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Abstract

We propose and study the finite-sample properties of a modified version of the self-perturbed

Kalman filter of Park and Jun (1992) for the on-line estimation of models subject to parameter

instability. The perturbation term in the updating equation of the state covariance matrix is now

weighted by the estimate of the measurement error variance. This avoids the calibration of a design

parameter as the perturbation term is scaled by the level of uncertainty in the data. It is shown

by Monte Carlo simulations that this perturbation method is associated with a good tracking of

the dynamics of the parameters compared to other on-line, classical and Bayesian methods. The

standardized self-perturbed Kalman filter is adopted to forecast the equity premium on the S&P

500 index under several model specifications, and determine the extent to which realized volatility

can be used to predict excess returns.
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1 Introduction

Over the past two decades, time-varying parameter (TVP) models have attracted increasing interest

in econometrics as tools for estimating and predicting structural breaks in the parameters govern-

ing the relationships between macroeconomic and financial variables. In particular, TVP models

are attractive since they allow for empirical insights which are not available within the traditional

framework with constant coefficients. Recently, TVP models have shown to be successful in macroe-

conomics, see for instance Primiceri (2005), Cogley and Sargent (2005) and Koop et al. (2009), among

others. For example, Primiceri (2005) and Cogley and Sargent (2005) use time-varying VAR models

to study the dynamic effects of alternative monetary policies on the real outcomes. Alternatively,

Stock and Watson (2007), Cogley et al. (2010) and Grassi and Proietti (2010) focus on the US in-

flation series. They all find strong evidence of a reduction in the volatility of the inflation rate over

the last 25 years, a well known phenomenon called the Great Moderation. Moreover, the coefficients

on the predictors of inflation are also found to vary over time and to be subject to structural breaks.

This phenomenon is referred to as the time-varying Phillips curve. In finance, the interest for models

with time-varying parameters dates back to the 1980s, when the successful class of ARCH-GARCH

models was introduced by Engle (1982) and Bollerslev (1986). Together with stochastic volatility

models, they can be thought of as two alternative ways to generate time-varying standard deviations

of returns. Time-varying parameter models have also been successfully applied in studying how the

stock return predictability has been changing over time, see among others Paye and Timmermann

(2006), Timmermann (2008) and Henkel et al. (2011). Recently, Liu and Maheu (2008) have pro-

vided empirical evidence that allowing for structural breaks in the model parameters leads to sensible

improvements in modeling and forecasting realized variance.

Although TVP models have proven to be successful in describing the changing behavior of the US

economy, as well as stock returns and their volatility, most of the estimation methods employed so far

are very computationally intensive, since they generally require simulation based algorithms, such as

MCMC or sequential Monte Carlo methods. Notably, Raftery et al. (2010) and Koop and Korobilis

(2012, 2013) propose a simple method to estimate TVP models within a state-space framework, that

does not involve the optimization of any objective function. Following Fagin (1964) and Jazwinsky

(1970), they suggest estimating TVP models using a modified Kalman filter algorithm based on an

approximation of the updating step of the covariance matrix of the latent states. In particular, the

updating equation of the states covariance matrix is restricted to depend on the past by a decay rate

that is function of a design parameter, the so called forgetting factor.

In a similar spirit to Koop and Korobilis (2012, 2013), we propose an alternative method for the

estimation of TVP models based on an extension of the self-perturbed Kalman filter of Park and Jun

(1992). Specifically, the original method of Park and Jun (1992) induces dynamics in the parameters

by means of a perturbation term that is a function of the squared prediction errors. We propose a

modification of the perturbation function, standardizing the squared prediction errors by an estimate

of the measurement error variance. Doing so not only avoids the calibration of a design parameter,
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but also makes the perturbation scheme dependent on the amount of uncertainty in the measurement

errors at each point in time. In other words, the new updating function dynamically calibrates the

perturbation mechanism since the contribution of the squared prediction errors is weighted by the

measurement error variance, which is allowed to vary according to a simple exponential weighted

moving average (EWMA). The standardized self-perturbed Kalman filter (SSP-KF) still relies on

the calibration of two parameters, the sensitivity to the weighted squared prediction error, ς, and

the decay parameter in the EWMA of the the error variance, κ. Given ς and κ, the SSP-KF

method returns filtered trajectories of the latent processes assumed to evolve as random walks.

Although the random-walk assumption of the regression coefficients may appear rather restrictive, the

updating mechanism in the SSP-KF proves to be very flexible and able to accommodate many forms of

parameter instability, such as structural breaks, in the form of rapid and large increments/decrements,

or smooth transitions. Indeed, the parameters ς and κ are dynamically chosen over a grid of values

at each point by means of a dynamic model selection method based on the predictive likelihood, such

that the response to large or small parameter variations can be determined endogenously. The main

advantage of the proposed method lies in its on-line nature, i.e. the SSP-KF efficiently processes new

information as soon as it becomes available and it produces real-time forecasts without the need of

numerical optimization and the selection of an in-sample period. Compared to classical methods, like

the Kalman filter or its Bayesian extensions, the SSP-KF turns out to be particularly useful under

model uncertainty, i.e. when the best model among J alternative specifications must be selected over

time.

We study the finite-sample performance of the SSP-KF by means of a large set of Monte Carlo

simulations, and compare its ability in tracking the dynamics of the model parameters with other

statistically founded methods, that often involve either maximizing a likelihood function and/or the

simulation of the latent states from their conditional posterior distribution. The results indicate that

the SSP-KF is characterized by small efficiency losses compared the standard Kalman filter routine

coupled with maximum likelihood estimation or its Bayesian extensions. Notably, when the error

term contains outliers, the SSP-KF improves the tracking of the parameters with respect to the

Kalman filter, as the latter strongly relies on the assumption of Gaussianity. In many cases, the SSP-

KF also improves over the methods based on the forgetting factor, especially when the parameters

are characterized by structural breaks in the form of sharp level changes, or when the error contains

outliers. The average computational time of the SSP-KF is analogous to that of the method based

on the forgetting factor, and it is several times smaller than the classical and Bayesian ones. This

makes the SSP-KF particularly useful for dynamic model selection or averaging as illustrated in the

empirical section.

Finally, we adopt the SSP-KF to study equity premium predictability over time, with a par-

ticular focus on how and when realized variance can be used to improve the quality of the fore-

casts. The papers by Pettenuzzo and Timmermann (2011), Dangl and Halling (2012) and Johannes

et al. (2014) acknowledge the importance of accounting for time-varying parameters, especially time-

varying volatility, when predicting excess returns. Similarly to Dangl and Halling (2012), we add
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to Johannes et al. (2014)’s framework the model uncertainty dimension, i.e. at each point in time

the prediction of future excess returns is done by selecting among a number of possible explanatory

variables. We find that dynamic model selection often includes realized variance among the relevant

regressors, consistently with the finding of volatility feedback effect studied in Bollerslev et al. (2006)

among others. Interestingly, we also find evidence that realized variance can be used as a driver

of the prediction error variance in the SSP-KF method, thus not only having a non-linear effect

on the future excess returns but also offering a more sophisticated control of parameter variability

over time via the perturbation mechanism proposed in this paper. The reason for this modification

of the baseline SSP-KF routine lies in the efficiency of the realized variance as an estimator of the

total return variance over fixed periods of time by exploiting the information coming from returns

at higher frequencies. We find some empirical support for this modification, not only in terms of

statistical fitting but also in terms of utility gains for a risk averse investor who has to choose which

portion of his wealth to invest into a risky asset on the basis of the predictions of a given model.

Summarizing, the contributions of this paper are threefold. First, an extension of the self-

perturbed Kalman filter of Park and Jun (1992) where the squared prediction errors are standardized

by their variance in the perturbation term, thus avoiding the calibration of the design parameter con-

trolling the size of the squared errors. Second, the proposed algorithm is compared to many other

estimation methods for TVP models through Monte Carlo simulations. It emerges that the SSF-KF

has very limited efficiency losses compared to the Kalman filter regardless the level of noise-to-signal

ratio. Third, a linear TVP model with explanatory variables is proposed to forecast equity premium

exploiting the information coming from the realized variance, both in conditional mean and in the

conditional variance.

The paper is organized as follows. Section 2 introduces the general TVP model and discusses the

proposed estimation method. Section 3 presents a Monte Carlo study to assess the efficiency loss of

the SSP-KF compared to other methods. The empirical application on the forecast of the monthly

excess returns of S&P 500 is presented in Section 4. Finally Section 5 concludes.

2 The Standardized Sef-Perturbed Kalman Filter

The state-space representation of the TVP model is:

yt = Ztθt + εt, εt ∼ N(0,Ht),

θt = θt−1 + ηt, ηt ∼ N(0,Qt),
(1)

where yt is the observed time series, Zt is an 1 ×m vector containing explanatory variables and θt

is an m × 1 vector of time varying parameters (states), which are assumed to follow random-walk

dynamics. Finally the errors, εt and ηt are assumed to be mutually independent at all leads and lags.

The model (1) is used in a number of recent papers, see among others Primiceri (2005), Koop et al.

(2009), Dangl and Halling (2012) and Koop and Korobilis (2012, 2013).

Starting from initial values of the states, θ0, and of the covariance matrix of the state, P0, the
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Kalman filter routine is based on a prediction and an updating step.

Prediction

θt|t−1 = θt−1|t−1

Pt|t−1 = Pt−1|t−1 +Qt

νt = yt − Ztθt|t−1

Ft|t−1 = ZtPt|t−1Z
′

t +Ht.

