impostors were recoded only once. Only two frontal 

electrodes (Fp1 and Fp2) were used and the frequencies above 50 Hz were removed.  

Fisher‘s discriminant analysis was used for classification and an EER of 3.4% was 

reported. This result was obtained by using a number of different features (including 

PSD) and the outputs from separated classifiers were combined by fusing the scores 

provided by 28 Fisher‘s discriminant analysis classifiers with different features. 

AR coefficients also seem to work fine for other kinds of EEG stimuli. Brigham and 

Kumar [56] demonstrated that using the EEG signals while subjects were imagining 

language syllables could achieve successful person identification. The subject 

imagined two syllables without performing any overt physical actions during the data 

recording process. The employed data acquisition system contained 128 electrodes 
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and the data produced by 106 of them were kept for feature extraction. Only six 

volunteers were involved in the experiment and a CRR of 99.76% was achieved using 

a Support Vector Machine (SVM) for classification.  

Campisi et al. investigated the recognition performance  Under an "Eyes Closed 

Resting Conditions" protocol [57]. The data was captured from 48 subjects. The sixth 

order AR coefficients were used as features with a polynomial regression-based 

classification. A genuine acceptance rate of 96.08% was reported by using a data 

capturing device that comprised of 56 electrodes with a sampling frequency of 200 

Hz. One major limitation of this database was that still only a single data recording 

session of 1 minute was made and thus it was not possible to assess the usability of 

EEG signals for biometric recognition over time. 

AR-based features have also been tested using low-cost sensor system. Dan et al. [58] 

collected data from 13 healthy subjects using the NeuroSky MindSet single sensor 

headset. Data from three sessions were captured on different days; subjects were in a 

resting state with eyes closed during the data collection. A recognition rate of 87% 

was achieved using an LDA classifier. Comparing the results of [46] which used the 

same sensor device, it seems the AR features may be better suited in an identification 

scenario, while the PSD-based features may be a better choice for verification. 

2.2.3 Wavelet Transform (WT) 

Another relatively new and increasingly popular feature extraction method used for 

EEG biometrics is the Wavelet Transform. Wavelet-based features usually are 

derived from the wavelet coefficients    * +(   ), which can be computed using 

the following formula: 

   * +(   )  〈      〉  ∫  ( )
 

     ( )   (2.4) 

where  ( )  is the time domain signal and     ( )  is the wavelet function. One 

advantage of wavelet-based methods is the flexibility of choosing the wavelet 

function     ( ): different wavelet functions with different scale (a) and shift (b) 

could be selected to suit specific applications. Moreover, the wavelet transform can 
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be designed to preserve signal content from specific ranges of both time and 

frequency in the wavelet domain which could potentially provide more relevant 

information in the feature space [59].  

Gupta et al. [60] proposed the use of Wavelet Packet Decomposition (WPD) to 

extract three typical EEG bands (delta, theta and gamma bands) with Daubechies 

(db4) and Coiflet (coif3) wavelets for biometric identification. The EEG signals were 

triggered by visual stimuli and the P300 VEP data from four subjects was captured 

using eight electrodes (around 200 seconds of recording per subject) and used for 

feature extraction. An identification performance of 85% was reported using a Radial 

Based Function (RBF) Neural Network (NN) classifier. 

Abdullah et al. [61] also explored the feasibility of using WPD for feature extraction. 

Their data were collected from 10 subjects, in 5 separate recording sessions over a 

course of 2 weeks. Each session consisted of 5 trials where each trial consisted of 5 

tasks: eyes open, eyes closed, imagining right index finger movement, imagining left 

leg movement and puzzle solving. The mean, standard deviation, and entropy values 

of each wavelet coefficient vector were computed and used as features. 90% of all the 

data per subject were used for training a Neural Network (NN) classifier and the 

remaining 10% were used for testing: using just 4 electrodes (from the eight available 

electrodes) gave classification rates between 96% and 97%; using 2 electrodes gave 

classification rates from 90% to 95%. Using just a single electrode the results ranged 

from 70% to 87%. 

2.2.4 Hilbert-Huang Transform (HHT) 

The Hilbert-Huang Transform is a relatively new algorithm initially reported in 1998 

[62]. Though it was designed for dealing with non-stationary signals, its use for EEG 

biometrics is still fairly rare. The HHT comprises two main steps: 1) in a process 

called Empirical Mode Decomposition (EMD) to generate the Intrinsic Mode 

Functions (IMF) and 2) performing the Hilbert Transform on each IMFs.   

Given a signal  ( ), the effective algorithm of EMD can be summarized as follows 

[62][63]: 
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1) Identify all extrema of  ( ). 

2) Interpolate between minima (resp. maxima), ending up with some ―envelope‖ 

    ( )(resp.     ( )). 

3) Compute the average  ( )  (     ( )      ( ))  . 

4) Extract the detail  ( )   ( )   ( ). 

5) Iterate on the residual  ( ). 

In practice, the above procedure has to be refined by a ―sifting process‖ which 

amounts to first iterating steps 1) - 4) upon the detail signal, until this latter approach 

a zero-mean according to some stopping criterion. Once this is achieved, the ―detail‖ 

is considered as the effective IMF, the corresponding residual is computed and step 5) 

applies [63].  

The next step of HHT is for each IMF computing the Hilbert Transform. Denote the 

resulting IMF(s) after EMD by  ( ), the HT of  ( ) can be computed using (2.5): 

 ( )  
 

 
P∫
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where  ( ) is the result of HT and 
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P is the Cauchy Principal Value defined by (2.6), due to the otherwise ill-defined 

function (2.5) while    . 

Kumari et al. [64] recently suggested using an EMD-based coefficient of variation (a 

parameter that relates to the standard deviation and mean of IMFs) as the feature for 

EEG biometric recognition. In a preliminary investigation, using data from only three 

subjects, they claimed that person identification performance is sensitive to the scalp 

regions from which the EEG signals are extracted. 

2.2.5 Other Methods 

Besides the previously mentioned feature extraction approaches which are based on 

the three major transforms, other interesting features have been developed for EEG 

biometrics. Singhal et al. [65] proposed a novel time domain peak matching 
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algorithm using VEP stimulated EEG signals for identification. They reported a 

recognition rate of 78% for a ten subjects‘ database. From each subject 20 VEP 

recordings (6 seconds each) were obtained with half of them used to train the system 

and the rest for testing. 

Huang et al. [66] reported a simple but effective feature, tested using a relatively 

large VEP database (122 subjects). The proposed feature was the ―equivalent root 

mean square (rms) values for each electrode signal over a 1 second period‖. This 

seems to capture the transient energy after each visual stimulus (1 second after the 

stimulus). As a time domain feature, its advantage was the simplicity of computation 

combined with a relatively high performance. The CRR reached 95.1% using the data 

from 64 electrodes for 116 subjects.  

Event Related Potential was used for biometric recognition by Yearn et al. [67]. They 

claimed that showing the subject with self-face and non-self-face would trigger 

different VEP signals in the time-domain, which may be used for person recognition. 

A CRR of 85.5% was reported using a self-collected database which contained 10 

subjects. The data capture device was the BCI2000 [19] and only 18 electrodes were 

selected for data collection.  

Phung et al. [68] used the Shannon Entropy (SE) of alpha, beta, and gamma wave 

bands as features. The performance was compared with conventional AR-based 

features and achieved similar CRRs (97.1% versus 97.2%, for SE and AR). The 

advantage of the SE feature was claimed to be a much faster identification speed (2.3 

to 2.6 times faster than using the AR features). 

Gui et al. [45] employed two methods for EEG feature extraction: Euclidean Distance 

(ED) and Dynamic Time Warping (DTW). These two techniques were employed to 

measure the similarity between two EEG signal series for biometric recognition. The 

proposed methods were tested in a self-collected database with 30 subjects using a 

74-channel EEG cap. Only the data obtained from four electrodes (Pz, O1, O2, Oz) 

were used. The ED method was reported to have over 80% identification accuracy 

whereas the accuracy of the DTW method was about 68%. 
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Conventional Mel-frequency Cepstral Coefficients (MFCC), normally used for 

voice/speaker recognition, were used as features for EEG-based person identification 

by Nguyen et al. [69]. For a population of 20 subjects (subset of a public database 

with 122 subjects) an identification rate of 92.8% was reported using the data from 

selected eight electrodes. 

Considering these reported research trends, most of the feature extraction methods 

were based on visual stimuli. The experimental results using several newer features, 

despite their novel designs, were either comparable with conventional features such 

as AR coefficients and PSD ([66][68]) or worse than them ([65][67]).There is, 

therefore, a need for continued efforts to discover and develop new and more 

effective features for more robust EEG-based biometric recognition. 

Wavelet-based and HHT-based features have shown significant potential in EEG 

biometric recognition, and it is, thus, interesting to develop further new features based 

on these transforms and evaluate them in larger databases ( at least more than 100 

subjects) extending over longer periods of time to also assess their template ageing 

performance. 

2.3  Feature Classification 

After the choice of features, the next most important component for an EEG 

biometric system is the design of the classification scheme adopted and strategy used 

to prepare the classifier for a particular application. In this section an extensive 

review of the existing works using different feature classification techniques for EEG 

biometrics is provided. Each subsection begins with a brief description of the 

classification technique, followed by its related literature survey for EEG biometrics: 

the literature review is focused on highlighting the techniques used for classification.  

2.3.1 k-Nearest Neighbour Algorithms 

One frequently used algorithm in EEG-based pattern classification is the k-Nearest 

Neighbour (k-NN) rule. The basic principle of k-NN algorithms for classification is to 

compare the similarity or distance between the template feature samples and the 
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query (or test) samples; the test set tends to find its k nearest labelled samples in the 

training feature space and the decision can be made by a majority voting scheme 

within the considered training samples: if the k is set to 1, the algorithm becomes a 

simple nearest neighbour classifier and the decision making is solely dictated by the 

label of that nearest neighbour‘s class [70]. 

The learning process of k-NN directly uses the available training set, which makes it 

an instance-based machine learning algorithm [71]. Therefore, the classification is 

sensitive to the local (geometrical) distribution of the training samples, which may 

potentially lead to the instability of performance [72]. For instance, with the training 

set increasing, the local training feature distribution near a test set may change as well, 

which may lead to a change of the membership of the nearest neighbours and the final 

decision when k-NN is applied. Another shortcoming of the basic k-NN algorithm is 

that the density of the data clusters affect its performance and may lead to wrong 

decision making: depending on the parameter k, the decision may be biased towards 

the class with a high density of the cluster, and makes the k-NN classifier sensitive to 

noisy data [70]. To overcome this potential problem, some k-NN algorithms add the 

distance (d) weight (conventionally 1/d) as a contribution for decision making as well 

[70].  

Despite these shortcomings, k-NN does have one significant advantage: it does not 

have an explicit and distinctive training process. The available training samples 

(multi-dimensional feature vectors) only need to be stored together with their 

respective class labels and compared with the query samples directly. Such simplicity 

is a clear advantage over many other machine learning algorithms. Some of the 

following reports highlight this advantage (fast classification process) while 

employing the k-NN classifier for EEG biometric recognition. 

Palaniappan and Ravi [73] reported using a database which contains 20 subjects for 

identification. Their sensor system comprised of 61 electrodes, all of which were 

taken into consideration. The gamma band PSD feature was extracted and the 

Principal Component Analysis (PCA) was used for noise removal. Three different 

classifiers were employed for testing the classification performance: Simplified Fuzzy 
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ARTMAP (SFA), linear discriminant (LD) classifier and the k-NN classifier. 

Euclidean and Manhattan distances were used to locate the nearest neighbour for k-

NN. The reported CRRs of LD and the k-NN were almost the same (both around 

92%), though the highest performance was obtained by using LD (96%), but using k-

NN for the system training was found to be 3 times faster than SFA and 1.5 times 

faster than LD. 

Yazdani et al. also employed the k-NN classifier for person identification using VEP 

data [74]. A 61-electrode sensor system captured the EEG data from 20 subjects. AR 

and PSD coefficients were used as features. They claimed a 100% accuracy rate using 

a 5-NN classifier: the parameter k for k-NN was extensively tested from 1 to 100. In 

these experiments the optimal number of k in EEG biometrics usually tends to be 

relatively small. 

Fei et al. used data captured with a single electrode (Fp1) from 40 subjects [75]. An 

identification accuracy of 97.5% was obtained using a k-NN classifier along with 

Fisher‘s linear discriminate analysis for feature reduction. The recognition 

performance achieved using a support vector machine classifier was 81% in their 

experiments. 

2.3.2 Linear Discriminate Analysis 

According to its frequent appearance in the relevant literature and its high recognition 

performance, linear discriminate analysis (LDA) is by far one of the most popular 

classifiers in EEG-based biometric classification, For a classification problem, LDA 

assumes that the conditional probability density functions of multiple classes are 

normally distributed with equal class covariance[76]. In the Bayesian framework, the 

optimal solution can then be approached by computing the ratio of the inter-class 

variance       
  over the intra-class variance       

 : 

  
      
 

      
  (2.7) 

The score S of (2.7) is the likelihood ratio, which can be viewed as a threshold (often 

preferred to be maximized) in classification problems [77]. 
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A closely related technique to LDA is the so-called Fisher‘s LDA, which also 

occasionally appears in EEG biometrics literatures. The only difference between 

Fisher‘s LDA and the conventional LDA is that the Fisher‘s LDA does not make 

some of the assumptions of LDA such as normally distributed classes or equal class 

covariance [77].  

The work in [78] is one of the early reports which employed the LDA classifier to 

investigate the effectiveness of EEG signals for biometric person recognition. 

Publicly available data for five subjects performing mental tasks were used. A series 

of different features were computed, including AR coefficients, channel spectral 

powers, inter-hemispheric channel spectral power differences and inter-hemispheric 

channel linear complexity. A standard PCA algorithm was employed for feature 

dimension reduction and the resulting features were fed to a LDA classifier. The 

reported results indicated a minimum average recognition error of 0%.  

Sharing certain similarity with PCA, LDA could also be used for feature dimension 

reduction [74]. One of the arguable advantages of LDA (and particularly Fisher‘s 

LDA) over PCA is that LDA takes class differences into account when performing 

dimension reduction [79]. In [74], Fisher‘s LDA was used for dimension reduction 

before the feature vectors were fed into an optimized k-NN classifier (5-NN). Data 

from 20 subjects, contained in a publicly available database (with 122 subjects), was 

used for their experimental tests. All the data obtained from 61 electrodes were used 

for feature extraction: conventional PSD and AR coefficients were used as features 

and fed to a k-NN classifier and an accuracy of 100% reported. 

In [80] an LDA classifier was used with the spectral power, the maximum power, and 

the frequency of maximum power in the alpha band as features. Two sessions of data 

from four subjects were collected using ―one bipolar channel (O1A2)‖, and the time 

interval between the sessions ranged from 10 days to 5 months. The ―authentication 

performance‖ was reported as 98.33% with test recordings of 20 seconds duration. 

The results suggest robustness to template ageing (as opposed to the report in [81], 

which shown 10.9% of identification rate in the repeatability investigation).  
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2.3.3 Artificial Neural Networks 

Artificial Neural Network (ANN) forms a family of statistical learning algorithms 

inspired by biological neural networks (in particular the brain). These can be used to 

estimate or approximate functions that may depend on a large number of generally 

unknown inputs [70]. In general an ANN can be viewed as a network of simple 

classifiers; each classifier in the network is an activation function which only 

responds to the input from its previous neuron (function). The results of these 

functions are weighted and fused before they reach the final decision making.  

A typical ANN is defined by the following parameters [82]: 

 The interconnection pattern between the different layers of neurons 

 The learning process for updating the weights of the interconnections 

 The activation function that converts a neuron's weighted input to its output  

ANNs have been popular classifiers for EEG biometrics since this modality was first 

explored [6]. The work reported in [83] is one of the early studies which employed 

this kind of classifier for EEG-based person identification. In that study a ―multilayer 

perceptron NN with a single hidden layer‖ was used for classifying the data obtained 

from 20 subjects. A headset with 61 electrodes was used to capture 40 seconds of 

VEP data (in a single recording session). An identification accuracy of 99.06% was 

reported by computing the conventional PSD-based features from gamma band data 

(32Hz-40Hz). 

The report in [84] further increased the test population to 40 subjects, with the 

experimental framework following the work in [36]. Using the same feature and 

headset as in [83], the correct recognition rate increased from 99.06% to 99.62%. 

Half of the available pattern samples (i.e. 20 seconds from each subject) were used 

for training while the rest were used for testing. A three-layer Elman Neural Network 

(ENN) was used for classification. A detailed rationale for the design of the ENN 

may be found in [85].  

Using a single electrode (Cz) in an ANN-based identification scenario was 

investigated in [86]. Data from only three subjects was obtained was filtered to retain 
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the frequency ranges from 1 Hz to 12 Hz. The reconstructed time domain data was 

fed directly to a single hidden layer ANN, trained by the data from five trials (1 

second of visual stimulus per trial), and an accuracy of 100% was reported.  

Using a low-cost sensor system for VEP data collection was investigated by  Gui et al. 

[87]. They reported of using a  6 midline electrode system (―EASY CAP‖[88]) in an 

identification scenario for 32 subjects. Only the data obtained by the electrode placed 

in the Oz location was employed for feature extraction. The WPD was applied for 

noise-removal; the mean, SD and entropy of the resulting wavelet coefficient were 

computed as features. The VEP data was collected during the subjects reading. Each 

recording lasted for 1.1 second, the overall recording length contained about 55 

seconds per subject. 70% of the obtained data was used to train a ―feed-forward, 

back-propagation, multi-layer perceptron‖ neural network and the rest of the data was 

used for testing the recognition accuracy. A performance of around 90% in a one-

against-the-rest identification scenario (binary classification) was reported. They also 

reported that, in a conventional identification scenario (32 classes) the obtained 

accuracy was less than 11%, which indicated the low-cost single sensor system was 

still not reliable enough for realistic biometric scenarios.  

The quantity of data and time required for training ANNs is a major concern for 

effective deployment. The reported researches on EEG biometrics usually employ 

ANNs with simple structures (e.g. a single hidden layer). With the improvement of 

computational power, i.e. faster central processing units (CPU), and the employment 

of graphics processing units (GPU), the use of more complex networks, such as 

recurrent and convolutional neural networks, have shown great potential in pattern 

recognition [89]. The concept of ―deep learning‖ has been quite successfully 

implemented in many pattern recognition fields, including handwriting recognition 

and fast image processing [90]. Such classifiers hold great promise for application in 

EEG-based biometrics recognition. 
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2.3.4 Kernel Methods 

Kernel-based classifiers were proposed as early as the 1960s, with the invention of 

the kernel perceptron [90][91]. These algorithms became prominent with the 

popularity of the support vector machine (SVM) in the 1990s, when the SVM was 

found to be competitive with neural networks on tasks such as handwriting 

recognition [92].  

The SVM classifier integrates the notion of supporting vectors and kernel tricks. 

Given a set of training samples, SVM is designed to find the ―maximum-margin 

hyper plane‖ in feature space which indicates the maximum gap between two classes: 

the feature vector(s) which form the hyper plane(s) are called the ―supporting vectors‖ 

[92]. However, it often happens that the available data are not linearly separable in 

the original feature space. Therefore, it was proposed by Vapnik et al. [92] that the 

original finite-dimensional space may be mapped into a space with much higher-

dimensionality to make the separation easier in that space. The mapping of the 

original space onto higher/infinite spaces is called the ―kernel trick‖ [91]. Some 

commonly used functions (kernels) for this mapping in SVM are polynomial 

functions, the Gaussian radial basis function, and the hyperbolic tangent function [92].  

The classic SVM is a binary classifier and some combination strategies have been 

proposed to make it applicable for multi-class model training (more than two classes). 

Two conventional strategies are [93]: building binary classifiers which distinguish (i) 

between one of the labels and the rest (one-versus-all) or (ii) between every pair of 

classes (one-versus-one). Classification of new instances using the one-versus-all 

strategy is followed by a winner-takes-all rule, in which the classifier with the highest 

output function assigns the class. It is important that the output functions should be 

normalized to produce comparable scores. For the one-versus-one approach, 

classification is done by a max-wins voting rule, in which every classifier assigns the 

instance to one of the two classes, then the vote for the assigned class is increased by 

each new vote, and finally the class with the most votes determines the instance 

classification [94].  
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In the field of EEG biometrics, the use of SVM classifiers has also received attention. 

Using conventional AR coefficients features for classification, results were presented 

using three classifiers, namely Linear Discriminate Analysis (LDA), back-

propagation Neural Network and Support Vector Machine in [95]. The reported 

accuracies, using a small publicly available database with 3 subjects and using five 

electrodes, indicate that ANN and SVM provided comparable performance 

(identification accuracy ranges from 80.8% to 84.0%) and LDA outperformed both of 

them by more than 5% (89.5%). 

The SVM classifier was used with the data obtained using a  low-cost sensor system 

(Emotiv [20] with 14 electrodes) in [96] for 5 subjects. Each of them ―performed four 

different mental tasks‖ with an overall recording length of 150 seconds. A series of 

different features were extracted: 6th order autoregressive (AR) coefficients, power 

spectral density, and total power in five frequency bands, inter-hemispheric power 

differences and inter-hemispheric linear complexity. These features were fed into a 

one-versus-all linear Support Vector Machine [94]: for every subject, the data of four 

segments from four tasks (10 seconds per tasks) were combined and used for testing 

the performance, the rest of the data was used for training the SVM.  Classification 

accuracy of 100% was reported through the combination of two voting rules by 

computing the one minus the averaged half total error rate. 

To summarize the characteristics of the classifiers reviewed in this section, (of the 

four mentioned mainstream classification algorithms in EEG biometrics) those based 

on the k-NN algorithm tend to require the least computation time for model training, 

while maintaining acceptable recognition performance. Compared to k-NN classifiers, 

the SVM and ANN classifiers are more complex and they have the potential to 

achieve much better performance in EEG biometric recognition. Especially with the 

recent development of ―deep learning‖ algorithms, it is worth investigating the 

application of improved ANN techniques to EEG biometric recognition. The 

challenge here would be the availability of substantial training data would be required 

to train such large networks. The LDA algorithm has demonstrated very good 

performance amongst the results reviewed, and unlike the SVM and ANN classifiers 
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which can be quite time-consuming in training, LDA has a satisfactory trade-off 

between training/testing time and classification performance. 

2.4  Usability Investigation of the Reported Results 

In this section, five factors affecting usability in practice are investigated and 

combined to provide one single metric to provide an indication of the potential 

usability of the EEG-based biometric systems. The use of EEG data for person 

recognition has been researched since 1998 and more than 100 papers in this field 

have been published. Most of these papers focused on the performance using 

conventional accuracy metrics (in both the identification and verification scenarios). 

However, the EEG signal as a biometric modality contains its particular 

characteristics: to objectively evaluate an EEG biometric recognition system and 

assess its potential suitability for real-life applications, the performance of EEG-based 

biometrics system needs to be evaluated based on more factors than the recognition 

accuracy only.  

Besides the conventional accuracies, there are at least another four factors which 

should be taken into consideration for assessing the practical usability of the reported 

EEG-based recognition systems: 1) number of the subjects for which the system was 

designed or tested on (N); 2) number of the electrodes employed (K); 3) the recording 

duration of the training set (Tr) and 4) recording duration of the test set (Te).  

The number of electrode(s) used for the data collection has a large impact on the 

usability of the EEG-based biometric system: small number of electrodes is expected 

in the real-life scenarios. The EEG recordings employed for system training, and 

particularly the time required to achieve the person recognition are quite influential 

factors. The number of the subjects employed also indicates the capability of a given 

biometric system. Training and test durations (in second) are proposed to be used 

here instead of the number of samples, as in the actual application it is the time to be 

spent by user(s) and the computational efficiency that matters.  

Including the correct recognition rate (CRR), five factors in total may be considered 

together in evaluating a system. Of these five factors, K, Tr and Te are should ideally 
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be as small as possible for practical deployment; N and CRR should be as large as 

possible. Therefore, the following metric (2.8) is proposed to combine these factors 

and produce an overall score, U, to evaluate the system: 

  
         

       
 (2.8) 

This score which indicates the ―effectiveness‖ or usability of an EEG biometric 

system can therefore be used to provide a meaningful comparison of the systems that 

have been covered in this review: the higher the value of U, the better the system‘s 

overall usability. The time required for the user to provide data in normal use is 

represented by the testing time (Te) and is considered to have a greater weight in 

establishing the usability of the system compared with the one-off time required for 

training Tr: since the tests may be conduct multiple times, the number of electrodes K 

is used as the weighting parameter in (2.8). 

In the following subsections the proposed metric is used to compare the proposed 

systems covered in the review. These are grouped by the different feature types that 

have been used for classification, as it was shown in Section 2.2 that the choice of 

feature is most crucial in developing EEG-based biometric system.  

2.4.1 PSD-based Systems 

As it was stated in Section 2.2.1, PSD features have been amongst the most popular 

used for EEG biometric recognition. Table 2.2 compares, with the help of the 

proposed metric, the effective usability of some reported systems that employ these 

features. The order of the listed papers follows the year of the publication in 

ascending order. As it can be observed in Table 2.2, the overall usability scores (U) 

generally tend to increase as the year of publication increase, which indicating a trend 

of improving usability of EEG biometric systems. The highest score listed in the table 

reached S=33.33, which indicates the best overall performance using PSD-based 

features amongst the papers covered in this review. 

 

 



38 
 

2Table 2.2 Identification Comparison of the reports using PSD for feature extraction 

Reports N K Tr(s) Te(s) CRR(%) U 

Poulos et al.99'[5] 4 1 3600 4500 95 0.05 

Palaniappan et al.02'[36] 10 61 20 20 95 0.76 

Palaniappan 03'[38] 20 61 20 20 94.18 1.52 

Palaniappan 04'[83] 20 61 20 20 99.06 1.59 

Ravi.et al.05'[39] 40 61 20 20 96.63 3.13 

Palaniappan et al.07'[41] 40 35 20 20 98.56 5.56 

Palaniappan et al.07'[42] 102 61 20 20 98.12 8.33 

Sun Shiliang 08'[97] 9 15 540 270 95 0.1 

F.Su et al.10'[30] 40 1 1800 1800 97.5 1.09 

Hema et al.10'[98] 15 2 160 40 89.95 5.56 

Zhao et al.10'[99] 10 1 100 50 96.77 6.25 

Quintela et al.10'[100] 70 8 45 45 99.1 8.33 

Rocca et al.14'[31] 108 64 50 10 100 16.67 

Bai et al.14'[101] 20 32 10.8 1.2 97.25 33.33 

2.4.2 AR-based Systems 

Feature extraction based on AR coefficients is another popular approach in EEG 

biometrics (Section 2.2.2); some relevant reports with experimental details are 

compared in Table 2.3 using the proposed usability metric. Based on this metric, the 

best performed system using the AR features performed better than the best system 

using the PSD-based features amongst the papers reviewed in this survey. 

3Table 2.3 Identification Comparison of the reports using AR coefficients for feature extraction 

Reports N K Tr(s) Te(s) CRR(%) U 

Poulos et al.99'[102] 4 1 3600 4500 72~84 0.04 

Poulos et al.99'[5] 4 1 1800 6300 91~97 0.05 

Paranjape et al.01'[54] 40 1 34 34 80 50 

Poulos et al.02'[103] 4 1 3600 4500 99.5 0.05 

Palaniappan et al.05'[43] 4 6 50 50 99.04 1.14 

Palaniappan et al.06'[78] 5 6 50 50 99.88 1.43 

Yazdani et al.08'[74] 20 61 89 1 100 0.36 

F.Su et al.10'[30] 40 1 1800 1800 97.5 1.09 

Zhao et al.10'[99] 10 1 100 50 96.77 6.25 

Campisi et al.11'[57] 48 3 43 17 96.08 50 

Kostilek 12'[81] 9 53 45 15 98 1.05 

Rocca et al.12'[104] 45 3 43 17 98.73 50 

Dan et al.13'[58] 13 1 9360 4680 87 0.08 
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2.4.3 Other Feature-based Systems 

In this section papers reporting other features for use in EEG biometrics are compared 

using the proposed metric in Table 2.4. The usability score U=100 is achieved using a 

wavelet-based feature, which is by far the best-reported performance amongst the 

EEG biometrics papers covered in this survey.  

4Table 2.4 Identification Comparison of the reports using other algorithms for feature extraction 

Reports N K Tr (s) Te(s) CRR(%) U 

Gupta et al.09'[60] 4 8 132 68 85 0.51 

Yang et al.12' [105] 18 8 240 60 97.4 2.43 

Yeom et al.13'[67] 10 18 360 40 85.5 0.79 

Yang et al.13'[106] 109 8 240 60 90 14.2

9 

Rocca et al.13'[107] 36 3 40 20 99.69 33.3

3 

Yang et al.13'[108] 50 5 114 6 95.5 33.3

3 

Phung et al.14'[68] 40 23 800 400 97.1 0.39 

Yang et al.14'[7] 105 1 96 24 99 100 

A cumulative illustration of the reported EEG biometric systems is shown by Fig. 2.3. 

The usability scores of the reported systems are summed per year. It is noticed the 

score has a sudden increase in the year 2001, the possible reason of such a boost may 

have to do with a manually data cleaning process in that experiment: ―the muscle 

(EMG), cardiac (ECG), or other noise signals were removed‖ by ―a trained 

neurologist‖ [54]. The usability of EEG biometric received consistent increasing in 

recent five year, reflected from both the growing number of publications and the 

better usability system design. 
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4Fig. 2.3 Yearly plot of the usability scores 

In summary, the usability scores of the reported systems seem to indicate some of the 

early reported EEG biometric systems may be focusing only the recognition 

performance and ignored other important factors, such as the number of electrodes 

and the recording length. The proposed usability metric reveals the gap between the 

laboratory context where these systems are developed and the real-world 

environments of target applications for EEG biometric recognition. However, due to 

the limited number of the available reports related to template ageing, the proposed 

metric for computing the usability score has not considered the template ageing effect 

in EEG biometric recognition. 

In biometric person recognition, template ageing is an important consideration that 

may limit the usability of biometric systems in terms of the need for frequent 

acquisition of new enrolment data. The comparisons reported in these tables were 

either obtained using single session EEG data or trained using concatenated data from 

multiple sessions. Therefore, the factor of template ageing has been excluded from 

the proposed metric. 

2.4.4 Template Ageing 

Besides the system training and test durations, other EEG-based characteristics also 

impact the usability this modality considerably. Template aging is one such important 
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factor which needs to be considered before EEG biometrics becomes widely 

applicable. 

Lee et al. [80] investigated the separation of data from multiple sessions for the 

system training. EEG was recorded while subjects were resting with eyes closed 

during two sessions separated by time intervals ranging from 10 days to 5 months: 

data of the first session was used as training and the second session‘s recording was 

used for testing. An accuracy of 98.33% was reported with 20 seconds of recording 

for testing (20s of training and 20s of testing). However, the database contains only 

four subjects. 

Visual-ERP data captured from a single sensor at the Oz position was used for 

template ageing analysis for biometric recognition by Blondet et al. [109]. They 

conducted the experiments with 15 subjects for multiple sessions with a time interval 

between the first two sessions ranging from 5 to 40 days. Out of those participants, 

nine returned for a third time, after 134 to 188 days from the first session (mean: 156 

days or 5 months). The time domain cross-correlation was computed for feature 

extraction. An average accuracy of 0.99 was reported for the first session, 0.93 for the 

second session and 0.84 for the third session‖. 

Template ageing effects when using mental-tasks with long time interval between 

training and testing has also been noticed. In [81] , Kostilek conducted experiments 

using 53 electrodes and 9 subjects (using actual and imagined motor tasks) from two 

sessions, with a time interval of approximately one year. Using part of the data from 

the first session for training and the rest of the first session‘s data as the test set, the 

CRR reached as high as 98%; whereas using the first session‘s data for training and 

data of the second session for testing, the performance reduced to a CRR of 87.1%. 

These results suggest that while template ageing may result in loss of accuracy in 

EEG-based biometric systems, the impact of ageing may not be catastrophic. 

However, the results reported so far are for very few subjects and relatively short 

temporal separations. More research is required to quantify the nature and extent of 

template ageing effects in EEG biometrics. 
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2.5  Conclusion 

This chapter provides a review of the literature on EEG-based biometric person 

recognition. As it is a relatively new biometric modality, the literature is focused on 

establishing the presence of biometric information in EEG signals. The use of EEG 

biometrics in real-world application scenario would need much more research to 

address the shortcomings of the work done to date especially with regards to the 

quantity and nature of data available for system evaluations. A novel usability metric 

was developed and evaluated using the existing literatures; the proposed metric better 

represented the usability characteristics of the state-of-art EEG biometric systems. 

The search for better acquisition systems, signal preparation, feature extraction and 

classification should target the goal of reducing the sensor costs (electrode numbers) 

and quantity of data needed for training testing recognition systems while 

maintaining high recognition rates. Quantifying and ameliorating the effects of 

template in EEG biometrics is also an important area for further research.  
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Chapter 3 

Experimental Framework 

The overall experimental framework included in the thesis is presented in this chapter. 

