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Exploring the Dynamics of Journal Citations: 
Modelling with S-Curves1 

 
This paper reports on an exploratory analysis of the behaviour of citations, i.e., pattern of obsolescence, for 

management science papers over a fourteen year period. It addresses three questions: i) can collections of papers 
from the same journal all be modelled using the same obsolescence function? ii) Can we identify specific patterns 
of behaviour such as “sleeping beauties” or “shooting stars”? iii) Can we predict the number of future citations 
from the pattern of behaviour in the first few years? Over 600 papers published in six leading journals are 
analysed using a variety of s-curves. 

 
Keywords : citations, gamma, Gompertz, Pearl-logistic, negative binomial, s-curve, Weibull 
 

1. Introduction 

There is currently much interest in measuring the quality of academic research whether at the 
institutional, journal or personal level. In the main, this has been done through peer review (also 
known as stated preference) where a group of academics produce a ranking of journals. Many of 
these rankings have been collected together on a website by Harzing (2005) and a combined 
ranking based on statistical analysis has been produced by Mingers and harzing (2005). The 
alternative approach is to use revealed preference measures based on actual publication behaviour, 
especially using the paper citation data available from the ISI index (Tahai and Meyer, 1999; 
Baden-Fuller et al., 2000; DuBois and Reeb, 2000).  

This paper reports on an exploratory analysis of the dynamic behaviour of citations for a sample of 
management science papers all published in 1990. Typically, although there is much variation as we 
shall see, the number of citations for a paper is small to begin with; rises to a peak in response to 
other citations; and then subsides as the paper’s material becomes obsolete. If we look at the 
cumulative citations for a typical paper then we see an s-shaped curve similar to growth curves or 
cumulative probability curves. These are called obsolescence functions in this context by Burrell 
(2001). Two obvious exceptions to this pattern are those papers that are never cited at all 
(surprisingly sometimes as many as 20% of papers in a journal); and those seminal papers that 
continues to receive many citations for very long periods of time. 

This exploration was motivated by three questions: 

1. To what extent can collections of papers (e.g., all from one journal) be modelled by the same 
obsolescence functions? This is of theoretical interest since Burrell (2002; 2003) assumed this 
was the case in developing a Poisson-gamma model for the process of citation generation, and 
Mingers and Burrell (2005) fitted a cumulative gamma distribution to empirical data. 

2. Can we identify different patterns of behaviour for particular types of papers? For example, 
“sleeping beauties” (Van Raan, 2004) which remain uncited for some time before suddenly 
becoming popular, perhaps because they were ahead of their time; or “shooting stars” which are 

                                                 
1 I would like to acknowledge the work of Hajir Karbassi in rigorously collecting the data. 
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heavily cited initially but die quickly perhaps because they were part of a fad. If new patterns 
emerge can we explain what generates them? 

3. To what extent can the number of future citations be predicted given the pattern of citations over 
the first few years? This is of particular interest for quality exercises such as the UK’s RAE 
where none of the papers evaluated will be older than seven years and so will still be young 
within their citation lifespan. 

To address these questions a study was undertaken to fit a variety of s-curves to sets of empirical 
data, that is the citation histories of management science papers. The next section discusses the 
approach taken, and the third section reports on empirical results.  

 

2. Methodology 

The data set consisted of a sample of over 600 papers published in 1990 giving a fourteen year 
history of citation behaviour. When the sample was taken this was felt to be long enough for most 
papers to have completed their citations but not so long that there would have been significant 
changes in academic citation behaviour. However, once the data was analysed it became clear that 
this was really too short a period. The sample was all those papers published in six leading 
management science journals: Management Science (ManSci), Operations Research (OpsRes), 
Decision Science (DecSci), European J. Operational Research (EJOR), J. Operational 
Research Society (JORS), and Omega (Omega). These were selected for their variety on several 
factors – level of prestige and quality; prevalence of heavily mathematical articles; US versus 
European; narrowness and width of coverage. The number of citations for each journal over the full 
14 year period 1991-2004 was tabulated and the means and standard deviations are shown in 
Table 1, and histograms in Figure 1.  

Two comments should be made about the data. i) At first all document types from a journal were 
recorded. However, with JORS and EJOR there were large numbers of book reviews which 
virtually all received zero citations. Whilst a book review could be cited it is very rare. Other 
journals, especially ManSci and OpsRes did not have reviews and so had a much smaller proportion 
of zero citations. To avoid this bias, only documents of type article, editorial or letter were recorded. 
ii) With the ISI database selection of a year in the database limits does not correspond exactly with 
the actual year of publication. For JORS for example, selecting “1990” picks up some papers from 
the end of 1989 and excludes some from the end of 1990. This required considerable manual 
intervention. 