(2)

Updating

θt|t = θt|t−1 + Pt|t−1Z
′

tF
−1
t|t−1νt

Pt|t = Pt|t−1 − Pt|t−1Z
′

tF
−1
t|t−1ZtPt|t−1,

(3)

where the term Pt|t−1Z
′

tF
−1
t|t−1 is the Kalman gain. Traditionally, the model in equation (1) is es-

timated with both classical and Bayesian approaches. In the first case, the likelihood is efficiently

calculated with the Kalman filter routine, see Durbin and Koopman (2001) and Harvey and Proietti

(2005) for an introduction. The time-varying parameters are then automatically filtered as latent

state variables, once that Ht and Qt are estimated. The Bayesian estimation on the other hand re-

quires generating from the conditional posterior distributions of Ht, Qt and the latent states through

MCMC methods, see Koop (2003). Although classical and Bayesian algorithms are reliable in the

TVP context, they become computationally very intensive as the number of parameters increases.

Indeed, estimating the parameters in the m×m matrix Qt becomes unfeasible as the number of state

variables grows, i.e. when the number of regressors in the measurement equation is very large. For

the same reasons, these methodologies can hardly be adopted in a context characterized by model

uncertainty, i.e. when carrying out dynamic averaging and/or selection over K candidate models at

each point in time.

We therefore propose an alternative way to efficiently process the new information at each point

in time, where the estimation of the TVP models is carried out by a modification of the updating

equation of the covariance matrix Pt|t as suggested in Park and Jun (1992). The updating equation

of Pt|t in (3) is perturbed by a function of the squared prediction errors. Formally, the prediction

equation (2) for Pt|t−1 is replaced by

Pt|t−1 = Pt−1|t−1, (4)

while the updating step (3) becomes

Pt|t = Pt|t−1 − Pt|t−1Z
′

tF
−1
t|t−1ZtPt|t−1 + ς ·NINT

[
γν2t
]
· Im, (5)

where ς is a design constant, γ is the sensitivity gain parameter and Im is an m×m identity matrix.

The term added to the updating equation of Pt|t acts as a feedback driving force and it is interpreted
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as a self-perturbation in the sense that it revitalizes the adaptation gain perturbing the Pt|t. Indeed,

the squared prediction error, ν2t , plays a crucial role in the algorithm. If γν2t < 0.5, the self-perturbing

term is set to zero by the round-off operator. Hence, γ controls the maximum error bound set up for

starting the self-perturbing action. If γ is low, such that NINT
[
γν2t
]
= 0 for t = 1, . . . , T , then the

parameters remain constant. Conversely, when γ is large, such that NINT
[
γν2t
]
6= 0 for t = 1, . . . , T ,

then the parameters tend to change rapidly. Substituting equation (5) in equations (2)-(3), it follows

that Qt = ςNINT
[
γν2t
]
· Im. In other words, the matrix Qt is diagonal and dependent on the squared

prediction errors through two design parameters, ς and γ. Indeed, the setup of the self-perturbed

Kalman filter of Park and Jun (1992) requires the selection of two hyper-parameters, γ and ς, that

can be chosen over a grid of values minimizing some penalty criterion. This can be cumbersome,

especially when many models are estimated and combined at each point in time.

Therefore, we propose the following modification of equation (5):

Pt|t = Pt|t−1 − Pt|t−1Z
′

tF
−1
t|t−1ZtPt|t−1 + ς ·MAX

[
0,FL

(
ν2t

Ĥt

− 1

)]
· Im, (6)

where FL (·) is the floor operator rounding to the smallest integer and Ĥt is an online estimator of Ht.

The quantity ξt =
ν2t

Ĥt

− 1 plays a crucial role in the proposed estimator. Indeed, the squared innova-

tion is weighted by the innovation variance, avoiding the need to calibrate the sensitivity parameter

γ. More specifically, the sensitivity parameter, γ, can be dropped as the ratio
ν2t

Ĥt

automatically

rescales the impact of the squared innovation by the estimate of the measurement error variance. If

the squared innovation is small relative to the variance, i.e. ξt ≤ 0, then the self-perturbing term is

null by the round off operator with no parameter updating. Alternatively, when ξt > 0, the updating

of the parameters is activated. Substituting equation (7) in the denominator of ξt and rearranging

the terms, it follows that ξt =
κ(ν2t −

ˆHt−1)
ˆHt

. Hence, if κ(ν2t − Ĥt−1) is such that ξt is greater than 0, the

updating is switched on. In other words, if the size of the shock at time t, as measured by ν2t , is larger

than the past innovation variance Ht−1, then ξt is positive. The updating mechanism automatically

weights the variation in the parameters θt by the amount of variability in the data, thus avoiding that

periods characterized by high volatility spuriously lead to variations in θt. Similarly, the updating

mechanism is expected to provide protection against outliers. Indeed, if νt at time t is affected by an

outlier, it follows that, with high probability, κ(ν2t − Ĥt−1) will be large relative to Ht. Therefore, the

perturbation mechanism will be activated at time t. However, in t+1 and in absence of large shocks,

the term κ(ν2t+1 − Ĥt) will be small or negative, such that, most likely, the perturbation mechanism

will be switched off again. On the other hand, if the the parameters are subject to a structural break

at time t, then the term FL

(
ν2t

Ĥt

− 1

)
remains greater than zero until the effect of the structural

break is offset by the evolution of the estimated parameters. The speed of adjustment is determined

by the parameter ς, the larger the ς, the faster is the adaptation once a structural break hits the

system.
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As it is clear from the previous comments, the variance of the measurement error Ĥt plays a crucial

role in determining the activation of the perturbation scheme and it needs to be carefully estimated.

Similarly to Koop and Korobilis (2012, 2013), Ht is estimated by the following exponentially weighted

moving average (EWMA henceforth)

Ĥt = κĤt−1 + (1− κ) ν2t , (7)

which is a weighted sum of past squared prediction errors whose weight depends on κ, which de-

termines the level of smoothness of the process. An alternative method to estimate Ht could be

similar to the one outlined in Raftery et al. (2010) which subtracts the term related to the parameter

uncertainty (ZtPt|t−1Z
′
t) from the squared prediction error. This difference can be negative when

there is a large break in the parameters so that there is no updating of Ĥt when ν2t − ZtPt|t1Z
′
t < 0.

Alternatively, one could replace the term ν2t in (7) with max[0, ν2t − ZtPt|t1Z
′
t] and use Ft|t−1 in the

perturbation term in equation (6). For sake of comparison with the method of Koop and Korobilis

(2012, 2013), we adopt the updating rule of equation (7) in the rest of the paper.

2.1 Selection of ς and κ

The SSP-KF method requires the calibration of two design parameters ς and κ. A simple solution is

to assign a pre-specified value to ς and κ. For example, κ is generally set equal to 0.94 by practitioners

working with daily financial data. Alternatively, a more sensible way to select these parameters is

through a dynamic grid search procedure that chooses the optimal values of ς and κ at each point in

time. Therefore, we dynamically select ς and κ based on the predictive likelihood associated to each

possible combination of ς and κ within a given grid of values. Hence, the choice of ς and κ is fully

data-driven. Given that a total of J possible combinations of ς and κ are considered, the goal is to

calculate πt|t−1,j , which is the probability that j-th combination of ς and κ is used to forecast yt,

given information through time t−1. Define Lt ∈ {1, 2, ..., J} the set of possible models at each point

in time, and Yt = {y1, . . . , yt}, the information set at time t, then using the same approximation as

in Raftery et al. (2010) and Koop and Korobilis (2012, 2013),

πt|t−1,j =
πα
t−1|t−1,j∑J

j=1 π
α
t−1|t−1,j

, j = 1, . . . , J, (8)

where 0 < α ≤ 1 acts as a smoothing factor that controls how much weight will be assigned to the

model that has performed best in the recent past. The updating equation of (8) is then given by:

πt|t,j =
πt|t−1,jp

(j) (yt | Yt−1)∑J
j=1 πt|t−1,lp(j) (yt | Yt−1)

, (9)
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where p(j) (yt | Yt−1) is the predictive likelihood for model j, given by

p(j)(yt | Yt−1) ∼ N(Z
(j)
t θ

(j)
t|t−1,H

(j)
t + Z

(j)
t P

(j)
t|t−1Z

(j),′

t ). (10)

Therefore, at each step, the optimal values for ς and κ are associated with the highest value of πt|t−1,j .

This method is called dynamic model selection, DMS henceforth.

3 Monte Carlo Simulations

The ability of the SSP-KF to correctly model the evolution of the parameters is analyzed by means of

a set of Monte Carlo simulations. The purpose of this Monte Carlo analysis is to assess the efficiency

loss of the SSP-KF compared to the estimates obtained with the Kalman filter and other commonly

adopted routines under different data generating processes. We consider the following DGP for yt:

yt = Ztθt + εt, εt ∼ N(0,Ht) , (11)

where Zt is a 1 × m vector of iid standard Gaussian variates, and θt is the vector of time-varying

parameters. At the same time, the parameters θt are assumed to vary according to different specifica-

tions. Table 1 reports a description of all the DGP specifications used in the Monte Carlo. Moreover,

given that the main assumption of the on-line estimation methods is that the variation in the pa-

rameters is driven by the squared prediction errors and their variance, then a crucial quantity in this

context is the noise-to-signal ratio, τ , i.e. the ratio between Ht and the variance of the signal, Ztθt.

Therefore, the Monte Carlo simulations are conducted for small values of τ , i.e. 0.1, for moderate

values, 0.5 and 1, and for large values, i.e. 5 or 10. In particular, the variance Ht is set according

to the following formula Ht = τ · Var (Ztθt), where Var(·) is the sample variance operator. In other

words, the error variance, Ht, is assumed proportional to the variance of the signal. We also consider

alternative setups for the measurement error term, εt in (11), in order to study the robustness to

GARCH effects and outliers, which are generated by a Student’s t distribution with 3 degrees of

freedom.