Two publicly available databases and one self-collected database employed in the 

experiments are described in Section 3.1. Evaluation methods are introduced in 

Section 3.2, which are used throughout the work involved in the thesis. The 

conclusion is presented in Section 3.3. 

3.1  Databases 

The existence of some physical and psychological differences between brains should 

be without doubt; however, as unique as the brain is, whether the EEG signals, which 

obtained by sensors with different level of sensitivity still preserve enough 

information that individually distinctive may be debatable. Using EEG signals for 

biometric purposes is still a relatively new direction for research (15 years since the 

first relevant paper was published) and there has been no publicly available EEG 

database which especially collected for biometric purposes.  

Three databases were used in the research: two publicly available databases which 

were collected using a sophisticate multi-sensor system; and one self-collected 

database using a low-cost single sensor headset which caters to the requirements of 

biometric recognition scenarios. The following sections provide details of these 

databases and their particular characteristics, which may reflect onto the subsequent 

experimental analysis in the following chapters. 

3.1.1 PhysioNet EEG Motor Movement/Imagery Dataset 

EEG Motor Movement/Imagery Dataset (MM/I dataset) contains the data obtained 

from 109 subjects, provided by developers of the BCI2000 instrumentation system: 

the headset contains 64 wet sensors with sampling frequency of 160 Hz (10-10 
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electrode positioning system [18][110]. The electrodes positioning map is illustrated 

in Figure 3.1. 

 

5Fig. 3.1 64 electrodes positioning based on 10-10 system 

Subjects involved in their data collection performed six different tasks: two baseline 

tasks where there is no requirement for a specific activity (one with eyes open, one 

with eyes closed) and four motor movement/imagery tasks. Details of these four tasks 

are detailed as follows [15]: 

a) A target appears on either the left or the right side of the screen. The subject 

opens and closes the corresponding fist until the target disappears. Then the 

subject relaxes. 

b) A target appears on either the left or the right side of the screen. The subject 

imagines opening and closing the corresponding fist until the target 

disappears. Then the subject relaxes. 
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c) A target appears on either the top or the bottom of the screen. The subject 

opens and closes either fists (if the target is on top) or feet (if the target is on 

the bottom) until the target disappears. Then the subject relaxes. 

d) A target appears on either the top or the bottom of the screen. The subject 

imagines opening and closing either both fists (if the target is on top) or both 

feet (if the target is on the bottom) until the target disappears. Then the subject 

relaxes. 

EEG cap

Instructions

Imaging 
Movements

 

6Fig. 3.2 Data capturing set up diagram 

The diagram of the data collection set-up is shown in Fig. 3.2. Three runs were 

performed for each subject per motor task, and each run lasted for two minutes. The 

baseline tasks were performed only once and lasted for only one minute. As the time 

interval of each run was a couple of minutes (according to the contributor of the 

database), it is assumed the EEG headset was not removed between each recording 

run. Since the actual recording lengths for each subject vary (data of some subjects 

contain much less than 2 minutes‘ recording per run and some contain more than 2 

minutes), for some of the experiments included in the thesis, only data of the selected 
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subjects were employed to guarantee the data with equal recording length for system 

training.  

As one of the pioneering researchers who adopted this database for biometric 

experiments (if not the earliest), the author of this thesis believes MM/I dataset 

indeed contains certain characteristics which may be of helpful in simulating the 

possible real-life EEG biometric scenarios. For example, the available recording 

length of MM/I database per run is relatively short (each run 2 minutes), which may 

be an acceptable time length for the system training. Despite the large number of 

electrodes used during data collection, it is possible to use a subset of these (even data 

from one single sensor) to simulate a more realistic biometric scenario. Additionally, 

the MM/I database contains multiple runs of recording, though strictly it cannot be 

considered as a database with true multiple sessions for template ageing effect 

analysis, the database is still good enough to explore the short term stability of EEG 

signals as carriers of biometric information.  

The experimental results seem to suggest that the quality of the MM/I database is the 

highest amongst the three databases included in the thesis: depending on the 

particular method/algorithm used for biometric recognition, the noise removal may 

not even be necessary to obtain satisfactory results. However, as it was mentioned, 

the MM/I database in fact does not contain the data from multiple sessions that 

separated in long time interval, the results obtained from multiple runs thus may not 

be representative for the real-life scenarios as the template ageing/consistency effects 

must be considered.  

3.1.2 UCI EEG Database Data Set  

The "UCI EEG Database Data Set" [111] with different stimulus was used to 

compare with the MM/I dataset. It contains data obtained from a comparable number 

of subjects (122 subjects) with the MM/I dataset, but the stimulus belongs to a 

different category: visual-based stimulus. Research conducted in this thesis 

investigates the impact of the different stimuli and evaluates the robustness of new 

algorithms. This database is also referred as VEP database henceforth in this thesis. 
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The VEP database was also collected by a sophisticated headset/sensor system with 

64 electrodes (10-20 electrode positioning system). 122 subjects were separated into 

two groups: alcoholic (77) and control (45). The original purpose of the database was 

to investigate the impact of alcoholism on human brain. Depending on different 

individual, the data recording ranges from around 15 seconds to about 2 minutes in a 

single data collecting session. In some of the experiments reported in this thesis, only 

the selected 118 out of 122 subjects were employed for the same reason as the case of 

MM/I database (to guarantee equal length of recording for data analysis). The 

distinction between two types of subject (alcoholic and control) was ignored in the 

experiments and only the biometric performance explored in the thesis.  

During the data collection, subjects were stimulated through viewing a series of 

standard picture sets (banana, airplane etc.) while their EEG signal was recorded [37]. 

Each picture was shown for one second and, the following one second‘s EEG data 

was recorded (with a sampling frequency 256 Hz) as one run. There were between 15 

to 120 such one-second trials recorded, depend on different subjects. Therefore, the 

overall recording length varied a lot for different subjects. Further detail of the data 

capture and preparation of this database can be found in [37]. 

One potential advantage of VEP database over MM/I database is that, were the 

research focused on detecting a particular pattern which related to the stimulus, the 

VEP database may be better in revealing the corresponding patterns: visual stimuli 

are bound to trigger certain EEG waveforms (such as P300, for example [35]) for 

healthy subjects, however, motor-based EEG reflections in time domain may be hard 

to justify. One limitation of the VEP database however, is the fact that it also contains 

only a single session of data recording for each subject. Both of MM/I and VEP 

databases are good choices in justifying the EEG signals contain distinctive biometric 

information, but they lack the potential for investigating whether EEG signals are 

stable enough over a relatively long period of time. Furthermore, as the VEP patterns 

are similar between different individuals, the between-class similarity may cast 

negative effects while using VEP-triggered waveforms for biometric recognition. 
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3.1.3 Mobile Sensor Database 

Due to the lack of suitable publicly available databases, there is a necessity to collect 

a database that especially caters to the evaluation of EEG signals‘ biometric potential 

in the realistic scenarios. A self-collected Mobile Sensor Database for this research 

was particularly designed to maximize the mimicking of real-life scenarios as much 

as possible: 

1) Two sessions of data was separately collected, the time interval between 

sessions ranges from three weeks to two months; 

2) The data was recorded by a low-cost single dry sensor system, which 

simplifies the deployment of the headset (system set up only requires several 

seconds‘ cooperation from user); 

3) Subjects were asked to perform a simple mental number-counting activity 

with eyes closed. 

4) The data used for training the biometric system in the experiments was one 

minute‘s long; each of the test duration was only around ten seconds.  

The motivation of instructing subjects to perform a simple mental counting without 

much of restriction in content is based on some preliminary results obtained by 

analysing the MM/I dataset (see Chapter 5): using different motor tasks for system 

training and testing do not seem to be quite sensitive to biometric performance, as 

long as the training and test sets are the same type. This may suggest that better 

performance tend to be achieved while brain is relatively active; and the performance 

of biometric recognition may not be quite sensitive to particular stimulus. The Mobile 

Sensor Database comprises of multi-session data from 27 subjects collected using the 

NeuroSky MindWave headset [17] (Fp1 electrode). Seven of them are research lab 

members and have basic understanding of experimental data collection, while the 

other twenty volunteers are less professional and relatively careless during the data 

capture. The experimental scenario follows the scheme of using the whole one 

minute‘s data of one session for training and another 10 seconds‘ continuous data 

(randomly selected for a six-fold cross validation) from the other session for testing 
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(both of the two sessions lasted for one minute in all). Figure 3.4 illustrates the 

picture of MindWave EEG headset. 

 

7Fig. 3.3 NeuroSky MindWave Headset [6] 

It is good to clarify one fact that distinguishes the EEG-based pattern recognition 

from some other biometric recognition tasks: unlike most of the physical traits (such 

as iris and fingerprint), or handwriting and speaker recognition which depend on 

conventional behavioural traits, EEG recognition lacks the possibility to confirm the 

quality of the ground truth data. For example, in most of image-based pattern 

recognition, without considering the performance of the recognition system, it is 

almost always possible to manually verify the quality of the image: if the image is 

good but the algorithm performs badly, it is certain that something has gone wrong 

with the method/algorithm; whereas in the case of EEG signals, if the performance is 

poor, there may be no simple way to check whether it is because the quality of the 

raw data is too low or the algorithm does not work (though if the signal were too 

noisy it can be visible).  

The clear raw EEG signals are very similar with each other in shape, they look like a 

series of naturally encrypted codes: this may be its advantage as a biometric modality 

(no point of stealing the data if there is no appropriate method to decode it and match 
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it with template), but it also introduces a lot of difficulties in research. This perhaps is 

another reason why many published results so far prefer to use the VEP-based signals 

for biometric analysis: despite the P300 wave which triggered by the visual stimulus 

shares similar shape for every healthy individual, at least there is something that can 

be seen and distinguished.  

Text-independent speaker recognition, on the other hand, does share certain similarity 

with EEG recognition: as opposed to being unable to verify the ground truth signals 

as the case of EEG (here the ―ground truth‖ means the visually obvious 

characteristics of the signal, not the signal as a biometric identifier), the time domain 

detail of the signals are often ignored in text-independent speaker recognition, the 

language meaning which the speaker produced usually is not taken into consideration 

in the implementation. Furthermore, it is always possible to hear the sound of the 

speaker and check whether it is too noisy or not, which is something that may be 

more difficult for EEG signals. Theoretically, brainwave should be a thought-

dependant modality, but due to the restrictions of the employed databases/headset 

mentioned previously, in this research some algorithms assume EEG signal (not 

brainwave) is a thought-independent modality. 

3.2  Evaluation Methods 

Typical biometric systems usually are implemented in two scenarios: identification 

and verification. In this thesis, both the scenarios are experimentally investigated 

using EEG signals. Identification is a one-to-many testing scenario: the identity of the 

query (test set) is not available a prior, the tests including multiple similarity 

comparisons between the query and all of the templates in the training set. Two 

possible ground truth cases may exist in identification scenario: 1) the identity of the 

query belongs to one of the templates in the database or 2) identity of the query is not 

enrolled in the system and no template stored in the database [2]. 

In the first case, the True Positive Identification Rate (TPIR) which measures the 

successful rate of correct matches is usually computed to evaluate the performance of 

the system. Performance of the second case may be described by False Positive 
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Identification Rate (FPIR), which measures the probability of a positive match 

between an un-enrolled query and one of the templates in the database. The FPIR 

depends on both the size of the enrolled database and a customized threshold to sift 

out the imposter query. The computing of FPIR is not often required in biometric 

scenario (as opposed to the forensic scenario) since it is overlapped with the 

verification scenario in its real-life applications [112] [113].  

On the other hand, the TPIR is used as a standard metric to evaluate the biometric 

identification system: since the potential positive matching candidate (template) of 

any query set is guaranteed within the database, instead of customising the threshold 

in the case of computing FPIR, a process of ranking is performed to identify the best 

template for any particular query. This ranking provides a series of matching 

templates sorted by their respective probability scores, the performance derived from 

the highest score (    ) of each class is called the rank-one accuracy (often 

simplified as ―accuracy‖ in the literatures). While     (     , N is the number 

of class), the matching allows to be less restrictive and the so-called Cumulative 

Match Characteristic (CMC) curve may be generated to illustrate the sensitivity of the 

identification system to the test set(s) [114]. The identification performances of EEG 

biometric systems report the thesis were evaluated using both TPIR and CMC curve. 

Verification is another important biometric scenario. Some recognition systems 

proposed in the thesis were evaluated in this scenario. Different from identification 

scenario, verification is a one-to-one testing process, i.e. the test set with a claimed an 

identity is fed into the system and only the template linked to the claimed label in the 

database is compared with that test set. Same as the identification, there are also two 

cases may occur in the scenario: 1) genuine case and 2) imposter case.  

The genuine case is a relatively simple situation compared with the imposter case. If 

the real identity of the test set is what it is claimed, the system will return two 

feedbacks depend on the customising of the thresholds: the successful template 

matching or the template mismatching, they are conventionally measured by the False 

Rejection Rate (FRR) and False Acceptance Rate (FAR), respectively [115]. The 

probabilities of FRR and FAR have inversed trends, while the FRR reducing the FAR 
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tend to be increasing, but not necessarily strictly proportional. Depending on 

particular applications, the compromised point between FRR and FAR could be 

purposely tweaked/optimised.  

The imposter case though is also measured using FRR and FAR, the source of the 

data may be more diverse. For experimental simulation, two schemes may be derived 

to evaluate this case: 1) using other subjects‘ query sets which have corresponding 

templates saved in the database as the imposters for testing. In this scheme, the data 

of the imposters are fixed and their volumes only depend on the available database 

itself. However, in scheme 2) it is also possible that the data source of the imposters 

beyond the available database: theoretically it can have infinite number of imposters 

to spoof the system. Based on this perspective, any biometric system will eventually 

fail given enough attempts of imposter attack. Therefore, the verification systems 

developed in the thesis only followed only the first scheme. 

Due to the limited amount of available data for the experiments, cross-validation was 

employed to avoid the possible results bias [116]. Based on the rationale of this 

evaluation method, the available data is normally equally divided into k folds and the 

rotating estimation throughout all the folds is performed. The accuracy rates reported 

in this thesis are the mean values of leave-one-out k-fold cross-validation (data of 

single fold are used for validation and data of the rest folds are used for model 

training); the number of folds k is decided depending on the specific experimental 

design and the size of the employed database(s). 

3.3  Conclusion 

Three employed databases: two publicly available and one self-collected were 

described. The standard metrics used in the thesis to evaluate the proposed system 

were introduced as well, which related to both identification and verification 

scenarios.  

Next chapter (Chapter 4) is devoted to some preliminary investigations of using EEG 

signal for biometric recognition. 
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Chapter 4 

Factors Affecting Experimental Investigation 

Using EEG signal for biometric recognition is still in its relatively early stage (the 

earliest record appeared in 1999 [5]). The characteristics of EEG signals dictate that 

there are several factors need and probably can only be investigated by exhaustive 

tests, separately. Certain such important factors are described in this chapter: the 

number of employed electrodes and the optimal positioning of the electrodes are 

investigated in Section 4.1; as the Wavelet Transform is used for feature extraction, 

the wavelet function(s) to be employed need to be optimised; along with the 

investigation of wavelet-based noise removal methods (devoted in Section 4.2); the 

segmentation and overlapping as two conventional steps are addressed in Section 4.3 

and Section 4.4. The comparison of different conventional features for EEG-based 

biometric person recognition is presented in Section 4.5. The classifiers used for 

recognition/classification are investigated in Section 4.6, as well as the effectiveness 

of different stimuli. Other delicate matters such as the sensitive frequency bands 

(Section 4.7), optimal number of observations in the training set (related to recording 

length and window size during segmentation, Section 4.3 and Section 4.8) and the 

quality of the data provided by subjects for enrolment (Section 4.9) can be also quite 

influential in EEG-based biometric scenario. The following subsections detail some 

experimentally investigations on these important issues. The Conclusion is presented 

in Section 4.10. 

4.1  Number and Position(s) of the Employed Electrode(s) 

Most of the EEG headsets are equipped with multiple electrodes; many of these 

sophisticated sensors are medical-grade probes and user-unfriendly (wet sensors). In 

order to better facilitate the EEG signals for biometric purpose while using these 

headsets, reducing the number of the employed electrodes becomes a necessity. 

Intuitively, with the number of included electrodes reduced, degradation of the 

recognition rate is to be expected. Therefore, it is important to investigate the 
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influence of reducing the employed number of electrodes to find the best trade-off 

between the easy-deployment requirement and the successful recognition rate. 

Several electrode adoption schemes were experimentally investigated in the study, 

from employing multiple sensors to single sensor, along with their (its) arguably best 

location(s). The following subsections describe several electrode locating schemes 

included in the research. 

4.1.1 Scheme I 

The following graph (Fig. 4.1) illustrates the first electrode positioning scheme 

(Scheme I).  
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8Fig. 4.1 Positioning Scheme I 

The positioning Scheme I was developed to investigate the regions of interest based 

on the stimulus involved in the MM/I dataset. The main tasks involved in MM/I 
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dataset were triggered by motor movement/imagery-related stimuli. The eight 

selected electrode positions mostly cover both the motor cortex and visual cortex, as 

it is possible the brain also picture imagery images during performing the motor 

tasks. Data provided by these electrodes (Fz, Cz, Pz, Oz, P3, P4, P8, P7) were used to 

evaluate the biometric recognition performance.  

The recognition performance achieved by each of these 8 electrodes was individually 

evaluated using a nearest neighbour classifier (1-NN). Data of 12 subjects from MM/I 

(S1-S12) dataset were used for the evaluation in an identification scenario. The 

results indicated that the electrodes located in the area of parietal lobe and occipital 

lobe (Pz, P7 and P8) yielded better overall performance (for different mental tasks) 

than most of those in the frontal lobe area (such as Fz) (Fig. 4.2 and Table 4.1). 

 

9Fig. 4.2 Individual Electrode Performance in rank-1 Identification 

The performance of various electrode combinations were explored as well [105]. It is 

noticed that the Cz and Oz electrodes generally contributed to the combinations with 

better performance (Table 4.1). A series of verifying tests were conducted to evaluate 

the performance of channel pairs: Cz-Oz, Fz-Oz, Cz-Fz, P7-P8 and P3-P4 (Table 
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4.1). The Cz-Oz pair produced the best average classification accuracy for a two-

electrode system: 92.5%. Generally, if four best electrodes were to be used, those 

should be Cz, Oz, P7 and P8; if three electrodes were to be used, those should be Cz, 

Oz and P7 (or P8) and if only two electrodes were to be used, Cz and Oz shall be the 

choice. It should be mentioned here, though it is clear in Fig. 4.2 the Cz location 

alone does not provide the best performance, but its combination with Oz location 

electrode provided the highest correct recognition rate, as it is indicated in Table 4.1. 

5Table 4.1 Two-electrode combination identification performance comparison 

Channels Cz-Oz Fz-Oz Cz-Fz P7-P8 P3-P4 

Accuracy 92.5% 90.0% 86.2% 79.2% 78.8% 

As the data from each single electrode contains 18000 samples which make up 20 

windows before any overlapping, so one window contains 900 samples and lasts 

5.625 seconds. Using two runs of data (4 minutes) for training and the other separated 

run for testing, the performance of each window (measurement) in the testing run was 

measured independently to simulate the identification and this test was conducted 20 

separate times to see the variations in recognition performance. These tests were 

explored using the best different electrode combinations identified earlier, including 

the eight electrodes, best four electrodes and two electrodes mentioned above 

separately (Fig. 4.3). 
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10Fig. 4.3 Range of recognition rates when testing in 5.625 seconds (20 windows for each column) 

From Fig. 4.3 it seems that with the decreasing number of the electrodes, the ranges 

of the classification accuracy rates scatter wider, the worst performance of each 

combination also degrades: the worst performance is about 72.2% when only 2 

electrodes (Oz and Cz) are used. The results in Figure 4.3 are the performances of 

using the data from 18 subjects (S1-S18) and tested for 20 times: indeed, even using 

only 2 electrodes it could occasionally achieve 100% of classification accuracy, 

though only two times out of 20 tests [105]. 

4.1.2 Scheme II 

According to the results obtained from the data captured by the electrodes in scheme 

I, it was found the electrodes combinations in the centre line of the scalp seems to 

generally provide better performance than those locate in other scalp regions. The 

reason behind such evidence is not quite clear, but it might have to do with the 

symmetric shape of the brain, which casts certain effect on the current flow waves on 

the surface of the scalp [108]. To further investigate the impact of the electrodes 

locate in the centre line of the scalp, positioning scheme II was proposed (shown in 

Fig. 4.4).   
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11Fig. 4.4 Positioning Scheme II 

The employed data volume from MM/I dataset was increased to 50 subjects and 

tested in an identification scenario. The percentage numbers in the Fig. 4.4 indicate 

the accuracies tested by the data from each selected electrode individually. Ten 

electrode position candidates were separately evaluated using a Linear Discriminating 

Analysis classifier (LDC) [76] to select a subset of these electrodes for the subsequent 

system evaluations. Two of the recording runs were used for training and the 

remaining one was used for the test. The reported results are the average of the 

accuracies among the three runs used in turn for testing. The dot-dash lines indicate 

the five selected electrodes (FCz, Cz, CPz, Pz, POz). These electrodes in combination 

provided the highest classification rate compared with other possible five-electrode 

combination schemes. However, the selected five electrodes were not individually the 

top-five scored electrodes amongst the ten electrodes tested: it appears that there 

might be spatial correlation between the signals captured by these electrodes which 

affect the overall performance [108]. 
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4.1.3 Scheme III 

Further investigation was done by adding the data of more subjects (the entire MM/I 

dataset, 109 subjects). The proposed system is trained and evaluated using data 

obtained from only the Task 4. The reason for adopting Task 4 (motor imagery task 

for both hands and feet) is that the motor imagery task might better avoid the 

contamination of the EEG signal by other muscle-related signals such as 

electromyography (EMG) signals.  
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CP4
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CP3 CPz

 

12Fig. 4.5 Positioning Scheme III 

Depending on the characteristic of the considered task and results of previous 

schemes (scheme I and scheme II), the employed electrodes from analysis was 

clustered in the somatosensory cortex (FC1, FC2, C3, Cz, C4, CP3, CPz, and CP4). 

The positioning scheme III is illustrated in Fig. 4.5. Data of the second run (R2, 120 

seconds of recording) was used for testing and the rest two runs (R1 and R3) were 

used for training the system. The correct recognition rate reached as high as more 
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than 90% for data of 109 subjects by applying a novel quality filtering algorithm (to 

be introduced in Chapter 7 [106]). 

4.1.4 Scheme IV 

To explore the limitation of using EEG signals for person recognition, the involved 

electrode number is reduced to one. In scheme IV the performance of using the data 

obtained from the single electrode position (Cz) is investigated. Data of the middle 

run (R2) in MM/I database and the data of VEP database (only has one session) were 

employed. In Chapter 6 two novel features based on enhanced Empirical Mode 

Decomposition (EMD) were proposed in [7]. The detailed description of the new 

features will be presented in the feature extraction chapter (Chapter 6). Comparisons 

of the proposed system performance (using the EMD-based novel features) with other 

reports under similar scenarios are illustrated in Table 4.2.  

6Table 4.2 Comparison of different systems; this table also appears in Chapter 6 for feature comparison. 

VEP Database Proposed System Yazdani et al. [74] Brigham et al. 
[56] 

Huang et al. [66] 

Number of 
Electrodes 

1 64 64 64 

Number of 
Subjects 

118 20 120 116 

CRR 95.88% 100% 98.96% 95.1% 

 

4.2 Noise Removal  

In order to reveal the effectiveness of these transforms in realistic applications, the 

input signal with high enough Signal-to-Noise Ratios (SNR) is to be expected. In 

practical, EEG signals are often contaminated by other bio-signals such as eye blinks, 

heart pulse, and ambient electrical noise [117]. To achieve acceptable SNR, pre-

processing sometimes becomes a necessary stage in EEG based pattern recognition.  

The pre-processing of raw signals is divided into three steps: 1) noise removal, 2) 

segmentation and 3) window overlap, which may take place during segmentation. 

Not all of these steps are necessary and depending on the particular system or 

experimental design certain step(s) can be omitted. The following three sections 
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(Section 4.2.1-Section 4.2.3) are devoted to describe the main three pre-processing 

step mentioned above, supported by experimental results. 

 There are many noise removal methods/algorithms available in the field of DSP; one 

conventional method of removing the unwanted data buried in the raw signal is to 

perform Fourier Transform and apply band-pass filtering, hence only the data within 

the interested frequency range is preserved. Many classic filters, such as Butterworth 

and Elliptic filters have been implemented for EEG data [41]. Unfortunately, certain 

types of noise (eye blinks and ECG signals, for example) share the same frequency 

range with the typical EEG band [118][119][120][121](0 to 40 Hz): performing band-

pass filtering alone in the frequency domain does not seem to be quite effective in 

removing certain types of bio-signals buried within EEG signals. For this reason, 

classic band-pass filters were usually employed by researchers to remove the Gibbs 

phenomenon (ripples of the output signal after Fourier Transform) around the cut-off 

frequency of the signal, and serves as a preliminary step of pre-processing [122].  

Considering the complex content of the raw EEG signals, some researchers tried to 

remove the irrelevant signal components by employing blind signal separation (BSS) 

algorithms [123]. Independent Component Analysis (ICA) is amongst the most 

popular techniques for EEG data analysis. The general definition of ICA is described 

as follows [124]: 

The data are represented by the random vector   (       )  and the components 

represented as the random vector   (       ) .The task is to transform the observed 

data x, using a linear static transformation   as        , into maximally 

independent components   measured by some function  (       ) of independence. 

Theoretically, in order for ICA algorithm to work, the mixed-up signals are presumed 

to be independent and stem from different sources: it is assumed the EEG signals 

captured by multiple electrodes are independent from each other as well. However, 

such an assumption may be debatable: it is believed the neurons of a normal brain are 

connected and related: one stimulus to one region may have certain influence on other 

regions of the brain (in a wave form). ICA forces the likely correlated signals to be 

independently separated and generates a series of newly reconstructed signals.  



62 
 

In general, ICA cannot identify the actual number of signal sources. Furthermore, 

there has been obscure in clearly justifying that the reconstructed ―clean‖ signals are 

the original signals. Given these limitations, most of the researchers simply use ICA 

to remove eye blinks noise and Gaussian noise, which stem from different and 

independent signal resources [125][126]. Despite of these mentioned problems, the 

most challenging part for ICA to work lies in the process of identifying the resulting 

signal of interest. Among the generated series, normally it is up to the researcher‘s 

experience to identify the clean EEG signal series, which sometimes can be quite 

difficult [124].  

Indeed, according to our preliminary experimental tests, using ICA for noise removal 

and feature extraction was unable to obtain acceptable recognition results. From the 

perspective of practical application, ICA is not an optimal option either: the algorithm 

contains a series of looping steps to compute the independent components, for a very 

limited amount of data (10 subjects‘ data each lasting for 2 minutes, in one of the 

preliminary investigations in this research), the processing took much longer time 

than expected (several minutes, Intel Core i7), for noise removal only.  

In order to deal with the non-stationary nature of EEG signal while at the same time 

reduce the computation time during processing, some wavelet-based algorithms were 

investigated in this research. Unlike BSS algorithms, wavelet methods do not claim 

the separation of the signals from different resources, indeed the resulting signals 

after transform probably are still mixed up with noise. But it is expected that the 

wavelet approaches may preserve most of the information-bearing part of the original 

signals, thus improves the signal-to-noise ratio.  

One distinguishing advantage of wavelet-based de-noising is its multi-resolution 

analysis characteristic: it is possible to closely observe a particular wavelet band in 

different levels (resolutions), such flexibility increases the odd of success for noise 

removal. In this study, three wavelet-based noise removal methods are investigated. 

Additionally a novel hybrid de-noising method is also developed. The performances 

of these methods were compared in an identification scenario using EEG data from 
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25 users (S1-S25) of the publicly MM/I dataset as a preliminary research to test the 

algorithms. The following subsections introduce these methods.  

4.2.1 Wavelet Coefficients Thresholding 

The wavelet shrinkage approach for noise removal, proposed by [127], assumes a 

noise model for its operation. Regression models are often used to recover the 

underlying signal which is mixed up with the noise. Such models may be expressed 

in the form:     (  )    , where    is the mixed signal,  (  ) is the ―clean‖ signal 

function and the    is the noise function (i = 1, … , n),    is assumed to be a Gaussian 

white noise with unknown variance    [128].  

The wavelet shrinkage approach assumes that the useful information is mostly 

represented by the approximation coefficients (low frequency part of DWT) 

generated by wavelet decomposition. The other set of coefficients that are produced 

after wavelet transform, namely the high frequency or detail coefficients are regarded 

as noise. However, if the whole of the detail coefficients were removed, there may be 

loss of some useful information. The ―hard‖ threshold strategy was adopted for our 

experiments, which performs a ―keep or kill‖ policy on the wavelet detail coefficients 

using the mini-max principle [129][130]. Two wavelet coefficients thresholding 

schemes were tested: global threshold and level-dependent thresholds. The global 

threshold scheme calculates a single threshold based on the minimum-maximum 

estimation, whereas level-dependent thresholding allows for specifying a separate 

threshold for each different decomposition level.  

4.2.2 Multivariate and Multi-scale Principal Component Analysis 

As the selected five electrodes (Scheme II, Fig. 4.4) are closely positioned with the 

same sampling frequency, some noise components of the signal may be correlated 

and the signal quality could be improved by removing this correlation noise [130]. 

However, the wavelet shrinkage approach [127] assumes only independent Gaussian 

noise. To remove other types of noise, one option could be performing principal 

component analysis (PCA) [131] on the wavelet coefficients to eliminate the cross-
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correlation effects among electrodes. The multivariate de-noising method, proposed 

by [132], is such a method that combines wavelet decomposition and PCA: firstly the 

wavelet decomposition is performed; next the PCA is applied to the approximation 

coefficients for de-noising. After reconstruction by inverse wavelet transform, the 

PCA is applied again to the signal. 

According to [133], this Multivariate Analysis is particularly suitable for stationary 

signal de-noising. Therefore, this method may not perform well for the EEG data 

used for the evaluation of the proposed system [134]. The experimental results 

presented in the following section verified this conjecture; multivariate analysis for 

de-noising resulted in a degradation of performance with a worse result than without 

any noise removal (to be illustrated in Fig.  4.6). 

The multi-scale PCA de-noising method [135] applies the PCA algorithm to both the 

approximation and the detail coefficients, hence may better remove the correlated 

noise. In the results reported in Section 6.2.2 this method indeed has a good 

performance as indicated by the identification rate achieved. 

4.2.3 Hybrid De-Nosing Method 

Wavelet shrinkage de-noising is good at removing white noise that might be 

generated from electrical equipment and sensors during the EEG recording process. 

Since five closely related electrodes were used for data capture, spatially correlated 

noise may also affect the quality of the signal: this kind of contamination might be 

alleviated by applying multi-scale PCA analysis. A novel strategy is proposed which 

combines both wavelet coefficients thresholding and PCA methodologies to further 

de-noise the raw signals. The proposed method is as follows: 

1) Apply Discrete Wavelet Transform (DWT) to the raw signal up to Level 5 

with the sym8 (Symlets order 8 [136]) wavelet function, using minimum-

maximum rule to estimate the mean square error with a ―hard‖ level-

dependent threshold, and reconstruct the signal after thresholding. 
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2) Apply multi-scale PCA analysis to the thresholded signals to further remove 

the spatially correlated noise by preserving only some of the (uncorrelated) 

principal component vectors. 

Five wavelet-based de-noising methods were compared using data from the first 15 

subjects (S1-S15) in the MM/I database. By applying the proposed hybrid method, 

the identification rate could be improved by more than 5.5% compared with no noise 

removal (Fig. 4.6). The level-dependent wavelet shrinkage provided better 

performance than the global threshold shrinkage method; it appears that the 

characteristics of noise in each decomposition level are different and better treated 

separately. The proposed method aims to remove both the independent Gaussian 

noise and the correlated noise, and indeed it appears to result in better performance 

than all of the other methods investigated. 
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13Fig. 4.6 Comparison of the de-noising methods based on biometric identification score 

To further investigate the sensitivity of the proposed method, the 0~50Hz band-

passed signal was divided into three frequency ranges: 0~10Hz, 10Hz~20Hz and 

20Hz~50Hz. The training and testing data for 25 subjects (S1-S25) were based on 

their respective frequency bands. Fig. 4.7 shows that the proposed method is more 

effective in the higher frequency range. The performance within 0 to 10Hz even 

suffered some degradation. The low frequency range of the signal might not contain 

significant noise and may not need to be de-noised. Evidence in 0 to 10Hz also 
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indicates the wavelet-based de-noising method indeed could not extract the pure EEG 

signals out of the raw signals, better overall performance can be expected if the 

frequency range (0 to 50Hz) were divided into more bins based on the typical bands 

(delta, theta and alpha etc.) of interest for EEG signals, as oppose to the current 

experiment.  
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14Fig. 4.7 The sensitivity of the proposed noise-removing method in different frequencies 

4.3  Segmentation 

After the raw signal noise removal, there is usually a segmentation step. A continuous 

recording potentially contains multiple events of interest which are distributed within 

the signal. Segmentation serves at least two purposes: 1) to break the long series into 

pieces hence making it possible to isolate the events of interest; 2) normalize the 

number of the samples for feature extraction.  