 
 
 

 *JORS Omega EJOR DecSci OpsRs ManSci 
Mean 7.3 7.2 11.3 11.1 14.7 38.6 
Std. Dev.  17.9 15.5 19.0 14.0 28.6 42.4 
Number 123 51 202 43 112 85 
% zero cites 18 22 14 12 10 5 
Max. cites 176 87 140 66 277 181 

 
Table 1 Summary Statistics for the Number of Citations per Paper 
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Figure 1 Histograms of the Distributions of Number of Citations 

 

The mean number of citations (over 14 years) varied significantly from 7 (JORS and Omega) to 39 
(ManSci). All the distributions were extremely skewed with variances up to 40 times the mean. The 
maximum number of citations for a paper ranged from 66 (DecSci) to 277 (OpsRes) although these 
were to some extent outliers. One interesting, and perhaps surprising, fact is the number of papers 
that were never cited during the period of observation. In each case (except ManSci) the modal 
value of the distribution of number of citations was in fact zero and the % of zero cites ranges from 
5% (ManSci) to 18% (JORS) and 22% (Omega).  

The next stage was to decide which s-curves were to be fitted to the data. Within the domains of 
technological forecasting and marketing, where s-curve fitting has primarily developed, the most 
common curves used are the logistic and the Gompertz. (Martino, 1983). However, there are many 
curves that could be used2 and in fact Meade and Islam (1998) identify 29 different ones. Meade 
and Islam classify their models into three classes – symmetric, asymmetric and flexible depending on 
behaviour around the point of inflection. The point of inflection of the s-curve (which is a cumulative 
curve) is equivalent to the point of maximum citation generation, that is the mode of the 
corresponding probability density function. Symmetrical models have a fixed point of inflection which 
occurs at 50% of the eventual total citations. The growth and decline are symmetrical about this 
point. Asymmetrical models typically have their inflection point at less than 50% with a faster growth 
than decline. The underlying pdf is positively skewed. Flexible models can have variable inflection 

                                                 
2 Indeed, almost all probability distributions have appropriately shaped cumulative distributions 
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points, some even being greater than 50%. The underlying pdf’s can take on a range of shapes both 
symmetrical and skewed. For this research one member of each of these classes was selected – the 
Pearl logistic (symmetrical), the Gompertz (asymmetrical) and the Weibull (flexible). The gamma 
distribution was also included as this had been used in previous work as mentioned above. The 
gamma is also a flexible distribution similar in many respects to the Weibull. Details of these curves 
are shown in Appendix A. 

The fitting process was straightforward using the Excel Solver. This was used to estimate parameter 
values for each curve that minimised the sum of squared errors (SS) from the empirical cumulative 
citation data. This method is biased towards the higher values of the curve but this was felt to be 
acceptable especially given the importance and difficulty of estimating the upper limit of the s-curves 
(see below). There was a practical problem in that sometimes the Solver would become stuck in a 
local optimum for a particular curve. This was easily detectable as the fitting was done manually and 
graphs showed where the curves were not fitted properly. Manually setting starting values always 
resolved the problem. In many cases the fitting process was duplicated and the results were within 
0.01%. 

A further validation method was used by comparing the fitted parameters. The Weibull and the 
gamma, particularly, tend to give very similar results. In each case it is possible to estimate the time 
of inflection from the fitted parameters (see Appendix A for the formula) and a plot of one against 
the other forms an almost perfect straight line (r=0.996). Any deviations were investigated and re-
fitted. A similar approach was used with the Pearl and Gompertz although the relationship had more 
variability. 

3. Empirical Results 

3.1 Fitting s-curves to collections of papers  

One of the first steps was to simply look at the pattern of citations over time for each journal and the 
total. This is shown in Table 2. 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

EJOR 55 74 97 161 183 253 221 175 208 156 151 164 133 157 

DecSci 13 24 27 48 32 45 43 41 25 32 38 34 26 29 

Jors 20 48 58 55 70 71 85 68 85 50 69 66 50 69 

Mansci 60 182 186 262 249 256 252 241 253 217 275 232 232 265 

Omega 6 23 21 26 29 43 36 19 34 29 33 30 17 11 

OpsRe
s 

51 84 91 126 137 167 126 126 113 107 107 113 93 104 

               

Tot 20
5 

435 480 678 700 835 763 670 718 591 673 639 551 635 

Cum. 
Tot. 

20
5 

640 1120 1798 2498 3333 4096 4766 5484 6075 6748 7387 7938 8573 

 

Table 2 Number of citations per period after publications (shaded boxes show modal 
period) 
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A bar chart is shown in Figure 2. 