The Monte Carlo results are contained in Table 2.1 The table reports the Monte Carlo average

of the absolute parameter distance, APD, of the estimators relative to the KF-ML for T = 500

observations based on S = 1000 Monte Carlo replications. The APD is given by this formula

APD =
1

mT

m∑

i=1

T∑

t=τ0+1

|θi,t − θ̂i,t|. (12)

The reported APD values in Table 2 are relative to the standard Kalman filter coupled with

1A training sample period, T0 = [1, ..., τ0], for the parameters, based on the 10% initial observations, is used. We
have evaluated the robustness and sensitivity to the initial conditions on H0, θ0 and P0 and to the prior distribution
by Monte Carlo simulations and the results are reported in a PDF document with the supplementary material. The
document also reports Monte Carlo results for different sample sizes, T = 250 and T = 1000, and for larger number of
regressors, m = 10.
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Table 1: Setup of the the Monte Carlo simulations. Table reports: the variation type in the parameters, the breaking
dates and the parameter values. For the random walk case, table reports the initial values of the parameters θ1,0 and
θ2,0 as well as the standard-deviations and the correlation of their innovations. For each case, we consider five different
noise to signal ratio (NSR), different error types and sample sizes.

Variation Type Values Break Dates NSR Error Type Sample

No Breaks θ1 = 0.5, θ2 = −0.3 —– 0.1 Gaussian, constant variance T=250
One Break θ1 = [0.2, 0.8] τ1 = 55% 0.5 Student’s t, dgf=3 T=500

θ2 = [0.4,−0.4] τ2 = 35% 1.0 Gaussian, GARCH(1,1) variance T=1000
Three Breaks θ1 = [0.1, 0.6, 1.2, 0.4, ], τ1 = 35%, 65%, 85% 5.0

θ2 = [0.5,−0.3, 0.3, 0.8] τ2 = 25%, 70%, 80% 10.0
Random Walk θ1,0 = 0.5, θ2,0 = −0.3 ση,1 = 0.0158

ση,2 = 0.0224
ρ1,2 = −0.2828

maximum likelihood estimation, KF-ML. The set of alternative estimators includes the simple OLS

as well as the on-line algorithms based on the forgetting factor with constant design parameters,

λ and κ. For a fair comparison, we include the forgetting factor method of Koop and Korobilis

(2013) with dynamic selection of λ and κ, for different choices for α in the DMS. Similarly, Table 2

reports the APD of the baseline self-perturbed Kalman filter of Park and Jun (1992), with dynamic

selection of γ, κ and ς. We also consider the Bayesian MCMC-Kalman filter and its version robust to

stochastic volatility with priors set at common value in the literature, see Koop and Korobilis (2010)

for a discussion on the role of the prior hyperparameter values. Finally, also the change point model

of Pesaran et al. (2006) and Liu and Maheu (2008) is considered for different expected number of

shifts, Ns. In particular, Ns is set proportional to the sample size and equal to either 0.2%, 1% and

10% of the sample size.

As expected, the OLS estimator provides the lowest APD for all values of τ , when the parameters,

θt, are constant. Indeed, in this case, the APD of OLS relative to the KF-ML is smaller than 1.

On the other hand, OLS is outperformed by other methods when the parameters are subject to

structural breaks or vary as random walk processes. Interestingly, when the parameters evolve as

random walks and the level of τ is extremely high, then OLS performs better than the KF-ML. In

general, all estimators perform rather similarly when τ is equal to 10. The on-line estimators based

on the forgetting factor without optimal selection tend to under-perform especially when the process

contains structural breaks, as the algorithm has a tendency to smooth too much the dynamics of the

parameters. When the optimal values of the forgetting factor, λ, and κ are optimally selected as in

Koop and Korobilis (2013), then the efficiency loss sensibly reduces, especially when the DGP contains

structural breaks. Looking instead at the on-line methods based on the perturbation mechanism,

the self-perturbed Kalman filter of Park and Jun (1992) with dynamic selection of γ, ς and κ by

DMS, performs very well, especially in the model with one break, but it is 5-6 times slower than the

proposed SSP-KF due to the search on an additional grid of values for γ. This evidence provides a first

justification for the use of the perturbation scheme in the updating step of Pt|t to induce variability in

the model’s parameters. Unfortunately, the method is 2 times slower than the Kalman filter when γ, ς

9



Table 2: Monte Carlo. Table reports the 1-step ahead absolute parameter distance relative to that of the Kalman Filter of several estimators of TVP models.
The considered estimators are the following: 1) OLS; 2) forgetting factor with constant parameters (CFF); 3) Forgetting factor with the dynamic selection of
λ and κ (KK), with λ ∈ [0.9, 0.91, ..., 0.99] and κ ∈ [0.94, 0.96, 0.98] as in Koop and Korobilis (2013); 4) the self-perturbed Kalman filter of Park (1992) (SP)
with dynamic selection of ς, κ, γ with ς ∈ [0.01, 0.02, 0.03, 0.04], κ ∈ [0.94, 0.96, 0.98] and γ ∈ [0.01, 0.21, 0.41, 0.61, 0.81, 1.01, 1.21, 1.41]; 5) the standardized
self-perturbed Kalman filter, (SSP), with dynamic selection of ς, κ with ς ∈ [0.01, 0.02, 0.03, 0.04] and κ ∈ [0.94, 0.96, 0.98]; 6) MCMC with Kalman Filter for
TVP model (KF-MCMC); 7) MCMC with Kalman Filter for TVP model under stochastic volatility (KF-MCMC-SV); 8) Change Point model of Pesaran et al
(2006) with different number of breaks percentages. The dynamic selection of the design parameters λ, ς, κ and γ has been performed with DMS for different
values of α ∈ [0.001, 0.95, 1]. Last column reports the CPU time relative to that of the Kalman Filter.

No Breaks One Break Three Breaks Random Walk CPU

0.1 0.5 1 5 10 0.1 0.5 1 5 10 0.1 0.5 1 5 10 0.1 0.5 1 5 10
iid Gaussian:
OLS 0.65 0.66 0.66 0.66 0.66 5.63 3.58 2.93 1.79 1.43 4.56 2.93 2.41 1.52 1.24 2.64 1.80 1.52 1.04 0.89 0.00
CFFλ=0.96,κ=0.94 2.08 2.14 2.08 2.07 2.07 1.54 1.08 1.02 1.08 1.16 2.02 1.22 1.08 1.00 1.04 1.23 1.04 1.06 1.24 1.36 0.01

CFFλ=0.98,κ=0.94 1.54 1.68 1.55 1.54 1.51 2.72 1.41 1.19 0.99 0.97 3.55 1.88 1.51 1.05 0.97 1.67 1.20 1.12 1.04 1.08 0.01

KK, α = 0.001 1.29 1.43 1.31 1.32 1.27 2.62 1.45 1.26 1.04 0.99 3.46 1.88 1.57 1.15 1.04 1.67 1.27 1.18 1.04 1.04 0.10
KK, α = 0.95 1.11 1.24 1.14 1.15 1.10 2.68 1.44 1.23 1.08 1.05 2.99 1.66 1.39 1.13 1.07 1.53 1.23 1.18 1.06 1.03 0.10
KK, α = 1 1.10 1.27 1.17 1.17 1.11 3.19 1.57 1.32 1.21 1.18 3.06 1.68 1.39 1.18 1.13 1.47 1.24 1.22 1.12 1.09 0.10
SPς,κ,γ , α = 0.001 3.44 2.77 2.55 2.31 2.29 0.88 0.93 1.03 1.47 1.80 1.17 1.01 1.04 1.36 1.63 1.84 1.22 1.24 1.84 2.27 0.97
SPς,κ,γ , α = 0.95 1.63 1.52 1.48 1.44 1.43 0.80 0.90 0.96 1.04 1.05 1.07 0.99 1.02 1.05 1.04 1.85 1.19 1.11 1.09 1.11 0.96
SPς,κ,γ , α = 1 1.49 1.38 1.31 1.25 1.19 0.80 1.00 1.07 1.14 1.12 1.05 1.06 1.08 1.15 1.09 1.84 1.19 1.15 1.12 1.10 0.96
SSPς,κ, α = 0.001 1.13 1.82 2.28 2.93 3.27 0.96 1.02 1.06 1.21 1.29 0.98 1.05 1.06 1.10 1.16 1.15 1.17 1.22 1.42 1.53 0.23
SSPς,κ, α = 0.95 1.07 1.45 1.52 1.43 1.39 0.86 0.96 1.00 1.07 1.08 0.95 1.01 1.03 1.05 1.03 1.09 1.08 1.08 1.11 1.13 0.23
SSPς,κ, α = 1 1.07 1.35 1.31 1.23 1.18 1.26 1.14 1.12 1.19 1.19 1.18 1.12 1.10 1.12 1.14 1.12 1.16 1.17 1.11 1.09 0.23
KF-MCMC 3.17 2.46 2.23 1.84 1.74 0.82 0.84 0.86 0.91 0.93 0.78 0.78 0.78 0.80 0.82 0.80 0.87 0.92 1.04 1.10 5.65
KF-MCMC-SV 3.82 2.93 2.64 2.10 1.92 0.97 0.99 1.00 1.01 1.01 0.85 0.86 0.87 0.88 0.89 0.98 1.05 1.09 1.17 1.18 10.12
ChagePoint 0.2% 2.69 1.64 1.81 1.30 1.01 1.90 1.25 1.14 0.89 0.97 3.91 2.50 2.06 1.39 1.25 1.75 1.27 1.05 1.11 1.01 6.07
ChagePoint 2% 3.71 3.59 3.10 2.84 2.84 1.16 1.19 1.42 1.59 1.63 1.01 1.06 1.29 1.65 1.60 1.88 1.91 1.74 2.06 1.80 6.40
ChagePoint 10% 9.82 6.67 6.20 5.74 5.03 2.29 2.41 2.49 2.60 2.52 1.78 2.01 2.15 2.18 2.02 2.72 2.77 2.95 3.23 3.00 7.65