In this work, a series of investigation on the optimization of segmentation based on 

Wavelet Transform were conducted. The raw signal was segmented into several non-

overlapping windows after de-noising. The MM/I dataset was employed for this 

investigation. Originally every two minutes‘ recording (Run) was divided into 20 
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windows (960 samples per window before overlapped). After several tests (Fig. 4.8), 

windows with size of 4800 samples (30 seconds of recording with sampling 

frequency of 160 Hz) were chosen for further feature extraction. The biometric 

performance was found to be quite sensitive to the window size. 
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15Fig. 4.8 50-fold-cross-validation tests of 6 seconds recording for windowing schemes 

One of the two-minute recording runs was used to provide data for testing. Fig. 4.8 

shows the accuracy rates for different window sizes. By randomly picking several 6 

seconds long samples from the 2 minutes‘ recording, tests were performed at different 

pre-processing window sizes. The ―×‖ symbol of each boxplot represents the mean 

accuracy rate of 50 testing attempts. With the window size increasing, the 

computation time decreases and the identification rate increases until it reaches its 

peak with a window size of 4800 samples, then the performance begins to drop to a 

plateau as the size is further increased. Figure 4.8 also indicates the varying 

consistency of results achieved with different window sizes. For MM/I database 

―4800 samples per window‖ resulting in the most stable performance as indicated by 

the most compact boxplot which represents the smallest variance of the 50 attempts.  
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16Fig. 4.9 Performance Stability of 6 Window Sizes, 50-fold-cross-validation tests 

The reason for the particular trend in Fig. 4.8 may has to do with the entropy of the 

data after feature extraction: as a stochastic time variant series, the bigger the window 

length used for feature extraction the long term characteristic of the signal is more 

likely revealed, therefore more likely the representative trend of the signal be 

captured. It also can be justified by the results presented in Fig. 4.9: the standard 

deviations of multiple testing results with different window sizes indicate the rising 

trend of the performance robustness with the window size increasing. Smaller 

windows capture only the details of short term events, some of which may be only 

noisy spikes and vary a lot; whereas by employing relatively large window sizes for 

feature extraction, those noisy spikes are more likely be overwhelmed by longer term 

activity (however, this also depends on what type of features are used and what kind 

of mental activity is processing). It is rather difficult to find an optimal window size 

for all of the experimental cases (if not impossible).  

The optimum window size of the segmentation is governed by multiple factors: the 

sampling frequency of the system is one important factor; the type of feature vector 

developed for classification is another. It should be mentioned that the employed 
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MM/I dataset was under the sampling frequency of 160 Hz, which means the optimal 

4800 samples per window‘s segmentation scheme requires at least 30 seconds‘ data 

recording from subject in order for feature extraction. Such restriction/trade off can 

be quite influential in the real-life scenario. It is interesting to investigate whether 

there is a way to reduce the recording length for each window and keep or further 

improve the performance in the meantime. A novel algorithm was developed and will 

be introduced in the feature classification chapter (Chapter 8).  

4.4  Overlapping  

Overlapping is a common procedure often employed in some signal processing and 

pattern recognition tasks, where segmentation windows were overlapped with each 

other. This may provide a better chance to capture the intact events, and avoid the 

potential significant events be chopped up by segmentation. The optimum amount of 

overlap is often a matter of empirical evaluation: commonly a 50% of the window‘s 

overlap may be used [47]. With a 50% of overlap between adjacent windows, the 

overall number of windows is doubled, which indicates the amount of features also 

doubled. Therefore, the information revealed from the data is potentially increased, 

though the computation burden is also increased. Wavelet Function Optimization 

One advantage of the Wavelet Transform (WT) over Fourier Transform (FT) is its 

flexibility on choosing the mapping functions. As opposed to FT which uses only 

sinusoidal functions in transform, there are many different types of functions 

available in WT. However, like other factors considered in this chapter, there is no 

concrete guidance on how to select the optimal function for a particular application. 

The only strategy for its selection seems to be exhaustively testing the available 

functions in different parameters.  

The biometric performance of the features that derived using Wavelet Packet 

Decomposition (WPD) algorithm [59] is affected by the types and orders of wavelet 

functions used in the feature extraction stage. Three types of wavelets were examined 

in this preliminary investigation: Daubechies, Symlets and Coiflets and some results 

are shown, the effectiveness of a noise-removal method is also addressed in Table 4.3. 



70 
 

  

7Table 4.3 Wavelet Functions investigation by Identification Scores 

Wavelet Function Before De-noising After De-noising Accuracy Increased

Daubechies 2 80.5% 87.0% 6.5%

Daubechies 4 84.6% 95.5% 10.9%

Daubechies 5 83.9% 93.0% 9.1%

Symlets 1 76.7% 87.0% 10.3%

Symlets 3 84.7% 94.0% 9.3%

Symlets 4 83.0% 90.5% 7.5%

Coiflets 2 83.5% 91.0% 7.5%

Coiflets 4 82.0% 93.5% 11.5%

Coiflets 5 82.3% 90.0% 7.7%

 

These recognition results were obtained from the data of 50 subjects from MM/I 

dataset following Scheme II, as the main purpose of the investigation was to compare 

and find the best wavelet function for preliminary feature extraction, the overall 

CRRs were not fully optimised. In the case of the Daubechies and Symlets wavelet 

families, the orders from 1 to 20 were exhaustively evaluated and the Coiflets were 

tested from order 1 to 5 [137]. The results indicated that as the wavelet order increase 

the impact on performance became less significant. The optimal wavelet function for 

WPD feature extraction was chosen as the Daubechies 4. It should be clarified that 

though the results in Table 4.3 also included the effectiveness of a novel noise 

removal method, the accuracies‘ trend and the optimal wavelet function have been 

clearly shown. Daubechies 4 wavelet is selected for the MM/I dataset and will be 

used for all the wavelet-related methods throughout the thesis. 
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4.5  Investigation of Some Conventional Wavelet-based Features 

Feature (vector) is the key factor in pattern recognition and its many successful 

applications. Conventional wavelet-based feature extraction in EEG biometrics 

usually is based on utilizing the resulting coefficients after either the Discrete 

Wavelet Transform (DWT) or the Wavelet Packet Decomposing (WPD) [137]. 

Wavelet Transform (WT) can generate large number of coefficients due to its multi-

scale decomposition functionality. As informative as these coefficients maybe, it is 

not ideal to utilize all of them as features due to the ―curse of dimensionality‖ [138] 

(feature vectors with too high dimensionality to be classified correctly). 
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17Fig. 4.10 Tested features in the experimental system 

Several simple mathematical tricks could be employed to reduce the dimensionality 

of the resulting feature vector and (arguably) preserve most of the useful information 

of the signals (Fig. 4.10). In this investigation, four different tricks were employed to 

reduce the dimension of the resulting wavelet coefficients: Maximum, Minimum, 

Mean and Standard Deviation (SD) of the coefficients from multiple bands. These 

features were computed for each and every window after WT.  

For every window, after applying the Wavelet Transform, these four features were 

calculated for each sub-band (D1-D4, A4), thus every window for each electrode 
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yields 4×5=20 features. In summary, for every subject (12 subjects based on scheme 

I), 20×8=160 features (eight electrodes, each electrode generating 20 measurements) 

are calculated from each window. The four different features were analysed 

separately in order to make a comparison between them. The investigation of the 

features follows the Scheme I electrode positioning. The results obtained according to 

the above-stated strategy suggested the SD of the coefficients is the optimal feature 

amongst the four feature candidates. 

4.6  Classifiers and Tasks  

Amongst all the important factors in EEG-based pattern recognition, the choice of the 

employed classifier is one of the most influential and unpredictable factors: Provided 

the same available feature(s), different classifier can lead significantly different 

recognition performance, it depends on the distribution of the available data in the 

feature space. Here is the difficulty: there is no a priori knowledge can be obtained to 

predict the distribution of the feature points before the decision making, except for 

the boldly assumption of all the features follows an existing mathematical model 

(normally distributed, for example). Thus it seems there is no guidance on how to 

select the classifier for various scenarios. On the other hand, instead of depending on 

the predicting rule (if there is any) to select the optimal classifier, it is often much 

more convenient to simply test throughout all the available classifier candidates in 

simulation and deploy the best-performed classifier in its real-life scenario.  

The selection of the classifier in this thesis also follows this simple and dependable 

strategy: multiple classic classifiers were tested by the databases and the optimal ones 

were selected based on their respective experiment results.  

One of those experiments was devoted to compare the performance of k-Nearest 

Neighbour classifier (k-NN) and Support Vector Machine (SVM) using MM/I 

dataset. 12 subjects (eight electrodes positioned as Fig. 4.1) are used for evaluations 

in an identification scenario. In this specific experiment, multiple feature vectors of 

40 measurements (each measurement corresponds to 5 seconds) with 80 dimensions 

(mean and SD of wavelet coefficients per window as feature) are generated for one 
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single task (12 classes). Through an empirical evaluation, the proximity parameter P 

for the Euclidean kernel (for SVM) was set to 2 in order to yield the best performance 

[105].  

During the testing stage, for each task all the analysed windows from one randomly 

selected run were treated as test data; The best average classification rate produced by 

SVM was 97.4% for Task 4 (imagery task), and the worst one was 75.7% for Task 3 

(movement task); while for the k-NN classifier (with k=1) the best classification rate 

is 85.09% and the worst rate is 74.12%, belongs to Task 4 and Task 3 respectively 

(Fig. 4.11). 
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18Fig. 4.11 Comparison of the recognition performance for the four stimulus tasks 

The explored four stimulation tasks could be divided into two groups: motor 

movement and motor imagery, it seems that the imagery tasks generally outperform 

the movement tasks when it is used to provide EEG signals that generate identity 

information (identification scenario). Also based on the results from Table 4.4, for 

different tasks the optimal number of neighbours for the k-NN classifiers are not all 

the same: They are 7-NN, 1-NN, 3-NN and 1-NN from Task 1 to Task 4 respectively. 

This suggests that the imagery tasks (Task 2 and Task 4) may be producing more 

compact feature sets than movement tasks (Task 1 and Task 3). 



74 
 

8Table 4.4 Performance compared between SVM and k-NN (12 subjects) 

Tasks 1 2 3 4

SVM 93.9% 90.6% 75.7% 97.4%

k-NN 7-NN 1-NN 3-NN 1-NN

Highest Rate 83.3% 81.6% 74.1% 85.1%

 

The optimal combinations of electrodes were selected for the current database and 

selected individuals (12 subjects). By further analysing the performances achieved 

using two electrodes it appears that if only one electrode was to be retained, the best 

choice may be the Oz or the Cz electrode. Exploring and optimizing the performance 

of the single EEG electrode for biometric recognition will be described in in feature 

extraction chapter (Chapter 6) with more details. 

4.7  Frequency Bands 

Several EEG frequency bands were identified and recognised by researchers. There 

are five typical bands cover the frequency range from <4Hz to >32Hz: namely delta 

(<4Hz), theta (4Hz-7Hz), alpha (8Hz-15Hz), beta (16Hz-31Hz) and gamma (>32Hz) 

[139]. These bands are often related to certain sensory/mental activities/statuses, 

however, those statuses/phenomenon are generally based on experimental evidence 

and analysis without concrete justification. Moreover, the effectiveness of EEG‘s 

frequency bands on biometrics is still obscure and controversial.  

A series of investigation were conducted for the interested frequency bands range 

from >0 Hz to 50Hz, which cover all the conventional EEG bands. The MM/I dataset 

was employed. The multi-scale analysis characteristic of WT was utilized and the 

EEG signals of 109 subjects were decompose till level 5 to specify the bands of 

interests. The wavelet decomposition tree illustrated in Figure 4.12 was based on 

Daubechies 4 wavelet function, the bold bands were preserved and the coefficients of 

which were used to compute the SD feature.     
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19Fig. 4.12 Wavelet packet decomposition for frequency sensitivity analysis 

Different combinations of frequency bands were investigated to establish the 

respective contribution of each band to identification performance. Nine bands were 

separated into three groups with each contained three bands. The performance of 

individual bands and groups are depicted in Fig. 4.13. The electrodes positioning 

followed the Scheme III (eight electrodes).  

It appears that the middle frequency range (5 Hz to 20 Hz) contributes the least 

biometric information (2
th

 to 6
th

 columns), whereas the 0-5 Hz band along with the 20 

Hz-40 Hz bandwidth provides much better performance. These frequency bandwidths 

were then further combined as depicted in right part of the Fig. 4.13. While the 

frequency range of 0-10 Hz combined with the 20 Hz-50 Hz range (14
th

 column) 

reached the performance level almost as good as that achieved by the combination of 

all the bands (16
th

 column).  
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20Fig. 4.13 Performance for 50 attempts, Run 1 & Run3 for training, Run 2 for testing (scheme III) 

4.8  Impact of Training Data 

As a biometric modality, EEG signals may be debatable in whether it should be 

considered as physical trait or behavioural trait; based the research results in this 

thesis, it is more likely belongs to the behavioural modality category. One of major 

reasons is its rather unstable intra-class biometric performance: the impact of 

separated recordings (even with short time interval) is significant and could not be 

ignored. Take the MM/I dataset for example, though it contains three separated 

recordings for each task per subject, each of these ―run‖ in fact could not be 

considered as a session due to the very limited time interval between recordings (a 

couple of minutes), and most likely without the removal of the headset. However, 

even with such limitation, still there is considerable impact can be observed according 

to the investigation.  

The identification performance using MM/I dataset was compared while data of 

different runs were used for training the classifier: Table 4.5 shows the results from 

three different schemes for partitioning training and test data. Combining Run 1 and 

Run 3 for training provided the best identification performance. The reason behind 

such variance might lie in the different quality of each recording Run; the R1 & R3 
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for training with R2 for testing appears to be a better model for the classification, 

which has roughly 5% ~ 7% better average recognition accuracy for 109 subjects. 

9Table 4.5 Performances of different training set combinations 

Runs for Training R1 & R2 R1 & R3 R2 & R3

Maximal Accuracy 93.55% 99.28% 94.98%

Mean Accuracy 90.20% 97.44% 92.22%

 

The amount of data used for training was varied to assess how a reduced training data 

volume may affect the recognition accuracy of the system. Define the number of 

observations (measurement) after segmentation of the raw signals as N, which was 

reduced in a number of steps from 80 to 1 and the identification test results are 

reported in Fig. 4.14.  

 

21Fig. 4.14 Identification accuracy as a function of the number of training observations used for training 

(Scheme III) 

The electrode positioning followed the Scheme III (eight electrodes). The results 

were relatively stable up to N=10. Still more than 70% accuracy rate can be achieved 
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while only 2 observations were kept. However, the performance significantly 

degraded when only one observation (6 seconds of EEG recording) was preserved for 

training. A compromise setting may be N=10 (10 observations) which roughly using 

1.3% of the data is utilized for model training, and still achieving more than 90% 

identification rate for 109 subjects. 

It should be mentioned that the results in Fig. 4.14 were obtained by a novel data 

filtering method using Sample Entropy (SampEn) to assess and preserve the most 

informative segments (windows). Without applying that filtering method, the 

performance‘s degradation would be much faster. The detail of the SampEn-based 

filtering algorithm will be described in the feature filtering chapter (Chapter 8). 

4.9  Enrolment Control  

In a real-life biometric scenario, it is very important to keep the quality of the 

database above certain level by evaluating each new user‘s data during the enrolment 

stage. The considerable intra-class variation of EEG data has been mentioned in 

Section 4.8 (Table 4.5); it would be good to control each new data enrolment and 

guarantee the new user to be added into the database is not the ―black sheep‖ and 

spoil the entire training model.  

An enrolment control scheme is developed for the new user‘s enrolment to maintain 

the overall quality of the database and prevent the excessive degradation of the data 

quality during the enrolment. Indeed, it is reasonable that with the involved number 

of subjects increasing, the performance of the database would degrade monotonically, 

provided each subject could offer the data with approximately the same quality. 

However, since EEG signal is non-stationary and easily interrupted, quality of the 

signal may vary a lot for different subject. 

The proposed scheme is designed to evaluate subjects‘ data quality by a pre-

classification during the enrolment: by utilizing an efficient classifier (LDA was 

chosen for this experiment), the system will do a series of classification with the 

number of subjects increase one by one. Fig. 4.15 depicts the overall performances 

before and after the subject evaluation module.  
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22Fig. 4.15 Subject's data Quality Control 

The upper graph in Fig. 4.15 shows the trend of the performances from the adopted 

database (MM/I, all 109 subjects), it can be seen the black points (each point 

represent one subject) led to performance degradations while their data added to the 

database for classifier training, the degradation can be found after the detected 16 

subjects data joined in the database.  

To automatically detect the subjects with low quality data, the performance difference 

between two subjects was calculated for each new enrolment, i indicate the added 

subject: 

      ( )             ( )             (   )         (4.1) 

The scheme (4.1) detects the value of the Trend and removes those that fall out of the 

threshold of [− 0.001, +∞) for the employed database, the lower graph of Fig. 4.11 

shows the optimised performance and the gradual performance degrading process, for 

the acceptable 93 subjects (removed 16 black dotted subjects) the classification rate 

reached up to more than 97.5%. Whereas without quality control, for first 93 subjects 

(S1~S93) the accuracy rate is about 90% (the upper graph of Fig. 4.15). It appears 

that a small amount of low quality enrolments could affect the entire dataset‘s 
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modelling badly. With this simple and effective scheme, every new subject who are 

trying to enrol to the database will be evaluated and those who provide low quality 

data will be suggested to re-do the data capture. 

The results in Fig. 4.15 is an illustration of the results from the proposed evaluation 

scheme, the threshold can be tuned depend on the specific scenario requirement and 

the resulting plot could be further monotonically smoothed. The blank dots indicate 

the detected ―black sheep‖ during the enrolment. The proposed scheme is only 

suitable for the enrolling process, when the true identity is available. These results 

were generated by utilizing part of the enrolment data (2/3 of the available data) for 

model training and the rest for generating the quality scores/accuracies.  

Another issue that needs to be clarified is the efficiency of the evaluation: since the 

testing process is repeated multiple times with the increasing of the users, the training 

time becomes a factor to be reckoned with and the choosing of LDA in this study is 

result of such consideration. Linear Discriminate Analysis is a both efficient good 

performed classifier for EEG signals: the time consumed for 109 subjects‘ evaluation 

was no more than one minute. 

4.10  Conclusion 

In this chapter a series of important factors related to EEG-based biometric system 

were investigated. The results/experience gained from these investigations is quite 

helpful in paving the way to develop the full-fledged recognition system.  

The developing of EEG-based biometric system are detailed in the following a few 

chapters (Chapter 5 to Chapter 8), each chapter is devoted to further investigate one 

critical stage. The following chapter discuss the sensitivity of tasks which used to 

trigger EEG signals for biometric recognition.    
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Chapter 5 

Biometrics Performance Sensitivity to Cognitive Tasks 

Despite some considerable successes in using EEG signals for biometric recognition, 

important challenges still hinder their widespread adoption and acceptance [140], 

because of this the search for new biometric modalities continues. Bio-signals from 

brain are difficult to copy accurately (spoof) due to their non-stationary 

characteristics [141], which makes them appealing candidates for biometric 

applications. The EEG signal is a good choice as a biometric modality due to its 

increasing ease of acquisition through low cost sensors.  

5.1  Introduction 

Poulos et al. first proposed employing EEG signals for person identification 

[5][6][142]. Since then, this modality has received increasing attention for biometrics 

applications. Intuitively, EEG signals may be expected to contain some information 

unique to individuals. However, it is not clear what deliberate or involuntary mental 

activity would generate the best and most biometrically informative signals. This 

question is closely related to which scalp region should provide the signals for 

biometric recognition. 

The mental activity or task used in the research literature to trigger EEG signals for 

biometrics could generally be grouped into three main categories: 

1) Resting state, with no intentional mental or physical activity while with 

eyes either open or closed 

2) Event related potential (ERP) signals, especially the P300 evoked potential 

[35] triggered by visual stimuli 

3) Intentional mental activity(s), either through motor movement or motor 

imagery type 

Some important research results related to these three categories have been reviewed 

in the Literature Review (Chapter 2) subsections. 
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This chapter is devoted to an investigation of the performance sensitivity of EEG-

based biometric systems to the choice of mental activities used for their training and 

test. The work is structured as follows: Section 5.2 provides a justification for using 

wavelet-based features and provides details of the particular wavelet features used in 

this work. Section 5.3 presents some research questions to be investigated as well as 

the database used for investigating these questions. Section 5.4 contains the proposed 

experimental protocols, which are especially designed to investigate the questions 

proposed in Section 5.3. The experimental evaluations and the analysis of results are 

included in Section 5.5. A discussion of the results is provided in Section 5.6 and 

conclusions and suggestions for further work are included in Section 5.7. 

5.2  Research Questions  

The impact of using different mental tasks for generating biometric EEG signals has 

not been investigated. Whether or not, the type of the task affects the performance 

that can be achieved in biometric recognition may be an important factor and is yet to 

be investigated. Four specific questions are addressed in this work: 

1) Does the optimal placement of electrodes vary with the movement/imagery task 

required of the subjects? 

2) Does the type of movement/imagery task performed by subjects affect the 

biometric recognition performance? 

3) Would training with data from one task and testing with data from another task 

significantly affect performance? 

4) Whether combining data from different types of mental tasks for training of the 

system affects performance? 

5.3  Motivation for using Wavelet-based Features  

Similar to certain modalities in the field of signal processing (speech recognition, for 

example [143]), the EEG signal is also considered non-stationary [141][144]. Fourier 

Transform is a conventional approach in signal processing and is widely used for 

EEG-based signal analysis. However, its use is based on the assumption that the data 
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to be analysed is strictly stationary. Short-time Fourier Transform (STFT) may 

moderately relax this restrictive criterion: segmenting the non-stationary signal into a 

series of overlapped short-time frames, by assuming the data within each frame is 

stationary, the Fourier Transforms is applied to each of these frames separately. This 

approach, however, may not be able to fully capture the non-stationary dynamics of 

the signals‘ content. 

The window type and length employed for STFT are important factors in successfully 

capturing the information content of the signal. As the length of the window used in 

STFT affects both time and the frequency analysis, there is a trade-off in choosing the 

window size: a longer window will provide better frequency information, whereas a 

smaller window will capture more time-variant events of the signal. However, it may 

be difficult to select a universally optimal window length/type which applies to every 

user in an EEG-based biometric scenario. 

One advantage of the Discrete Wavelet Transform (DWT) is the flexibility of 

choosing the wavelet functions. Discrete Fourier Transform (DFT) could be viewed 

as a special case of DWT: rather than representing the signals by a series of 

sinusoidal functions, DWT decomposes the signal using a series of scaled and shifted 

wavelet functions, different wavelets may be used based on particular applications 

[145][59]. From (5.1) the flexibility of the stretched and shifted wavelets allows a 

better simulation of the original signals, which facilitates multi-resolution analysis. 

In this work the Wavelet Packet Decomposition (WPD) transform is employed, 

which includes a full decomposition of the signals into multiple levels using both 

wavelet and scaling functions [145]. In order to maximize the use of both time and 

frequency properties of the signal, not only the coefficients from the lowest level but 

also the higher level coefficients were employed as the primary features. The EEG 

signals were decomposed up to Level 3 (Fig. 5.1). This allows the signal to be 

divided into eight non-overlapped wavelet bands. 
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23Fig. 5.1 Wavelet Packet Decomposition for the Proposed System, the bold bands are the frequencies 

utilized in the system 

Different decomposition levels result in a series of coefficients with different lengths: 

the higher the decomposition level, the more frequency details are reflect in the 

coefficients, hence less time domain information may be retained. Therefore, the 

coefficients of the four sub-bands from Level 2 were retained for feature extraction as 

well as those of Level 3, as they may retain useful time domain properties of the 

signal. The Daubechies 4 was used as the wavelet function based on preliminary 

investigations reported in and the segmentation window size was chosen to be 4800 

samples [108]. The nodes marked in bold letters in Fig. 5.1 indicate the selected 

bands and levels used to construct the feature vector. 
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24Fig. 5.2 System Diagram 

As shown in Fig. 5.2 the operation is to compute the differentiation of resulting 

wavelet coefficients in each of the selected bands using Equation (5.1). This 
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operation is aimed at enhancing the temporal variations in the wavelet signal and was 

found to significantly improve performance, which is similar to the notion of image 

gradient which represents the change in intensity or colour of an image [146]. 

Function in (5.1) defines the differentiated wavelet coefficients of each window after 

the WPD. 

 * +  
 

 ( )
(   * +(   )) (5.1) 

After calculating the derivative of the wavelet coefficients, the standard deviation 

(SD) of each wavelet band for each window is computed. The main motivation for 

this step is to reduce the dimensionality of the training data: each window with 4800 

samples is represented by twelve SD values representing each of the wavelet bands. 

These SD vectors were used as features for training a linear discriminant analysis 

(LDA) classifier. The results of classification from multiple windows were combined 

using majority voting decision fusion. System performance for identification and 

verification scenarios was investigated. For the identification scenario, standard LDA 

was employed to train the system; for the verification scenario, however, Fisher‘s 

LDA was found to provide considerably better performance than the standard LDA. 

The difference between these two types of classifiers is that the Fisher‘s LDA does 

not make assumptions such as normally distributed classes or equal class covariance 

[77], which may explain its better performance in the one-to-one verification tests. 

5.4  Experimental Protocols 

Data from the ―EEG Motor Movement/Imagery Dataset‖ (MM/I) was used for these 

investigations [18][110]. This dataset contains data collected using BCI 2000 

(sampling frequency 160 Hz) from 109 subjects; in order to guarantee equal and 

sufficient recording length, 105 out of 109 subjects‘ data were selected for the 

experiments – excluding 4 subjects with shorter data recordings. Details of the task 

instruction can be found in Section 3.1.1 and [15].  
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Before conducting experiments using this database to explore the sensitivity of the 

biometric system to task type, it is helpful to verify that there are indeed some 

significant differences in the four mental/imagery tasks that it includes. 

The mean of wavelet coefficients is used as a feature for task discrimination. Data of 

multiple subjects (first 15 subjects of MM/I dataset) were analysed and the values for 

the four motor/imagery tasks were plotted. As examples, Fig. 5.3 depicts the four task 

clusters for Subject 1 (S1) and Subject (S2). It is clear that the clusters of T2 and T4 

are close to each other, and away from both T1 and T3. This may indicate that the 

motor imagery (without movement) tasks are statistically closely related.  
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25Fig. 5.3 Clusters of the first three dimensions of the feature vector (from four windows of 30 seconds 

duration, S1 and S2) 

This work first investigates the biometric performance achieved when using EEG 

signals from different scalp regions. Nine selected electrodes clustered in three 
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distinctive scalp regions were selected for analysis (AF3, AFz and AF4 in the frontal 

lobe (F); C1, Cz and C2 in the motor cortex (M); O1, Oz and O2 in the occipital lobe 

(O). The positioning of the sensors is illustrated in Fig. 5.4. These regions were 

chosen to cover the anatomically significant areas of the brain involved in 

motor/imagery tasks [147], and to investigate the impact from other less effective 

region on EEG biometric performance [148]. 

AF3 AFz AF4

C1 Cz C2

O1
Oz

O2

 

26Fig. 5.4 Chosen Electrode Positions 

Three experimental protocols are proposed to investigate several factors, which may 

impact the system‘s performance and thus address the research questions raised in the 

previous section. The three protocols were tested in both identification and 

verification scenarios. The abbreviations used above are combined, using the 

convention Task-Recording-Region to generate codes for the data subsets used in the 

experiments detailed below: e.g. TbEOF meaning Baseline task with open eyes and 

data from the frontal region electrodes and T1R1F refers to data from Task 1, Run 1 

and frontal region electrodes. 
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5.4.1 Protocol P1 

The goal of the first protocol (P1) is to investigate the impact of the sensitive regions 

used for data capture and the type of task on performance. Experiments performed 

using this protocol will also serve as a preliminary investigation to find the tasks with 

greatest biometric potential to be investigated further. The data subsets identified in 

P1 make it possible to explore the performance in each electrode region separately. 

The data from R1 together with R3 are randomly chosen as the training data and R2‘s 

data is employed for testing. P1 also identifies four groups of data subsets matching 

the four types of motor movement/imagery tasks (T1-T4) in MM/I to facilitate 

experiments to see the relative performance of each task type. The training and test 

datasets for P1 are shown in Table 5.1. 

10Table 5.1 Protocol 1 

Data Set Training Set Test Set

Task 1 T1R1F+T1R3F T1R2F

T1R1M+T1R3M T1R2M

T1R1O+T1R3O T1R2O

Task 2 T2R1F+T2R3F T2R2F

T2R1M+T2R3M T2R2M

T2R1O+T2R3O T2R2O

Task 3 T3R1F+T3R3F T3R2F

T3R1M+T3R3M T3R2M

T3R1O+T3R3O T3R2O

Task 4 T4R1F+T4R3F T4R2F

T4R1M+T4R3M T4R2M

T4R1O+T4R3O T4R2O
 

5.4.2 Protocol P2 

The purpose of the second protocol (P2) is to investigate the impact of using different 

mental/imagery tasks for training and testing of the system – the test data may be 

taken from a different task type to that used for training the system (all of the selected 
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nine electrodes are involved). P2 makes it possible to see if a mismatch between the 

training and testing task types can significantly impact performance.  As in P1 the 

data from R1 together with R3 are used as the training data and R2‘s data is 

employed for testing. Additionally the data from the two baseline datasets are also 

used in this protocol for testing as illustrated in Fig. 5.5. In this figure each arrow 

signifies a combination of a training subset and a test subset that could be used in 

experiments. 

T1R1+T1R3 T2R1+T2R3 T3R1+T3R3 T4R1+T4R3Training Set

TbEO TbEC T1R2 T2R2 T3R2 T4R2Testing Set

 

27Fig. 5.5 Protocol 2 

5.4.3 Protocol P3 

The third protocol (P3) is designed to explore if data from different task types may be 

combined for the training the system to achieve better performance results. Test data 

from just one task type and recoding (T1R2) was used in this protocol. The training 

data was generated by combining (concatenating) an increasing quantity of data from 

different task type. The data subsets used in P3 for training and testing are shown Fig. 

5.6. 
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28Fig. 5.6 Protocol 3 

5.5  Experimental Analysis 

This section is devoted to the analysis of the results according to the three protocols 

proposed in the previous section. The experiments were conducted for both the 

identification and verification scenarios. In the identification the system will compare 

the query with all of the templates in the database. In the verification scenario, the 

subject claims an identity this is compared with the particular template which belongs 

to the claimed identity stored in the database. Therefore, there are two basic 

indicators to evaluate the system‘s performance in the verification scenario: the False 

Acceptance Rate (FAR), and False Rejection Rate (FRR), from which the Equal Error 

Rate (EER) may be computed [2]. One of the standard evaluation methods to 

combine these two indicators is the so-called Detection Error Trade-off (DET) curve, 

which will be used throughout this work to evaluate the proposed system [149]. The 

software that employed to generate DET curve was provided by the National Institute 

of Standards and Technology (NIST) [150].  

5.5.1 Identification Scenario 

The system‘s performance in the identification scenario will be investigated in this 

sub-section. Three aspects will be analysed according to the proposed protocols: 1) 
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the impact of electrode positioning on the recognition accuracy, 2) the influence from 

different tasks and 3) the impact of combining data from different tasks for training. 

1) Test according to P1 

Fig. 5.7 illustrates the impact of the electrode positions for different tasks. The results 

were generated by randomly selecting 75% of the feature data from R1and R3 to train 

the system, and 25% of the feature data from R2 to test it. The tests were repeated 

100 times for generating the box plots. It is observed from the graphs that for 

different mental task, although the electrodes are clustered in three distinctive regions 

(frontal, motor and occipital lobes), there is no concrete evidence to indicate that any 

particular region could be a better placement for biometrics identification: for Task 1 

and Task 4, the data from occipital lobe seems to provide relatively better 

performance. For Task 2, which is one of the motor imagery tasks, the motor cortex 

indeed provides slightly better performance. For Task 3 the frontal lobe provides the 

highest median accuracy. 
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29Fig. 5.7 The identification performance across four mental tasks for the three regions (three electrodes 

per region) 

Further inspecting the identification accuracies of the four mental tasks, it seems that 

introducing feet movements may not be a good idea for biometrics recognition: the 

overall performance of T3 and T4 (movement or imagery movement of both fist and 
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feet) are both worse than T1 and T2 (movement or imagery movement of only fist). 

T1 seems to provide the best overall performance (in terms of both median accuracy 

and the variance of the performances): such evidence may indicate that the actual 

motor movement is a better choice over the motor imagery movement for biometrics 

scenarios. Based on these observations, the P3 protocol is focused on exploring the 

performance that can be achieved with T1. 

In summary the results show that while the position of the sensors do not make a 

substantial difference in identification performance, the choice of the motor mental 

task of opening and closing the fists seems to outperform the other tasks in the 

database. 