 

All the journals show a clear pattern of citations as expected. Citations rise to a peak most 
commonly after about six years although there is some variation between journals. There is then 
something of a plateau before numbers begin to reduce. ManSci particularly maintains a high level 
for a long period – from 262 in period 4 through to 265 in period 14. It was certainly surprising to 
me that citations should still be high over such a long period. Indeed, if one projects forward (see 
later) 15 years there would still be around 120 citations in total. 
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Figure 2 Citations per Journal per period 

 

This data was the first to be used for s-curve fitting, initially for the total set of citations, and then 
splitting it down by journal, to begin to answer the first of the research questions. 

 

  
Curve Params. OpsRes Omega ManSci JORS DecSci EJOR Total 
Pearl- scale 18.09 21.43 18.64 19.96 18.19 25.94 20.16 
logistic shape 0.40 0.41 0.36 0.39 0.40 0.43 0.39 
 limit 1578.80 376.14 3383.05 903.33 469.41 2226.71 8917.53 
 ss 31314.70 1468.18 145425.72 7844.39 3057.25 47767.02 880015.91 
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Gompertz scale 3.92 4.24 3.89 4.03 3.94 4.67 4.08 
 shape 0.21 0.22 0.18 0.20 0.21 0.23 0.20 
 limit 1831.38 437.01 4147.81 1085.36 544.41 2596.53 10600.43 
 ss 7331.01 436.31 45501.04 1778.79 836.72 8654.29 191803.99 

Weibull scale 11.42 10.51 16.95 12.87 11.51 10.20 12.30 
 shape 1.55 1.72 1.45 1.57 1.55 1.87 1.60 
 limit 2048.26 449.88 5896.19 1258.52 611.16 2579.88 11998.79 
 ss 2250.79 290.58 6349.23 470.83 283.78 7249.18 39264.97 

Gamma scale 7.00 5.58 12.89 8.41 7.03 4.50 7.53 
 shape 1.78 2.05 1.57 1.76 1.78 2.39 1.83 
 limit 2323.76 517.82 7157.49 1503.47 692.85 2931.90 14040.39 
 ss 1879.95 320.53 4951.50 479.20 237.28 6003.11 28648.70 

 

Table 3 S-Curves fitted to the collections of journals (shaded boxes show the best fits) 

 

Table 3 shows, for each journal separately and for the total citations, the fitted parameters for the 
fours different curves. It also shows the sum of squares (ss) as a measure of goodness of fit.  

Looking firstly at the total citations the fitted curves are shown in Figure 3. It appears from this that 
all the curves fit reasonably well although they give quite different future projections with the Pearl 
logistic the lowest and the gamma the highest. However, looking in more detail at the year on year 
citations in Figure 4 shows that certain curves fit the data much better than others. The Pearl curve is 
always a symmetrical curve with the point of inflection (maximum growth) occurring when it is at 
50% of its maximum value (see Appendix 1). Clearly the citation data is not symmetrical but strongly 
positively skewed. The Gompertz curve is not symmetrical but it also has a fixed inflection point at 
the same time as the Pearl curve but with a lower cumulative value. This too does not fit the data 
well. 
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Figure 3 Cumulative Citations for all Journals 

 

In contrast, both the Weibull and gamma curves are very flexible in their shapes and points of 
inflection and can be fitted well to the data. This is reflected in the SS where the Pearl is worst with 
880k, then the Gompertz with 192k, the Weibull 39k and the gamma is best with 29k. The gamma 
estimate of the eventual total is 14,000 (after about 50 years) while the Weibull is 12,000 (after 40).  
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Figure 4 Citations per year for all Journals 

 

Moving down to the individual journals, we can see (in Table 3) that in four out of the six the gamma 
is best, with the Weibull being marginally best in the other two – Omega and JORS. 

These results are broadly in line with those of Mingers and Burrell (2005). In that paper 
obsolescence functions (i.e., s-curves) were not fitted directly to the data but instead to curves 
derived from the additional citations distribution tested in the paper. This in turn was based on a 
gamma-Poisson model for the underlying process of citation generation combined with some form of 
obsolescence function, the particular form being estimated from the data. Several different 
obsolescence functions were tested including those used in this paper. The results showed the 
gamma function to be the best overall in terms of lowest total SS, and individually best for ManSci. 
The Weibull was second best overall and individually best for OpsRes and EJOR. One other curve 
– the SPSS s-curve – had inconsistent results being best for certain journals and very poor on 
others. The general conclusion, therefore, is that the gamma distribution is a good fit for collections 
of papers which are likely to show significant skew over time. The other interesting result is simply 
the length of time over which well-cited papers carry on getting cited. 