Student’s t(3):
OLS 0.59 0.58 0.58 0.58 0.58 4.28 2.61 2.09 1.22 0.97 3.53 2.18 1.76 1.09 0.91 2.02 1.35 1.13 0.78 0.68 0.00
CFFλ=0.96,κ=0.94 1.50 1.50 1.48 1.46 1.46 1.15 0.90 0.89 0.96 1.02 1.46 0.98 0.90 0.88 0.95 1.00 0.93 0.96 1.12 1.19 0.01

CFFλ=0.98,κ=0.94 1.11 1.14 1.11 1.07 1.06 1.76 1.06 0.94 0.81 0.81 2.48 1.37 1.13 0.83 0.81 1.28 0.98 0.91 0.90 0.90 0.01

KK, α = 0.001 0.93 0.98 0.97 0.92 0.91 1.78 1.13 1.02 0.85 0.80 2.41 1.41 1.22 0.92 0.85 1.33 1.07 0.98 0.88 0.83 0.11
KK, α = 0.95 0.79 0.83 0.82 0.78 0.76 1.82 1.13 1.01 0.89 0.83 2.16 1.28 1.11 0.93 0.85 1.24 1.05 0.98 0.87 0.80 0.11
KK, α = 1 0.80 0.86 0.85 0.79 0.77 2.07 1.20 1.10 0.99 0.91 2.24 1.28 1.13 0.98 0.89 1.22 1.08 1.02 0.90 0.82 0.11
SPς,κ,γ , α = 0.001 2.09 1.78 1.71 1.64 1.63 0.84 0.92 1.01 1.44 1.73 0.98 0.94 0.99 1.33 1.63 1.19 1.05 1.16 1.73 2.04 1.00
SPς,κ,γ , α = 0.95 1.11 1.04 1.02 0.97 0.97 0.83 0.87 0.88 0.88 0.87 0.95 0.94 0.93 0.90 0.87 1.18 0.97 0.94 0.90 0.90 1.00
SPς,κ,γ , α = 1 0.99 0.94 0.90 0.83 0.81 0.94 0.98 0.97 0.92 0.89 1.03 1.01 1.00 0.93 0.88 1.19 1.00 0.97 0.89 0.84 1.00
SSPς,κ, α = 0.001 1.25 1.61 1.76 2.23 2.43 0.90 0.96 0.99 1.10 1.16 0.96 0.98 0.98 1.03 1.09 1.04 1.08 1.12 1.26 1.34 0.25
SSPς,κ, α = 0.95 1.08 1.07 1.04 1.00 0.96 0.85 0.90 0.90 0.90 0.88 0.93 0.94 0.93 0.90 0.87 0.98 0.97 0.95 0.91 0.91 0.25
SSPς,κ, α = 1 1.04 0.95 0.92 0.88 0.85 1.12 1.02 1.00 0.97 0.86 1.11 1.00 0.99 1.00 0.91 1.05 1.03 0.99 0.88 0.82 0.25
KF-MCMC 2.30 1.85 1.71 1.48 1.42 0.83 0.86 0.87 0.93 0.97 0.79 0.79 0.79 0.84 0.89 0.81 0.91 0.96 1.07 1.11 5.91
KF-MCMC-SV 2.36 1.80 1.62 1.28 1.15 0.86 0.84 0.83 0.80 0.79 0.77 0.75 0.74 0.72 0.72 0.87 0.91 0.93 0.91 0.89 10.46
ChagePoint 0.2% 1.07 1.20 0.99 0.83 1.00 1.47 1.05 0.99 1.08 1.07 3.03 1.91 1.63 1.21 1.23 1.39 1.07 1.02 0.97 1.00 3.23
ChagePoint 2% 3.31 2.42 2.22 2.49 2.40 0.99 1.12 1.38 1.70 1.56 1.11 1.29 1.42 1.48 1.52 1.56 1.76 1.69 1.61 1.61 3.43
ChagePoint 10% 6.04 5.06 4.84 4.55 4.21 2.14 2.16 2.32 2.64 2.65 1.75 1.95 2.18 2.34 2.04 2.44 2.47 2.67 2.78 2.59 4.11

GARCH(1,1):
OLS 0.68 0.68 0.68 0.69 0.69 5.61 3.52 2.87 1.73 1.37 4.53 2.86 2.34 1.45 1.18 2.93 1.96 1.65 1.11 0.95 0.00
CFFλ=0.96,κ=0.94 1.98 1.90 1.90 1.89 1.90 1.55 1.07 1.01 1.06 1.12 2.05 1.23 1.08 0.98 1.01 1.25 1.04 1.04 1.24 1.40 0.01

CFFλ=0.98,κ=0.94 1.59 1.45 1.46 1.39 1.39 2.75 1.43 1.21 0.99 0.96 3.57 1.87 1.50 1.04 0.96 1.75 1.20 1.08 1.02 1.07 0.01

KK, α = 0.001 1.38 1.28 1.30 1.22 1.20 2.62 1.47 1.29 1.06 1.00 3.47 1.88 1.56 1.14 1.03 1.71 1.25 1.14 0.99 0.97 0.13
KK, α = 0.95 1.19 1.10 1.12 1.06 1.04 2.66 1.44 1.25 1.08 1.04 3.00 1.65 1.38 1.11 1.05 1.60 1.22 1.13 1.00 0.96 0.13
KK, α = 1 1.17 1.10 1.14 1.07 1.05 3.19 1.58 1.35 1.20 1.17 3.11 1.70 1.39 1.15 1.11 1.55 1.21 1.15 1.03 0.98 0.13
SPς,κ,γ , α = 0.001 3.33 2.68 2.47 2.27 2.22 0.90 0.93 1.02 1.46 1.78 1.20 1.01 1.04 1.34 1.61 1.75 1.27 1.28 2.00 2.52 1.17
SPς,κ,γ , α = 0.95 1.61 1.45 1.43 1.39 1.36 0.83 0.92 0.97 1.06 1.05 1.08 1.01 1.03 1.05 1.04 1.78 1.25 1.12 1.14 1.16 1.18
SPς,κ,γ , α = 1 1.45 1.24 1.26 1.17 1.12 0.82 0.99 1.05 1.11 1.09 1.08 1.06 1.08 1.11 1.06 1.83 1.26 1.10 1.04 1.02 1.18
SSPς,κ, α = 0.001 1.13 1.69 2.06 2.78 3.09 0.98 1.03 1.07 1.21 1.29 1.00 1.04 1.06 1.11 1.16 1.19 1.19 1.24 1.45 1.59 0.29
SSPς,κ, α = 0.95 1.06 1.42 1.46 1.38 1.32 0.88 0.96 1.01 1.07 1.08 0.97 1.01 1.03 1.04 1.03 1.12 1.12 1.11 1.16 1.19 0.29
SSPς,κ, α = 1 1.06 1.25 1.28 1.17 1.10 1.25 1.12 1.10 1.15 1.15 1.18 1.12 1.09 1.08 1.09 1.18 1.19 1.17 1.08 1.05 0.29
KF-MCMC 3.50 2.68 2.42 1.94 1.76 0.97 0.98 0.99 0.99 0.98 0.86 0.86 0.86 0.85 0.85 0.97 1.04 1.09 1.21 1.26 7.43
KF-MCMC-SV 2.94 2.28 2.06 1.71 1.60 0.82 0.84 0.85 0.89 0.92 0.79 0.78 0.78 0.79 0.81 0.80 0.86 0.91 1.05 1.13 12.57
ChagePoint 0.2% 1.78 1.20 0.85 0.97 0.97 1.91 1.29 1.24 0.92 0.94 3.90 2.45 2.01 1.32 1.18 1.80 1.30 1.28 0.98 0.91 6.63
ChagePoint 2% 3.81 3.10 2.70 2.83 2.76 1.11 1.24 1.42 1.47 1.62 1.20 1.21 1.29 1.42 1.68 1.85 1.58 1.65 1.65 1.58 6.95
ChagePoint 10% 8.15 7.10 6.14 5.42 4.96 2.15 2.34 2.34 2.64 2.58 1.73 1.97 2.03 2.16 2.14 3.19 2.78 2.84 3.01 3.49 8.45
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and κ need to be optimally selected at each point time. When instead the contribution of the squared

prediction error in the perturbation term is endogenously normalized by the SSP-KF algorithm, then

the relative APD takes values very close to 1 for almost all DGPs and for most choices of τ . Looking

at the choice of α, the best results are obtained when α = 0.95, and the relative APD is not much

different from those obtained under the standard Kalman filter. In presence of breaks the Bayesian

methods, i.e. those based on the MCMC algorithm, that generally have the best performances as the

APD relative to that of the standard Kalman filter is smaller than 1. On the other hand, we observe

that the change point models are almost always outperformed by the standard Kalman filter, also

when the true DGP contains structural breaks. The reason is that the correct percentage of shifts

should also be optimally selected when working with change point models, see Liu and Maheu (2008)

and the discussion in Pettenuzzo and Timmermann (2011). However, the computational time for

carrying out the optimal selection of the number of breaks would be several times larger than that of

the Kalman filter. Indeed, already when the number of shifts is fixed, as in Table 2, the CPU time

is around 6-7 time larger than that of the standard Kalman filter.2

Notably, the proposed perturbation method also offers some degree of protection against outliers

compared to the standard Kalman filter, as the average APD is smaller than 1 in many cases when

the errors are generated from a Student’s t distribution with 3 degrees of freedom. On the contrary,

under GARCH dynamics for the volatility of the error term, the results for the SSP-KF are analogous

to those obtained under the constant volatility specification. The GARCH dynamics are generated

as

Ht = ω + αε2t−1 + βHt−1,

where ω is set to guarantee that Ht has the same level of long-run (unconditional) mean as in the case

with constant volatility. In other words, E(Ht) =
ω

1−α−β
= τ · Var (Ztθt). The dynamics of volatility

are also rather persistent as the parameter β is set equal to 0.9. Perhaps, under more noisy dynamics

of Ht, i.e. with a smaller choice of β, the results would be different to those obtained under constant

variance. However, large values of β are empirically found to characterize financial time series such

as returns, interest-rates, exchange rates or realized variances. For illustrative purposes, Figure 1

reports the estimated parameters, together with the latent true parameters, when the latter are

characterized by one break and the noise-to-signal ratio is τ = 1 under GARCH dynamics. It clearly

emerges that the estimates of the dynamics in the parameters obtained under the standard Kalman

filter algorithm and with the SSP-KF are analogous. This is manly due to the adjusting behavior of

the parameter ς, bottom-left panel, which tends to increase after he break dates to increase the speed

of adjustment. On the other hand, the tracking of the method that involves the forgetting factor,

although optimally selected as in Koop and Korobilis (2013), is too smooth, especially for the first

parameter thus leading to larger APD than those obtained under SSP-KF and the standard Kalman