2) Test According to P2 

For these identification scenario tests, the data from all the nine electrodes are 

combined through concatenation to evaluate the impact of the different (non-

matching) tasks used for training and testing. 

As in P1, the second run data (R2) of each task is used for testing and the data from 

the first and the third runs (R1 and R3, concatenated) are used for training the 

classifier. The two baseline recordings (EO and EC) were also used for testing to 

establish the usability of such data in a biometric context.  

For TbEO and TbEC instead of 25%, 50% of the feature data were randomly selected 

for testing due to their shorter recording length compared to the other four tasks. The 

results indicate that the mental (non-resting) tasks used for testing do not make a 

significant difference in the results as indicated by the means of identification 

accuracy. By training with data from T1 to T4 separately and testing across the four 

mental tasks accordingly, the SDs of the four mean identification accuracies range 

from 0.0176 (trained by T1R1+T1R3) to 0.0378 (trained by T3R1+T3R3) indicating 

the stability of the performance results. Similar to the results obtained from P1 in the 

previous section, training with the data from T1 again has shown the highest and the 

most robust performance amongst the four mental tasks (Table 5.2).  

11Table 5.2 Results according to P2, across the four tasks 
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Training Set T1R1
+

T1R3

T2R1
+

T2R3

T3R1
+

T3R3

T4R1
+

T4R3Test Set

T1R2 96.15% 91.22% 89.73% 89.49%

T2R2 96.44% 94.72% 86.48% 91.45%

T3R2 92.78% 90.13% 95.50% 88.42%

T4R2 95.01% 94.91% 87.12% 93.10%

TbEO 1.92% 1.43% 2.32% 2.08%

TbEC 3.45% 1.45% 1.92% 2.44%

 

The results suggest that when the training data was tested by the data from the same 

task, the variance of the CRR is usually smaller than when it is tested by data from 

different tasks. The median accuracy of non-matching training and testing sets, 

however, can be slightly higher (e.g. a system trained by T1R1 together with T1R3, 

tested by T2R2 provides better average performance). In short, the results suggests 

that given a particular type of task or tasks used for preparing the training data, the 

system may still be able to give acceptable results when an altogether different task 

type is used for testing. This allows for more flexibility from the perspective of both 

system designers and subjects in real-life biometric applications.  

Interestingly enough, the performances observed while the mental activity tasks 

tested with the two baseline tasks (EO and EC) were much worse than they were 

tested with one of the movement/imagery tasks. One possible reason for such a 

significant difference in identification rate might stem from the energy difference of 

the signals, as the resting state seems to indicate the brain should be less active. 

However, our further investigation showed the signal energy (square of the signal 

amplitude in time domain) from these two kinds of state (resting and mental activity) 

has no considerable difference. This might also suggest the ambiguous nature of 

resting state: it is hard to establish whether the subjects are really in a resting state or 

not by simply measuring the signal energy. 

3) Test According to P3 
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The results of the previous experiments have shown that the matching between the 

training and testing task types is not crucial for achieving good performance provided 

a non-resting task is used for training and testing. In this set of experiments, therefore, 

data from multiple task types are combined for training in the hope of achieving 

better classifier training. Separate experiments were performed with data from each 

individual run of Task 1 for testing and the best results, which are reported in this 

paper, where obtained when R2 was used for testing.  

As it is shown in Fig. 5.8, as the size of the training set is gradually increased (data 

from all nine electrodes from the three scalp regions), the CRR also increases despite 

the training data coming from different types of mental activity. The rightmost 

column shows that when all the available data is used for training, the overall 

performance (in terms of the median accuracy and variance) drops slightly. These 

results suggest that adding more data may not always lead to improved performance 

due to the presence of redundancies and noise. 
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30Fig. 5.8 Results according to P3 

5.5.2 Verification Scenario 

Performance of the system in the verification scenario is investigated in this section. 

The following three sub-sections are devoted to the experiments based on the 
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proposed three protocols. According to the results obtained from the identification 

scenario, some of the testing schemes explored in the previous sections are simplified. 

1) P1: Analysing the impacts of different electrode positioning 

The DET curves in Fig. 5.9 depict the performance of signals captured from three 

regions of the scalp. Data from different tasks was used for training and test but here 

only the results from T1 are reported as an example to support the arguments of P1 

(results obtained from other tasks also shown similar trend). The data of R1 and R3 

together were used for training the classifier and the data of R2 was used for testing 

the system‘s performance. 
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31Fig. 5.9 T1 according to P1 in verification scenario 

In Fig. 5.9 it can be observed that the occipital electrodes provided the best the 

overall performance amongst the three regions while the electrodes from the motor 

cortex seem to have the worst overall performance. The data obtained from occipital 

lobe and frontal lobe provided close EERs; data from motor cortex resulted clearly 
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higher EER. Though the results of Fig. 5.9 indicate the occipital lobe provided 

slightly better performance amongst the three major scalp regions, it is not clear that 

the impact from the electrode locations is significant. 

2) P2a: The impact of mismatched training and testing tasks 

The DET curves in Fig. 5.10 depict the performance when different types of task 

were used for testing the system, while it was trained by the data from Task1. Based 

on the results of P1 in the verification tests, the data provided by three occipital lobe 

electrodes were used here in P2a. The data of T1R1O together with T1R3O of these 

electrodes were used for training, the data from the middle runs of the four motor 

movement/imagery tasks were used interchangeably for testing. Additionally, the data 

from the two baseline tasks (TbEO and TbEC) were also used for testing. 
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32Fig. 5.10 Training with T1R1O+T1R3O, tested with different types of tasks, three occipital electrodes 

Using the occipital lobe data of T1R2 for testing, i.e. training and testing with the 

same type of mental activity task, the equal error rate was 8.26%. Using the same 
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training set, when it was tested by the data from one of the other motor 

movement/imagery tasks, the performance did not vary much: EERs were 8.09% by 

T2R2O and 7.83% by T4R2O, respectively, which were even lower than when it was 

tested by the same type task data (T1R2O). Only while it was tested with T3R2O the 

EER increased to 8.93%, slightly higher than the result obtained from using T1R2O. 

The rest two curves which represent the results obtained from the data of the two 

baseline tasks, however, revealed much worse performances. Furthermore, the 

TbEOO curve indicates the performance when the system was tested by the eyes open 

baseline data, which is much better than the result provided by the data obtained 

while eyes were closed (TbECO). 

By observing the results of Fig. 5.10, it seems that when the system was trained by 

the data from one motor movement/imagery task and tested by any of the other three 

different task data, the performance does not necessarily become worse than the task-

matching test; when the movement/imagery task data was tested by the data 

generated during resting state, the performance degraded a lot. However, eye blinks 

in this particular circumstance does not seem to be a negative factor, due to the 

obviously better performance during the eyes open state compared with the eyes 

closed state. 

3) P2b: Increasing the number of electrodes 

The previously presented results suggest that there might be no obvious electrode 

positioning bias in the verification scenario (Fig. 5.9). The impact of different types 

of motor movement/imagery activities on the verification performance seems to be 

not quite substantial either, though the results of task-mismatched experiments 

indicate the data from different brain state (resting state) indeed significantly affect 

the recognition accuracy (Fig. 5.10). Furthermore, the performance achieved using 

only three electrodes may not be sufficient enough for state-of-the-art biometric 

applications (Fig. 5.9 and Fig. 5.10). Therefore, two different approaches were used 

to improve the verification performance: (1) Increasing the size of training data by 

using more electrodes; (2) Increasing the size of training set by combining data from 

different task types (according to P3). The utilization of the second strategy was 

based on the experimental results shown in Fig. 5.11. 
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33Fig. 5.11 Training with T1R1+T1R3, tested with R2 from different types of motor movement/imagery 

tasks, nine electrodes from the three regions 

For the first approach, data from all the nine electrodes (in three regions) were 

employed. Trained by T1R1 together with T1R3, a series of tests were conducted to 

measure the improvement of the performance and the results are shown in Fig. 5.11. 

Similar to P2a, the data from the middle runs (R2) of the four motor 

movement/imagery tasks were used for testing. It can be observed that when the 

system was trained with the data from T1 and tested by T2R2, the EER gained the 

lowest value of 2.785%, which is even lower than when it was tested with the data of 

the same task T1R2 (6.9% of EER). The best performance in this training-testing 

scheme has improved almost three times, by increasing the number of employed 

electrodes from three to nine ((8.26%) / (2.785%) ≈ 2.97). 

4) P3: Concatenating different task data for training 
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The data from different motor movement/imagery tasks were concatenated for 

improving the training of the system and increasing performance. The data from all 

nine electrodes were employed for training the verification system. 

A series of DET curves in Fig. 5.12 depict the results obtained from different training 

data sets used in P3. Data from T1R2 alone was used as the test set; the data used for 

training the system were increased gradually. As the data of T1 and T2 (motor 

movement tasks) were found to have provided slightly better performance than T3 

and T4 (motor imagery tasks), these were combined to train the system. The system 

achieved the lowest EER of 2.87% by training with the largest amount of data 

(combining all the data of T1 and T2). The performance of using data from the single 

run for training were also explored, i.e. trained by the data of T1R1 and T1R3 

separately: the results show that using only the data from a single run, the verification 

performances are much worse compared with the combination of runs and tasks. It 

may be reasonable to expect that if more data from different motor 

movement/imagery tasks were combined in such a way, the EER may be further 

reduced. This pattern has indeed been observed for the identification results in Fig. 

5.8. 

The DET curves of Fig. 5.12 could be divided into three groups. For the group with 

the smallest training set, using the data of single runs from a single task for training, 

the lowest performances were observed and the training data of R3 provide better 

results than R1. This performance variation may also indicate the instability of 

employing EEG in biometrics verification scenario while using single runs for system 

training. The performance improved with increasing the training data volume (from 

multiple data recordings) and alleviated the performance variation. The lowest EER 

of about 4.5% was achieved when all the data from T1 and T2 were used for training. 

It is worth mentioning that the inflection points observed on the DET curves become 

less distinct as the training data increases. The results indicate that a system with zero 

FRR and 7% FAR may be achievable which might be suitable for some application 

scenarios. 
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34Fig. 5.12 Tested with T1R2, cross-task increasing the training data size 

5.6  Summary and Discussion 

In this section a brief summary of the key contributions in this chapter is provided, 

followed by a discussion of some important issues that were raised. 

A. EEG Features 

A new feature for EEG biometric signals based on the derivative of wavelet 

coefficients is proposed. Differentiation is a conventional function used to measure 

the changing rate of signal series. The motivation for calculating the differentiation of 

the wavelet coefficients is to capture the possible instantaneous change of the signal. 

The use of multiple scales of wavelet coefficients is also investigated. By combining 

the coefficients from different scales, more information may be captured representing 
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both time (from the higher scales) and frequency (from the lower scales) 

characteristics of the signals. 

B. Evaluations 

Three protocols were constructed to verify the questions raised in Section 5.2, mainly 

aimed at establishing the impact of training strategies and data volume on 

performance. 

The results of P1 indicate that for the proposed experimental design there is no clear 

difference amongst scalp regions. 

P2 was designed to answer whether using different mental tasks for testing would 

impact performance. It can be observed from Table 5.2 that the sensitivity to different 

mental tasks used for testing was quite limited with the mean performance changing 

very little. However, when one of the resting tasks is used for testing there is a large 

drop in performance. 

P3 is designed to investigate whether it is applicable to aggregate data obtained from 

different types of mental activity from separated recordings to build a more robust 

training al model. Considering the possible similarities between human voice and 

EEG signals, it is noted that similar strategies have been successfully implemented 

for text-independent speaker recognition systems [151]. Results from P3 clearly 

indicate that increasing the training data volume, irrespective of the type of mental 

activity used, improves identification and verification performance (Fig. 5.8 and Fig. 

5.12). 

5.7  Conclusions  

In this work the impact of mental activity on the performance of an EEG-based 

biometric system using wavelet features has explored. The work has investigated the 

impact of different mental activities used for training and testing the system. The 

overall conclusion is that there appears to be substantial flexibility in the choice of 

mental activity used for training and testing such systems. The work has also 

indicated that data from different types of activity may be aggregated to provide more 

robust training of the system without any adverse effects. This flexibility with regards 
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to types of mental activity could result in systems that are easier to develop, deploy 

and use in a range of applications. Future work will be focused on evaluating the 

robustness of this approach when collecting data with long time intervals between 

training and testing as well as data from low-cost EEG sensors.  
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Chapter 6 

Wavelet-based Features and HHT-based Features 

The choice of features is essential in achieving good biometric recognition 

performance; many features have been proposed in the literatures (Chapter 2). The 

PSD and AR model coefficients have been amongst the most popular features in EEG 

biometrics since they were first introduced to this field about 15 years ago [5][6]. 

However, the conventional PSD features only reveal static content (spectral power) of 

the signals without considering the dynamic non-stationary characteristics of 

brainwave. Typical AR features, on the other hand, are time domain coefficients, 

which may be difficult to reveal the frequency property of the signals. In this chapter, 

four new and arguably better performing features are proposed: the theoretical 

arguments for their suitability are further supported by their respective experimental 

results. 

This chapter contains five sections: two wavelet-based features are developed and 

explored in Section 6.1 and Section 6.2, respectively. In Section 6.3, two closely-

related novel features based on Hilbert-Huang Transform (HHT) are described, and 

their experimental evaluation is presented. In Section 6.4, a comparison of the 

proposed features is given, followed by a discussion of comparative experimental 

results. The conclusion is presented in Section 6.5. 

6.1 Time-derivative of Wavelet Coefficients 

In the Preliminary Investigation chapter (Chapter 4), a series of different wavelet-

based features were introduced and experimentally evaluated. The results indicated 

computing the standard deviation (SD) of wavelet coefficients for each segmented 

window was a good choice as feature for the MM/I dataset. In this section, an 

enhanced feature based on the notion of SD feature is developed.  
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In this investigation it is proposed to employ the Wavelet Packet Decomposition 

transform for feature extraction, which includes a full decomposition of the signals 

into multiple levels using both wavelet and scaling functions [59]. In order to 

maximize the use of both time and frequency properties of the signal, not only the 

coefficients from the lowest level but also the higher level coefficients were 

employed as the primary features. The EEG signals were decomposed up to Level 3 

(Fig. 6.1). This allows the signal to be divided into eight non-overlapped wavelet 

bands. The nodes marked in brackets in Fig. 6.1 indicate the bands and levels used to 

construct the feature vector. 

Level 1

Level 0

Level 2

Level 3

Tree Decomposition

0~80Hz

(0~40Hz) (40Hz~80Hz)

(0~20Hz) (20Hz~40Hz) (40Hz~60Hz) (60Hz~80Hz)

(0~10Hz) (10Hz~20Hz) (20Hz~30Hz) (30Hz~40Hz) (40Hz~50Hz) (50Hz~60Hz) (60Hz~70Hz) (70Hz~80Hz)

 

35Fig. 6.1 Wavelet Packet Decomposition for the Proposed System 

The original SD-based method employs the resulted wavelet coefficients of each 

window for the feature extraction directly, whereas the new strategy adds an extra 

step of computing the derivative of the wavelet coefficients in each of the selected 

bands before computing the SD. This operation is aimed at enhancing the temporal 

variations in the wavelet signal and was found to significantly improve the 

performance, which is similar to the notion of image gradient which represents the 

change in intensity or colour of an image [146]. Depending on the types of available 

datasets (MM/I dataset with four tasks) in the work, accuracy improvements of 

5%~8% were found by computing the derivative of the wavelet coefficients 

compared with not employing this signal enhancement stage.  
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After calculating the derivative of the wavelet coefficients, the standard deviation of 

each wavelet band for each window is computed (SD(Diff)). The main motivation for 

this step is to reduce the dimensionality of the training data: each window with 4800 

samples is represented by twelve SD values representing each of the wavelet bands.  

The overall system diagram related to this method can be found in Chapter 5, Fig. 

5.2. The effectiveness of the proposed time-derivative of wavelet coefficients feature 

is to be investigated and compared along with other proposed features in Section 6.4, 

in terms of their biometric recognition performances. 

6.2 Wavelet-DCT Coefficient Feature 

Feature extraction is one critical step in developing EEG biometric system. After more 

15 years of research, most of the proposed systems are still based on extracting one or 

both of the following features for classification: Power Spectral Density (PSD) [42][44] 

and Autoregressive Model (AR) coefficients [55][99]. These conventional features, 

however, may not be able to capture enough biometric information given the data 

from only a small number of electrodes are available, particularly while without 

applying the feature fusion strategy. Reducing the number of employed electrodes is 

one of the main research trends in EEG biometric field. It is noticed from the existing 

literature that the performance of using conventional features extracted from small 

number of electrodes still need to be improved and the new features are actively 

developing. 

Recently, Bai et al. [101] reported to use the Visual Evoke Potential (VEP) of EEG 

signals for person identification. A series of techniques, including Genetic Algorithm, 

Fisher Discriminant Ratio and Recursive Feature Elimination were employed to 

reduce the adopted electrodes for less-intrusive user experience. Data from 32 out of 

64 electrodes were selected for testing in a self-collected database of 20 subjects. The 

best identification rate of 97.25% was achieved using a Support Vector Machine 

classifier. 

Phung et al. [68] proposed to use Shannon Entropy (SE) as feature for fast EEG-based 

person identification. A database which contains 40 subjects was employed. EEG data 
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captured from 23 electrodes was employed for feature extraction. A comparison of 

using the conventional Autoregressive coefficients (AR) as features was presented: it 

was found that using SE was 2.3 to 2.6 times faster than the feature extraction based 

on using AR model to achieve comparable accuracy (97.1% for SE versus 97.2% for 

AR).  

Gui et al. [45] proposed two methods for EEG feature extraction: Euclidean Distance 

(ED) and Dynamic Time Warping (DTW). The proposed methods were tested in a 

self-collected database with 30 subjects using a 74-channel EEG cap: only the data 

obtained from four electrodes (Pz, O1, O2, Oz) were used. It was found using ED 

method over 80% of accuracy was achieved whereas for the DTW method it was 

about 68%. 

Same as the human voice signals, the EEG signal is considered as a nonstationary 

modality [152][153].  A preliminary investigation of extracting the conventional Mel-

frequency Cepstral Coefficients (MFCC) for EEG person identification was conducted 

by Nguyen et al. [69]: for a population of 20 subjects (one subset of a public database 

with 122 subjects) the identification rate of 92.8% was achieved using the data from 

selected eight electrodes. It suggests MFCC feature which transferred directly from 

voice recognition is also effective in revealing the biometric information of EEG 

signals. MFCCs are commonly derived as follows [154][155]: 

1. Take the Fourier Transform of (a windowed excerpt of) a signal. 

2. Map the powers of the spectrum obtained above onto the Mel Scale [156], 

using triangular overlapping windows. 

3. Take the logs of the powers at each of the Mel frequencies. 

4. Take the discrete cosine transform of the list of Mel log powers, as if it were a 

signal. 

5. The MFCCs are the amplitudes of the resulting spectrum. 

In this work a new wavelet-based feature is developed, which shares certain same 

characteristics of the standard MFCCs extraction process. In fact, the notion of 

combing Wavelet Transform (WT) and Fourier Transform (FT) has been noticed and 
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implemented in the speaker recognition field [157][158]. However, all of the reported 

algorithms follow the order of computing Fourier Transform-Mel Log Powers per 

Window-Wavelet Transform for feature extraction. The proposed EEG related 

algorithm, on the other hand, performs the wavelet transform first, then the logarithm 

of the wavelet coefficients per window is computed, finally the Discrete Cosine 

Transform (DCT) is computed. The resulting coefficient with the highest energy is 

used as the feature for pattern classification. The overall flow chart of the algorithm is 

illustrated as follows: 

Wavelet 
Transform

Logarithm of Wavelet 
Coefficient

DCT of Logarithmic 
Wavelet Coefficients

Segmented 
EEG signals

Pattern 
classification

 

36Fig. 6.2 Overall feature extraction process of Wavelet-DCT decomposition 

As Fig. 6.2 indicates, the main difference between the proposed feature extraction 

method and the conventional MFCC algorithm is replacing the first step of Fourier 

Transform by the Wavelet Transform. The multi-scale decomposition characteristics 

of WT may be better distinguishing the biometric information buried in the time 

domain signals. The conventional MFCC algorithm employs the first 12-39 resulting 

coefficients after DCT as features for voice recognition [159]. In the proposed method, 

only the first/dominating resulting coefficient (per window) has been found effective 

and used as feature subsequently: all of the remaining DCT coefficients are found to 

make no contribution to recognition, according to the extensive experimental 

evaluations.   

The main feature extraction process of the proposed method could be divided into 

three steps, highlighted by the bold letters shown in Fig. 6.2. The first step is 

performing the Wavelet Transform to each time-domain window after segmentation: 

here the Wavelet Packet Decomposition (WPD) is employed [59].  

The second step is to compute the logarithm of the resulting coefficients for each post-

windowed wavelet band. The motivation of performing this trick shares similar reason 

with the computing of MFCC features: the logarithm transforms the results to a non-

linear scale, which serves as a magnifying operator in the proposed algorithm. For the 
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proposed method it is found the resulting logarithmic wavelet coefficients are more 

effective in person recognition, compared with the non-logarithmic features. 

The logarithm of the wavelet coefficients for each window is further fed into a discrete 

cosine filters bank, result a series of Wavelet-DCT coefficients [146]. The final step is 

mathematically expressed by (6.1) as follows: 
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(    )(   ))    (6.1) 

where w(k) = {

 

√ 
        

√
 

 
       

 k=1,2,…,N. 

The distribution of the resulting wavelet-DCT coefficients shows in Fig. 6.2 is a visual 

illustration of the resulting coefficients after applied the proposed feature extraction 

algorithm. Preliminary evaluation results of DCT (after WT and logarithm) indicate 

the coefficient with dominating amplitude is the most discriminating feature. It is 

found usually the Delta (<4 Hz) and Theta (4 Hz-7 Hz) bands of the EEG signal 

always provide similar trend as the plot in Fig. 6.2, though for different individual the 

maximum value of Wavelet-DCT coefficients are different. It may indicate the user-

distinctive information in the low frequency of EEG signals is dominated within a 

very narrow frequency range. Experimental results confirmed this conjecture: using 

other coefficients (instead of the dominating coefficient) as feature, the identification 

performance was less than 10% for a database of about 100 subjects. It is worth 

mentioning that such pattern as in Fig. 6.2 tends to happen in relatively low frequency 

of EEG signals (after wavelet transform), in high frequency (more than 60 Hz) such 

phenomenon becomes let obviously, i.e. the first coefficient in high frequency 

becomes less effective in biometric recognition. 
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37Fig. 6.3 Typical Wavelet-DCT coefficients per window, the illustrating plot obtained from 0~10 Hz of wavelet 

coefficients (generated using MM/I dataset) 

One of the reasons that for each wavelet band/sub-band only the first coefficient is 

found effective may be also related to the results of Wavelet Transform. The 

segmented signals after WT become a series of wavelet coefficients in the ―wavelet 

domain‖, these coefficients generally corresponding to a certain frequency range in the 

conventional frequency domain. However, frequency characteristics of the wavelet 

coefficients within each wavelet band are not equally distributed over the entire 

frequency range but clustered in a relatively narrow range. For this reason, the 

logarithmic DCT may further magnified the dominating frequency and lead to very 

small number of useful Wavelet-DCT coefficients (often just one dominating 

coefficient is effective). 

To summary the proposed method: the raw signals were segmented into multiple time 

domain windows first, for each window the wavelet packet decomposition (WPD) was 

performed [136]: the signals were decomposed into four levels (level 0 to 3), only the 

wavelet coefficients between 0 to 60 Hz were preserved for further feature extraction. 

Therefore, 9 overlapped wavelet bands were kept for each time domain segment. 

Based on the illustrating steps of Fig. 6.2, the logarithm of the resulting wavelet 

coefficients was computed. DCT is then computed to generate the informative features 

for classification. It needs to mention that only the real part of the resulting DCT pair 
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is preserved. The resulting Wavelet-DCT coefficients for one wavelet band are shown 

in Fig. 6.3. Finally, only the coefficient with dominating amplitude (energy) is fed for 

classification. The features are trained by a simple 1-nearest neighbour classifier [82]. 

In order to test the performance of the proposed feature extraction algorithm, it is 

important to compare it with the related features in the literatures. Conventionally, 

after FT the number of resulting coefficients is too large to use directly, as it will 

hugely increase the dimensionality of the feature vector. High dimensional feature 

may lead to the ―curse of dimensionality‖, especially when instance-based classifier 

such as k-NN is employed.  

Many operations were employed to reduce the vector length. For example, Phung et al. 

[68] proposed to employ Shannon Entropy as feature. Abdullah et al. [61] proposed to 

compute mean and standard deviation as features to achieve the dimension reduction 

purpose. Gupta et al. [60] proposed to using the energy of resulting wavelet coefficient 

as feature, which can be obtained by computing the variance of the coefficients. In this 

study, some of these related features are also computed to compare their performances 

with the proposed Wavelet-DCT feature. 

Two popular databases introduced in Chapter 3 were employed for this investigation: 

―UCI EEG Database Dataset‖ [111] and ―EEG Motor Movement/Imagery Dataset‖ 

[15].  

For both of the databases, only the data from the Cz (centre of the scalp) was 

employed for person recognition in this study. The preliminary investigations (in 

Chapter 4) indicate the EEG data obtained from Cz location tend to provide the best 

and most robust recognition performance. 

6.2.1 Experimental Analysis 

A series of investigations using the wavelet-DCT feature are presented in this section. 

The section is divided into three sub-sections. Section 6.2.1.1 is devoted to analysing 

identification sensitivity of the proposed feature using Cumulative Matching Curve 

(CMC), followed by the verification performance of the proposed feature and the 
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relevant wavelet features reported in Section 6.2.1.2. The comparison with other 

related features are introduced in Section 6.2.1.3... 

6.1.1.1 Identification Sensitivity 

The proposed wavelet-DCT feature is derived from time domain segments. The 

length of the segmented window is an influential factor in designing the EEG-based 

biometric system, using bigger window for feature extraction tend to achieve higher 

recognition rate. The window size also affects the user experience: the bigger the 

window size, the longer minimum time from the user is needed for testing/query. 

The identification accuracy of the proposed system is shown in Table 6.1, using the 

UCI VEP database. A series of identification tests have been conducted: for the 

proposed feature, from around 10 seconds to about 30 seconds per window. The 

reported results are obtained by averaging 50 times of system training and tests: each 

time 70% of the available features (60 seconds‘ recording) is randomly picked for 

training and the rest used to test the system performance. 

12Table 6.1 Impact of window size (samples/window) for feature extraction: using UCI VEP database 

Samples/window 
(Second) 

2816 
(11s) 

3520 
(13.75s) 

4224 
(16.5s) 

5280 
(20.63s) 

7040 
(27.5s) 

8448 
(33s) 

Accuracy 77.86% 90.20% 77.31% 80.21% 96.46% 84.22% 

Several features introduced in the previous sections are employed to compare with 

the proposed wavelet-DCT feature in an identification scenario. Fig. 6.4 shows the 

CMCs obtained by employing those features, using the UCI VEP database. It is 

clearly shown that the proposed feature provided the highest rank 1 identification 

rate. The Max-Min feature, which is derived by computing the maximum wavelet 

coefficient minus the minimum wavelet coefficients, provided the second best 

performance of about 64%. It is found SD feature (proposed by [61]), derived by 

computing the standard deviation of the resulting wavelet coefficients quickly 

surpassed the Max-Min feature after rank 3. It is interesting to notice though the 

computation processes of SD and variance are closely related, their identification 

performances are found rather different. 
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38Fig. 6.4 CMCs of several features, using 117 subjects from UCI VEP database 

The identification tests using the MM/I dataset also have been investigated. The 

CMCs shown in Fig. 6.5 indicates a much better performance than using the data 

from UCI VEP database (99% versus 90%). Considering the same recording length 

which purposely kept for comparison (60 seconds) and the same electrode location 

analysed (Cz), the results in Fig. 6.5 may suggest: 1) MM/I dataset is better noise-

removed or 2) VEP stimulus is less effective than resting state with eyes close for 

EEG biometrics. Similar pattern is found in MM/I dataset: the newly proposed 

Wavelet-DCT feature provided the highest rank 1 performance; the SD feature 

(proposed by [61]) provided the second best rank 1 identification rate; same as it is 

for VEP database, the Variance feature (proposed by [60]) reveals comparable 

performance with feature derived using Shannon Entropy (proposed [68]). However, 

it is found from both Fig. 6.4 and Fig. 6.5 that Mean feature provided the worst 

identification performance. 
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39Fig. 6.5 CMCs of several features, using 105 subjects from MM/I dataset 

It should be noted again that, the results in Fig. 6.4 and Fig. 6.5 are obtained using the 

segmented recording of 13.75 seconds per window, it is predicted that with the 

window size increasing, the identification performance could be further improved. 

The next section is devoted to the investigation of the performance of the proposed 

feature in the verification scenario. 

6.1.1.2 Verification Sensitivity 

The proposed wavelet-DCT feature is also tested using UCI VEP database and MM/I 

dataset in a verification scenario. The publicly available curve plotting package 

contributed by National Institute of Standards and Technology (NIST) [150] is 

employed to generate the Detection error trade-off (DET) curves. 

Fig. 6.6 shows the resulting DET curves using UCI VEP database. For comparison 

purposes, the plots include the proposed feature and the related features. Wavelet-

DCT feature here again shows the best verification performance: the Equal Error Rate 

(EER) between 2%~5% is achieved, the second lowest EER of more than 10% is 

provided by SD feature. 



115 
 

  2     5     10    20    40  

  2   

  5   

  10  

  20  

  40  

FAR (in %)
(a)

F
R

R
 (

in
 %

)

 

 

Wavelet--Log--DCT

Wavelet--SD

Wavelet--(Max-Min)

Wavelet--Entropy

 

40Fig. 6.6 DET curves of several features, using 117 subjects from UCI VEP database 

To investigate the biometric recognition stability of the proposed feature for different 

database, the verification performance of the MM/I dataset is again used for 

comparison. Fig. 6.7 indicates the proposed feature provided about 1% of EER and 

the SD feature achieved the second best performance with EER of about 6%. 
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41Fig. 6.7 DET curves of several features, using 105 subjects from MM/I dataset 

Similar patterns can be found between Fig. 6.6 and Fig. 6.7: for both databases the 

proposed Wavelet-DCT feature provided the best performance and the Mean feature 

provided the worst verification rate. It is clear that the proposed feature revealed both 

good and stable verification performance. Considering the equal recording length for 

analysis (both 1 minute) and the same electrode employed (Cz), it seems the MM/I 

dataset may possess higher quality data than the VEP database for biometric 

recognition. 

6.1.1.3 Comparative Analysis 

In this section, the proposed feature is compared with other non-wavelet-based 

features. All the results reported here are based on UCI VEP database and the MM/I 

dataset.  

Table 6.2 shows the results obtained by different features while using UCI VEP 

database. The PSD and AR coefficient features are conventional features: high 

identification rates were achieved using them. However, it is shown in the literature 
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that large number of electrodes has to be employed to maintain such high recognition 

rates. Though provided slightly lower recognition rate, the proposed feature 

extraction method with only single electrode offers much less intrusive Brain 

Computer Interaction (BCI). It also should notice that the result listed in Table 7.2 

using Wavelet-DCT feature was obtained using feature extracted from window size 

of 13.75 seconds, the identification rate could reach 96.46% while the EEG recording 

were segmented into 27.5 seconds per window for feature extraction (see Table 7.1). 

13Table 6.2 Feature sensitivity for identification scenario, UCI VEP database 

Features PSD & AR coefficients 
[74] 

Univariate AR model 
[56] 

Root Mean Square 
[66] 

Wavelet-
DCT 

Subjects 20 120 116 117 

Electrode(s) 61 64 64 1 (Cz) 

Accuracy 100% 98.96% 95.1% 90.20% 

Table 6.3 shows the comparative results from employing MM/I dataset based on 

using different features. Similar pattern is found from MM/I dataset: using one 

feature for classification (with fusion of multiple features), the best identification rate 

is obtained by using the proposed feature from single electrode. 

14Table 6.3 Feature sensitivity for identification scenario, MM/I Eyes Open subset 

Features Spectral Coherence 
Connectivity [31] 

Power Spectral 
Density [31] 

Eigenvector 
Centrality [32] 

Wavelet-
DCT 

Subjects 108 108 109 105 

Electrode(s) 56 56 64 1 (Cz) 

Accuracy 75.86% 86.91% 96.9% 98.6% 

The main advantage of the proposed feature extraction algorithm is the small number 

of employed electrode for person identification. The existence of biometric 

information in EEG signals has been justified by many researchers, but for the sake of 

user-friendly experience, using single electrode for person recognition is one 

important research trend. 

In this study a novel feature extraction method is proposed, the dominating Wavelet-

DCT coefficient is found the most effective in person recognition. Only the electrode 

in the Cz location has been employed for data analysis. Both the identification and 

verification scenarios were explored, the results compared with multiple related 
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features appeared in the literatures. The comparative analysis was conducted to 

objectively illustrate results reported by other researchers using the same databases. 