3.2 Fitting s-curves to individual papers 

The next stage of the analysis was to move down a level to individual papers and see whether 
particular patterns emerged at this level in order to address research question one. 

The first problem was which papers to analyse. Clearly there was no point in using papers that were 
very rarely cited and as a cut-off only those with 15 or more citations were considered – equivalent 
to averaging one per year. Although this seems fairly modest it removed over 75% of the papers as 
shown in Table 4. This differed significantly between journals – 37% for ManSci, but over 90% for 
JORS and Omega.  
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 ManSci JORS EJOR OpsRes DecSci Omega Total 

< 15 37% 91% 81% 75% 77% 90% 469 

Still Active  55% 5% 14% 16% 18% 6% 110 

Complete 8% 4% 5% 9% 5% 4% 36 

 

Table 4 Papers Complete or still Active 

 

On fitting curves to the remaining papers a further problem emerged – estimates of the upper bound. 
In some series, especially where citations rates were still high and it was not clear from the data 
whether the turning point had yet been reached, the different curves would generate hugely different 
upper limits. Sometimes these would be four or five times the number of citations so far recorded. 
This is generally a significant problem in fitting s-curves to sets of data that are not yet complete. In 
fact, Martino (1983), within the context of technological forecasting, argues that the upper limits 
should always be determined manually having regard to ultimate technological or economic 
constraints rather than be estimated from the data. However in our case this does not seem possible. 
How could we put a sensible limit on the total number of citations that any paper could possibly 
receive? Whilst most highly cited papers would go into the hundreds3, a particular paper could go 
into the thousands. Equally, it seems impossible to decide on some arbitrary length of time after 
which citations would finish. Experiments were tried constraining the estimate of the upper limit to 
two or three times the current level but these just distorted the fitting and still seemed essentially 
arbitrary. It was therefore decided at this stage to limit our analysis to those papers whose citation 
history appeared complete – i.e., which were getting almost no further citations by year 15. The 
specific criteria used was that a paper would be considered still active if it had more than one 
citation in the last two years or more than two citations in the last three years (as well as more than 
15 citations overall).  

As can be seen from Table 4, this left only 36 papers in total with 15 or more citations considered to 
be completed. These were fitted to all four s-curves by minimising the sum of errors across all 
fourteen points. In looking at the results we should bear in mind the following: 

The curves are all characterised by three parameters. The limit relates to the total number of citations 
– i.e., the Y axis. The scale parameter relates to time – the larger the value the longer the period 
over which citations occur. The shape parameter relates to spread and skewness or symmetry. The 
Pearl logistic can only be symmetrical; the Gompertz and gamma can be symmetrical or have 
positive skew; and the Weibull can also have negative skew. 

This sample of papers is obviously not representative of the whole as they have all been completed 
in a relatively short space of time. Those that are still active will generally be more skewed as their 
publications carry on.  

                                                 
3 For papers in management. Papers in some areas of natural science go very much higher. 
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After fitting, several different patterns of citations could be seen although it should be emphasised 
that the data generally included a considerable degree of randomness. To illustrate the degree of 
variety, Figure 5 shows a plot of the scale and shape parameters for the Weibull distribution. The 
points are also marked according to which function fitted best in ss terms. In terms of the shape 
parameter, 1 is equivalent to an exponential distribution with strong positive skew and a mode at 0; 
values around 2-4 are generally symmetrical, while for higher values the distribution becomes very 
“pointed” and even has negative skew. 
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Figure 5 Fitted Weibull parameters for the Completed Papers  

1=Pearl, 2=Gompertz, 3=Weibull, 4=gamma 

1. The first group were those which were symmetrical around the point of inflection - the rise 
and subsequent fall occurred over equal time periods. These were generally fitted best by 
the Pearl function (6 examples). Series with some positive skew could be fitted with any of 
the other three functions: Gompertz (8), gamma (5), Weibull (4). Series with a greater 
degree of skew were best fitted by the Weibull (5) and the gamma (5). Three series had 
very little pattern with no build up and decline but simply random numbers of citations. 
These were fitted (poorly) by gamma and Weibull functions with quite extreme parameters. 
Overall, these results do not support Burrell’s (2002) assumption that all papers within a 
collection will have the same obsolescence function. Having said that, the gamma and 
Weibull are very flexible and were not that much worse than the Pearl and Gompertz. 