2Figure 1 in the document with the supplementary material displays the tracking of the parameters under the
change-point method. It emerges that, if the number of breaks is correctly specified, then the change-point method
is able to provide a good estimate of the break dates, although with some spurious effects on the other parameters.
However, the levels of the parameter are not always correctly estimated and this may lead to large values of the APD.
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Figure 1: Parameter estimates for the model with one break. The top panels of the figure report the true parameters
(solid black lines) together with the estimates obtained with forgetting factor of Koop and Korobilis (2013) (dashed-
green line), SSP-KF (solid-red line) and standard Kalman filter (purple-dotted line). The bottom-left panel reports the
optimal choice of ς at each point in time for the SSP-KF method. The bottom right panel reports the true values of
Ht (solid-black line) together with its estimates relative to the forgetting factor methods of Koop and Korobilis (2013)
(dashed-green line) and with the SSP-KF (solid-red line).
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filter. The estimate of the latent volatility process, Ht, is also very good, especially for the SSP-KF.

Notably, after a shift the estimated matrix Ĥt increases compared to the true one as ν2t also depends

on the variation of the parameters, but it reverts to the correct levels as soon as the break in the

underlying parameter is absorbed by the adjustment mechanism. This provides a further insight on

the validity of the proposed standardization of the self-perturbed Kalman filter. On the other hand,

the method based on the forgetting factor of Koop and Korobilis (2013) leads to an estimated Ht

that reverts to the correct levels after a break. This is again due to the slow adaptation to the new

parameter values.
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In the next section, we show how the SSP-KF can be used to predict the equity premium in a

framework characterized by model uncertainty.

4 Return Predictability: Does Realized Variance Matter?

The analysis of the extent of predictability in equity returns is of primary interest in finance. Pre-

dicting the direction and the size of the fluctuations in the stock prices is indeed a central issue

not only for portfolio allocation but also for risk management. Since the early 1980s, a number of

articles have been dedicated to return predictability, finding evidence that excess stock returns could

be predicted, especially in-sample, by regressing them on lagged financial variables. A number of

econometric techniques have been adopted in the empirical studies of return predictability, see for an

overview Malkiel (2003) and Campbell (2008). Traditionally, predictability in long-horizon (multi-

year) returns has been shown using variance-ratio tests. Similarly, the short vs long-run dependence

with financial variables, such the dividend-price ratio or the earnings-price ratio, has been widely

studied; see among many others Goyal and Welch (2003), Ang and Bekaert (2007), and Cochrane

(2008). More recently, and in particular since the paper of Welch and Goyal (2008), who find lit-

tle support to return predictability, a number of studies have investigated if the amount of return

predictability is likely to change, depending on the business cycle conditions. For example, Dangl

and Halling (2012) find that return predictability can mostly be exploited during recessions and if

this feature is properly captured by a model with time-varying parameters, it can lead to substantial

utility gains. Similar evidence in favor of models with for time-varying parameters is presented in

Pettenuzzo and Timmermann (2011) and recently in Johannes et al. (2014).

In this section, we contribute to the large existing literature on return predictability trying to

understand how and when realized variance has predictive power for the conditional density of excess

returns. As noted by Jensen and Maheu (2013), the early literature found conflicting results on the

sign and significance of the conditional variance from GARCH models in the conditional mean of

market excess returns, see also Lettau and Ludvingson (2010), an effect called volatility spillover. At

the same time, the last 15 years have witnessed a substantial development and an increasing interest

in theory of realized variance, RV henceforth, as an efficient ex-post measure of the volatility of a

financial returns, see Andersen and Bollerslev (1998), Andersen et al. (2001) and Barndorff-Nielsen

and Shephard (2002) among many others. Therefore, we study if the sign and the significance of the

relation between excess returns and volatility, as measured by RV , are likely to change over time

in a context characterized by model uncertainty. Hence, RV is used as an explanatory variable in

a dynamic regression of returns under several different specifications. In particular, we propose the

following model to predict the excess returns

r∗t = αt + γtRVt−1 + β′
tXt−1 + εt, t = 1, ..., T, (13)

αt = αt−1 + η1,t, γt = γt−1 + η2,t, βt = βt−1 + η3,t,

εt ∼ N(0, σ2
ε), ηt ≡ [η1,t, η2,t, η3,t] ∼ N(0,Qt),
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where r∗t = rt − rf,t is the log-return in excess of the risk free rate, rf,t, and Xt contains other

explanatory variables that are expected to have predictive power for excess returns. Following Welch

and Goyal (2008) and Dangl and Halling (2012), the variables contained in the matrix Xt are:

dividend yield (dy), earnings-to-price ratio (ep), dividend-payout ratio (dpayr), book-to-market ratio

(bmr), net equity expansion (ntis), long-term government bond yields (lty), long-term government

bond returns (ltr), T-bill rate (tbl), default return spread (dfr) and default yield spread (dfy), inflation

(inf).3

The dataset consists of monthly total excess returns of the S&P500 index from May 1937 to

December 2013, and it is available on Amit Goyal’s webpage. RV is computed with daily excess

returns. Since most of the the explanatory variables have a strong non-stationary dynamic behavior

and this can lead to compensatory and spurious dynamic effects in the time-varying parameters of

the model, then the variables in Xt, with the exception of ltr, are considered in first differences,

X̃t = ∆Xt. Moreover, since there is a strong support for the presence of long-memory in RV

and in inflation, we use the fractionally differenced series R̃V t = ∆dRV (RVt − µRV ) and ĩnf t =

∆dinf (inft − µinf ) as regressors in (13). The parameters dRV and dinf are estimated with the

semi-parametric method of Shimotsu (2008) that is robust to deterministic components in the data.

Therefore, the predictive regression of the excess returns is

r∗t = αt + γtR̃V t−1 + β′
tX̃t−1 + εt, t = 1, ..., T. (14)

We also investigate if the information contained in RV can be exploited to improve the quality of

the estimation of prediction error variance. Since RV is known to be a very efficient estimator of the

total return variation over a given period, see Barndorff-Nielsen and Shephard (2002), and given that

the parameter variability in the SSP-KF is driven by a mechanism based on the ratio between ν2t

and Ĥt, we also consider the possibility that to use RVt instead of ν2t in (7). Hence, RVt can be used

as a forcing variable to drive the dynamics of Ĥt. Since RV is much more efficient than the squared

daily returns innovations as a proxy for the total variance, we expect a more precise inference on the

parameter variations. We therefore suggest the following updating equation for Ĥt

Ĥ
∗
t = κĤ

∗
t−1 + (1− κ)RV ∗

t ,

where RV ∗
t = RVt ×

1
T

∑T
t=1 ε̂

2
t

1
T

∑T
t=1 RVt

rescales RVt to accounts for the fact that part of the variability of

the excess returns over the month is captured by the model for the conditional mean, where ε̂t are

the residuals of the OLS regression of r∗t on Xt.
4 This method is called SSP-KF-RV. In the next

paragraphs, we will provide statistical and financial evaluation of the alternative model specifications.

3See Welch and Goyal (2008) and Dangl and Halling (2012) for a more detailed discussion of these variables.
4This rescaling does not account for the fact that amount of predictability in the returns is likely to change over

time. More sophisticated rescaling schemes can be adopted, and this is left to future research.
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4.1 Empirical results

We consider several specifications of model (13) for the prediction of excess returns. They are de-

scribed in Table 3. In particular, when the model involves the estimation of time-varying parameters

with SSP-KF or SSP-KF-RV, i.e. specifications from III to XII, the optimal values of κ and ς must

be selected trough a grid search as outlined in section 2.1. We assume that κ ∈ [0.94, 0.95, ..., 0.99]

and ς ∈ [0.00001, 0.0022, 0.0043, 0.0065, 0.0087].5

Table 3: Summary of model specifications for the prediction of the excess returns. Appendix A provides additional details
on DMS and dynamic model averaging (DMA) when jointly combining the grid of ς and κ with all possible combinations
of the regressors.