In the next section, two novel features based on Hilbert-Huang Transform are 

proposed. 

6.3 Features based on Hilbert-Huang Transform 

The algorithm of computing two novel features based on Hilbert-Huang Transform is 

proposed in this section. The algorithm involves calculating the Instantaneous 

Frequency and Instantaneous Amplitude of the resulting coefficients after HHT [160], 

which are then used for feature extraction. An EEG-based recognition system using 

the proposed features was tested using two publicly available databases. Its accuracy 

and robustness was compared with a system using conventional wavelet-based 

features. 

6.3.1 Motivation 

Hilbert-Huang Transform was originally proposed by Huang et al. in 1998, since then 

this transform has received much attention in the signal processing field. Although 

HHT was particularly designed for analysing non-stationary signals, its theoretical 

justification is still debated: its effectiveness was however mostly demonstrated using 

various real-life experiments [161]. 

Standard HHT algorithm contains two steps: 1) the Empirical Mode Decomposition 

(EMD) is performed to obtain a series of Intrinsic Mode Functions (IMFs), 2) for 

each IMF the Hilbert Transform (HT) is performed to produce an Analytic Signal 

(AS). The detailed explanation of the EMD algorithm and HT for signal processing 

may be found in [62][160]. The first step of the HHT can be mathematically 

illustrated as follows: the input signal  ( ) is decomposed into a set of n IMFs     and 

a trend (residual) signal       

 ( )  ∑     

 

   

 (6.2) 
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Each IMF is defined as to have symmetric upper and lower envelopes with the 

number of extremas and zero-crossings being equal or differing by one [62].  

However, sometimes due to the ―intermittency of the driving mechanisms‖, the EMD 

may trigger a phenomenon called ―mode mixing‖ which causes IMFs to contain 

oscillations of drastically disparate scales [162]. Another drawback of EMD is that 

the solution of the decomposition is often not unique, i.e. the numbers of IMFs after 

the EMD can be vary for different windows (with the same window size) [62]. This 

may lead to a reduction of the algorithm‘s robustness in its application(s). To mitigate 

these shortcomings, Zhaohua et al. [163] proposed an EMD-based Noise-Assisted 

Data Analysis (NADA) method called Ensemble Empirical Mode Decomposition 

(EEMD). The features proposed for the EEG data analysis in this chapter is based on 

this improved EMD algorithm. 

6.3.2 Ensemble Empirical Mode Decomposition 

The EEMD may be described as follows: during the classic EMD process, a series of 

―finite, not infinitesimal, amplitude white noise‖ are added to the original signal 

[163]. This will create a uniformly distributed reference frame which may eventually 

exhaust all the other possible decomposing solutions (in standard EMD) and end up 

with a unique and stable ensemble mode number (number of the IMFs). According to 

Zhaohua et al. [163], the added white noise signals are chosen to be different in terms 

of amplitude. These uncorrelated white noise signals are likely to cancel each other 

out, along with the oscillations of drastically disparate scales which might cause the 

―mode mixing‖ phenomenon. The EEMD process proposed by [163] is as follows: 

1. Add a white noise series to the input data; 

2. Decompose the data along with the added white noise into IMFs; 

3. Repeat step 1 and step 2 multiple times, but with different white noise series 

each time; 

4. Obtain the (ensemble) means of corresponding IMFs of the decompositions as 

the final result. 
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The stoppage criterion of the EEMD (related to step 3) in this research is to set the 

number of the resulting modes to 12, based on some preliminary tests for the 

proposed EEG biometric system. 

6.3.3 Instantaneous Frequency and Instantaneous Amplitude 

For each IMF the HT is performed as described below. The Instantaneous Frequency 

(InsFreq) and Instantaneous Amplitude (InsAmp) functions can then be computed 

after performing the HHT algorithm. The idea of InsFreq and InsAmp are closely 

related to HT.  

Denote the resulting IMF(s) after EMD by  ( ), the HT of  ( ) can be computed 

using (7.6): 

 ( )  
 

 
P∫

 ( )

   

 

 
  , (6.3) 

Where  ( ) is the result of HT and  

     
    

[∫
 ( )

   
   ∫
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  ]   (6.4) 

P is the Cauchy Principal Value defined by (6.4), due to the otherwise ill-defined 

function (6.3) while    . Using HT to define the imaginary part of an Analytic 

Signal (AS), therefore, the AS can be defined according to the Euler‘s formula [164]: 

 ( )   ( )    ( )   ( )   ( ), (6.5) 

In which 

 ( )  *  ( )    ( )+
 

   and  ( )        ( )

 ( )
  (6.6) 

From this uniquely defined analytic pair, InsFreq and InsAmp can be computed. 

Though the definition of InsAmp, A( ) , is less controversial, the definition of InsFreq 

has been rather controversial [160]. For the proposed system, it is chosen to calculate 

the InsFreq,  ( )  as the derivative of Instantaneous Phase (Ɵ(t)) [160]: 
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 ( )  
  ( )

  
  (6.7) 

Intuitively the existence of InsFreq should be obvious, since for most of the non-

stationary signals the power spectra density in frequency domain is changing over 

time, which makes a data-adaptive algorithm such as HHT a good option. This 

algorithm is used for feature extraction in the proposed system, as described in the 

following section. 

6.3.4  System Design 

To satisfy the need for maximum ease of deployment as a biometric system, only one 

electrode was employed for its performance evaluation. The EEG data was segmented 

using overlapped windows to capture informative events contained within the signal.  

The overall block diagram of the proposed system is illustrated in Fig. 6.8. 

 

42Fig. 6.8 System Block Diagram (frequency ranges according to VEP database) 

A Wavelet Packet Decomposition algorithm [59] was then used to filter certain 

frequency bands (Fig. 6.8). The EEG signal was reconstructed into four equal sized 
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series in the time domain after WPD, each contained the frequency components from 

the selected bands: for the employed VEP database the four band ranges are 0~32 Hz, 

32 Hz~64 Hz, 64 Hz~96 Hz and 96 Hz~128 Hz; for the MM/I dataset the 

corresponding bands range from 0~20 Hz, 20 Hz~40 Hz, 40 Hz~60 Hz and 60 Hz~80 

Hz.  

Each reconstructed band was processed using the EEMD algorithm to produce twelve 

empirical modes. The first and the last two modes were removed: the first mode 

simply was the replication of the original signal without decomposition, the last two 

modes have been found not to contain much of useful information.  

The next step is to extract the InsFreq and InsAmp by performing the HT (using Eqn. 

(7.6)) on each mode. The function used in this work for computing the InsFreq was the 

derivative of the Instantaneous Phase, using Eqn. (6.7) in the previous section; the 

InsAmp  ( )  was calculated by Eqn. (6.6). Features were then generated by 

computing the marginal frequency of the InsFreq and the mean of InsAmp for each 

window. The choice of the mean and marginal frequency as the optimal feature 

generators was based on the testing of different operators including: Standard 

Deviation, Skewness, Kurtosis, Mode, median and Variance. 

A feature-level concatenation after the computation of the InsFreq and the InsAmp 

was performed (Fig. 6.8): concatenating the data from four bands (each band 

contained nine dimensions – corresponding to the retained empirical modes) hence 

producing a 36 dimensions feature vector for the further processing. The same strategy 

was applied to InsAmp.  

After this feature concatenation stage, the two sets of data from InsFreq and InsAmp 

were fed to two classifiers, respectively. Based on experiments using different 

classifiers, a Linear Discriminant Analysis-based classifier was used for InsAmp-

based features, whereas the k-Nearest Neighbour (3-NN) was adopted for the InsFreq-

based features. 

The normalized scores generated by the two classifiers were then combined using a 

fusion rule based on Bayes' theorem, this fusion rule was used here to infer the joint 
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probability of InsAmp and InsFreq based classification results. The basic principle of 

Bayes‘ fusion rule can be defined as [165]: 

 ( | )  
 ( | ) ( )

 ( )
 

 ( | ) ( )

 ( | ) ( )  ( |(   ( ))) (   ( ))
. (6.8) 

Here P(F) and P(A) are defined as the probability of correct classification of InsFreq-

based and InsAmp-based features respectively. However, in this particular application, 

it is assumed that features from InsFreq and InsAmp are independent and identically 

distributed (i.i.d.), therefore the Eqn. (6.8) can be simplified as: 

 ( | )  
 ( ) ( )

 ( ) ( )   (   ( )) (   ( ))
  (6.9) 

Eqn. (6.9) is used to compute the fusion of the scores from InsFreq-based and 

InsAmp-based features.  

6.3.5  Databases Description 

The VEP Database [111] and the EEG Motor Movement/Imagery Dataset (MM/I 

Dataset) [15] are employed for the experiments. 

In the evaluation to be reported in Section 7.3.6 only the middle run of Task 2 from 

MM/I database was employed for analysis. According to the preliminary research 

(tested with small number of samples/subjects), the data from Task 2 (imagine 

opening and closing left or right fist) was adopted for this experiment as it was found 

to provide the best biometric performance among the four tasks. The detailed 

instruction for each task may be found in [15]. 

Taking all the above-mentioned factors into consideration, due to the variation of the 

record lengths for each individual subject for the VEP database, only subjects with a 

recording length of at least 48 trials (48 seconds) were utilized, resulting in the 

inclusion of 118 out of 122 subjects. 105 out of 109 subjects were employed from 

Motor/Imagery database for the same reason; each subject with a recording length of 

at least 2 minutes. 

Due to the nature of the tasks performed in different scenarios, for the VEP database, 

the Oz position (in the visual cortex) was adopted for analysis; whereas for the MMI 
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database the data from Cz (in the somatosensory cortex) position was used [14]. In the 

following section some evaluation results will be presented using these databases. 

6.3.6  Experimental Results and Analysis 

The first part of this section is devoted to analysing the impact of using different 

frequency bands on biometric identification performance. In the second part, the 

features adopted for the proposed system were evaluated and compared.  

For the VEP database, 48 seconds of data is available and is sampled using windows 

of 16 seconds duration. The windows overlapped by two seconds. 12 such overlapped 

windows were concatenated to produce the data for frequency filtering. The same 

strategy was applied to the Motor Movement/Imagery Dataset: 120 seconds of data is 

available and is a sampled using window of 30 seconds‘ duration overlapped by two 

seconds. Due to the different sampling frequency of these two databases different 

window sizes have been used, in order to provide comparable window sizes (4096 

sample/window for VEP database and 4800 samples/window for MM/I dataset) for 

the following feature extraction. 

6.3.7 Frequency Band Sensitivity 

The WPD was employed to separate the bands for analysis. The Daubechies 4 (db4) 

wavelet was adopted for the decomposition due to its relatively robust performance 

[108]. The performances achieved by using the reconstructed signals from each of the 

four bands were examined individually. 80% of the data were randomly selected for 

training and the rest for testing. The classifier used for InsAmp-based features was 

Linear Discriminate Analysis classifier (LDC) whereas for the InsFreq-based features 

the classifier used for most of the bands was the LDC except for 32 Hz~64 Hz band, 

which was classified by a 3-Nearest Neighbour (3-NN) classifier due to its relatively 

better performance. 
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43Fig. 6.9 InsAmp and InsFreq performances in bands, VEP database 

Fig. 6.9 shows boxplots obtained from 100 random test attempts. All the boxplots in 

this work were generated from 100 attempts, each attempt with 20% of the data. The 

data from the frequency range between 0 to 32 Hz shows significantly better 

performance compared with the rest of the bands: This suggests that this low 

frequency band contained significantly higher biometric information compared with 

the other bands. 

As the bands increase in frequency the identification performance is seen to degrade. 

The comparison between the InsAmp-based and InsFreq-based features clearly shows 

that InsAmp provides a much better performance in every corresponding band. It may 

be interesting to note that with InsFreq-based features, the performance is seen to 

gradually improve with increasing frequency. Due to the limitation of the cut-off 

frequency (128 Hz), it is impossible to analyse the performance at even higher 

frequency bands. 
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44Fig. 6.10 InsAmp and InsFreq performances in bands, Motor Movement/Imagery database 

The performances in terms of different bands for the Motor Movement/Imagery 

database are depicted in Fig. 6.10. This shows similar performance trends as that seen 

with the VEP database, only with higher Correct Recognition Rates (CRRs). The 

possible reasons for this improved performance could be: 1) the smaller number of 

subject for testing (105 subject versus 118 subjects); 2) the signal recording length is 

much longer (about 120 seconds versus 48 seconds); 3) perhaps motor imagery 

stimuli (Task 2) are better than visual stimuli at evoking distinctive electrical brain 

activity.  

Although the higher frequency range provided much worse performance compared 

with the lower frequency bands, it is important to note that the high frequency bands 

may still contain useful complementary biometric information. The evidence for this 

can be found through the increasing of CRR when concatenated features from four 

bands are used (Fig. 6.11 and Fig. 6.12 in the following section). 

6.3.8 Feature Sensitivity 

It is clear that the lower frequency range yields much better biometric performance for 

both databases. Nevertheless, as it is shown in Fig. 6.11 while the information from 
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the four frequency bands is combined the overall identification performance further 

improved by about 20% compared with the single features from 0~32 Hz (Fig. 6.9). 

Significant improvement is also obtained in terms of InsFreq-based features after 

feature-level concatenation (Fig. 6.10).   

After the concatenation of four bands from InsAmp and InsFreq based features 

respectively, the concatenated features were fed to two classifiers for training, 

individually (the two classifiers are not necessarily the same). The InsAmp and 

InsFreq score-fused performance further improved about 5% compared with the 

performance achieved using only the InsAmp feature (Fig. 6.11). The same fusion 

scheme also improved the overall performance for the Motor Movement/Imagery 

database (Fig. 6.12). 

 

45Fig. 6.11 The comparison of four feature extraction methods, VEP database 

The right-most boxplot of the Fig. 6.11 and Fig. 6.12 depicted the performances of 

wavelet-based method described in [108] for each of the database. Certain parameters 

(number of observations and dimensions, for example) were set to be comparable with 

the HHT-based method for the sake of comparison. One can clearly see that the 

wavelet-based method provided comparable performance with the InsFreq-based 

algorithm, but when compared to the proposed InsAmp-InsFreq system it does not 

perform quite well (Fig. 6.11 and Fig. 6.12). It should be noticed that, though it seems 

the performance from the InsAmp-based feature alone is not much worse than the 
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InsAmp-InsFreq combined features, yet the variance of CRR using the fusion method 

(Eqn. (6.9)) is clearly smaller. This may indicate that as the number of the subjects is 

further increased, the advantage of the InsAmp-InsFreq system will be even more 

significant. 

 

46Fig. 6.12 The comparison of four feature extraction methods, Motor Movement/Imagery database 

6.3.9  Comparative Overall Performances 

The performances of some previously published approaches by other authors were 

compared with the proposed system in this section. The mean performances of the 

proposed system tested by different features are depicted in Table 6.4. It is clear that 

InsAmp-based features perform better than InsFreq-based features. The fusion of the 

two further improves the identification rate. It seems that the InsFreq-based features 

and the previously proposed wavelet-based features not only performed worse but are 

also less robust: the performance degraded a lot while the database changed (consider 

the second and fourth columns of the Table 6.4). 

15Table 6.4 Comparison of different features 

Single Electrode InsAmp InsFreq InsAmp & InsFreq Wavelet Method

VEP Database (Oz) 91.02% 70.56% 95.88% 63.19%

MM/I Dataset (Cz) 98.63% 90.59% 99.50% 90.43%
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The comparison of difference reported-systems in terms of the identification rate using 

the VEP database is illustrated in Table 7.5. The most prominent advantage of the 

proposed system is the number of electrode: a single electrode system with more than 

95% of CRR for 118 subjects by far surpasses the performance reported for previous 

systems. 

16Table 6.5 Comparison of different systems 

VEP Database Proposed System Yazdani et al. [74] Brigham et al. 
[56] 

Huang et al. [66] 

Number of 
Electrodes 

1 64 64 64 

Number of 
Subjects 

118 20 120 116 

CRR 95.88% 100% 98.96% 95.1% 

The VEP database with its considerably shorter recording lengths and more subjects 

provides a challenging test for an EEG-based identification system. Therefore, the 

result of the proposed system using only a single electrode for the VEP database, 

reaching a CRR of about 96% is particularly interesting. 

Though these results are encouraging, the challenge still remains to establish the 

usability and robustness of EEG-based biometrics, especially using single low-cost 

sensors and short duration training and testing regimes. One of the biggest limitations 

of the current databases is the fact that there is no significant time separation between 

training and testing sessions. The VEP database contains only one session, and the 

MM/I database, though containing three runs, has these separated by an interval of 

only a couple of minutes. Ideally multiple sessions with time intervals of several days 

would be required to establish the stability of EEG signals as a biometric modality. 

The collection of such data to address this challenge is an important focus of activity 

for research in this field, its related exploration is also a major task included in this 

thesis (see Chapter 3 and Chapter 8).  

6.4  Feature Comparison and Discussion 

In this section the biometric recognition performances of the proposed features are 

investigated to compare their effectiveness using the publicly available MM/I dataset. 
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The results are the average performance of three fold non-overlap cross-validation: 

each fold correspond to a 2 minutes of EEG recording. Only the data of the electrode 

in Oz location was employed in these tests. It should be mentioned that the recognition 

rates reported here are for comparison purposes; better biometric performance by 

employing a novel feature classification algorithm under a similar experimental 

scheme is reported in Chapter 8. 

All of the four newly proposed features are tested in an identification scenario. 

Another five conventional wavelet-based features are tested as well for the sake of 

objective comparison. Each feature is computed using 4800 samples (30 seconds) per 

window; a simple nearest neighbour (1-NN) classifier is employed to compare the 

effectiveness of the features. The Cumulative Match Characteristic (CMC) curves 

generated using nine features are illustrated in Fig. 6.13.   
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47Fig. 6.13 Recognition comparison of multiple features 

The InsAmp and InsFreq features introduced in Section 6.3 provided better rank one 

performance than the two new wavelet-based features presented in Section 6.1 and 

Section 6.2. The CMC curve of InsAmp feature provided both the highest accuracy. 

The InsFreq feature and the SD(diff) feature provided comparable learning speeds 

(Fig. 6.13), despite of the slightly higher rank one accuracy from InsFreq feature. The 

wavelet-DCT feature, though delivered only the lowest rank one identification rate 
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amongst the four newly proposed features, the rather fast learning speed can be 

observed compared with InsFreq and SD(diff) features.  

The five conventional wavelet-based features are based on the resulting wavelet 

coefficients: the purpose is to reduce the dimension of the feature vector in the 

meantime hopefully still capture useful biometric information. Interestingly, the 

Maximum and Minimum strategies shared similar performances, whereas the mean of 

the wavelet coefficients seems to have ignored the possible temporal information of 

EEG signals due to its obviously worst performance of all (Fig. 6.13). Considering 

this notion, attempt was made to capture the temporal characteristics of EEG signals 

by further deriving a simple feature which combines the Max and Min strategies: 

Max-Min feature (the maximum coefficient minus minimum coefficient per window). 

The related curve in Fig. 6.13 indeed shows an improvement: the Max-Min feature 

better performed the Max and Min strategies in terms of both the rank one 

identification and learning speed. 

6.5  Conclusion  

Four novel features for EEG biometric recognition were proposed and their 

performances have been experimentally evaluated in this chapter. Two HHT-based 

features and two Wavelet-based features were investigated and compared using two 

publicly available databases. The HHT-based features provided better overall 

performance than the wavelet-based features, however, the computation of HHT 

features have been found to be much more time consuming than wavelet features 

(more than 60 times slower) due to the looping process of the EEMD algorithm. 

In the following chapter (Chapter 7), a novel quality filtering algorithm is proposed. 

The recognition accuracy is improved by removing the less informative signals 

segments.  
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Chapter 7 

Quality Filtering Algorithm 

This chapter introduces a biometric person recognition system based on EEG signals 

incorporating a novel quality filtering strategy to find and utilize the most informative 

segments (windows) using the concept of Sample Entropy (SampEn) [166]. A 

sliding-window segmentation scheme and Wavelet Packet Decomposition (WPD) 

were employed for the primary feature extraction before the quality filtering. After 

the quality filtering, the preserved segment windows were then used to extract the 

secondary features that were in turn classified using a Linear Discriminant Classifier 

(LDC).  

The method was tested using the data of the whole publicly available MM/I dataset. 

An average identification accuracy rate of more than 90% was achieved for 109 

subjects using eight selected electrodes, utilizing the highest quality training data 

obtained from 4 minutes of recording for each subject. The experimental results 

indicate a 5% of accuracy improvement by applying the SampEn filtering method. 

The result also shows the SampEn is sensitive to identification performance: using 

the low SampEn-corresponded features for the same classifier training provided low 

performance.  

This chapter is organised as follows: the general EEG data acquisition scheme will be 

presented in Section 7.1, along with the electrodes positioning and the block diagram 

of the biometric recognition system. The rationale of the feature extraction algorithm 

used in the proposed system will be introduced in Section 7.2. Section 7.3 outlines 

the novel entropy-based method for data quality filtering, followed by the 

experimental results as well as the tests for optimizing the system parameters in 

Section 7.4. Section 7.5 provides the summary and suggestion for further work. 
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7.1  Experimental Scheme 

The proposed biometric data acquisition system is based on measuring the evoked 

response of users while they are confronted with a stimulus and asked to perform a 

mental task. The overall setting was introduced in Chapter 3. The ―MM/I database 

was used for evaluating the proposed algorithm and the performance of the system in 

an identification (one-to-many recognition) scenario.  

The proposed system is trained and evaluated using the data obtained from Task 4. 

The reason for adopting Task 4 (motor imagery task for both hands and feet) is that 

the motor imagery task might better avoid the possible contamination by other 

bioelectrical signals such as Electromyography (EMG) noise. Due to the need for the 

ease of deployment as a biometric modality, EEG signals from up to eight electrodes 

were used and their positions are clustered around the centre of the motor cortex: FC1, 

FC2, C3, Cz, C4, CP3, CPz, and CP4 [16]. The electrode positions for this experiment 

followed the Scheme III introduced in Chapter 4. 

The block diagram of the proposed system is shown in Fig. 7.1. The Wavelet Packet 

Decomposition [59] is used to generate the primary features (windows with wavelet 

coefficients). An entropy-based measurement method is designed to select optimal 

windows for generating secondary features which are then passed to a classifier. M 

(number of windows), K (kept number of windows) and L (the starting window for 

preservation after window sorting by quality) are three parameters for controlling the 

system performance and to be described in the following sections. 
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48Fig. 7.1 Block diagram of the system 
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7.2 Feature Extraction 

One goal of pre-processing and feature extraction, especially when EEG signals are 

used for biometric recognition, is to remove the unwanted signal segments (such as 

signals generated by eye blinks and heartbeats) and only preserve the parts with 

essential identity-bearing information for classification. For the proposed system, 

Wavelet Packet Decomposition is utilized for the first stage of feature generation 

[136]. This is followed by a novel method for quality measurement is designed to 

select and use only a small amount of data segments which are most likely to provide 

a correct recognition before feature extraction. 

Each run (individual recording) of the EEG data in MM/I dataset lasted 

approximately 2 minutes, which are divided into several windows with each 

contained 960 samples (6 seconds) in this experiment. WPD is performed on every 

window, from each window 9 bands of wavelet coefficients are generated which 

correspond to typical EEG bands in the wavelet domain. The two highest frequency 

bands that are produced by wavelet decomposition are discarded and not used for 

further analysis, as they correspond to high frequency (close to the cut-off frequency) 

signal components and likely been contaminated by noise. 

7.3  Sample Entropy for Quality Measurement 

This section explains the novel entropy-based filtering method in details. The 

motivation of adopting Sample Entropy for quality measurement is presented first, 

followed by the mathematical definition of Sample Entropy, and finally the scheme of 

using it for EEG filtering in the proposed system is described. 

7.3.1 Motivation for using Entropy as a Measure of Quality 

As a stochastic time variant series, the power spectra of typical EEG signal vary over 

time depending on what brain functions are being performed. Also similar to the 

speaker recognition, it is unlikely the whole signal series is equally informative for 

the purpose of identity recognition. In order to reduce the amount of the data used for 

processing and improve its quality, it is necessary to find a strategy to extract the 
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most useful segments of the data and discard the relatively less-informative portions 

of it. EEG signal is often contaminated by other bio-signals during the data collecting 

process, such as the electrical signals generated by the activity of the heart and 

muscular movements [167]. 

Entropy of the EEG signal has been used as a feature to identify the seizures in 

epileptic patients. It has been reported that during seizure, patients‘ brains generate 

lower entropy EEG signals than for healthy people. This implies that the healthy 

brain signal may possess less regularity than a brain during seizure [11]. In that 

reported experiment, three different types of entropies (Shannon entropy, Sample 

entropy and Log entropy) were calculated for EEG segments and all of them showed 

such a trend. Liang et al. [168] later reported that the entropy of the EEG could also 

be used to identify the sleeping stages. They measured the EEG signal on an epoch-

by-epoch basis, using multi-scale entropy analysis (MSE) and noticed that the 

―entropy values monotonically decrease from awake to deep sleep‖ [168]. These 

results suggest that entropy may be used to measure the level of brain activity from 

EEG signals in healthy human brain functions. 

The more active the brain is with cognitive/motor functions, the more unpredictable 

the EEG signal is likely to be, hence the higher the corresponding entropy value. 

Based on this hypothesis, in this work the Sample Entropy as a measure is proposed 

for EEG signal quality filtering in biometric recognition. 

7.3.2 Definition of Sample Entropy 

Sample entropy (SampEn) examines a time series and assigns a non-negative number 

to the sequence, number with larger value corresponding to greater irregularity being 

present in the data [166]. Two input parameters, a run length m and a tolerance 

threshold r must be specified for its calculation [169]. For a time series of length N, 

the function SampEn (m, r, N) compares sequences of length m and     in the time 

series and measures the similarity. A lower value of SampEn indicates more self-

similarity in the time series [170]. Formally, given a time series with N data points 
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as * ( )+     ( )  ( )    ( ), SampEn may be computed by the following steps 

[166]: 

1. Form multiple vector sequences of size m,   ( )      (     ), defined 

by    ( )    *   ( )   (   )     (      –  )+ , where        

   –       . These vectors represent m consecutive x values, starting with the 

    point. 

2. Define the distance between vectors   (i) and   (j),   ,  ( )   ( )-, as the 

absolute maximum difference between their scalar components: 

 ,  ( )   ( )-              (| (   )–  (   )|) (7.1) 

For a given   (i), count the number of j (1 ≤ j ≤ N – m, j ≠ i), denoted as   , such 

that the distance between   (i) and   (j) is less than or equal to r. Then, for 1 ≤ i ≤ 

N – m: 

  
 (r) = 

 

  –   – 
   (7.2) 

Therefore, 

  (r) = 
 

   
∑   

    
   (r) (7.3) 

3. Increase the dimension to m + 1 and denote    such that the distance between 

    (i) and     (j) is less than or equal to r, for j (1 ≤ j ≤ N – m, j ≠ i). Then, 

  
 (r) is defined as 

  
 (r) = 

 

 – –  
   (7.4) 

Set   (r) as 

  (r) = 
 

 –  
∑   

 ( )   
    (7.5) 

Thus,   (r) is the probability that two sequences will match for m points, whereas 

  (r) is the probability that two sequences will match for     points.  

4. SampEn is then calculates by: 
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      (      )       [
  ( )

  ( )
] (7.6) 

 

7.3.3 Using Sample Entropy to Filter EEG Data 

After calculating the WPD for each window of the time series, the sample entropy of 

each wavelet window (each with multiple coefficients) is computed. In this 

experiment, each recording run of approximately 2 minutes is segmented into 

windows of 960 samples (6 seconds duration) using a sliding window approach 

(overlapping), thus producing 760 windows for every EEG band per electrode. More 

generally, the number of windows generated per band per electrode can be defined as 

a system parameter, M, as is shown in Fig. 7.2. These coefficient windows are then 

fed to the SampEn calculation module which ranks the windows by ordering their 

entropy values from the highest entropy window to the lowest. For each band, 

preserve K out of M entropy values in order to shrink the data scale and remove the 

information-poor windows. In the experiments that follow, only about 1/10 of the 

data (80 out of 760 windows) is used for the secondary feature extraction. The 

standard deviation (SD) of the wavelet coefficients from the selected windows are 

then calculated to serve as the features for classification. 

It has been suggested that the choice of r is important in the calculation of SampEn: if 

it is set at too high a value, detailed system information may be lost and if it is set at 

too small a value, poor conditional probability estimates might result [166]. These 

predictions may affect the selected (filtering) candidate windows of the proposed 

algorithm. As a rule of thumb, the tolerance threshold r is set to 1 and run length m is 

set to 2 [166] for the experiments to be reported in Section 7.4. 

7.4  Experimental Results and Evaluations 

The illustration of how the system handles different EEG frequency bands was shown 

in Fig. 7.2. During the training phase, for every electrode per subject M = 760 

windows were fed for the WPD transform. Each window was decomposed into nine 

bands of wavelet coefficients. Since eight electrodes were used in the experiment, 
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before the entropy filtering stage a total of 8×760×9 = 54720 wavelet coefficient 

windows were generated for each subject. Next, the Sample Entropy is calculated for 

each window and the windows are sorted in descending order according their 

corresponding SampEn values.  
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49Fig. 7.2 Diagram of system algorithm 

Out of M (=760) windows from each electrode per band, K (=80) windows (hereby 

referred to as ―observations‖) are retained as a contiguous range from the SampEn-

sorted list of windows to preserve the most information-bearing part of the data. This 

amounted to roughly 10% of the whole data. After this quality measurement and 

screening stage, for every subject only 5760 out of 54720 windows were kept and the 

standard deviation (σ) of each coefficient window is calculated and used as features 

for classification, using a normalised linear discriminant classifier (LDC, [171]). This 

choice of classifier was based on tests and comparisons with several other classifiers 

using the MM/I dataset (Support Vector Machines with different kernels, k-Nearest 

Neighbour classifiers, kernel- LDC and kernel-k-NN [171]). 

7.4.1 Entropy Filtering Optimization 

Different contiguous ranges of windows from the entropy-sorted list of coefficient 

windows were extracted and used to filter the training data, only those windows 
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within the selected range were used for the classifier training. As is shown in Fig. 7.4, 

the first range testing is for the windows with the highest SampEn values (rank 1 to 

80). The SampEn values of their corresponding windows (760 windows in all) are 

sorted in monotonically descend order. The system was trained with only these 

windows (80 windows per point, the selected windows indicated by red point in the 

figure) retained and when tested with data from Run 2 the identification accuracy 

results are about 90% for 109 subjects. 
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50Fig. 7.3 Identification accuracy as a function of the quality rank range starting value (L) selected for 

inclusion in training. K=80 

The range of selected ranks was then moved every 10 ranks but always containing 80 

ranks within the range. Fig. 7.3 shows the resulting accuracy for different starting 

ranges, the best performance was achieved while L = [131, 210]. These results may 

not fully fit the original conjecture, as the best identification performance does not 

precisely correspond to the segments with the highest SampEn. However, there is 

clearly a range of high-entropy ranks (131th to 360th range) which still provide high 

biometric performance. It is possible that the highest ranking windows correspond to 

activities that do not carry identity information. As each window lasts 6 seconds, it 

may include 5 to 6 cycles of motor actions (e.g. opening and closing of hands). This 

could be considered as a relatively regular function with moderate SampEn values. 

Testing results of different parameter K suggests that the features corresponding to 

the highest around 15% ranking Sample Entropy values should be discarded. 
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7.4.2 Performance as a Function of Test Segment Duration 

Fig. 7.4 depicts the degradation of the accuracy rate for identification when the 

testing duration t is reduced. These tests are all based on observation K=10 and 

starting value L=131 (red point in Fig. 7.3), the average results utilizing Run 2 (or 

part of it) for testing and the other two Runs for training. Hence, 4 minutes of 

recording is used for training the classifier. Dropping the test segmenting duration by 

a factor of four from 120 seconds to 30 seconds results in a loss of accuracy of only 

3.48%; dropping the test duration all the way to just 6 seconds, a 20 times reduction, 

results in a drop in accuracy of less than 9%. It should be clarified that with the 

dropping of the test duration, the window sizes also dropping accordingly, which 

could be observed from the numbers of the dots in Fig. 7.4.  
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51Fig. 7.4 Impact of the testing duration on average identification accuracy with K=10 and L=131 

7.4.3 Impact of Entropy Filtering 

To illustrate the impact of the proposed entropy filtering method, in this section a 

number of schemes with different parameter setting are compared. Five schemes are 

tested (Table 7.1), the scheme I to III are employed entropy filtering algorithm, 

scheme IV and V are methods only utilizing wavelet decomposition. 
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17Table 7.1 Comparison of different schemes with and without entropy filtering 

Schemes L: Rank starting value K: Preserved 

observations

Accuracy

I. Highest entropy 1 80 87.0%

II. Highest performance 131 80 90.4%

III. Lowest entropy 681 80 74.8%

IV. No entropy filtering 1 760 86.5%

V. No entropy filtering 1 80 85.6%

 

The results presented in Table 7.1 indicate that, given the chosen system parameters, 

the entropy filtering method improves the recognition performance by around 5% 

compared to using no entropy filtering at all. The results for Scheme III suggest that 

the low entropy-windows contain significantly less biometric information, which 

indicate the link between the sample entropy of the signal and its biometric potential. 