2. In terms of shooting stars and sleeping beauties several were identified. Shooting stars will 
have high initial citations but these will tail off quickly. In one example a paper had acquired 
30 cites in four years – 7.5 per year - but only gained another 15 in the remaining ten years 
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1.5 per year (Figure 6). In terms of the Weibull, such papers would have low values of the 
scale parameter (<5) with moderate values of shape (1.5 - 3). Two such papers were 
Wei(4.83,2.13)4 and Wei(4.69,1.55) which were the two lowest scale parameter values in 
the sample.  
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4. Figure 6 A “Shooting Star” (Ref 138) 

 

5. It was harder to find sleeping beauties given the restrictions on the time period of the sample. 
Van Raan (2004) characterises such papers in terms of the sleeping period (typically 
between 5 and 10 years), the “depth of sleep” (a “deep sleep” would average no more than 
1 citation per year), and the “awake intensity” (average citations after the sleeping period). 
Such papers would have higher values of the scale parameter (>5) to allow for the sleeping 
period, together with higher values of the shape parameter (>4). One example is shown in 
Figure 7 which had only 7 cites in its first six years but then had 14 in its next five. This was 
fitted as Wei(7.87,4.04). Burrell (2005) provides an interesting analysis of the likelihood of 
sleeping beauties occurring by chance given an underlying gamma-Poisson production 
process. 

 

 

 

                                                 
4 Notationally we use Wei(scale,shape). 
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Figure 7 A “Sleeping Beauty” (Ref 249) 

 

6. Finally one pattern emerged that was not anticipated. Of the 36 examples nine had 
significant dips in the number of citations after 8 or 9 years. This is in fact illustrated in both 
of the papers in Figures 5 and 6. The dips often went down to zero or one citation before 
picking up at close to the previous level. This can be seen clearly in Table 5 which shows the 
total citations for the sample of 36 papers. This rises to a peak of 101 after seven years but 
then falls suddenly in years 8, 9, and 10 before picking up again. The frequency of 
occurrence and size of this pattern makes it unlikely to have occurred by chance. The most 
likely explanation is that initially citations are generated by the first publication of the paper, 
delayed by the process of writing and getting published the citing paper. Citations then fall 
off before a second wave emerges triggered by the later citations rather than the original 
publication. Although, if this is the explanation, it might have been expected to occur earlier, 
perhaps after five or six years. More detailed work would be needed to test this hypothesis.  

 
Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Citation
s 

23 57 83 79 83 94 101 61 69 54 74 43 19 15 

Table 5 Total Citations per year for the 36 Completed Papers  

 

3.3 Predicting future numbers of citations 

The next research question to be considered was whether it was at all possible to predict the future 
number of citations for a single paper based on the pattern of citations in the early years? 

To begin with only the completed papers were considered for here it was possible to know with 
some certainty what the actual outcome was. This, of course, is a biased sample with respect to the 
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general population as they will all have completed in a relatively short time and will not have the long 
positive skew of those still active. The method used was a development of the above whereby the 
fitting period was varied from five years to the full fourteen years but in each case the SS across the 
whole series was recorded. This was done for each of the four functions.  

The results were, to say the least, highly varied on several dimensions: i) the SS varied hugely 
depending on the number of fitting periods; ii) it also varied significantly between the different 
functions, especially initially; but iii) this did not remain consistent as particular functions rose or fell. 
Figure 8 shows a typical example for one of the papers. In this case, at the start the gamma and 
Gompertz were best with SS between 200 and 400, while the Pearl logistic was up at 1600. 
However, within one period the Pearl changed dramatically to become best with less than 200. In 
period 7 the Gompertz became best and remained so till the end with a final SS of 8. The fit was 
good from period 10 onwards. 
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Figure 8 Fitted Errors vs. Fitting Period for Different Functions (paper 249) 

 

Taking firstly the overall quality of fit, we can look at the ratio between the period 5 SS and the 
period 14 SS as a measure of how much worse the fit becomes with less fitting periods. We can get 
a lower bound on this by taking the best fitting function at each of the two periods. In practice if we 
were trying to make predictions ex ante, i.e., without knowing the future citations, results would be 
worse than this because we would not know which function would turn out to be best. Thus for 
Figure 8, the best fit SS using all fourteen periods was 7.8, but if only the first five periods were used 
this rose to 237.9, giving a ratio of 30.5. An alternative approach is to take the 14-period SS as a 
percentage of the 5-period SS in order to measure the reduction that has occurred. For figure 8 this 
value is 3.3%. Summary statistics for both these indicators are shown in Table 6. 
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 SS: Ratio of 5-per. 
to 14-per. 

SS: %  14-per. to 
5-per 

Years to “reasonable” 
fit 

Min 1.09 0.39% 5 

Mean (Mode) 29.05 15.58% 8.9 (10) 

Max 256.36 91.76% 12 

Table 6 Summary Statistics for SS and Years to Reasonable Fit 

 

Across the papers the mean ratio was 29 times but this rose to as much as 256 times (4633/18) in 
the worst case. These are very large figures especially given that they are based on the best fitting 
curve at each period.  