Model Regressors Estimation Method

I Intercept only OLS

II Intercept and R̃V t−1 OLS
III Time-varying intercept SSP-KF-DMSα=0.95 for κ and and ς

IV Model III plus R̃V t−1 in the mean SSP-KF-DMSα=0.95 for κ and and ς

V Time-varying intercept SSP-KF-RV-DMSα=0.95 for κ and ς

VI Model V plus R̃V t−1 in the mean SSP-KF-RV-DMSα=0.95 for κ and ς

VII All explanatory variables SSP-KF-DMSα=0.95 only for κ and ς

VIII All explanatory variables SSP-KF-RV-DMSα=0.95, only for κ and ς

IX All explanatory variables SSP-KF-DMAα=0.95, for all regressors, κ and ς

X All explanatory variables SSP-KF-DMSα=0.95, for all regressors, κ and ς

XI All explanatory variables SSP-KF-RV-DMAα=0.95, for all regressors, κ and ς

XII All explanatory variables SSP-KF-RV-DMSα=0.95, for all regressors, κ and ς

Rolling All explanatory variables Rolling OLS with window of 120 months
KF All explanatory variables Rolling Kalman filter with window of 120 months

Note that, when model uncertainty is accounted for, i.e. we evaluate the fit of the model for all

the possible combinations of the variables in Xt, then K = dim(κ)× dim(ς)× 2m = 122, 800 models

must be estimated at each point in time, where dim(κ) and dim(ς) are the number of elements in

the grids of κ and ς respectively, and m = 12 is the number of regressors including R̃V t. Figure 2

plots a summary of the estimates relative to model specification V I, i.e. when only the intercept

and R̃V t−1 are used in the conditional mean of the excess returns and RV ∗
t is adopted in the SSP-

KF-RV to estimate H∗
t . The variations in the parameters αt and γt are quite evident, especially if

compared to the OLS estimates based on the full sample. In particular, the parameter γt is positive

and significant during the early post-war period, and it becomes negative in the 1960’s and 1980’s

as a consequence of two large breaks, while it remains relatively stable and slightly positive from the

late 1980’s onward. Interestingly, γt displays a negative drop right after the recent financial crisis in

2008-2009, and the impact of the RV innovations on the excess returns changes sign from positive to

negative. The estimate of Ht is very smooth, as a consequence of a rather high value of the optimal

κ which often lies above 0.98. The parameter ς is also likely to change over time to increase the

5The values for the grids are calibrated on the basis of the results of preliminary estimates. Increasing the size of
the grid does not lead to significant changes in the parameter dynamics nor in the fitting.
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Figure 2: Parameter estimates for the model specification V I. The top panels of the figure report the estimate of the intercept (left) and of the parameter γt
(right) together with the corresponding OLS estimates based on the full sample and their 95% confidence intervals. The central panels report the estimates of Ht

(left) and the predicted returns together with the ex-post realized monthly excess returns (right). The bottom panels contain the selected values of ς (left) and κ

(right).
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speed of adaptation of the parameters. In particular, it lies on the lower bound for long periods, for

example between the years 2001-2008, thus implying a very limited variability in the parameters, and

it suddenly increases to accelerate the variability in the parameters as in the early 1970’s or at the

end of the sample. Figure 3 reports the estimates of the prediction error variance and of γt obtained

Figure 3: Figures report the different estimates of the prediction error variance, Ĥt, and of the parameter γt, obtained
under SSP-KF (in dotted-red line) and SSP-KF-RV (in solid-black line).
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with SSP-KF and SSP-KF-RV relative to model specifications V and V I. First, it emerges that the

estimates of Ht and H∗
t are on a similar scale and they follow similar patterns, especially from the

mid 1980’s to the early 2000’s. Interestingly, Ĥ
∗
t sharply increases in 2009 reaching abnormal levels,

while the growth of Ĥt after 2009 is much more limited. As a consequence, the size of the break of

γt after 2009 is much more limited for the SSP-KF-RV model since large values of Ĥ
∗
t are associated

with a lower parameter variability, through the parameter perturbation mechanism
ν2t
ˆH

∗

t

− 1, that is

most likely smaller than 0. On the other hand, when Ht is used in the SSP-KF the variation in γt

is much more pronounced after 2009. Some interesting clues appear also by looking at the model

specifications with dynamic model selection among all regressors, i.e. cases X and XII. The top

panel of Figure 4 reports the number of selected regressor at each point in time by the DMS method

relative to specification XII. It emerges that, in most cases, a number between 2 and 6 explanatory

variables is selected by DMS, meaning that the size of the model is never too large thus avoiding over-

fitting and potentially increasing the out-of-sample predictability, see Sections 4.1.1 and 4.1.2. For

what concerns the inclusion probabilities of R̃V t−1, the latter belongs to the best model specification

in 26% of the cases when the SSP-KF is adopted, and in 35% of the cases under SSP-KF-RV. The

central panel of Figure 4 shows the periods in which R̃V t−1 is included/excluded from the best model

17



Figure 4: Inclusion Probabilities. The top panel reports the number of selected variables in the best model specification
at each point in time relative to the case XII. The central panel reports the inclusion/exclusion periods of R̃V t−1

in the best model implied by specification XII. The bottom panel reports the difference in the inclusion of RVt−1 in
the best model between specification X and specification XII. The red squares are the months in which R̃V t−1 is
included/excluded in both cases. The green dots are the months in which R̃V t−1 is included in model XII but not in

model X. The blue star are the months in which R̃V t−1 is included in model X but not in model XII. The gray areas
are the recessions periods from NBER.
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specification. In general, R̃V t−1 has a tendency to be a relevant explanatory variable right after the

financial crises or the recession periods, especially after the oil crisis in early 1970’s and after the 2008-

2009 crisis. R̃V t−1 is also included for a long period in the early 1980’s, also during a recession phase.

The bottom panel of Figure 4 shows the difference in the inclusion of R̃V t−1 between the estimation

with SSP-KF and that with SSP-KF-RV. The red dots imply coherence in the inclusion/exclusion

of R̃V t−1 at time t under SSP-KF and SSP-KF-RV. In other words, during financial crises, the past

RV has a non-linear effect on the future excess returns through the conditional variance of r∗t , but
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not a linear impact in the conditional mean. This is analogous to the findings of Jensen and Maheu

(2013).

Notably, the best model specifications under SSP-KF and SSP-KF-RV lead to the same conclu-

sions about the inclusion/exclusion of R̃V t−1 in 85% of the cases. In the remaining 15% of the cases,

the indications on the inclusions of R̃V t−1 in the best model for SSP-KF and SSP-KF-RV are not

coherent (green and blue dots). It is not simple to find a pattern in the discrepancies between the

inclusions of R̃V t−1 obtained under SSP-KF and SSP-KF-RV. However, if we focus on the most

recent financial crisis in the years 2008-2009, where we also observe the largest discrepancies in Ĥt

and Ĥ∗
t , it emerges that R̃V t−1 is only included in the specification that adopts the SSP-KF, while

R̃V t−1 is included in the model under SSP-KF-RV just in the first months of 2010.

Finally, it is possible to separate all the sources of uncertainty in the excess returns implied

by a given model specification. In particular, we can use the output from the DMS procedure to

perform a variance decomposition in the same spirit of Dangl and Halling (2012). Compared to the

decomposition in Dangl and Halling (2012), we integrate out the uncertainty on the hyper-parameters

ς and κ as done in Koop and Korobilis (2013), so the model uncertainty depends only on the choice

of the relevant regressors. Collecting the hyper-parameters in the vector ζDMS = (ςDMS , κDMS),

where DMS means the values selected at time t using dynamic model selection and define Ft−1 the

information set, then the variance decomposition is

Var(r∗t+1) =
I∑

i=1

p(Ht|Mi, ζDMS ,Ft−1) · p(Mi|ζDMS ,Ft−1)

+
I∑

i=1

p(X̃ ′
tPt|t−1X̃t|Mi, ζDMS ,Ft−1) · p(Mi|ζDMS ,Ft−1)

+
I∑

i=1

p(r̂∗,DMS
t+1,i − r̂∗,DMS

t+1 )2 · p(Mi|ζDMS ,Ft−1),

(15)

where I = 212 = 4, 096 is the number of potential models considered, and Mi, i = 1, . . . , I indicates

the i-th model. The first term is the average expected variance, Ĥt, with respect to the i-th model.

The second term is the average expected variance from errors in the estimation of the coefficient

vector, i.e. the estimation uncertainty. The last term is related to the model’s uncertainty. Figure 5

displays the dynamics of the second and third components of the variance decomposition related to

the model specification XII.6 Interestingly, both components, i.e. the one related to the estimation

uncertainty and the one related to the uncertainty about the model, increase during all recession

periods starting already from the 1970’s. This not only means that it is relatively more difficult to

conduct a precise inference on the parameters when the volatility is high, i.e. during financial crisis

or recessions, but also that it becomes more difficult to precisely select the relevant regressors. In

6A plot with the first variance component is also available. The dynamics of the first component are very close to
those of Ĥt and Ĥ

∗

t , reported in Figure 3.
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the following sections, we evaluate the ability of each model specification in predicting excess returns

from a statistical and a financial point of view.

Figure 5: Figures report the second and third components of the return variance, obtained by
the decomposition in 15 for model XII. Panel a) reports the dynamics of the second component,∑I

i=1 p(X̃
′
tPt|t−1X̃t|Mi, ζDMS ,Ft−1)p(Mi|ζDMS ,Ft−1), that is related to estimation uncertainty. Panel c) re-

ports the dynamics of the third component,
∑I

i=1 p(r̂
∗,DMS
t+1,i − r̂

∗,DMS
t+1 )2p(Mi|ζDMS ,Ft−1), that is related to the model’s

uncertainty. The gray areas are the recessions periods from NBER.
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4.1.1 Statistical Evaluation

We firstly focus on the point forecasts. Table 4 reports a comparison of the ability of each model

specification to provide good point forecasts of the excess-returns. We focus on the accuracy of the

point forecast, as measured by the mean-squared-prediction-error, MSPE, relative to the model with

constant intercept (i.e. model I). It emerges from Table 4 that most specifications have performances

in terms of point-forecast that are non-statistically superior to the simplest model with constant

mean and variance. Some specifications, e.g. V II and V III, even under-perform compared to

model I. This is not fully surprising as the equity premium predictability is known to be very

limited, see among many others Welch and Goyal (2008). On the other hand, when accounting for

model uncertainty, using either a DMA or DMS methodology, the simplest specification tends to

be significantly outperformed. In particular, when DMS is used to select among all regressors at

each point in time, the difference in the point prediction turns out to be not only positive, but also

strongly statistically significant. This means that for a correct characterization of the conditional

mean of excess returns it is not only necessary that the parameters governing the conditional mean

and variance of excess returns are allowed to vary over time, but also that the relevant explanatory

20



Table 4: Relative MSPE. The table contains the differences in MSPEs, ∆, (multiplied by 100 ) between the Model I
benchmark nd the other models. The table also provide the value of the one-sided test that the difference is greater than
zero. In bold, significance at 5% level.