7.5  Summary  

The study in this chapter explored the concept of quality for EEG signals used for 

biometric person identification. A novel system was presented where a measure of 

signal quality, the Sample Entropy, was used to evaluate and filter the data available 

for biometric recognition. For a 109 subject database an identification rate of more 

than 90% was achieved. The results indicate comparative performance with other 

published methods while promising the possibility of being able to handle large 

number of subjects using data from fewer electrodes. Further work will focus on 

optimizing the system parameters separately for different frequency bands and 

increasing the amount of data used for system evaluation. 

In the next chapter (Chapter 8), a novel instance-based template reconstruction 

learning algorithm is to be proposed, which achieved considerable recognition 

improvement. 

 



142 
 

Chapter 8 

Instance-based Template Reconstruction Algorithm 

In the machine learning family, the instance-based learning algorithms are designed 

to compare the new instances with the instances statically stored in the memory (lazy 

learning) [165]. Typical instance-based learning algorithms include k-nearest 

neighbour (k-NN) and support vector machine (SVM) [172]. One advantage of the 

instance-based methods over other learning methods (such as eager learning 

algorithms) is the ability of adaptably modelling the training set: with the increasing 

of the training data, the prototypes of interest could be updated, hence potentially 

maintain the performance. However, the increasing of the prototypes also introduces 

the complexity of the training set: to deal with this shortcoming of these algorithms, a 

series of instance reduction (prototype selection) algorithms are developed [173]. 

Many prototype selection algorithms have been developed with a range of objectives 

in mind, including 1) storage reduction, 2) speed increase, 3) improved generalization 

accuracy, 4) noise tolerance, 5) increase learning speed and 6) incremental [174]. 

One of the earliest instance reduction algorithms follows the so-called Condensed 

Nearest Neighbour (CNN) selecting rule, proposed by Hart [175]. The core notion of 

this algorithm is to incrementally test the instances of the training set T using a subset 

of T. By preserving only the correctly classified instances in T, a new training subset 

in which the instances are better discriminated is used for classification. However, 

this method could not identify the possible noise instances due to the equal-weighted 

comparison process during the classification [172]. Much work has been done since 

then: summaries of relevant studies are listed in a number of review papers, such as 

[172] [174] [176]. 

A novel instance-based template reconstruction learning algorithm is proposed in this 

work. The effectiveness of the algorithm is tested using two EEG databases to 

demonstrate its robustness. 
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The structure of this chapter is organized as follows: Section 8.1 is devoted to the 

motivation for developing the algorithm, which includes a list of influential factors 

that should be considered while designing an EEG biometric system. The detailed 

description of the algorithm is given in Section 8.2 and its subsections. In Section 8.3 

an illustrative step-by-step walk-through of the algorithm is presented using real EEG 

data. Comparison between the proposed method and two other popular pattern 

recognition algorithms is also provided, namely the Support Vector Machine (SVM) 

and the k-Nearest Neighbour (k-NN) algorithms. In Section 8.4, the performance of 

the proposed algorithm is evaluated for a number of pattern recognition tasks. Section 

8.5 provides a discussion of the results and overall conclusions. 

8.1  Motivation 

The proposed algorithm is aimed to improve the pattern recognition performance with 

EEG signals using very limited data, in terms of quality, duration and quantity 

compared to the number of different classes that need to be distinguished. Several 

issues need to be considered and improved simultaneously during experiments in 

order to achieve its successful real-world biometric application using EEG signals. 

Besides the recognition performance, a couple of important factors in evaluating an 

EEG-based biometric system that affect their usability are listed as follows: 

1) Number of electrode(s) involved for processing 

2) Recording lengths needed for training and query sets 

3) Impact of template ageing on performance 

4) The level of difficulty in setting up the sensor system. 

Most of the work reported in the Literature Review chapter (Chapter 2) could not 

fully address all of these requirements. In this chapter, the above-listed factors are 

considered with the aim of moving towards implementations of EEG biometric 

system outside the controlled laboratory environments: an easily-deployed, 

commercially available low-cost single dry sensor system [17] is employed for the 

real-time data collection and classification; a novel instance-based learning algorithm 

is developed to alleviate template ageing effects and allow the reduction of the overall 
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data capturing time, which was tested using MM/I dataset and the Mobile Sensor 

Database. 

The proposed algorithm in this chapter seeks to 1) reduce the impact of the template 

ageing effect on performance of EEG signals and, 2) improve the recognition 

performance using very limited data, as opposed to the training data accumulation 

scheme proposed in Chapter 5, which achieved performance improvement by 

increasing the training set volume. 

The main task for pattern recognition is to determine the membership (class) of the 

instances/patterns. The level of between-class (inter-class) similarity and within-class 

(intra-class) similarity are two critical factors in evaluating the instance/pattern 

distribution [144]. For pattern recognition in general, high inter-class similarity may 

lead to high FAR and low intra-class similarity may leads to high FRR. To achieve 

good recognition performance, instances with low inter-class similarity characteristics 

and high intra-class similarity characteristics are usually preferable. 

Besides the inter-class discrimination (for most of the physical biometric modalities), 

the intra-class variance (reflecting by template ageing effects) is quite an influential 

factor for EEG-based pattern recognition: even a couple of minutes‘ time interval 

between independent recordings may lead considerable template ageing effects. 

Therefore, instance selection becomes a necessity during pattern modelling in order 

to achieve both good between and within class discriminations. To clearly 

demonstrate the effectiveness of the proposed algorithm, EEG signals provide an 

appropriate test case. 

Furthermore, some preliminary investigations (in Chapter 4) revealed that the patterns 

of EEG signals (from different classes) employed in this work overlap considerably 

and are sparsely distributed in feature space. Therefore, filtering out the less 

informative instances/patterns is likely to have a substantial effect in enhancing the 

recognition performance. 

The novel template reconstruction/recreation learning algorithm which is presented 

below contains two stages: Stage 1 and Stage 2 of the algorithm are designed to cope 

with the previously mentioned inter-class and intra-class problems, respectively.  
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8.2  Instance-based Template Reconstruction Learning Algorithm 

(ITR) 

The proposed algorithm is presented in Section 8.2.1. To facilitate its understanding, 

an illustrative example of the proposed algorithm is provided in Section 8.2.2. Finally 

in Section 8.2.3 several remarks are presented for the better understanding of the 

algorithm‘s properties. 

8.2.1 Algorithm  

For an N-class identification problem, denote the training set of instances/patterns as 

  and the query/test set as  . Assuming the same number of instances is available for 

each of the N classes (for the simplicity of the algorithm illustration), denote the 

number of instances as I per class, with each instance being composed of an L-

dimensional feature vector. The data elements in the training set may, therefore, be 

represented by a three-dimensional matrix       , where   denotes the index of each 

element of an instance (measurement/pattern), n denotes the class to which that 

instance belongs and l denotes the feature dimension for that instance. The complete 

training feature set is denoted as        . The algorithm operates on each feature 

dimension, l, separately, i.e.       (     ) as indicated in Fig. 8.1 (the query set 

follows the same notation). In the following algorithm description, the symbols with 

lower case subscripts, such as        and       , are used to indicate the location of the 

element in the matrix; the symbol with capitalized subscripts, such as 

      and        are used to indicate the entire matrix/sub-matrix. The distance(s) d 

calculated as part of the algorithm is the Euclidean distance. 
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52Fig. 8.1 Training set matrix       , where                    

The overall block diagram of the proposed algorithm is illustrated by Fig. 8.2. The 

circled numbers indicates the processing order of the algorithm. The circled numbers 

indicate the order of the algorithm modules; the purpose of this diagram is to 

illustrate the three circles involved in the two stages. 
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53Fig. 8.2 Algorithm step-wised flow chart (start from         order: ① to ④), the purpose of this 

diagram is to illustrate the three main circles involved in the two stages. 

Stage 1: Inter Class 

For i = [1, I], n = [1, N], l = [1, L], 

1) Compute the distances   (             ), where m indicates a class, m ≠ n. 

2) Compute the sum of the resulting distances 

 (             )  ∑ (             )

   

   

 

where m ≠ n,        indicates all the elements of class m in dimension l.  

3) Next compute the mean of the resulting distances of Step 2: 

 (              )   
∑  (             )   (             )     (             )

 
   

   
 

End the for-loop. 
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4) Use the resulting distances  (              ) to construct a distance score 

matrix       , which also has the same I × N × L three dimensional structure as the 

matrix        . The distance scores in        match with the location of their 

corresponding elements in the original training set matrix       . 

For i = [1, I], n = [1, N], l = [1, L], 

5) For each dimension per class of       , rank the scores (I scores) in descending 

order and preserve the first J (J < I) scores with the highest values. Thus generate 

an ordered and reduced distance score set       . The choice of J depends on the 

database and the empirical analysis. 

End the for-loop. 

6) Utilize the scores in        to map back to the original training set        and select 

the corresponding J elements to form a new feature set       . 

The resulting feature set        contains the features with relatively large inter-class 

distances. 

Stage 2: Intra Class 

To alleviate the considerable template ageing efforts in EEG pattern recognition, 

Stage 2 is developed for the algorithm. This stage involves the adaptive selection of 

the instances from both the training set        and the query set        , where R 

indicates the number of instances of the unknown identity query set  , the number of 

dimension of the feature vectors in   should be the same as the training set  . 

For j = [1, J], n = [1, N], l = [1, L], 

7) In         , divide the sorted and ranked J elements into    segments (clusters): 

preserve   segment(s) (     ) which contain relatively high feature densities. 

Here the derivative/gradient of the feature element values may be used to measure 

the density of the pattern distributions. Thus, a subset of the feature set        with 

denser clustered elements may be generated.  

End the for-loop. 
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Denote the subset of        as        after Step 7 (     ).  

For k = [1, K], n = [1, N], l = [1, L], 

8) Measure the distances between the elements in training set and the elements in the 

query set   (             ), where    ,   -   ,   -   ,   -   ,   -   

 .  

End the for-loop. 

9) Since     , it may produce multiple distance score-matrixes (    

 )         (while     it produces only one score matrix        per class   with 

  scores). Rank all the resulting score-matrixes per class per dimension in 

ascending order, i.e. concatenate (     ) matrixes       for ranking. Preserve 

the top F training-query element pairs with the shortest distances,      

10) Facilitating the resulting score-matrixes       , where   ,   -   ,   -, map 

(trace) back to the training set         and query set       , for class   construct a 

training-query pair (             ). 

11) Repeat 10) for each class of the training set       , therefore, N training-query 

pairs (             ) are adaptively generated for each class in the training set.  

12) The distances between the instances of each specific query        and training set 

       are measured and the membership voting scheme (here the standard nearest 

neighbour rule is employed) is used for the decision making.  

8.2.2 Illustrative Example 

For an illustrative example, consider a case where the training set T comprises three 

classes, i.e. N=3; the number of instance is 3, i.e. I=3; each instance contains two 

elements (two dimensions), i.e. L=2. Therefore, each element of the training set may 

be represented by a                 matrix:         {             }  

{[
     

        
        

]  [
     

        
        

]}  where, for example        ,     -         , -. The query set 

comprises a single class with unknown membership, and can be represented by a 

matrix         where x indicates the unknown identity of the query. The query contains 
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two instances, i.e. I=2; dimension L=2. This example of query set may be illustrated 

with random numbers as        {             }  *,   - ,   -+. It is noticed that the 

query contains fewer instances, which is the usual case. The algorithm is 

approximately illustrated following the same steps indicated in Section 3.2. 

Stage 1 

Step 1 Compute the Euclidean distances d between classes in the training set. 

 (             )   (    )      (             )   (    )      

 (             )   (    )      (             )   (    )      

 (             )   (    )      (             )   (    )      

Step 2 Sum above-computed scores:  (             )      (             )       

Step 3 Compute the mean of   (             )  and   (             ) :  (             )  

 (             )  (             )

 
      

Step 4 Repeat Step 1-Step 3 for I=3, N=2, L=2. Therefore, an inter-class distance 

score matrix indicates each elements of        is generated         {             }  

{[
        
        
        

]  [
        
        
        

]}.  

Step 5 Rank the scores of        per class per dimension in descending order, hence 

construct a new score matrix       
  {      

        
 }  {[

        
        
        

]  [
        
        
        

]}.  

Step 6 Preserve the first two instances per class per dimension of       
 , hence       

   

{      
         

  }  {[
     
     
     

]  [
     
     
     

]}.  

Step 7 Map the scores of       
   back to their corresponding elements in       . Hence, the 

reconstructed training set        
  {[

   
     
     

]  [
   

     
     

]} , where the preserved number of 

instances per class per dimension is J=2. 

Stage 2 
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Step 8 Compute the Euclidean distances d between Class 1       
  *,   - ,   -+ and 

query set        {             }  *,   - ,   -+. 

 (      
        )   (   )        (      

        )   (   )         

 (      
        )   (   )       (      

        )   (   )       

 (      
        )   (   )       (      

        )   (   )        

 (      
        )   (   )       (      

        )   (   )     . 

Step 9 Generate the intra-class distance score matrix for training set of Class 1 and 

Query set pair:     

{
 
 

 
 

[
 
 
 
 
 (      

        )

 (      
        )

 (      
        )

 (      
        )]

 
 
 
 

 

[
 
 
 
 
 (      

        )

 (      
        )

 (      
        )

 (      
        )]

 
 
 
 

}
 
 

 
 

 {[

    
   
    
   

]  [

   
   
    
   

]}. 

Step 10 Rank the scores of     per dimension in ascending order hence construct a 

new score matrix    
  *,                 - ,                -+. 

Step 11 Preserve the first instance of     
 for each dimension, hence     

   

{[ (      
        )] [ (      

        )]}  *,   - ,   -+. 

Step 12 Map the scores of    
   back to their corresponding elements in       

  and       . 

Hence the reconstructed training set of Class 1       
   *, - , -+, which is the best 

subset of the query subset       
  *, - , -+ in this case. 

Step 13 Repeat Step 8 to Step 12 for all the available classes in       
 . It is found       

   

*,  - ,  -+       
   *,  - ,  -+. The reconstructed training set is       

   {[
 
  
  
]  [

 
  
  
]} 

the query subset is       
  *, - , -+. 

Step 14 Membership of the query is classified by comparing the instance similarity 

(absolute value) between       
  and       

   (N=3), and allocated to Class 1. 

Figure 8.3 visualises the proposed algorithm using the illustrative example. Three 

classes, with each contain three instances; each instance is made up of a two 

dimensional scalar. 
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54Fig. 8.3 Visualization of the illustrative example using the proposed algorithm 

The instances of the three classes involved in the illustrative example are depicted in 

Fig. 8.3 with three different shapes. The stars indicate the reconstructed vectors 

(templates). Based on the available measurements, a series of new templates are 

constructed for each class in place of the original feature vector. The proposed 

algorithm offers the adaptability to optimize the inter-class (Stage 1) and intra-class 

(Stage 2) modelling using the obtained measurement: all the features used to form 

new templates are from the original data, but better organized for each dimension.  

8.2.3 Remarks 

Some remarks are presented in this section for better clarification of the proposed 

algorithm. The ―Step‖ mentioned in the remarks relates to the step label in Section 

8.2.1.  

Remark 1: Step 1) of the proposed algorithm shares a certain similarity with the 

initial step for computing the Hausdorff Distance [177]. Instead of measuring the 

distance between feature vectors, the distance between elements of the feature vector 

from different classes are measured. 
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Remark 2: The preserved instances in        (J < I) have better inter-classes 

separation. This is achieved by 1) removing the elements (which form the instances) 

with relatively short inter-class distances and 2) using the preserved elements to 

construct new instances (templates). 

Remark 3: The training set        comprises a series of new feature vectors 

(templates/representations), these feature vector template(s) may be reconstructed 

using the elements from different feature vector templates of the original set       , 

i.e. the templates of the subset        may be a series of newly constructed (inter-

classes optimised) instances (using the available elements) which may not be found 

their correspondences in the original set as feature vectors.  

Remark 4: The reconstructed templates/instances are generated so as to maximize 

the inter-classes distances for every single dimension. Stage 2 is designed to 

minimize the intra-class distances by generating a subset of        for each dimension, 

given the elements of each class in the feature set        has an improved inter-classes 

separation (in Stage 1). 

Remark 5: Step 7 is optional in this algorithm, as it is designed to remove the 

possible noise/outlier points. Depending on the quality of the data (signals or images), 

it may not help in improving recognition performance. 

Remark 6: In Step 10, for each class an intra-class distance-minimized training-

query pair        and        for the particular query set        are generated. For the 

verification scenario, the nearest instance selection in Step 10 only operates on one 

class as opposed to all the classes for the identification scenario. 

Remark 7: Since the selection of the optimal elements in the training set        is 

performed for each dimension independently (L dimensions, same as Stage 1): the 

instances of the reduced training set        are a series of reconstructed new feature 

vectors too, which possess the highest intra class similarity. The elements of the 

newly constructed templates are the selectively assembled forms that stem from all 

the available templates, i.e. the final feature vectors in         may have no 

correspondences in        as feature vectors. 
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Remark 8: The final number of instances F usually is very small: as a rule of thumb, 

the number of F is set to be the same as the number of instances in the instance-

reduced query set        for the optimal training-query matching pair.  

Remark 9: Stage 1 alone can be viewed as an independent algorithm for pattern 

recognition with improved inter-class separation. Stage 2 may be applied for some 

image-based applications, but may not be equally effective for recognition of time-

series data (such as EEG signals and voice) without performing Stage 1 first. Two 

reasons: 1) intra-class similarity is low in many such signals and 2) inter-class 

patterns overlap in the feature space (would lead to high FAR). 

Remark 10: The three main characteristics of the proposed algorithm: 1) the 

resulting templates of Stage 1 and Stage 2 may be new templates, which have less 

inter-classes similarities (after Stage 1) and shorter intra-class distances (after Stage 

2); 2) Stage 1 of the algorithm constructs new hyper-boundaries by removing less 

discriminating instances (even though they may not be due to noise) to achieve better 

inter-class separation; 3) the Stage 2 algorithm performs an adaptive learning process 

depending on each specific query to enhance the intra-class similarity, and 

significantly reduces the volume of the final training set       . In one of the case 

studies in Section 8.4, the proposed algorithm preserved only 1.7% of the training set: 

4 out of 240 instances were kept (   ), tested using two EEG databases. 

Remark 11: Figure 8.4 shows the Instance-based Template Reconstruction Learning 

(ITR) algorithm in a naïve way. As an example, assuming a single class feature set 

with three instances (observations), each instance contains a five dimensional feature 

vector.  
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55Fig. 8.4 Naïve illustration of the ITR algorithm 

By applying the ITR algorithm, the elements of the three instances are extensively 

measured and one new instance is constructed based on the conditions of Stage 1 and 

Stage 2. It is clear the selecting and reconstructing of the instance elements process is 

dimension-independent, i.e. the process is performed dimension by dimension, the 

order of feature dimensions for each feature vector is not changed (horizontal, Fig. 

8.4), only the order of the instances (vertical, Fig. 8.4) may change depend on the 

proposed algorithm. 

8.3  Performance Evaluation 

This section illustrates the performance of the proposed instance-based template 

reconstruction learning algorithm by a binary classification problem using EEG data. 

The algorithm is then compared with two other conventional instance-based learning 

algorithms: k-NN and SVM. As one of the most popular instance-based learning 

algorithm, SVM has been proved as an effective and efficient learning algorithm in 

solving many real world problems, such as classifying proteins in medical science, 

classification of images and hand-written characters [178][179][180]. MM/I database 
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and Mobile Sensor Database are used to test and compare the performances of k-NN, 

SVM and ITR algorithm.  

8.3.1 Efficacy of the Algorithm 

The data of the first two subjects (S1-S2) in the Mobile Sensor Database were 

employed for this experiment. The data collection settings for the Mobile Sensor 

Database is much more challenging than that for some of the other publicly available 

databases used for biometric system evaluation (such as MM/I dataset and VEP 

database). This may be better in revealing the effectiveness of ITR algorithm when 

dealing with more difficult datasets. Instead of HHT-based features which provided 

the best performance amongst the proposed new features (see Chapter 6), a wavelet-

based feature was employed for this two-class problem because of its ease of 

computation [108]. 

Fig. 8.5 shows the original pattern distribution of the first two dimensions in the 

feature vectors (there are five dimensions in total for each feature vector). The graph 

shows the distribution of extracted training set instances: each class contains 240 

instances (points in the figure).  C1 and C2 indicate the patterns of the two classes. It 

can be observed that the patterns of these two classes extracted from the low quality 

raw EEG data are quite intertwined in the feature space. Following the definitions in 

Section 8.2.1, this two-classes training set can be represented as                  . 

Stage 1 of the ITR algorithm is designed for improving inter-class discrimination of 

the training set by reducing the number of instances (I) for each class. 
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56Fig. 8.5 Original feature patterns 

Fig. 8.6 depicts the resulting patterns after performing Stage 1 of the ITR algorithm. 

The instance patterns of two classes are better separated, only 3/5 of all the elements 

with the largest inter-class distances are preserved. The preserved training set is 

denoted as                . For comparison purposes, the axis ranges of the depicted 

feature space in the following graphs (Fig. 8.6 to Fig. 8.8) are kept the same as in Fig. 

8.4 and Fig. 8.5. 
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57Fig. 8.6 New training set patterns after Stage 1 

Fig. 8.7 illustrates the effectiveness of the pattern distribution after performing the 

density-based instance reduction (Step 7 of the proposed algorithm): only condensed 

pattern clusters are preserved. As was mentioned in Section 8.2, Step 7 of the 

algorithm is an optional operation depending on the characteristics of the employed 

data. The number of the preserved instance patterns in Fig. 8.7 is further reduced to 

K=72, which are only half the amount of the previous step (J=144): now the training 

set is a new subset with more condensed instances               . 
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58Fig. 8.7 Training set after further density-based instance reduction 

It is worth to noting that, since the distributions of the instances after Stage 1 may not 

be overlapping (Fig. 8.6 and Fig. 8.7), the classification performance of the proposed 

ITR algorithm is no longer bounded by the Bayes Error Rate [181]. 

In order to maximize the usage of the preserved instances, the next step of the 

proposed algorithm is designed to minimize the intra-class distance between the 

training set and the query set. Fig. 8.8 shows the resulting classification boundary for 

a two-class query attempt. The algorithm is designed to select the best templates from 

the reduced training set        and construct a further reduced subset        before final 

decision making. In this study, the 1-NN classifier was employed for generating the 

decision boundary. Stage 2 of the ITR algorithm was applied to the test set in order to 

enhance the quality of the query set as well.  
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59Fig. 8.8 Binary classification for query 1 

As the result of the Stage 2‘s operations, only the best 10 instances (templates) was 

adaptively selected for both the training set and the query set, i.e. the final sets 

are                and                for this binary classification.  

As an adaptive learning algorithm, the selection of the subset (for training) shall 

depend on the property of each particular query:  it gives the best reconstructed 

templates each class has to offer from the training set for that query to maximize the 

intra-class similarity. Therefore, the template ageing effect (especially for EEG 

signals) may be alleviated. 
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60Fig. 8.9 Binary classification for query 2 

As an example, for a different two-classes query (Q2, another 10 seconds‘ recording), 

a different decision boundary in Fig. 8.9 (compared with Fig. 8.8) indicates a series of 

different instances (f =10) from the training set and query set are selected for 

classification. The query set which achieved 95% of CRR in this investigation is a 10 

seconds‘ EEG recording from a separated session, whereas the classification 

performance using the original all instance patterns of the same 10 seconds‘ data 

(illustrated by Fig. 8.5) provided accuracy of only 37.5% using a 1-NN classifier. 

8.3.2 Comparison with Relevant Learning Algorithms 

The proposed method is an instance-based learning algorithm; k-NN and SVM [182] 

are two popular algorithms which belong to this category as well. In this section some 

comparisons between the proposed algorithm and these two algorithms are provided. 

Two important properties may affect the performance of learning algorithms in 

pattern classification: 1) the relative locations of feature vectors and, 2) the feature 

space for decision boundary generation.  

The k-NN algorithm and its variants achieve class separation by finding the feature 

vectors (instances, or templates) with optimal geometric locations. By removing less 
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significant instances, instance-reduced k-NN trims the distribution of instances and 

forms a more class-discriminating training model. It must be clarified that the 

―neighbour‖ (or instance) in k-NN is a feature vector which normally contains 

multiple elements (components): each element represents one dimension in the 

multidimensional space and the distance is measured between feature vectors. 

Therefore, the k-NN algorithm may perform poorly when applied to high dimensional 

instances as most of  the instance vectors with high dimensionality in the training set 

(from different classes) may be almost equidistant to the query vector [183]. 

The original SVM is designed to utilize the so-called supporting vectors to achieve 

class separation in the original Euclidean hyper planes. For the linear SVM algorithm, 

only the supporting vectors (instances) are considered during the classification. The 

kernel-SVM algorithm (nonlinear SVM), however, employs the so-called kernel 

function to transform the patterns in the original feature space into a much higher 

dimensional space. The motivation of performing such a trick is due to the fact that 

the feature vectors (instances) in the original space are often linearly inseparable: by 

mapping the feature vectors into kernel space (which potentially can be an infinite 

dimensional space), it may be possible to find the distinctive supporting hyper-

boundaries between two classes in that new space. As opposed to proposed algorithm 

as well as k-NN algorithms, which need to precisely locate each feature (by 

measuring the distance, for instance), for SVM only the results of kernel mapping are 

required for pattern classification in the kernel space [182]. 

Although the ITR algorithm could generally be fitted into the k-NN framework, it 

also contains a feature extraction aspect: The standard k-NN selects the instances with 

better geometric locations. The proposed instance-based template reconstruction 

algorithm optimizes the instances in even lower level: it selects the elements (not 

vectors) with the best locations for every instance per dimension, using the optimal 

elements to construct new (and better) instances (feature vectors). Therefore, the 

resulting instance vectors are most likely different from any of the original instance 

candidates (though statistically it is possible that the optimal instance with optimal 

elements may exist in the original training set). Furthermore, by referring to Fig. 9.1, 
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such a scheme also optimizes each feature vector dimension by dimension, but 

without the dimension number reduction (unlike the Principal Component Analysis). 

ITR algorithm with the elemental level analysis provides more flexibility in 

enhancing the inter-class separation (Stage 1) and intra-class similarity (Stage 2): in 

Stage 1 the algorithm creates a series of new hyper-planes formed by the 

reconstructed instance vectors to achieve better between-class discrimination; in 

Stage 2, for each different query instance, a series of new hyper-planes for each class 

is constructed to minimize the within-class variation.  

8.4  Experimental Case Studies 

Three case studies are provided in this section to evaluate the effectiveness of the ITR 

algorithm. In Section 8.4.1, the MM/I dataset is used for motor movement/imagery 

task classification: the aim is to solve a four-class recognition problem. The results 

are generalized using a leave-one-out three-fold cross-validation scheme: the data of 

each single run forms one fold during the validating process. Section 8.4.2 presents 

the evaluation results for biometric recognition: using the data of 105 selected 

subjects from MM/I dataset, the aim is to classify the instances from 105 classes. In 

Section 8.4.3, the Mobile Sensor Database is used to investigate the effectiveness of 

the ITR algorithm in exploiting the small volume of low quality training data that is 

available for biometric recognition. The EEG data obtained from 27 subjects (classes) 

was used, of each one minute‘s recording per session (two sessions in all), 10 

seconds‘ data was used as the query set and the rest was used for training the system.  

The impact of the template ageing effects is also explored in the last set of 

experiments. The overall system diagram is illustrated in Fig. 8.10. 
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61Fig. 8.10 Overall system diagram 

8.4.1 Classification of Motor Movement/Imagery Tasks 

One of the early studies in mental tasks classification was conducted by Anderson et 

al. [184], they reported an average accuracy of 91.4% for a two class problem. 

Multiple features were investigated and the Autoregressive (AR) coefficients 

provided both the best and the most consistent performance. Data of four subjects 

were used in their experiment; the collected EEG data (using six electrodes) 

contained two sessions, each session included 10 seconds‘ recording and repeated 5 

times per session. 80% of the data were used for training an Artificial Neural 

Network (ANN) classifier. By employing the same database, Palaniappan [185] 

reported a Correct Recognition Rate of 97.5%; the proposed feature was the spectral 

powers of four typical EEG bands. 

Akrami et al. [186] further investigated the performance of classifying three mental 

tasks. Data was obtained from one left-handed male subject; three mental imagery 

tasks related to hand movements were performed during the experiment. A 

classification rate of 95.71% was obtained by employing only 2 electrodes (C3 and 
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C4) for data collection. The bandwidth specified logarithmic power spectral density 

of the signals was used as feature; the ANN classifier provided the highest accuracy. 

However, the performance seems to decrease significantly when the number of 

classes is increased. Li et al. [187] reported their performances on the classification of 

five mental tasks. The experiment involved two subjects and the classification rate of 

76.3% was reported. The entropy of wavelet coefficients was used as features and a 

Support Vector Machine classifier using the Radial Basis kernel Function (RBF) was 

used for classification. Using only three classes from the same database, Abdalsalam 

et al. [188] achieved an improved accuracy of 80.4%, with wavelet transform for 

feature extraction. 

To alleviate the above-mentioned performance degradation for classification while 

the number of mental classes was increased, the Empirical Mode Decomposition 

(EMD) for feature extraction was used by Diez et al. [189] who reported an average 

classification rate of 91% for five mental tasks. They used a database of 7 subjects 

and computed six different features using the resulting Intrinsic Mode Functions 

(IMFs) after EMD. 

8.4.1.1 Database and Overall Experimental Design 

In this work, the wavelet-based feature is used for testing the proposed algorithm. The 

MM/I dataset is employed in this investigation for classifying four motor 

movement/imagery tasks.  

Three recording runs were made for each mental task, and each run lasted for about 2 

minutes. This public database has been used for task classification and some of the 

relevant literature is briefly reviewed here to facilitate comparison with the proposed 

technique. Sleight et al. [190] used the data of 103 selected subjects out of 109; data 

from all the 64 electrodes were used for processing. The averaged power of multiple 

frequency bands were computed and used as features, which were then fed into a 

Gaussian-kernel SVM for classification. Their experiment was designed to classify 

between only movement and imagery tasks: the obtained highest accuracy was 69%. 

Tolić and Jović [191] also investigated the classification of these two types of mental 
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tasks using this database. A wavelet-based feature extraction method was used. Data 

of four subjects and only three electrodes were used and the best average accuracy 

was 68.21%. Loboda et al. [192] further investigated the classification of the four 

classes of different mental tasks using this database. Their reported highest correct 

discriminating rate was 82.5%, which was obtained by analysing the beta band‘s data 

from three electrodes. 

In this case study, only the data from the Oz electrode was employed for easy-

deployment and fast processing. The experimental chain is briefly stated as below: 

1) The raw EEG signals of four mental tasks (T1-T4) are segmented into 

multiple windows, each window lasts for 4 seconds. Each window overlaps its 

adjacent window (50% overlapping). 

2) The Wavelet Transform [59] is computed for each time-domain window, the 

wavelet decomposition is performed up to level 3 (eight bands are generated).  

The 0Hz-50Hz band of the resulting wavelet coefficients were preserved for feature 

extraction; every generated feature vector contains five dimensions (so each 

dimension corresponding to a bandwidth of 10Hz). 

3) The variance of the preserved wavelet coefficients in each window was 

computed and used as feature.  

4) The proposed instance selection algorithm was applied to enhance the feature 

model construction.  

5) The selected features were fed into a 1-Nearest Neighbour (1-NN) classifier to 

evaluate the task classification precision. 

Data of the first fifteen subjects (S1-S15) of MM/I dataset were used for task 

classification: the main goal of this work is to investigate the classification of the 

mental tasks; multiple subjects are employed to estimate the variance of the overall 

performance. Data of two runs were employed for generating the prototypes (four 

minutes in all); the remaining data was used as the query. 

8.4.1.2 Algorithm Comparison 
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The performance comparison was made by employing the standard 1-NN classifier, 

the non-linear SVM (second order polynomial kernel function) and the ITR 

algorithm. Fig. 8.11 illustrates the two dimensional distribution of the prototype 

patterns and test query, using the data of S1. The four different shapes/symbols 

indicate four different tasks; the blue shapes indicate the prototypes and the red 

shapes indicate the query points. For example, T1P indicates the prototype patterns of 

Task 1 and T1Q indicates the query patterns of Task 1. Fig. 8.12 and Fig. 8.13 also 

follow these abbreviations. 
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62Fig. 8.11 Classification boundaries of 1-NN for S1 

Fig. 8.11 shows the classification precision and decision boundaries when using the 

1-NN algorithm: the resulting recognition accuracy of 21.25% is worse than random 

guess (25%). It has been shown that changing the window size can affect 

performance substantially [108]. Increasing the window size from 4 seconds (640 

samples) to 40 seconds (6400 samples) the accuracy improved to 62.5%. However, in 

order to achieve this recognition rate, the restriction is that each feature must be 

computed from a recording window of 40 seconds. 
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63Fig. 8.12 Classification boundaries of SVM for S1 

Fig. 8.12 indicates the decision boundaries for S1 constructed using a nonlinear SVM 

classifier with second order polynomial kernel function. Given the same pattern 

distribution (and same feature extraction method) as illustrated in Fig. 8.9 for both 

prototypes and queries, the SVM provided a better class separation with CRR of 

33.33% (higher than 25%). As it is clear in both Fig. 8.11 and Fig. 8.12, the original 

four-class instance patterns are quite intertwined in the feature space, posing a very 

challenging task for any machine-learning algorithm.  