At what period, typically, do the fits become reasonable? The term reasonable is somewhat 
arbitrary but we took the view that when the SS had come down (from on average 29 times) to only 
being double the final value it was “reasonably” close. In Figure 8, for example, this occurred at year 
10. This was recorded for each series and from Table 6 we can see that the mean year at which this 
occurred was 8.9 with the modal value being year 10. In other words it was only after 10 years 
worth of data was available for fitting that the SS came to within 100% of the final 14 year value. So 
the conclusion is that for this data, which is in any case biased in having citation history completed by 
year 14, the fits are not generally at all reliable before years 9 or 10 by which time there are not 
many years left.  

It had been hypothesised that the time at which the fits became more reliable may be related to the 
point of inflection of the cumulative curve. Before this point it is difficult to decide when the citations 
are likely to begin to slow down, but after this point, especially a few years later when the 
downward slope has become established, on might expect that the fitted curves should settle down. 
The point of inflection is equivalent to the mode of the corresponding pdf. It is unreliable to estimate 
this empirically from this data since quite commonly a series may have several modes, i.e., several 
periods with the same maximum number of citations, so the inflection points were estimated 
theoretically from the fitted curves given the formulae in Appendix A. The values estimated from the 
Weibull and gamma parameters were generally extremely similar (r=0.996) and they were also 
highly correlated with the Pearl and Gompertz (r=0.93)5 figures. However, it turned out that there 
was in fact no correlation between the estimated inflection times and the reasonable fitting period as 
defined above, nor could regression establish a significant relationship. 

Looking next at the best fitting function over time, it had been hypothesised that several patterns 
might occur. For example, that certain functions would predominate in the early periods (e.g., the 
Pearl/Gompertz because of their relative symmetry) and different ones later on; that the best fitting 
function would remain fairly constant over the periods; or that the Weibull/gamma functions would 
predominate because of their flexibility. In the event none of these were observed. There were no 
cases where the same function remained best throughout the period and it often changed three or 
more times. The most common ones in the first period (year 5) were Gompertz (12) and gamma 
(15) whilst the most common at the end was the gamma (13). In only a third of cases were the first 
and final ones the same function even accepting changes in between.   

                                                 
5 After removing four unusual observations where the fitted Weibull and gamma shape parameters were <1 – see 
Appendix A. 
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The general conclusions from this section are that it is extremely difficult to predict accurately future 
citations for an individual paper, at least until it is well through its citation lifetime. And that there are 
no underlying patterns to the sequence of functions fitted or the levels of errors that are generated.  

3.4 Fitting Still Active Papers 

Finally, we revisited the problem of fitting papers that were still active. The problems can be 
illustrated in Figures 9a and 9b which show a fairly typical paper that is still actively cited. 
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Figure 9a Cumulative Citations and Fitted Curves 

 

In Figure 9a the cumulative s-curve seems well-behaved and appears well-fitted by the curves. It is 
noticeable that the Pearl-logistic gives a much lower limit than the other three. However, the situation 
is shown more clearly when we look at the year-on-year citations shown in Figure 9b. 
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Citations per Year Ref 14
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Figure 9b Year-on-Year Citations (equivalent to a pdf) 

 

We can see that citations rose to a peak in year 4 before falling away to year 7. At this point it 
would have appeared that the citations were ending but they then pick up significantly reaching 
another peak in year 12. This dip is common and was discussed above. The next two years then fall 
off again. The question is, what happens next? A further fall would suggest that the point of inflection 
had passed but it seems equally possible, given the variability of the series, that there could be a rise.  

This uncertainty is reflected in the curves that have been fitted. The Pearl, which is symmetrical, turns 
over and gives the lowest forecast limit of 73. It is always the case with the Pearl on still-active data 
that it treats the latest peak as the inflection point. The Gompertz gives considerably higher forecasts 
with a limit of 168. Again its shape is quite constrained. The Weibull and gamma suggest that the 
citations will carry on rising far into the future and estimate absurd upper limits of 6800 and 4500 
respectively. As it turned out, the actual number of citations in the next year (2005) was only one! 
Whilst this example would appear to strongly favour the Pearl or Gompertz curves, other examples 
can be found where they significantly under-estimate future citations, even when the inflection point 
has clearly been reached. 

The difficulty of predicting future citations demonstrated by this example reflects very well Meade 
and Islam’s (1998, p. 1116) comments about technological forecasting using s-curves:  

“{i}t is easy to see how difficult it is to recognise that the point of inflection has been 
reached. It is even more difficult to predict the future path of the curve. The super-imposition 
of random noise, the case in practice, serves to make the task of forecasting … even more 
demanding.” 