1947+ 1965+ 1976+ 1988+ 2000+ Expansions Recessions

∆ test ∆ test ∆ test ∆ test ∆ test ∆ test ∆ test

Model II 0.00 0.12 0.00 0.13 0.00 0.15 0.00 0.19 0.00 0.26 0.00 0.18 0.00 -0.07
Model III 0.00 -1.13 0.00 -1.26 0.00 -1.25 0.00 -1.24 0.00 -2.16 0.00 -1.94 0.00 0.57
Model IV 0.00 0.04 0.00 0.23 0.01 0.44 -0.01 -2.56 -0.01 -1.49 0.00 0.16 -0.01 -1.46
Model V 0.00 0.00 0.00 0.15 0.00 0.40 -0.01 -3.68 -0.01 -4.21 0.00 0.12 -0.01 -1.74
Model VI 0.00 -0.24 0.00 -0.06 0.00 0.24 -0.01 -2.89 -0.01 -2.41 0.00 -0.02 -0.01 -1.47
Model VII -0.01 -1.27 -0.01 -0.97 -0.01 -0.44 -0.02 -1.43 -0.03 -1.20 -0.01 -0.83 -0.04 -1.92
Model VII -0.01 -1.65 -0.02 -1.38 -0.01 -0.43 -0.02 -1.83 -0.03 -1.53 -0.01 -0.89 -0.06 -2.12
Model IX 0.01 0.89 0.01 0.91 0.01 0.99 0.00 0.04 0.00 0.15 0.01 0.88 0.00 0.05
Model X 0.03 3.92 0.03 3.34 0.04 2.71 0.02 2.89 0.03 2.25 0.03 3.18 0.05 2.93
Model XI 0.01 0.78 0.01 0.76 0.01 1.01 0.00 -0.24 0.00 -0.07 0.01 0.89 0.00 -0.21
Model XII 0.03 3.77 0.04 3.13 0.04 2.54 0.02 1.62 0.02 1.00 0.03 3.21 0.05 2.61

Rolling -0.03 -3.15 -0.03 -2.53 -0.03 -1.78 -0.04 -2.55 -0.06 -2.30 -0.02 -2.12 -0.08 -2.40
KF -0.03 -3.08 -0.03 -2.52 -0.03 -1.77 -0.04 -2.54 -0.06 -2.29 -0.02 -2.02 -0.08 -2.33

variables are properly selected, thus avoiding over-fitting. Compared to the recent results of Johannes

et al. (2014), it seems that the additional feature of accounting for model uncertainty plays an

important role.

The analysis of the quality of the forecasts can also be done by looking at the ability of each

specification to provide a good description of the conditional density of the monthly excess returns.

In this case, we are interested in empirical fitting of the entire excess return distribution as well as

parts of it. For example, the ability of a model to assign the right probability to tail events may be

exploited for risk management purposes. In order to evaluate the quality of the predictive density

of returns, we consider the method introduced by Berkowitz (2001), which allows to test for the

adequacy of the proposed conditional density with the realization of the modeled variable. The test

is flexible and can be applied to evaluate the fit of the entire density as well as over specific segments

of the density support. In details, given the density of r∗t , we compute the conditional CDF of r∗t as

yt = F (r∗t |Ft−1) =

∫ r∗t

0
f (x|Ft−1) dx,

where F (r∗t |Ft−1) is Normal with E(r∗t |Ft−1) and Var(r∗t |Ft−1) dependent on the specific model spec-

ification at hands. Under correct model specification, the empirical CDF values should be distributed

according to the standard uniform, i.e. yt ∼ U (0, 1), which are further transformed as

zt = Φ−1 (yt)

where Φ (·) is the standard normal CDF, so that zt are distributed as a standardized normal. To test

the correct coverage for each quantiles, q, we calculate a new truncated variable

z∗t =




zt if zt ≤ q

q if zt > q.
(16)
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Table 5: Berkowitz test. The Table reports the p-values of the Berkowitz (2001) test for different quantiles. In bold
p-values greater than 10%.

1% 5% 15% 25% 35% 45% 55% 65% 75% 85% 95% 99%

Model I 0.01 0.03 0.00 0.00 0.01 0.01 0.13 0.15 0.07 0.00 0.00 0.00
Model II 0.02 0.02 0.01 0.00 0.02 0.01 0.12 0.13 0.05 0.00 0.00 0.00
Model III 0.98 0.81 1.00 0.18 0.06 0.20 0.25 0.53 0.52 0.38 0.09 0.05
Model IV 0.18 0.20 0.44 0.37 0.31 0.28 0.39 0.42 0.41 0.14 0.04 0.03
Model V 0.21 0.14 0.08 0.08 0.05 0.05 0.05 0.03 0.01 0.01 0.00 0.00
Model VI 0.50 0.55 0.34 0.23 0.08 0.04 0.32 0.77 0.79 0.43 0.53 0.59

Model VII 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.09 0.09 0.34 0.53 0.27

Model VIII 0.06 0.04 0.01 0.03 0.01 0.02 0.09 0.24 0.32 0.62 0.79 0.56

Model IX 0.03 0.18 0.15 0.10 0.07 0.06 0.08 0.05 0.02 0.00 0.00 0.00
Model X 0.88 0.89 0.77 0.55 0.36 0.17 0.11 0.36 0.53 0.83 0.96 0.88

Model XI 0.16 0.95 0.58 0.15 0.27 0.09 0.27 0.52 0.45 0.16 0.11 0.16

Model XII 0.28 0.29 0.25 0.05 0.03 0.02 0.02 0.25 0.73 0.77 0.88 0.77

Rolling 0.02 0.01 0.00 0.00 0.05 0.03 0.04 0.02 0.043 0.00 0.00 0.00
KF 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.00 0.00 0.00 0.00

For example, if we are interested in the coverage of left tail, the quantile corresponding to the 1%

probability is q=−2.326. A tail coverage test can be derived using the LR principle. Under the

null, the mean and the variance of z∗t are 0 and 1, respectively, while under the alternative they are

unrestricted. Under the null of correct tail coverage the test statistic is distributed as χ2(2). See

Berkowitz (2001) for further details on this test.

Table 5 reports the p-values of the Berkowitz test of the alternative model specifications for differ-

ent quantiles. The first evidence that emerges is that simple specifications with constant parameters,

i.e. model I and II, are unable to provide a good fit of the distribution of the returns for any of the

quantiles selected. This is somehow expected, as it is well known that the distribution of the returns

is likely to vary over time. Indeed, when allowing the parameters in the mean and variance to vary

over time (models III and IV ), the fit improves significantly, especially for the left tail (pq=1%,5%).

However, when looking at the fit of almost the entire distribution, i.e. pq=99%, the p-values are

below 10%, meaning that the fitting is not perfect. Interestingly, when inserting all the covariates

in the conditional mean, the fit of the excess return distribution becomes extremely poor (models

V and V I). This is a direct consequence of the over-fitting problem and of the spurious variation

induced in all parameters. On the other hand, when selecting the optimal model via DMA or DMS,

either with the SSP-KF or the SSP-KF-RV, the fitting is good for most quantiles. In particular,

when SSP-KF and DMS are jointly used, the p-values of the Berkowitz test are above 10% for all

quantiles.

4.1.2 Financial Evaluation

In the previous paragraph, we have focused on the ability of TVP models to provide significant

improvements over models with constant parameters in predicting the equity premium and its distri-
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Table 6: Dynamic Asset Allocation. Table reports the average certainty equivalent returns (CER) that is the annualized
risk-free return that gives the investor the same utility as the portfolio with the risky asset, based on the ex-post realization
of the returns and variance of the portfolio. Table also reports the average Sharpe ratios, SR. In bold the highest value
for each column.

1947+ 1965+ 1976+ 1988+ 2000+ Expansions Recessions

CER SR CER SR CER SR CER SR CER SR CER SR CER SR

Model I 0.42 0.02 0.05 0.01 0.32 0.02 0.55 0.04 -0.19 0.04 1.13 0.03 -3.35 0.00
Model II 0.53 0.09 0.28 0.06 0.51 0.09 0.85 0.13 0.33 0.09 0.99 0.14 -1.99 -0.13
Model III 0.60 0.10 -0.26 0.05 0.21 0.09 0.34 0.11 -0.99 0.03 1.30 0.14 -3.53 -0.16
Model IV 0.61 0.10 -0.19 0.05 0.30 0.09 0.42 0.11 -0.86 0.04 1.41 0.14 -4.27 -0.18
Model V 0.39 0.08 -0.54 0.02 0.37 0.08 0.76 0.11 -0.72 -0.04 0.96 0.11 -2.81 -0.10
Model VI 0.33 0.08 -0.67 0.01 0.11 0.06 0.34 0.09 -0.99 -0.04 0.85 0.10 -2.77 -0.07
Model VII 1.89 0.15 0.83 0.12 1.25 0.15 0.75 0.14 0.38 0.14 2.54 0.19 -3.74 -0.06
Model VII 1.25 0.12 -0.20 0.06 0.68 0.11 0.32 0.10 -0.44 0.07 2.27 0.16 -6.11 -0.09
Model IX 2.46 0.18 1.65 0.15 2.33 0.19 2.10 0.19 1.28 0.16 3.20 0.22 -2.85 -0.04
Model X 6.74 0.35 5.48 0.31 6.07 0.34 5.62 0.34 4.70 0.36 7.17 0.36 2.89 0.20
Model XI 2.34 0.16 1.31 0.12 2.18 0.17 1.61 0.15 0.70 0.11 3.18 0.20 -3.47 -0.05
Model XII 7.24 0.35 6.06 0.31 6.68 0.34 6.04 0.34 4.72 0.34 7.83 0.37 3.37 0.21

Rolling -0.66 0.08 -1.56 0.06 -0.69 0.11 -0.54 0.13 -2.66 0.07 1.35 0.15 -10.93 -0.19
KF -0.57 0.08 -1.54 0.06 -0.66 0.11 -0.50 0.13 -2.59 0.08 1.47 0.15 -10.40 -0.18

bution. The main evidence that arises from the statistical analysis is that time-varying parameters

both in conditional mean and variance, as well as model selection are essential to a good statistical

characterization of returns. This is in line with the results of Pettenuzzo and Timmermann (2011)

and Dangl and Halling (2012).