The proposed algorithm is designed to prune the pattern distribution by removing the 

less discriminating instances and constructing new instances by combining the 

existing data elements. After applying the ITR algorithm, ideally the reshaped new 

prototype model will provide better class separation (Stage 1), and the adaptive 

learning scheme for each new query is designed to reduce the intra-class distribution 

variance (Stage 2). 

Fig. 9.13 shows the pattern distribution and the recognition precision of 95% using 

the data from S1 after applying the proposed ITR algorithm. The ITR algorithm 

removes and reconstructs new templates for training: for any particular query only a 
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small amount of selected instances (multiple dimensions) in training set per class are 

preserved, which provide the highest intra-class similarity to that query.  
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64Fig. 8.13 Classification boundaries of ITR algorithm for S1 

To further explain the feature points in Fig. 8.13, out of 120 prototypes per class 

(      ), only 10 selected prototypes (    ) were reconstructed using the 

elements from all the available prototypes, which are indicated by the blue points of 

four different shapes per class in the plot. The patterns in the query set were also 

modelled using ITR algorithm          the red dots in the graph indicate their 

relative geometric locations to the prototype patterns (blue dots). Comparing the 

cluster ranges (along the Dimension 1 and Dimension 2 axis) between Fig. 8.11 and 

Fig. 8.12, it can be seen that only the centre regions of the original clusters are 

presented and the patterns of interest are well distinguished. 

8.4.1.3 Effectiveness for 15 Subjects 

The overall results of motor movement/imagery tasks classification using the ITR 

algorithm incorporating the 1-NN algorithm are illustrated in Fig. 8.14. EEG data of 

the first 15 subjects (S1-S15) were used to evaluate the algorithms: due to the 

individual differences, feature vectors of different subjects were not concatenated and 

the task classification was evaluated per individual. In other report for task 
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classification [190], the data of same task from multiple individuals is concatenated 

into a single array for analysis. 

The averaged accuracy of the 15 subjects using the 1-NN algorithm with only the Oz 

electrode data is around 62%, which is a comparable accuracy to the start-of-the-art 

reports [190][191][192]. The ITR algorithm incorporating the 1-NN algorithm 

provided a much better recognition performance, and only the mental task data for 

three subjects (S1, S7 and S10) were not 100% classified out of 15 subjects. The 

results in Fig. 8.14 indicate the ITR provided a better (average recognition rate of 

98.38% and a lower performance variance compared with using the standard 1-NN 

algorithm. 
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65Fig. 8.14 Task classification comparison between ITR and k-NN for 15 subjects 

It should be noted that the 1-NN in Fig. 8.14 were obtained using the features 

extracted using a  window size of 6400 samples, while the ITR algorithm is still using 

the original 640 samples per window for feature extraction.  Using 6400 samples per 

window only 12 instances will be generated even after window overlapping (given 

the 4 minutes of data available), which may reduce the impact of instance selection of 

the ITR algorithm. 
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8.4.2 Biometric Performance using MM/I dataset 

In this subsection the effectiveness of the proposed algorithm for biometric person 

recognition using EEG data is investigated and compared with the 1-NN and SVM 

algorithms. The choice of one important parameter and their impact on performance 

of the ITR algorithm are explored. The MM/I dataset is used for these investigations 

of applying for a biometric scenario: data of 105 selected subjects (classes) were 

employed for classification. All of the biometric tests in this work employed the 

wavelet-based features [108], which was introduced in Chapter 6. 

8.4.2.1 Parameter Optimization 

The Stage 1 of the proposed ITR algorithm involves removing some of the instances 

from the training set. This investigation is devoted to empirically finding the optimal 

quantity of the preserved instances for MM/I dataset and the biometrics recognition 

application. The recognition accuracies were obtained by averaging the results of the 

leave-one-out three-fold cross-validation (data of 6 minutes of recording in total). 

Defining the percentage of the retained instances as P%, a series of tests were 

conducted and the recognition results are illustrated in Fig. 8.15. 
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66Fig. 8.15 Preliminary tests for optimizing P% 
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The graph in Fig. 8.15 shows the trend of the classification accuracies while P% of 

the available instances was used as the prototype for model construction. As a 

preliminary test for parameter optimization, only a subset of the MM/I dataset (S1-

S10) was used to investigate the general impact of the preserved volume of the 

training instances. The available instances per class (subject) were grouped by a 

factor of six (as it is depicted by the horizontal axis in Fig. 8.15) and only the Stage 1 

of the proposed algorithm was applied. Before applying the ITR algorithm, the EEG 

series was segmented into 240 windows (     ), the training set contained two 

minutes‘ recording. The preserved data (     ) for training are those instances 

which comprise the elements with the largest inter class distances. The results 

indicate the best performances tend to be achieved while about half to 2/3 of the 

available data were kept for training. Therefore, as a rule of thumb about 2/3 of the 

selected data will be used for the next stage of the algorithm. However, such 

parameter setting certainly should depend on the quality of the database and the 

application scenario: for databases containing low quality and noisy signals, such as 

the Mobile Sensor Database, more instances may be removed in Stage 1. 

8.4.2.2 Performance Comparison in Identification Scenario 

Given the parameter P% is empirically optimized (P% 66.67%), the evaluation of 

the ITR algorithm using the full MM/I dataset is conducted. Data of the selected 105 

out of 109 subjects were employed in order to guarantee enough data per subject for 

processing (three runs, 6 minutes in all). The performance of the two-stage ITR 

algorithm is compared with k-NN (k=1) and nonlinear SVM with second order 

polynomial kernel function [171]. The resulting CMC (cumulative match 

characteristic [193]) curves are illustrated in Fig. 8.16. 
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67Fig. 8.16 Average recognition performances from different algorithms 

The curves in Fig. 8.16 shows ITR algorithm provided the highest rank-1 recognition 

rate. The 1-NN classifier though provided the lowest rank-1 recognition rate, but its 

learning speed was found to be the fastest amongst the three algorithms. As expected, 

the SVM has better rank-1 identification rate than the 1-NN classifier. 

As it was mentioned previously, ITR does not only rank and remove the less 

discriminating/informative instances, but also utilizes all the available elements per 

class to construct a series of new instances/templates. Therefore, the selected 

instances are some ranked and re-created new feature vectors, the elements of each 

vector may stem from different instances of the original dataset. However, the 

elements of these new templates are still restricted by the dimensions of each instance 

vector, which guarantees the new templates still possess their original characteristics 

/meaning. 

8.4.2.3 Performance Comparison in Verification Scenario  

The effectiveness of the proposed algorithms in the verification scenario was also 

investigated. The three instance-based learning algorithms ITR, SVM and 1-NN were 

compared using several DET (detection error trade-off [194]) curves. The results of 

cross-validation were used to generate the curves. Indeed, from the biometric 
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verification perspective, the Stage 1 and Stage 2 of the proposed algorithm are 

designed to reduce the FAR and FRR, respectively.  
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68Fig. 8.17 DET curves of three learning algorithms (105 subjects) 

The verification performances of the algorithms are illustrated using the DET curves 

in Fig. 8.17. For the ITR algorithm, each feature vector was generated from an EEG 

signal recording of 4 seconds (640 samples, at 160 Hz). For the SVM and 1-NN 

algorithms, this was set as 6400 samples per window. 

The graph in Fig. 8.17 shows the equal error rate (EER) for the ITR algorithm as 

being around 2%; whereas the 1-NN classifier showed an EER of approximately 

10%. Surprisingly, SVM classifier provided worse performance than the 1-NN 

classifier in verification tests, whereas in the identification mode the SVM results 

better rank-1 accuracy (Fig. 8.15). The results suggest that the ITR algorithm may be 

particularly suitable for applications where a low FAR is necessary.   
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8.4.3 Biometric Performance using Mobile Sensor Database 

In this section the biometric performance of the proposed algorithm is tested using 

the self-collected database.  

8.4.3.1 Template Ageing Effects 

The design of the proposed algorithm was motivated by the need to address the 

template ageing effect in biometric recognition applications using very limited 

available EEG data for training and testing. In this section the impact of using EEG 

data from different sessions, separated in time, using standard classifiers is presented. 

This is followed by the evaluation of the ITR algorithm in dealing with such data. 

Finally the performance of the proposed algorithm is compared with the SVM and 1-

NN algorithms in both the identification and verification scenarios. 
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69Fig. 8.18 The session impact in EEG biometric identification 

Fig. 8.18 illustrates the impact of template ageing when using EEG data for 

identification. 1-NN and SVM classification with the same parameter settings as the 

previous section were used for comparison. For the single session case, the one-

minute recording was divided into five non-overlapping segments for cross-validation 

and the average accuracy of the two classification algorithms has been found to be 
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similar at around 93%. In the Template Ageing Case, data of the entire Session 1 (one 

minute) was used for training and the data in Session 2 (one minute) used for a five-

fold cross-validation test (each segment lasting for 12 seconds). The impact of 

template ageing is significant as shown to Fig. 8.17: both the SVM and 1-NN 

provided only about 10% of recognition accuracy. This may be due to the sparse 

pattern distribution in the feature domain, according to the investigation presented in 

Section 8.3. 

8.4.3.2 Performance Comparison in Identification Scenario 

The effectiveness of the proposed algorithm was investigated for the identification 

scenario; the recognition results obtained using the standard 1-NN and SVM 

algorithms are presented in Fig. 8.19 for comparison purpose. 
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70Fig. 8.19 CMC curves of the three learning algorithms 

The CMC curves of three classification algorithms were obtained using EEG data of 

Session 1 (one minute of recording) for model training and the data of 12 seconds‘ 

recordings as query sets. The graphs in Fig. 8.19 are obtained using the averaged 

results tested by five separated recordings of Session 2. The initial parameter       
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is set for ITR algorithm, after the Stage 2, the preserved number of instance is     

for both the training set and the query set. As it is depicted in the graph, the ITR 

method provided much better average rank-1 accuracy (82.1%) than the other 

classifiers; the SVM and 1-NN provided similar performance.  

8.4.3.3 Performance Comparison in Verification Scenario 

Fig. 8.20 indicates the DET curves obtained for the verification scenario. Indeed, 

considering the challenging condition of the experimental design (1 minute of 

training per class and 12 seconds for testing; using a low-cost single dry sensor 

system), the EERs of all the algorithms were found to be promising. However, it is 

clear the ITR algorithm was still able to provide much better performance than the 

other two classifiers. 
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71Fig. 8.20 Verification performance of the ITR algorithm 
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According to the graphs in Fig. 8.19, the EER of ITR method is found to be around 

7.5%; whereas both of the other two algorithms had substantially higher EERs. The 

results in Fig. 8.17 and Fig. 8.20 indicate the difference of the MM/I dataset and the 

Mobile Sensor Database in terms of biometric data quality: even by applying the ITR 

algorithm the lowest EER for the MM/I (105 subjects) was able to reach round 2% 

whereas for the Mobile Sensor Database (27 subjects) it was around 7.5%.  

The effectiveness of the ITR algorithm in removing the potentially less informative 

instances is also considerable: for MM/I dataset the EERs difference between ITR 

and 1-NN is about 5% (2% versus 10%); for Mobile Sensor Database such difference 

is about 25% (7.5% versus 33%), which seems to have verified the low-cost sensor 

system in less-controlled environment captured much more noisy EEG signals than 

BCI2000.   

8.5  Discussion and Conclusion 

In this section some remaining issues of the ITR algorithm will be further clarified. 

This will be followed by overall conclusions and suggestions for further work.  

8.5.1 Discussion 

Based on the rationale presented for the ITR algorithm, the available feature vectors 

have been decomposed and the elements reconstructed into new instance vectors. It 

may be argued that such operation (distort the time order of the vector elements) 

could potentially destroy the biometric specificity of the feature vectors (multiple 

dimensions). However, as it was clarified in Section 8.2, the ITR does not create new 

measurements, only observing the existing measurements (both training set and 

query) in the further detailed level: instead of handling instance in vector level, it 

rearranges with the elements of the instance vectors.  

The performance is also governed by the employed features. To highlight the 

important role of the feature played in ITR-based classification, several tests were 

further conducted using different features to investigate the above-mentioned 

arguments from the experimental perspective. Multiple wavelet-based features are 
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used to test the effectiveness of different features using the ITR algorithm. The 

motivation of these tests is to justify the following statement: 1) biometric 

characteristics of the data are preserved by the features extracted for feature 

extraction; depending on the type of the features the recognition performance varies a 

lot. 2) The locations of the elements while constructing new feature vectors is not 

necessarily kept the same as the original (time domain order). It should be mentioned 

that the window size during the feature extraction also plays an important role: the 

feature computed based relatively bigger window sizes generally tend to preserve 

more biometric characteristics. In the extreme case, were the ITR algorithm applied 

to each sample (window size: one sample/window), the algorithm may destroy the 

time-domain characteristic of the data but may not necessarily lead to bad biometric 

performance. 
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72Fig. 8.21 Effectiveness of different features using ITR algorithm 

Fig. 8.21 shows the CMC curves of different wavelet-based features obtained using 

the ITR algorithm, tested with the Mobile Sensor Database. The window size is kept 

the same as 512 samples/ window (1 second). If the measurements lost their 

specificities by applying ITR algorithm, different types of feature vectors would have 
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provided similar result. Considering the obtained different ranks (from rank 1 to rank 

27) accuracies using different features in Fig. 8.20, it is clear that the type of the 

extracted feature plays an important role, which indicates the ITR algorithm preserves 

the characteristics of the original measurements captured by different types of 

features, in the same way as other conventional instance reduction/learning 

algorithms. These results indicate the EEG-based biometric recognition is not 

necessarily depending on the order of the features (location of the windows in the 

time domain).  

Indeed, the ITR algorithm‘s rationale dictates that this method may not be quite 

suitable for applying directly to the original raw signal for classification: depending 

on the selected window size it may be unable to capture enough information of the 

signal if applied directly (for example, 1 sample/window). However, it is related to 

window size and feature rather than feature modelling. Therefore, to achieve good 

classification performance, windowing, feature extraction and model construction are 

equally important in EEG-based experimental design. 

Fig. 8.21 shows the CMC curves of different wavelet-based features obtained using 

the ITR algorithm, tested with the Mobile Sensor Database. The window size is kept 

the same as 512 samples/ window (1 second). If the measurements lost their 

specificities by applying ITR algorithm, different types of feature vectors would have 

provided similar and optimised result. Considering the obtained different rank-1 

accuracies and regression speeds using different features in Fig 8.20, it is clear the 

type of the extracted feature plays an extremely important role, which indicates the 

ITR algorithm preserves the characteristics of the original measurements captured by 

different types of features, in the same way as other conventional instance 

reduction/learning algorithms. These results indicate the EEG-based biometric 

recognition is not necessarily depending on the order of the features (order of the 

windows in the time domain); feature extraction plays an important role in the 

biometric recognition.  

Indeed, the ITR algorithm‘s rationale dictates that this method may not be quite 

suitable for applying directly to the original raw signal for classification: depend on 
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the selected window size it may be unable to capture enough biometric information of 

the signal if applied directly (for example, 1 sample/window). However, such 

incompetence precisely is related to window size and feature rather than feature 

modelling. Therefore, to achieve good classification performance, windowing, feature 

extraction and model construction are equally important in EEG-based experimental 

design. 

8.5.2 Conclusions  

In this chapter a new instance-based template reconstruction learning algorithm was 

presented and its rationale explained. This was followed by three case studies 

evaluating the effectiveness of the algorithm. The performance of the ITR algorithm 

was compared with two other popular instance-based algorithms namely k-NN and 

SVM using two EEG databases. The proposed algorithm has been shown to result in 

significant performance improvements in different scenarios. The proposed algorithm 

is especially good at dealing with the template ageing effects of non-stationary time 

series with small amounts of available data, owing to its effectiveness of adaptive 

learning in Stage 2. The ITR algorithm also can be viewed as a black box to increase 

the regularity of the existing features: as with the reducing of the window size for 

feature extraction, the entropy of the resulting features will increase. Therefore, the 

proposed ITR algorithm is a generic framework: the purpose of template 

reconstruction for better recognition could also be achieved by other methods. For 

example, the Bayesian methods may be used to optimize the feature vectors as well. 

The effectiveness of the proposed algorithm is expected to be tested using other 

databases to further prove its generality. The next chapter is devoted to the 

conclusions of the thesis and some future work for EEG biometrics. 
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Chapter 9 

Conclusions and Future Work 

A summary of the work reported in the thesis is presented in this chapter. Major 

contributions to the research are described first. This is then followed by a discussion 

and suggestion for further work regarding using EEG for biometric recognition. 

9.1 Contribution 

This section is devoted to highlighting the contributions of this thesis. The major 

contributions are related to their respective chapters.  

In short the contributions of this work include: 

 a new metric for the usability of EEG based biometric systems 

 a new database of EEG data obtained using low-cost mobile sensor with the 

potential for investigating template ageing effects 

 an investigation into task sensitivity of EEG data for biometric applications 

 a new pre-processing scheme for enhanced noise removal 

 novel features for extracting biometric information from EEG data 

 a novel feature filtering technique 

 a novel feature classification algorithm 

9.2 Discussions and Conclusions 

As a biometric modality, the implementation of EEG signals affected by multiple 

factors, metrics such as the accuracy rates (CRR, FAR and FRR) alone may not be 

enough to represent its performance. Four other factors were considered in the thesis 

to evaluate the performance of a biometric system: 1) the involved number of the 

subjects; 2) number of electrodes employed; 3) the size of the training set and 4) the 

size of the test set. Along with the accuracy, a performance score was computed using 
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all the five factors. However, the proposed metric does have its liability: the 

influential template ageing/changing effects is not represented.  

To address the problem of template ageing in EEG biometrics, a new database was 

collected in addition to facilitating two publicly available databases. The new 

database (Mobile Sensor Database) contains the data of 27 subjects in two separated 

recording sessions (per subject), with the time interval between the sessions ranging 

from three weeks to two months and the data of 50 subjects with only single session. 

Mobile Sensor Database was collected using a low-cost headset with a single dry 

sensor. The data of each session lasted only one minute with subjects mentally 

performing a simple number counting task. This database also helps to investigate the 

feasibility of using EEG signals in a realistic scenario with an easy-to-deploy sensor.  

Many scattered but important issues regard using EEG signals for biometric 

recognition were investigated experimentally. It worth to mention that, though 

conventionally the informative frequency range of EEG signals is between 0 to 50 Hz 

or 60 Hz, in its biometrics implementation, however, it is found in this investigation 

that higher part of the frequency (60 Hz-80 Hz) also effective [7].  

The impact of different type of EEG signals in biometric recognition was investigated, 

which potentially may alleviate the template ageing effects. A training data 

accumulation scheme for model construction was developed which combines data 

from different types of motor movement/imagery tasks (from separated recordings) to 

produce more effective training using the available data. The results indicate when 

using separated recordings for training and test respectively, the once considerable 

preformation degradation is non-effective by employing the proposed scheme.  

Four new EEG-based biometric features were proposed in the thesis. Two of them are 

based on HHT and the other two are wavelet-based features. The features derived 

from HHT namely InsAmp and InsFreq features provided the best performance 

(InsAmp producing the highest performance above all); the wavelet features are 1) 

the derivative of wavelet coefficients and 2) wavelet-DCT coefficient feature. The 

computation for wavelet features is much faster than HHT features, however, wavelet 

features achieved a lower accuracy in both identification and verification scenarios. 



184 
 

The proposed wavelet-based features performed better than some other conventional 

features for the related databases.  

The HHT-based features were derived from Hilbert Transform and Empirical Mode 

Decomposition, which is designed for better handling of non-stationary data (such as 

EEG signals). The introduction of the differentiation stage in the processing of 

wavelet-based coefficients is motivated by the role played by differentiation in some 

image processing tasks (e.g. edge enhancement), which indicates the directional 

change of the intensity or colour in an image. The Wavelet-DCT feature, on the other 

hand, is motivated by one standard algorithm in voice recognition field which uses 

Mel-Frequency Cepstral Coefficients (MFCC) as feature for recognition. Of the 

proposed two wavelet-based features, the coefficients differentiation feature provided 

better Rank 1 recognition accuracy and the wavelet-DCT feature showed a faster 

regression speed in the CMC curve. 

A novel quality filtering algorithm was proposed, which employs Sample Entropy 

(SampEn) as an indicator to predict and preserve the high quality segments/windows 

of each class for feature extraction. As a feature filtering method, the recognition 

accuracy improved by 4%~5% after filtering and only about 10% of all the templates 

were preserved for model construction. 

An Instance-based Template Reconstruction (ITR) learning algorithm was proposed, 

which is designed to resolve both the inter-class and intra-class problems in pattern 

recognition. As a generic algorithm, the proposed two-stage ITR algorithm is 

designed to optimise the training model by better separating the between-class 

patterns (Stage 1) and, adaptively enhance the within-class similarity between the 

training set and test set (Stage 2).  

The ITR algorithm was designed to alleviate the template ageing effects while using 

EEG signals for biometric recognition. In the meantime, the adaptive template 

reconstruction mechanism also allows a significant volume reduction for both 

training and test sets. Additionally, the proposed algorithm is relatively insensitive to 

the quality of the available data. Therefore, it may be especially good at processing 
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low quality time-series data (such as the EEG signals collected through low-cost 

sensors).  

9.3  Further Work 

As it was reported in the Feature Extraction chapter (Chapter 7), the HHT-based 

features provided better performance than wavelet-based features but much less 

efficient in computing. One future work will be optimising the HHT-based algorithm 

in programming, since the current code is designed for algorithm implementation 

without considering the efficiency of computing. It is hoped the computation of 

EMD-based algorithms could be comparable with wavelet algorithms. 

The Mobile Sensor Database contains 27 subjects with double sessions. It is 

interesting to investigate the effectiveness of the proposed algorithms (especially the 

one in Chapter 5 and the one in Chapter 8) on its increased version in the future: 1) 

increase the number of sessions and 2) increase the number of subjects.  

The stimuli of triggering the EEG signals for biometric recognition can be further 

investigated. The audial stimulus is such a potential candidate: by far there has been 

only one report regarding imaging audial sounds for EEG biometric recognition, 

which is actually not real audial stimulus. 

  



186 
 

REFERENCES 
 

[1] A. Jain, L. Hong, and S. Pankanti, ―Biometric identification,‖ Commun. ACM, vol. 43, 

no. 2, pp. 90–98, Feb. 2000. 

 

[2] A. K. Jain, P. Flynn, and A. A. Ross, Eds., Handbook of Biometrics. Boston, MA: 

Springer US, 2008. 

 

[3] L. F. Haas, ―Hans Berger (1873-1941), Richard Caton (1842-1926), and 

electroencephalography,‖ J. Neurol. Neurosurg. Psychiatry, vol. 74, no. 1, pp. 9–9, 

Jan. 2003. 

 

[4] W. H. Miltner, C. Braun, M. Arnold, H. Witte, and E. Taub, ―Coherence of gamma-

band EEG activity as a basis for associative learning.,‖ Nature, vol. 397, no. 6718, pp. 

434–6, Feb. 1999. 

 

[5] M. Poulos, M. Rangoussi, V. Chrissikopoulos, and A. Evangelou, ―Parametric person 

identification from the EEG using computational geometry,‖ in ICECS’99. 

Proceedings of ICECS  '99. 6th IEEE International Conference on Electronics, 

Circuits and Systems (Cat. No.99EX357), 1999, vol. 2, no. 2, pp. 1005–1008. 

 

[6] M. Poulos, M. Rangoussi, and N. Alexandris, ―Neural network based person 

identification using EEG features,‖ in 1999 IEEE International Conference on 

Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. 

No.99CH36258), 1999, vol. 2, pp. 1117–1120 vol.2. 

 

[7] S. Yang and F. Deravi, ―Novel HHT-Based Features for Biometric Identification 

Using EEG Signals,‖ 2014 22nd Int. Conf. Pattern Recognit., pp. 1922–1927, Aug. 

2014. 

 

[8] Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 

Lippincott Williams & Wilkins, 2005. 

 

[9] B. E. Swartz, ―The advantages of digital over analog recording techniques,‖ 

Electroencephalogr. Clin. Neurophysiol., vol. 106, no. 2, pp. 113–117, Feb. 1998. 

 

[10] A. Coenen, E. Fine, and O. Zayachkivska, ―Adolf Beck: a forgotten pioneer in 

electroencephalography.,‖ J. Hist. Neurosci., vol. 23, no. 3, pp. 276–86, Jan. 2014. 

 

[11] S. Aydin, H. M. Saraoğlu, and S. Kara, ―Log energy entropy-based EEG classification 

with multilayer neural networks in seizure.,‖ Ann. Biomed. Eng., vol. 37, no. 12, pp. 

2626–30, Dec. 2009. 

 

[12] P. Campisi and D. La Rocca, ―Brain waves for automatic biometric based user 

recognition,‖ IEEE Trans. Inf. Forensics Secur., vol. 6013, no. c, pp. 1–1, 2014. 

 

[13] S. N. Abbas, M. Abo-Zahhad, and S. M. Ahmed, ―State-of-the-art methods and future 

perspectives for personal recognition based on electroencephalogram signals,‖ IET 

Biometrics, Mar. 2015. 

 



187 
 

[14] R. W. Homan, J. Herman, and P. Purdy, ―Cerebral location of international 10–20 

system electrode placement,‖ Electroencephalogr. Clin. Neurophysiol., vol. 66, no. 4, 

pp. 376–382, Apr. 1987. 

 

[15] ―EEG Motor Movement/Imagery Dataset.‖ [Online]. Available: 

http://www.physionet.org/pn4/eegmmidb/. [Accessed: 20-Apr-2015]. 

 

[16] G. CHATRIAN, ―Ten percent electrode system for topographic studies of 

spontaneous and evoked EEG activity,‖ Am J Electroencephalogr Technol, vol. 25, 

pp. 83–92, 1985. 

 

[17] ―Neurosky Products.‖ [Online]. Available: http://store.neurosky.com/products. 

[Accessed: 20-Apr-2015]. 

 

[18] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw, 

―BCI2000: a general-purpose brain-computer interface (BCI) system.,‖ IEEE Trans. 

Biomed. Eng., vol. 51, no. 6, pp. 1034–43, Jun. 2004. 

 

[19] schalklab, ―BCI 2000.‖ [Online]. Available: 

http://www.schalklab.org/research/bci2000. [Accessed: 21-May-2015]. 

 

[20] ―Emotiv.‖ [Online]. Available: http://emotiv.com/. [Accessed: 20-Apr-2015]. 

 

[21] ―MindWave.‖ [Online]. Available: http://store.neurosky.com/products/mindwave-1. 

[Accessed: 10-Jul-2015]. 

 

[22] ―OCZ NIA Neural Impulse Actuator: Amazon.co.uk: Computers & Accessories.‖ 

[Online]. Available: http://www.amazon.co.uk/OCZ-NIA-Neural-Impulse-

Actuator/dp/B00168VU4U. [Accessed: 10-Jul-2015]. 

 

[23] ―Melon Headband.‖ [Online]. Available: http://www.thinkmelon.com/. [Accessed: 10-

Jul-2015]. 

 

[24] ―HiBrain.‖ [Online]. Available: http://www.hyperneuro.cn/. [Accessed: 10-Jul-2015]. 

 

[25] ―FocusBand - Mind Training Headset.‖ [Online]. Available: 

http://www.ifocusband.com/. [Accessed: 10-Jul-2015]. 

 

[26] ―MUSE 
TM

 | Meditation Made Easy.‖ [Online]. Available: 

http://www.choosemuse.com/. [Accessed: 10-Jul-2015]. 

 

[27] ―OpenBCI.‖ [Online]. Available: http://www.openbci.com/. [Accessed: 10-Jul-2015]. 

 

[28] ―Aurora Dream Headband.‖ [Online]. Available: https://iwinks.org/. [Accessed: 10-

Jul-2015]. 

 

[29] W. O. Tatum, ―Ellen R. Grass Lecture: Extraordinary EEG,‖ Neurodiagn. J., Jan. 

2014. 

 

[30] F. Su, L. Xia, A. Cai, Y. Wu, and J. Ma, ―EEG-based Personal Identification: from 

Proof-of-Concept to A Practical System,‖ in 2010 20th International Conference on 



188 
 

Pattern Recognition, 2010, pp. 3728–3731. 

 

[31] D. LA Rocca, P. Campisi, B. Vegso, P. Cserti, G. Kozmann, F. Babiloni, and F. DE 

Vico Fallani, ―Human brain distinctiveness based on EEG spectral coherence 

connectivity.,‖ IEEE Trans. Biomed. Eng., vol. 9294, no. c, pp. 1–7, Apr. 2014. 

 

[32] M. Fraschini, A. Hillebrand, M. Demuru, L. Didaci, and G. L. Marcialis, ―An EEG-

Based Biometric System Using Eigenvector Centrality in Resting State Brain 

Networks,‖ IEEE Signal Process. Lett., vol. 22, no. 6, pp. 666–670, Jun. 2015. 

 

[33] S. J. Luck, An Introduction to the Event-Related Potential Technique. MIT Press, 

2014. 

 

[34] E. Donchin, K. M. Spencer, and R. Wijesinghe, ―The mental prosthesis: assessing the 

speed of a P300-based brain-computer interface,‖ IEEE Trans. Rehabil. Eng., vol. 8, 

no. 2, pp. 174–179, Jun. 2000. 

 

[35] J. Polich, ―Updating P300: an integrative theory of P3a and P3b.,‖ Clin. 

Neurophysiol., vol. 118, no. 10, pp. 2128–48, Oct. 2007. 

 

[36] R. Palaniappan and P. Raveendran, ―Individual identification technique using visual 

evoked potential signals,‖ Electron. Lett., vol. 38, no. 25, p. 1634, Dec. 2002. 

 

[37] J. G. Snodgrass and M. Vanderwart, ―A standardized set of 260 pictures: Norms for 

name agreement, image agreement, familiarity, and visual complexity.,‖ J. Exp. 

Psychol. Hum. Learn. Mem., vol. 6, no. 2, pp. 174–215, 1980. 

 

[38] R. Palaniappan, ―A New Method to Identify Individuals Using Signals from the 

Brain,‖ in Proceedings of the Joint Conference of the Fourth International 

Conference on Information, Communications and Signal Processing, and Fourth 

Pacific Rim Conference on Multimedia, 2003, pp. 1442–1445. 

 

[39] R. Palaniappan, ―Recognising Individuals Using Their Brain Patterns,‖ in Third 

International Conference on Information Technology and Applications (ICITA’05), 

2005, vol. 2, pp. 520–523. 

 

[40] Palaniappan, ―Vision Related Brain Activity for Biometric Authentication,‖ 2006, pp. 

3227–3231. 

 

[41] R. Palaniappan and D. P. Mandic, ―EEG Based Biometric Framework for Automatic 

Identity Verification,‖ J. VLSI Signal Process. Syst. Signal Image. Video Technol., 

vol. 49, no. 2, pp. 243–250, Jun. 2007. 

 

[42] R. Palaniappan and D. P. Mandic, ―Biometrics from brain electrical activity: a 

machine learning approach.,‖ IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 4, 

pp. 738–42, Apr. 2007. 

 

[43] R. Palaniappan, ―Identifying Individuality Using Mental Task Based Brain Computer 

Interface,‖ in Third International Conference on Intelligent Sensing and Information 

Processing, ICISIP, 2005, pp. 238–242. 

 



189 
 

[44] S. Marcel and J. D. R. Millán, ―Person authentication using brainwaves (EEG) and 

maximum a posteriori model adaptation.,‖ IEEE Trans. Pattern Anal. Mach. Intell., 

vol. 29, no. 4, pp. 743–52, Apr. 2007. 

 

[45] Q. Gui, Z. Jin, M. V. R. Blondet, and S. Laszlo, ―Towards EEG Biometrics : Pattern 

Matching Approaches for User Identification,‖ in 2015 IEEE International 

Conference on Identity, Security and Behavior Analysis (ISBA), 2015, pp. 1–6. 

 

[46] J. Chuang, H. Nguyen, C. Wang, and B. Johnson, ―I Think , Therefore I Am : 

Usability and Security of Authentication Using Brainwaves,‖ vol. 0424422, pp. 1–16, 

2013. 

 

[47] A. Oppenheim, Discrete-time signal processing. Englewood Cliffs  N.J.: Prentice 

Hall, 1989. 

 

[48] R. Palaniappan, ―Individual identification technique using visual evoked potential 

signals,‖ Electron. Lett., vol. 38, no. 25, pp. 1634–1635, 2002. 