4. Conclusions 

This paper set out to answer three questions concerning the behaviour of citations: i) to what extent 
can the citations from collections of papers be modelled by the same obsolescence function? ii) Can 
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we identify different patterns of citation behaviour and explain them? And, iii) can we predict the 
number of future citations given the pattern of citations in the first few years? 

Looking at citations for collections of papers, the significant lack of symmetry over time meant that 
they were best fitted by the gamma distribution, and occasionally the Weibull, but not the Pearl 
logistic or Gompertz curves. This confirms earlier research. The fitted parameters were significantly 
different between journals reflecting the large disparity in the numbers of citations received.  

The Move to individual papers brought in a large amount of randomness and variability. Initially 
analysis concentrated on papers that had generally completed their citations lives to avoid the 
problems of having to estimate the upper limits to numbers of citations. Here the results were mixed. 
The gamma and Weibull were best for a majority of papers but the Pearl and Gompertz were best 
for those which were more symmetrical. This is perhaps surprising as the gamma and Weibull are 
also capable of taking on symmetrical shapes. This does mean that Burrell’s assumption about 
homogeneity of the obsolescence function is not borne out. 

Several patterns were observed in the data including sleeping beauties and shooting stars, and these 
can be identified through the fitted parameters. An unexpected, but very common, pattern was also 
observed – that is a dip in citations after 8 or 9 years. This may be due to a shift from citations 
based on the original paper to those based on other citations but this needs further investigation. 

Predicting future citations for individual papers proved to be extremely difficult. For papers whose 
citations were complete (within the 14 years) the fit became reasonable only after about 10 years, 
well past the point of inflection. For papers which were still active (the majority) different curves 
generated wildly different estimates of the potential upper limits.  

Finally, it was surprising how many papers were still being actively cited after 14 years. It would be 
useful to replicate this analysis on a sample that is as old as possible – in the case of ISI data this 
would be back to 1975 
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Appendix A:  S-Curves Used in the Study 

The Logistic Curve (Pearl-Reed curve) 
Probably the most widely known growth curve, it was developed originally by Verhulst in 1838 and 
then popularised by geographers Pearl and Reed (1920). The underlying assumption is that initially 
the rate of growth is proportional to the size of the population, but that as size increases 
environmental restrictions will reduce growth until saturation is reached. The derivation and various 
formulations are explained in Stone (1978). 

Equation: 

)1( btt ae
L

Y
−+

=      (1) 

Parameters 
 L: upper limit 
 a: scale parameter affecting the location of the curve 
 b: shape parameter affecting the steepness/shape of the curve 
Note that a and b are independent in that changes in location do not affect the shape. 

Characteristics.  
The curve is symmetrical about its point of inflection which corresponds to the maximum growth 
rate. This occurs at  2/LY =  when  bat /)ln(=  
 
The growth rate is given by: 
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Which shows that the growth at any point depends both on distance to go (L – Y) and distance 
travelled (Y). 
And the proportionate growth by; 
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=
′

L
YL

b
Y
Y

      (1b) 

Which shows that the proportionate growth is a linear function of the growth so far. 
 

Gompertz Curve 
This curve was first formulated by Gompertz in 1825 and differs from the logistic in not being 
symmetrical about the point of inflection.  

Equation 
b tae

t LeY
−−=       (2) 

Parameters 
 L: upper limit 
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 a: scale parameter affecting the location of the curve 
 b: shape parameter affecting the steepness/shape of the curve 

 

Characteristics 
The inflection point is where eLY /=  when bat /)ln(= . It thus occurs at the same time as the 
logistic but the growth value is less - only 73%. Growth is steeper before the inflection point than 
after it.  
The growth rate is given by: 







=′

Y
L

bYY ln       (2a) 

Which, for large Y, can be approximated by )( YLbY −=′  showing that for later periods growth 
depends only on distance to go to the upper limit, not on previous history. 
The proportionate growth is: 


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
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′
Y
L

b
Y
Y

ln        (2b) 

showing that proportionate growth is not linear but reduces as Y approaches the limit. 

Weibull Distribution 
The Weibull is a statistical distribution commonly used in reliability studies. It was suggested that the 
cumulative probability distribution (CDF) could be used as an s-curve by Sharif and Islam (1980). It 
is a very flexible distribution whose probability function can take a variety of shapes from right skew 
through normality to left skew. It is non-symmetric and flexible in Meade and Islam’s (1998) terms. 