Now, we study how an investor with mean-variance utility function can gain from the use of

RV in predicting returns. In particular, we think of an investor that learns about the models, the

parameters, and the state variables sequentially in real time and updates his expectations about

the future expected equity premium through the updating algorithm embedded in the SSP-KF. In

particular, given a model specification, the investor at time t is able to compute E(r∗t+1|Ft−1) and

Var(r∗t+1|Ft−1). Given the conditional moments, the investor can choose how much of his wealth

to allocate to the risk-free asset and how much to allocate to the risky asset by maximizing the

expected utility, E(Ut+1|Ft) = E(Rt+1|Ft) − γ/2 · Var(Rt+1|Ft) with γ = 4. The term Rt+1 =

ωt+1|t · r
f

t|t+1+(1−ωt+1|t) · rt+1 with ωt+1|t ∈ [0, 1] is the return on a portfolio with a risky asset (the

S&P500 index) and a risk-free bond, whose return for period [t, t + 1] is known and equal to rf
t|t+1.

The assumption that ωt+1|t ∈ [0, 1] rules out short selling. At the end of each period, the investor

realizes gains and losses, updates the parameter and model estimates and computes new portfolio

weights ωt+2|t+1. This procedure is repeated for each time period, generating a time series of out-of-

sample realized returns and variances of the portfolio. We follow Dangl and Halling (2012) and we

use the monthly RV , based on daily S&P500 returns as an ex-post estimate of the total variance over

monthly horizons. Given the time series of realized returns and variances, then standard summary

statistics such as certainty equivalent returns (CER) and Sharpe ratios are computed to summarize

the portfolio performance. Table 6 reports the results of the optimal portfolio allocation analysis.

The reported evidence strongly support the specifications that involve model selection among all

regressors.

Interestingly, the average CER remains positive in all sub-periods for models X and XII, and
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the highest average CER is always associated with model XII. This seems to support the idea

that exploiting the information on past RV both in the conditional mean and in the conditional

variance of the excess returns leads to utility gains for a risk averse investor. Notably, the CER

associated with the other model specifications is quite low and sometimes negative, especially after

2000 and during the recession periods. An analogous evidence arises by looking at the Sharpe ratios

(SR), whose highest values are generally associated with the specifications X and XII. Differently

from Dangl and Halling (2012), we find that the utility gain for models X and XII does not increase

during the recessions, although it remains positive as opposed to the other model specifications. This

difference is probably due to the fact that the period with the financial crisis 2008-2009 is included

in our sample but not in the sample of Dangl and Halling (2012). Since we are also ruling out the

possibility of short-selling, it turns out to be hard to generate very large returns during recessions.

The fact that portfolios based on models X and XII can still generate positive CER and Sharpe

ratios also during recessions is a very strong evidence in favor of combining DMS with the SPP-KF

approach to predict excess returns and to provide the correct buy and sell signals.

5 Conclusion

This paper introduces a novel method to estimate TVP models in economics and finance. In partic-

ular, a new estimation procedure is proposed, the standardized self-perturbed Kalman filter. This

extends the on-line method proposed by Park and Jun (1992). In the standardzied self-perturbed

Kalman filter, the measurement error variance enters directly in the updating step, so that the acti-

vation of the updating process of the parameters becomes endogenously determined by the amount

of uncertainty in the data. This method has the advantage, over the traditional Kalman filter rou-

tine that it is computationally very fast so it is very useful in frameworks characterized by model

uncertainty where the correct specification must be chosen among a large number of alternatives.

A Monte Carlo study shows that the efficiency loss of the SSP-KF in tracking the true variation is

the parameters is generally small compared to the traditional methods when the design parameters,

ς and κ, are optimally selected by DMS. Concluding, the standardized self-perturbed Kalman filter

proves to be a valid alternative to online methods based on forgetting factors. We believe that the

relative advantage of this method as opposed to traditional methods increases as the problem be-

comes multivariate and hundreds of variables are jointly modeled, see also Koop and Korobilis (2013).

An extension of the standardzied self-perturbed Kalman filter to the multivariate case, adapting the

perturbation term to possibly take into account the spillover effects between equations and how to

have different perturbation speeds in different equations, is a topic of future research.

The proposed estimator is used to forecast the monthly equity premium series of the S&P 500

index from 1937 to 2013, with the purpose of studying how the realized variance can be exploited

both in the conditional mean and in the conditional variance. The SSP-KF allows to precisely extract

the variation in the parameters and, hence, to provide the right signals for the optimal selection of

the relevant explanatory variables. We show that accounting for model uncertainty and for time
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variability in the parameters results in utility gains for an investor, especially when the realized

variance is used as a driver of the time-varying measurement error variance.
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A Model Averaging and Model Selection

One of the advantages of the on-line Kalman filter is the possibility to carry out the dynamic model

averaging (DMA) and dynamic model selection (DMS) in a computationally feasible way. Define Lt ∈

{1, 2, . . . ,K} the set of possible models at each point in time t, given by K = dim(ς)× dim(κ)× 2m.

Where ς and κ are the design parameter discussed in the paper and m is the number of explanatory

variables considered. Since the model can change over time, then the set of possible models is G = KT

where T is the number of observations. Define YT = {y1, . . . , yt} the information set, then the state

space form can be written as follows:

yt = Z
(k)
t θ

(k)
t + ε

(k)
t , ε

(k)
t ∼ N

(
0,H

(k)
t

)
,

θ
(k)
t+1 = θ

(k)
t + η

(k)
t , η

(k)
t ∼ N

(
0,Q

(k)
t

)
,

(17)

where k = 1, . . . ,K indicates what is the selected model at time t. At each different k corresponds

a different set of predictors and design parameters. For example, the SSP-KF for the k-th model

becomes:

θ
(k)
t|t = θ

(k)
t|t−1 + P

(k)
t|t−1Z

(k)′

t

(
Ĥ

(k)
t + Z

(k)
t P

(k)
t|t−1Z

(k)′

t

)−1

ν
(k)
t (18)

P
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t|t−1 − P
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)−1
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(
ν
2,(k)
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− 1

)]
· I.

Ĥ
(k)
t = κ(k)Ĥ
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t−1 +

(
1− κ(k)

)
ν
2,(k)
t . (19)

Following Koop and Korobilis (2012) the DMA and DMS proceed as follows. Define Θt = {θ
(1)
1 , . . . , θ

(k)
t }

the set of parameters at time t then it holds that

p
(
Θt−1|t−1 | Yt−1

)
=

K∑

k=1

p
(
θ
(k)
t−1|t−1 | Lt−1 = k,Yt−1

)
p (Lt−1 = k | Yt−1) , (20)

where p
(
θ
(k)
t−1|t−1 | Lt−1 = k,Yt−1

)
is given by:

Θt−1|t−1 | Lt−1 = k,Yt−1 ∼ N(θ
(k)
t−1|t−1,P

(k)
t−1|t−1), (21)

and p(Lt−1 = k | Yt−1) is the probability to be at model k at time t − 1. The predictive likelihood

for model k given by

p(k)(yt | Yt−1) ∼ N(Z
(k)
t θ

(k)
t|t−1, Ĥ

(k)
t + Z

(k)
t P

(k)
t|t−1Z

(k),′

t ). (22)

Using the same approximation as in Raftery et al. (2010) and Koop and Korobilis (2012), we

assume that the probability πt|t−1,k that the k-th combination of ς, κ and the explanatory variables
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is used to forecast yt, given information through time t− 1, is

πt|t−1,k =
πα
t−1|t−1,k∑K

k=1 π
α
t−1|t−1,k

, (23)

where 0 < α ≤ 1 is set to a fixed value slightly less than one and is interpreted as a smoothing factor.

The updating equation of (23) is then given by:

πt|t,k =
πt|t−1,kp

(k) (yt | Yt−1)∑K
k=1 πt|t−1,kp(k) (yt | Yt−1)

. (24)

The predictive likelihood of DMA is a weighted average of each of the individual model predictive

likelihoods

p (yt | Yt−1) =
K∑

k=1

p(k) (yt | Yt−1)πt|t−1,k, (25)

similarly, the predictive mean of yt is a weighted average of model specific predictions, where the

weights are equal to the posterior model probabilities

E [yt | Yt−1] =
K∑

k=1

Z
(k)
t θ

(k)
t|t−1πt|t−1,k. (26)

On the other hand DMS involves selecting at each point in time the single model with the highest

probability value and using this to forecast. Koop and Korobilis (2012) find that both DMA and

DMS forecast inflation very well.

The following strategy in therefore used in the forecasting exercise presented in Section 4:

1. In t = 0, initialize the inclusion probabilities to π0|0,k = 1/2m ∀k and the design parameters

ς = 0.00001 and κ = 0.94. We set θ0|0 = 0 and P0|0 = 100× Im.

2. At time t ≥ 1, run the predicting steps of the SSP-KF for each model.

3. At the end of the period t, yt is observed. Hence run the updating steps of the SSP-KF and

use equation (22) to compute the predictive likelihood for each model k.

4. Use equation (24) to compute the updated inclusion probabilities for each combination of ς, κ

and the included regressors. In the case of DMA, produce DMA forecasts using (25) and (26).

In the case of DMS, use the forecasts based on the best performing model, i.e. the one with

the highest model probaility.

5. Iterate points 2-4 for t = 1, ..., T .

This allows the optimal choices of the design parameters ς and κ to adjust over time as the model

changes.
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