 

[49] S. Marcel and J. D. R. Millán, ―Person authentication using brainwaves (EEG) and 

maximum a posteriori model adaptation.,‖ IEEE Trans. Pattern Anal. Mach. Intell., 

vol. 29, no. 4, pp. 743–52, Apr. 2007. 

 

[50] G. Safont, A. Salazar, A. Soriano, and L. Vergara, ―Combination of multiple detectors 

for EEG based biometric identification/authentication,‖ in 2012 IEEE International 

Carnahan Conference on Security Technology (ICCST), 2012, pp. 230–236. 

 

[51] C. Miyamoto, S. Baba, and I. Nakanishi, ―Biometric person authentication using new 

spectral features of electroencephalogram (EEG),‖ in 2008 International Symposium 

on Intelligent Signal Processing and Communications Systems, 2009, pp. 1–4. 

 

[52] I. Nakanishi, S. Baba, C. Miyamoto, and A. B. Wave, ―EEG Based Biometric 

Authentication Using New Spectral Features,‖ 2009, no. Ispacs, pp. 651–654. 

 

[53] H. Akaike, ―A new look at the statistical model identification,‖ IEEE Trans. Automat. 

Contr., vol. 19, no. 6, 1974. 

 

[54] R. B. Paranjape, J. Mahovsky, L. Benedicenti, and Z. Koles‘, ―The 

electroencephalogram as a biometric,‖ in Canadian Conference on Electrical and 

Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555), 2001, 

vol. 2, pp. 1363–1366. 

 

[55] A. Riera, A. Soria-Frisch, M. Caparrini, C. Grau, and G. Ruffini, ―Unobtrusive 

Biometric System Based on Electroencephalogram Analysis,‖ EURASIP J. Adv. 

Signal Process., vol. 2008, no. 1, p. 143728, 2008. 

 

[56] K. Brigham and B. V. K. V. Kumar, ―Subject identification from 

electroencephalogram (EEG) signals during imagined speech,‖ in 2010 Fourth IEEE 

International Conference on Biometrics: Theory, Applications and Systems (BTAS), 

2010, pp. 1–8. 

 

[57] P. Campisi, G. Scarano, F. Babiloni, F. D. V. Fallani, S. Colonnese, E. Maiorana, L. 



190 
 

Forastiere, L. Sapienza, U. Roma, and V. Eudossiana, ―Brain waves based user 

recognition using the ‗ Eyes Closed Resting Conditions ‘ protocol,‖ 2011, vol. 00, no. 

c, pp. 16–19. 

 

[58] Z. Dan, Z. Xifeng, and G. Qiangang, ―An Identification System Based on Portable 

EEG Acquisition Equipment,‖ in 2013 Third International Conference on Intelligent 

System Design and Engineering Applications, 2013, pp. 281–284. 

 

[59] I. Daubechies, Ten lectures on wavelets, Vol. 61. Philadelphia: Society for industrial 

and applied mathematics, 1992. 

 

[60] C. N. Gupta, Y. U. Khan, R. Palaniappan, and F. Sepulveda, ―Wavelet Framework for 

Improved Target Detection in Oddball Paradigms Using P300 and Gamma Band 

Analysis,‖ vol. 14, no. 2, pp. 61–67, 2009. 

 

[61] M. K. Abdullah, K. S. Subari, J. Leo, C. Loong, and N. N. Ahmad, ―Analysis of the 

EEG Signal for a Practical Biometric System,‖ in World Academy of Science, 

Engineering and Technology, 2010, no. 2008, pp. 1123–1127. 

 

[62] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. 

Tung, and H. H. Liu, ―The empirical mode decomposition and the Hilbert spectrum 

for nonlinear and non-stationary time series analysis,‖ Proc. R. Soc. A Math. Phys. 

Eng. Sci., vol. 454, no. 1971, pp. 903–995, Mar. 1998. 

 

[63] P. Flandrin, G. Rilling, and P. Gonçalvés, ―Empirical Mode Decomposition as a Filter 

Bank,‖ Signal Process. Lett., vol. 11, no. 2, pp. 112–114, 2004. 

 

[64] P. Kumarii, S. Kumar, and A. Vaishi, ―Feature Extraction using Emprical Mode 

Decomposition for Biometric System,‖ in Signal Propagation and Computer 

Technology (ICSPCT), 2014, pp. 283–287. 

 

[65] G. K. Singhal and P. RamKumar, ―Person Identification Using Evoked Potentials and 

Peak Matching,‖ in 2007 Biometrics Symposium, 2007, pp. 1–6. 

 

[66] X. Huang, ―Human Identification with Electroencephalogram ( EEG ) Signal 

Processing,‖ in International Symposium on Communications and Information 

Technologies (ISCIT), 2012, pp. 1021–1026. 

 

[67] S.-W. L. Seul-Ki Yearn, Heung-II Suk, ―EEG-based Person Authentication using Face 

Stimuli,‖ in International Winter Workshop on Brain-Computer Interface (BCI), 

2013, pp. 58–61. 

 

[68] D. Phung, D. Tran, W. Ma, P. Nguyen, and T. Pham, ―Using Shannon Entropy as 

EEG Signal Feature for Fast Person Identification,‖ in European Symposium on 

Artificial Neural Networks (ESANN), 2014, pp. 23–25. 

 

[69] P. Nguyen, D. Tran, X. Huang, and D. Sharma, ―A Proposed Feature Extraction 

Method for EEG-based Person Identification,‖ in International Conference on 

Artificial Intelligence (ICAI), 2012. 

 

[70] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, ―Machine learning: A review of 



191 
 

classification and combining techniques,‖ Artif. Intell. Rev., vol. 26, pp. 159–190, 

2006. 

 

[71] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, D. D. Edwards, and S. J. S. 

Jonathan, Artificial Intelligence: A Modern Approach, vol. 13, no. 2. Prentice-Hall, 

Egnlewood Cliffs 25, 1995. 

 

[72] F. Nigsch, A. Bender, B. van Buuren, J. Tissen, E. Nigsch, and J. B. O. Mitchell, 

―Melting point prediction employing k-nearest neighbor algorithms and genetic 

parameter optimization.,‖ J. Chem. Inf. Model., vol. 46, no. 6, pp. 2412–22, Jan. 2006. 

 

[73] R. Palaniappan and K. V. R. Ravi, ―Improving visual evoked potential feature 

classification for person recognition using PCA and normalization,‖ Pattern Recognit. 

Lett., vol. 27, no. 7, pp. 726–733, May 2006. 

 

[74] A. Yazdani, A. Roodaki, S. H. Rezatofighi, K. Misaghian, and S. K. Setarehdan, 

―Fisher linear discriminant based person identification using visual evoked 

potentials,‖ in 2008 9th International Conference on Signal Processing, 2008, pp. 

1677–1680. 

 

[75] F. Su, L. Xia, A. Cai, and J. Ma, ―Evaluation of recording factors in EEG-based 

personal identification: A vital step in real implementations,‖ in 2010 IEEE 

International Conference on Systems, Man and Cybernetics, 2010, pp. 3861–3866. 

 

[76] G. McLachlan, Discriminant Analysis and Statistical Pattern Recognition. John Wiley 

& Sons, 2004. 

 

[77] R. A. Fisher, ―The Use of Multiple Measurements in Taxonomic Problems,‖ Ann. 

Eugen., vol. 7, no. 2, pp. 179–188, Sep. 1936. 

 

[78] R. Palaniappan, ―Electroencephalogram Signals from Imagined Activities : A Novel 

Biometric Identifier for a Small Population,‖ Intelligent Data Engineering and 

Automated Learning–IDEAL 2006, pp. 604–611, 2006. 

 

[79] A. M. Martinez and A. C. Kak, ―PCA versus LDA,‖ IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 23, no. 2, pp. 228–233, 2001. 

 

[80] H. J. Lee, H. S. Kim, and K. S. Park, ―A study on the reproducibility of biometric 

authentication based on electroencephalogram (EEG),‖ in 2013 6th International 

IEEE/EMBS Conference on Neural Engineering (NER), 2013, pp. 13–16. 

 

[81] J. S. Kostilek, M., ―EEG biometric identification : repeatability and influence of 

movement-related EEG,‖ in International Conference on Applied Electronics (AE), 

2012, pp. 147–150. 

 

[82]  and D. G. S. R.O. Duda, P.E. Hart, ―Pattern Classification,‖ J. Classif., vol. 24, no. 2, 

pp. 305–307, Sep. 2007. 

 

[83] R. Palaniappan, ―Method of identifying individuals using VEP signals and neural 

network,‖ in Science, Measurement and Technology, 2004, vol. 151, no. 1, pp. 16–20. 

 



192 
 

[84] R. Palaniappan and D. P. Mandic, ―Energy of Brain Potentials Evoked During Visual 

Stimulus : A New Biometric ?,‖ in Artificial Neural Networks: Formal Models and 

Their Applications–ICANN, 2005, pp. 735–740. 

 

[85] F. Chunying, L. Haifeng, M. Lin, and J. Bing, ―Induced Event-Related Coherence 

Measures during Auditory Change Detection,‖ in 2014 International Conference on 

Medical Biometrics, 2014, pp. 118–124. 

 

[86] R. Palaniappan, J. Gosalia, K. Revett, and A. Samraj, ―PIN Generation Using Single 

Channel EEG Biometric,‖ in Advances in Computing and Communications, 2011, pp. 

378–385. 

 

[87] Q. Gui and Z. Jin, ―Exploring EEG-based Biometrics for User Identification and 

Authentication,‖ in Signal Processing in Medicine and Biology Symposium (SPMB), 

2014, pp. 1–6. 

 

[88] F. Minow, ―EASY CAP | EEG Recording Caps and Related Products | FMS | Falk 

Minow Services.‖ FMS - Falk Minow Services - www.easycap.de. 

 

[89] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, 

―A novel connectionist system for unconstrained handwriting recognition.,‖ IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 31, no. 5, pp. 855–68, May 2009. 

 

[90] D. Ciresan, U. Meier, and J. Schmidhuber, ―Multi-column deep neural networks for 

image classification,‖ in 2012 IEEE Conference on Computer Vision and Pattern 

Recognition, 2012, pp. 3642–3649. 

 

[91] A. Aizerman, E. Braverman, and L. Rozoner, ―Theoretical foundations of the potential 

function method in pattern recognition learning,‖ Autom. Remote Control, vol. 25, pp. 

821 – 837, 1964. 

 

[92] C. Cortes and V. Vapnik, ―Support-vector networks,‖ Mach. Learn., vol. 20, no. 3, pp. 

273–297, Sep. 1995. 

 

[93] N. C. Oza, R. Polikar, J. Kittler, and F. Roli, Eds., Multiple Classifier Systems, vol. 

3541. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. 

 

[94] C.-W. Hsu and C.-J. Lin, ―A comparison of methods for multiclass support vector 

machines.,‖ IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415–25, Jan. 2002. 

 

[95] H. U. Jian-feng, ―Comparison of Different Classifiers for Biometric System Based on 

EEG signals,‖ 2010, no. 2, pp. 288–291. 

 

[96] C. Ashby, A. Bhatia, F. Tenore, and J. Vogelstein, ―Low-cost electroencephalogram 

(EEG) based authentication,‖ in 2011 5th International IEEE/EMBS Conference on 

Neural Engineering, 2011, pp. 442–445. 

 

[97] S. Sun, ―Multitask learning for EEG-based biometrics,‖ in 2008 19th International 

Conference on Pattern Recognition, 2008, pp. 1–4. 

 

[98] C. R. Hema and  a a Osman, ―Single trial analysis on EEG signatures to identify 



193 
 

individuals,‖ in 2010 6th International Colloquium on Signal Processing & its 

Applications, 2010, pp. 1–3. 

 

[99] Q. Zhao, H. Peng, B. Hu, Q. Liu, and L. Liu, ―Improving Individual Identification in 

Security Check with an EEG Based Biometric Solution,‖ Brain Informatics, Springer 

Berlin Heidelb., pp. 145–155, 2010. 

 

[100] B. Quintela and S. Cunha, ―Biometric Authentication Using Brain Responses to 

Visual Stimuli,‖ in In BIOSIGNALS, 2010, pp. 103–112. 

 

[101] Y. Bai, Z. Zhang, and D. Ming, ―Feature selection and channel optimization for 

biometric identification based on visual evoked potentials,‖ in 19th International 

Conference on Digital Signal Processing (DSP), 2014, no. August, pp. 772–776. 

 

[102] M. Poulos, M. Rangoussi, V. Chrissikopoulos, and A. Evangelou, ―Parametric person 

identification from the EEG using computational geometry,‖ in ICECS’99. 

Proceedings of ICECS  '99. 6th IEEE International Conference on Electronics, 

Circuits and Systems (Cat. No.99EX357), 1999, vol. 2, pp. 1005–1008. 

 

[103] M. Poulos, M. Rangoussi, N. Alexandris, and  a Evangelou, ―Person identification 

from the EEG using nonlinear signal classification.,‖ Methods Inf. Med., vol. 41, no. 

1, pp. 64–75, Jan. 2002. 

 

[104] D. La Rocca, P. Campisi, and G. Scarano, ―EEG Biometrics for Individual 

Recognition in Resting State with Closed Eyes,‖ in International Conference of the 

Biometrics Special Interest Group (BIOSIG), 2012, pp. 1–12. 

 

[105] S. Yang and F. Deravi, ―On the Effectiveness of EEG Signals as a Source of 

Biometric Information,‖ in 2012 Third International Conference on Emerging 

Security Technologies, 2012, pp. 49–52. 

 

[106] S. Yang and F. Deravi, ―Quality Filtering of EEG Signals for Enhanced Biometric 

Recognition,‖ in International Conference on Biometrics Special Interest Group 

(BIOSIG), 2013. 

 

[107] D. La Rocca, P. Campisi, and J. Sol, ―EEG Based User Recognition Using BUMP 

Modelling,‖ in International Conference of the Biometrics Special Interest Group 

(BIOSIG), 2013, pp. 1–12. 

 

[108] S. Yang and F. Deravi, ―Wavelet-Based EEG Preprocessing for Biometric 

Applications,‖ 2013 Fourth Int. Conf. Emerg. Secur. Technol., pp. 43–46, Sep. 2013. 

 

[109] M. V. R. Blondet and S. Laszlo, ―Assessment of Permanence of Non-volitional EEG 

Brainwaves as a Biometric,‖ in 2015 IEEE International Conference on Identity, 

Security and Behavior Analysis (ISBA), 2015, pp. 1–6. 

 

[110] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. 

Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, ―PhysioBank, 

PhysioToolkit, and PhysioNet : Components of a New Research Resource for 

Complex Physiologic Signals,‖ Circulation, vol. 101, no. 23, pp. e215–e220, Jun. 

2000. 



194 
 

 

[111] ―UCI Machine Learning Repository: EEG Database Data Set.‖ [Online]. Available: 

https://archive.ics.uci.edu/ml/datasets/EEG+Database. [Accessed: 22-Apr-2015]. 

 

[112] T. Fawcett, ―An introduction to ROC analysis,‖ Pattern Recognit. Lett., vol. 27, no. 8, 

pp. 861–874, Jun. 2006. 

 

[113] D. M. Powers, ―Evaluation: from Precision, Recall and F-measure to ROC, 

Informedness, Markedness and Correlation.‖ Bioinfo Publications, 15-Dec-2011. 

 

[114] D. Gray, S. Brennan, and H. Tao, ―Evaluating appearance models for recognition, 

reacquisition, and tracking,‖ Perform. Eval. Track. Surveill. (PETS), 10th Int. Work., 

vol. 3, pp. 41–47, 2007. 

 

[115] G. O. Williams, ―Iris recognition technology,‖ in Proceedings of IEEE International 

Carnahan Conference on Security Technology, pp. 46–59. 

 

[116] R. Kohavi, ―A study of cross-validation and bootstrap for accuracy estimation and 

model selection,‖ 1995, pp. 1137–1143. 

 

[117] S. Marella, ―EEG artifacts.‖ [Online]. Available: 

http://www.slideshare.net/SudhakarMarella/eeg-artifacts-15175461. [Accessed: 21-

Apr-2015]. 

 

[118] E. Kirmizi-Alsan, Z. Bayraktaroglu, H. Gurvit, Y. H. Keskin, M. Emre, and T. 

Demiralp, ―Comparative analysis of event-related potentials during Go/NoGo and 

CPT: decomposition of electrophysiological markers of response inhibition and 

sustained attention.,‖ Brain Res., vol. 1104, no. 1, pp. 114–28, Aug. 2006. 

 

[119] M. A. Kisley and Z. M. Cornwell, ―Gamma and beta neural activity evoked during a 

sensory gating paradigm: effects of auditory, somatosensory and cross-modal 

stimulation.,‖ Clin. Neurophysiol., vol. 117, no. 11, pp. 2549–63, Nov. 2006. 

 

[120] N. Kanayama, A. Sato, and H. Ohira, ―Crossmodal effect with rubber hand illusion 

and gamma-band activity.,‖ Psychophysiology, vol. 44, no. 3, pp. 392–402, May 

2007. 

 

[121] H. GASTAUT, ―[Electrocorticographic study of the reactivity of rolandic rhythm].,‖ 

Rev. Neurol. (Paris)., vol. 87, no. 2, pp. 176–82, Jan. 1952. 

 

[122] A. Vretblad, Fourier Analysis and Its Applications. Springer Science & Business 

Media, 2003. 

 

[123] J.-F. Cardoso, ―Blind signal separation: statistical principles,‖ Proc. IEEE, vol. 86, no. 

10, pp. 2009–2025, 1998. 

 

[124] A. Hyvarinen and E. Oja, ―Independent Component Analysis : A Tutorial,‖ Neural 

Networks, vol. 1, pp. 1–30, 1999. 

 

[125] P. Tangkraingkij, C. Lursinsap, S. Sanguansintukul, and T. Desudchit, ―Selecting 

Relevant EEG Signal Locations for Personal Identification Problem Using ICA and 



195 
 

Neural Network,‖ in 2009 Eighth IEEE/ACIS International Conference on Computer 

and Information Science, 2009, pp. 616–621. 

 

[126] Y. Yao, R. Sun, T. Poggio, J. Liu, N. Zhong, and J. Huang, Eds., Brain Informatics, 

vol. 6334. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. 

 

[127] C. Taswell, ―The what, how, and why of wavelet shrinkage denoising,‖ Comput. Sci. 

Eng., vol. 2, no. 3, pp. 12–19, 2000. 

 

[128] M. H. Kutner, Applied linear statistical models, 4th ed. Chicago: Irwin, 1996. 

 

[129] B. Vidakovic, ―Nonlinear Wavelet Shrinkage with Bayes Rules and Bayes Factors,‖ J. 

Am. Stat. Assoc., vol. 93, no. 441, pp. 173–179, Feb. 1998. 

 

[130] D. L. Donoho, ―De-noising by soft-thresholding,‖ IEEE Trans. Inf. Theory, vol. 41, 

no. 3, pp. 613–627, May 1995. 

 

[131] K. Pearson, ―LIII. On lines and planes of closest fit to systems of points in space,‖ 

Philos. Mag. Ser. 6, vol. 2, no. 11, pp. 559–572, Nov. 1901. 

 

[132] M. Aminghafari, N. Cheze, and J.-M. Poggi, ―Multivariate denoising using wavelets 

and principal component analysis,‖ Comput. Stat. Data Anal., vol. 50, no. 9, pp. 

2381–2398, May 2006. 

 

[133] B. W. Suter, Multirate and Wavelet Signal Processing. Academic Press, 1997. 

 

[134] S. Xie, P. Lio, and A. T. Lawniczak, ―A comparative study of noise effect on wavelet 

based de-noising methods,‖ in 2009 IEEE Toronto International Conference Science 

and Technology for Humanity (TIC-STH), 2009, pp. 919–926. 

 

[135] B. R. Bakshi, ―Multiscale PCA with application to multivariate statistical process 

monitoring,‖ AIChE J., vol. 44, no. 7, pp. 1596–1610, Jul. 1998. 

 

[136] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1999. 

 

[137]  and J.-M. P. Misiti, Michel, Yves Misiti, Georges Oppenheim, ―Wavelet toolbox,‖ 

MathWorks Inc., Natick, MA, 1996. 

 

[138] G. Hughes, ―On the mean accuracy of statistical pattern recognizers,‖ IEEE Trans. Inf. 

Theory, vol. 14, no. 1, pp. 55–63, Jan. 1968. 

 

[139] G. Buzsaki, Rhythms of the Brain. Oxford University Press, 2006. 

 

[140] A. K. Jain, S. Pankanti, S. Prabhakar, and A. Ross, ―Biometrics: a grand challenge,‖ 

in Proceedings of the 17th International Conference on Pattern Recognition, 2004. 

ICPR 2004., 2004, vol. 2, pp. 935–942 Vol.2. 

 

[141] N. Kawabata, ―A nonstationary analysis of the electroencephalogram.,‖ IEEE Trans. 

Biomed. Eng., vol. 20, no. 6, pp. 444–52, Nov. 1973. 

 

[142] M. Hangoussi, V. Chrissikopolllos, J. A. Evangciotl, and J. Ij, ―Person identification 



196 
 

based on parametric processing of the EEG,‖ in 6th IEEE International Conference on 

Electronics, Circuits and Systems, 1999, no. 1, pp. 283–286. 

 

[143] O. Ghitza and M. M. Sondhi, ―Hidden Markov models with templates as non-

stationary states: an application to speech recognition,‖ Comput. Speech Lang., vol. 7, 

no. 2, pp. 101–119, Apr. 1993. 

 

[144] M. P. Tarvainen, J. K. Hiltunen, P. O. Ranta-aho, and P. A. Karjalainen, ―Estimation 

of nonstationary EEG with Kalman smoother approach: an application to event-

related synchronization (ERS).,‖ IEEE Trans. Biomed. Eng., vol. 51, no. 3, pp. 516–

24, Mar. 2004. 

 

[145] D. Fugal, Conceptual wavelets in digital signal processing : an in-depth, practical 

approach for the non-mathematician. San Diego  Calif.: Space & Signals Technical 

Pub., 2009. 

 

[146] A. Jain, Fundamentals of digital image processing. Englewood Cliffs  NJ: Prentice 

Hall, 1989. 

 

[147] S. He, R. Dum, and P. Strick, ―Topographic organization of corticospinal projections 

from the frontal lobe: motor areas on the medial surface of the hemisphere,‖ J. 

Neurosci., vol. 15, no. 5, pp. 3284–3306, May 1995. 

 

[148] D. Y. Kimberg and M. J. Farah, ―A unified account of cognitive impairments 

following frontal lobe damage: The role of working memory in complex, organized 

behavior.,‖ J. Exp. Psychol., vol. 22, no. 4, p. 411. 

 

[149] A. Martin and M. Przybocki, ―The NIST 1999 Speaker Recognition Evaluation—An 

Overview,‖ Digit. Signal Process., vol. 10, no. 1–3, pp. 1–18, Jan. 2000. 

 

[150] NIST Evaluation Tools DETware_v2.1, ―DETware_v2.1.‖ [Online]. Available: 

http://www.itl.nist.gov/iad/mig/tools/DETware_v2.1.targz.htm. [Accessed: 21-Apr-

2015]. 

 

[151] D. a. Reynolds and R. C. Rose, ―Robust text-independent speaker identification using 

Gaussian mixture speaker models,‖ IEEE Trans. Speech Audio Process., vol. 3, no. 1, 

pp. 72–83, 1995. 

 

[152] N. Kawabata, ―A nonstationary analysis of the electroencephalogram.,‖ IEEE Trans. 

Biomed. Eng., vol. 20, no. 6, pp. 444–52, Nov. 1973. 

 

[153] L. Parra and C. Spence, ―Convolutive blind separation of non-stationary sources,‖ 

IEEE Trans. Speech Audio Process., vol. 8, no. 3, pp. 320–327, May 2000. 

 

[154] K. Aizawa, Y. Nakamura, and S. Satoh, Eds., Advances in Multimedia Information 

Processing - PCM 2004, vol. 3333. Berlin, Heidelberg: Springer Berlin Heidelberg, 

2005. 

 

[155] M. Sahidullah and G. Saha, ―Design, analysis and experimental evaluation of block 

based transformation in MFCC computation for speaker recognition,‖ Speech 

Commun., vol. 54, no. 4, pp. 543–565, May 2012. 



197 
 

 

[156] S. S. Stevens, ―A Scale for the Measurement of the Psychological Magnitude Pitch,‖ 

J. Acoust. Soc. Am., vol. 8, no. 3, p. 185, Jun. 1937. 

 

[157] Z. Tufekci and S. Gurbuz, ―Noise Robust Speaker Verification Using Mel-Frequency 

Discrete Wavelet,‖ pp. 657–660, 2005. 

 

[158] M. I. Abdalla and H. S. Ali, ―Wavelet-Based Mel-Frequency Cepstral Coefficients for 

Speaker Identification using Hidden Markov Models,‖ vol. 1, no. 2, pp. 16–21, 2010. 

 

[159] S. V.Chapaneri, ―Spoken Digits Recognition using Weighted MFCC and Improved 

Features for Dynamic Time Warping,‖ Int. J. Comput. Appl., vol. 40, no. 3, pp. 6–12, 

2012. 

 

[160] N. E. Huang, Z. Wu, S. R. Long, K. C. Arnold, X. Chen, and K. Blank, ―On 

instantaneous frequency,‖ Adv. Adapt. Data Anal., vol. 1, no. 2, pp. 177–229, 2009. 

 

[161] E. Huang, Norden E., and Nii O. Attoh-Okine, ―The Hilbert-Huang Transform in 

Engineering.pdf.‖ 2010. 

 

[162] N. E. Huang, Z. Shen, and S. R. Long, ―A new view of nonlinear water waves: The 

Hilbert Spectrum 1,‖ Annu. Rev. Fluid Mech., vol. 31, no. 1, pp. 417–457, Jan. 1999. 

 

[163] Z. Wu and N. E. Huang, ―Ensemble empirical mode decomposition: a noise-assisted 

data analysis method,‖ Adv. Adapt. Data Anal., vol. 1, no. 1, pp. 1–41, 2009. 

 

[164] J. O. Smith, Mathematics of the Discrete Fourier Transform (DFT): With music and 

audio applications. Julius Smith, 2007. 

 

[165] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed. Elsevier, 2009. 

 

[166] J. S. Richman and J. R. Moorman, ―Physiological time-series analysis using 

approximate entropy and sample entropy,‖ Am J Physiol Hear. Circ Physiol, vol. 278, 

no. 6, pp. H2039–2049, Jun. 2000. 

 

[167] A. Schlögl, C. Keinrath, D. Zimmermann, R. Scherer, R. Leeb, and G. Pfurtscheller, 

―A fully automated correction method of EOG artifacts in EEG recordings.,‖ Clin. 

Neurophysiol., vol. 118, no. 1, pp. 98–104, Jan. 2007. 

 

[168] S.-F. Liang, C.-E. Kuo, Y.-H. Hu, Y.-H. Pan, and Y.-H. Wang, ―Automatic Stage 

Scoring of Single-Channel Sleep EEG by Using Multiscale Entropy and 

Autoregressive Models,‖ IEEE Trans. Instrum. Meas., vol. 61, no. 6, pp. 1649–1657, 

Jun. 2012. 

 

[169] ―Sample Entropy estimation using sampen.‖ [Online]. Available: 

http://physionet.incor.usp.br/physiotools/sampen/. [Accessed: 21-Apr-2015]. 

 

[170] S. M. Pincus, ―Approximate entropy as a measure of system complexity.,‖ Proc. Natl. 

Acad. Sci., vol. 88, no. 6, pp. 2297–2301, Mar. 1991. 

 

[171] D. M. J. Duin, R. P. W., Juszczak, P., de Ridder, D., Paclık, P., Pezkalska, E., & Tax, 



198 
 

―PRTools,‖ 2004. [Online]. Available: http://37steps.com/prhtml/prtools.html. 

[Accessed: 21-Apr-2015]. 

 

[172] J. A. Olvera-López, J. A. Carrasco-Ochoa, J. F. Martínez-Trinidad, and J. Kittler, ―A 

review of instance selection methods,‖ Artif. Intell. Rev., vol. 34, no. 2, pp. 133–143, 

May 2010. 

 

[173] D. Wilson and T. Martinez, ―Reduction techniques for instance-based learning 

algorithms,‖ Mach. Learn., 2000. 

 

[174] N. Network, ―Reduction Techniques for Instance-Based Learning Algorithms,‖ pp. 

257–286, 2000. 

 

[175] K. Gowda and G. Krishna, ―The condensed nearest neighbor rule using the concept of 

mutual nearest neighborhood (Corresp.),‖ IEEE Trans. Inf. Theory, vol. 25, no. 4, pp. 

488–490, 1979. 

 

[176] S. García, J. Derrac, J. R. Cano, and F. Herrera, ―Prototype selection for nearest 

neighbor classification: Taxonomy and empirical study,‖ IEEE Trans. Pattern Anal. 

Mach. Intell., vol. 34, no. 3, pp. 417–435, 2012. 

 

[177] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis. Springer Science & 

Business Media, 2009. 

 

[178] C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble, ―Mismatch string 

kernels for discriminative protein classification.,‖ Bioinformatics, vol. 20, no. 4, pp. 

467–76, Mar. 2004. 

 

[179] O. Chapelle, P. Haffner, and V. N. Vapnik, ―Support vector machines for histogram-

based image classification.,‖ IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1055–64, 

Jan. 1999. 

 

[180] C. Bahlmann, B. Haasdonk, and H. Burkhardt, ―Online handwriting recognition with 

support vector machines - a kernel approach,‖ in Proceedings Eighth International 

Workshop on Frontiers in Handwriting Recognition, 2002, pp. 49–54. 

 

[181] K. Tumer and J. Ghosh, ―Estimating the Bayes error rate through classifier 

combining,‖ Proc. 13th Int. Conf. Pattern Recognit., vol. 2, pp. 695–699, 1996. 

 

[182] V. Vapnik, The Nature of Statistical Learning Theory. Springer Science & Business 

Media, 2000. 

 

[183]  and U. S. Beyer, Kevin, Jonathan Goldstein, Raghu Ramakrishnan, ―When is ‗nearest 

neighbor‘ meaningful?.,‖ in Database Theory—ICDT’99, 1999, pp. 217–235. 

 

[184] C. W. Anderson, E. a Stolz, and S. Shamsunder, ―Multivariate autoregressive models 

for classification of spontaneous electroencephalographic signals during mental 

tasks.,‖ IEEE Trans. Biomed. Eng., vol. 45, no. 3, pp. 277–86, Mar. 1998. 

 

[185] R. Palaniappan, ―Brain Computer Interface Design Using Band Powers Extracted 

During Mental Tasks,‖ in Conference Proceedings. 2nd International IEEE EMBS 



199 
 

Conference on Neural Engineering, 2005., 2005, pp. 321–324. 

 

[186] A. Akrami, S. Solhjoo, A. M. Nasrabadi, M. Reza, and H. Golpayegani, ―EEG-Based 

Mental Task Classification: Linear and Nonlinear Classification of Movement 

Imagery,‖ in 27th Annual International Conference of the Engineering in Medicine 

and Biology Society, 2005. IEEE-EMBS 2005., 2005, pp. 4626–4629. 

 

[187] L. Zhiwei, ―Classification of Mental Task EEG Signals Using Wavelet Packet 

Entropy and SVM 2 Theory Background,‖ in Electronic Measurement and 

Instruments, 2007. ICEMI’07. 8th International Conference on. IEEE, 2007., 2007, 

pp. 2–5. 

 

[188] E. Abdalsalam M., M. Z. Yusoff, N. Kamel, A. Malik, and M. Meselhy, ―Mental task 

motor imagery classifications for noninvasive brain computer interface,‖ 2014 5th Int. 

Conf. Intell. Adv. Syst., pp. 1–5, Jun. 2014. 

 

[189] P. F. Diez, V. Mut, E. Laciar, A. Torres, and E. Avila, ―Application of the empirical 

mode decomposition to the extraction of features from EEG signals for mental task 

classification,‖ in Conference proceedings : ... Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine 

and Biology Society. Annual Conference, 2009, vol. 2009, pp. 2579–82. 

 

[190] J. Sleight, P. Pillai, and S. Mohan, ―Classification of Executed and Imagined Motor 

Movement EEG Signals,‖ 2009, pp. 1–10. 

 

[191] M. Toli and F. Jovi, ―Classification of Wavelet Transformed EEG Signals with Neural 

Network for Imagined Mental and Motor Tasks,‖ in Kineziologija, 2013, vol. 45, pp. 

130–138. 

 

[192] A. Loboda, A. Margineanu, and G. Rotariu, ―Discrimination of EEG-Based Motor 

Imagery Tasks by Means of a Simple Phase Information Method,‖ Int. J. Adv. Res. 

Artif. Intell. (IJARAI), 3(10), vol. 3, no. 10, pp. 11–15, 2014. 

 

[193] D. Zhang and A. K. Jain, Eds., Biometric Authentication, vol. 3072. Berlin, 

Heidelberg: Springer Berlin Heidelberg, 2004. 

 

[194] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, ―The DET 

Curve in Assessment of Detection Task Performance,‖ Natl. INST Stand. Technol. 

Gaithersbg. MD, 1997. 

 