Equation 
The Weibull cdf is given by 

)1( )/(
b

at
t eLY −−=       (3) 

Parameters 
 L: upper limit 
 a: scale parameter affecting the location of the curve 
 b: shape parameter affecting the steepness/shape of the curve 

Characteristics 

The inflection point is when 
b

b
at
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1
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1 . (Note that for b<1 the 

formula breaks down and t is defined as 0 which is the modal point of the probability distribution) 
This is in contrast to the previous curves which had constant values of Y.. For the Weibull the value 
of Y at inflection depends on the parameter value b. This provides a greater degree of flexibility in 
modelling the point of decline in citations. 
The growth rate is given by: 
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Which shows that growth depends only on the distance to the upper limit. 
The proportionate growth is: 
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Showing that proportionate growth is non-linear.  
 

Gamma Distribution 
Another very flexible probability distribution used extensively in queuing and waiting situations. It is 
similar to the Weibull in taking a variety of shapes from the exponential to the normal. It is non-
symmetric and flexible in Meade and Islam’s (1998) terms. 

Equation 
The gamma cdf is given by: 

)(
)/,(

b
atb

LYt Γ
=

γ
      (4) 

Where ?() is the complete gamma function and ?() is the incomplete gamma function. This is 
an awkward equation form and it is more usually seen as a pdf: 
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Parameters 
 L: upper limit 
 a: scale parameter affecting the location of the curve 
 b: shape parameter affecting the steepness/shape of the curve 

Characteristics 
The inflection point is when )1( −= bat . (For b<1 the value is defined to be 0). This corresponds 

to a Y value of 
)(

)1,(
b
bb

LYt Γ
−

=
γ

 but because of the nature of the cumulative gamma function there 

is no easy expression for this value. It can be calculated numerically. As with the Weibull, the value 
of Y at inflection depends on the parameter value b. It is also difficult to formulate expressions for 
the growth rate. 
 



S-Curves 

 23 

References 

 

 

 

 

 

Baden-Fuller, C., Ravazzolo, F. and Schweizer, T. (2000), "Making and measuring reputations - 
The research ranking of European business schools", Long Range Planning, Vol. 33, No. 5, pp. 
621-650. 

Burrell, Q. (2001), "Stochastic modelling of the first-citation distribution", Scientometrics, Vol. 52, 
No. 1, pp. 3-12. 

Burrell, Q. (2002), "The nth-citation distribution and obsolescence", Scientometrics, Vol. 53, No. 
3, pp. 309-323. 

Burrell, Q. (2003), "Predicting future citation behaviour", J. American Society for Information 
Science, Vol. 54, No. 5, pp. 372-378. 

Burrell, Q. (2005), "Are "sleeping beauties" to be expected?" Scientometrics, Vol. 65, No. 3, pp. 
381-389. 

DuBois, F. L. and Reeb, D. (2000), "Ranking the international business journals", Journal of 
International Business Studies, Vol. 31, No. 4, pp. 689-704. 

Harzing, A.-W. (2005), "Journal Quality List", Vol. 2005 Ed,^(Eds)�Old EndNote Style Anne -Wil 
Harzing,  

Martino, J. (1983), Technological Forecasting for Decision Making, North Holland, New York. 

Meade, N. and Islam, T. (1998), "Technological forecasting - model selection, model stability and 
combining models", Management Science, Vol. 44, No. 8, pp. 1115-1130. 

Mingers, J. and Burrell, Q. (2005), "Modeling citation behavior in management science journals", 
Ed,^(Eds)�Old EndNote Style Kent Business School, Canterbury.  

Mingers, J. and Harzing, A.-W. (2005), "Ranking journals in business and management: a statistical 
analysis of the Harzing dataset", Ed,^(Eds)�Old EndNote Style Kent Business School, 
Canterbury. 

Pearl, R. and Reed, L. (1920), "On the rate of growth of the population of the United States since 
1790 and its mathematical representation." Proc. national Academy of Science, Vol. 6, 
pp. 275-288. 

Sharif, N. and Islam, M. (1980), "The Weibull distribution as a general model for forecasting 
technological change", Technological Forecasting and Social Change, Vol. 18, pp. 247-
256. 

Stone, R. (1978), "Sigmoids", Bulletin in Applied Statistics, Vol. 7, pp. 59-119. 



S-Curves 

 24 

Tahai, A. and Meyer, M. (1999), "A revealed preference study of management journals' direct 
influences", Strategic Management Journal, Vol. 20, pp. 279-296. 

Van Raan, A. (2004), "Sleeping beauties in science", Scientometrics, Vol. 59, pp. 467-472. 

 



S-Curves 

 25 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
  
 
 

          
  
 
 
 

 

http://www.kent.ac.uk/kbs/research-information/index.htm 


